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Resumo

O envelhecimento é um processo natural, que tem tendência para reduzir a mobilidade e au-

mentar a probabilidade de quedas. Os mais idosos passam a ter necessidade de acompanhamento

permanente ora pelos seus familiares, quem nem sempre têm disponibilidade, ora numa unidade

de cuidados de saúde, que é economicamente mais exigente. De forma a proporcionar um con-

stante acompanhamento sem necessidade de abandonar as próprias casas, esta tese propõe um

sistema de monitorização para idosos baseado em sensores IoT não intrusivos.

Esta tese propõe uma arquitetura de sensores capaz de recolher eventos de um utilizador que,

em conjunto com algoritmos de previsão e de análise de semelhanças de atividade, permitem

detetar comportamento anormal.

A previsão do comportamento humano é uma tarefa difícil. O ser humano é imprevisível ao

ponto de ser capaz de desempenhar uma mesma atividade de formas distintas apenas alterando

a ordem nas interações com objetos. Esta diversidade torna dificil estabelecer o modo como

atividades são desempenhadas.

Várias abordagens do estado da arte estão mais direcionadas para a identificação de ativi-

dades, enquanto esta tese pretende focar-se num método não supervisionado, ao detetar padrões

no comportamento de cada utilizador, retirando a necessidade de identificar atividades. Tal será

feito através de algoritmos de aprendizagem máquina e um modelo de estrutura em árvore. Para

treinar os vários algoritmos, é essencial que exista um número elevado de dados, difíceis de gerar

por um único utilizador.

As abordagens de aprendizagem máquina propostas exploram LSTMs, que são o mais re-

cente estado da arte em modelação de sequências, assim como word embeddings para estabelecer

correlação entre eventos. O modelo sem perdas implementado avalia o grau de semelhança de

sequências de eventos e proporciona um bom método de avaliação para os modelos de apren-

dizagem máquina desenvolvidos. As várias arquiteturas exploradas demonstraram resultados

promissores na descoberta de padrões nos dados.

Keywords: Internet das Coisas, Não Intrusivo, Aprendizagem Máquina, Monitorização de

atividade, Previsão de eventos
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Abstract

Ageing is a natural process that tends to reduce mobility over time, increasing the probability

of falls. The elderly start to require permanent monitoring either by their families, who are not

always available or by a caring facility that is economically demanding. To provide constant

monitoring without leaving their houses, this thesis proposes an IoT-based non-intrusive elderly

monitoring system.

The proposed approach consists of the design of a hardware architecture working side by

side with activity prediction and similarity comparison algorithms to detect unusual behaviour.

Predicting human behaviour is a difficult task. The human being is very unpredictable and

capable of performing the same activity in various ways just by changing the order of interaction

with objects and appliances. This makes it difficult to establish how an activity is performed.

Several state-of-the-art approaches focus on identifying the activities being performed by

the elderly. This thesis pretends to address a more unsupervised approach by detecting user

behaviour patterns by train several machine learning approaches and a lossless model without

daily activity classification. To train such algorithms, a great amount of data is required, which

is difficult to acquire by a single user.

The proposed machine learning approaches explore the use of LSTM’s, the current state-of-

the-art in sequence modelling, and word embeddings to find event correlation. The implemented

lossless model evaluates the similarity of event sequences and also provides a good evaluation

metric for the machine learning approaches. The various implemented architectures have shown

promising results in finding patterns in data.

Keywords: Internet of Things, Non-Intrusive, Machine Learning, Activity monitoring,

Event prediction
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1 Introduction

Ageing is a natural process of every human being and with it comes physical and cognitive

disabilities [1]. According to Peel et al., the number of falls increases exponentially to people

over 65 years old.

In many cases, the lack of family or availability from their families requires elderly people

to either to search for a caring facility or someone to take care of them permanently at their

houses. They often reject the idea of leaving their houses, not only because they have lived

there for their entire lives and their house is of great value to them [1], but also because it can

become very expensive.

This thesis pretends to address a way to monitor situations like this and others that otherwise

could go unnoticed with the use of non-intrusive IoT sensors. Roy et al. [1] appeal for developers

to find a solution so that the elderly can have an alternative to this situation.

One key aspect of the proposed work is the collection of data and its analysis in order to find

patterns and, consequently, changes in it. This chapter will address the motivation, objectives,

and the structure of this thesis.

1.1 Motivation

With the development of new technological systems comes an age that not only connects

people to the internet but also devices, the Internet of Things (IoT). The already existing

different devices and applications make it possible to monitor a wide range of activities inside

a house and even control it if desired. In the end it all comes to which type of devices and

activities to monitor and how these can be used in an advantageous way.

Above all, the one thing people value the most is their privacy. They want to feel they are

not being watched, monitored. These are the main key aspects this work focuses on by using

an IoT system capable of monitoring people’s activities in a non-intrusive way, without them

realising it with the aim of helping them whenever necessary.
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Chapter 1. Introduction

This can be accomplished using non-intrusive sensors of various types, meaning, there is

no use of cameras or microphones, for example. For those who still have some movement

independence, this can be of great help to assist them in the event of some unfortunate situation.

The early detection of such events could trigger prompt actions to mitigate the problems.

The installation of a wide range of sensors that can provide coverage of key appliances and

other object interactions makes it possible to establish relationships between the events. The

sequences of events that are generated, contain hidden behaviour patterns of each user that this

thesis pretends to study and analyse.

The key aspect of this thesis is to take advantage of the data gathered by the sensors to find

a way, a method, an algorithm that can detect a pattern and tell whether something is wrong.

1.2 Problem Formulation

There is a wide scope of sensors that can be used in a system like this. The more activities and

interactions to cover, the more variety of sensors is required, which results in data heterogeneity.

Finding patterns immediately suggests the use of machine learning methodologies, which sets

some data requirements to develop an accurate model.

Machine Learning models are all about data. Training a model is trying to find a pattern

that fits the data. This is achieved by providing a dataset to train the model, during a training

task and depending on the model, this may require less or more data. The devices to be used

will generate events that represent several user activities and can be grouped to define sequences

of events. This way, the patterns to be found highly depend on the context the events happen,

and the more the dependencies, the more data is required.

Being the events dependent on user activity the data generated will not only be discrete but

also sparse, having long periods of the day without any data, like during the night for example.

To sum up, the challenges this thesis faces are the following:

1 Data heterogeneity - various types of sensors will result in different data from different

devices

2 Amount of data - the training of a machine learning model requires great amount of

data, difficult for a single user to produce, specially in an IoT environment;

3 Non-equally distributed data - time-span between events is highly dependent on user

activity and can change at any moment, compromising the dataset quality
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1.3. Objectives

4 Unbalanced data - a user interacts with objects according to its needs, which might

result in a dataset more expressive on some events than others

1.3 Objectives

The goals this thesis pretends to fulfill are:

1 Design a system that allows the collection of data from each users’ daily activity using

non-intrusive sensors

2 Find a way of representing the collected data

3 Analyse the data to filter events and generate sequences of events

4 Select, develop and implement the desired machine learning algorithms

5 Analyse the routine patterns for all the different users by training machine learning models

with the generated data;

6 Evaluate the performance of the approaches developed

1.4 Structure of the Document

This document is structured in the following way:

• State of the Art and Related Work (Chapter 2) - Description of similar systems

already proposed, the sensors used, methods and ways of overcoming the challenges faced

• Proposed Approach (Chapter 3) - The description of methods and planning of the

work done, taking into account the state of the art and related work information

• Proposed Hardware Architecture (Chapter 4) - Describes all the hardware and

framework used to take care of all sensors’ communication and where they were placed

• Data Analysis (Chapter 5) - Description of the methodologies used to process the data

generated by the users. Description of the non-machine learning algorithm developed to

detect similarity in user sequences compared with the available dataset. Description of the

machine learning algorithms implemented to detect behaviour out of the pattern

• Experimental Results (Chapter 6) - results of all implemented methodologies

• Conclusion and Future Work (Chapter 7) - final review of the results and improve-

ment suggestions to consider in a future work
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2 State of the Art and Related Work

In this chapter different alternative approaches will be analysed, exploring its advantages

and disadvantages, methods used and why some of them are useful to the purpose of the work

proposed in this thesis. In chapter 3 all that’s referred here is taken into account to describe

the approach taken.

In this thesis, the main focus will be on the use of non-intrusive IoT sensors to collect data

and implement the necessary algorithms that can show themselves capable of dealing with the

task. This way, apart from looking into related work, it is also crucial to find a representation

that fits the heterogeneous data produced by the sensors, decide which sensors to use and which

algorithms to implement.

2.1 Related Work

Bellagente et al. [3] proposed an architecture that uses a raspberry pi as a gateway that

connects to IoT devices via Z-Wave and Bluetooth. Motion, door, temperature and air

quality sensors are used as well as emergency push buttons and a smartwatch to ask for

assistance and monitor heart rate. In case of emergency, the system alerts the caregiver using

his/her smartphone. Medication monitoring is one of the features that include reminders in case

of forgetfulness. There is no special algorithm to analyse/model data.

Pinto et al. [4] and Hu et al.[5] focused their attention to a fall and absence of vital signs

detection system. The development of all the hardware was their main focus. Pinto et al.

[4] achieved this by making their own wristband, that includes body temperature, pressure,

humidity and light sensors, as well as accelerometers and push-buttons. Their own service

board and the wireless charging dock for the watch made the system easier for the elderly to

use. In [5] the system consists of temperature, pulse and accelerometer sensors.
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Alcalá et al. [6] introduced a "Non-intrusive Load Monitoring System" with the intent of

monitoring daily activities by analysing power consumption with smart plugs. To model

pattern usage they trained a Gaussian Mixture Model which would indicate the distribution of

the events for each appliance in a day. The activities were then scored based on the probabilities

of an event occurring in a certain time interval.

Hao et al. [7] proposed an architecture tested with CASAS dataset [8] that includes motion,

temperature, intrumented objects and analog sensors, that pretends to detect activities in a

multi-resident home. A model was trained based on formal concept analysis (FCA) and the

results were compared with a Hiden Markov Model which it did outperform.

Zhu et al. [9] came up with a sequence-to-sequence model built using Gated Recurrent

Unit (GRU), which is a type of Recurrent Neural Networks (RNN) very similar to Long

Short-term Memory (LSTM). They used two datasets which used accelerometer sensors,

contact switch sensors placed on cupboards and also on objects. These datasets are for activity

recognition, in which the sets of events are labeled with the performed action. Their approach is

divided into two steps: Activity reconstruction and Activities of Daily Living (ADL) recognition.

The activity reconstruction i) divides itself into three stages: i) motion state extraction, ii)

data interpolation, and iii) activity state sequence. In motion state extraction i), by using a

state-of-the-art model in locomotion recognition, they translate motion sensor information to

motion states. In the data interpolation step ii), the discrete data is converted to continuous

data by applying step-functions to the data; for the continuous values from both types of sensors,

data interpolation is used. Finally, in the last step iii), the data is translated to vectors that

are concatenated to be fed to the neural network. Both the motion sensor and door sensors are

translated to one-hot vectors as they were semantic events.

For the ADL recognition, each column vector with the information from the sensors is fed

to the encoder-decoder network. Three experiments were performed to evaluate the proposed

approach.

In the first experiment, only motion sensor data was considered which was translated to

motion states. Several motion state sequences were processed and fed to the model which

has the task of translating those sequence events to the motion states they represented. Each

sequence contained more than one motion state. The GRU approach got 71.1% accuracy and

the LSTM 66.4%.

The second experiment was similar to the first one but it also took into consideration envi-

ronment sensors (switch and pressure sensors). The GRU approach got 81.7% accuracy and the
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LSTM 79.8%.

In both the first and second experiments, some activities got better accuracy than others,

due to not having a fixed activity pattern [9].

The third and final experiment had a different approach. Instead of giving sequences with

multiple sensor events that represented multiple activities, only events related to individual

activities were fed to the network to evaluate the accuracy in activity labelling. The GRU

approach got 77.5% accuracy and the LSTM 75.4%.

For every experiment, the results were also compared with HMM and Naive Bayes architec-

tures which were outperformed, having accuracy values in the range 25-40%.

One problem with approaches that aim to detect daily activities is that the activities are

considered to be represented by a fixed set of events. If such a system is to be scalable, this

approach narrows the way activities can be performed. Each user may perform the same activity

in various ways and approaches similar to this one have little flexibility.

Gueniche et al. proposed a more traditional sequence prediction approach. The core of the

work developed is in three structures, a prediction tree, an Inverted Index and a Lookup table.

They argue that this approach, contrarily to Neural Networks (NN), is lossless as the training of

a NN will fail to capture the importance of some features. The prediction tree is a structure that

will store every sequence. To make a prediction, given a set of events, a search will be made in

the Lookup table for sequences that contain those same events. Their intersection will tell the

desired sequences that the Inverted Index allows access. This way, by accessing the sequences of

event it is possible to get the next set of possible events. A Count Table holds a score for each

possible event and the one with the highest score is most likely the correct prediction.

Fang and Hu [11] proposed a supervised deep learning algorithm to detect human activities

in a smart home. The data is also from the CASAS dataset [8]. Their deep learning algorithm

consists of multiple Restricted Boltzmann Machines which did outperform both Hiden Markov

Model and Naive Bayes Classifier methods.

In [12], long-duration sequence prediction is performed by monitoring movements and inter-

action with objects. For this, videos from youtube are used to get the movements people make

while performing activities. The several actions in each video are then converted to semantic

representations. Suffix trees are used to model the long and short-duration sequences and a

Variable Markov Model is used to predict activities based on actions.
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Alhussein et al. proposed a model with both Convolutional Neural Networks (CNN) and

LSTM to forecast electric load. The CNN is used for feature extraction and the LSTM for

sequence learning. The input of this model is a matrix that, apart from the normalized electricity

consumption data, also has one-hot encoders for time, day of the week and holiday indicator.

2.2 Sensors

Many of the work described until now is very versatile in terms of sensors used. The main

focus of this thesis is to make users as comfortable as they can without feeling they are be-

ing watched. This can be accomplished using non-intrusive sensors by avoiding cameras and

microphones for example. From the already described work, several devices fit this profile:

• Motion sensors

• Door sensors

• Item sensors (accelerometers)

• Smart plugs

• Light Sensors

• Air quality sensors

• Temperature and humidity sensors

• Smartwatch (heart rate and accelerome-

ter sensors)

• Emergency push buttons

2.3 Algorithms

2.3.1 Hidden Markov Model

Many of the work described so far compared their methods with Hidden Markov Model

(HMM). This may suggest that this type of model could be a possible choice in prediction.

On the other hand, the fact that it is outperformed several times leads to believe that there

are already better algorithms for sequence prediction. Li and Fu [12] argues that the HMM

is not suitable for long-term dependencies as it only models 1-order dependencies, meaning, it

only makes predictions based on a single event, which isn’t the best option when dealing with

sequence/activity prediction.

2.3.2 RNN/LSTM

The daily routine of each one of us is no more than a collection of consecutive actions that

grouped together can represent activities. The aim of the work developed is not to identify the
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activities being carried on but to identify if those actions, those events, match the usual pattern

of the user. LSTM is the current state-of-the-art in what concerns sequence modeling.

Tax [14] worked on the prediction of human activity in a smart home environment using

LSTM architectures. Three prediction approaches were taken: prediction of the next activity,

prediction of the timestamp of the next activity, and prediction of a window of multiple activities.

Three types of architectures were experimented, all of them LSTM based:

1 Two separate LSTM models (single task layers) to predict the next activity and timestamp

of the event

2 One model with multi-task layers, which means the last layer would have two outputs

3 A mixture of the two previous models, starting with multi-task layers and finishing with

single-task layers for each of the prediction tasks

The results were compared with the other sequence prediction techniques like Prediction by

Partial Matching, Compact Prediction Tree [10] and Hidden Markov Model approaches. The

LSTM outperforms these techniques on the prediction of next timestamp as well as the next

activity. However it’s not capable of outperforming on predicting a window of multiple future

tasks. Multi-task models also outperformed the separated LSTM models.

In [15] a basic LSTM was also compared with Naive Bayes on the task of predicting the next

activity, which it did outperform.

Long Short-termMemory (LSTM) are also used in many Natural Language Processing (NLP)

applications such as sequence to sequence translation ([16] from Google) and sequence prediction,

like the work above mentioned.

There are a lot of versions concerning RNN and LSTM all with the aim of improving per-

formance. Li et al. [17] and Boyd et al. [18] are examples of it.

In [19] a comparison between LSTM architectures and other RNN architectures was done in

order to assess its performance. Although LSTM didn’t outperform other models in every test,

they have proven to be the best in language modeling. They concluded that if there were other

architectures better than LSTM they were difficult to find.

LSTM came to overcome the vanishing gradient problem, which could originate prohibitive

training times or models that could model not data at all [20]. LSTM’s are a set of neurons that

are based on three gates: input, output and forget gate. The forget gate is used to filter what is

kept and throw away from the previous hidden states. The input gate pretends to protect the

memory from irrelevant inputs, by selecting which values get updated and which don’t. Finally,
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the output gate pretends to protect other units from perturbations by deciding the next hidden

state.

2.4 Event representation

Typically in a smart home, there are various types of sensors capable of covering most of

the activity that takes place there. The higher the diversity of these sensors, the more difficult

it is to find a common way of representing this data, making a transition from a heterogeneous

representation to a homogeneous one difficult. Some of the above mentioned approaches use

suffixes or prefixes to make predictions of actions based on events. By applying this same

principle to sensor data, it’s possible to turn each of the events into words according to the data

they return. However, machine learning models are basically a series of numbers, called weights,

and mathematical operations. As so, the inputs must also be numbers in order to perform all

the necessary operations. In [16], for example, LSTMs are used in the field of Natural Language

Processing which means all the words need to be converted into numbers, or vectors so they can

be fed to the network. These vectors are called word embeddings.

2.4.1 Word Embeddings

Before word embeddings, the words were mainly represented by one-hot vectors. This was

no less than a dictionary with a size equal to the number of words in both dimensions. Giving

as an example a vocabulary with 5000 words, if the word "thesis" is in the index 401, the vector

of word "thesis" would be a vector of size 5000 with all values set to zero except at index 401,

which would be equal to one. This would happen for every word in the vocabulary. This raised

many challenges when trying to find semantic and syntactic relations between words, until word

embeddings appeared.

There are two most prominent techniques to train word embeddings, Word2Vec [21], by

Google and GloVe [22], by Stanford.

2.4.2 Word2Vec

There are two ways of training these vectors, either by Skip-gram or Continuous Bag Of

Words (CBOW). These two architectures have proven to produce high-quality word vectors

even in simple architectures. One of the changes from the already existing language models of

the time was the removal of a hidden layer from the architectures [21].
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CBOW

CBOW learns the embeddings by predicting the word in the middle. Having a set of nine

words, in a sentence, for example, the word vectors are trained by providing as input the four

words that are placed before and after the middle word. The order by which these words are

provided doesn’t influence the training accuracy [21]. This approach works better on syntactic

tasks than Skip-Gram. The architecture can be seen in Figure 2.1.

Skip-gram

This architecture works the other way round of CBOW. Instead of predicting the current

words based on its surroundings, tries to predict a word based on another one. To give an

example, let’s imagine a set of four words in a sentence in which instead of predicting the middle

word, the purpose is now to predict the surrounding words based on the centre one [21]. This

architecture has a better performance on the semantic part than syntactic. The architecture

can be seen in Figure 2.1.

Figure 2.1: Architectures of CBOW and Skip-Gram [21]

2.4.3 Glove

GloVe [22] is another word embedding architecture proposed by Stanford. This method is

based on a co-occurrence count matrix, which is represented by the number of times a word j

occurs in the context of a word i. The probability for each word j, P (j|i), can be obtained from

the values of this matrix.
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Pij = P (j | i) = Xij

Xi
= Xij

ΣkXik
(2.1)

The difference between this model and the word2vec is the way training is performed. While

in the GloVe the training is performed by analysing the whole corpus, in the word2vec, both

the approaches only neighbouring words are taken into account.
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3 Proposed Approach

Most of the state-of-the-art literature focuses on detecting and identifying activities. Such

a method would require sequences of events to be label to specific activities, which is not only

highly time-consuming but also very difficult that such activities could be equally performed by

different users in case the system was scaled. To try a more generic approach, this thesis will

focus on the detection of out of the context events/ event prediction. With the data collected

from the use of non-intrusive sensors, several machine learning models will be trained to detect

the context in which the events occur. This means that instead of knowing the activity the

user is performing, we get the events that usually occur with the input given to the model. To

explore other approaches, models to predict the next events will also be tested. With this in

mind, the sensors were chosen to cover a wide range of possible activities that are carried in a

house. The sensors are:

• Smart plugs

• Vibration Sensors

These devices will be connected to a Raspberry Pi with a Zigbee receiver, acting as a gateway.

The Raspberry will receive all the data from the sensors and store it locally to be trained with

a machine learning approach when enough data is available.

These sensors were placed in different key locations that the users most interact with, trying

to get as much data as possible from the activities performed.

One way of detecting most home activity is by monitoring the power consumption of appli-

ances that are frequently used. This can be achieved using smart plugs, that given are small

and portable, and so they can be placed in any appliance that meets the maximum power

consumption requirements.

Due to the challenges faced by this thesis, in the beginning, it took us some time to figure

out which could be the best machine learning approach. Until the decision was made, a more
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traditional non-machine learning model was built to make some sequence similarity analysis in

real-time. The approach proposed by [10] was implemented with a few adjustments that will be

further discussed.

Due to the existence of heterogeneity in the collected data, it was necessary to find a way

to standardise the data in order to train the model. As so, each of the events will be first

translated to words, having different names depending on the appliances and states (provided

by the consumption values). In order to train the machine learning model, these word events

should be converted to vectors through the training of word embeddings.

The first implemented traditional method was later used to try and generate more data

hopping to improve the accuracy of the implemented machine learning algorithm.

Taking all the state of the art and related work into consideration, this was the approach

designed to try to fulfil the objectives and challenges described in chapter 1.

Figure 3.1: General Pipeline of the proposed approach

3.1 Tools

Python has a great amount of libraries that simplify data analysis, which came in really handy

with the JSON messages from the sensors. The entire algorithm was developed in python, as well

as the machine learning approach with PyTorch. To fine tune the hyper-parameters of the models

the API "Weights and Bias" was used to automatically test the model to a variety of values in

order to check which were the parameters that could provide the best model performance.

The traditional method was developed in C++ as it is a performs much faster due to being

a compiled language.
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4.1 Sensors

As previously mentioned, two types of sensors were used, vibration sensors and smart plugs.

The vibration sensors consist of accelerometers, capable of detecting sudden movements like

opening drawers or doors. The smart plugs can provide us the instant power values, from which

is possible to detect ON and OFF states of an appliance.

Other types of sensors were considered like motion and temperature/humidity sensors. Mo-

tion sensors could be used to provide the location of the user in the house and the humid-

ity/temperature sensors could be used to detect the steam when having a shower, where the

environment is more propitious to falls.

The sensors were placed in a house where four people live. Given this environment, the

location of a user using motion sensors would be pointless for obvious reasons. In an environment

like this, it’s most appropriate to group and analyse the sensors by room so that the activities

from different users can be better distinguished. As so, if the temperature/humidity sensor was

to be the only sensor in the bathroom, no event correlation inside this room would exist as it

would be the only device available in that room.

For these reasons, the decision was to focus mainly on those two sensors and in one particular

room, the kitchen. There are vibration sensors (VS) and smart plugs (SP) installed in:

1 Fridge door (VS)

2 Coffee cups’ cupboard (VS)

3 Trash bin door (VS)

4 Pans door (VS)

5 Kitchen tools drawer (VS)

6 Herbs and spices cupboard

7 Cutlery drawer (VS)

8 Platters drawer (VS)

9 Dishes drawer (VS)

10 Glasses cupboard (VS)

11 Oven door (VS)

12 Coffee Machine (SP)
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13 Toaster (SP)

14 Sandwich Maker (SP)

15 Cooking robot (SP)

Figure 4.1: 3D sketch of the kitchen with numbers indicating the location of the
vibration sensors

In the living room, two smart plugs were also installed in the television and reading lamp.

The last smart plug was installed in the bedroom, where the bedside lamp was connected. The

data collected from these sensors was used in the traditional approach although it wasn’t used

to train the machine learning model due to the lack of event dependencies and therefore context.

In these cases probably a simpler method like measure the mean usability time or the number

of occurrences during the day would be enough, if not better.

4.2 Gateway

All these sensors worked with the Zigbee specification and therefore needed a gateway to

be connected to. At the centre of this was a Raspberry Pi to which was connected a Zigbee

receiver and a hard drive to store the data. Due to the limited range of Zigbee devices and

the existence of walls and furniture, there were some connection problems between the sensors

and the gateway. To avoid the loss of data, another Zigbee receiver was installed in the kitchen

to route the information to the main gateway. As this receiver only needed a power supply,

it was directly connected to a USB phone charger. To make this all work, a framework called

Zigbee2MQTT [23] was used. This framework allows the connection of a variety of sensors
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having access to the data via MQTT and log txt files of every sensor event. After pairing all the

devices to the Raspberry Pi, the configuration file was edited in order to separate the devices

into groups, which were named according to the rooms they were in. This configuration file was

then provided to the data analysis algorithm so that it could easily and correctly identify the

events. A schematic of the system architecture is represented in figure 4.2

The generated log files with all the events were analysed to get the sequences of events

representative of the user activity. This analysis is described in chapter 5.

Figure 4.2: Hardware Schematic

MQTT is a messaging protocol capable of communicating even in a limited bandwidth

scenario. It is built on top of TCP/IP protocol which guaranties the delivery of messages. The

publish-subscribe pattern allows for every subscriber of a topic to get the message published,

even remotely, making it suitable for an IoT monitoring system. This feature allows real-time

data analysis and will be taken to advantage in the proposed system.

4.3 Problems faced

To train machine learning models one of the things that is of most importance is to have

as much data as possible. However, some problems emerged that ended up in the loss of data.

First of all, this thesis was developed in the context of the Covid-19 pandemic. The purchase of

the sensors got affected by several delays due to lockdown periods that only allowed the devices

to arrive three and half months after starting working on the thesis.

Apart from the delay, there was a limit to the amount of log information the framework can

save. The log files are generated by folders that are named with the date and time the framework

starts logging after an interruption. So, if the raspberry pi is running uninterruptedly only one

folder is created that can store up to three log files. After this file limit is reached, the following
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files will overwrite the existing ones. This wasn’t referred anywhere in the website, or any

help forums, resulting in the loss of one and a half months of data. After this limitation was

discovered, backups started to be made every week.

Considering all the delays, until the end of the thesis, only three months of data were

successfully collected from a total of eight months.
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5 Data Analysis

As introduced in chapter 1, there are several challenges this thesis faces: data heterogeneity,

low amount of available data and the unpredictability of the user.

When training machine learning algorithms, particular care should be put on the training

data. All the features need to have the same structure. Although, as mentioned, one of the

problems is precisely data heterogeneity, which means that as each sensor has its own parameters,

there is no data structure on which they can all rely. Finding a common data type or structure

that could be applied to every sensor data became a priority, not only for the machine learning

approach but also to make the traditional method simpler.

To overcome this challenge the solution that ended up being implemented was converting all

the data events to semantic representations. This means that the values returned by the sensors

were converted to words capable of having a meaning and purpose for the problem in hands.

The parameters that were of great interest were the power consumption for the smart plugs and

the trigger action for the vibration sensors.

5.1 Power Consumption

The smart plugs have the capacity of measuring instant power consumption. For each

appliance, after collecting a wide range of data for several weeks, the minimum, maximum,

mean and standard deviation of all the consumption values were calculated for each appliance.

The goal was to try finding a way of getting the ON/OFF thresholds automatically just by

analysing the data. For some of the appliances, the calculated values were perfectly fine but for

others, like the coffee machine, the thresholds were causing too many ON/OFF states. These

devices don’t have a fixed power consumption, the values change according to its needs. For

example, the coffee machine starts working from the moment it starts grinding the coffee beans,

although, the power consumption at this stage is much lower than when it needs to pump and

heat the water. The same happens with the television. The power consumption changes with the
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image colours as well as the changing of a channel for example, which can lead to the detecting

of false ON and OFF states. To tackle this issue, all the values were evaluated and some of the

devices, these two included, got their thresholds overwritten by more suitable values in order to

reduce false events and obtain a more balanced dataset.

5.2 Trigger action

The vibration sensors return a set of position parameters as well as three possible action

values: tilt, drop and vibration. These action values represent the action that triggered the event.

The values themselves are not relevant to the thesis but as the vibration sensor sends regular

messages, even if no interaction with the user happened, these action values allow distinguishing

the triggered events from the others. However in future work, due to their versatility and small

size, these sensors could have a wide range of use cases in which these parameters could come

in really handy.

5.3 Analysis by room

The analysis of the sequences is divided into rooms. This decision came from the fact that

in this particular environment, in which the devices were installed in a house where four people

live, there would be occasions in which two or more people would be interacting with different

sensors in different locations at the same time. Logically, these couldn’t be considered of the

same user sequence as they were not performed by the same person.

5.4 Pipeline

All the data generated by the sensors is logged into a txt file by the Zigbee2MQTT framework

[23]. Many of the log information doesn’t represent event data or if it does, it is not an event

generated by user interaction. It is required a thorough data analysis to identify the events

triggered by the user and the sequences they represent. A simpler diagram is presented in figure

5.1 followed by an explanation of each step’s.

1 Read every line of the log file. Only those that represent events (with and without user

interaction) are considered and stored. Values like time and the room the event took place,

are stored for further analysis.
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Figure 5.1: Data analysis pipeline

2 As the current list of events includes every event, it is essential to remove those that

weren’t generated by the user. As only smart plugs and vibration sensors are being used,

the important parameters are power and action, respectively. All the events that have

values in these two parameters are attributed a device type and all the others are removed

from the dataset. To recall, if the vibration sensor events have a value in the action

parameter they represent an event by interaction.

3 Calculate the mean and standard deviation of the power consumption for each appliance

in order to automatically define power consumption thresholds.

4 With the consumption thresholds assign a state to every event in the dataset. These can

be of 3 types: ON, OFF and PING. The last state applies if it’s an event from a vibration

sensor, as it has no duration.

5 Search for each ON and subsequent OFF event of the same appliance and calculate the

time the appliance was being used and remove all the unnecessary ON and OFF events

detected in the middle: remove all the ON events between an ON state until the next OFF

event; remove all the OFF events between an OFF event until the next ON appears.

6 Finally, generate the sequences by aggregating the different events taking into consideration

a time limit after which a new sequence is generated. This time limit was set to 10 minutes,

which was considered a reasonable value for a user to perform an action, without sensor

coverage, between two events, to allow the sequence to continue. The time limit is only
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considered after the last expected OFF event, which means that it is ignored until the

completion of an ON event.

5.5 Event vocabulary

As described, there are three possible states, ON, OFF and PING. The first two states belong

to the smart plugs and depend on the power consumption. The last one is the only state that a

vibration sensor possesses. As they only report the action and not the total time the interaction

took place PING was the chosen word to address this situation. As so, the possible generated

event vocabulary list is the following:

• coffeeMachineON/ coffeeMachineOFF

• sandwichMakerON/ sandwichMakerOFF

• toasterON/ toasterOFF

• cookingRobotON/ cookingRobotOFF

• microwaveON/ microwaveOFF

• dishesPING

• glassesPING

• plattersPING

• cutleryPING

• spicesPING

• pansPING

• trashPING

• fridgePING

• ovenPING

• toolsPING

• coffeeCupsPING

These are the events that will make part of each sequence generated by the data analysis

algorithm. Those will be provided to both the traditional and machine learning methods that

will rely on them in order to obtain the desired performance. Additionally, for the traditional

method also the events that take place in the living room and the bedroom are considered as it

is a lossless approach that doesn’t use machine learning and thus the amount of data and event

correlation is not critical. The following vocabulary is also possible:

• televisionON/ televisionOFF

• readingLampON/ readingLampOFF

• bedsideLampON/ bedsideLampOFF

5.6 Data collected

As already mentioned in chapter 4, there were problems concerning the data collection that

caused the only allowed for the collection of three months of data.
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From these three months several data was gathered. The data statistics is represented in

Table 5.1

No. Events %
Coffee Machine 2080 8.38%

Cutlery 2356 9.50%
Toaster 530 2.14%

Sandwich Maker 144 0.58%
Cooking Robot 438 1.77%

Microwave 724 2.92%
Fridge 5208 20.99%
Oven 943 3.80%

Herbs and Spices 1450 5.84%
Glasses 1356 5.47%
Tools 272 1.10%
Dishes 1454 5.86%
Pans 2358 9.50%

Coffee Cups 1040 4.19%
Trash 1809 7.29%
Platters 2649 10.68%
Total: 24811

No. Sequences generated: 3114
No. Days: 80

Table 5.1: Statistics of the data collected for 3 months

Analysing the dataset it is noticeable that it’s not accurately balanced as there are events

that have a higher number of occurrences than others. The fridge is the event with the highest

number of occurrences, occupying 22% of the dataset and on the other end are events from the

sandwich maker with only 0,5% of the dataset. Such an unbalanced dataset can highly influence

the results when training a neural network model, although it’s normal that the users interact

more with some objects than with others. This situation emphasizes the challenges introduced

in chapter 1.

5.7 Sequences Tree

While still trying to find the best machine learning approach possible to detect the pattern

in the user activity, a more traditional non-machine learning approach was implemented to serve

as baseline method.

This algorithm is truly based on the sequences generated on the data analysis procedure. To

briefly explain how it all works, it consists of a prefix tree that stores all these sequences and
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Figure 5.2: Prefix Tree

analyses the similarity of a user sequence by getting the most similar sequences stored in the

tree, comparing it with all of them by matching the subsequences both contain.

5.7.1 Main Structures

Being a traditional non-machine learning model, there is a lot to take into account and it

comes as a cost of many data structures. The following structures are the ones in charge of

storing the analysed sequences on which any other structure will rely to get the necessary data.

Sequences Tree

This is the main structure that stores the sequences by which the similarity will be evaluated.

After the data analysis described in chapter 5, the data is added to this structure. A file

containing all the sequences is read and the prefix tree is created. This tree avoids redundancy

by taking to its advantage equal parts of different sequences. For example, if two sequences

have three events at the beginning that are the same, only three nodes will be created that will

be common for both the sequences. On the third node, the sequences diverge resulting in two

children for this node. This only works if equal events are placed at the beginning of sequences.

The address of the last node of the sequence is stored in a lookup table, making it possible to

access a given sequence without iterating through the whole tree.
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Lookup table

The sub sequence similarity algorithm requires sequences with which the comparison can be

performed and therefore it is essential a quick access to a sequence stored in the tree. The lookup

table stores the address of the last node of each sequence in the prefix tree, with a different ID

making it possible to obtain access to a particular series of events. Taking the example in figure

5.10, for each of the sequences (1), (2) and (3) there would be an entry that has the address for

the last node of the sequence.

Occurrences Index

Each event is registered in the occurrences index. This structure stores the ID of every

sequence where that particular event appears. When a user sequence arrives to be compared

with the ones existing in the prefix tree, one of the steps is to get all the sequence IDs of every

event and get their intersection. The remaining IDs are the ones whose sequences have all the

events in common. These IDs are represented by the numbers below each sequence in figure

5.10.

5.7.2 Similarity Algorithm

Several structures are used to process the algorithm. For each room, in this case, bedroom,

living room and kitchen, exists a structure that takes place in that room. This means that the

similarity analysis is performed independently for each room.

The framework used to collect the data from the sensors [23] is based in MQTT. This feature

allowed the reception of events in real-time, by subscribing to a topic. Whenever an event is

received, a set of tasks is performed in order to evaluate the similarity of the sequence received

until that moment:

1 Receive event JSON message and process the information to check if it’s an interaction

event and in that case if the event is expected. An event is expected if it is a PING,

an OFF event after an ON event or a OFF event after an ON event, for each appliance.

NOTE: after an ON/OFF event, repeated events may arrive with similar information,

which is not desirable to consider as part of a user sequence.

2 Search the occurrences index for the sequences ID where the events have taken place

3 Get the intersection of all the sequence IDs to find the only sequences that match all the

events
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4 Get the address of the last node of each matched sequence and iterate through each one

of them to get the whole set of events

5 Evaluate the user sequence for each matched tree sequence by analysing the subsequence

similarity, meaning, searching for sets of following events in both sequences

6 Whenever a new event arrives, it is added to the vector the stores the user sequence

currently active

7 If after the last PING or OFF event, a 10 minute interval has elapsed, a new sequence will

be generated

Figure 5.3: Pipeline of the traditional approach algorithm
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Subsequence similarity

Let’s consider a user sequence (US) of size m and a tree sequence (TS) of size n. They will

form a matrix of size m× n which will be the voting system of this similarity comparison.

All the values of the matrix are initialised to zero. By iterating through each of the sequence

vectors, a comparison between each of the selected events will be made. If both the events at

position i and j are the same, the value in the matrix at location [i][j] will be equal to the sum of

one to the value of the its upper diagonal value, meaning, matrix[i][j] = matrix[i−1][j−1]+1.

If this condition doesn’t verify, the value remains the same, which means, zero.

If there is a match of a subsequence between the user and tree sequences, a diagonal of

incremental values will exist (Table 5.4).

Table 5.2: Subsequence similarity: The orange diagonal represents an existing
subsequence between the user sequence and one of matched sequences store in the

prefix tree. The numbers in yellow represent single event matches

Table 5.3: Subsequence similarity: The darker line outlines the repeated subse-
quence events. To avoid double counting, only the orange subsequence, that start

first, is considered

The higher the number of subsequences found in the matrix, the higher is the similarity.

Although, if a subsequence repeats itself more than once along the tree sequence, there will be

more than one diagonal in the same lines (Table 5.5). As the algorithm is supposed to compare

the similarity of the user sequence with the already registered ones in the tree, this isn’t a

desirable behaviour. This would cause the algorithm to double count the same subsequence in

the user sequence. If two or more diagonals overlap, the algorithm will only consider the one

that starts first in the similarity equation. Let K be the sum of the sizes of all subsequences

found, the similarity equation is as follows:
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Similarity = 2×K

size (user sequence) + size (tree sequence) (5.1)

This evaluates the user sequence in two different ways:

1 Considers all the common events, generating a general similarity ratio

2 Only considers sub-sequences (with size greater than 1) and, in this case, the order by

which the events occur matters

The values returned by the similarity function can have different meanings:

• If Similatiry = 0 the user sequence has no subsequence matches with the tree sequence

• If 0 < Similarity < 1 the user sequence has that amount of similarity with the tree

sequence

• If Similarity = 1 the user sequence and the tree sequence are a perfect match

• If Similarity > 1 the user sequence and the tree sequence have subsequence match but

the user sequence is already bigger than the tree sequence and there are matches of the

tree sequence that appear more than once in the user sequence

5.7.3 Challenges

The human being is capable of performing the same activity in an infinite number of ways.

In this particular case, it means that the same activity, let’s say lunch, can have a wide range

of possible events, order, length, duration, and so on. The unpredictability of the human being

makes this method, not the best approach as it can only work based on the stored information,

not having the ability to generalise for unseen scenarios. This is a role where machine learning

models can have a better performance. Those methods will be explored in the next chapter.

5.8 Machine Learning

There are various ways and architectures to deal with the task at hand. All of them were

evaluated and some of them were tested in order to evaluate which one could better identify the
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events and the context in which they happen with the best accuracy possible. The following

sections will describe all the steps taken until the final result and why some types of architectures

perform better than others. But before that, there is something that all of the models have in

common, which is the dataset.

5.8.1 Dataset

There are various challenges to overcome when training a neural network. In this case, as

already mentioned, the dataset can introduce a high level of bias into the model. As mentioned

in the Introduction, there are three main challenges that can influence the results: (1) the

amount of data, (2) an unbalanced dataset and (3) data heterogeneity.

The last of the mentioned challenges was mitigated when the events were coded as words.

From the data analysis described in chapter 5, the result is a file with sequences of events

generated by the user when performing his daily activities. These sequences are like sentences

in a text in which the text is the whole set of sequences available. Most of the NLP models

that exist are trained with large datasets from websites like "Wikipedia" that are capable of

providing text corpus with millions of words, sentences in which there is a logic to the order in

which they appear, there is a context which makes it possible to find patterns and define rules

to model sequence data.

However, all the data collected through the sensors comes not only from a restricted dataset

but the order in which these events appear in a sequence doesn’t follow a specific set of rules. To

better explain, lets imagine a user is taking his breakfast and generating the following sequence:

Figure 5.4: Example of a sequence of events representing a user having breakfast

This is possible to understand that very probably breakfast is being prepared. Now lets

change the order of these events:

Figure 5.5: Example of another sequence of events of a user taking his breakfast
that contain the same events but in a different order
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This sequence of events represents exactly the same activity, although the order of the events

has changed. It’s possible to noticed that for every ON event there is always an OFF event, but

apart from that, the order could be any.

In a normal sentence, from a book for example, there are nouns, verbs, adjectives and so on.

The order in which those words appear has to follow a certain set of rules, otherwise the sentence

would make no sense. With this type of events there is always space for randomness, which is

not common in a corpus of text. The small size of the dataset, with the already presented twenty

seven words, may make it difficult to find relations between them as the context in which some

of the appliances are used can change drastically and the sequence still makes sense.

To try to find whether this may influence accuracy, several model architectures were tested.

But one of the things all models have in common is the word representation.

5.8.2 Word Embeddings

As introduced, there are two state-of-the-art word embeddings architectures, Word2Vec

(CBOW and Skip-gram) and Glove. Each of them requires different input shapes thus they

will be addressed separately. The initial sequence recognition is equal in every approach. In a

first step, the CSV file generated by the data analysis algorithm is read. This file contains all the

events divided into sequences identified by a sequence ID. To train the different architectures it’s

probably a better approach do deal with each sequence individually and therefore these events

need to be aggregated into sequences, which means turning a dataset of events into a dataset of

sequences.

Algorithm 1 Data setup
1: data← read data from file
2: dataset← create empty list to store sequence dataset
3: aux_sequence← auxiliar structure to temporarily store a sequence of events
4: sequenceID = 0
5: for i < length(data) do
6: if sequenceID == data[i].sequenceID then
7: aux_sequence← append current event data[i]
8: else
9: dataset← append aux_sequence

10: sequenceID = data[i].sequenceID
11: aux_sequence← clear
12: aux_sequence← append current event data[i]
13: end if
14: end for
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Word2Vec

Both the architectures used to train the Skip-gram and CBOW are very simple. They consist

only of a hidden layer, that contains the embeddings which will then be fed to a linear layer,

in order to convert the embeddings to an output with the size of the event vocabulary and

finally a log softmax layer. For each event received as input, the embedding layer returns the

corresponding embedding vector that will go through the model. The CBOW model receives

as input a number of events according to the chosen window size. In order to be compatible

with the architecture, all the embedding vectors are averaged to obtain only one vector. The

embedding bag layer does this procedure automatically.

(a) CBOW model architecture (b) Skip-gram model architecture

Figure 5.6: Word2vec model architectures

Skip-gram

In Skip-gram the word embeddings are trained with the aim of learning the context in which

the words appear. By giving an event to the model as input it would return the words that

usually occur near this one.

After having the dataset divided into sequences, the next step is to create the inputs and

labels to train the model.

Skip-gram architectures receive one input and can return many others, the contexts. This

way, by defining a context window, let’s say of two events, the event in the middle will be our

input and two events on each side of the middle event will be the context of this word, creating

pairs of data (input=middle event, target=context events). This is exemplified in figure 5.15.

The red box in figure 5.15 represents the context window of size two for the centre word

"CoffeeOFF". In this example the data generated to train would be the pairs (CoffeeOFF, Cof-

feeON), (CoffeeOFF, ToasterON), (CoffeeOFF, FridgePING) and (CoffeeOFF, CutleryPING).
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Figure 5.7: How to create the dataset to train Skip-gram architecture

The algorithm to take care of processing the data is the following:

Algorithm 2 Skip-gram Data setup
1: dataset← stores the event sequences
2: CONTEXT_SIZE ← size of the window of events
3: x← stores model input
4: y ← stores model label
5: for i < length(dataset) do
6: for j < length(dataset[i])− CONTEXT_SIZE do
7: for a← −CONTEXT_SIZE <= CONTEXT_SIZE do
8: if a! = 0 then
9: x← appends dataset[i][j+a]

10: y ← appends dataset[i][j]
11: end if
12: end for
13: end for
14: end for

CBOW

The data processing for the CBOW model is the other way round of the Skip-gram in which

the input of the network is the sequence of events that give context to the middle word, and

the middle work is the target. One advantage of this approach over the previous one is that the

training is much faster as the inputs are in a smaller number. This way, going back to figure

for the CBOW approach the data generated to train the model would be a single structure, for

the red box, following the same shape, (input, target). It would be like ([CoffeeON, ToasterON,

FridgePING, CutleryPING], CoffeeOFF).

GloVe

The input data in GloVe architecture follows a different pattern. As specified in chapter 1

this word embeddings architecture isn’t a window-based approach as it learns the embeddings

from the entire corpus which consists of all the sequences displayed like a text. The problem

with this architecture is that it requires a great amount of data that a single user is incapable

of producing. After trying to train the glove embeddings, no results were achieved.
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Algorithm 3 CBOW Data setup
1: dataset← stores the event sequences
2: CONTEXT_SIZE ← size of the window of events
3: x← stores model input
4: y ← stores model label
5: for i < length(dataset) do
6: for j < length(dataset[i])− CONTEXT_SIZE do
7: for a← −CONTEXT_SIZE <= CONTEXT_SIZE do
8: if a! = 0 then
9: aux_x← appends dataset[i][j+a]

10: else
11: y ← appends dataset[i][j]
12: end if
13: end for
14: x← append context events
15: end for
16: end for

5.8.3 Event Prediction

LSTM is the current state-of-the-art in sequence modelling. Trying to predict events in a

scenario where there is not wrong order of events, as there is with common language sentences,

makes this task difficult to implement. Nevertheless, taking advantage of the correlations of word

found training word embeddings, a transfer learning technique will be applied to try predicting

the next events with the trained embeddings in a separate model.

The architecture represented in figure 5.16 receives in the embedding layer the indexes of

each word event and outputs the corresponding embedding vectors. They will be fed to three

sequence LSTM layers and at the end a linear, sigmoid and softmax layers which will output a

vector with the size of the vocabulary with the prediction being the index of the highest value.

5.8.4 Hyperparameter fine-tuning

There are parameters that can widely affect the performance of the final model. Parameters

like batch size, number of epochs, context size for the training of word embeddings, size of the

embeddings, size of the hidden layers, and so on. The number of combinations of all these param-

eters is considerable and testing them all by hand would be unprofitable and time-consuming.

"Weights and Biases" [24] was therefore responsible for running several combinations of param-

eters and logging them to a website where the information could be examined afterwards.
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Figure 5.8: CBOW and Skip-gram event prediction model architecture

5.8.5 Ensemble Learning

Due to the reduced number of sensors and all the problems faced during data collection,

the dataset is may be too small for an accurate training of the word embeddings. This way, an

approach will be taking in order to try and improve prediction.

Ensemble learning is a method that consists of combining several models to achieve better

results. There are three types of ensemble learning: bagging, boosting and stacking.

• Boosting - combination of multiple models with the same architecture trained sequentially

(depend on each other) to overcome biased dataset

• Bagging - combination of multiple models with the same architecture trained in parallel

with different sets of data to overcome variance in the dataset

• Stacking - combination of heterogeneous models trained in parallel

One of the challenges this thesis faces is the reduced amount of available data that can

be insufficient to train a model that produces good results. The ensemble boosting tries to

overcome the problem by training on data that previous models failed to learn from, while

ensemble stacking trains the same model architectures with different data. These methods try

to overcome dataset problems that either are highly biased or have a high variance. Ensemble

stacking trains several heterogeneous models to achieve better results, however the selected
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machine learning architectures are very similar, not making this method the best approach to

take.

Bagging

Ensemble Bagging consists in training several models in parallel and averaging them to obtain

a final prediction [25]. From the main dataset, several bootstrap samples (smaller datasets) are

created to allow parallel training with different data. By training the same model architecture

with different samples of the dataset, the result will be a set of different models that can hopefully

produce a final model with less variance [25].

Algorithm 4 Ensemble Bagging
1: Dataset: (xi, yi) pairs
2: k: number of models to train
3: for i = 1...k do
4: Take a random bootstrap sample Dk from the Dataset
5: Train model k with Dk

6: end for
7: Combine all the k models trained
8: Obtain votes from all the k models
9: Obtain final vote from the majority

Boosting

Ensemble boosting trains three models with the same architecture sequentially. After each

model is trained, an evaluation is performed to check which samples of the training set fail to

perform. The failed samples will then be used to train the second model and the final model is

trained with the samples that both the first and seconds models failed to predict. When making

the final prediction, each one of the train modules makes its inference and the one with a higher

number of votes is the final decision. This approach allows models to complement themselves

by training them on the tasks they are not so keen on.

Algorithm 5 Ensemble Boosting
1: Dataset: (xi, yi) pairs
2: N: size of the dataset
3: Select S1 < N samples from the dataset
4: Train the first model on the S1
5: Select S2 < N samples from the dataset, half of them misclassified by the first model
6: Train the seconds model on the S2
7: Select S3 < N samples from the dataset that both first and second models misclassified
8: Train the third model on the S3
9: Get final result by majority vote
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5.8.6 CNN + LSTM

The purpose of the work developed by Alhussein et al. [13] was to forecast electric load. This

approach will be based on theirs, adapting the architecture and inputs to predict events. The

input will be a concatenated vector of one-hot representations of the period of the day the event

took place, the day of the week and also the one-hot representation of the event.

The input vectors used by them had greater dimensions that the ones used in this thesis,

which has effect on the convolutional layers used, that got their number reduced to one instead

of one, as well as the maxpool and relu layers. These are followed by three sequence modeling

LSTM layers, a dropout layer to prevent a model from overfiting and finally a linear layer at

the output.

Figure 5.9: Hybrid CNN and LSTM architecture based on the proposed archi-
tecture of Alhussein et al.

5.9 Sequences Tree

While still trying to find the best machine learning approach possible to detect the pattern

in the user activity, a more traditional non-machine learning approach was implemented to serve

as baseline method.

This algorithm is truly based on the sequences generated on the data analysis procedure. To

briefly explain how it all works, it consists of a prefix tree that stores all these sequences and
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Figure 5.10: Prefix Tree

analyses the similarity of a user sequence by getting the most similar sequences stored in the

tree, comparing it with all of them by matching the subsequences both contain.

5.9.1 Main Structures

Being a traditional non-machine learning model, there is a lot to take into account and it

comes as a cost of many data structures. The following structures are the ones in charge of

storing the analysed sequences on which any other structure will rely to get the necessary data.

Sequences Tree

This is the main structure that stores the sequences by which the similarity will be evaluated.

After the data analysis described in chapter 5, the data is added to this structure. A file

containing all the sequences is read and the prefix tree is created. This tree avoids redundancy

by taking to its advantage equal parts of different sequences. For example, if two sequences

have three events at the beginning that are the same, only three nodes will be created that will

be common for both the sequences. On the third node, the sequences diverge resulting in two

children for this node. This only works if equal events are placed at the beginning of sequences.

The address of the last node of the sequence is stored in a lookup table, making it possible to

access a given sequence without iterating through the whole tree.
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Lookup table

The sub sequence similarity algorithm requires sequences with which the comparison can be

performed and therefore it is essential a quick access to a sequence stored in the tree. The lookup

table stores the address of the last node of each sequence in the prefix tree, with a different ID

making it possible to obtain access to a particular series of events. Taking the example in figure

5.10, for each of the sequences (1), (2) and (3) there would be an entry that has the address for

the last node of the sequence.

Occurrences Index

Each event is registered in the occurrences index. This structure stores the ID of every

sequence where that particular event appears. When a user sequence arrives to be compared

with the ones existing in the prefix tree, one of the steps is to get all the sequence IDs of every

event and get their intersection. The remaining IDs are the ones whose sequences have all the

events in common. These IDs are represented by the numbers below each sequence in figure

5.10.

5.9.2 Similarity Algorithm

Several structures are used to process the algorithm. For each room, in this case, bedroom,

living room and kitchen, exists a structure that takes place in that room. This means that the

similarity analysis is performed independently for each room.

The framework used to collect the data from the sensors [23] is based in MQTT. This feature

allowed the reception of events in real-time, by subscribing to a topic. Whenever an event is

received, a set of tasks is performed in order to evaluate the similarity of the sequence received

until that moment:

1 Receive event JSON message and process the information to check if it’s an interaction

event and in that case if the event is expected. An event is expected if it is a PING,

an OFF event after an ON event or a OFF event after an ON event, for each appliance.

NOTE: after an ON/OFF event, repeated events may arrive with similar information,

which is not desirable to consider as part of a user sequence.

2 Search the occurrences index for the sequences ID where the events have taken place

3 Get the intersection of all the sequence IDs to find the only sequences that match all the

events
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4 Get the address of the last node of each matched sequence and iterate through each one

of them to get the whole set of events

5 Evaluate the user sequence for each matched tree sequence by analysing the subsequence

similarity, meaning, searching for sets of following events in both sequences

6 Whenever a new event arrives, it is added to the vector the stores the user sequence

currently active

7 If after the last PING or OFF event, a 10 minute interval has elapsed, a new sequence will

be generated

Figure 5.11: Pipeline of the traditional approach algorithm
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Subsequence similarity

Let’s consider a user sequence (US) of size m and a tree sequence (TS) of size n. They will

form a matrix of size m× n which will be the voting system of this similarity comparison.

All the values of the matrix are initialised to zero. By iterating through each of the sequence

vectors, a comparison between each of the selected events will be made. If both the events at

position i and j are the same, the value in the matrix at location [i][j] will be equal to the sum of

one to the value of the its upper diagonal value, meaning, matrix[i][j] = matrix[i−1][j−1]+1.

If this condition doesn’t verify, the value remains the same, which means, zero.

If there is a match of a subsequence between the user and tree sequences, a diagonal of

incremental values will exist (Table 5.4).

Table 5.4: Subsequence similarity: The orange diagonal represents an existing
subsequence between the user sequence and one of matched sequences store in the

prefix tree. The numbers in yellow represent single event matches

Table 5.5: Subsequence similarity: The darker line outlines the repeated subse-
quence events. To avoid double counting, only the orange subsequence, that start

first, is considered

The higher the number of subsequences found in the matrix, the higher is the similarity.

Although, if a subsequence repeats itself more than once along the tree sequence, there will be

more than one diagonal in the same lines (Table 5.5). As the algorithm is supposed to compare

the similarity of the user sequence with the already registered ones in the tree, this isn’t a

desirable behaviour. This would cause the algorithm to double count the same subsequence in

the user sequence. If two or more diagonals overlap, the algorithm will only consider the one

that starts first in the similarity equation. Let K be the sum of the sizes of all subsequences

found, the similarity equation is as follows:
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Similarity = 2×K

size (user sequence) + size (tree sequence) (5.2)

This evaluates the user sequence in two different ways:

1 Considers all the common events, generating a general similarity ratio

2 Only considers sub-sequences (with size greater than 1) and, in this case, the order by

which the events occur matters

The values returned by the similarity function can have different meanings:

• If Similatiry = 0 the user sequence has no subsequence matches with the tree sequence

• If 0 < Similarity < 1 the user sequence has that amount of similarity with the tree

sequence

• If Similarity = 1 the user sequence and the tree sequence are a perfect match

• If Similarity > 1 the user sequence and the tree sequence have subsequence match but

the user sequence is already bigger than the tree sequence and there are matches of the

tree sequence that appear more than once in the user sequence

5.9.3 Challenges

The human being is capable of performing the same activity in an infinite number of ways.

In this particular case, it means that the same activity, let’s say lunch, can have a wide range

of possible events, order, length, duration, and so on. The unpredictability of the human being

makes this method, not the best approach as it can only work based on the stored information,

not having the ability to generalise for unseen scenarios. This is a role where machine learning

models can have a better performance. Those methods will be explored in the next chapter.

5.10 Machine Learning

There are various ways and architectures to deal with the task at hand. All of them were

evaluated and some of them were tested in order to evaluate which one could better identify the
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events and the context in which they happen with the best accuracy possible. The following

sections will describe all the steps taken until the final result and why some types of architectures

perform better than others. But before that, there is something that all of the models have in

common, which is the dataset.

5.10.1 Dataset

There are various challenges to overcome when training a neural network. In this case, as

already mentioned, the dataset can introduce a high level of bias into the model. As mentioned

in the Introduction, there are three main challenges that can influence the results: (1) the

amount of data, (2) an unbalanced dataset and (3) data heterogeneity.

The last of the mentioned challenges was mitigated when the events were coded as words.

From the data analysis described in chapter 5, the result is a file with sequences of events

generated by the user when performing his daily activities. These sequences are like sentences

in a text in which the text is the whole set of sequences available. Most of the NLP models

that exist are trained with large datasets from websites like "Wikipedia" that are capable of

providing text corpus with millions of words, sentences in which there is a logic to the order in

which they appear, there is a context which makes it possible to find patterns and define rules

to model sequence data.

However, all the data collected through the sensors comes not only from a restricted dataset

but the order in which these events appear in a sequence doesn’t follow a specific set of rules. To

better explain, lets imagine a user is taking his breakfast and generating the following sequence:

Figure 5.12: Example of a sequence of events representing a user having break-
fast

This is possible to understand that very probably breakfast is being prepared. Now lets

change the order of these events:

Figure 5.13: Example of another sequence of events of a user taking his breakfast
that contain the same events but in a different order
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This sequence of events represents exactly the same activity, although the order of the events

has changed. It’s possible to noticed that for every ON event there is always an OFF event, but

apart from that, the order could be any.

In a normal sentence, from a book for example, there are nouns, verbs, adjectives and so on.

The order in which those words appear has to follow a certain set of rules, otherwise the sentence

would make no sense. With this type of events there is always space for randomness, which is

not common in a corpus of text. The small size of the dataset, with the already presented twenty

seven words, may make it difficult to find relations between them as the context in which some

of the appliances are used can change drastically and the sequence still makes sense.

To try to find whether this may influence accuracy, several model architectures were tested.

But one of the things all models have in common is the word representation.

5.10.2 Word Embeddings

As introduced, there are two state-of-the-art word embeddings architectures, Word2Vec

(CBOW and Skip-gram) and Glove. Each of them requires different input shapes thus they

will be addressed separately. The initial sequence recognition is equal in every approach. In a

first step, the CSV file generated by the data analysis algorithm is read. This file contains all the

events divided into sequences identified by a sequence ID. To train the different architectures it’s

probably a better approach do deal with each sequence individually and therefore these events

need to be aggregated into sequences, which means turning a dataset of events into a dataset of

sequences.

Algorithm 6 Data setup
1: data← read data from file
2: dataset← create empty list to store sequence dataset
3: aux_sequence← auxiliar structure to temporarily store a sequence of events
4: sequenceID = 0
5: for i < length(data) do
6: if sequenceID == data[i].sequenceID then
7: aux_sequence← append current event data[i]
8: else
9: dataset← append aux_sequence

10: sequenceID = data[i].sequenceID
11: aux_sequence← clear
12: aux_sequence← append current event data[i]
13: end if
14: end for
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Word2Vec

Both the architectures used to train the Skip-gram and CBOW are very simple. They consist

only of a hidden layer, that contains the embeddings which will then be fed to a linear layer,

in order to convert the embeddings to an output with the size of the event vocabulary and

finally a log softmax layer. For each event received as input, the embedding layer returns the

corresponding embedding vector that will go through the model. The CBOW model receives

as input a number of events according to the chosen window size. In order to be compatible

with the architecture, all the embedding vectors are averaged to obtain only one vector. The

embedding bag layer does this procedure automatically.

(a) CBOW model architecture (b) Skip-gram model architecture

Figure 5.14: Word2vec model architectures

Skip-gram

In Skip-gram the word embeddings are trained with the aim of learning the context in which

the words appear. By giving an event to the model as input it would return the words that

usually occur near this one.

After having the dataset divided into sequences, the next step is to create the inputs and

labels to train the model.

Skip-gram architectures receive one input and can return many others, the contexts. This

way, by defining a context window, let’s say of two events, the event in the middle will be our

input and two events on each side of the middle event will be the context of this word, creating

pairs of data (input=middle event, target=context events). This is exemplified in figure 5.15.

The red box in figure 5.15 represents the context window of size two for the centre word

"CoffeeOFF". In this example the data generated to train would be the pairs (CoffeeOFF, Cof-

feeON), (CoffeeOFF, ToasterON), (CoffeeOFF, FridgePING) and (CoffeeOFF, CutleryPING).
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Figure 5.15: How to create the dataset to train Skip-gram architecture

The algorithm to take care of processing the data is the following:

Algorithm 7 Skip-gram Data setup
1: dataset← stores the event sequences
2: CONTEXT_SIZE ← size of the window of events
3: x← stores model input
4: y ← stores model label
5: for i < length(dataset) do
6: for j < length(dataset[i])− CONTEXT_SIZE do
7: for a← −CONTEXT_SIZE <= CONTEXT_SIZE do
8: if a! = 0 then
9: x← appends dataset[i][j+a]

10: y ← appends dataset[i][j]
11: end if
12: end for
13: end for
14: end for

CBOW

The data processing for the CBOW model is the other way round of the Skip-gram in which

the input of the network is the sequence of events that give context to the middle word, and

the middle work is the target. One advantage of this approach over the previous one is that the

training is much faster as the inputs are in a smaller number. This way, going back to figure

for the CBOW approach the data generated to train the model would be a single structure, for

the red box, following the same shape, (input, target). It would be like ([CoffeeON, ToasterON,

FridgePING, CutleryPING], CoffeeOFF).

GloVe

The input data in GloVe architecture follows a different pattern. As specified in chapter 1

this word embeddings architecture isn’t a window-based approach as it learns the embeddings

from the entire corpus which consists of all the sequences displayed like a text. The problem

with this architecture is that it requires a great amount of data that a single user is incapable

of producing. After trying to train the glove embeddings, no results were achieved.
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Algorithm 8 CBOW Data setup
1: dataset← stores the event sequences
2: CONTEXT_SIZE ← size of the window of events
3: x← stores model input
4: y ← stores model label
5: for i < length(dataset) do
6: for j < length(dataset[i])− CONTEXT_SIZE do
7: for a← −CONTEXT_SIZE <= CONTEXT_SIZE do
8: if a! = 0 then
9: aux_x← appends dataset[i][j+a]

10: else
11: y ← appends dataset[i][j]
12: end if
13: end for
14: x← append context events
15: end for
16: end for

5.10.3 Event Prediction

LSTM is the current state-of-the-art in sequence modelling. Trying to predict events in a

scenario where there is not wrong order of events, as there is with common language sentences,

makes this task difficult to implement. Nevertheless, taking advantage of the correlations of word

found training word embeddings, a transfer learning technique will be applied to try predicting

the next events with the trained embeddings in a separate model.

The architecture represented in figure 5.16 receives in the embedding layer the indexes of

each word event and outputs the corresponding embedding vectors. They will be fed to three

sequence LSTM layers and at the end a linear, sigmoid and softmax layers which will output a

vector with the size of the vocabulary with the prediction being the index of the highest value.

5.10.4 Hyperparameter fine-tuning

There are parameters that can widely affect the performance of the final model. Parameters

like batch size, number of epochs, context size for the training of word embeddings, size of the

embeddings, size of the hidden layers, and so on. The number of combinations of all these param-

eters is considerable and testing them all by hand would be unprofitable and time-consuming.

"Weights and Biases" [24] was therefore responsible for running several combinations of param-

eters and logging them to a website where the information could be examined afterwards.
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Figure 5.16: CBOW and Skip-gram event prediction model architecture

5.10.5 Ensemble Learning

Due to the reduced number of sensors and all the problems faced during data collection,

the dataset is may be too small for an accurate training of the word embeddings. This way, an

approach will be taking in order to try and improve prediction.

Ensemble learning is a method that consists of combining several models to achieve better

results. There are three types of ensemble learning: bagging, boosting and stacking.

• Boosting - combination of multiple models with the same architecture trained sequentially

(depend on each other) to overcome biased dataset

• Bagging - combination of multiple models with the same architecture trained in parallel

with different sets of data to overcome variance in the dataset

• Stacking - combination of heterogeneous models trained in parallel

One of the challenges this thesis faces is the reduced amount of available data that can

be insufficient to train a model that produces good results. The ensemble boosting tries to

overcome the problem by training on data that previous models failed to learn from, while

ensemble stacking trains the same model architectures with different data. These methods try

to overcome dataset problems that either are highly biased or have a high variance. Ensemble

stacking trains several heterogeneous models to achieve better results, however the selected
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machine learning architectures are very similar, not making this method the best approach to

take.

Bagging

Ensemble Bagging consists in training several models in parallel and averaging them to obtain

a final prediction [25]. From the main dataset, several bootstrap samples (smaller datasets) are

created to allow parallel training with different data. By training the same model architecture

with different samples of the dataset, the result will be a set of different models that can hopefully

produce a final model with less variance [25].

Algorithm 9 Ensemble Bagging
1: Dataset: (xi, yi) pairs
2: k: number of models to train
3: for i = 1...k do
4: Take a random bootstrap sample Dk from the Dataset
5: Train model k with Dk

6: end for
7: Combine all the k models trained
8: Obtain votes from all the k models
9: Obtain final vote from the majority

Boosting

Ensemble boosting trains three models with the same architecture sequentially. After each

model is trained, an evaluation is performed to check which samples of the training set fail to

perform. The failed samples will then be used to train the second model and the final model is

trained with the samples that both the first and seconds models failed to predict. When making

the final prediction, each one of the train modules makes its inference and the one with a higher

number of votes is the final decision. This approach allows models to complement themselves

by training them on the tasks they are not so keen on.

Algorithm 10 Ensemble Boosting
1: Dataset: (xi, yi) pairs
2: N: size of the dataset
3: Select S1 < N samples from the dataset
4: Train the first model on the S1
5: Select S2 < N samples from the dataset, half of them misclassified by the first model
6: Train the seconds model on the S2
7: Select S3 < N samples from the dataset that both first and second models misclassified
8: Train the third model on the S3
9: Get final result by majority vote
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5.10.6 CNN + LSTM

The purpose of the work developed by Alhussein et al. [13] was to forecast electric load. This

approach will be based on theirs, adapting the architecture and inputs to predict events. The

input will be a concatenated vector of one-hot representations of the period of the day the event

took place, the day of the week and also the one-hot representation of the event.

The input vectors used by them had greater dimensions that the ones used in this thesis,

which has effect on the convolutional layers used, that got their number reduced to one instead

of one, as well as the maxpool and relu layers. These are followed by three sequence modeling

LSTM layers, a dropout layer to prevent a model from overfiting and finally a linear layer at

the output.

Figure 5.17: Hybrid CNN and LSTM architecture based on the proposed archi-
tecture of Alhussein et al.
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6 Experimental Results

To evaluate the proposed methods, two datasets were generated from all the data gathered

from the sensors (Table 6.1). The datasets, one for training and another for testing, were used

in both the implemented methods so that the results can be compared. To train the machine

learning architectures, the training dataset was splitted in two set of data, one exclusively for

training, which represents 80% of the training dataset and the remaining 20% were destined to

validate the accuracy of the trained model and hyper-parameter tuning.

Training Dataset Test Dataset
No. Events % No. Events %

Coffee Machine 1342 8.18% 738 8.77%
Cutlery 1537 9.37% 819 9.73%
Toaster 328 2.00% 202 2.40%

Sandwich Maker 78 0.48% 66 0.78%
Cooking Robot 304 1.85% 134 1.59%

Microwave 410 2.50% 314 3.73%
Fridge 3575 21.80% 1633 19.41%
Oven 683 4.17% 260 3.09%

Herbs and Spices 1021 6.23% 429 5.10%
Glasses 906 5.53% 450 5.35%
Tools 272 1.66% 0 0.00%
Dishes 991 6.04% 463 5.50%
Pans 1545 9.42% 813 9.66%

Coffee Cups 580 3.54% 460 5.47%
Trash 1121 6.84% 688 8.18%
Platters 1703 10.39% 946 11.24%
Total: 16396 8415

No. Sequences generated: 1958 998
No. Days: 59 21

Table 6.1: Distribution of the gathered data from the sensors into a training
dataset and a test dataset

Both datasets must contain approximately the same data distribution for the same events,
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with the exception of the Tool event, which didn’t get any events in the testing dataset in

twenty-one days of data, due to an unknown problem. Since keeping this event could influence

the results, it was deleted from both datasets.

6.1 Sequence Tree

The train dataset was fed to the algorithm that read the event sequences and stored them in

a tree. For each event in the test dataset, similarity analysis was performed and presented at the

end of each sequence. The results in the histograms presented in figures 6.2 and 6.1 represent

the similarity values for each sequence detected by the proposed approach.

Figure 6.1: Histogram representing the general sequence similarity

In the first histogram (6.1) it is visible the distribution of sequences by ratio interval of

general similarity. It only takes into account the matched events that exist in both the user

event sequence and the matched tree event sequences. This way, the higher the ratio, the higher

is the number of matched events. By analysing the histogram it is noticeable that most of

the event sequences are placed above 0.94 (94%) which represents a very good similarity with

previous behaviour of the user.

The second histogram (6.2) represents the distribution of the sequences by subsequence

similarity ratio intervals. This metric values the order by which the events appear which is

similar to say that this metric tries to find patterns in the event sequences that exist in the

tree. The results show that almost half of the sequences got similarity values between 0 and

14%. Analysing the several sequences that got a ratio between 0.98 and 1.12, it is noticeable
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Figure 6.2: Histogram representing the subsequence similarity

that most of the user event sequences have a size in range two to four and found a perfect match

with tree event sequences and that most of the sequences with a ratio bellow 0.5 have a size of

at least 10 events. This suggests that the higher the range of sequences, the more difficult it is

to find similarities between them.

6.2 Machine Learning

6.2.1 Word Embeddings

There are some key parameters that have effect on the training of the word embeddings, which

are the context size, embeddings dimension, batch size and number of epochs. The context size

is the size of the window of events to consider for training. The embeddings dimension is the size

of each word vector. The batch size and number of epochs are more general machine learning

parameters that are the number of data samples to give as input to the model before updating

the weights, and the number of times the whole dataset will train the network, respectively.

To test the best combination of these values that could provide the best accuracy possible,

the tool "Weights and Biases" [24] was used to test different combinations of parameters more

efficiently, using a validation dataset. This tool was used in some of the machine learning

approaches taken. The hyper-parameter tuning for both the CBOW and Skip-gram is displayed

in Figures 6.3 and 6.4, respectively.
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Figure 6.3: Hyper-parameter fine-tuning of the CBOW Embeddings model ar-
chitecture

Figure 6.4: Hyper-parameter fine-tuning of the CBOW Embeddings model ar-
chitecture

As previously mentioned, the CBOW embeddings are trained on the context to predict the

middle word, while the Skip-gram embeddings are trained on the middle word to predict the

context words. The second approach is computationally more intensive that the first. It is

possible to notice that the training of the CBOW embeddings got a higher validation accuracy
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in general. Nevertheless, both embeddings were taken into consideration in further machine

learning approaches. The best hyper-parameter configuration for each of the models is described

in Table 6.2

The final accuracy of each model trained with the hyper-parameters above mentioned are

the following:

Batch size Context size Embedding Dimension Epochs Accuracy
CBOW 97 4 8 40 31.14%

Skip-gram 239 2 8 50 21.94%

Table 6.2: Evaluation of CBOW and Skip-gram models

The following machine learning architectures that require word embeddings will have them

by transfer learning.

6.2.2 LSTM and Word Embeddings

The hyper-parameter fine-tuning for the architecture in figure 5.16 are represented in figure

6.5.

Figure 6.5: Hyper-parameter fine-tuning of the event prediction architecture
with Skip-gram word embeddings
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Figure 6.6: Hyper-parameter fine-tuning of the event prediction architecture
with CBOW word embeddings

From the above plots it is possible to select the hyper-parameters that got the best accuracy

for each of the event prediction architectures. These values are presented in table 6.3.

Batch Hidden size 1 Hidden size 2 Hidden size 3 Epochs Accuracy
Skip-gram 5 12 31 13 500 21.28%

CBOW 12 9 47 45 500 21.99%

Table 6.3: Hyper-parameters and accuracy for both CBOW and Skip-gram event
prediction models

6.2.3 Ensemble Boosting

Ensemble boosting requires more computational power due to the three models that are

required to train in order to obtain the final decision. Due to the limited resources available,

this approach was only trained with CBOW embeddings. The results are presented in table 6.4.
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Hidden Size Accuracy

Run No. LSTM 1 LSTM 2 LSTM 3 Model 1 Model 2 Model 3 Final

1 69 35 128 8.64% 11.38% 14.54% 3.34%

2 58 28 65 6.89% 7.21% 7.14% 3.22%

3 65 32 32 18.17% 19.36% 6.49% 2.99%

4 44 43 50 21.38 % 36.63 % 14.65 % 8.05 %

5 34 125 19 12.40% 12.15% 13.45% 5.36%

6 60 23 66 6.64% 7.21% 6.01% 0.60%

7 17 29 59 26.62% 30.76% 11.89% 6.05%

8 100 95 53 8.34% 12.64% 10.91% 5.18%

Table 6.4: Ensemble Boosting Hyper-parameter tuning

Ensemble bagging differentiates from ensemble boosting by the dataset that is used to train

the different models. To access the accuracy of ensemble bagging, the training dataset described

in table 6.1, was divided in four parts, with 25% of the data each. Three of these sets were

used to train each of the three models and the remaining part was used to validate the model.

Keeping the hyper-parameters that best performed in ensemble boosting, the results of the

ensemble bagging are described in table 6.5.

Model 1 Model 2 Model 3 Final Accuracy
32.64% 22.98% 25.85% 17.85%

Table 6.5: Ensemble bagging results

6.2.4 CNN + LSTM

The inputs fed to this model kept the same shape of the one proposed in [13]. Instead

of using word embeddings, the accuracy was tested by feeding one-hot representation of the

events, time of the day and day of the week. Unlike the other approaches, this one explores

the prediction of multiple events which was one of the hyper-parameters to be fine-tuned. The

results are represented in Figure 6.7.
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Batch size Context size Events to predict Epochs Accuracy
228 5 1 400 9.39%

Table 6.6: Hyper-parameters of the highest accuracy CNN-LSTM model trained

Batch size Context size Events to predict Epochs Accuracy
CBOW 228 4 1 400 9.69%

Skip-gram 228 2 1 400 14.34%

Table 6.7: CNN-LSTM model trained with word embeddings as event represen-
tation

Figure 6.7: Hyper-parameter tuning of the Hybrid CNN-LSTM architecture

The highest accuracy model training is described in table 6.6.

Before word embeddings, word representation was performed using one-hot encoding. To

access the performance of word embeddings, the model was trained by replacing the one-hot

representation of the event by its word embedding representation. The hyper-parameters are

the same as in table 6.6 except the context size, which will follow the corresponding presented

in table 6.2. The results are represented in table 6.7

6.3 Overall results

Two approaches were proposed, one lossless without the use of machine learning techniques

with the aim of analysing behaviour similarity and several machine learning approaches to

predict future events. The word embedding model tries to learn the correlation between words
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that happen near one another. The type of vocabulary usually applied to train these models

has a considerable size and the order by which the words appear follows certain rules that don’t

happen in this case scenario. The sensors used generated a total of nineteen events that could

happen in any order. This not only makes it difficult to find word correlation but also to predict

the next events.

In the sequences tree approach, the subsequence similarity evaluates user sequence events

that appear in the same order as previously seen behaviour. A higher value suggests the existence

of a pattern between two sequences. Due to the fact that almost half of the sequences evaluated

got a subsequence ratio below 28% and that the length of these sequences was of at least 10

events each, is it possible to conclude that finding patterns in this scenario is a difficult task,

which is confirmed by the low accuracy of the machine learning models developed.

The training of the words embeddings got an accuracy of 31.14% in getting the center word

from a set of nine words (CBOW) and an accuracy of 21.94% in getting each word, given the

center one, in a radius of 2 words (Skip-gram).

Nevertheless, from a total of 20 events, the probability of choosing the correct future event

would be equal to 5%. The LSTM with Word Embeddings models got accuracies of 21.28% and

21.99% which is much better than a random guess.

The ensemble boosting, usually applied when the data available is poor, trains several models

with data that the previous models failed to learn. The selected model architecture was the

LSTM with word embeddings (immediately mentioned above). The best final accuracy obtained

was 8.05%. On the other hand, it is noticeable that the second model, which was trained with

data that the previous model failed to predict, got a better prediction accuracy. The ensemble

bagging got better results than ensemble boosting, having a final accuracy of 17.85% yet being

a lower accuracy than each of the models trained separately. Ensemble learning tries to achieve

better performing model, but that not always verifies. Ensemble boosting and bagging aim to

tackle different dataset problems and struggle to overcome the problems of one another. The

unbalanced dataset, the amount of data available and the non-equally distribution in time, sets

a high level of complexity that both ensemble methods are unable to accuratly learn from and

therefore have a lower performance than the models trained separately.

Finally, the hybrid CNN-LSTM model architecture used was adapted from a proposed ar-

chitecture that introduced CNN to better learn the features and the LSTM to model their

sequence. The final accuracy of the one-hot representation of the events was 9.39%. By replac-

ing the event representation by the corresponding word embeddings, it is notorious that word

embeddings outperformed the one-hot representation, with Skip-gram having an advantage over
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CBOW.

Although the machine learning results are not great, they demonstrate better prediction

capacity than a random guess. The unbalanced dataset, certainly the reduced amount of data

available and the various combinations of event sequences, and the ambition of producing an

unsupervised approach highly increased the complexity of the work developed. These challenges

have a great impact on the accuracy of the results, which was also verified in the lossless approach

proposed that also struggled to find patterns in longer sequences. The results achieved show

that it is possible to predict and find word correlation, even in difficult scenarios, which is a

better approach than a random guess.
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7 Conclusion and Future Work

The main purpose of this work was to develop a system capable of monitoring elderly activity

in a non-intrusive environment. The thesis can be separated into two parts: the design of the

hardware architecture and the development of data analysis algorithms.

The hardware architecture is composed of several accelerometer sensors and smart plugs.

These devices are connected via ZigBee to a raspberry pi, acting as the gateway, and the mes-

sages they send are also available by subscription to an MQTT topic. This feature allows for

remote monitoring and data analysis in real-time by assuring the delivery of messages. The

framework used to deal with all communication was Zigbee2MQTT [23], an open-source frame-

work that removes the need for the vendors’ gateway, making it easier to integrate in a customised

environment. All the data collected by the designed architecture was pre-processed in order to

convert the events to word representations, by detecting the smart plug ON and OFF states

based on the instant power consumption.

The work developed in the field of data analysis was different from already existing monitor-

ing systems by being an unsupervised approach. Most of the existing related work was focused

on labelling a set of actions to the activities they represent. This implies restraints in scala-

bility on the grounds that every user can perform the same activity differently causing those

approaches to be faulty. The work developed tries to analyse the data as a whole, find patterns in

the user activity and use them to monitor the user. To accomplish that, several approaches were

developed, one by analysing activity similarity and another by exploring prediction algorithms

using machine learning.

The first approach is a lossless model that stores sequences of events into a structure (a tree

of sequences) and analyses user sequences generated with the stored sequences, possible to do

in real-time with MQTT. By doing so, it searches for patterns in the data by finding common

subsequences and scoring them with a similarity ratio. A general similarity ratio is also returned,

which only takes into consideration the existing events in both sequences.
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With an accurate detection of user patterns, it is possible to build a model capable of

predicting the user’s next actions. To try and accomplish this, several machine learning models

were implemented and tested. LSTM is the current state of the art in sequence modelling. It is

widely used in language processing models due to its capacity of learning from long sequences

of data.

Word embeddings were trained with the vocabulary generated in data pre-processing with

the aim of trying to establish correlations between events, following both the architectures of

Word2Vec. These were applied several times alongside LSTM’s to try predicting sets of events

from longer sequences.

The hybrid CNN-LSTM architecture and the ensemble learning approach were implemented

with the hope to improve feature learning by using Convolutional layers and by training models

on data that others failed to learn.

To sum up, the main contributions of this thesis were:

• The design of a system that allows the collection of data using non-intrusive sensors

• Representation of meaningful event information into semantic representation (power con-

sumption)

• Implementation of machine learning algorithms to detect activity patterns and predict

user activity

• Implementation of techniques and models to overcome data constraints

7.1 Future Work

It is essential that an elderly monitoring system operates with less number of flaws as possible

and the work developed proved that there is still a long way towards the perfect approach to

achieve a monitoring system that fits every user.

Although each user has distinct behaviour, there are probably key aspects in common. Fed-

erated Learning could be an approach to take in future work. It consists of gathering the models

trained for each user and averaging them into a single one that can hopefully find patterns com-

mon to every user. This can bring benefits to a new user that already has a pre-trained model

as starting point and may require less data to detect activity patterns.

Apart from the work developed, there are various other approaches important in elderly

monitoring and many more that could be implemented:
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• Fall detection system by using smartwatches or smartbands

• Vital signs monitoring

• Medication monitoring

These suggestions are already being investigated and some systems have already been pro-

posed to deal with such situations. Although the number of systems that include all these

features is very low or even none, which sets this as a prominent system.
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