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Abstract

Sex estimation is one of the most important steps in the process of building the

biological profile of an unidentified individual. In decomposing or skeletonized

individuals, bone analysis might provide the only way to access biological sex. When

more dimorphic bones are not available or in case of fragmentary or incomplete

remains, a combination of measurements from the humerus, ulna and radius can be

used to develop methods for sex estimation.

Measurements of the left the humerus, ulna and radius were taken from a sample

of 280 adult individuals (140 males and 140 females) from the Coimbra Identified

Skeletal Collection (late 19th - early 20th centuries) in order to generate univariate and

multivariate models for sex estimation. All models were evaluated with a 10-fold

cross-validation method and tested on an independent sample composed of 50 adult

individuals (22 males and 28 females) from the 21st Century Identified Skeletal

Collection (late 20th - early 21st centuries), also housed in Coimbra.

Univariate models show accuracies ranging from 75.4% to 94.4%

(cross-validation), and from 60.5 to 82.4% (test sample), while accuracy in multivariate

models varies from 89.4% to 96.7% (cross-validation), and 74.3% to 86.4% (test

sample). Overall the best results, when tested on the holdout sample, for uni and

multivariate models resulted from the use of measurements from the radius, with

accuracies ranging from 70.6% to 82.4% and 81.8% to 86.4%, respectively.

Results suggest that measurements of the long bones of the upper limbs are

useful to develop methods for sex estimation of anonymous skeletal remains. However,

attention is required when employing such methods on more recently deceased

individuals.

Keywords: forensic anthropology; identified skeletal collection; sex diagnosis;

biological profile; osteometry
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Resumo

A estimativa do sexo é um dos passos mais importantes na criação do perfil

biológico de indivíduos não identificados. Em indivíduos em decomposição ou

esqueletizados, a análise óssea é uma das únicas formas de aceder ao sexo biológico. Na

ausência de ossos mais dimórficos, ou no caso de restos fragmentários ou incompletos, a

combinação de medidas do úmero, da ulna e do rádio podem ser usadas para

desenvolver métodos de diagnose sexual.

Medidas do úmero, ulna e rádio esquerdos foram recolhidas de uma amostra de

280 indivíduos adultos (140 masculinos e 140 femininos) da Coleção de Esqueletos

Identificados de Coimbra (fim séc. XIX - início séc. XX) de forma a desenvolver modelos

univariados e multivariados para a estimativa do sexo. Todos os modelos foram

avaliados com um método de validação cruzada e testados numa amostra independente

composta por 50 indivíduos adultos (22 masculinos e 28 femininos) da Colecção de

Esqueletos Identificados do séc. XXI (fim do séc. XX - início do séc. XXI), também

alojados em Coimbra.

Os modelos univariados revelaram uma precisão que varia entre 75,4% a 94,4%

(validação cruzada), e de 60,5 a 82,4% (amostra de teste), enquanto a precisão nos

modelos multivariados varia entre 89,4% a 96,7% (validação cruzada), e 74,3% a 86,4%

(amostra de teste). Na generalidade, quando usados na amostra de teste, os métodos uni

e multivariados que usam medidas do rádio mostram precisões de 70.6% a 82.4% e

81.8% a 86.4%, respectivamente.

Os resultados sugerem que as medidas dos ossos longos do membro superior

são úteis para desenvolver métodos de estimação sexual de restos esqueléticos não

identificados. No entanto, é necessária atenção ao empregar estes métodos em

indivíduos falecidos mais recentemente.

Palavras-chave: antropologia forense; coleção de esqueletos identificados;

diagnose sexual; perfil biológico; osteometria
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A metric approach to sex estimation

1. Introduction

The present dissertation aims to develop and test metric sex estimation

methods based on the humerus, ulna and radius from a Portuguese identified skeletal

collection. Thus, this work pretends to build upon the existing methods for sex

estimation and provide new insights.

1.1. Objectives

- Obtain a set of measurements from the humerus, ulna and radius;

- Assess the most dimorphic regions of each bone;

- Develop metric methods for sex estimation for each of the bones individually and

grouped

- Observe, if present, the effects of secular trends in the accuracy of the methods

1.2. Importance of Sex Estimation

Humans display a pattern of morphological differentiation between males and

females, termed sexual dimorphism, that makes biological sex one of the primary pieces

of information that researchers seek to obtain from skeletonized remains. Sex

estimation is an important element in the establishment of the biological profile along

with age-at-death (Márquez-Grant, 2015), ancestry (Algee-Hewitt et al., 2020;

Christensen et al., 2019; Navega, Coelho, et al., 2015) and stature (Zeman & Beňuš,

2020).

Paleoanthropologists, bioarchaeologists and forensic anthropologists alike are

interested in estimating the sex of any recovered human remains (Bethard & VanSickle,

2020).

In the field of paleoanthropology it allows the study of questions related to

sexual dimorphism, the social systems and morphological adaptations of our hominin
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Introduction

ancestors from an evolutionary lens. Relevant examples of the morphological changes

that interest paleoanthropologists are the evolution of the pelvis (Rosenberg & DeSilva,

2017), as it relates to parturition or bipedalism, and of the skull, with its relation to the

increased brain-size observed in our evolutionary lineage (Bruner et al., 2003; Gunz et

al., 2010). Limitations arise, however, seeing as methods developed on modern humans

are not guaranteed to be applicable to hominin fossil remains. As for bioarchaeologists,

they couple sex estimation with contextual information retrieved from excavation sites

(Zuckerman & Crandall, 2019), allowing for a better understanding of the

paleodemography, mortality and sex-specific activities of past populations. In this case

an incorrect classification can fundamentally alter the interpretation and context of an

archaeological site (Messer & Getz, 2020).

For forensic anthropologists the estimation of biological sex from

anthropological analysis of decomposed and skeletonized human remains represents a

key element in the process leading to a positive identification (Pinheiro & Cunha, 2006).

The accurate estimation of sex narrows the focus of the investigation, helping law

enforcement, medical examiners and medicolegal death investigators narrow the list of

potential unidentified persons (Bethard & VanSickle, 2020).

One must always bear in mind that these methods tend to attribute a binarism

to human sex and do not always represent the spectrum of variability that it contains.

1.3. Sexual Dimorphism and Population Variation

The differences observed between male and female individuals are mainly

associated with primary and secondary sexual characteristics (Black et al., 2009). The

primary sexual characteristics are related to reproduction, with the differences in the

pelvic morphology as an indicator; while the secondary sexual characteristics are

unrelated to reproduction, for example differences in body height and weight that are

influenced by genetic and hormonal differences (Nikitovic, 2018). At the end of

adolescence males tend to exhibit greater stature and weight, however the actual values

have great global variation (Ubelaker & DeGaglia, 2017).

Social phenomena such as the sexual division of labor (Ruff, 1987), resource

acquisition, or parental investment can significantly affect the levels of sexual

2
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A metric approach to sex estimation

dimorphism for different populations. Physically demanding activities that are practiced

asymmetrically between the sexes can exacerbate differences and increase sexual

dimorphism (Berner et al., 2017), whereas if practiced equally would reduce it.

The level of sexual dimorphism exhibited by a population is the consequence of

a collection of factors, such as the local ecological context (Wells, 2012), social

behaviour, and genetics (Betti, 2017), with different levels of expression. This results in

differences in dimorphism observed across different populations and contexts. The

effects of secular trends are also important and can have great influence in the accuracy

of sex estimation methods (Gonçalves, 2014; Langley & Jantz, 2020).

1.4. Methodological Approaches and Identified Skeletal Collections

Sex estimation of human skeletal remains involves metric approaches, visual or

morphological observation and molecular methods. The availability of identified and

documented human skeletal collections provided the necessary data for the

development and study of these methods. The Hamman-Todd collection in Cleveland,

Ohio and the Terry Collection in Washington, DC, were early collections that provided

fertile ground for this type of research (Ubelaker & DeGaglia, 2020).

However, methods developed from these collections, using North American

populations, were not representative of the global sexual dimorphism variation

encountered, with uncertainty regarding their accuracy when applied to different

populations. New and diverse documented collections were and are currently being

established in different parts of the world with local populations (Petaros et al., 2021;

Ubelaker, 2014).

In Portugal examples of this trend are notorious with the establishment of the

Coimbra Identified Skeletal Collection (CISC) (Cunha & Wasterlain, 2007), which is the

basis of this dissertation, made up of skeletal remains from individuals born between

1817 and 1924 and the 21st Century Identified Skeletal Collection also housed at the

University of Coimbra (Ferreira et al., 2014, 2021). These collections provide

information on individuals from a wide temporal range.
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1.4.1. Methods for sex estimation: state-of-the-art

Traditional morphological approaches for sex estimation focus on the pelvis

and the skull. As indicated above, because of the reproductive differences, the pelvis is

highly dimorphic, and as such does not require a very fine observation to separate males

from females. Similarly, the skull also possesses multiple morphological traits that are

sexually dimorphic. Research has shown that the pelvis can provide accuracies up to

95% in sexing individuals, with the skull achieving accuracies between 70% to 80%.

Methods for postcranial bones were developed for when the pelvis or skull are absent or

fragmented (Spradley & Jantz, 2011). Methods for other postcranial bones have also

been developed, such as the humerus (Ammer et al., 2019) and the clavicle (Rogers et

al., 2000).

Metric sex determination methods (Spradley, 2016) exist for almost every bone

of the human skeleton with a wide variety of statistical approaches, with the long bones

proving very effective, with multivariate models of the postcranial bones showing

accuracies of up to 94% (Spradley & Jantz, 2011). The availability of identified skeletal

collections and the ease of data acquisition make this a useful method for

anthropologists. One of the limitations of these methods is that they are usually

population-specific, that is, they work best for individuals of the reference populations

with accuracy declining for individuals from different contexts.

There are methods available for the pelvis (d’Oliveira Coelho & Curate, 2019),

the cranium (Gillet et al., 2020), teeth (Peckmann et al., 2016), the femur (Curate et al.,

2017; Curate et al., 2016; Cuzzullin et al., 2020), hand bones (DeSilva et al., 2014; El

Morsi & Al Hawary, 2013; Falsetti, 1995), foot bones (Navega et al., 2015; Silva, 1995)

and vertebrae (Gama et al., 2015). This is not an exhaustive list of the available methods,

with many more existing for a variety of populations.

The long bones of the upper body, the humerus, ulna and radius, have a great

record of providing accurate estimations of sex, with accuracies ranging from 87.4% to

97.5% (Albanese, 2013). Wasterlain (2000) using the vertical diameter of the head and

epicondylar breadth of the humerus shows the potential for high accuracy

4
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sex-estimation for this bone with subsequent works (Kranioti & Michalodimitrakis,

2009; Reddy & Doshi, 2017), showing accuracies up to 92.9% and thus providing more

evidence of the importance of other regions of the bone for the sexing of individuals.

The ulna has also been the subject of research regarding its potential for the estimation

of sex, with the caveat of the models being more population-specific than other bones,

but achieving accuracies up to 84.2% of correct classifications (Cowal & Pastor, 2008).

Finally, the research on the radius has shown good results, with achieved accuracies of

up to 93.4% under cross-validation and 90% when tested on a separate sample (Curate

et al., 2021).

The increased availability of data, along with ease of storage and free and open

source computational resources has had an invaluable effect on the development and

sharing of new methods (d’Oliveira Coelho et al., 2020; Klales, 2020; Santos et al., 2020).
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Materials and Methods

2. Materials and Methods

2.1. Materials

A main sample from the Coimbra Identified Skeletal Collection (CISC, Coimbra,

Portugal) was used to train and fit the models for sex estimation. Measurements of the

left humerus, ulna and radius were collected from 280 adult individuals (140 males and

140 females), of Portuguese descent, with ages ranging from 19 to 89 years old (mean =

47.43). The data from the left radii measurements was taken from the original dataset

from Neto (1957).

The same measurements were collected to form a test sample with 50 adult

individuals (22 males and 28 females) from the 21st Century Identified Skeletal

Collection (CEI/XXI, Laboratory of Forensic Anthropology, Coimbra, Portugal), with ages

ranging from 62 to 96 years old (mean = 82.42), and was used to assess and test the

methods developed.

2.1.1. Coimbra Identified Skeletal Collection

The Coimbra Identified Skeletal Collection (CISC), housed at the Department of

Life Sciences (DCV) of the University of Coimbra is composed of skeletal remains from

individuals exhumed from the Conchada cemetery in Coimbra that were born between

the years of 1817 and 1924 and died between the years of 1904 and 1938.

A total of 505 complete skeletons, 266 male and 239 female individuals, make

up the collection with 498 of the 505 individuals collected from the Conchada cemetery,

while 7 are from dissected cadavers. Nearly all individuals are of Portuguese descent,

while there are 9 with indicated places of birth in Africa, Spain, or Brazil. The 266 males

have ages ranging from 7 to 96 years old, with a mean age of 43.44, while the female

individuals’ ages range from 7 to 90 years old with a mean value of 46.55.

6
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A registry book accompanies the collection and has information pertaining to

each of the individuals, such as name, sex, age, cause of death, etc (Cunha & Wasterlain,

2007). The completeness of the skeletons and the available information make this a very

important collection in the context of forensic and biological anthropology.

2.1.2. 21st Century Identified Skeletal Collection

The 21st Century Identified Skeletal Collection, housed at the Laboratory of

Forensic Anthropology, Department of Life Sciences (DCV) of the University of Coimbra,

Portugal, is made up of skeletons from individuals from the late 20th/early 21st century.

These were exhumed from the Capuchos cemetery in Santarém, the result of a protocol

between the former Department of Anthropology, currently integrated within the DCV

and the local authorities responsible for the cemetery. The skeletons were unclaimed by

relatives and thus allowed to be donated to the University (Ferreira et al., 2014). As is

the case with other identified collections, a plethora of information is already available

about the individuals, such as sex, weight, osteometric data, etc (Ferreira et al., 2021).

Currently the collection is composed of 302 adult skeletons of both sexes, 162

female individuals with an age-at-death range between 28 and 101 years old, with a

mean of 81.19 and a standard deviation of 12.89. There are less males, 140 individuals,

and they have died younger, with age-at-death ranging from 25 to 96 years old, mean =

73.20 and sd = 15.61. All individuals died between 1982 and 2012 (Ferreira et al., 2021).

The individuals in the collection are quite old, providing ample opportunity for the

development and testing of methods in older adults (Ferreira et al., 2014).

Within the aforementioned collection, a subgroup of skeletons is being burned

under controlled conditions with the intent to improve the knowledge on heat induced

changes in human bones and teeth and the testing and developing of methods for

assessing the biological profile of burnt skeletal remains (Ferreira et al., 2021).
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Materials and Methods

2.2. Methods

2.2.1. Measurements

2.2.1.1. Humerus

A total of six measurements (taken in millimeters) were selected from the

humerus, including the maximum length (HML), vertical diameter of the head (HVDH),

horizontal diameter of the head (HVDH), minimum circumference (HMC), epicondylar

breadth (HEB) and condilar breadth (HCB). Measurement definitions and descriptions

are available in Table 1, and depicted in Figures 1.

Table 1 - Anthropological measurements of the humerus

Measurement Definition Reference

Maximum Length (HML)
The distance from the most superior point on the
head of the humerus to the most inferior point on
the trochlea. Instrument: osteometric board

(Langley et al.,
2016): 74
#45)

Vertical Diameter of the Head
(HVDH)

The distance between the most superior and
inferior points on the border of the articular
surface. Instrument: sliding calliper

(Langley et al.,
2016: 74 #47)

Horizontal Diameter of the Head
(HHDH)

The maximum breadth of the humeral head taken
in the anterior-posterior direction on the articular
surface. Instrument: sliding calliper

(Byrd &
Adams, 2003)
#42A)

Minimum Circumference (HMC)
The least circumference taken below the deltoid
tuberosity. Instrument: measuring tape

Epicondylar Breadth (HEB)

The distance from the most laterally protruding
point on the lateral epicondyle to the
corresponding projection on the medial
epicondyle. Instrument: sliding calliper

(Langley et al.,
2016: 74,
#46)

Condilar Breadth (HCB)
The breadth of the capitulum and trochlea at the
distal humerus. Instrument: sliding calliper

(Byrd and
Adams, 2003
#41A)

Figure 1- Osteometric dimensions of the humerus.
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2.2.1.2. Ulna

A total of six measurements (taken in millimeters) were selected from the ulna,

including the maximum length (UML), physiological length (UPL), minimum

circumference (UMC), olecranon breadth (UOB), breadth of the semilunar notch (UBSN)

and the distal articular width (UDAW). Measurement definitions and descriptions are

available in Table 2, and depicted in Figure 2.

Table 2 - Anthropological measurements of the ulna

Measurement Definition Reference

Maximum Length (UML)
The distance between the most proximal point on
the olecranon and the most distal point on the
styloid process. Instrument: osteometric board

(Langley et al.,
2016: 75,
#54)

Physiological Length (UPL)

The distance between the deepest point on the
articular surface of the coronoid process on the
guiding ridge and the most inferior point on the
distal articular surface of the ulna. Instrument:
spreading calliper

(Langley et al.,
2016: 76,
#57)

Minimum Circumference (UMC)
The least circumference near the distal end of the
bone. Instrument: measuring tape

(Langley et al.,
2016: 76,
#58)

Olecranon Breadth (UOB)
The maximum breadth of the olecranon process,
taken perpendicular to the longitudinal axis of the
semilunar notch. Instrument: sliding calliper

(Langley et al.,
2016: 76,
#59)

Breadth of the Semilunar Notch
(UBSN)

This is a measure of only the distal surface of the
semilunar notch (the base). Instrument: sliding
calliper

(Byrd and
Adams, 2003
#51C)

Distal Articular Width (UDAW)
The width of the distal articular surface taken in the
anterior position. Instrument: sliding calliper

Figure 2 - Osteometric measurements of the ulna.
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Materials and Methods

2.2.1.3. Radius

A total of five measurements (taken in millimeters) were selected from the

radius, including the maximum length (RML), minimum circumference of the distal

diaphysis (RMCDD), head circumference (RHC), neck circumference (RNC) and the

width of the distal epiphysis (RDEW). Measurement definitions and descriptions are

available in Table 3, and depicted in Figure 3.

Table 3 - Anthropological measurements of the radius

Measurement Definition Reference

Maximum Length (RML)
The distance from the most superior point on the
head of the radius to the apex of the styloid
process. Instrument: osteometric board

(Martin, 1928
in Neto, 1957)

Minimum Circumference in the
Distal Diaphysis (RMCDD)

The perimeter taken in the thinnest diaphyseal
region located at the distal part of the bone.
Instrument: measuring tape

Head Circumference (RHC)
Maximum perimeter of the radius head.
Instrument: measuring tape

Neck Circumference (RNC)
Minimum perimeter of the neck, taken in the most
strangled place of the neck. Instrument: measuring
tape

Distal Epiphysis Width (RDEW)
Maximum projective distance from the ulnar notch
to the lateral aspect of the styloid process.
Instrument: sliding calliper

Figure 3 - Osteometric measurements of the radius. (Adapted from Langley et al., 2016).
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A metric approach to sex estimation

2.2.2. Technical Error of Measurement

Inter and intra observer error were calculated using the Technical Error of

Measurement (TEM) (Perini et al., 2005). The process includes the collection of

measurements from the same 30 individuals at two different occasions, once at the

beginning and, the second time, at the end of data collection. The absolute TEM (error

expressed in millimeters) is calculated with the following equation:

Where is the summation of the differences between the 1st and 2nd

measurements of each individual raised to the second power for a given variable and

is the number of individuals whose measurements were taken. When applied to the

above equation we get the value, in millimeters, of the absolute error per measurement.

To obtain the Relative TEM, the error expressed as a percentage, we follow with a

second step:

where the previous calculated value of is divided by the Variable average

value , which we get by adding the values of the first and second measurements

performed for each individual and dividing it by two. This is repeated for each individual

and all the mean values are finally added and divided by the total number of individuals.

Only measurements with Relative TEM lower than 5% were considered for

analysis. For each analysis only individuals with a complete set of measurements were

considered.

2.2.3. Statistical Analysis

All standard descriptive statistics were calculated. Group means, standard

deviation (SD) and 95% confidence intervals (95% CI) for the mean of the continuous

variables. Normal distributions of the variables were ascertained with the values of

skewness and kurtosis and homoscedasticity was assessed by a Levene’s test.

Independent samples t-test were calculated to evaluate the null hypothesis that the
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Materials and Methods

means of every measurement in males and females were identical. The sexual

dimorphism index (SDI) was also estimated for both the training and testing samples,

following:

where and are the mean values of any given measurement for males and

females, respectively.

Sex estimation models were generated with a classical (logistic regression [LR])

and two machine-learning (support vector machines [SVM] and decision trees [C5.0])

algorithms. Logistic regression, a non-parametric classification method, models the

probability of two mutually exclusive classes of a dependent variable (Klales et al.,

2020). Unlike LDA (Linear discriminant analysis), an other widely used statistical

method for the generation of sex estimation functions, LR provides the p-value that is

first used to allocate an unkown individual and is second used to make a probabilistic

statement about the likelihood of a correct allocation for any given case (Bartholdy et al.,

2020; Nikita & Nikitas, 2020). A support vector machine (SVM) is a machine learning

algorithm used for two-group classification problems, that builds a model on a dataset

of labeled data and then categorizes new examples. For this work our categories are

either M (for male) or F (for female), and the support vector machine outputs a

hyperplane (decision boundary) between the two categories and then the new data falls

to one of the two sides of the boundary (Kuhn & Johnson, 2013). The C5.0 algorithm

was used to generate decision trees and provide sectioning points for the sex estimation

for each variable. This algorithm builds and improves on the widely used C4.5 (Quinlan,

1993). Like C4.5 it has a tree-based version and shares much of its core functionality

with its predecessor. However, the improvements in reduced error rates, smaller and

less complex trees and lower execution times (up to 6x faster for this particular case)

made it the better option (Kuhn & Johnson, 2013).

Finally all models were tested with a ten-fold cross-validation method. It

partitions the training data into 10 equal-sized chunks, then trains 10 distinct models.

Each model is trained on the union of 9 chunks of the data, and tested on the held out

chunk. The average performance of these 10 classifiers stands in as the presumed

accuracy for the full model (Skiena, 2017).
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A metric approach to sex estimation

The goodness of fit of the provisional and cross-validated models, as well as the

testing sample, was evaluated through the overall accuracy (a measure of total

agreement between the real and the predicted sex), the proportion of females and males

properly grouped and Cohen’s Kappa (Larose, 2015).

All statistical analyses were performed with the free and open source R

programming language (R Core Team & Others, 2013) in the R Studio environment

(RStudio Team, 2020) for its ease of use and impact on reproducible research (Glennie,

2021). A combination of R packages were used but most importantly the caret package

along with all its utilities (Kuhn, 2008; Kuhn & Johnson, 2013).
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A metric approach to sex estimation

3. Results

3.1. Technical Error of Measurement

3.1.1. Intra-observer error

Intra-observer error was assessed with the collection of repeated

measurements from the left humerus and left ulna of the same 30 individuals from the

Coimbra Identified Skeletal Collection at two different occasions, once at the beginning

of data collection and, the second time, approximately 4 weeks after. Error

measurements are indicated in Table 4. Full measurement data is available in Tables A1

and A2 of the annexes.

For the humerus measurements, TEM was the lowest for the vertical head

diameter (0.22 mm) and the highest for the maximum length (1.36 mm), while the

Relative TEM was never above 1.6%, providing confidence in the measurements

collected. Ulnar measurements had the lowest TEM for the distal articular width (close

to zero) and the highest for maximum length (1.41 mm), while the Relative TEM was

kept below 3.5%. All values for the Relative TEM are below the 5% proving good

reproducibility.

Table 4 - Intra observer error

Measurement TEM (mm) VAV Relative TEM (%)

Maximum Length (HML) 1.36 306.18 0.44

Vertical Diameter of the Head (HVDH) 0.22 42.04 0.53

Horizontal Diameter of the Head (HHDH) 0.56 38.98 1.44

Minimum Circumference (HMC) 0.93 56.26 1.57

Epicondylar Breadth (HEB) 0.22 57.07 0.38

Condilar Breadth (HCB) 0.56 41.43 1.34

Maximum Length (UML) 1.41 241.22 0.58

Physiological Length (UPL) 0.32 213.46 0.15

Minimum Circumference (UMC) 1.16 33.82 3.44

Olecranon Breadth (UOB) 0.32 23.37 1.38

Breadth of the Semilunar Notch (UBSN) 0.59 22.46 2.64

Distal Articular Width (UDAW) <0.01 15.53 <0.01

Legend: TEM = technical error of measurement, VAV = variable average value, rTEM = relative technical
error of measurement
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3.1.2. Inter-observer error

Inter-observer error was assessed with a comparison between measurement

data from the left radius, collected alongside the above mentioned humerus and ulna

data, of 30 individuals of the Coimbra Identified Skeletal Collection and the same

individuals from the data collected by Neto (1957). The lowest TEM was observed for

the neck circumference (0.13 mm) and the highest for head circumference (1.42 mm),

while Relative TEM values were all below 4.2%. RDEW is taken in a very sensible

location of the radius and wear resulting from the handling of the bones might be the

reason for the higher relative error observed.

Error measurements are indicated in Table 5. Full measurement data is

available in Tables B1 and B2 of the annexes.

Table 5 - Inter observer error

Measurement TEM (mm) VAV Relative TEM (%)

Maximum Length (RML) 1.23 224.64 0.56

Minimum Circumference in
the Distal Diaphysis
(RMCDD)

0.39 37.48 1.03

Head Circumference (RHC) 1.42 64.07 2.22

Neck Circumference (RNC) 0.13 43.03 0.30

Distal Epiphysis Width
(RDEW)

1.28 30.92 4.13

Legend: TEM = technical error of measurement, VAV = variable average value, rTEM = relative technical
error of measurement
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A metric approach to sex estimation

3.2. Descriptive Statistics and Sectioning Points

3.2.1. Humerus

All metric variables are normally distributed. Summary descriptive statistics for

the training (Coimbra Identified Skeletal Collection) and test (21st Century Identified

Skeletal Collection) samples are shown in Tables 6 and 7. Measurements from 132 left

humerus (121 female and 111 male) were selected from the training samples and 35

(19 female and 16 male) from the holdout sample. An index of sexual dimorphism (SDI)

is also shown, varying between 7.9 (maximum length) and 14.6 (condilar breadth) in

the CISC sample, and between 6.3 (maximum length) and 11.2 (minimum

circumference) in the CEI/XXI sample.

Table 6 - Descriptive statistics for the left humerus in both sexes; Coimbra Identified Skeletal Collection
(CISC)

Measurement
Females Males

SDI t-test sig.
Mean SD 95%CI N Mean SD 95%CI N

HML 290.4 16.4 281.5-293.4 121 315.4 17.8 312.1-318.8 111 7.9 -11.09 <0.001

HMC 54.5 3.7 53.8-55.2 121 63.4 3.9 62.7-64.2 111 14.0 -17.76 <0.001

HVDH 39.1 2.1 38.7-39.5 121 45.3 2.3 44.8-45.7 111 13.7 -21.0 <0.001

HHDH 35.9 1.9 35.5-36.2 121 41.7 2.1 41.3-42.1 111 13.9 -22.6 <0.001

HEB 52.5 2.1 51.9-53.0 121 61.4 3.3 60.8-62.1 111 14.5 -21.0 <0.001

HCB 38.0 3.2 37.7-38.4 121 44.5 2.6 44.0-45.0 111 14.6 -20.7 <0.001

Legend: SD = standard deviation, 95%CI = confidence intervals of the mean at 95%, N = number of individuals, SDI = sexual
dimorphism index

A sectioning point for each metric variable was computed with a decision-tree

algorithm (C5.0). Performance for all sectioning points are summarized in Table 8.

Accuracy under cross-validation varies from 79.3% to 94.4%, while bias, or systematic

error (the absolute difference between the percentage of correctly classified females

and males), varies from 0.4% to 5.9%. The variables with the best overall performance

under cross validation were the horizontal diameter of the head (accuracy: 94.4%, bias:
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2.2%, kappa: 0.887, sectioning point: 38.8 mm) and the condilar breadth (accuracy:

94.4%, bias: 0.4%, kappa: 0.888, sectioning point: 40.7 mm).

Table 7 - Descriptive statistics for the left humerus in both sexes; 21st Century Identified Skeletal
Collection (CEI/XXI)

Measurement
Females Males

SDI t-test sig.
Mean SD 95%CI N Mean SD 95%CI N

HML 291.7 17.2 283.4-300.0 19 311.3 14.6 303.5-319.1 16 6.3 -3.6 <0.001

HMC 56.9 4.3 54.8-59.0 19 64.1 4.2 61.8-66.3 16 11.2 -5.0 <0.001

HVDH 41.2 2.8 39.8-42.6 19 45.5 2.7 44.1-46.9 16 9.5 -4.6 <0.001

HHDH 38.0 2.7 36.7-39.3 19 42.3 2.1 41.2-43.4 16 10.2 -5.3 <0.001

HEB 55.1 4.4 53.0-57.2 19 61.0 4.5 58.6-63.4 16 9.7 -3.9 <0.001

HCB 39.2 2.2 38.1-40.2 19 44.0 2.3 42.8-45.3 16 10.9 -6.3 <0.001

Legend: SD = standard deviation, 95%CI = confidence intervals of the mean at 95%, N = number of individuals, SDI =
sexual dimorphism index

In the test sample, overall accuracy ranged from 68.4% to 77.1%, with bias

ranging from 7.6% to 30.6%. The best predictors of sex for the test sample, accounting

for accuracy and bias, were the condilar breadth (accuracy: 77.1%, bias: 7.6%, kappa:

0.544, sectioning point: 40.7 mm) and epicondylar breadth (accuracy: 77.1%, bias:

19.1%, kappa: 0.548, sectioning point: 56.7 mm).

Table 8 - Sectioning points and goodness of fit for the humeral measurements

Meas.
Sectioning
Point

Training sample Cross Validation Test Sample

Accuracy Females Males Kappa Accuracy Females Males Kappa Accuracy Females Males Kappa

HML 301.5 0.815 0.820 0.810 0.629 0.793 0.793 0.784 0.587 0.686 0.579 0.813 0.382

HMDC 58.0 0.888 0.860 0.919 0.776 0.888 0.860 0.919 0.776 0.771 0.632 0.938 0.553

HVDH 41.7 0.935 0.926 0.946 0.871 0.931 0.926 0.937 0.861 0.714 0.579 0.875 0.441

HHDH 38.8 0.948 0.959 0.937 0.896 0.944 0.959 0.937 0.887 0.771 0.632 0.938 0.553

HEB 56.7 0.931 0.926 0.937 0.862 0.931 0.926 0.937 0.862 0.771 0.684 0.875 0.548

HCB 40.7 0.948 0.950 0.946 0.896 0.944 0.942 0.946 0.888 0.771 0.737 0.813 0.544

Legend: Accuracy = proportion of correctly assigned individuals, Females = proportion of correct assigned females; Males
= proportion of correctly assigned individuals, Kappa = Cohen’s Kappa
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3.2.2. UIna

Complete measurements of the left ulna were taken from a total of 256

individuals from the Coimbra Identified Skeletal Collection, 129 female and 127 male.

From the holdout samples 38 left ulnas were selected, 20 female and 18 male.

All metric variables are normally distributed. Descriptive statistics for both

sexes along with the sexual dimorphism index (SDI) and independent t-test results are

shown in Table 9. SDI ranges from 10.0 to 16.8 (maximum length and breadth of the

semilunar notch, respectively).

Table 9 - Descriptive statistics for the ulna in both sexes; Coimbra Identified Skeletal Collection

Measurement
Females Males

SDI t-test sig.
Mean SD 95%CI N Mean SD 95%CI N

UML 229.7 14.7 227.2-232.3 129 255.2 13.6 252.8-257.6 127 10.0 -14.4 <0.001

UPL 202.5 10.4 200.7-204.3 129 225.3 13.4 222.9-227.6 127 10.1 -15.2 <0.001

UMC 31.5 2.9 31.0-32.0 129 36.5 3.4 35.9-37.1 127 13.7 -12.6 <0.001

UOB 21.2 1.8 20.8-21.5 129 24.9 1.9 24.6-25.2 127 14.9 -16.1 <0.001

UBSN 19.8 1.6 19.6-20.1 129 23.8 2.0 23.4-24.1 127 16.8 -17.0 <0.001

UDAW 14.3 1.4 14.1-14.6 129 16.7 1.6 16.4-16.9 127 14.4 -12.3 <0.001

Legend: SD = standard deviation, 95%CI = confidence intervals of the mean at 95%, N = number of
individuals, SDI = sexual dimorphism index

A sectioning point for each metric variable was computed with a decision-tree

algorithm (C5.0). Performance for all sectioning points are summarized in Table 11.

Accuracy under cross-validation varies from 75.4% to 87.1%, while bias, or systematic

error (the absolute difference between the percentage of correctly classified females

and males), varies from 0.6 to 34.5%. The variables with the best overall performance

under cross validation were the breadth of the semilunar notch (accuracy: 87.1%, bias:

0.6%%, kappa: 0.751, sectioning point: 21.4 mm) and the olecranon breadth (accuracy:

85.9%, bias: 6.4%, kappa: 0.719, sectioning point: 23.4 mm).
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Table 10 - Descriptive statistics for the ulna in both sexes; 21st Century Identified Skeletal Collection

Measurement
Females Males

SDI t-test sig.
Mean SD 95%CI N Mean SD 95%CI N

UML 233.0 14.0 226.4-239.5 20 254.3 16.1 246.3-262.4 18 8.4 -4.34 <0.001

UPL 206.4 13.0 200.3-212.5 20 223.8 15.6 216.0-231.5 18 7.8 -3.7 <0.001

UMC 32.4 2.7 31.1-33.7 20 37.1 2.5 35.9-38.3 18 12.7 -5.6 <0.001

UOB 21.7 2.0 20.8-22.7 20 25.3 1.4 24.6-26.0 18 14.2 -6.5 <0.001

UBSN 20.7 1.8 19.9-21.6 20 24.5 1.8 23.6-25.4 18 15.5 -6.4 <0.001

UDAW 15.5 2.0 14.6-16.4 20 18.0 1.3 17.4-18.7 18 13.9 -4.7 <0.001

Legend: SD = standard deviation, 95%CI = confidence intervals of the mean at 95%, N = number of individuals, SDI =
sexual dimorphism index

In the test sample, overall accuracy ranged from 60.5% to 79.0%, with bias

ranging from 7.6% to 75%. The best predictors of sex for the test sample, accounting for

accuracy and bias, were the maximum length (accuracy: 77.1%, bias: 7.6%, kappa:

0.544, sectioning point: 246.5 mm) and physiological length (accuracy: 76.3%, bias:

18.3%, kappa: 0.521, sectioning point: 218.0 mm). By far the worst indicator in the test

sample was the distal articular width with an accuracy of 60.5% with a bias of 75%.

Table 11 - Sectioning points and goodness of fit for the ulna

Meas.
Sectioning
Point

Training sample Cross Validation Test Sample

Accuracy Females Males Kappa Accuracy Females Males Kappa Accuracy Females Males Kappa

UML 246.5 0.859 0.954 0.764 0.718 0.852 0.938 0.764 0.704 0.771 0.737 0.813 0.544

UPL 218.0 0.836 0.946 0.724 0.671 0.824 0.845 0.803 0.648 0.763 0.850 0.667 0.521

UMC 32.5 0.801 0.690 0.913 0.602 0.801 0.690 0.913 0.602 0.737 0.550 0.944 0.484

UOB 23.4 0.867 0.853 0.882 0.734 0.859 0.891 0.827 0.719 0.790 0.650 0.944 0.585

UBSN 21.4 0.879 0.868 0.890 0.758 0.871 0.868 0.874 0.741 0.790 0.650 0.944 0.585

UDAW 14.2 0.750 0.535 0.969 0.502 0.754 0.581 0.929 0.510 0.605 0.250 1.000 0.240

Legend: Accuracy = proportion of correctly assigned individuals, Females = proportion of correct assigned females; Males = proportion of correctly
assigned individuals, Kappa = Cohen’s Kappa
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3.2.3. Radius

Complete measurements of the left radius were selected from a total of 231

individuals from the Coimbra Identified Skeletal Collection, 106 female and 125 male,

and 34 (20 female and 14 male) from the 21st Century Identified Collection .

All metric variables are normally distributed. Descriptive statistics for both

sexes along with the sexual dimorphism index (SDI) and independent t-test results are

shown in Tables 12 and 13. SDI ranges from 11.0 to 16.3 (maximum length and

minimum circumference of the distal diaphysis, respectively).

Table 12  - Descriptive statistics for the radius in both sexes; Coimbra Identified Skeletal Collection

Measuremen
t

Females Males
SDI t-test sig.

Mean SD 95%CI N Mean SD 95%CI N

RML 210.2 10.8 208.2-212.3 106 236.3 12.8 234.0-238.5 125 11.0 -16.8 <0.001

RMCDD 34.0 2.8 33.5-34.1 106 40.6 3.0 40.0-41.1 125 16.3 -17.4 <0.001

RHC 59.3 3.8 58.6-60.0 106 69.4 4.3 68.6-70.2 125 14.6 -19.1 <0.001

RNC 39.7 3.6 39.0-40.4 106 46.0 3.9 45.4-46.7 125 13.7 -12.9 <0.001

RDEW 28.8 1.5 28.5-29.1 106 33.4 2.1 33.0-33.8 125 13.8 -19.4 <0.001

Legend: SD = standard deviation, 95%CI = confidence intervals of the mean at 95%, N = number of individuals, SDI =
sexual dimorphism index

Table 13 - Descriptive statistics for the radius in both sexes; 21st Century Identified Skeletal Collection

Measurement
Females Males

SDI t-test sig.
Mean SD 95%CI N Mean SD 95%CI N

RML 222.4 27.4 209.6-235.3 20 233.8 14.8 225.2-242.3 14 4.9 -1.5 <0.01

RMCDD 36.0 3.1 34.5-37.4 20 42.2 3.0 40.5-43.9 14 14.7 -5.9 <0.001

RHC 60.3 3.5 58.7-62.0 20 68.3 4.7 65.6-71.0 14 11.7 -5.4 <0.001

RNC 40.5 3.5 38.9-42.1 20 46.9 3.1 45.2-48.7 14 13.6 -5.7 <0.001

RDEW 29.5 1.9 28.6-30.4 20 33.3 1.9 32.3-34.4 14 11.4 -5.8 <0.001

Legend: SD = standard deviation, 95%CI = confidence intervals of the mean at 95%, N = number of individuals, SDI = sexual
dimorphism index
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A sectioning point for each metric variable was computed with a decision-tree

algorithm (C5.0). Performance for all sectioning points are summarized in Table 14.

Accuracy under cross-validation varies from 80.5% to 90.5%%, while bias, or systematic

error (the absolute difference between the percentage of correctly classified females

and males), varies from 1 to 11.6%%. The variables with the best overall performance

under cross validation were the maximum length (accuracy: 88.2%, bias: 1%, kappa:

0.703, sectioning point: 221.5 mm) and the head circumference (accuracy: 90.5%, bias:

3.7%, kappa: 0.809, sectioning point: 64.0 mm).

In the test sample, overall accuracy ranged from 70.6% to 82.4%, with bias

ranging from 5.7% to 32.9%. The best predictors of sex for the test sample, accounting

for accuracy and bias, were the head circumference (accuracy: 82.4%, bias: 5.7%, kappa:

0.643, sectioning point: 64 mm), nech circumference (accuracy: 82.4%, bias: 17.9%,

kappa: 0.651, sectioning point: 43 mm) and distal epypsis width (accuracy: 82.4%, bias:

17.9%, kappa: 0.651, sectioning point: 30.5 mm).

Table 14 - Sectioning points and goodness of fit for the radius

Meas.
Sectioning
Point

Training sample Cross Validation Test Sample

Accuracy Females Males Kappa Accuracy Females Males Kappa Accuracy Females Males Kappa

RML 221.5 0.883 0.868 0.896 0.765 0.852 0.858 0.848 0.703 0.706 0.600 0.857 0.430

RMDDC 36.0 0.887 0.859 0.912 0.773 0.887 0.858 0.912 0.773 0.735 0.600 0.929 0.492

RHC 64.0 0.905 0.925 0.888 0.809 0.905 0.925 0.888 0.809 0.824 0.800 0.857 0.643

RNC 43.0 0.814 0.859 0.776 0.629 0.805 0.868 0.752 0.613 0.824 0.750 0.929 0.651

RDEW 30.5 0.909 0.877 0.936 0.816 0.904 0.868 0.936 0.806 0.824 0.750 0.929 0.651

Legend: Accuracy = proportion of correctly assigned individuals, Females = proportion of correct assigned females; Males
= proportion of correctly assigned individuals, Kappa = Cohen’s Kappa
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3.3. Multivariate models

Multivariate models for sex estimation were generated with logistic regression

(LR) and support vector machines (SVM) (Table 15). The goodness of fit for the

suggested models are shown in Tables 16 and 17. Logistic regression models's accuracy

ranges from 84.4% to 96.7% (bias: 0.3% to 5.6%) for cross validation and 74.3% to 86.4

(bias: 12.9% to 35.9%) in the test sample, while the SVM models yield accuracies

ranging from 90.2% to 96.2% (bias 0.3% to 13.4%) under cross-validation and 77.1% to

86.4% (bias: 12.9 to 30.8%) in the test sample.

Table 15 - Logistic Regression (LR) classification functions for the different multivariate models

Model Classification function

LR_H1

LR_U1

LR_U2

LR_U3

LR_R1

LR_R2

LR_R3

LR_HU1

LR_HR1

LR_HR2

LR_HR3

LR_UR1

LR_UR2

LR_HUR1
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Results

For the humerus, a single model was selected using the horizontal diameter of

the head (HHDH) and the epicondylar breadth (HEB) with the LR model yielding an

accuracy of 95.2% (bias of 2.2%) under cross validation, opposingly it was the least

performant model in the test sample with an accuracy under cross validation of 74.3%

and bias of 35.9%. The corresponding SVM model had an accuracy of 96.1% (bias 4.6%)

under cross-validation and 77.1% (bias 30.6%) in the test sample.

Table 16 - Logistic Regression (LR) classification accuracy with the different multivariate models

Model Training sample Cross Validation Test Sample

Accuracy Females Males Kappa Accuracy Females Males Kappa Accuracy Females Males Kappa

LR_H1 0.957 0.950 0.964 0.914 0.952 0.942 0.964 0.905 0.743 0.579 0.938 0.499

LR_U1 0.895 0.923 0.866 0.789 0.894 0.922 0.866 0.789 0.816 0.700 0.944 0.636

LR_U2 0.910 0.923 0.898 0.820 0.902 0.922 0.882 0.804 0.816 0.700 0.944 0.636

LR_U3 0.910 0.923 0.898 0.820 0.902 0.922 0.882 0.804 0.790 0.650 0.944 0.585

LR_R1 0.918 0.906 0.928 0.834 0.926 0.925 0.928 0.852 0.853 0.800 0.929 0.706

LR_R2 0.918 0.925 0.912 0.835 0.922 0.925 0.920 0.843 0.853 0.800 0.929 0.706

LR_R3 0.922 0.915 0.928 0.843 0.922 0.915 0.928 0.842 0.853 0.800 0.929 0.706

LR_HU1 0.968 0.966 0.969 0.935 0.967 0.966 0.969 0.934 0.818 0.692 1.000 0.648

LR_HR1 0.957 0.955 0.958 0.913 0.962 0.955 0.969 0.924 0.818 0.692 1.000 0.648

LR_HR2 0.962 0.966 0.958 0.924 0.957 0.955 0.958 0.914 0.818 0.692 1.000 0.648

LR_HR3 0.951 0.955 0.948 0.903 0.951 0.955 0.948 0.902 0.818 0.692 1.000 0.648

LR_UR1 0.930 0.932 0.927 0.859 0.929 0.933 0.927 0.858 0.818 0.692 1.000 0.648

LR_UR2 0.930 0.933 0.927 0.859 0.929 0.921 0.938 0.857 0.864 0.769 1.000 0.732

LR_HUR1 0.962 0.955 0.969 0.924 0.956 0.955 0.958 0.913 0.818 0.692 1.000 0.648

Legend: Accuracy = proportion of correctly assigned individuals, Females = proportion of correct assigned females;
Males = proportion of correctly assigned individuals, Kappa = Cohen’s Kappa

Three models were selected for the ulna. LR_U1 used the breadth of the

semilunar notch (UBSN) along with the maximum length (UML) for an accuracy of

89.4% and bias of 5.6% under cross validation. Both the second and third models

included the aforementioned measurements with the addition of the olecranon breadth
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(UOB) and minimum circumference (UMC), respectively. Both had accuracies under

cross-validation of 90.2% and bias of 4%. Testing in the holdout sample revealed

accuracies of 81.6% for all the models, however bias was 24.4% for the first model and

14.4% for the others.

SVM models for the ulna show accuracies from 90.2% to 91.4% (bias: 3.2% to

13.4%), while for the holdout sample accuracies yield values from 79% to 84.2% with

bias ranging from 19.4% to 29.4%.

For the radius three models were selected with very similar accuracies both

under cross-validation and on the holdout sample. LR_R1 made use of the

measurements of the head circumference (RHC) and the minimum distal diaphysis

circumference (RMDDC) and showed an accuracy of 92.6% and bias of 0.3% under

cross-validation. For LR_R2 rmddc was replaced with the distal epiphysis width (RDEW)

and had an accuracy of 92% and bias 0.5% under cross-validation. The final model

included rmddc and rdew for an accuracy under cross-validation of 92.8% and bias of

1.3%. All three models revealed accuracies of 85.3% and bias of 12.9% when tested on

the holdout sample. SVM models had very similar accuracies under cross validation and

on the test sample.

A single model incorporating both humerus and ulna measurements was

selected with the horizontal diameter of the head of the humerus (HHDH) and the

breadth of the semilunar notch of the ulna. Accuracies were 96.2% (bias: 1.4%) and

81.8% (bias: 30,8%) for cross-validation and the holdout sample, respectively. The SVM

model yielded very similar accuracies. LR models involving measurements from the

humerus and radius yielded accuracies ranging from 95.6% to 96.2% (bias: 0.3% to

1.4%) in cross-validation and 81.8% (bias: 30.8%) on the test sample. SVM counterparts

had the same accuracy and bias values.

All (LR and SVM) ulna and radius joint models had an accuracy of 92.9% (bias:

0.6% and 1.7%) under cross-validation and 81.8% (bias: 30.8%) and 86.4% (bias:

23.1%) while tested on the holdout sample.

Finally, a single model including measurements from all bones was designed,

HHDH along with UBSN and RDEW were selected. Accuracy under cross-validation for

the LR model was 95.6 (0.3%) and 96.2% (bias: 0.8%) for the SVM model. Both methods

performed equally on the test sample, accuracy: 81.8% and bias 30.8%.
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Table 17 - Support vector machine (SVM)  classification accuracy with the different multivariate
models

Model Training sample Cross Validation Test Sample

Accuracy Females Males Kappa Accuracy Females Males Kappa Accuracy Females Males Kappa

SVM_H1 0.961 0.984 0.937 0.922 0.961 0.983 0.937 0.921 0.771 0.632 0.938 0.553

SVM_U1 0.898 0.961 0.835 0.797 0.902 0.969 0.835 0.804 0.842 0.750 0.944 0.689

SVM_U2 0.914 0.930 0.898 0.828 0.914 0.930 0.898 0.828 0.816 0.700 0.944 0.636

SVM_U3 0.906 0.923 0.890 0.812 0.906 0.922 0.890 0.812 0.790 0.650 0.944 0.585

SVM_R1 0.926 0.925 0.928 0.852 0.931 0.934 0.928 0.861 0.853 0.800 0.929 0.706

SVM_R2 0.913 0.934 0.896 0.826 0.922 0.934 0.912 0.843 0.853 0.800 0.929 0.706

SVM_R3 0.922 0.915 0.928 0.843 0.922 0.915 0.928 0.842 0.853 0.800 0.929 0.706

SVM_HU1 0.962 0.955 0.969 0.924 0.962 0.955 0.969 0.923 0.818 0.692 1.000 0.648

SVM_HR1 0.957 0.955 0.958 0.913 0.956 0.955 0.958 0.913 0.818 0.692 1.000 0.648

SVM_HR2 0.962 0.966 0.958 0.924 0.962 0.966 0.958 0.925 0.818 0.692 1.000 0.648

SVM_HR3 0.957 0.966 0.948 0.914 0.957 0.966 0.948 0.913 0.818 0.692 1.000 0.648

SVM_UR1 0.930 0.921 0.938 0.859 0.929 0.921 0.928 0.857 0.818 0.692 1.000 0.648

SVM_UR2 0.930 0.933 0.927 0.859 0.929 0.921 0.938 0.857 0.864 0.769 1.000 0.732

SVM_HUR1 0.962 0.966 0.958 0.924 0.962 0.966 0.958 0.924 0.818 0.692 1.000 0.648

Legend: Accuracy = proportion of correctly assigned individuals, Females = proportion of correct assigned females;
Males = proportion of correctly assigned individuals, Kappa = Cohen’s Kappa
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4. Discussion

Sex estimation of human skeletal remains is at the foreground of both

archeological and forensic contexts. Although the pelvis is the most dimorphic region of

the skeleton (Spradley & Jantz, 2011), most times human remains are incomplete or

fragmented and other parts of the skeleton must be employed to assess biological sex.

Following the pelvis, long bones and the cranium also provide avenues for accurate sex

determination. The humerus, ulna and radius have been used individually or in tandem

to develop methods for sex estimation with very good results (Albanese, 2013; Bidmos

& Mazengenya, 2021; Cowal & Pastor, 2008; Curate et al., 2021; Lee et al., 2015; Reddy &

Doshi, 2017; Wasterlain, 2000).

For this particular work, the humerus, ulna and radius were selected and a set

of univariate and multivariate models were designed employing two Portuguese

reference samples.

Firstly, let's look at the two reference samples and the differences between the

sexes are evident across the complete set of measurements. The sexual dimorphism

index (SDI) is smaller in the 21st Century Identified Skeletal Collection (Ferreira et al.,

2014, 2021), the test sample, with the exception of the radial neck circumference (RNC)

that has a similar value. While SDI provides an incomplete measure of sexual

dimorphism, because it is based on sample means and does not take into account their

variance, it is important to note because while mean values for the males appear to

maintain similar levels between the samples, the trend for female individuals in the

CEI/XXI shows a slight increase in most metric dimensions of all bones. The 21st

Century Identified Skeletal Collection is chronologically a later sample and we must take

into account the efects of secular trends and its effects on the metric variation of long

bones and the effectiveness of sex estimation models (Gonçalves, 2014; Langley & Jantz,

2020). Looking at the mean ages of the samples we observe that the testing sample,

CEI/XXI, has a mean age of 82.42 while the training sample shows a mean age of 47.43.

This is a notable difference, however looking into the influence of age on the values for

the measurements via statistical correlation tests, I found no evidence that the age of the

individual had a significant influence in the values obtained for each measurement.
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Univariate models for the humerus show good accuracy under cross-validation

(between 79.3% and 94.4%) and low bias (0.4% to 5.9%), not unexpectedly the most

accurate measurements were from the head and distal epiphysis (Wasterlain, 2000).

Sectioning points for the ulna had accuracies under 87.1% and a very high bias for most

measurements, contrary to both the humerus' and radius' univariate models where

misclassifications alternated between males and females depending on the

measurement. Finally the radius models yielded high accuracies (80.5% to 90.5%) and

low bias (1% to 11.6%) under cross-validation, values in line with recent research on

the same reference sample (Curate et al., 2021). Looking now at how all the multivariate

models performed on the holdout sample we start to observe the high values of bias (up

to 75%) that result from the excess of misclassified females in all but one of variables of

the ulna (UPL). This pattern follows previously observed results in tarsal and femoral

dimensions of Portuguese samples, in which systematic error was mostly a function of

misclassified females - and might reflect changes caused by secular changes in the long

bones of the upper limbs in the CISC and CEI/XXI reference samples (Curate et al., 2017;

Navega et al., 2015). Now, secular trends in sexual dimorphism are not the only factor

associated with changes in bone dimensions, genetics, hormonal status, nutritional

disorders, and socioeconomic status, among others, can also play a large role (Albanese,

2010).

The best sectioning points for the humerus were the horizontal diameter of the

head (38.8mm) along with condylar breadth (40.7mm) with similar accuracies both

under cross-validation and on the test sample. The breadth of the semilunar notch

(21.4mm) was the most accurate variable for the univariate models of the ulna and the

head circumference of the radius yielded the best results for the third bone analysed in

this work. As indicated above, the only variable with a relative poor performance was

the distal articular width of the ulna.

Multivariable models yielded, expectedly, better accuracy and lower bias than

the univariate models. Comparing the LR and SVM models, the performance metrics are

very similar - with SVM-based models performing marginally better with higher values

of accuracy and kappa, but a slight increase in bias.

The models were selected through stepwise selection, meaning that each

variable was added or removed as it had a positive or negative (improving or not) effect

on the final model. In the case of the single model for the humerus, any additional
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Discussion

variable to those selected did not improve the outcomes and thus there was no need to

add complexity for a poorer outcome. Moving into the ulna and the radius we have three

models for each bone, in which a new variable is added or replaced on the previous

model. This arrangement of different variables bolsters the models to respond and be

applicable in contexts where skeletal remains or individual bones are incomplete or

damaged.

Models for each individual bone performed relatively well under

cross-validation with accuracies ranging from 89.4% to 95.2%, with the models for the

ulna yielding the lowest accuracy results. The highest performing model was the one

selected for the humerus with an accuracy under cross-validation of 95.2% but,

curiously, this was also the worst performing model when tested on the holdout sample

with an accuracy of 74.3% (bias: 35.9%). The models for the radius performed the best

on the test sample out of all individual models.

Going into models mixing variables from different bones, the highest

performers under cross-validation were HU1 (humerus and ulna variables), HR1

(humerus and radius variables) and HR2 and HUR1 (humerus, ulna and radius

variables) for both Logistic Regression and Support Vector Machines models. The

differences in cross-validated performance between the models is not too significant,

but looking at the accuracies when tested on the holdout sample, UR2, which was the

least accurate under cross-validation (accuracy: 92.9%), shows the highest accuracy

(86.4%). Results for models performance were as anticipated from results from similar

works from the same skeletal regions (Albanese, 2013; Curate et al., 2021).
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Conclusion

5. Conclusion

The goals of this work were to develop univariate and multivariate models for

sex estimation relying on mesurements from the long bones of the upper limbs, also

look into how dimorphic these measurements are, and finally how these models

perform when used to estimate the sex of a diferent population to that enlisted on the

development of said models along with possible effects of secular trends on its uses. I

feel those objectives were accomplished, with some important takeaways.

Not unlike other models, the performance under cross validation was quite

good. Correct allocations of >90% are very important when estimating sex and

developing biological profiles in forensic or archaeological settings. Looking at the

performance when used on the test sample we start to observe some problems that

must be taken into account when using the final equations. As we look at the values of

the SDI for the two reference samples, the effects of secular trends start to be visible. On

the latter sample (CEI/XXI ) the values of the index for sexual dimorphism decrease,

with mostly the female individuals being “bigger”. This translates in the reduced

accuracy and very high bias for the models with the allocation of female individuals

becoming very low in comparison to the male counterparts.

The present models are not meant to replace existing and very accurate (John

Albanese, 2013) models, but to provide alternatives to be used in different contexts,

such as the case of commingled, incomplete, and/or fragmented remains, when needed.

As stated by Curate et al. (2021), a potential problem with the presented models refers

to the chronology of the training sample (late 19th-early 20th centuries), warranting

cauting, as is observable by accuracy of allocations in the test sample, in estimating sex

in recently deceased individuals.

As a final remark, and as patent in Albanese’s (2013) work, the creation of

bigger and more generic and representative samples will wield better and more robust

results where sex estimation is concerned.

As always statistical models are approximations of reality based on the data

used to develop them and caution is always advised with their use.
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Table A1 - Data collected on the first measurement to calculate intra-observer error

id hml hmc hvdh hhdh hcb heb uml upl umc ubsn uob udaw

114 300.0 61.5 43.3 40.3 42.7 59.2 244.0 217.0 33.0 24.2 23.2 16.5

177 278.0 46.0 33.4 30.4 33.3 47.2 214.0 189.0 27.0 15.9 18.9 13.9

179 322.5 62.0 46.3 42.5 44.4 60.8 247.5 219.0 35.0 24.1 24.8 18.3

180 285.0 55.5 38.4 33.5 38.4 54.2 235.5 211.0 35.0 20.8 19.4 15.7

182 290.5 55.0 40.1 36.1 40.1 54.8 231.5 205.0 32.5 20.9 22.7 15.4

183 317.5 70.0 45.1 40.8 46.0 63.1 263.5 230.5 42.0 25.3 26.5 19.3

184 309.5 65.5 47.0 43.4 44.7 59.7 246.5 217.0 40.0 25.7 25.1 16.4

190 310.5 54.5 41.8 38.4 39.2 50.6 238.5 213.0 32.0 19.2 21.0 14.0

191 292.5 61.0 39.6 37.7 41.7 59.3 247.5 221.0 32.0 22.8 22.9 14.4

192 381.5 60.0 39.9 39.4 42.1 56.3 233.0 205.0 35.0 22.8 25.9 17.0

199 333.0 64.0 47.2 43.1 44.9 59.3 257.0 228.0 43.0 24.9 25.3 15.7

202 303.5 61.0 39.7 NA 38.3 54.0 246.5 218.0 35.0 21.1 23.5 14.8

203 318.5 58.0 42.3 38.3 41.7 58.3 241.0 215.0 34.0 23.5 22.8 13.5

204 326.0 61.0 49.0 42.5 46.5 63.6 263.5 229.5 35.5 24.1 26.1 19.1

205 329.5 57.0 42.3 NA 41.3 58.6 272.0 237.5 37.5 22.4 26.3 15.5

206 308.5 59.0 39.2 36.4 38.4 54.0 236.0 211.0 30.0 20.1 23.1 14.2

207 295.5 52.5 40.7 36.5 38.7 55.5 233.5 209.0 31.0 20.4 21.1 16.0

208 278.0 64.0 41.6 40.4 41.6 56.9 236.1 208.0 35.0 21.6 24.0 14.9

209 298.0 52.0 39.6 37.1 38.2 51.8 226.0 203.0 30.0 20.8 21.8 15.7

211 291.0 54.0 38.5 35.7 39.0 54.5 241.5 216.0 32.0 19.8 21.1 15.1

213 321.5 68.5 47.5 45.3 47.7 65.0 263.0 233.0 37.0 28.0 26.7 18.9

215 293.0 52.0 37.0 35.5 39.5 52.6 217.5 192.0 31.0 22.4 23.2 16.0

217 330.5 67.0 46.1 43.2 46.1 61.8 264.0 237.5 38.0 25.0 27.1 15.3

222 310.5 53.0 39.8 37.6 37.7 54.5 230.5 204.5 31.0 21.5 21.2 11.8

225 284.0 51.0 38.1 35.4 35.9 51.1 225.0 197.0 30.5 18.8 20.8 11.6

229 300.0 56.0 40.2 38.1 39.4 53.2 226.5 201.5 32.5 22.5 21.8 14.0

231 303.5 71.0 48.6 43.1 47.6 66.9 258.5 230.0 33.0 26.6 25.9 16.6

235 303.5 66.0 43.8 42.1 42.9 65.0 238.5 206.0 37.0 23.2 24.7 15.7

236 265.5 56.0 37.8 34.5 38.3 46.9 213.0 189.5 29.0 19.3 19.4 15.5

237 309.5 67.5 46.4 41.9 44.4 62.6 240.0 209.5 33.5 23.7 23.6 15.0

Table A2 - Data collected on the second measurement to calculate intra-observer
error

id hml hmc hvdh hhdh hcb heb uml upl umc ubsn uob udaw
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114 300.5 61.5 43.3 41.1 42.6 59.2 244.5 216.0 33.0 24.3 23.3 16.5

177 278.0 46.0 33.4 30.9 33.7 47.2 214.5 189.0 26.5 16.4 18.8 13.9

179 323.0 62.0 46.5 42.8 43.7 60.8 247.5 219.0 35.0 23.7 24.9 18.4

180 285.5 55.5 38.4 33.6 38.6 54.2 236.0 211.0 34.5 20.6 20.5 15.9

182 291.0 55.3 39.9 36.3 40.3 54.8 232.0 205.0 32.5 21.2 23.2 15.5

183 318.0 70.0 45.0 41.8 45.6 63.1 264.5 231.5 42.0 25.4 27.0 19.5

184 310.0 65.5 46.9 43.3 44.4 59.7 247.0 217.5 40.0 26.0 25.3 16.4

190 311.0 54.5 42.0 38.4 39.2 50.4 239.0 213.5 32.0 20.6 21.1 13.9

191 273.0 61.0 39.7 37.8 41.9 59.9 247.5 221.0 32.0 23.3 22.9 13.8

192 381.5 59.5 40.1 39.4 42.4 56.3 233.5 205.0 35.0 22.8 25.9 17.0

199 333.5 63.5 47.1 43.4 45.1 59.3 257.0 228.0 42.0 25.0 24.7 15.2

202 303.5 60.5 39.5 NA 39.2 53.9 247.0 219.0 34.5 21.5 23.4 15.0

203 319.0 58.0 42.4 38.1 42.5 58.3 241.0 214.0 33.5 23.4 22.8 13.4

204 326.0 61.0 49.2 42.3 46.4 64.1 264.0 230.0 35.5 24.4 27.0 19.1

205 330.0 56.5 42.6 NA 41.6 59.0 272.5 238.0 37.0 23.0 26.2 15.3

206 308.5 58.0 38.9 36.5 37.9 54.0 236.0 211.5 30.0 20.2 23.5 14.3

207 296.0 52.5 40.7 36.9 38.5 55.5 234.0 209.0 30.5 20.5 21.0 16.2

208 279.0 63.0 41.6 40.1 42.1 57.0 236.5 208.0 34.0 21.7 22.4 15.1

209 297.5 51.5 39.4 36.9 38.3 51.9 226.0 202.0 29.0 20.8 21.8 15.8

211 291.5 53.5 38.4 35.9 39.9 54.9 242.0 216.0 31.5 19.9 20.9 15.1

213 320.5 68.5 47.5 45.1 47.9 65.1 263.5 233.0 37.0 27.6 26.4 19.1

215 293.5 52.0 37.3 35.5 39.5 52.5 217.5 191.0 31.0 22.7 23.3 15.9

217 331.0 66.5 46.2 43.4 46.6 61.8 265.5 238.0 37.5 25.0 27.0 15.4

222 310.5 53.0 39.8 37.1 38.0 54.7 231.0 204.0 31.0 21.2 21.2 11.8

225 284.0 50.5 38.7 35.6 35.8 50.9 225.0 196.0 30.0 18.9 20.8 11.4

229 301.0 56.0 40.3 38.1 39.1 53.3 226.5 202.0 32.0 22.5 21.8 14.0

231 304.0 70.5 48.6 43.4 47.8 66.9 258.5 231.0 33.0 26.6 26.2 16.6

235 303.5 65.5 44.0 42.7 42.6 64.9 238.5 207.0 36.0 23.3 24.6 15.9

236 266.5 55.5 37.8 35.1 39.1 46.6 214.0 190.0 29.0 19.3 19.4 15.5

237 309.5 67.5 46.8 41.9 44.7 62.8 240.0 209.5 33.5 24.2 25.1 14.9

Table A3 - Data from Neto (1957) to calculate inter-observer error

id rml rmcdd rhc rnc rdew
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114 225.0 39.0 66.0 45.0 32.0

177 198.5 28.5 53.0 33.5 25.5

179 233.0 40.0 67.0 45.0 31.5

180 218.0 35.0 56.0 37.5 31.0

182 212.0 33.0 62.0 38.5 29.0

183 242.0 44.0 73.0 52.0 34.0

184 230.0 46.0 68.0 50.0 33.0

190 222.0 35.0 64.0 41.5 30.0

191 230.0 38.0 65.0 39.0 32.0

192 217.5 35.0 68.0 45.0 31.0

199 237.5 41.0 68.0 47.0 33.0

202 228.0 37.0 56.0 39.0 31.0

203 225.0 39.0 66.0 40.0 32.0

204 244.5 42.0 71.0 45.0 38.0

205 251.0 36.0 67.0 45.5 29.0

206 218.0 36.0 59.0 44.0 28.5

207 216.0 32.0 60.0 38.5 30.0

208 255.0 40.0 66.0 46.0 30.0

209 213.0 34.0 60.0 38.0 30.5

211 222.0 33.0 64.0 42.5 28.0

213 244.0 42.0 75.0 47.0 36.0

215 197.5 35.0 61.0 42.0 30.0

217 246.0 42.0 74.5 48.5 34.0

222 212.0 33.0 58.0 40.0 28.0

225 209.0 32.0 55.0 39.0 27.0

229 212.0 35.5 64.0 41.5 30.0

231 239.0 42.0 71.0 47.5 34.0

235 222.0 45.0 66.0 51.0 33.0

236 192.0 30.0 56.0 36.5 27.5

237 223.0 43.0 68.0 45.0 34.0

Table A4 - Data collected to calculate inter-observer error (CISC)

id rml rmcdd rhc rnc rdew
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114 224.0 39.0 65.0 45.0 32.1

177 198.5 28.5 52.5 33.5 25.0

179 233.0 40.0 67.0 45.0 31.1

180 217.5 35.5 55.0 37.5 30.4

182 212.5 33.0 62.0 38.5 29.1

183 242.0 44.0 73.0 52.0 33.9

184 230.0 46.0 65.0 50.0 33.1

190 221.5 35.0 64.0 42.0 29.7

191 230.0 38.5 64.0 39.0 31.8

192 217.5 35.5 61.0 45.0 31.2

199 237.5 41.5 69.0 47.0 32.2

202 228.0 37.0 56.0 39.0 29.8

203 225.0 39.0 65.0 40.0 32.1

204 244.5 42.0 69.0 45.0 37.1

205 251.5 36.0 69.0 46.0 28.5

206 218.0 36.5 61.0 44.0 27.8

207 216.0 32.0 60.0 38.5 29.2

208 254.0 40.5 67.0 46.0 29.9

209 213.5 34.0 61.0 38.0 30.3

211 223.0 33.0 63.0 42.5 27.6

213 244.5 42.0 75.0 47.0 35.5

215 197.5 35.0 61.0 42.0 29.7

217 246.5 42.5 75.0 48.5 33.6

222 212.5 33.0 58.0 40.0 28.1

225 209.5 32.0 56.0 39.0 26.5

229 217.5 35.5 64.0 41.5 30.0

231 239.0 42.0 68.0 47.5 33.5

235 223.0 44.5 66.0 51.0 32.5

236 192.5 30.0 57.0 36.5 28.0

237 224.0 43.0 68.0 45.0 33.3

Table A5 - Summarized accuracy values for sectioning points
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Humerus Ulna Radius

Accuracy CV 79.3 - 94.4 75.4 - 87.1 80.5 - 90.5

Accuracy Test 68.6 - 77.1 60.5 - 79.0 70.6 - 82.4

Females 57.9 - 73.7 25.0 - 85.0 60.0 - 80.0

Males 81.3 - 93.8 66.7 - 100 85.7 - 92.9

Legend: CV - cross-validation; Test - test sample; Female - % of correctly classified females;
Male - % of correctly classified males

Table A6 - Summarized accuracy values for LR multivariate models for individual bones

Humerus(1) Ulna(3) Radius(3)

Accuracy CV 95.2 89.4 - 90.2 92.2 - 92.6

Accuracy Test 74.3 79.0 - 81.6 85.3

Females 57.9 65.0 - 70.0 80.0

Males 93.8 94.4 92.9

Legend: CV - cross-validation; Test - test sample; Female - % of correctly classified females; Male -
% of correctly classified males

Table A7 - Summarized accuracy values for LR multivariate models for combinations
bones

HU(1) HR(3) UR(2) HUR(1)

Accuracy CV 96.7 95.1 - 96.2 92.9 95.6

Accuracy Test 81.8 81.8 81.8 - 86.4 81.8

Females 69.2 69.2 69.2 - 76.9 69.2

Males 100 100 100 100

Legend: CV - cross-validation; Test - test sample; Female - % of correctly classified females; Male -
% of correctly classified males
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Table A8 - Summarized accuracy values for SVM multivariate models for individual bones

Humerus(1) Ulna(3) Radius(3)

Accuracy CV 96.1 90.2 - 91.4 92.2 - 93.1

Accuracy Test 77.1 79.0 - 84.2 85.3

Females 63.2 65.0 - 75.0 80.0

Males 93.8 94.4 92.9

Legend: CV - cross-validation; Test - test sample; Female - % of correctly classified females; Male - %
of correctly classified males

Table A9 - Summarized accuracy values for SVM multivariate models for combinations
bones

HU(1) HR(3) UR(2) HUR(1)

Accuracy CV 96.2 95.6 - 96.2 92.9 96.2

Accuracy Test 81.8 81.8 81.8 - 86.4 81.8

Females 69.2 69.2 69.2 - 76.9 69.2

Males 100 100 100 100

Legend: CV - cross-validation; Test - test sample; Female - % of correctly classified females; Male -
% of correctly classified males
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