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Abstract

Optimization practice is intimately related to the availability of software tools to support
it. Current approaches to combinatorial optimization typically fall into one of two broad
classes: glass-box mathematical programming formulations and solvers such as Integer Lin-
ear Programming (ILP) and Constraint Programming (CP), and black/gray-box problem
models and (usually heuristic) algorithms implemented directly in software. The latter
may be more flexible and easier to integrate into existing workflows. However, the lack of
a de-facto standard for modeling/implementing optimization problems in software hinders
the adoption of such algorithms in practice. In fact, different optimization software frame-
works usually require problems to be implemented in that framework. In addition, most
frameworks strongly emphasize local search algorithms over constructive search. Thus, an
opportunity arises for the development of an Application Programming Interface (API) for
constructive-search problems and algorithms.

This API separates the problem formulation from the algorithm that solves it by specifying
a number of abstract elementary operations that problems must implement and solvers
can use in a problem-independent way. Both exact and (meta)heuristic algorithms are
supported, including Branch & Bound, Beam Search, GRASP, Ant Colony Optimization
algorithms, among others.

The implications of the proposed abstraction for the development of novel constructive-
search algorithms are also discussed in this work. Notably, a study is conducted on the
effect of the problem model on solver performance.

Keywords

Constructive Search, Combinatorial Optimization, Exact Algorithms, Metaheuristics, Op-
timization Software.
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Resumo

A utilização prática de otimização está intimamente relacionada com a disponibilidade de
ferramentas de software para a suportar. As abordagens atuais para otimização combi-
natória caem em duas categorias: modelos de caixa branca (ou transparente) tais como
Programação Linear Inteira (ILP) e Programação por Restrições (CP), e modelos de prob-
lemas de caixa preta/cinzenta e algoritmos (tipicamente heurísticos) que são diretamente
implementados em software. Estes últimos poderão ser mais flexíveis e fáceis de inte-
grar em fluxos de trabalho existentes. Contudo, a falta de convenções para a mode-
lação/implementação de problemas de otimização em software dificultam a adoção de tais
algoritmos na prática. De facto, distintos frameworks de software de otimização tipica-
mente obrigam a que os problemas estejam implementados nessa framework. Para além
disso, a maioria das frameworks focam-se principalmente em algoritmos de procura local
ao invés de procura construtiva. Assim, surge uma oportunidade para o desenvolvimento
de uma Interface de Programação de Aplicações (API) para problemas e algoritmos de
procura construtiva.

Esta API separa o (modelo do) problema do algoritmo que o resolve através da especificação
de várias operações elementares e abstratas que os problemas precisam de implementar e
que os algoritmos podem usar independentemente do problema. Tanto algoritmos exatos,
como (meta)heurísticos são suportados, dos quais se destacam o Branch & Bound, o Beam
Search, o GRASP, os algoritmos de Ant Colony Optimization, entre outros.

As consequências da abstração proposta para o desenvolvimento de novos algoritmos de
procura construtiva são também discutidos neste trabalho. Em particular, é conduzido um
estudo sobre o efeito dos modelos de problemas no desempenho de algoritmos.

Palavras-Chave

Procura Construtiva, Otimização Combinatória, Algoritmos Exatos, Meta-heurísticas,
Software de Otimização.
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Chapter 1

Introduction

Many important problems of practical interest can be expressed as Combinatorial Opti-
mization (CO) problems. Such problems involve finding the best solution in a potentially
very large set of solutions, where exhaustive enumeration would take an unacceptable
amount of time. Thus, it is essential to adopt efficient strategies to find the best solution
in a suitable amount of time.

A variety of optimization techniques is available to solve CO problems. These techniques
vary in terms of what quality guarantee they provide for the results as well as the time
they take to produce those results. Some find solutions for a specific set of problems, while
others offer an abstraction adjustable to many problems. Several are inspired by natural
phenomena such as natural selection and collective behavior, while others are based on
physical and other phenomena. The point is that there is such a panoply of optimization
strategies that it is a challenge to mention them all. Among the most well-known are Back-
tracking, Branch & Bound (B&B) [20; 49; 51; 52], Hill Climbing, Evolutionary Algorithms
(EAs) [7], Ant Colony Optimization (ACO) [28; 32], Simulated Annealing (SA) [47].

Due to the panoply of available optimization techniques, it is generally advised to decide
on an appropriate for each given CO problem. The No Free Lunch theorems states that all
algorithms have the same average performance over the entire set of optimization problems.
However, that does not prevent some algorithms from being better than others on specific
classes of problems [16]. Therefore, it is usually advised that various optimization strate-
gies are applied to a given problem and subsequently assessed to decide on the best one.
Consequently, the availability of general-purpose optimization software is beneficial since
it eases the implementation, testing, and comparison of different algorithms. Furthermore,
it is also favorable to test a given algorithm for several problems [75].

This work explores the domain of CO by focusing on some well-known problems and related
optimization strategies. Specifically, it focuses on constructive optimization strategies.
Constructive algorithms build a solution from scratch by adding components one at a
time until a complete and feasible solution is reached. Examples of such algorithms are
B&B [20; 49; 51; 52], ACO [28; 32], the first stage of Greedy Randomized Adaptive Search
Procedures (GRASP) [35; 36], and Dynamic Programming (DP) [9; 10].

An Application Programming Interface (API) for constructive search is proposed in this
work. The API defines the set of operations suitable for the implementation of a variety of
constructive algorithms. These operations were derived by studying an extensive selection
of algorithms that are constructive in nature. Additionally, a survey of optimization soft-
ware and conceptual models for constructive search was performed, in order to create an

1



Chapter 1

API that is robust and adaptable for various algorithms. This API enables various algo-
rithms to be implemented in a problem-independent way, and CO problems to be modeled
and implemented independently of particular algorithms.

The proposed API also has the potential of exposing problem features that may be ex-
ploited by constructive algorithms. These features would enable constructive algorithms
to leverage additional information provided by the problem. As a result, the search for
good solutions for the problem would be more efficient. One example is how much a lower
bound is affected by adding a specific component to a partially constructed solution. That
value would then serve as an alternative to the static heuristic information associated with
each component commonly used in the literature.

Overall, the main contribution provided by this work is the definition of an API that estab-
lishes a common foundation for constructive algorithms. The proposed API is developed
by analyzing constructive-search algorithms in the literature in light of a conceptual model
developed by others [57], and allows constructive-search algorithms to be implemented in-
dependently of any problem-specific details. It also allows problems to be modeled and
implemented independently of the algorithms that will be used to solve them. This aspect
provides for the fair comparison of different strategies on a specific problem, as long as
those strategies share the same common foundation. Other contributions include:

• The implementation of a set of constructive-search algorithms (solvers) based on
the proposed API. These solvers can be applied to any constructive-search problem
model implementing the API specification.

• A set of problem models implemented according to the proposed API. These models
serve as documented examples of how the API can be used in practice and, together
with the implemented solvers, provide evidence of the expressiveness of the API.

• A set of experiments aimed at evaluating some computational aspects of the proposed
API. These experiments allow the computational overhead introduced by the use of
the API to be measured in a concrete scenario, and shed light onto how different
models of the same underlying combinatorial optimization problem may affect the
optimization process.

Furthermore, this API promotes the development of improved models in order to make the
search more efficient. In particular, making given model operations faster directly benefits
all solvers that rely on such operations.

The remainder of this document is structured as follows. In Chapter 2, some background
concepts are presented and the goals surrounding this work are further contextualized.
Chapter 3 provides an overview of optimization software for constructive search and the
corresponding limitations. Chapter 4 describes the process of developing the proposed
API for constructive search, while Chapter 5 presents the results of its evaluation. Finally,
the main conclusions from this work are presented Chapter 6, where possible research
directions in future work are also identified.

2



Chapter 2

Background

This chapter provides an overview of the concepts that better contextualize the develop-
ment of an Application Programming Interface (API) for constructive search. Specifically,
it goes into more detail on the theory and literature closely related to constructive search
while briefly referring to other ideas within the same domain. It also provides a background
for topics discussed in subsequent chapters. Section 2.1 presents the field of combinatorial
optimization, where this work belongs. Section 2.2 distinguishes, describes, and compares
different categories of optimization techniques. In particular, a distinction is made between
local and constructive search, and also between exact, approximation, and heuristic ap-
proaches. Then, as this work mainly focuses on constructive search, Section 2.3 describes
various well-known algorithms, and identifies operations that are common to those algo-
rithms. Finally, Section 2.4 provides some concluding remarks on the concepts that were
reviewed.

2.1 Combinatorial Optimization

As defined by Papadimitriou and Steiglitz [63], optimization is the act of finding the
best configuration or set of parameters for a problem, according to a given objective.
Such problems constitute a hierarchy that classifies them according to their specification
and the techniques to solve them. They may be divided into two categories: those with
continuous variables and those with discrete variables. Continuous problems are defined
on a continuous subset of the real numbers or real vectors for a set of real numbers or a
function. Meanwhile, discrete problems are defined on a finite, or countably infinite, set.
In general, an optimization problem can be defined as follows:

Definition 2.1 (Optimization problem [63]) An instance I of an optimization prob-
lem is a pair (S, f), where S is the set of feasible solutions for the problem, and f is the
objective function, which is a mapping such that

f : S 7→ R

That is, each solution s ∈ S is assigned a numeric value indicating the quality of that
solution. The optimization problem consists in finding a solution s∗ ∈ S for which

f(s∗) ≤ f(s), for all s ∈ S

Such a solution s∗ is called a (globally) optimal solution.

3
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This definition applies only to minimization problems. However, it is possible to refor-
mulate maximization problems for minimization. Thus, without loss of generality, only
minimization problems are considered in this work.

Discrete problems include a subset of problems that are called combinatorial. The cor-
responding solutions are expressed using concepts in combinatorics, such as sets, per-
mutations, graph structures, etc. In regard to the previous definition, a Combinatorial
Optimization (CO) problem can be further defined as follows.

Definition 2.2 (Combinatorial optimization problem [22; 63, p. 1055]) An in-
stance I of a combinatorial optimization problem is an instance of an optimization problem
where the set of feasible solutions S is a finite set. These solutions can be encoded as binary
strings by combining the representation of their constituent parts, i.e., an instance I has
an associated (finite) set of components, called the ground set, G := {e1, ..., en}, and these
components can be present (1) or absent (0) in a solution s ∈ S ⊆ 2G.

As an illustrative example for the previous definition, let us consider two CO problems: the
Knapsack Problem (KP) [78, p. 270–271] and the Travelling Salesman Problem (TSP) [78,
p. 276–278]. For the first one, G is the set of items that may be put into the knapsack
with capacity W . Each solution s ∈ S is a binary string, where si = 1 means item i is
put into the knapsack and si = 0 means that item i is discarded. Hence, each solution
s ∈ S is a subset of items (in G) such that the capacity of does not exceed W . As for the
second problem, identifying G is not as straightforward. S is a set of Hamiltonian cycles,
typically represented by permutations that indicate the order in which cities are visited.
By projecting this problem into a graph, it becomes apparent that solutions differ in the
edges that constitute a Hamiltonian cycle. Thus, G is the set of edges that connect any
two distinct vertices in the graph, and s ∈ S is a binary string, where sij = 1 means edge
(vi, vj) is in the Hamiltonian cycle and sij = 0 means edge (vi, vj) is not in the Hamiltonian
cycle.

2.2 Categories of Optimization Techniques

In the literature there is a vast number of techniques for solving optimization problems.
Those techniques are sufficiently diverse such that it is possible to structure them in a
hierarchy that categorizes them appropriately. However, such categorizations are slightly
inconsistent across the literature. Regardless, there are a few categories of techniques that
should be clearly defined to contextualize this work. Specifically, a distinction is made
between local and constructive search, and another between exact, approximation, and
heuristic algorithms.

2.2.1 Local and Constructive Search

Various algorithms can be used to solve CO problems. Such algorithms can be classified
according to different properties, and one of those properties is how solutions are manipu-
lated throughout the optimization process. Namely, most algorithms may be categorized
as local search approaches or constructive search approaches.

Local search approaches [13; 56] start from some feasible solution to the problem, which
is improved throughout the optimization process by modifying the current solution into
a tentatively better one, selected from a defined neighborhood. In other words, each
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solution has a neighborhood containing a set of feasible solutions, known as neighbors,
which result from modifying that solution. As a general rule, a neighbor with better quality
is selected to replace the current solution (where possible), but controlled degradation is
also accepted by some approaches. Furthermore, the neighborhood of a solution is specified
by a neighborhood structure (or function), which can be defined as follows:

Definition 2.3 (Neighborhood structure [13]) A neighborhood structure N : S →
2S assigns to each solution s ∈ S a set of neighbors N (s) ⊆ S, called the neighborhood
of s.

It is usually considered that the s ∈ N (s). A neighborhood structure can also be defined
by the set of rules that must be applied to a solution in order to generate all of its neighbors.
Furthermore, a solution is called a local minimum if there is no neighbor with better quality
than that solution. Formally, a local minimum can be defined as:

Definition 2.4 (Local minimum [13]) A local minimum with respect to a neighborhood
structure N is a solution ŝ such that ∀s ∈ N (ŝ) : f(ŝ) ≤ f(s). Moreover, a solution ŝ is
called a strict local solution if ∀s ∈ N (ŝ) \ {ŝ} : f(ŝ) < f(s).

Local search approaches solve a local formulation of a global optimization problem, and
converge towards a local minimum. Furthermore, the absolute quality of the locally opti-
mal solutions found with these approaches strongly depends on the rules that define the
neighborhood structure. Thus, a local search algorithm for a given neighborhood structure
partitions the search space into so-called basins of attraction of local minima, as shown by
Figure 2.1. In this figure, si are the local minima, where i = 1, 2, . . . , 4.

Figure 2.1: Illustration of basins of attraction for a search space with one dimension

In this case, the basin of attraction of a local minimum is the set of solutions that are
guaranteed to cause the search to terminate in that same local minimum, given a specific
neighborhood structure and local search approach.

Constructive search [13; 56] approaches, in contrast, work differently than local search
approaches. Here, solutions are built from scratch, seeing that these approaches generally
start with an empty solution that is iteratively constructed by adding new components.
This addition follows a construction mechanism, which specifies at each iteration the pos-
sible extensions for a partially constructed solution. In other words, at each construction
step, there is a set of components that can be added to a partial solution, from which one

5
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is selected and subsequently added. The construction process terminates when no further
extension can be made for a partial solution, which means that the solution is complete.

Two concepts that are usually associated to the constructive search paradigm are those
of lower bound and dominance relation, especially in exact algorithms such as Branch &
Bound [20; 49; 51; 52] and Dynamic Programming [9; 10]. In particular, in the context of
constructive search, a lower bound may be defined as follows:

Definition 2.5 (Lower bound [63]) A lower bound of a (partial) solution sp is a nu-
meric value Φlb(s

p) such that ∀s ⊇ sp : Φlb(s
p) ≤ f(s).

This definition shows that the lower bound of a partial solution is less than or equal to
the objective value of each and every feasible solution that extends that partial solution.
A lower bound is usually used to construct a proof of the optimality of a given (partial)
solution. In other words, it is used to estimate the objective value of the best feasible
solution that extends a given (partial) solution (and such an estimate must not exceed
that value) without exhaustively enumerating all solutions. Furthermore, if the lower
bound of a partial solution is greater than the objective value of a feasible solution that
does not extend the latter, then that feasible solution may “prune” all solutions which
extend the partial solution.

In the context of constructive search, a dominance relation can be defined as:

Definition 2.6 (Dominance relation [63]) If at any point the best extension of a par-
tial solution y is at least as good as the best extension of another partial solution x, then it
is said that y dominates x.

Dominance relations are a crucial concept in optimization since they aid the search by
avoiding the exploration of subspaces that do not contain high-quality solutions (better
than the best-so-far solution). As an illustrative example of a dominance relation, let us
consider the KP and the TSP. In the KP, a (partial) knapsack solution dominates another
(partial) knapsack solution if the former has an overall profit greater than or equal to the
latter, and it has an overall weight less than or equal to the latter. This relation implies that
the best extension of the dominated solution will not be as good as the best extension of
the non-dominated solution, thus suggesting that the former does not need to be extended
further. In the case of the TSP, a partially constructed tour dominates another partially
constructed tour if both visit the same cities, begin and end in the same cities, and the
length of the former is less than or equal to the length of the latter. Figure 2.2 illustrates
such a relation, where partial tour 2.2a dominates partial tour 2.2b. Furthermore, the
dominated partial tour does not need to be extended further since it will not result in a
better (feasible) tour.

Constructive search approaches are suitable to solve optimization problems that contain
useful information associated with the internal structure of solutions. Such information
may correspond to how a component or a combination of components affect the overall
solution quality. The availability of this information is required for these approaches, as
they directly exploit it throughout the optimization process. In particular, using this
knowledge in a constructive approach is valuable since it allows partial solutions to be
extended towards high-quality solutions. Thus, it is said that the construction process is
guided by context information, where the relation between the internal solution structure
and overall solution quality is well understood.
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(a) Partial tour length = 117.1 (b) Partial tour length = 164.5

Figure 2.2: Example of dominance between two partial tours

Local search approaches, in contrast, are suited to optimization problems that primarily
contain information related to the external neighborhood structure. In other words, they
are suitable for solving problems that merely provide a measurement for the overall quality
of each solution. Furthermore, specifying a neighborhood is crucial for these approaches, as
it determines the search space exploration. The neighborhood structure should also allow
for any solution to be reached from any other solution by a sequence of moves between
neighbors. The evaluation of a neighborhood is thus an essential aspect for a local search
approach, since it enables the discrimination of potentially good neighbors, which may
lead the exploration towards an optimum. Thus, the local search process is guided by the
stipulated neighborhood and the overall quality of solutions.

It is also possible to interpret constructive search as a local search procedure acting on
an extended search space that includes partial and complete solutions. In such a case,
the neighborhood is defined by the applicable construction mechanisms. Furthermore,
local search approaches may also explore this extended search space if the appropriate
construction mechanisms are defined as the neighborhood structure. This topic will be
further detailed in Section 4.1 of Chapter 4. However, it will not be implemented in this
work since it is not the main focus.

Lastly, some well-known algorithms for local and constructive search can be identified. An
sample of local-search algorithms includes Iterated Local Search [53], Tabu Search [41],
Simulated Annealing [47], Variable Neighborhood Descent [43], and Evolutionary Algo-
rithms [7]. Moreover, constructive-search algorithms include Branch & Bound [20; 49; 51;
52], GRASP [35; 36], and Ant Colony Optimization [28; 32], among others. These are
further explained in Section 2.3, along with other constructive-search algorithms.

2.2.2 Exact, Approximation, and Heuristic Approaches

Two other properties used to classify CO algorithms are the time complexity and the
guarantee to find an optimal solution. With respect to the latter, an algorithm may be
categorized as exact, approximation, or heuristic. Furthermore, metaheuristics are an
important family of heuristic algorithms.

Exact approaches [37] guarantee that a CO problem is always solved to optimality. How-
ever, using these methods often becomes practically impossible as the size of those instances
increases. Since these methods usually operate by enumerating all the possible solutions
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(implicitly or explicitly) and choosing the best one, and the number of solutions typically
grows exponentially (or even faster!) with the size of the problem, so does the computation
time in many cases. In fact, although some CO problems can be solved in polynomial time
(e.g. the Shortest Path Problem), no exact polynomial-time approach is known for many
CO problems, which are therefore considered computationally intractable. Some examples
of exact approaches are Branch & Bound [20; 49; 51; 52] and Dynamic Programming [9; 10].

Alternatively, approximation approaches [37; 77] find suboptimal solutions whose objective
value is guaranteed to be within a certain proximity of the optimum value. For example,
consider an α-approximation algorithm that solves a minimization problem, where α is
known as the approximation factor, and let α = 2. For all instances of the problem,
this algorithm returns a solution whose value is at most twice as large as the optimum
value. An advantage of these algorithms is that they often take polynomial time to find a
solution. However, there are cases where no approximation algorithm is available to solve
an optimization problem, as those algorithms are generally problem-specific, an others
where a given algorithm has a high approximation factor, implying that it may find lower-
quality solutions in contrast to an algorithm that has a tighter guarantee.

Finally, heuristic approaches [14; 37; 54] find near-optimal solutions but do not provide a
guarantee about their quality in regard to the optimum. Heuristics are usually problem-
specific. Regardless, if a heuristic is appropriately designed, it generally produces good
solutions in a reasonable computation time. Furthermore, metaheuristics are an impor-
tant subclass of heuristic algorithms. Metaheuristics are high-level strategies that “guide”
the search process in the solution space. They present abstract level descriptions, which
allows them to be adapted to a variety of problems. A crucial aspect of metaheuristics
is the dynamic balance between exploration and exploitation. Exploration ensures that a
large region of the search space is searched such that it does not focus on a specific area.
Exploitation identifies areas in the search space with high-quality solutions. With this
balance, not much time is taken in searching regions that are either already explored or do
not provide high-quality solutions. Some examples of heuristics are Greedy Algorithms.
Some examples of metaheuristics are Iterated Local Search [53], Simulated Annealing [47],
Tabu Search [41], GRASP [35; 36], Ant Colony Optimization [28; 32], and Evolutionary
Algorithms [7].

2.3 Constructive-Search Algorithms

A concise review of CO algorithms is presented following the previous definition of their
categories. As this work only focuses on constructive search, a suitable selection of
constructive-search algorithms is presented. Specifically, an exact algorithm such as Branch
& Bound is discussed, along with the following metaheuristics: Iterated Greedy Algorithms,
GRASP, Ant Colony Optimization, and Beam Search.

2.3.1 Branch & Bound

The Branch & Bound (B&B) [20; 49; 51; 52; 63] method is based on the idea of implicitly
enumerating all the feasible solutions of CO problem. Such a method works by producing
a proof that a solution is optimal, based on successive partitioning of the solution search
space. The branch part refers to the partitioning process, while the bound part refers to the
(lower) bounds used to produce a proof of optimality without exhaustive search. Moreover,
the Branch & Bound (B&B) process can be visualized as a tree, where the root represents
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Algorithm 2.1: Branch & Bound
1 L ← {∅} // set of partial solutions, initialized with empty solution
2 U ←∞ // global upper bound
3 while L ≠ {} do
4 select partial solution sp ∈ L; L ← L \ {sp}
5 // bounding:
6 Φlb(s

p)← determine lower bound for sp

7 if Φlb(s
p) < U then

8 s← try to determine heuristic solution s ⊇ sp

9 if ∃s ∧ f(s) < U then
10 s∗ ← s; U ← f(s) // new best solution
11 end
12 end
13 if Φlb(s

p) < U then
14 // branching:
15 produce partial solutions s′p1 , ..., s

′p
k that represent search space partitions

16 // should cover disjoint nonempty regions of the search space
17 L ← L ∪ {s′p1 , ..., s

′p
k }

18 end
19 end

the original solution search space, and each node of the tree represents a subspace of that
region.

The pseudocode of a B&B algorithm is shown in Algorithm 2.1, which provides a detailed
overview of how this algorithm works.

2.3.2 Iterated Greedy Algorithms

Iterated Greedy (IG) algorithms [70] are metaheuristics based on the following idea: at each
iteration, the incumbent solution s is partially destroyed and subsequently reconstructed,
resulting in a candidate solution s′. The destruction process is usually done through a
stochastic approach, where a probability distribution is defined over the solution compo-
nents. In particular, components that offer low usefulness have a higher chance of being
removed from s. After the destruction, the resulting partial solution sp is subject to a
reconstruction process, which produces a new complete solution s′ that contains sp. This
process can be the same as the one used to construct the initial solution, where components
are added according to specific criteria. This reconstruction is followed by the application
of local search to the new solution s′. However, the latter is optional since most of the IG al-
gorithms published in the literature do not use this feature. Finally, the candidate solution
s′ may or may not be accepted as the new current solution s. Concretely, some acceptance
criteria that may be applied are: accepting only in the case of improvement, accepting also
low deterioration, or a combination of both (similarly to Simulated Annealing [47]).

An advantage of this optimization strategy is its relative simplicity and high computational
performance. Besides, as stated by Hoos and Stützle [46], constructing a solution from a
partial one allows for a faster construction process and the direct exploitation of desirable
components of the solution.

The pseudocode of an IG algorithm is shown in Algorithm 2.2.
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Algorithm 2.2: Iterated Greedy Algorithm
1 s← ConstructInitialSolution()
2 while stopping criterion not met do
3 sp ← DestroyPartially(s)
4 s′ ← ReconstructSolution(sp)
5 s′ ← LocalSearch(s′) // optional
6 s∗ ← UpdateBestSolution(s′)
7 s← ApplyAcceptanceCriteria(s, s′)
8 end

2.3.3 Greedy Randomized Adaptive Search Procedures

Greedy Randomized Adaptive Search Procedures (GRASP) [35; 36] are based on the fol-
lowing idea: at each iteration, a greedy randomized heuristic constructs a solution which
subsequently undergoes local search. This constructive heuristic begins with an empty so-
lution sp0 = ∅ and adds a new component ℓj at each construction step i, selected uniformly
at random from a restricted candidate list ℓ. This list contains the best components avail-
able to extend the partial solution spi , according to a greedy function. In other words, given
the set of components N (spi ) that may lengthen the partial solution spi , the best α compo-
nents according to a function are chosen to belong to a restricted list ℓ, in a greedy fashion.
The list length α determines the strength of the bias introduced in the search strategy.
The extreme case of α = 1 is equivalent to a greedy heuristic where the best component is
added to the partial solution spi at each step i. On the other hand, choosing α = |N (spi )|
corresponds to a random solution construction without any heuristic bias. Thus, α is a
critical parameter in GRASP that controls the diversity of the solution creation.

After the greedy randomized construction, a local search strategy is applied to the con-
structed solution s. An option for this strategy is typically a basic Hill Climbing.

GRASP is a relatively simple optimization strategy that produces high-quality solutions
in a short computation time. For its maximum effectiveness, the construction mechanism
should sample promising regions of the search space to obtain good starting points for local
search. Fine-tuning the length α of the restricted candidate list ℓ is the main contributor
to this effectiveness. Aside from that, other mechanisms can be used to randomly select a
component that will extend the partial solution spi at a construction step i, such as Roulette
Wheel Selection or Tournament Selection [54].

The pseudocode of GRASP is shown in Algorithm 2.3.

Algorithm 2.3: Greedy Randomized Adaptive Search Procedures (GRASP)
1 while stopping criterion not met do
2 s← ConstructGreedyRandomizedSolution()
3 s← LocalSearch(s)
4 s∗ ← UpdateBestSolution(s)
5 end

2.3.4 Ant Colony Optimization

Ant Colony Optimization (ACO) [28; 32] is inspired by the path-finding behavior of natural
ant colonies and essentially works as follows. Given the ground set G of a problem instance,
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a range of pheromone values τ⃗ is defined by mapping each component ej in the ground set
G to a pheromone value τj . This range of values is commonly known as the pheromone
model and is essentially a parameterized probabilistic model. In other words, this model is
used throughout the construction process of a solution as it affects the stochastic selection
of components that will constitute a solution. Moreover, the pheromone model is a pivotal
part of any ACO algorithm.

Similarly to GRASP, the construction process in ACO initializes an empty solution sp0 =
∅ and adds a new component ej at each construction step i, selected randomly from
a given set N (spi ). However, there are some significant differences between these two
algorithms, enough to distinguish them into two different optimization techniques. One of
these differences is that a group of solutions influences the construction of other subsequent
solutions in ACO algorithms. The set of these solutions is usually called a population P
of “ant trails.” These “ant trails” are built independently from one another in the current
iteration, i.e. they do not influence each other’s construction process. However, they will
affect the construction of the “ant trails” in the next iteration. Another difference between
GRASP and ACO algorithms is how a component ej is selected to be added to a partial
solution spi . In the case of ACO, this selection is randomly made amongst a set of feasible
components N (spi ), but those that have better heuristic information ηj or pheromone
values τj are more likely to be chosen. In other words, a new component ej is selected
based on the linear combination of these two variables, where ϵ and δ are coefficients
that respectively define the weight of the heuristic information η⃗ and the pheromones
τ⃗ . Thus, the construction process in an ACO algorithm can be summarized as follows.
A component ej is selected at random from a set of feasible components N (spi ) using a
probability distribution P based on the linear combination of the heuristic information η⃗
and the pheromone values τ⃗ . This component is then added to the partial solution spi .
This process terminates when no further extension can be made to a feasible solution.

After constructing the population P of “ant trails,” some daemon actions may be applied
to them. These are usually problem-specific actions that cannot be performed during the
ant-based construction. Such an action may be, for example, the application of local search
to the constructed solutions. This step is usually optional in ACO algorithms.

Finally, at the end of an iteration, the pheromone values are updated based on the popu-
lation of “ant trails.” Specifically, the pheromone values corresponding to the components
that constitute “ant trails” with higher quality will be updated by a higher amount. This
process ensures that components in high-quality solutions will have a higher chance of being
sampled in the next iterations. Therefore, it is clear that a population of “ant trails” will
influence the following construction process by gradually concentrating the search towards
high-quality regions of the solution search space. However, pheromones are also evaporated
by decreasing their corresponding value at a specific rate. The evaporation process ensures
that good components are not selected all the time, promoting the exploration of other
parts of the search space.

An advantage of this optimization strategy is that it is guided not only by the heuris-
tic information in each component but also their “historical quality,” represented by the
pheromones. Moreover, this strategy is robust for various problems and is reported to
be capable of achieving near-optimal solutions. Yet, one shortcoming of ACO is that it
disregards the linkage among components. In other words, their selection is based on how
good a single component is, instead of a how good combination of multiple components
may be.

The class of ACO algorithms comprises of several variants. Among the most popular
ones are the Ant System (AS) [31], the Ant Colony System (ACS) [29; 30], and the
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MAX −MIN Ant System (MMAS) [71; 72; 73].

The pseudocode of a generic ACO algorithm is shown in Algorithm 2.4.

Algorithm 2.4: Ant Colony Optimization
1 while stopping criterion not met do
2 P ← AntBasedSolutionConstruction()
3 P ← DaemonActions(P) // optional
4 s∗ ← UpdateBestSolution(P)
5 PheromoneUpdate(P)
6 end

2.3.5 Beam Search

Algorithm 2.5: Beam Search
1 B ← {∅} // set of partial solutions, initialized with empty solution
2 U ←∞ // global upper bound
3 while B ̸= {} do
4 B′ ← {}
5 foreach sp ∈ B do
6 if sp is feasible ∧ f(sp) < U then
7 s∗ ← sp; U ← f(sp) // new best solution
8 end
9 // branching:

10 E ← select components that may extend sp; i← 0
11 while E ̸= {} and i < kext do
12 c∗ ← argmax{g(c | sp) | c ∈ E}
13 produce (partial) solution s′p by extending sp with c∗

14 // bounding:
15 Φlb(s

′p)← determine lower bound for s′p

16 if Φlb(s
′p) < U then

17 B′ ← B′ ∪ {s′p}
18 end
19 E ← E \ {c∗}; i← i+ 1

20 end
21 end
22 set B as the best min{|B′|, bwidth} partial solutions from B′ w.r.t. the LB
23 end

Beam Search (BS) [61] is based on a breath-first search, where a limited number of nodes
is expanded at each level of the search tree. In particular, nodes are filtered according to
a problem-specific heuristic at each level of the tree. Then, those nodes with better bound
values are selected to be expanded at the next level. This algorithm terminates when no
nodes can be further expanded. The pseudocode of BS is shown in Algorithm 2.5, which
provides a detailed overview of how this algorithm works.

12



Background

2.4 Concluding Remarks

This chapter provided an overview of the concepts related to CO and constructive search.
A selection of constructive-search algorithms that solve CO problems was also discussed.
Such algorithms need to be implemented in software so they can be applied to concrete
optimization problems. Consequently, optimization software is fundamental for the adop-
tion of these algorithms. Thus, it is crucial to survey current optimization software for
constructive search to understand what algorithms are supported and how they are imple-
mented.
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State-of-the-Art Optimization
Software for Constructive Search

Optimization practice is intimately related to the availability of software tools to support
it. New problems emerge from a multitude of application areas, which require immedi-
ate response. At the time of writing, a broad selection of tools is available to ease the
implementation of optimization techniques and modeling problems. Such tools may be
frameworks, libraries, modules, or programming languages, among other types. Moreover,
it is possible to categorize them into various subclasses following the sort of techniques that
can be implemented or the problems that can be modeled. Within one of those subclasses,
it is usual that the tools that constitute it are similar to each other, with differences that
are not immediately clear to a user. Comparative studies are beneficial for making such a
distinction and providing a clear description of the studied tools.

Within the literature, there are various surveys and comparatives studies that catalog and
distinguish existing optimization software tools. Some of these tools are used for formulat-
ing Combinatorial Optimization (CO) problems or implementing search strategies that find
the corresponding optimum solution. Furthermore, the literature focusing on surveying or
comparing tools for constructive search may be split into two arbitrary categories. One
category mainly focuses on reviewing and comparing Metaheuristic Optimization Frame-
works (MOFs), while the other focuses on frameworks for exact approaches, especially
Branch & Bound (B&B). This aspect suggests that a common foundation between exact
and heuristic constructive-search algorithms is not evident in the literature, such that a
tool can implement both approaches.

A number of surveys and comparative studies [19; 25; 39; 65; 75; 76] discuss various MOFs,
including some that incorporate a few constructive-search algorithms. In particular, Parejo
et al. [65] perform a comprehensive comparative study between ten MOFs based on the
features that each one implements. Such an analysis was made by first establishing a set
with 271 expected features, which were then evaluated for each framework. The MOFs
worth highlighting from this article are FOM [64], MALLBA [3; 4], and OAT [17] since
they support constructive-search heuristics such as GRASP and Ant Colony Optimization
(ACO). Furthermore, Vieira [75] conducts a survey on MOFs in the literature and also
summarizes their features. Besides the ones that were already mentioned, it highlights
frameworks such as Discropt [66; 67] and MDF [45], which also support constructive-search
algorithms (although Discropt only supports basic greedy heuristics). Other works [19; 25;
39; 76] present surveys and comparative studies on optimization software frameworks and
libraries, but do not mention software that supports constructive search, focusing mainly
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on local search.

Furthermore, other surveys and comparative studies [23; 33; 44] discuss frameworks for ex-
act approaches, with a special emphasis on parallel B&B. In particular, Crainic et al. [23]
survey various aspects that are pertinent for B&B parallelization. One such aspect is the
review of frameworks that help the user in implementing different B&B strategies. More-
over, Herrera et al. [44] perform a comparative study between three implementations of
the B&B with varying abstraction levels, where one implementation is based on a B&B
framework. Dorta et al. [33] conduct a performance analysis on two B&B skeletons (se-
quential and parallel) while briefly mentioning other frameworks for B&B. One framework
that should be highlighted from these studies is MALLBA, which was previously noted
in the context of a MOF. MALLBA also proposes a skeleton for Dynamic Programming
(DP) [5]. This framework allows for the implementation of exact and heuristic approaches,
along with their hybridization. Another framework for parallel B&B is Bob++ [27; 40],
which also features DP. This framework is heavily mentioned in related literature, where
it was chosen as a representative of B&B frameworks due to its high use in solving CO
problems [6; 26; 58; 59; 60].

Another important survey for this work is the one presented by Basseur et al. [8]. Notably,
it discusses the hybridization between exact and heuristic algorithms and their potential
for parallelization. On this account, it also surveys some frameworks that would allow for
such hybridization. Most of these frameworks were already mentioned, while others fall
outside the scope of this work. Furthermore, this article concludes that the state of current
frameworks for the support of hybrid algorithms is still underdeveloped. Such a conclusion
is also reached by Parejo et al. [65] in regard to MOFs. Lastly, the article states that
MALLBA is the only framework that provides skeletons that allow for the hybridization
of exact and heuristic algorithms.

The remainder of this chapter, is structured as follows. Section 3.1 reviews a selection of
optimization software tools in order to gain insight on their paradigm and limitations. In
particular, those that revealed to be more interesting were the following: FOM, OAT, MDF,
MALLBA, and Bob++. Then, Section 3.2 provides an overview of the constructive-search
algorithms supported by these tools in order to understand which algorithms are prioritized,
and which ones are neglected. Lastly, Section 3.3 provides some concluding remarks on
the state of current optimization software for constructive search and its implications.

3.1 Description of Optimization Software for Constructive
Search

FOM – Framework for Metaheuristic Optimization

FOM [64] is a framework implemented in Java. This framework mainly focuses on local
search, but it also (is one of the few that) supports GRASP. It attempts to separate
the concepts of problem, solution, and neighborhood (but this separation is unclear and
conceptually unusual). There is also a lack of documentation (only one article), and the
source code is no longer available online. In addition, it is not clear how this framework
supports the construction of solutions for GRASP. In particular, there is a class called
GRASPConstructor that specifies a method named getInitialSolution(), which returns
an object of class GRASPSolution. No specification is given on how a solution is constructed
in that method (perhaps the user needs to implement it from scratch).

16



State-of-the-Art Optimization Software for Constructive Search

OAT – Optimization Algorithm Toolkit

OAT [17] is a framework implemented in Java. It implements a variety of metaheuristics,
including ACO algorithms. It is unclear how this framework separates concepts such
as problem and solution since architecture specifications are not provided by Brownlee et
al. [17] (or anywhere else). Additionally, there is a lack of documentation for this framework
(only one article), and also the source code is no longer available online. Thus, no pertinent
aspects could be drawn about this framework.

MDF – Meta-heuristics Development Framework

MDF [45; 50] is a framework implemented in C++. It supports a few metaheuristics,
including ACO (in particular, Ant Colony System (ACS)). This framework makes a sep-
aration between objective function, solution representation, and move. However, there
is no clear explanation on how solutions are constructed in ACS. Furthermore, not much
documentation is available on this framework, and the source code could not also be found.

MALLBA – MAlaga + La Laguna + BArcelona

MALLBA [3; 4] is a framework implemented in C++. It supports both exact and heuristic
algorithms, including B&B, DP, and ACO. In addition, it provides a library of skeletons
that are independent of the problem itself. It makes a clear separation of concepts such as
problem and solution, which are classes that the user implements for a particular problem.
These two classes can also be used across all implemented algorithms in the framework.
However, those algorithms also require specific classes to be implemented. For example,
DP requires that the user implements classes Stage, State, and Decision; B&B requires
class SubProblem. This reveals a lack of abstraction from the framework. Moreover, the
level of documentation is relatively high, and despite not being currently active, it is one of
the few constructive-search frameworks whose source code is still accessible [1] (however,
this source code does not include B&B and DP).

Bob++

Bob++ [26; 40] is a framework implemented in C++. This framework is mainly directed
towards the support of parallel B&B. However, it also claims to support DP. The separation
of concepts such as problem, solution, and move is implied in this framework. The level of
documentation is also satisfactory, but it does not discuss in detail how a B&B algorithm
works. Instead, it focuses more on the parallelization of B&B. In addition, the source code
of this framework is inaccessible. A portion of this framework was recovered, but it was
poorly documented and unclear how it operated.

3.2 Constructive-Search Algorithms Supported by Optimiza-
tion Software

This section provides a detailed overview of the constructive-search algorithms that are
(and are not) supported by the frameworks described in Section 3.1. Such a summary is
crucial to understand which of the algorithms presented in Section 2.3 are more popular
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and which lack any adoption. It should be noted that the support of a high number of
algorithms does not illustrate the (high or low) quality of a framework. In fact, it is possible
that algorithms supported by a framework closely resemble each other. The algorithms
analyzed in this section have distinguishable features from one another (ACO is one type
of algorithm).

Algorithm Variant F
O

M

O
A

T

M
D

F

M
A

L
L
B

A

B
ob

+
+

Sum
B&B ✔ ✔ 2
DP ✔ ✔ 2
IG 0
GRASP ✔ 1
ACO AS ✔ ✔ ✔ 3

EAS 0
ACS ✔ ✔ ✔ ✔ 4
MMAS ✔ ✔ 2
ASrank ✔ 1
ANTS 0

BS 0

Table 3.1: Supported constructive-search algorithms

Table 3.1 shows the constructive-search algorithms that are supported by the previously
reviewed frameworks. ACO algorithms are by far those which frameworks offer more sup-
port. This is unsurprising since they are relatively popular in the literature. B&B and
DP are also two algorithms generally supported in frameworks that implement exact al-
gorithms (B&B mostly, as seen by the amount of optimization software for their parallel
implementation). In case of GRASP, this algorithm is only supported by one framework
(and it is not clear how the framework supports solution construction). This is also unsur-
prising since it is often overshadowed by ACO algorithms which typically produce better
results. However, the lack of support for Iterated Greedy (IG) algorithms was unusual.
These algorithms have a low computational cost as they do not construct each solution
from scratch, and they also provide good results. A reason for this lack of support may
be that these algorithms only recently started to get adopted in the literature (in con-
trast to ACO and GRASP, which were already established decades ago). In addition, the
frameworks that support constructive search are also quite outdated. Therefore, they were
probably no longer active when the wave of popularity of IG algorithms came. Concerning
Beam Search (BS), this algorithm is also not supported by any framework. However, since
it is a tree search algorithm, it may be possible to extend a framework for B&B to support
this algorithm (if the proper tools are provided).

3.3 Concluding Remarks

This chapter provided an overview of the available optimization software for construc-
tive search. Most of the available gray/black box optimization software focuses on local
search or a combination of local and constructive search. Additionally, those that in-

18



State-of-the-Art Optimization Software for Constructive Search

clude constructive-search algorithms are no longer active and consequently outdated with
the current literature. Furthermore, there was no evidence that existing software with
constructive-search algorithms had an underlying abstraction for solution construction.
The closest was MALLBA, which supports both exact and heuristic approaches. It also
allows for the use of the same Problem and Solution classes across all algorithms (skele-
tons) such that they are implemented in a problem-independent way. However, a big
caveat of this framework is that it often requires other specific classes to be implemented
for particular algorithms. Besides decreasing the generalization of a problem model, it also
aggravates the implementation effort for a user who intends to use various algorithms.

Therefore, an opportunity arises for the development of an Application Programming Inter-
face (API) for constructive-search. Such an API should separate the problem formulation
from the algorithm that solves it by specifying a number of abstract elementary opera-
tions that problems must implement and solvers can use in a problem-independent way.
Furthermore, it should support both exact and heuristic constructive-search algorithms.
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An API for Constructive Search

After reviewing a concise list of optimization software and noting the lack of support for
constructive-search algorithms, an Application Programming Interface (API) for construc-
tive search is proposed in this chapter. The development of this API is described to contex-
tualize the decisions made throughout the process. Section 4.1 reviews a conceptual model
for constructive search already formalized by other authors. The API is heavily based on
this conceptual model. Section 4.2 establishes the requirements that must be met by the
API to enable the implementation of well-known constructive-search algorithms. Then,
Section 4.3 formally proposes the API for constructive search. Lastly, Section 4.4 discusses
to the implications following the proposal of this API for the development and deployment
of new and current constructive-search algorithms.

4.1 Fundamental Concepts

Some theoretical foundations should be presented and explained before proposing an
API for constructive search, particularly the fundamental concepts that characterize the
paradigm. This section introduces a conceptual model for this API by reviewing what was
already proposed by Vieira [75] and further formalized by Martins and Fonseca [57]. This
model supports both exact and heuristic constructive approaches since it grants a way
to formulate operations common to both types of approaches. Furthermore, it should be
possible to extend this model to include support for local search approaches.

In Section 2.1, it was discussed that a Combinatorial Optimization (CO) problem instance
refers to a finite set of components G, which may be present or absent in a feasible solution
s ∈ S of that problem instance. Such a solution can be tweaked by modifying the presence
or absence of specific components, resulting in another feasible solution. This idea is fun-
damentally used in local search procedures. However, this notion can be further extended
to constructive search procedures. In the following text, concepts such as construction set,
construction graph, and constructive neighborhood are described.

Construction Set

As mentioned in Section 2.2, a constructive approach works by selecting a component from
a set and adding it to a partial solution at each construction step. Such an action can be
formulated as deciding which components within the available extensions are present or
excluded in an unknown target solution. In particular, the selection of a component may
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restrict other components from being selected in a subsequent step. Additionally, this idea
suggests that the components are initially in an absent state. Thus, one can describe a
partial solution by the components it contains, those it cannot contain, and those that are
yet to be decided.

The set of elements (solutions) that can be visited during the construction process is defined
as the construction set [57]. Such a set includes both partial and complete solutions, feasible
and unfeasible. Since every component can be in one of three states, an element in the
construction set can be represented by indicator vectors u ∈ {−1, 0, 1}n. In this case,
n is the size of the component set G, and −1, 0, and 1 correspond to the component
states forbidden (or excluded), absent, and present, respectively. Furthermore, such a
representation implies that the size of the construction set is at most 3|G|.

It is possible to map every indicator vector u into a more compressed representation. This
representation is defined by a set C, which is the union of two disjoint sets C+ and C−.
Each element c̄i in set C− represents a forbidden component ei ∈ G, while each element ci
in set C+ represents a present component ei ∈ G. Based on Martins and Fonseca [57], the
general construction set can be defined as follows:

Definition 4.1 (General Construction Set) The general construction set

U ⊆ {u ∈ 2C : {ci, c̄i} ̸⊆ u, i = 1, ..., n}

is the set containing all elements that can be visited during the construction of a feasible
solution. Given an element u ∈ U , a component ei ∈ G is either i. present if ci ∈ u,
ii. forbidden if c̄i ∈ u, iii. or absent if ci ̸∈ u and c̄i ̸∈ u. Moreover, a component ei ∈ G
cannot be simultaneously present and forbidden, i.e. {ci, c̄i} ̸⊆ u.

As an illustrative example, let us consider a simple CO problem with three components so
that G = {e1, e2, e3}. The number of elements that compose the general construction set
is |U| ≤ 3|G| = 27. Suppose that the construction set can be represented by the following
set of indicator vectors

{(0, 0, 0), (1, 0,−1), (1, 0, 0), (0,−1, 0), (1,−1, 0), (1, 1,−1)}

This set can be mapped into a more compressed representation, resulting in

U = {{}, {c1, c̄3}, {c1}, {c̄2}, {c1, c̄2}, {c1, c2, c̄3}}

Construction Graph

As previously mentioned, the general construction set includes all elements that represent
partial and complete solutions, feasible and unfeasible. However, no explicit structure is
defined among them such that a constructive algorithm may exploit it. Yet, it is possible
to derive this by observing the differences between elements in the general construction
set, which results in a component-wise structure.

As an illustrative example, let us consider two elements u = {c̄2} and v = {c1, c̄2}, in
the previously mentioned construction set U . The difference between these elements is
v − u = c1 ∈ C+ and u− v = ∅. In other words, u and v differ by c1, so that it is possible
to transform u into v by adding c1. This demonstrates the first binary relation that can
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be established over the elements of the general construction set. This relation is denoted
by as A and is defined as

∀u, v ∈ U , (u, v) ∈ A ⇐⇒ (u ⊂ v) ∧ (|v| = |u|+ 1) ∧ (v − u ∈ C+)

Simply put, two elements u and v are in relation A if and only if they differ by one element
of C+, which represents the present components.

Now let us consider another two elements u = {c1} and v = {c1, c̄3} in U . The difference
between these elements is v − u = c̄3 ∈ C− and u − v = ∅. This case highlights another
binary relation that can be established over the elements of the general construction set.
This relation is denoted by F and is defined as

∀u, v ∈ U , (u, v) ∈ F ⇐⇒ (u ⊂ v) ∧ (|v| = |u|+ 1) ∧ (v − u ∈ C−)

Simply put, two elements u and v are in relation F if and only if they differ by one element
of C−, which represents the forbidden components.

It is also possible to derive the inverse of these binary relations A−1 and F−1, which are
defined as follows

∀u, v ∈ U , (u, v) ∈ A−1 ⇐⇒ (u ⊃ v) ∧ (|v| = |u| − 1) ∧ (u− v ∈ C+)

∀u, v ∈ U , (u, v) ∈ F−1 ⇐⇒ (u ⊃ v) ∧ (|v| = |u| − 1) ∧ (u− v ∈ C−)

As an example, u = {c1, c̄2} and v = {c̄2} are in relation A−1, while u = {c1, c̄3} and
v = {c1} are in relation F−1.

Thus, the elements of the general construction set are structured in a way that they
constitute a digraph G = (U , E). Here, E is the union of all binary relations such that
E = A ∪ F ∪ A−1 ∪ F−1. Each arc (u, v) ∈ E represents the element c ∈ C by
which the two elements u and v of the general construction set differ. Additionally, an
arc weight may correspond to the heuristic information ηi of a component ei ∈ G that, in
turn, is related to an element c ∈ C. According to Martins and Fonseca [57], the general
construction graph can be defined as follows:

Definition 4.2 (General Construction Graph) “Given a general construction
set U and a set of arcs E, G = (U , E) is a general construction graph.”

Figure 4.1 illustrates the construction graph G = (U , E) of the previously mentioned subset
of the construction set U . It is assumed that each component ei ∈ G of the problem instance
possesses heuristic information ηi, such that η = {7.0, 8.0, 2.0}.
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U = {}
V = {c1, c̄3}
W = {c1, c̄2}
X = {c1}
Y = {c̄2}
Z = {c1, c2, c̄3}



Figure 4.1: Example of a construction graph

Constructive Neighborhood

As stated earlier, a general construction graph G = (U , E) imposes a structure over the
construction set. It is possible to derive a neighborhood structure from this graph such
that two vertices u, v ∈ U are neighbors if there is an arc connecting them, in a way that
(u, v) ∈ E. The general constructive neighborhood N(u) for an element u ∈ U can be
defined as follows [57]:

Definition 4.3 (General Constructive Neighborhood) Let G = (U , E) be the gen-
eral construction graph G = (U , E) and u ∈ U . The general constructive neighborhood
N(u) contains all elements v ∈ U within a geodesic distance1 d(u, v) ≤ 1. Therefore, for
∀u ∈ U , there is a constructive neighborhood N(u) such that

N(u) := u ∪NA(u) ∪NF (u) ∪NA−1(u) ∪NF−1(u)

In other words, the general constructive neighborhood N(u) is the union of element u itself
and the constructive subneighborhoods NR(u) imposed by the binary relations R = A,F,
A−1, F−1, such that NR(u) := {v ∈ U : (u, v) ∈ R}. Furthermore, each subneighborhood
is imposed by exactly one binary relation. A nomenclature may be attributed to each
subneighborhood: NA will be called ADD, NF will be called FORBID, NA−1 will be called
REMOVE, and NF−1 will be called PERMIT.

As an example of the previous concepts, let us consider vertex X in the digraph of Figure
4.1. In this case, the constructive neighborhood NR(X) is defined as NR(X) = {U,V,W}.
Furthermore, each subneighborhood can be defined such that NA = {}, NF = {V,W},
NA−1 = {U}, and NF−1 = {}.

According to the structure imposed by the construction graph G = (U , E), two vertices
u, v ∈ U in which a component ei ∈ G is respectively present and forbidden cannot be
neighbors. That is

∀u, v ∈ U , ci ∈ u ∧ c̄i ∈ v ⇒ v ̸∈ N(u) ∧ u ̸∈ N(v)

Thus, the state of a component ei ∈ G must be reset through its inverse operation (A−1 or
F−1) before being set again.
1 The number of edges in the shortest path that connects two vertices
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Another aspect related to the general construction graph G = (U , E) is that it is strongly
connected, meaning that every vertex vj ∈ U is reachable from every other vertex vi ∈ U .
This implies that there is always a directed path vi → vj connecting any two vertices
vi, vj ∈ U , such that

vk ∈ N(vk−1), k = i+1, ..., j

Such a path can be characterized by the arcs it contains. For example, if one consists of
only arcs of A, then it is said that vj is A-reachable from vi.

Ultimately, the general construction graph can represent any instance of any CO problem.
However, it may be exponentially large (size up to 3|G|). Thus, the constructive graph can
only implicitly be defined by the operators that implement the constructive search. The
same issue arises in local search as well.

4.2 Requirements

The following set of functional requirements for an API for constructive search were iden-
tified through the analysis of the constructive-search algorithms reviewed in Section 2.3 in
the light of the conceptual model presented in Section 4.1.

Functional Requirements

The functional requirements for the API for constructive search can be identified.

FR1 Support the separation of the concepts of problem, solution, and component.

FR2 Support the instantiation of a CO problem.

FR3 Support the definition of solutions as subsets from a ground set of a problem
instance.

FR4 Allow components to be in one of three states during the construction process:
present, absent, and forbidden.

FR5 Support the initialization of an empty solution as a starting point for constructive
search.

FR6 Support the generation of a feasible solution from a (partial) solution with re-
spect to a given problem-specific heuristic. This operation is used, for example,
in Iterated Greedy Algorithms to obtain an initial solution and reconstruct those
partially destroyed.

FR7 Support the enumeration of (all) components that may be added/removed to/from
a (partial) solution. This operation allows for those components to be efficiently
enumerated from a computational perspective.

FR8 Support the selection of components that may be added to a partial solution
according to a branching rule. This operation is used in Tree Search Algorithms
such as Branch & Bound.

FR9 Support the heuristic enumeration of components that may be added/removed to/
from a (partial) solution for cases where there is a large number of such compo-
nents, and it is possible to sort them with respect to available heuristic informa-
tion. This operation allows for those components to be efficiently enumerated in
an appropriate order.
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FR10 Support the uniform random sampling with replacement of components that may
be added/removed to/from a (partial) solution for cases where there is a large
number of such components, and it is not efficiently possible to enumerate them
according to a given heuristic. Furthermore, uniform random sampling without
replacement should also be supported if all components are to be potentially sam-
pled.

FR11 Support the addition/removal of a component to/from a (partial) solution.

FR12 Support the forbidding/permitting of a component in a (partial) solution. This
operation is used in Tree Search Algorithms such as Branch & Bound.

FR13 Check whether a solution is partial or complete in order to determine when to stop
the construction process. In other words, the API must support operations that
check whether or not a solution can be further extended.

FR14 Check whether a solution is feasible or unfeasible.

FR15 Check whether a solution dominates another with respect to a problem-specific
dominance relation.

FR16 Support full and/or incremental (feasible) solution evaluation.

FR17 Support full and/or incremental (lower and upper) bound evaluation of a (partial)
solution.

FR18 Support heuristic information access given a component.

FR19 Support pheromone access and/or update with respect to a component, which
may or may not belong to a solution. This operation is used in Ant Colony
Optimization.

Non-Functional Requirements

In addition, the following non-functional requirements for the API for constructive search
are identified.

NFR1 The API for constructive search should allow efficient implementation of problems
and algorithms, and introduce low overhead.

NFR2 A user who is familiar with the principles and ideas for the formulation of a problem
as a constructive-search problem should be able to easily understand and use the
API.

4.3 Proposed API for Constructive Search

This API will extend an already existing local-search API called nasf4nio [38]. The de-
sign of that API focuses on separating the problem formulation from the algorithm that
solves it (commonly referred to as solver) by specifying a number of abstract elementary
operations that problems must implement and solvers can use in a problem-independent
way. In particular, solvers can interact with the problem exclusively by calling a number of
prespecified functions implemented by the model of the problem. Currently, the nasf4nio
code base includes Stochastic Hill Climbing, Iterated Local Search (ILS), and Genetic Al-
gorithms. However, other local-search algorithms, such as Simulated Annealing (SA), are
also supported by this API. The new API proposed in this work aims to provide support
for constructive search approaches by adopting some of the principles behind nasf4nio.

26



An API for Constructive Search

Furthermore, two levels are specified for the proposed API. The first level contains a
subset of operations that are required by (most) metaheuristics to solve an instance of a
problem. The second contains all operations specified by the API. The difference between
these two levels is that the second level can perform operations such as forbidding and
permitting a component in a solution. These operations are required for the partitioning
of the search space in exact algorithms such as Branch & Bound (B&B), but may impose a
large overhead. This overhead is propagated to all solvers that use the model implemented
at the second level, including those that can use first-level models. Thus, a model should
be implemented on the first level unless B&B or other algorithms that partition the search
space are applied. Another reason for the definition of these two levels is that the second
level may add complexity to the implementation of a model, which may only be justified
if solvers require it.

The definition of the data structures and functions provided by the API for constructive
search are presented as follows.

Enumerations

• enum ComponentState { PRESENT, ABSENT, FORBIDDEN }

• enum SubNeighbourhood { ADD, REMOVE, FORBID, PERMIT }

Data Structures

• struct problem {...}
Store data that fully characterizes a particular instance of a problem. This data must
be available in advance, and is not changed by the solver in any way.

• struct solution {...}
Store data that fully characterizes a (possibly partial) solution to a given problem
instance.

• struct component {...}
Store data that characterizes a component from the ground set of a given problem
instance.

Problem Instantiation

• struct problem *newProblem() {...}
Allocate a problem structure and initialize it. Being problem-specific, the function
arguments are deliberately left unspecified. The function returns NULL if instantiation
fails.

Problem Inspection

• long getNumComponents(struct problem *p) {...}
Return the size of the ground set of a problem instance.

• long getMaxSolutionSize(struct problem *p) {...}
Return the largest number of components that a solution can potentially have present.
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• long getMaxNeighbourhoodSize(struct problem *p, const enum
SubNeighbourhood nh) {...}
Return the largest possible number of direct neighbors in a given subneighborhood.

Memory Management

• void freeProblem(struct problem *p) {...}
Free all memory used by a problem structure.

• struct solution *allocSolution(const struct problem *p) {...}
Allocate memory for a solution structure. The function returns NULL if allocation
fails.

• void freeSolution(struct solution *s) {...}
Free all memory used by a solution structure.

• struct component *allocComponent(const struct problem *p) {...}
Allocate memory for a component structure. The function returns NULL if allocation
fails.

• void freeComponent(struct component *c) {...}
Free all memory used by a component structure.

Reporting

• void printProblem(const struct problem *p) {...}
Print a user-formatted representation of a problem instance.

• void printSolution(const struct solution *s) {...}
Print a user-formatted representation of a solution.

• void printComponent(const struct component *c) {...}
Print a user-formatted representation of a component.

Solution Generation

• struct solution *emptySolution(struct solution *s) {...}
Initialize a solution structure as an empty solution.

• struct solution *heuristicSolution(struct solution *s) {...}
Heuristically construct a feasible solution, preserving all present and forbidden com-
ponents in a given solution and modifying the solution in place. Calling this function
with the same given solution multiple times may generate different heuristic solu-
tions. The function returns NULL if no feasible solution is found, in which case the
original input is lost.

Remark: heuristicSolution(...) preserves all present and forbidden components in
a given (partial) solution so that it is possible to compute the upper bound of
that (partial) solution. That is, the objective value of a heuristic solution is
always greater than or equal to the objective value of the best solution that the
given (partial) solution can reach (in minimization problems).
Furthermore, this function may generate different solutions from the same input
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if a randomized heuristic is used to construct a heuristic solution.
Lastly, heuristically constructing a solution may result in not finding a feasible
solution. However, that does not imply that a given (partial) solution cannot
reach a feasible solution; it only indicates that the heuristic was unable reach
one.

Solution Inspection

• double *getObjectiveLB(double *objLB, struct solution *s) {...}
Single or multiple objective full and/or incremental lower bound evaluation. The
lower bound of a solution must be less than or equal to the lower bound of another
solution if the sets of present and forbidden components of the former are subsets of
the corresponding sets of the latter. The function returns its first input argument,
which may have been modified (e.g. to store the computed bound values).

Remark: Section 2.2 mentions that the lower bound of a partial solution is less than
or equal to the objective value of each feasible solution which extends that
partial solution. Without loss of generality, it can also be said that the lower
bound of a partial solution should be less than or equal to the lower bound
of a (partial) solution which extends the latter. If the sets of present and
forbidden components of a solution are subsets of the corresponding sets of
another solution, then it can be said that the latter is an extension of the
former. Thus, the lower bound of the former should be less than or equal to
the lower bound of the latter.

• double *getObjectiveVector(double *objv, struct solution *s) {...}
Single or multiple objective full and/or incremental solution evaluation. The function
updates and returns its first input argument if a given solution is feasible or NULL
if it is unfeasible, in which case the content of the first argument is unspecified (in
particular, it may have been modified to contain temporary values).

Remark: Section 2.1 defines that an instance of an optimization problem is characterized
by the set of feasible solutions S and the objective function f that measures
their quality. getObjectiveVector(...) supports solution evaluation based
on an objective function. Since the objective function exclusively measures the
quality of feasible solutions, getObjectiveVector(...) only evaluates feasible
solutions.

• int isFeasible(struct solution *s) {...}
Return 1 (true) if a given solution is feasible or 0 (false) if it is unfeasible.

• long getNumSolutionComponents(struct solution *s, const enum
ComponentState st) {...}
Return the number of components of a solution that are in a given state.

• long getNeighbourhoodSize(struct solution *s, const enum
SubNeighbourhood nh) {...}
Return the number of direct neighbours in a given subneighborhood of a solution
(not counting the solution itself).
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• long enumSolutionComponents(struct solution *s, const enum
ComponentState st) {...}
Enumerate the components of a solution that are in a given state, in unspecified
order. The function returns a unique component identifier in the range 0..|G| − 1 if
a new component is enumerated or -1 if there are no components left.

• struct solution *resetEnumSolutionComponents(struct solution *s, const
enum ComponentState st) {...}
Reset the enumeration of the components of a solution that are in a given state, so
that the next call to enumSolutionComponents() will start the enumeration of the
components in that state from the beginning.

Remark: enumSolutionComponents(...) is intended to support pheromone access in
Ant Colony Optimization (ACO) and related algorithms.

Operations on Solutions

• struct solution *copySolution(struct solution *dest, const struct
solution *src) {...}
Copy the contents of the second argument to the first argument. The copied solution
is functionally indistinguishable from the original solution.

• struct solution *applyMove(struct solution *s, const struct component
*c, const enum SubNeighbourhood nh) {...}
Modify a solution in place by applying a move to it. It is assumed that the move
was generated for, and possibly evaluated with respect to, that particular solution
and the given subneighborhood. In addition, once a move is applied to a solution,
it can be reverted by applying it again with the opposite subneighborhood. For
example, after an ADD move generated for a given solution is applied to that solution,
it may be applied again as a REMOVE move to the resulting solution in order to
recover the original solution. The result of applying a move to a solution in any
other circumstances is undefined.

Component/Move Generation

• struct component *enumMove(struct component *c, struct solution *s,
const enum SubNeighbourhood nh) {...}
Enumeration of a given subneighborhood of a solution, in an unspecified order. This
is intended to support fast neighborhood exploration and evaluation with getObjec-
tiveLBIncrement(), particularly when a large part of the neighborhood is to be
visited. The function returns NULL if there are no moves left to enumerate.

• struct solution *resetEnumMove(struct solution *s, const enum
SubNeighbourhood nh) {...}
Reset the enumeration of a given subneighborhood of a solution, so that the next
call to enumMove() will start the enumeration of that subneighborhood from the
beginning.

Remark: The order of move generation in enumMove(...) is unspecified. Thus, this func-
tion should be implemented so that moves are generated and possibly evaluated,
in the most favorable order from a computational perspective.
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• struct component *heuristicMove(struct component *c, struct solution
*s, const enum SubNeighbourhood nh) {...}
Generate a heuristic move from a given subneighborhood of a solution. This may be
an empty set for some subneighborhoods, in which case the function returns NULL.
Calling this function with the same arguments multiple times may generate different
moves. Furthermore, heuristic moves may or may not be greedy with respect to how
they affect the lower bound.

• struct component *heuristicMoveWOR(struct component *c, struct
solution *s, const enum SubNeighbourhood nh) {...}
Heuristic enumeration of a given subneighborhood of a solution, without replacement.
Heuristic moves may or may not be generated in any particular order with respect
to how they affect the lower bound. The function returns NULL if there are no moves
left to enumerate.

• struct solution *resetHeuristicMoveWOR(struct solution *s, const enum
SubNeighbourhood nh) {...}
Reset the heuristic enumeration without replacement of a given subneighborhood
of a solution, so that the next call to heuristicMoveWOR() will start the heuristic
enumeration from the beginning. The order of move generation may not be preserved
by such a reset.

Remark: heuristicMove(...) may generate different moves for the same input if a ran-
domized heuristic is used to sample a heuristic move. A similar argument is
applied to resetHeuristicMoveWOR(...), which may not preserve the order of
move generation after resetting the heuristic enumeration without replacement.
Furthermore, heuristic move enumeration may or may not be greedy with re-
spect to how moves affect the lower bound of a (partial) solution (if the move
is applied) due to how costly the computation of a lower bound can be, in
contrast to a heuristic that is simpler and more efficient (therefore allowing for
faster move enumeration).

• struct component *randomMove(struct component *c, struct solution *s,
const enum SubNeighbourhood nh) {...}
Uniform random sampling of a given subneighborhood of a solution, with replace-
ment. This may be an empty set for some subneighborhoods, in which case the
function returns NULL.

• struct component *randomMoveWOR(struct component *c, struct solution
*s, const enum SubNeighbourhood nh) {...}
Uniform random sampling of a given subneighborhood of a solution, without replace-
ment. The function returns NULL if there are no moves left to sample.

• struct solution *resetRandomMoveWOR(struct solution *s, const enum
SubNeighbourhood nh)
Reset the uniform random sampling without replacement of a given subneighbor-
hood of a solution, so that any move corresponding to that subneighborhood can be
generated by the next call to randomMoveWOR().

Remark: In component/move generation functions, results may be cached in the solu-
tion structure itself in order to speed up the generation of future moves. In
particular, a solution may store data related to invalid moves (for example,
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a forbidden component) to avoid them from being sampled again in future
function calls.

Component/Move Inspection

• long getComponentID(const struct component *c) {...}
Return the unique identifier in the range 0..|G|−1 with respect to a given component.

Remark: getComponentFromID(...) is intended to support pheromone access in ACO
and related algorithms.

• double *getObjectiveLBIncrement(double *obji, struct component *c,
struct solution *s, const enum SubNeighbourhood nh) {...}
Single or multiple objective move evaluation with respect to the solution and sub-
neighborhood for which the move was generated, before it is actually applied to that
solution (if it ever is). The result of evaluating a move with respect to a solution and
subneighborhood other than those for which it was generated (or to a pristine copy
of that solution and the same neighborhood) is undefined. The function returns its
first input argument, which was modified to contain the lower bound increments.

Operations on Components/Moves

• struct component *copyComponent(struct component *dest, const struct
component *src) {...}
Copy the contents of the second argument to the first argument. The copied compo-
nent is functionally indistinguishable from the original component.

4.4 Concluding Remarks

An API for constructive search was proposed in this chapter. This API will allow for the
modeling and implementation of optimization problems as constructive-search problems
and the implementation of constructive-search algorithms. The non-functional require-
ments identified for this API also need to be measured in order to understand to what
extent they are satisfied.

Furthermore, the proposed API also allows for the development of new constructive-search
algorithms. In particular, it enables the implementation effort to be focused on improving
problem models based on the API instead of a particular algorithm.

32



Chapter 5

Evaluation of Constructive Search
API

This chapter demonstrates the expressiveness of the Application Programming Interface
(API) for constructive search proposed in Chapter 4. It also discusses the computational
overhead introduced by the use of such an API (efficiency) and reports on the feedback
provided by users who were unfamiliar with it (usability). Furthermore, the implications
of the underlying abstraction for the development of novel constructive-search algorithms
are also discussed in this chapter.

Section 5.1 describes how Combinatorial Optimization (CO) problems can be modeled as
constructive-search problems based on the API. Section 5.2 describes the implementation
of constructive-search algorithms based on the API. Section 5.3 reports on the results
produced by various experiments concerning the measurement of the computational over-
head introduced by the use of the API and the study of the performance of solvers that
use improved problem models. Section 5.4 presents the feedback provided by users after
interacting with the API. Lastly, Section 5.5 provides some concluding remarks.

5.1 Formulation of Optimization Problems

As mentioned in Section 4.1, it is possible to apply the conceptual model to any CO
problem. Since the API is heavily based on this model, it is presumed that it can also be
used to formulate any CO problem as a constructive-search problem. However, concrete
examples need to be implemented to validate this criterion. This section describes the
modeling of the Knapsack Problem (KP), the Travelling Salesman Problem (TSP), and the
Cable Trench Problem (CTP) as constructive-search problems, and provides an overview
of their implementations based on the API. In addition, other CO problems such as the
Multidimensional Knapsack Problem (MKP), the Quadratic Assignment Problem (QAP),
the Quadratic Multidimensional Knapsack Problem (QMKP), and the 2019 Hash Code
Photo Slideshow Problem [2] were formulated and implemented according to the API for
constructive search.

It should be mentioned that the ** symbol denotes the cases and operations which only
occur on the second level of the API for constructive search.
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5.1.1 Knapsack Problem

The KP [78, p. 270–271] can be described as follows: “A thief takes a knapsack with limited
capacity to a department store with various items and intends to profit from the items that
(still) fit in the knapsack. What is the optimal selection of items such that the profit is
maximum?” Formally, this problem can be formulated as an integer linear program as
follows:

max f(x) =
n∑

i=1

pixi

s.t.
n∑

i=1

wixi ≤W

xi ∈ {0, 1}, i = 1, 2, . . . , n

where pi and wi denote the profit and weight of item i, respectively, and W denotes the
capacity of the knapsack. xi = 1 means that item i was selected and xi = 0 means that
item i was not selected.

The relevant aspects to be considered when implementing the KP according to the proposed
API are presented next.

Problem Instance An instance of this problem is characterized by the profit and weight
values of each item, and by the capacity of the knapsack, W . This information is
usually stored in two arrays of size N , where N denotes the number of items of the
instance of interest, and a scalar variable.

Solution Representation A solution to an instance of this problem is characterized by
a list of items that should be selected. Furthermore, a (possibly partial) solution
can be represented by a list of k distinct integers in the range 0..N − 1, representing
the indices of the items to be selected, provided that the sum of their weights is
not greater than W . A solution is always feasible if the former constraints are met,
regardless of whether it is partial or complete.

Component Representation In this problem, an item represents a component from
the ground set of an instance. This information is stored as an integer that uniquely
identifies an item. Furthermore, the size of ground set is equal to the number of
items of an instance.

Empty Solution Generation An empty solution is initialized with an empty list (of
items).

Heuristic Solution Generation A heuristic solution can be constructed with a greedy
heuristic that iteratively adds the item with the highest profit density (if it fits in the
knapsack) until no items can be added. The density of an item i is the ratio between
the profit pi and weight wi of that item. Algorithm 5.1 shows the pseudocode of
such a greedy heuristic, which also handles situations where a component might be
present or forbidden**.
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Algorithm 5.1: Greedy heuristic for the Knapsack
input: partial solution sp

1 E ← select all items of the instance
2 while E ̸= {} do
3 c∗ ← argmax{ pc

wc
| c ∈ E}

4 if (
∑k

i=1wi) +wc∗ ≤W and c∗ is not present and c∗ is not forbidden** then
5 sp ← sp ∪ {c∗}; k ← k + 1
6 end
7 E ← E \ {c∗}
8 end
9 return sp

Solution Evaluation In this problem, the performance of a feasible solution is measured
by the sum of the profit of all selected items. This value is to be maximized.

Bound Evaluation The (upper) bound of a (partial) solution can be computed according
to different methods, each of which has its relative strength (how close it is to the
optimum value):

Weak The sum of the profit of all selected items and all the non-selected items that
fit in the knapsack.

Strong The sum of the profit of all selected items, the (non-selected) items with the
highest density (iteratively add them until the next does not fit), and a portion
of the next item that does not fit in the knapsack (such that the partial profit is
proportionate to the remaining capacity). Algorithm 5.2 shows the pseudocode
of this (greedy) upper bound, which also handles situations where a component
might be present or forbidden**.

It should be noted that forbidden** components cannot be used in the upper bound
computation.

Algorithm 5.2: Upper bound for the Knapsack
input: partial solution sp

1 E ← select all items of the instance
2 U ←

∑k
i=1 pi // upper bound

3 B ←W − (
∑k

i=1wi) // remaining capacity of the knapsack
4 while E ̸= {} and B > 0 do
5 c∗ ← argmax{ pc

wc
| c ∈ E}

6 if B ≥ wc∗ and c∗ is not present and c∗ is not forbidden** then
7 U ← U + pc∗ ; B ← B − wc∗

8 else if B < wc∗ and c∗ is not present and c∗ is not forbidden** then

9 U ← U +
B

wc∗
× pc∗ ; B ← 0

10 end
11 E ← E \ {c∗}
12 end
13 return U

Solution Modification A valid move that can be applied to a solution relies on what
type of action that move performs. In other words, it depends for what type of
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subneighborhood a component (represented in the move) was sampled. In the context
of this problem, the valid moves for each subneighborhood are presented as follows.

ADD Any item that fits in the knapsack (as long as it is not forbidden**). This item
is added to the list of those that are selected.

REMOVE Any selected item. This item is removed from the list of those that are
selected.

FORBID** Any non-selected item. This item is added to a list of those that are
excluded.

PERMIT** Any forbidden item. This item is removed from a list of those that are
excluded.

It should be noted that the list of items that are excluded may grow to the size of
the ground set. In this problem, this matter is not an issue since it is common to
store the data of all items of an instance. However, in other problems, this can be
an issue.

Move Enumeration Iteratively enumerate the items in a given (constructive) subneigh-
borhood in the same order that those items are stored in the component list (or some
other list).

Heuristic Move Generation Heuristically select the item in a given (constructive) sub-
neighborhood in a way that favors those that have a higher density, if they are to be
added, or those that have a lower density, if they are to be removed.

Random Move Generation Sample an item uniformly at random from the list of items
that belong to the given (constructive) subneighborhood.

Move Evaluation A move is evaluated with respect to how it affects the upper bound of
a (partial) solution. If an item was (entirely) used in the upper bound computation
of the original (partial) solution, then adding it will not affect the upper bound. In
general, the upper bound may need to be recomputed for the case where the move
is applied. Fortunately, it is possible to efficiently recompute it by focusing only on
the incremental changes done in the bound computation.

5.1.2 Travelling Salesman Problem

The TSP [78, p. 276–278] can be described as follows: “A salesman, who lives in a city,
intends to visit other cities to peddle some of his goods. He wishes to visit each city only
once and then return to his home city at the end of the tour. What is the optimal route
such that the traveled distance is minimum?” The Symmetric TSP variant is considered
in the remainder of this chapter. It assumes that the distance between two cities is the
same, independently of direction. Formally, this problem can be formulated as an integer
linear program as follows [24]:
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f(x) = min
n∑

i=1

n∑
j=1,j ̸=i

cijxij

s.t.
n∑

i=1,i ̸=j

xij = 1 j = 1, 2, . . . , n // come from one city

n∑
j=1,j ̸=i

xij = 1 i = 1, 2, . . . , n // go to one city

n∑
i∈S

n∑
j∈S,j ̸=i

xij ≤ |S| − 1 ∀S ⊊ V, 2 ≤ |S| ≤ n− 2 // no subtours

xij ∈ {0, 1}, ∀(i, j) ∈ E

where cij denotes the distance from city i to city j, V denotes the set of vertices (cities),
and E denotes the set of arcs. xij = 1 means that city j is visited immediately after city
i, and xij = 0 means otherwise.

The formulation of the TSP as a constructive-search problem, and its implementation,
should consider the following:

Problem Instance An instance of this problem is characterized by the distances from
each city to every other city. This information is usually stored in an N×N distance
matrix, where N denotes the number of cities of an instance.

Solution Representation A solution to an instance of this problem is characterized by
a list of cities in the order that they should be visited. Furthermore, a (possibly
partial) solution can be represented by a sequence of k distinct integers in the range
0..N − 1, such that 0 ≤ k ≤ N . A solution is feasible (and complete) if all cities are
visited exactly once, and the tour ends at the home city.

Component Representation In this problem, an arc connecting two cities represents a
component from the ground set of an instance. This information is usually stored as
a pair of integers, where each integer represents a city. Furthermore, the size of the
ground set is equal to the number of arcs of an instance, which is

N × (N − 1)

2

Empty Solution Generation An empty solution is initialized with only the home city
in the sequence (of cities). Figure 5.1 illustrates an empty solution of an instance of
this problem.

Heuristic Solution Generation A heuristic solution can be constructed using a greedy
heuristic such as the Multiple-Fragment [11]. This heuristic iteratively adds the arc
with minimal cost (if it does not produce a subcycle, nor does it increase the degree
of any city beyond two) until a (feasible) tour is obtained. Figure 5.2 illustrates
the heuristic construction of a (feasible) solution from a given (partial) solution with
present and forbidden** components.

Solution Evaluation In this problem, the performance of a feasible solution is measured
by the length of a (feasible) tour (which is the sum of the cost of the arcs that
constitute it). This value is to be minimized.
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Figure 5.1: Illustration of an empty solution for the Travelling Salesman

Bound Evaluation The (lower) bound of a (partial) solution can be computed according
to different methods, each of which has its relative strength. The following are well
known in the literature.

Weak The length of the (partially constructed) tour (which is the sum of the cost
of the arcs that contain in it).

Intermediate The length of the (partially constructed) tour and the N−k shortest
arcs that are not included that tour, where N denotes the number of cities in
an instance, and k denotes the number of arcs in the (partial) tour. Figure 5.3
illustrates the (intermediate) lower bound evaluation of a given (partial) solution
with present and forbidden** components, where its value is 337.0.

Strong A lower bound [42] based on the 1-tree bound [21]: the length of the (par-
tially constructed) tour, the Minimum Spanning Tree for the graph consisting
of not visited cities, and the two shortest arcs that connect the home city and
the last (visited) city to not visited cities (which must be different). Figure 5.4
illustrates the (strong) lower bound evaluation of a given (partial) solution with
present and forbidden** components, where its value is 357.9.

It should be noted that forbidden** components cannot be used in the lower bound
computation.

Solution Modification A valid move that can be applied to a solution depends on what
type of action that move performs. In other words, it depends for what type of
subneighborhood a component (represented in the move) was sampled. In the context
of this problem, the valid moves for each subneighborhood are as follows.

ADD Any arc that connects the last (visited) city to a not visited city. A new city is
appended to the sequence of cities to be visited.

REMOVE The last arc added to the (partially constructed) tour. The last (visited)
city is dropped from the sequence of cities to be visited.

FORBID** Any arc not included in the (partially constructed) tour. This arc is added
to a list of arcs that are excluded.

PERMIT** Any forbidden arc. This arc is removed from the list of arcs that are
excluded.
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Step 1: arc increases degree of city ≥ 2 Step 2: arc is forbidden**

Step 3: arc increases degree of city ≥ 2 Step 4: add arc to partial solution

Step 5: add arc to partial solution Step 6: add arc to partial solution

Step 7: obtain Hamiltonian path Step 8: add last arc and close tour

Figure 5.2: Example of construction with multiple-fragment heuristic
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Figure 5.3: Example of intermediate lower bound for the Travelling Salesman

Figure 5.4: Example of strong lower bound for the Travelling Salesman

It should be noted that the list of arcs that are excluded may grow to the size
of the ground set. This is an issue for this problem since the ground set has a
quadratic size with respect to the size of the instance. Consequently, this can cause
high memory usage for large instances. This is one of the reasons why the API for
constructive search should support two levels, where one does not require this list to
be implemented.

Move Enumeration Iteratively enumerate the arcs in a given (constructive) subneigh-
borhood in the same order that those arcs are (explicitly or implicitly1) stored.

Heuristic Move Generation Heuristically select the arcs in a given (constructive) sub-
neighborhood in a way that favors those that are shorter, if they can be added, or
those that are longer, if they can be removed. However, there is only one arc that
can be removed due to the imposed construction rules.

Random Move Generation An arc can be sampled uniformly at random among a list
of those that belong in the same (constructive) subneighborhood.

Move Evaluation A move is evaluated with respect to how it affects the lower bound
of a (partially constructed) tour. However, the lower bound may need to be recom-
puted for that given move. Fortunately, it is possible to efficiently recompute it by
focusing only on the incremental changes done in the bound computation. For ex-
ample, Panangadan and Korf [62] describes how to incrementally update a Minimum

1 In the case of the ADD subneighborhood, arcs are sampled by enumerating the not visited cities with
respect to the last (visited) city.
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Spanning Tree. This incremental computation would be used by the Strong bound
to speed up its calculation.

5.1.3 Cable Trench Problem

The CTP [74] can be described as follows: “Buildings on a University campus are to be
connected to the main computer building by dedicated high-speed cable. Trenches will
be dug in order to allow cables to be laid from one building to another. In addition, dug
trenches may be used by more than one cable in order to connect other buildings farther
away from the main computer building. The cost of digging a trench is proportional to its
length, and so is the cost of a cable. What is the optimal layout of the trenches such that
the total (trench and cable) set-up cost is minimum?” Vasko [74] provides a mixed integer
linear formulation for this problem.

A constructive-search model of this problem would take into account the following aspects:

Problem Instance An instance of this problem is characterized by the distances from
each building to every other building, the cost of the cable, and the cost of digging
a trench. The distances are usually stored in an N × N distance matrix, where N
denotes the number of buildings of an instance, while the cost of the cable and the
cost of digging a trench are stored as a scalar variables.

Solution Representation A solution to an instance of this problem is characterized by
a set of arcs that form a tree (any two buildings in that tree are connected by exactly
one path). Furthermore, a (possibly partial) solution can be represented by a list
of k pairs of integers, such that 0 ≤ k ≤ N − 1, where N denotes the number of
buildings of an instance. A solution is feasible (and complete) if all buildings of an
instance constitute the (spanning) tree.

Component Representation In this problem, an arc connecting two buildings repre-
sents a component from the ground set of an instance. This information is usually
stored in a pair of integers, where each integer represents a building. Furthermore,
the size of the ground set is equal to the number of arcs of an instance, which is

N × (N − 1)

2

Empty Solution Generation An empty solution is initialized with an empty list (of
arcs) and a tree containing only the main computer building. Figure 5.5 illustrates
an empty solution of an instance of this problem.

Heuristic Solution Generation A heuristic solution can be constructed using a greedy
heuristic that iteratively adds the arc that minimizes the cost of the next tree until a
feasible (spanning) tree is obtained, much like how Prim’s and Dijkstra’s algorithms
operate. Figure 5.6 illustrates the heuristic construction of a (feasible) solution from
a given (partial) solution with present and forbidden** components. It should be
noted that in this particular example, the cost of the cable per unit is 0.3 and the
cost of digging a trench per unit is 1.7.

Solution Evaluation In this problem, the performance of a feasible solution is measured
by the sum of two parts: 1) the length of the arcs that constitute the (spanning)
tree (multiplied by the cost of digging a trench), 2) and the length of the paths from
each building to the main computer (multiplied by the cost of the cable). This value
is to be minimized.
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Figure 5.5: Illustration of an empty solution for the Cable Trench

Bound Evaluation The (lower) bound of a (partial) solution can be computed according
to different methods, where each one has its relative strength (how close it is to the
optimum value):

Weak The sum of two parts: 1) the length of the arcs that constitute the tree
(multiplied by the cost of digging a trench), 2) and the length of the paths from
each building in the tree to the main computer (multiplied by the cost of the
cable).

Strong The sum of two parts: 1) the length of the Minimum Spanning Tree that
includes the arcs in the (partial) solution (multiplied by the cost of digging
a trench), 2) and the length of each path in the Shortest Path Tree, which
includes the arcs in the (partial) solution (multiplied by the cost of the cable).
Figure 5.7 illustrates the (strong) lower bound evaluation of a given (partial)
solution with present and forbidden** components. It should be noted that
in this particular example, the cost of the cable per unit is 0.3 and the cost
of digging a trench per unit is 1.7. Furthermore, the lower bound value is
1.7× 2662.3 + 0.3× 4497.1 = 5875.04.

Solution Modification A valid move that can be applied to a solution relies on what
type of action that move performs. In other words, it depends for what type of
subneighborhood a component (represented in the move) was sampled. In the context
of this problem, the valid moves for each subneighborhood are presented as follows.

ADD Any arc that connects a building in the tree to another not included in the tree.
This arc is added to the set of those that form the tree.

REMOVE Any arc in the tree that does not disconnect that tree if removed. This arc
is removed from the set of those that form the tree.

FORBID** Any arc not included in the tree. This arc is added to a list of those that
are excluded.

PERMIT** Any forbidden arc. This arc is removed from a list of those that are
excluded.

It should be noted that the list of arcs that are excluded may grow to the size of the
ground set, as in the case of the TSP.

42



Evaluation of Constructive Search API

Step 1: arc is forbidden** Step 2: add arc to partial solution

Step 3: add arc to partial solution Step 4: add arc to partial solution

Step 5: arc is forbidden** Step 6: add arc to partial solution

Step 7: add arc to partial solution Step 8: obtain spanning tree

Figure 5.6: Example of construction with greedy heuristic for the Cable Trench
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Trench cost = 1.7× 2662.3 = 4525.91 Cable cost = 0.3× 4497.1 = 1349.13

Figure 5.7: Example of strong lower bound for the Cable Trench

Move Enumeration Iteratively enumerate the arcs in a given (constructive) subneigh-
borhood in the same order that those arcs are (explicitly or implicitly2) stored.

Heuristic Move Generation Heuristically select arcs in a given (constructive) subneigh-
borhood in a way that favors those that minimize the cost of the next tree (if it is
applied to the current solution).

Random Move Generation An arc can be sampled uniformly at random among a list
of those that belong in the same (constructive) subneighborhood.

Move Evaluation A move is evaluated with respect to how it affects the lower bound of
a (partial) solution. If an arc was used in one of the terms of the lower bound of the
original (partial) solution, then adding it will not affect the value of that term. In
general, both terms may need to be recomputed.

5.2 Implementation of Constructive-Search Algorithms

This section describes various implementations of constructive-search algorithms based on
the API for constructive search. These implementations use the functions presented in Sec-
tion 4.3, exposing that they use more or less the same underlying operations, despite having
different search strategies. Furthermore, a good sample of algorithms that is representative
of a larger portion available in the literature is Branch & Bound (B&B), Iterated Greedy
(IG) algorithms, Greedy Randomized Adaptive Search Procedures (GRASP), Ant Colony
Optimization (ACO), and Beam Search (BS). These algorithms were implemented accord-
ing to the API in order to validate its coverage of a wide variety of constructive-search
algorithms. In other words, this section corroborates that the API contains the necessary
operations for the implementation of a panoply of constructive-search algorithms.

5.2.1 Branch & Bound

Algorithm 5.3 shows the pseudocode of B&B based on the API for constructive search.
This algorithm can be described as follows:

2 In the case of the ADD subneighborhood, arcs are sampled by enumerating the non-included buildings
with respect to another building (in the tree)
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Algorithm 5.3: Depth-first Branch & Bound based on the API
1 function ExpandSolution(U , sp)
2 // bounding:
3 Φlb(s

p)← getObjectiveLB(sp) // compute lower bound
4 if Φlb(s

p) ≥ U then
5 return
6 end
7 if s← heuristicSolution(sp) ̸= ∅ then // find heuristic solution
8 // heuristic solution exists
9 fs ← getObjectiveVector(s) // objective value of solution

10 if fs < U then
11 s∗ ← copySolution(s∗, s); U ← fs // new best solution
12 end
13 end
14 // branching:
15 if (c← heuristicMove(sp, ADD)) ̸= ∅ then // get best component to add
16 sp ← applyMove(sp, c, ADD) // add component c
17 sp ← ExpandSolution(U , sp) // expand partial solution sp further
18 // remove and then forbid component c
19 sp ← applyMove(sp, c, REMOVE)
20 sp ← applyMove(sp, c, FORBID)
21 // explores a disjoint nonempty region of the search space
22 // where component c is forbidden
23 sp ← ExpandSolution(U , sp)
24 sp ← applyMove(sp, c, PERMIT) // permit component c

25 end
26 end
27 begin
28 U ←∞ // global upper bound
29 sp ← emptySolution() // empty solution
30 s∗ ← ExpandSolution(U , sp) // recursive function
31 end

Initialization Initialize an empty solution by calling emptySolution(...). This solution
represents all feasible solutions in the search space of a problem instance.

Branching Select a component to expand a partial solution by calling heuristicMove-
(ADD). The search space is partitioned into two disjoint nonempty subspaces us-
ing applyMove(ADD) and applyMove(FORBID): one contains the selected component
(PRESENT), and the other does not (FORBIDDEN). Since this algorithm is a depth-first
implementation of a B&B, only one of those subspaces can be explored at a time.
Thus, applyMove(REMOVE) and applyMove(PERMIT) are used to revert a solution to
the previous (partial) solution so that the other subspace can also be explored.

Update Global Upper Bound Try to heuristically construct a feasible solution from
a (partial) solution by calling heuristicSolution(...). Update the global upper
bound (and consequently the best-so-far solution) if the heuristic construction was
successful and the objective value of the resulting solution is less than the global upper
bound value. The objective value is obtained by calling getObjectiveVector(...).
In addition, update the best-so-far solution by using copySolution(...).
It should be noted that heuristicSolution(...) returns its input (solution) if a
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complete solution is specified. Thus, this section (in the pseudocode) also handles
cases where a complete solution is reached in the search.

Bounding Compute the lower bound of a (partial) solution using getObjectiveLB(...).
This (partial) solution represents the subspace of all feasible solutions that contain
it. If the lower bound value is greater than or equal to the global upper bound value,
then that subspace is excluded from being further expanded.

This process ends when the entire search space is (implicitly) explored.

This constructive-search algorithm can only be applied to problem models implemented on
the second level of the API since it contains operations such as forbidding and permitting
components in a (partial) solution.

5.2.2 Iterated Greedy Algorithms

Algorithm 5.4 shows the pseudocode of an IG algorithm based on the API for constructive
search. This algorithm can be described as follows:

1. Initialization of the current solution as a feasible solution that was heuristically con-
structed in heuristicSolution(...).

2. Partial destruction of the current solution, which is done as follows:

(a) Enumerate all components that can be removed from the solution by using
enumMove(..., REMOVE).

(b) With getObjectiveLBIncrement(..., REMOVE), evaluate each enumerated
component for how much it affects the lower bound if it is removed from the
solution.

(c) Select a component at random among those that were enumerated, where those
with a high contribution to the lower bound have a higher chance of being
selected.

(d) Remove the selected component from the solution by using applyMove(...,
REMOVE).

This process is repeated at most d times, resulting in a partially destroyed solution
or an empty solution, in which case the destruction process may have terminated
earlier as there were no components left.

3. Reconstruction of the partially destroyed solution by calling heuristicSolu-
tion(...), which preserves all components present in that solution.

4. Update of the best solution, where the objective value of the reconstructed solution is
obtained by calling getObjectiveVector(...) and then compared to the objective
value of the best-so-far solution; if a better solution is found, the best-so-far solution
is replaced by a new one by using copySolution(...).

5. Application of the acceptance criteria to replace the current solution: if the recon-
structed solution has a better objective value than the current solution, the latter is
replaced by the new one by using copySolution(...); otherwise there is a proba-
bility of replacing the current solution with a worse solution.
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Algorithm 5.4: Iterated Greedy algorithm based on the API
1 U ←∞
2 // construct initial solution
3 s← heuristicSolution(emptySolution())
4 while stop criteria not met do
5 // destroy solution partially
6 for i← 1 to d do // remove at most d components
7 N ← {}; H ← {} // empty feasible component list
8 while (c← enumMove(s, REMOVE)) ̸= ∅ do // components for removing
9 η ← getObjectiveLBIncrement(c, REMOVE) // cost measure

10 N ← N ∪ {c}; H ← H ∪ {η}
11 end
12 if N = {} then
13 break // no components left to remove – stop destruction
14 else
15 // select component ċ based on a probability distribution
16 ċ← StochasticSampling(N , H)
17 s← applyMove(s, ċ, REMOVE) // remove component ċ

18 end
19 end
20 // reconstruct solution
21 s′ ← heuristicSolution(sp)
22 // update best solution
23 fs′ ← getObjectiveVector(s)
24 if fs′ < U then
25 s∗ ← copySolution(s∗, s′); U ← fs′

26 end
27 // apply acceptance criteria
28 if fs′ < fs then
29 s← copySolution(s, s′); fs ← fs′ // accept as current solution

30 else if random(0, 1) ≤ exp(fs−fs′ )
T then

31 s← copySolution(s, s′); fs ← fs′ // accept worse solution
32 end
33 end

This process is repeated a given number of times (except for the first step).

Another variant of an IG algorithm was implemented according to the API. That variant
has a different destruction process, where a component is selected uniformly at random
among those that can be removed by using randomMove(...).

5.2.3 Greedy Randomized Adaptive Search Procedures

Algorithm 5.5 shows the pseudocode of GRASP based on the API for constructive search.
This algorithm can be described as follows:

1. Construction of a candidate solution, which is done in the following way:

(a) Initialize an empty solution by calling emptySolution(...).

(b) Compute the the size of the restricted candidate list |ℓ|, which is a fraction of
the number of components that can be added to the partial solution, whose

47



Chapter 5

value is returned by getNeighbourhoodSize(..., ADD).
(c) With heuristicMoveWOR(..., ADD), heuristically enumerate |ℓ| components

at most, in an order that may or may not be greedy with respect to how each
component affects the lower bound if it is added to the partial solution. These
components constitute the restricted candidate list.

(d) Select a component uniformly at random from the restricted candidate list.
(e) Add the component to the partial solution by using applyMove(..., ADD).

This process is repeated until the solution is complete. That is, it stops when the
solution is feasible, which is verified by calling isFeasible(...), and there are no
components that can be added.

Algorithm 5.5: Greedy Randomized Adaptive Search Procedures (GRASP)
based on the API
1 U ←∞
2 while stop criteria not met do
3 // construct greedy randomized solution
4 s← emptySolution()
5 while true do
6 ℓ← {} // restricted candidate list
7 |ℓ| ← ⌈α×getNeighbourhoodSize(s, ADD)⌉
8 for i← 1 to |ℓ| do // sample at most |ℓ| components
9 if (c← heuristicMoveWOR(s, ADD)) = ∅ then

10 break // no moves left to add – stop move sampling
11 end
12 ℓ← ℓ ∪ {c}
13 end
14 if ℓ = {} and isFeasible(s) then
15 break // solution is feasible – stop construction
16 else if ℓ = {} then
17 s← emptySolution() // solution is unfeasible – try again
18 else
19 // select component ċ uniformly at random
20 ċ← UniformRandomSampling(ℓ)
21 s← applyMove(s, ċ, ADD) // add component ċ

22 end
23 end
24 // update best solution
25 fs ← getObjectiveVector(s)
26 if fs < U then
27 s∗ ← copySolution(s∗, s); U ← fs
28 end
29 end

2. Update of the best solution, where the objective value of the candidate solution is
obtained by calling getObjectiveVector(...) and then compared to the objective
value of the best-so-far solution; if a better solution is found, the best-so-far solution
is replaced by a new one by using copySolution(...).

This process is repeated a given number of times.

Other variants of GRASP with alternate construction mechanisms were implemented ac-
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cording to the API. They are distinguished by how the restricted candidate list is con-
structed. One variant enumerates all components that can be added to the partial solution
by using enumMove(..., ADD); then, it evaluates these components with respect to how
they affect the lower bound by calling getObjectiveLBIncrement(..., ADD); the compo-
nents are sorted according to this value, and only the best |ℓ| ones are selected to constitute
the restricted candidate list. The other variant also enumerates all components that can
be added to the partial solution and evaluates them according to how they affect the lower
bound. However, components are only selected to enter the restricted candidate list if their
value is lower than a threshold, such that {c ∈ N | ηv < ηmin +α · (ηmax− ηmin)}, where .

5.2.4 Ant Colony Optimization

Algorithm 5.6 shows the pseudocode of the Ant System (AS) [31] based on the API. Other
ACO variants were also implemented according to the API, namely the Ant Colony System
(ACS) [29; 30], the Approximate Nondeterministic Tree Search (ANTS) [55], the Elitist
Ant System (EAS) [31], the Hyper-Cube Framework for Ant Colony Optimization (HC-
ACO) [15], theMAX −MIN Ant System (MMAS) [71; 72; 73], and the Ranked-Based
Ant System (ASrank) [18]. For the sake of conciseness, only the implementation of the AS
is described here, as most of the previous variants derive from it by including additional
features or making slight changes that improve the overall performance of the algorithm.

The AS based on the API for constructive search can be described as follows:

1. Initialization of the pheromone model, which has the same size as the ground set of
the problem instance, whose value is returned by getNumComponents(...).

2. Construction of the population of “ant trails,” where each “ant trail” is constructed
as follows:

(a) Initialize the “ant trail” as an empty solution by calling emptySolution(...).

(b) Enumerate all components that can be added to the partially constructed “ant
trail” by using enumMove(..., ADD).

(c) With getObjectiveLBIncrement(..., ADD), evaluate each enumerated com-
ponent. This value represents the heuristic information that is commonly men-
tioned in the literature.

(d) Obtain the pheromone value “deposited” in each enumerated component by
calling getComponentID(...), which returns a unique identifier that is used to
access the corresponding pheromone in the pheromone model.

(e) Select a component at random among those that were enumerated, where the
probability of selecting each component is based on the linear combination of
the heuristic information and the pheromone value.

(f) Add the selected component to the partially constructed “ant trail” by using
applyMove(..., ADD).

This process is repeated until the “ant trail” is complete. That is, it stops when the
“ant trail” is a feasible solution, which is verified by calling isFeasible(...), and
there are no components that can be added.
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Algorithm 5.6: Ant System based on the API
1 U ←∞
2 // pheromone initialization
3 τ⃗ ← PheromoneInitialization()
4 while stop criteria not met do
5 foreach s ∈ P do
6 // ant based solution construction
7 s← emptySolution()
8 while true do
9 N ← {}; H ← {}; T ← {}

10 while (c← enumMove(s, ADD)) ̸= ∅ do // components for adding
11 η ← getObjectiveLBIncrement(c, ADD) // heuristic information
12 i← getComponentID(c); τi ← τ⃗ [i] // pheromone value
13 N ← N ∪ {c}; H ← H ∪ {η}; T ← T ∪ {τi}
14 end
15 if N = {} and isFeasible(s) then
16 break
17 else if N = {} then
18 s← emptySolution()
19 else
20 ċ← StochasticSampling(N , H, T )
21 s← applyMove(s, ċ, ADD)
22 end
23 end
24 end
25 foreach s ∈ P do
26 // update best solution
27 fs ← getObjectiveVector(s)
28 if fs < U then
29 s∗ ← copySolution(s∗, s); U ← fs
30 end
31 // pheromone update
32 while (i← enumSolutionComponents(s, PRESENT)) ̸= −1 do
33 τ⃗ [i]← (1− ρ)× τ⃗ [i] + 1

fs

34 end
35 end
36 end

3. Update of the best solution, where the objective value of each “ant trail” is obtained
by calling getObjectiveVector(...) and then compared to the objective value
of the best-so-far solution; if a better solution is found, the best-so-far solution is
replaced by a new one by using copySolution(...).

4. Update of the pheromone values according to the quality of each “ant trail,” whose
components are enumerated by calling enumSolutionComponents(...) and then
used to update their respective pheromones.

This process is repeated for a given amount of times (except for the first step).
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5.2.5 Beam Search

Algorithm 5.7: Beam Search based on the first level of the API
1 U ←∞
2 sp ← emptySolution(); B ← {sp} // initialize beam with empty solution
3 while B ̸= {} do
4 B′ ← {}
5 foreach sp ∈ B do
6 if isFeasible(sp) and (fsp ← getObjectiveVector(sp)) < U then
7 s∗ ← copySolution(s∗, sp); U ← fsp // new best solution
8 end
9 // branching:

10 i← 0
11 // get next best component to add
12 while (c← heuristicMoveWOR(sp, ADD)) ̸= ∅ and i < kext do
13 // add component c to a copy of partial solution sp

14 s′p ← copySolution(s′p, sp); s′p ← applyMove(s′p, c, ADD)
15 // bounding:
16 Φlb(s

′p)← getObjectiveLB(s′p) // compute lower bound
17 if Φlb(s

′p) < U then
18 // (partial) solution s′p may or may not be added to beam
19 B′ ← UpdateBeam(B′, bwidth, s′p)
20 end
21 i← i+ 1

22 end
23 end
24 B ← B′ // new current beam
25 end

Algorithm 5.7 shows the pseudocode of BS based on the first level of the API for construc-
tive search. This algorithm can be described as follows:

1. Initialize an empty solution with emptySolution(...) and add it to the beam.

2. Expand the (partial) solutions in the beam, where each (partial) solution is expanded
as follows:

(a) Heuristically enumerate a maximum of kext components that can be added
to a partial solution by calling heuristicMoveWOR(ADD). No components are
sampled if the solution is complete.

(b) Add each component to an exclusive copy of the partial solution by using
copySolution(...) followed by applyMove(ADD). This process results in a
maximum of kext (partial) solutions.

(c) Compute the lower bound of each (partial) solution using getObjective-
LB(...). If the lower bound of a (partial) solution is less than the global
upper bound value, that (partial) solution is added to the beam of expanded
solutions.

This process is repeated until there are no solutions left in the beam. Then, those in
the beam of expanded solutions are transferred to the other beam. However, only at
most bwidth (partial) solutions are moved such that those with a smaller lower bound
value are favored.

3. Update the best solution: 1) verify which solutions are feasible with respect to the
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problem, 2) evaluate the feasible solutions by calling getObjectiveVector(...),
3) and compare their objective values to the global upper bound value; if the objective
value is less than the global upper bound value, update the best-so-far solution by
using copySolution(...).

This process is repeated until there are no solutions left in the beam.

It is also possible to implement BS on the second level of the API for constructive search.
Algorithm 5.8 shows the pseudocode of BS based on the second level of the API. This algo-
rithm partitions the subspace into disjoint nonempty subspaces such that each expanded
(partial) solution explores a partition of the search space. This exploration is more efficient
since a solution can only be found (at most) once throughout optimization process. Thus,
the second-level BS may produce better quality solutions than BS on the first-level BS
(depending on the problem).

Algorithm 5.8: Beam Search based on the second level of the API
1 U ←∞
2 sp ← emptySolution(); B ← {sp}
3 while B ̸= {} do
4 B′ ← {}
5 foreach sp ∈ B do
6 if isFeasible(sp) and (fsp ← getObjectiveVector(sp)) < U then
7 s∗ ← copySolution(s∗, sp); U ← fsp

8 end
9 // branching:

10 i← 0
11 // get best component to add
12 while (c← heuristicMove(sp, ADD)) ̸= ∅ and i < kext do
13 // add component c to a copy of partial solution sp

14 s′p ← copySolution(s′p, sp); s′p ← applyMove(s′p, c, ADD)
15 // forbid component c in partial solution sp

16 sp ← applyMove(sp, c, FORBID)
17 // explores two disjoint nonempty regions of the search
18 // space where either component c is present or forbidden
19 // bounding:
20 Φlb(s

′p)← getObjectiveLB(s′p)
21 if Φlb(s

′p) < U then
22 B′ ← UpdateBeam(B′, bwidth, s′p)
23 end
24 i← i+ 1

25 end
26 end
27 B ← B′

28 end
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5.3 Experimental Evaluation

5.3.1 Computational Overhead Introduced by the API

The adoption of an API by a software application usually introduces additional overhead
besides the normal computational cost used of that application. The API for constructive
search is no different, and may introduce an extra cost in addition to the one utilized by a
constructive algorithm throughout its execution. It is crucial to measure this extra cost in
order to know the limitations of the use of the API, as well as understanding how it can
be improved. Thus, an experimental evaluation is performed to assess the computational
overhead introduced by the API, and the results are discussed to understand how that
overhead may be reduced.

In order to measure the computational overhead introduced by the API, two implemen-
tations of a depth-first dichotomic B&B for the CTP were compared: one B&B was a
previously available3 dedicated implementation in C that was specifically designed (and
optimized) for the CTP, while the other is a generalized B&B that is applied to a compu-
tational model of the CTP, both based on the API. Hereafter, the former shall be referred
as “handcrafted B&B,” while the latter shall be referred as “B&B using API.” Furthermore,
this optimization problem and algorithm were selected to measure the computational over-
head associated with the API because the implementation from scratch in C was already
available, requiring only to the development of a computational model based on the API,
which could then be used by the generalized B&B. However, not all of the optimizations
were implemented in the API model. This decision had an impact on the results, which
are later discussed in this section.

In the interest of a fair comparison, both implementations of the B&B need to meet certain
criteria: a. report the same optimum solution, b. explore the same nodes in the search tree,
in the same order (verifying if the pruning and branching rules are equal). The first criterion
was validated by comparing the objective values reported by each algorithm at the end of
their execution (or comparing both solutions, for some cases). The second criterion was
validated by printing the nodes explored by each algorithm and verifying if they are the
same and in the same order.

Besides using different implementations of the B&B, the size of the CTP instances was
also varied in this experimental evaluation since it is important to assess how the overhead
evolves as instances grow larger. Based on the empirical analysis of various runs, this
parameter was fixed at the following levels: n = {5, 10, 15, . . . , 40}. Furthermore, two
other parameters related to the CTP needed to be fixed: the cost of the cable and the
cost of digging a trench. Various runs were performed to decide on ideal values. However,
after an empirical analysis, these parameters were fixed at only one: the cable cost per
unit length was set to 0.05 and the trench cost per unit length was set to 0.95. For other
different sets of values, the run time of both B&Bs was too long for larger instances.

Thirteen instances were randomly generated for each size, where the coordinates of each
building were both random real values in the range [0., 1000.), resulting in a total of 104
instances. Then, each implementation of the B&B was executed once for all instances of
the CTP, and the run time was measured for each execution.

3 Thanks to Professor Carlos Fonseca for providing the Branch & Bound implementation
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Figure 5.8: Run times of “handcrafted B&B” and “B&B using API”

Figure 5.9: Distribution of run time ratio of “B&B using API” to “handcrafted B&B”

Figure 5.8 shows the differences of the run time for both implementations of the B&B,
in seconds, concerning the 104 CTP instances with different sizes. While it is difficult
to take discernible conclusions about the overhead introduced in smaller instances (due
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to precision limitations in measuring the run time), it is clear that the API introduces a
slowdown in larger instances. Such a slowdown seems to remain at a constant factor as
the size of an instance grows, as evidenced by the lines that pair both B&Bs applied to
the same instance, where those lines are nearly parallel to each other. Consequently, it is
crucial to measure the constant factor, which is done by calculating the run time ratio of
the “B&B using API” to the “handcrafted B&B.”

Figure 5.9 shows the distribution of the run time ratio of the “B&B using API” to the
“handcrafted B&B,” concerning the instances of size {20, 25, . . . , 40}. It is clear that the
slowdown introduced by the API is lower than three times.

Furthermore, to check if it would be possible to reduce this slowdown further, the Gprof
profiling tool was used to diagnose the execution of the “B&B using API.”

%
time

cumulative
seconds

self
seconds

calls self ms/call name

31.41 0.92 0.92 608 445 0.00
(1.51× 10−3 )

lb

29.53 1.79 0.87 523 695 915 0.00
(1.66× 10−6 )

pairing

18.09 2.32 0.53 304 222 0.00
(1.74× 10−3 )

removeMove

9.90 2.61 0.29 304 222 0.00
(9.53× 10−4 )

addMove

3.41 2.77 0.10 21 275 437 0.00
(4.70× 10−6 )

swap

Table 5.1: Flat profile of the “B&B using API”

Table 5.1 shows the flat profile of the top 5 function calls with larger run times, concerning
the execution of the “B&B using API” for an instance of size 30. It appears that lb(...)
and removeMove(...) are the functions that take on average more time whenever they
are called (as evident by the self ms/call column, which represents the average number
of milliseconds spent in a function per call). In this case, lb(...) computes the lower
bound of a given (partial) solution, and removeMove(...) removes a component (an arc)
from a (partial) solution, whereas pairing(...) is a small utility function. While it may
be possible to optimize lb(...) further, this function is unlikely to be the main cause of
overhead because both B&Bs implement the same incremental computations in the lower
bound calculation. However, removeMove(...) is likely to be introducing a considerable
slowdown: while the “handcrafted B&B” stores the data of the previous partial solution,
the “B&B using API” needs to recompute all of its information (mainly a list of arcs with
minimal cost that may be added to that partial solution) before backtracking. Thus, it
may be possible to reduce the slowdown further by optimizing the implementation for the
case where only the last added component is ever removed. There are other optimizations
implemented in the “handcrafted B&B.” However, these are problem-specific optimizations
that slightly alter how the B&B itself works (and the computational model cannot affect
the behavior of the B&B which is applied to it).
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5.3.2 Solver Performance Evaluation

The API for constructive search supports exact and metaheuristic algorithms such as B&B,
IG algorithms, GRASP, ACO, and BS. Exact algorithms such as B&B have a guarantee
that an instance of a problem is always solved to optimality. However, these approaches
are computationally expensive for large instances of a problem since their run time grows
exponentially as the size of an instance increases. In contrast, metaheuristics take a rea-
sonable run time, but they do not guarantee that an instance of a problem will be solved
to optimality. Furthermore, these approaches are significantly better than random search,
given that they tend to find near-optimal solutions. When a large panoply of metaheuris-
tics is available to be applied to an optimization problem, there is bound to be some that
are better than others. The API for constructive search allows for problem models to be
used directly by various solvers (constructive-search algorithms). Consequently, it is possi-
ble to assess which solvers outperform others when applied to the same problem (model).
Thus, an experimental evaluation is done to measure the performance of various solvers
(which only include metaheuristics) when applied to the Symmetric Travelling Salesman
Problem.

The solvers that were selected for this experimental evaluation are the following: the Ant
Colony System (ACS), the Approximate Nondeterministic Tree Search (ANTS), the Ant
System (AS), the MAX −MIN Ant System (MMAS), and GRASP. Note that most
of these solvers are variants in Ant Colony Optimization (ACO) (and also GRASP). The
remaining metaheuristics were not selected for this experimental evaluation due to the
following reasons:

• The Elitist Ant System and the Hyper-Cube Framework for Ant Colony Optimization
only vary slightly from the Ant System, and using these ACO variants would not be
as interesting as using other variants that are considerably different.

• The Iterated Greedy algorithm was not selected due to the construction rules im-
plemented in the problem model of the TSP, which specify that only the last arc
added in the (partial) tour can be removed. This rule would (indirectly) result in the
reconstruction of same solution (by heuristicSolution(...)) after it was partially
destroyed. Thus, the same solution would be produced at each iteration, and no
optimization would be performed.

• Beam Search is a Tree Search Algorithm based on a breath-first search that limits the
number of nodes produced at each level of the search tree. Unlike other (constructive)
metaheuristics, this algorithm only completes the construction of solutions at the end
of its execution (instead of one by one). Consequently, in order to match the same
number of tours produced by each solver, Beam Search would need to allocate a long
array of solutions, which would cause high memory usage for large instances.

Furthermore, as mentioned in Section 5.2, there are various mechanisms to construct the
restricted candidate list in GRASP; in this experimental evaluation, only components
whose value is less than a threshold are selected.

The parameters of the selected solvers need to fixed before applying them to instances
of the Symmetric TSP. In the case of ACO algorithms such as ACS, AS, and MMAS,
their parameters were set according to the values suggested by Dorigo and Stützle [32],
and Stützle and Hoos [73] (which are recommended for the TSP). In the case of ANTS,
the parameters were set in line with those reported by Maniezzo [55] (despite being used
for the QAP) and those used by the AS. As for GRASP, its single parameter was set as
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reported by Resende and Ribeiro [69]. Table 5.2 shows all of the parameter values that were
fixed for each solver. It should be noted that the heuristic information weight was set to a
value slightly larger than the standard (such increase is justified in the next experimental
evaluation).

ACO Algorithm α β ρ m τ0

AS 1 3 0.5 n m/Cnn

MMAS 1 3 0.02 n 1/ρCnn

ACS 1 3 0.1 10 1/nCnn

ANTS – – 0.5 n m/Cnn

Here, n denotes the number of cities in an instance, α denotes the pheromone weight, β denotes the heuristic
information weight, ρ denotes the evaporation rate, m denotes the population size, τ0 denotes the initial
pheromone value, and Cnn denotes the objective value of the solution obtained by the Multi-Fragment heuristic.
MMAS: The probability of constructing the best solution is 0.05. The frequency at which the global best solution
updates the pheromones is at each 10th iteration. The number of iterations until stagnation is 50. The smoothing
rate value is 0.5.
ACS: In the local pheromone trail update rule: ξ = 0.1. In the pseudorandom proportional action choice rule:
q0 = 0.9
ANTS: The relative importance of the pheromone trail is 0.3. The width of the moving average window is 4× n.
GRASP: In the construction of the restricted candidate list: α = 0.2.

Table 5.2: Parameter values fixed for each solver

Furthermore, to perform a fair comparison between the selected solvers, the number of
tours constructed in each instance of the TSP needs to be the same across all algorithms.
AS, MMAS, and ANTS build more solutions in each iteration than ACS and GRASP
since their population size is larger. Thus, the number of iterations needs to be adjusted
so that each algorithm produces the same number of solutions. Furthermore, this number
should be at least 1000 as most solvers are reported to start to converge around this number
of iteration [32; 69]. Ultimately, the number of iterations performed by each algorithm was
set to the following: a. ACS performed 1000×n

10 iterations, b. AS performed 1000 iterations,
c.MMAS performed 1000 iterations, d. ANTS performed 1000 iterations, e. and GRASP
performed 1000× n iterations.

The solvers were applied to instances of the Symmetric TSP from TSPLIB [68]. In par-
ticular, they were applied to instances with less than 300 cities (this value is justified in
the next experimental evaluated). They all used the Weak lower bound mentioned in
Section 5.1.2 as heuristic information since this value is commonly used in the literature
(the length of an arc). Each solver was executed once for all considered instances. At
each execution, the objective value of each constructed tour was saved to an output file.
However, only the value of the best solution is considered in the analysis of the results. In
addition, the seed value that initializes the random number generator was stored in case
the results need to be reproduced in the future.

Figure 5.10 shows the approximation ratio of the best solution reported by the solver con-
cerning the instances of the TSP whose number of cities is less than 300. The results
indicate that the ACS, the AS, and the MMAS had approximately the same perfor-
mance, with theMMAS performing slightly better. In contrast, ANTS and GRASP had
significantly worse performance.

To draw more accurate conclusions on the performance differences between each solver, the
Friedman test was applied to the results with a significance level of 0.05. This test is used
to detect differences in the ranking of solvers with respect to the various instances that
were solved. For example, if a solver consistently reported the best solution, its ranking
would be significantly different than the others, such that the Friedman test would be able
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to detect it. Thus, when this test was applied to the results above, it reported that the null
hypothesis was rejected. In other words, there are solvers whose ranking is significantly
different than those of other solvers.

Figure 5.10: Solver performance

In order to understand which pairs of solvers have a significantly different ranking, the
Nemenyi post hoc test for unreplicated blocked data was applied with a significance level of
0.05. These differences are seen in the following order from best to worst solver concerning
their ranking values:

MMAS ACS AS ANTS GRASP

Here, two solvers are not significantly different if the same line is drawn over (or under)
them, and they are significantly different if otherwise. From this analysis, it is possible to
conclude that the MMAS slightly outperformed the other solvers, with the ACS being
the only algorithm that was not significantly different. This result was not surprising since
theMMAS is reported in the literature as one of the best ACO algorithms. However, the
result of ANTS was surprising as this ACO variant did not show the same performance
as the other variants. In fact, it is shown that its performance is significantly different. A
reason for this might be that its parameters were not adjusted to solve the TSP. However,
another plausible reason for its poor performance is that this algorithm did not use a
stronger bound for the ant trails construction. ANTS is described in the literature as an
ACO algorithm that computes lower bounds on the completion of a partial solution [32].
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5.3.3 Effect of the Problem Model on Solver Performance

The proposed abstraction of the API allows for any problem model to be used with any
solver (if the required functions are implemented). Furthermore, there are different ways
to formulate a problem as a constructive-search problem. This section conducts an experi-
mental evaluation of the effect of the problem model on solver performance. In particular,
a study is done on how the three lower bounds mentioned in Section 5.1.2 affect the per-
formance of metaheuristics that solve the Symmetric TSP.

Both the Weak and Intermediate lower bounds implemented incremental evaluation. In
contrast, the Strong lower bound did not implement incremental evaluation. As a result,
the full lower bound computation occurs whenever a component/move is evaluated with
respect to a given (partial) solution. A consequence of this implementation is that solvers
take a large run time when using this lower bound. Therefore, only instances of the TSP
with less than 300 cities were selected for the experimental evaluations. In fact, some of
the selected instances did not run to completion as they exceeded the allotted time (∼48h).
Ultimately, the implementation of the Strong lower bound needs to be optimized in the
future to justify its application in concrete scenarios.

Furthermore, due to the computation time of the Strong bound, only two solvers were
selected to study the effect of lower bounds on solver performance. These algorithms are
MMAS and ANTS.MMAS was chosen since there was an interest in observing whether
a stronger bound would further improve the performance of the best solver (with respect
to the previous experimental evaluation). ANTS was selected because this ACO algorithm
is described in the literature as an “Ant System that uses lower bounds as replacement of
the heuristic information.” As such, there was an interest in observing whether this solver
would actually benefit from stronger lower bounds.

The parameters used by these solvers are the same as those used in the previous exper-
imental evaluation. Table 5.2 shows all of the parameter values that were set for these
solvers. It should be noted that the heuristic information weight was set to a value slightly
larger than the standard since this experiment focuses on the effect of lower bounds as a
replacement for the heuristic information (and less on the weight of pheromone values).
Moreover, the same number of constructed tours was ensured across all selected solvers
that use each bound, concerning each instance of the TSP. In this case, both algorithms
performed 1000 iterations.

As already mentioned, these solvers were applied to instances of the Symmetric TSP from
TSPLIB [68] with less than 300 cities. Each combination of solver and lower bound was
executed once for all considered instances. Only the value of the best solution is considered
in the analysis of the results despite saving the objective values of all constructed tours.
Additionally, the seed value that initializes the random number generator was stored in
case the results need to be reproduced in the future.

Figure 5.11 shows the approximation ratio of the best solution reported by the solver (using
a given lower bound) concerning the instances of the TSP with less than 300 cities. The
results indicate that a stronger lower bound does not significantly improve the performance
of the MMAS. In fact, the performance of the MMAS using the Intermediate lower
bound seems to be worse than the MMAS using the Weak lower bound. In contrast,
results suggest that a stronger bound does improve the performance of the ANTS.
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Figure 5.11: Effect of lower bound on solver performance

To draw more accurate conclusions on the performance (i.e. ranking) differences between
each combination of solver/bound, the Friedman test was applied to the results with a sig-
nificance level of 0.05. This test reports that the null hypothesis was rejected. That is, there
are combinations whose ranking is significantly different than those of other combinations.

In order to understand which combinations of solver/bound have a significantly different
ranking, the Nemenyi post hoc test for unreplicated blocked data was applied with a sig-
nificance level of 0.05. These differences are seen in the following order from best to worst
combination concerning their ranking values:

MMAS-SMMAS-W ANTS-SMMAS-I ANTS-I ANTS-W

Here, two combinations are not significantly different if the same line is drawn over (or
under) them, or they are significantly different if otherwise. From this analysis, it is possible
to conclude that ANTS benefits from a stronger lower bound since the ranking of the
Strong one is significantly different from those of the Weak and Intermediate bounds.
However, it did not have a significant improvement over the performance ofMMAS despite
using a stronger lower bound over the traditional heuristic information. This performance
may have been caused by its parameters not being adjusted to solve the TSP (unlike
MMAS). Furthermore, the Intermediate bound was not significantly different from the
Weak bound despite looking worse for the MMAS in Figure 5.11. This result suggests
that its strength is also not significantly different from that of the Weak bound. Lastly, no
conclusive evidence could be taken from the effect of a stronger bound on the performance of
theMMAS. Perhaps this solver already showed a favorable performance that was difficult
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to be further improved. An extended experimental evaluation should be conducted for large
instances in order to draw a more decisive conclusion. The implementation of the Strong
bound should be optimized to perform incremental evaluation.

5.3.4 Computational Overhead of the Second Level of the API

As mentioned in Section 4.3, two levels are defined for the API for constructive search.
Models that implement the first level can be used with (most) metaheuristics. Models that
implement the second can be used with metaheuristics and other solvers that partition the
search space, such as B&B. Despite its generalizability, modeling problems on the second
level may incur additional computational expense. These costs propagate to all solvers,
including those that can use first-level models. Thus, this section performs an experimental
evaluation that measures the overhead introduced by a second-level model when applied
to metaheuristics that those on the first level can use.

In order to measure this overhead, two models that implement the TSP at each level
were compared by applying them to a selection of (metaheuristic) solvers. Those solvers
include the AS, the MMAS, GRASP, and BS based on the first level. Other ACO vari-
ants were not selected since those implement approximately the same API operations as
AS. Additionally, IG was not considered since it does not perform any optimization with
the current models of the TSP. It should also be noted that the mechanism used by
GRASP to construct the restricted candidate list is the one reported in Algorithm 5.5,
where at most |ℓ| components are heuristically sampled to constitute the list. This imple-
mentation was selected in order to measure the overhead introduced by an API function
(getNeighbourhoodSize(ADD)) that the other solvers do not use.

In the interest of a fair comparison, both models of the TSP should produce the same
results despite being implemented at different levels. In other words, it is expected that
the functions implemented by both models have the same characteristics. Furthermore,
if a solver uses a random number generator, the same seed should be provided to both
models to produce the same results.

The parameters used by AS, MMAS, and GRASP are the same as those used in the
previous experimental evaluation. Table 5.2 shows the parameter values that were set for
these solvers. However, the heuristic information weight was an exception, and it was set
to the standard value (β = 2) since it does not have any relevance in this experiment.
Moreover, BS parameters such as kext and bwidth were set to n

2 and 2750, respectively.
Here, n denotes the number of cities. There are no recommended values in the literature
to how these parameters should be set. Regardless, setting these values ensure that the
number of times that a component is added to a solution is the same as in other solvers.
Within the same logic, the number of iterations set for the AS, theMMAS, and GRASP
were 1000, 1000, and n × 1000, respectively. This decision was made so that all solvers
perform about the same scale of operations such that it is easier to compare them to each
other.

The instances of the TSP considered in the previous experiments were also selected in this
experimental evaluation. In addition, all solvers used the Weak lower bound to reduce
additional computational cost. Each selected solver was executed 13 times for all considered
instances, and the run time was measured for each execution.

61



Chapter 5

(a) Ant System

(b)MAX −MIN Ant System
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(c) GRASP

(d) Beam Search

Figure 5.12: Run times of first-level and second-level solver
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Figure 5.12 shows the differences in the run time, in seconds, for solvers that use the models
implemented at each level concerning the selected TSP instances. While the second-level
model does not seem to have a visible overhead in AS andMMAS, this model introduces
a considerable computational cost in GRASP and BS. In fact, this cost seems to increase
as the size of an instance grows. In order to analyze the cause of this overhead, a profiling
tool was used to diagnose the execution of GRASP and BS applied to the first-level and
second-level models.

API
level

%
time

cumulative
seconds

self
seconds

calls self ms/call name

F
ir

st

76.64 14.94 14.94 418 518 432 0.00
(3.57× 10−8 )

heuristicMoveWOR

6.62 16.23 1.29 418 338 332 0.00
(3.08× 10−9 )

pairing

2.10 16.64 0.41 40 200 000 0.00
(1.02× 10−8 )

getObjectiveVector

1.74 16.98 0.34 40 000 000 0.00
(8.50× 10−9 )

applyMove

1.59 17.29 0.31 40 200 000 0.00
(7.71× 10−9 )

nh_size

S
ec

on
d

32.83 18.96 18.96 40 200 000 0.00
(4.72× 10−7 )

getNeighbourhoodSize

27.88 35.07 16.10 418 518 432 0.00
(3.85× 10−8 )

heuristicMoveWOR

17.75 45.32 10.25 200 000 0.00
(5.13× 10−5 )

emptySolution

0.88 54.01 8.69 4 953 909 854 0.00
(1.75× 10−9 )

pairing

0.70 54.52 0.51 157 236 482 0.00
(3.24× 10−9 )

swap

Table 5.3: Flat profile of GRASP applied to the kroA100 instance

Table 5.3 shows the flat profile of the top 5 function calls with larger run times concern-
ing the execution of GRASP using the first-level and second-level models for the kroA100
instance. It appears that getNeighbourhoodSize(ADD) and emptySolution(...) intro-
duce a large overhead when presented to the second-level model (as evident by the self
ms/call column, which represents the average number of milliseconds spent in a function
per call). In particular, getNeighbourhoodSize(ADD) on the second level traverses the
entire subneighborhood to count which (valid) components are not forbidden, in contrast
to the first level, which performs a direct calculation. Such an operation introduces a high
computational cost! Furthermore, emptySolution(...) on the second level initializes an
additional array of integers, which maintains the list of forbidden components, in contrast
to the first level, which only initializes the sequence of cities. This array has the same size
as the ground set, which is quadratic to the number of cities. Thus, besides introducing
an overhead on computational time, second-level models also introduce overhead on the
size of allocated memory. In fact, while the size of allocated memory on the first level is
236 880 bytes, on the second level is 355 792 bytes, concerning the kroA100 instance.
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API
Level

%
time

cumulative
seconds

self
seconds

calls self ms/call name

F
ir

st
82.74 22.51 22.51 40 575 350 0.00

(5.55× 10−7 )
lb

5.86 24.11 1.60 41 122 701 0.00
(3.89× 10−8 )

heuristicMoveWOR

1.34 24.48 0.37 40 575 350 0.00
(9.12× 10−9 )

applyMove

1.27 25.16 0.35 40 575 357 0.00
(8.63× 10−9 )

copySolution

1.25 25.43 0.34 40 575 351 0.00
(8.38× 10−9 )

nh_size

S
ec

on
d

56.77 11.75 11.75 40 575 350 0.00
(2.90× 10−7 )

lb

11.62 14.16 2.41 40 575 357 0.00
(5.94× 10−8 )

copySolution

9.66 16.16 2.00 41 122 701 0.00
(4.86× 10−8 )

heuristicMoveWOR

3.50 16.89 0.73 40 575 350 0.00
(1.80× 10−8 )

applyMove

2.32 17.32 0.48 161 359 006 0.00
(2.97× 10−9 )

swap

Table 5.4: Flat profile of Beam Search applied to the kroA100 instance

Table 5.4 shows the flat profile of the top 5 function calls with larger run times concern-
ing the execution of the BS using the first-level and second-level models for the kroA100
instance. It appears that copySolution(...) introduces a large overhead when imple-
mented on the second level. In particular, this function (entirely) copies the array that
represents the list of forbidden components every time it is called. Furthermore, BS du-
plicates a solution whenever it wants to add a component (because this solver also needs
to maintain the original). Since this operation is repeated frequently throughout the ex-
ecution of BS, it gradually leads to a very high computational time. BS also allocates a
beam of solutions whose size depends on parameter bwidth. As a result of solutions main-
taining their list of forbidden components, a large overhead is also introduced on the size
of allocated memory, which grows as the size of an instance and parameter bwidth increase.
In fact, while the size of allocated memory on the first level is 14 248 396 bytes, on the
second level is an impressive 232 303 676 bytes, concerning the kroA100 instance and a
bwidth = 2750.

To mitigate the amount of computational overhead introduced by second-level models of
the API, more sophisticated data structures and resource-management techniques could
be implemented in these models. Those would include persistent data structures, and
copy-on-write operations, among others.
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5.4 User Feedback

An internal coding event called “ALGO Code Fest”4 was organized5 among undergraduate,
Master’s, and PhD students of the ALGorithms and Optimization (ALGO) Laboratory in
order to understand how users who are unfamiliar with the API for constructive search
would interact with it. The program of this event consisted of three parts:

Opening Presentations A presentation was made on how to formulate an optimization
problem as a constructive-search problem. Then, another presentation was made on
a subset of operations from the API for constructive search (first-level only).

Main Activity Participants organized themselves into various groups, and a task was
assigned to each group. This task consisted in modeling a given CO problem as a
constructive-search problem and implementing the corresponding model according
to a subset of functions from the API (first-level only). These functions could then
be used by provided solvers to optimize instances of the problem, and experimental
results would be collected. The problems considered for this coding event were the
following: Campus Network (Cable Trench Problem [74]), Community Detection
(Clique-Partitioning Problem [12]), Hypervolume Subset Selection [48], and the 2018
Hash Code Self-Riding Cars Problem [2]. Moreover, the amount of time that groups
had to complete the assigned task was only (approximately) 8 hours.

Closing Presentations Each group made a small presentation on the modeling and im-
plementation decisions taken for their corresponding problem. Additionally, (prelim-
inary) experimental results could also be presented if it was possible to apply the
solvers to their model.

Among the four groups, three were able to formulate their optimization problem as a
constructive-search problem, and one group was able to implement all functions of the
provided subset. However, this group did not succeed in using the available solvers due to
some faults in their implementation, which they were not able to fix in time.

Overall, most participants seemed to understand the design behind (a subset of) the API for
constructive search, and (most importantly) they understood how to model an optimization
problem as a constructive-search problem. However, some were unable to grasp concepts
related to constructive search (e.g. constructive subneighborhood) and the behavior of
each function. They suggested that a more detailed definition of each function should
have been provided (and also what should be avoided), as well as an example of how to
model and implement a simple optimization problem (e.g. the KP). Furthermore, a testing
environment to validate the properties defined by each function should also have been
provided, as well as another environment where users can examine the problem-specific
outcome of each function. The latter would also enable users to observe how functions
interact with each other. Lastly, further documentation of the API should be produced
(e.g. elaborate training materials), and other opportunities for users to interact with the
API should be made possible (e.g. organize workshops and events). In order to maintain
any (optimization) software “alive”, there needs to be users and the means for teaching
them how to use it.

4 ALGO Code Fest #0
https://github.com/jerbubias/algo-code-fest-0

5 Thanks again to Professor Carlos Fonseca for helping organize the coding event
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5.5 Concluding Remarks

This chapter presented the implementations of optimization problems and constructive-
search algorithms based on the API. The underlying abstraction allows for the model-
ing and implementation of any CO problem and the implementation of several distinct
constructive-search algorithms. Additionally, the computational overhead associated with
the use of the API was measured for a specific scenario, determining that the API intro-
duces a slowdown lower than three times (which may be further improved) on the test
scenario considered. Furthermore, it was observed that the computational overhead of the
second level of the API may be considerable in regard to the first level. However, it is pos-
sible to reduce such overhead by implementing sophisticated data structures and memory
management techniques.

A study on the effect of models on the performance of solvers was also conducted in
this chapter. In particular, it was seen that using stronger lower bounds may potentially
benefit the solvers to which a model can be applied. This reveals an unusual paradigm in
the development of optimization algorithms, where an emphasis is placed on improving a
model instead of developing “brand new” algorithms (which in reality may be very similar
to other existing algorithms).

Finally, a coding event was organized in order to observe how unfamiliar users would
interact with the API. In general, almost all participants were able to understand how it is
possible to model an optimization problem as a constructive-search problem. Some useful
feedback was also provided by them. Notably, the production of teaching materials and
the development of testing environments were among the most requested suggestions.

This concludes the evaluation of the API for constructive search. All of the recommenda-
tions reported throughout this chapter are possible research directions in future work.
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Conclusion and Future Work

This chapter summarizes the main conclusions taken from the completion of this work and
emphasizes its main contributions. Furthermore, a reflection is made on the limitations
presented throughout this work and subsequently provides future research directions that
can be made to improve it.

The main focus of this dissertation was to develop an Application Programming Interface
(API) for constructive-search problems and algorithms. This API separates the problem
formulation from the algorithm that solves it by specifying a number of abstract elementary
operations that problems must implement and solvers can use in a problem-independent
way. Such operations were derived from the specifications presented by the conceptual
model in Section 4.1 and the constructive-search algorithms in Section 2.3. The proposed
API allowed for the modeling and implementation of Combinatorial Optimization (CO)
problems as constructive-search problems, as well as the implementation of a selection of
algorithms. It also promotes the development and improvement of problem models instead
of developing “novel” algorithms. In fact, improving a model may potentially benefit all
solvers, in contrast to only focusing on improving a single solver.

In a concrete scenario, it was observed that using the API resulted in a slowdown by a
factor of less than three (which may still be improved) in comparison to a handcrafted
implementation. In addition, two levels were defined for the API, where one introduces
less computational overhead than the other (but it is restricted to a subset of solvers).
Despite the fact that users unfamiliar with the API were not able to produce fully-working
problem models in only eight hours, they seemed to understand how a problem can be
modeled as a constructive-search problem in the context of the API.

Overall, the main contribution of this work was the proposal of an API for constructive-
search problems and algorithms. The API was developed based on the analysis of construc-
tive-search algorithms in the light of a conceptual model. Additionally, the following
contributions were made:

• A number of constructive-search solvers were implemented based on the API, which
can be applied to any constructive-search problem model implementing the API
specification.

• A number of problem models were also implemented based on the API, which, to-
gether with the implemented solvers, demonstrate the expressiveness of the API.

• The API was evaluated through a set of computational experiments, and informal
feedback was collected from users who were exposed to it for the first time.
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Lastly, possible research directions in future work are presented as follows:

Dynamic Programming
Dynamic Programming is not yet supported by the API for constructive search. Al-
though some operations were identified and partially defined (checkDominance(...)
and getDominanceClass(...)) in regard to problem-specific dominance relations be-
tween solutions, no definite consensus was reached, and none of these operations was
implemented in a problem model.

Improved Problem Models
Current implementations of problem models are incomplete/non-optimized. For exam-
ple, a good sample of models lack incremental solution/bound evaluation (e.g. incremen-
tal evaluation for the Strong lower bound of the Travelling Salesman Problem (TSP)),
others only have very weak (lower) bounds implemented, and some do not implement
heuristic solution generation and heuristic move selection/enumeration. Improving these
models will allow for their application in a larger scope of solvers and may potentially
enhance the performance of these solvers.

Small Set of Solvers
A small set of solvers is supported by the API so far. Other algorithms can also be
implemented, including (the already mentioned) Dynamic Programming, Dijkstra’s al-
gorithm, best-first and breadth-first Branch & Bound, Beam-ACO, Pilot and Rollout
Method, “Squeaky Wheel” Optimization, Ruin-and-Recreate, among others. An issue
that should also be taken into account is that some algorithms may be similar to others.
Viewing these algorithms through the lenses of the underlying abstraction of the API
may allow for these similarities to be easily detected.

Second-Level Overhead
The second level of the API introduces a substantial overhead in solvers. Sophisti-
cated data structures and memory management techniques should be implemented in
the problem models in order to mitigate this overhead.

Multi-Objective Optimization
Simplistic semantics are used for the computation of the lower bound in multi-objective
cases. In particular, the API does not support the calculation of (lower) bound sets [34],
and it is only restricted to one point. Consequently, a dedicated can be proposed for the
API, which supports the computation of lower bound sets.

Testing Environment
User-friendly testing environments are not yet developed for the API. In particular, a
property-based test suite should be developed for the API for users to understand if
the implemented functions are behaving according to their definition. Despite a testing
environment being already established for property-based testing, the tests themselves
still need to be defined. In addition, a testing environment where users can interact with
functions and observe their problem-specific behavior should also be provided.

Maintaining the API
Currently, there is not much documentation on the API (apart from this document).
Developing teaching materials and proper documentation maintains an (optimization)
software active since new users who are initially unfamiliar with it need to be capti-
vated. In addition, users might be turned off from using the API if the implementation
effort far exceeds their expectations. Thus, developing a library that provides generic
implementations to ease this effort should also be considered in future work.

Stable Release
A stable version of the API should be prepared so that it can be released to the public.
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This version should include proper testing environments, easy to understand documen-
tation, complete and fully functional problem models, and a variety of solvers that the
models can use.

Experiments
The experiments made so far did not draw definite conclusions for general cases. Thus,
conducting other experiments with API is encouraged. Applying the TSP model to larger
instance is an example of a future experiment (after optimizing the Strong bound).
Additionally, trying to replicate the results reported by other authors is a good way to
check if the implemented solvers are working as intended in the literature.

Bridge Local and Constructive Search
Based on the conceptual model reviewed in Section 4.1, it is possible to extend the
current underlying abstraction of the API to support local search by using construction
mechanisms. This subject may potentially have a lot of research directions that are not
immediately clear. However, a possible starting point would be an attempt in merging
both local (in nasf4nio [38]) and constructive search APIs.
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