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Abstract

Facial recognition research has been around for longer than a half­century, as of today. This

great interest in the field stems from its tremendous potential to enhance various industries,

such as video surveillance, personal authentication, criminal investigation, and leisure. Most

state­of­the­art algorithms rely on facial appearance, particularly, thesemethods utilize the static

characteristics of the human face (e.g., the distance between both eyes, nose location, nose

shape) to determine the subject’s identity extremely accurately. However, it is further argued

that humans also make use of another type of facial information to identify other people, namely,

one’s idiosyncratic facial motion. This kind of facial data is relevant due to being hardly replicable

or forged, whereas appearance can be easily distorted by cheap software available to anyone.

On another note, event­cameras are quite recent neuromorphic devices that are remark­

able at encoding dynamic information in a scene. These sensors are inspired by the biological

operation mode of the human eye. Rather than detecting the light intensity, they capture light

intensity variations in the setting. Thus, in comparison to standard cameras, this sensing mech­

anism has a high temporal resolution, therefore it does not suffer from motion blur, and has

low power consumption, among other benefits. A few of its early applications have been real­

time Simultaneous Localization And Mapping (SLAM), anomaly detection, and action/gesture

recognition.

Taking it all into account, the main purpose of this work is to evaluate the aptitude of the tech­

nology offered by event­cameras for completing a more complex task, that being facial identity

recognition, and how easily it could be integrated into real world systems. Additionally, it is

also provided the Dataset created in the scope of this dissertation (NVSFD Dataset) in order to

facilitate future third­party investigation on the topic.

Keywords: Neuromorphic Vision; Facial Identity Recognition; Event­Cameras; Facial Dynamics;

NVSFD Dataset
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Resumo

A investigação na área do reconhecimento facial existe já há mais de meio século. O grande

interesse neste tópico advém do seu tremendo potencial para impactar várias indústrias, como

a de vídeovigilância, autenticação pessoal, investigação criminal, lazer, entre outras. A maioria

dos algoritmos estado­da­arte baseiam­se apenas na aparência facial, especificamente, estes

métodos utilizam as caraterísticas estáticas da cara humana (e.g., a distância entre os olhos,

a localização do nariz, a forma do nariz) para determinar com bastante eficácia a identidade

de um sujeito. Contudo, é também discutido o facto de que os humanos fazem uso de outro

tipo de informação facial para identificar outras pessoas, nomeadamente, o movimento facial

idiossincrático de uma pessoa. Este conjunto de dados faciais é relevante devido a ser difí­

cil de replicar ou de falsificar, enquanto que a aparência é facilmente alterada com ajuda de

ferramentas computacionais baratas e disponíveis a qualquer um.

Por outro lado, câmaras de eventos são dispositivos neuromórficos, bastante recentes, que

são ótimos a codificar informação da dinâmica de uma cena. Estes sensores são inspirados

pelo modo de funcionamento biológico do olho humano. Em vez de detetarem as várias inten­

sidades de luz de uma cena, estes captam as variações dessas intensidades no cenário. De

modo que, e comparando com câmaras standard, estes mecanismos sensoriais têm elevada

resolução temporal, não sofrendo de imagem tremida, e são de baixo consumo, entre outros

benefícios. Algumas das suas aplicações são Localização e Mapeamento Simultâneo (SLAM)

em tempo real, deteção de anomalias e reconhecimento de ações/gestos.

Tomando tudo isto em conta, o foco principal deste trabalho é de avaliar a aptidão da tec­

nologia fornecida pelas câmaras de eventos para completar tarefas mais complexas, neste

caso, reconhecimento de identidade facial, e o quão fácil será a sua integração num sistema

no mundo real. Adicionalmente, é também disponibilizado o Dataset criado no âmbito desta

dissertação (NVSFD Dataset) de modo a possibilitar investigação futura sobre o tópico.

Palavras­Chave: Visão Neuromórfica; Reconhecimento de Identidade Facial; Câmaras de Eventos;

Dinâmica Facial; NVSFD Dataset
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1 Introduction

This chapter has the objective to state the thesis of this dissertation, discuss the objectives and

contributions, and preview the structure of the document.

1.1 Context and Motivation

Face Recognition algorithms have been around for the past half­century and have maintained

their relevance and interest around the Computer Vision research community, thus far. This

comes by as no surprise for there is still room for enhancements in robustness and compu­

tational cost despite the already great recognition rates. Consequently, a wide range of tech­

niques have been explored and proposed with the intention of achieving these goals.

Furthermore, a trending philosophy of problem solving and algorithm implementation is ris­

ing, especially in the field of Computer Vision ­ bio­inspired techniques. Like the name suggests,

the concession of these types of methodologies are inspired by biological systems, in a way that

the techniques emulate their functioning. Since everything in nature operates very efficiently

and optimally due to the countless years of evolution, it is wise to design systems that mimic its

behavior. Thereupon, and regarding facial recognition, the variables humans take into account

in the face perception process have been examined. It has been concluded that apart from the

static appearance of a face, its characteristic movement also conveys a lot of information on

which humans naturally rely on to recognize someone’s facial identity [1].

Along with it, a new bio­inspired sensor has taken the Computer Vision and Robotics world

by storm ­ Neuromorphic Vision Sensors ­ also known as Event­Cameras. This kind of cam­

eras are inspired by the biological working of the human retina. Unlike conventional cameras

that output intensity images at a constant frame rate, Event­Cameras asynchronously measure

light variation on each pixel and output a stream of events that encode time of activation, pixel

position and sign of the variation (polarity). This type of sensor has a number of advantages

over the standard camera, such as: high temporal resolution (in the order of µs); very high dy­

namic range (140 dB), which allows it to perform under extreme lighting conditions; low power

consumption, since there is no need to process light information throughout the whole frame,

just a simple asynchronous calculation of light variation at each pixel; high pixel bandwidth (in

the order of the kHz) which contributes to motion blur reduction [2].

This type of sensors are already used in many Computer Vision and Robotics applications,

such as Object Detection and Tracking, Gesture Recognition, Face Detection, Anomaly Detec­

tion and SLAM, however, very little work has been published with focus on Facial Recognition.

1



Introduction

1.2 Objective

The main purpose of this work is to explore the potential of Neuromorphic Vision Sensors to

perform a complex task in facial recognition through facial dynamics derived from speech and

to validate how contributory facial motion is for face perception. Secondly, a complementary

aim is to publish a Neuromorphic Facial Motion Dataset, which not only served this work’s

investigation, but also to ease and allow further research on this topic.

1.3 Contributions

The two main contributions of the work developed in the scope of this dissertation are firstly,

the creation of a novel approach to perform facial recognition tasks using Neuromorphic Vision

Sensors, facial dynamics and a network architecture first conceived to perform action classifi­

cation, and, secondly, the publication of the Dataset utilized to complete this work with the view

to grant the continuity of investigation on this field.

Important Disclaimer: All the participants who volunteered to take part in the Dataset formally

consented its use for this work and future third­party investigation.

1.4 Dissertation Structure

This document is divided in six different chapters, of which the first one ­ Section 1 ­ is the

current one and has introductory purposes. Secondly, in Section 2, some background scientific

context is given so as to introduce important concepts about this subject. Subsequently, in Sec­

tion 3, some relevant applications and studies conducted among the researching community,

which contributed or inspired this work in some way or another, are covered and delved into.

Thereafter, Section 4 deep dives into the actual work that was conducted in order to prove and

defend the thesis of this dissertation. Later, on Section 5, the outcome of the work described in

the previous section is carefully reported and discussed intending to clarify some of the ques­

tions raised in the scope of this thesis. Finally, Section 6 summarizes all the relevant aspects

presented in previous sections, and sheds a light on possible future research paths and on

further questions that still need to be answered.
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2 Background Knowledge

In this section, a batch of important concepts is presented to better understand the intricacies

of this work, while introducing some fundamental terminology as well.

2.1 Neuromorphic Vision Sensors

Neuromorphic Vision Sensors, commonly referred to as Event­Cameras, have a distinctive op­

erating mode from standard cameras, as mentioned previously in the section 1.1. For better

understanding of the functioning of the camera a visualization is provided with a simple case

on figure 1, with two different situations being portrayed. The first scenario (figure 1a) has the

camera capture a non­rotating disc with a black dot on it, and since there is no movement on

the scene, the event camera does not output any information for there is no light variation,

while a standard camera would still capture a sequence of frames at a fixed rate. On the latter

case (figure 1b) the disc is rotating, which induces variation of light in the scene caused by the

circular motion of the black dot, consequently, triggering the Event­Camera to output a three

dimensional point cloud composed of spatial and temporal information. Each element of the

point cloud can be represented by a triad as shown in equation (1) and it is usually designated

as an Event, ek.

ek = (xk, yk, tk), ∀k (1)

The (xk, yk) pair represents the pixel location on the frame where the event was triggered,

while tk represents the time at which the event occurred. Thus, ek represents the k­th occur­

rence of an event. Nevertheless, at a higher tier of event encoding, both the sign and value of

light variation can be contemplated, which in turn gives way to a richer descriptor of the event,

presented in equation (2).

ek = (xk, yk, tk, pk, vk),∀k (2)

The sign of the light change that triggers an event is commonly referred to as Polarity, rep­

resented by pk, and its value is 1 for Positive variation of light and −1 for Negative variation.

On the other hand, the value of the change of light represents how steep that variation was.

However, for this work, only the event descriptor given by equation (1) was used.
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(a) Event Camera Output (No Output) vs. Standard Camera Output (Frames), without movement on the scene.

(b) Event Camera Output (Magenta) vs. Standard Camera Output (Rotating Disc Frames), with movement on the
scene.

Figure 1: Event Camera Output (Magenta) vs. Standard Camera Output (Rotating Disc Frames) both
with and without movement on the scene captured from the angle of the Red Camera.

2.2 Frame Representation of Events

The intrinsic nature of an Event­Camera output makes any kind of conventional image process­

ing like a Convolutional Neural Network (CNN), also known as ConvNet, seemingly unfeasible

to process it. In fact, there are methodologies that work directly over the event cloud. How­

ever, since research using intensity images is decades ahead of the one using event clouds,

not only is it viable to use the already available techniques, but it could also present itself as

more advantageous. Yet, the event data must, first, be adapted to work with those conventional

techniques, which implies converting the point clouds to frames. In order to do that, a Frame

Time must be chosen ­ this is the time taken to accumulate all the events that will take part of

each frame. Naturally, it will both determine the frame rate and also howmany events contribute

to the construction of each image. The image on figure 2 illustrates the concept.

This process, in turn, carries its own disadvantages. One could argue that this type of

data formatting neglects the inherent higher temporal resolution of these cameras. Moreover,

another argument is that converting a sparse set of data into a dense set such as an image

frame, will result in the unavoidable increment of the data size. For instance, if there is a small

number of events on a scene, the converted frames will have a lot of pixels set to 0, which is

redundant. On the flip side, a Point Cloud solely conveys information about the activated pixels,
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Figure 2: Event­Cloud to Event Frames: This image portrays a small proportion of the event cloud
(magenta) and the event frames (black and white) constructed from it. The temporal slice between both
frames is called the Frame Accumulation Time or simply Frame Time. All events triggered during this
period will be used to build the next event frame.

hence, cutting down the size of the whole video sequence.

Despite the two valid arguments presented, none of them pose too big of a problem for the

intended analysis of this work. Perhaps the temporal resolution loss with the conversion may

be a factor that might have had a small impact on the results, and should further be studied,

however, it was not relevant enough throughout the experimentation process of this work. Fur­

thermore, many other studies have had exceedingly satisfactory results using these types of

event representation.

2.2.1 Binary Event Representation

The Binary Event Representation is the simplest representation method to implement. Conse­

quently, it also is the one which conveys the least amount of information. In essence, during the

frame accumulation time if an event is triggered at least once, it immediately sets that pixel to

its maximum value. In other words, a pixel is either ON or OFF. This, of course, neglects all the

temporal resolution of the event cloud that was generated during that frame time. Furthermore,

it is especially susceptible to event noise, meaning all noisy events will have the same value as

other relevant and, perhaps, more frequent ones. The event frame on figure 3 depicts a real

example of an image frame built using this Binary Representation.

Every single pixel that was acitvated during the FrameAccumulated Time is represented with

maximum intensity on the image frame. In turn, this makes it hyper sensitive to any existing

noise in the scene. For its loss of temporal information, this method was not taken into account

on any of the experiments.
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Figure 3: Example of a Binary Event Frame: This is a Binary Event frame of a user face integrated
during 40ms. The yellow frame pixels have the maximum intensity, whereas the dark blue colored pixels
have the lowest intensity.

2.2.2 Temporal Binary Representation

The Temporal Binary Representation (TBR) was first proposed by [3]. Its core concept is based

on slicing the Frame Accumulation Time evenly, in a predetermined number of slots. For demon­

stration purposes, figure 4 illustrates the idea with a practical example. Additionally, the algo­

rithm used to compose a TBR frame is depicted in algorithm 1.

Figure 4: Temporal Binary Representation Frame Pixel Construction: During the Frame Time, Pixel K
was activated multiple times (magenta dots). The Frame Time is then divided in 8 time bins and for any
activation during N­th Bin, that Bin is immediately activated. Thus, this means that the final value of Pixel
K for this current Frame is (10101101)2 = (173)10.
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Algorithm 1: Algorithm for constructing a TBR frame.
Data: All Event Cloud Points that occurred during the Frame Accumulation Time

BINNO ← Number of Total Bins;

∆T ← Frame Time;

t0 ← Initial Timestamp of the Frame;

F ← Frame to be constructed;

for Each Incoming Event given by (xi, yi, ti) do

binn ← floor( ti−t0
∆T ×BINNO) ; /* get the slot number */

pixelbin ← decimal2binary(F (xi, yi));

if pixelbin[binn] = 0 then

F (xi, yi)← F (xi, yi)) + 2binn ; /* activate bin, if not already */

end

end

Result: F

The image presented in figure 5 is an example of a final frame constructed through this

representation. It is clear that the most active facial features are more noticeable, meaning

those were the regions with most movement on the scene.

Figure 5: Example of a Temporal Binary Representation Frame: This is a TBR frame of a user face
integrated during 40ms. It can be observed that there is a lot less noise compared to the previous
method. Moreover, the intensity variations are noticeable

A great feature of this methodology compared to the others ones is that exact temporal in­

formation of the events is encoded in each pixel. Although still losing temporal resolution, this
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method has (BINNO)× more resolution than the Binary Event Representation. Namely, if the

total number of Bins is 8, BINNO = 8, then it has 8× more resolution. In fact, if BINNO = 1,

then they are the same representation. However, this feature is slightly altered if some affine

transformations are applied to the image, which makes it rather irrelevant when data augmen­

tation is used in the training phases of a Neural Network. Nevertheless, it is just as valid and

useful a representation as the other ones.

2.2.3 Surface of Acitve Events

The Surface of Active Events (SAE) is the oldest frame representation [4] but equally effective

and simple to implement. Similarly to TBR, it is a timestamp normalization technique, yet, in­

stead of time discretization through time slots, it works directly with the time value normalization.

The algorithm 2 depicts how a SAE uint8 frame can be constructed.

Algorithm 2: Algorithm for constructing a SAE frame.
Data: All Event Cloud Points that occurred during the Frame Accumulation Time

∆T ← Frame Time;

t0 ← Initial Timestamp of the Frame;

F ← Frame to be constructed;

for Each Incoming Event given by (xi, yi, ti) do
F (xi, yi) = round(255 · ti−t0

∆T )

end

Result: F

Figure 6 displays an exmaple frame obtained through the SAE representation. As it can be

observed, this is a method that is quite rich in terms of the amplitude of values, so regions of

high activity are quite emphasized.
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Figure 6: Example of a Surface of Active Events Frame: This is a SAE frame of a user face integrated
during 40ms. It is noticeable that this representation, while low on noise, has the dynamic features of the
face highly emphasized.

2.2.4 Time Surface

The representation of Time Surface [5], also called Surface of Time, is a similar approach to

SAE. Both methods construct a surface that encodes the timestamp of the last activation of each

frame pixel. However, this methodology, not only takes into account the events that occurred

during the current Frame Time, but also pixels triggered prior to that, depending on a time

decaying factor, τ . To put it in another way, this decaying factor gives memory to each event

so its influence is felt throughout time, rather than just being a mere pulse. The work on [5],

suggests three different Decaying Time Surfaces: a Linear Decay Time Surface, an Exponential

Decay Time Surface and an Accumulated Exponential Time Surface (AETS), depicted by the

image on figure 7.

The first scenario represents events that occurred at a Pixel K during a certain period of time

and no decay is applied, therefore having no memory. In the second case, a linear decay is

applied, therefore in the Time Surface this pixel is active during more time. On the other hand,

the following methods implement an exponential decaying behavior to each event. However,

the latter of these two cases, accumulates activations, giving it more emphasis on regions that

are more frequently triggered.

The representation taken into consideration for this work was the last of all three ­ AETS.

Thus, solely that methodology’s formulation is covered in this section. The algorithm 3 demon­

1This figure was adapted from [5].
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Figure 7: Various Time Surface Decaying methods.1

strates the pseudo­code to construct an uint8 AETS frame. Moreover, the picture on figure 8

portrays a resulting AETS frame. This is the method with the highest sensitivity to the movement

in the scene, apart from the Binary Event Representation.

Algorithm 3: Algorithm for constructing an AETS frame.
Data: All Event Cloud Points that occurred during the Frame Accumulation Time

τ ← Decaying Factor (time unit);

S ← Map of Timestamps (ti);

P ← Map of Event Polarity G← Surface of Time;

F ← Frame to be constructed;

for Each Incoming Event given by (xi, yi, ti) do

S(xk, yk)← tk;

P (xk, yk)← 1;

if Last Incoming Event then

G← (G+ P ) · exp(S−tk
τ );

F ← round(255 · G
max(G)); /* Only if Polarity is always positive */

end

end

Result: F

For this formulation, the temporal decay factor affects neighboring frames, giving the current

image some temporal history from past frames.
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Figure 8: Example of an Accumulation of Exponential Time Surface Frame: This is a AETS frame of a
user face integrated during 40ms.

2.2.5 Event Frequency Representation

The Event Frequency Representation was first proposed by [6]. The concession of this method­

ology was justified through the fact that the majority of events are triggered in regions that are

edges of the scene’s subject. In detail, this formulation relies on the frequency of activation of

a certain pixel ­ the more it occurs, the higher that pixel’s value will be. Moreover, in conse­

quence, image noise is effectively reduced. Essentially, this is a simple map of counters that

is then normalized utilizing a normalization equation inspired by the ”Sigmoid Representation”

proposed by [7]. The pseudo­code of this strategy is shown in algorithm 4.

Algorithm 4: Algorithm for constructing an Event Frequency frame.
Data: All Event Cloud Points that occurred during the Frame Accumulation Time

C ← Map of Counter of Pixel Activations, initialized with zeros;

F ← Frame to be constructed;

for Each Incoming Event given by (xi, yi, ti) do

C(xk, yk)← C(xk, yk) + 1;

if Last Incoming Event then
F (xk, yk)← 255 · 2 · ( 1

1+exp(C(xk,yk))
− 0.5)

end

end

Result: F
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The frame illustrated in figure 9 is an example of a resulting frame from this technique.

Although looking very similar to other representations, this construction has the drawback of

not contemplating time information in any way. Nonetheless, this fact did not pose a problem in

the experimental stages of this work, since the Frame Accumulation Time was short.

Figure 9: Example of an Event Frequency Frame: This is a Event Frequency frame of a user face
integrated during 40ms.

2.2.6 Leaky Integrate­and­Fire Event Representation

Finally, the last Event Representation covered in this work dives into a method denominated

Leaky Integrate­and­Fire (LIF) also proposed by [6], which is inspired in the Leaky Integrate­and­

Fire neuronmodel [8]. For illustration purposes, the image in figure 10 represents an elementary

representation of how a neuron operates.

Figure 10: High­level visualization of the functioning of a neuron for the LIF model. Input spikes raise
the neuron’s Membrane Potential (MP), which then fires once that Voltage exceeds a certain Threshold.
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Fundamentally, a neuron’s membrane is electrically charged and its voltage increases in

steps due to input spikes that discharge throughout time. In addition, the membrane potential

value decays at a fixed rate, provided no spikes occur in the meanwhile. Whenever the mem­

brane’s voltage exceeds a particular threshold, the neuron fires. Given this, an event image

representation analogy can be established. Assuming a Membrane Potential Map the size of

the image frame and regarding all events as input spikes, then the Neuron parallelism can be

set. Every time an event occurs at a pixel location it increases the value of the Membrane Po­

tential in that location. Unless there is a new discharge, its value will forever decrease at a fixed

rate until it is zero. The moment the Membrane Potential Map exceeds the stipulated threshold

at those coordinates, the image frame pixel fires at the corresponding location. The result­

ing frame is a Map of the number of times each pixel was fired. Intrinsically, it is a very similar

method to the Event Frequency Representation. Hence, it inherits its downsides. Both methods

are frequency­based, which neglects the temporal information given by the event cloud. Alike

its counterpart, this did not represent a problem in the experimental stages, quite the opposite

in fact.

The algorithm for this strategy is a little more extensive than the rest and since there is an

implementation of it online 2 [6], along with implementations for the Event Frequency Repre­

sentation and Surface of Active Events, it will not be presented in this work. Regardless, an

illustration of a resulting frame is provided in figure 11.

Figure 11: Example of a Leaky Integrate­and­Fire Frame: This is a LIF frame of a user face integrated
during 40ms.

2https://github.com/CrystalMiaoshu/PAFBenchmark
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2.3 Convolutional Neural Network (ConvNet)

The Convolutional Neural Network was first devised to recognize handwritten digits [9] three

decades ago, left disregarded for “it was impractical for real­world applications with complicated

images” [10]. Only to be revisited two decades later [11] for the ImageNet LSVRC­2010 contest

that attempted to classify over a million images into a thousand different classes, and be one of

the top performers.

The working principle of this type of architecture is based on adjusting two­dimensional fil­

ters that are convolved with the input image to extract features in the Convolutional Layers,

which in turn are compressed in the Pooling Layers and, sequentially, output the correct clas­

sification decision. In essence, each element of these filters corresponds to a neuron, hence

it is updated and optimized accordingly during training phases. Figure 12 illustrates well the

network’s pipeline.

Figure 12: Standard 2D ConvNet pipeline. This figure was adapted from [10]

By way of explanation, on one hand, a Convolution is a mathematical operation between

two signals. More specifically, for the case of ConvNets this operation is discrete and two­

dimensional. Essentially, the operation is computed between an image and a kernel, commonly

referred to as a filter. The operation requires the kernel to slide over the image and execute an

element­wise multiplication between the filter and the sub­matrix, which have the same dimen­

sions, followed by a sum of all results. The produced value is then placed in the corresponding

coordinates in the subsequent image. This calculation is demonstrated through a simple exam­

ple on figure 13.

On the other hand, there are various Pooling methods, of which the two most typically used

in these sort of architectures are Average Pooling and Maximum Pooling. In short, pooling is

a way to compress information. Alike a convolution, there is a kernel (moving window) with a

specific stride that can differ from one, albeit it does not convolve with the values. Instead, it
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Figure 13: Example of a 2D Convolution.

calculates either the average or the maximum between all values covered and outputs it into a

new image. Figure 14 provides a visualization of this process.

Figure 14: Maximum and Average Pooling Example: Window­Size = 2× 2; Stride = 2.

2.4 Two­Stream Inflated 3D ConvNet (I3D)

The I3D network was first created and proposed by [12]. Its concession purpose was to perform

Action Recognition on videos. Unlike other video classification networks, which analyze an
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image sequence in a frame­by­frame fashion, the main advantage of this architecture lies on the

fact that alongside the extraction of a spatial feature, there is a temporal one as well. Specifically,

the basis of the network is a 2D ConvNet inflation ­ the augmentation of the filters and pooling

kernels of classification ConvNets into 3D ­ allowing the network to extract spatio­temporal

features, instead of only spatial ones. Thus, this model takes as input a short sequence of

frames instead of a single frame, so that three­dimensional convolutional filters also extract

temporal characteristics. The network architecture is detailed in figure 15.

(a) Inception Module (Inc.) Architecture. (b) I3D Network Architecture.

Figure 15: These are adapted images from [12] of the overall I3D Pipeline. The convolutional and pooling
layers with no stride default to one, and for simplification purposes the batch normalization layers, ReLu’s
and the softmax at the end were omitted.

On a separate note, another feature of this architecture is that it admits multiple input chan­

nels. For the work on [12], one channel was utilized to input RGB video images, whilst the

second channel took the Optical Flow calculated for that RGB sequence ­ therefore, being

termed “Two­Stream”. Basically, the network when fed dynamic information alongside the nor­

mal frames, which further enrich each clip, results in a performance enhancement of the system.

Nonetheless, a single­stream is as valid an option. Figure 16 provides a holistic view of the data

stream for the I3D network used in [12].

On a final note, to understand the upcoming section, it is important to detail in what format the

network prediction is outputted. Basically, the returned value is a simple probability distribution

across all data categories. Namely, the output is a vector of the model’s confidence for each

data class. For visual reference an example is orchestrated in figure 17.
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Figure 16: Comprehensive view of the data flow of the I3D network, with two channels one for RGB and
another one for Optical Flow, as used in [12].

Figure 17: Example of a Prediction Output. The first three rows represent the Ground Truth of each
category, while the last one is a possible prediction returned by the model. In this case, the network
would be 60% confident the input corresponded to a dog, 30% to a cat and 10% to a bird.

2.5 Network Optimization

In this section, a high level explanation of basic network optimization will be covered. In essence,

a Neural Network is a colossal mathematical function with millions of parameters (weights and

biases) and inputs, which are combined to output a certain value, in most cases, a prediction of

what the input represents. The network parameters are initialized with random values and there

are a lot of techniques to do so [13], [14]. At this stage if any data is inputted into the network

the final accuracy will be close to 1
Number of Classes for a balanced dataset. For instance, if the task
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is to recognize three different categories like Cats, Dogs and Birds, an untrained network will

correctly predict nearly 33% (≈ 1
3 ) of the images of the dataset. To enhance its performance,

it has to go through a training procedure that updates its parameters. This training operation

is completed through inputting a batch of “learnable” objects (i.e. the data structures that the

model will predict over) through the model, make a prediction, check how wrong the output is

and adjust the parameters. The network is fed in batches instead of single samples at a time for

it improves the model’s generalization capabilities. Furthermore, the weights and biases tuning

is not done at random, it is always executed with the goal to minimize a metric that reflects “how

much error the model has” [15]. This measure is calculated via a Loss function. For linear re­

gression, this function would be the Mean Squarred Error (MSE). For the case of classification,

and, specifically, for networks that output a probability distribution, which is the case for the I3D,

Categorical Cross­Entropy is very commonly utilized.

2.5.1 Categorical Cross­Entropy Loss

This function is expressly utilized to compare “one­hot”3 ground­truth vectors ­ commonly re­

ferred to as targets ­ to probability distributed vectors ­ also regarded as predictions. The func­

tion is detailed by equation (3).

Lossj = −
∑
k

yj,k · log(ŷj,k) (3)

In which, j is the j­th sample of the whole batch, Lossj is the loss value for the prediction

ŷj , with yj being the ground­truth, while k corresponds to the k­th index of the vector, that is,

the k­th class, and log is the natural logarithm. For the example in section 2.4, figure 17, the

computed Loss value would be as follows in equation (4), assuming the target is yj = [1, 0, 0],

which corresponds to a Dog.

Lossj = −
∑
k

yj,k · log(ŷj,k) = −(1 · log(0.6) + 0 · log(0.3) + 0 · log(0.1)) = 0.51082562376 (4)

However, for the same prediction, if the input image illustrated a bird instead, meaning the

target would be yj = [0, 0, 1], the calculated Loss would be the one given by equation (5).

3“one­hot” vectors are arrays with one value 1 (hot) and the others 0 (cold). For ground­truth that value 1 will
correspond to the index of the correct data class.
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Lossj = −
∑
k

yj,k · log(ŷj,k) = −(0 · log(0.6) + 0 · log(0.3) + 1 · log(0.1)) = 2.30258509299 (5)

As the example above shows, the closer the probability distribution is to the ground­truth,

the lower the loss value. Hence, this will be the metric that will determine whether or not the

updates of the model’s parameters are heading the network in the right direction.

2.5.2 Network Optimization: Stochastic Gradient Descent (SGD)

The SGD is one of the oldest network optimizers, but still highly relevant today. In fact, most

optimizers are an adaptation of this technique.

Essentially, like the name suggests, the SGD calculates the descendant direction of the

gradient of an Error function relative to the network’s parameters (both weights and biases).

These parameters are subsequently updated given that calculation.

In mathematical terms, given a mini­batch with M samples of a Dataset X composed by

(input, target) pairs,

Xm : (xm, ym) , m = {1, ...,M} (6)

also, X̂, the (input, prediction) pairs given by the network for the same set of input data,

X̂m : (xm, ŷm) , m = {1, ...,M} (7)

and, E, an error function calculated by the network (e.g. Categorical Cross­Entropy Loss)

comparing how close the predictions, X̂m, are to the ground­truth, Xm, for the current set of

weights and biases, globally represented by Θ,

E(X, X̂,Θ) (8)

The SGD optimizer calculates the gradient of the error function, E, relative to the network

parameters, Θ, which are, in turn, updated through equation (9).

Θt+1 = Θt − α · ∂E(X, X̂,Θ)

∂Θ
(9)

in which, α is the learning rate ­ a tunable factor that defines how abrupt the updating process

is. If too high, the function minimum search might get unstable and diverge. If too low, the
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minimization process might halt in a local minimum. These two scenarios are depicted in figure

18, for a given Loss function dependent some network parameters.

(a) Example of a high learning rate: The search for
the minimum is unstable for its high learning rate,
hence, it does not converge to a determined point.

(b) Example of a low learning rate: The search con­
verges to a local minimum.

Figure 18: Learning Rate Example: Too high vs. Too low.

The learning rate only points towards the descent direction of the gradient, this means that

when a local minimum is reached the search can go back and forth infinitely, hence halting

there. Thus, in order to make the searching process more stable and robust another parameter

should be added ­ momentum. In essence, this parameter gives some inertia to the search by

considering the direction of the previous update. Therefore, reducing the possibility of stalling

in any minimum found. This parameter, m, is then added to equation (9) as shows in (10).

Θt+1 = m ·Θt − α · ∂E(X, X̂,Θ)

∂Θ
(10)

Addressing the previous example on figure 18, the image on figure 19 illustrates the search

using the same learning rate as the one on figure 18b but with the addition of momentum.
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Figure 19: Example of a Minimum Search with Learning Rate and Momentum.

As it can be observed, adding momentum allows the search to overcome the local minimum

and converge to the absolute minimum of the function.
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3 State of the Art

3.1 Facial Recognition through Facial Dynamics

Facial recognition has been a hot topic for several decades now. Thus, naturally, the advance­

ments in the field are of great magnitude. Recognition rates are absolutely off the charts, sur­

passing even human capabilities. However, the type of data that is relied upon ­ static RGB or

gray­level images ­ is very easily attacked or manipulated, hence, it is wise to look for ways to

make this type of application more robust. A lot information can be extracted from a person’s

face that assures a more secure prediction of that individual’s identity. Namely, depth infor­

mation for adding yet another dimension of face features or infrared sensors to guarantee the

liveliness of a subject through the radiation emitted by the person’s skin. Furthermore, it has

been long discussed whether or not one’s facial motion is strong enough idiosyncrasy and if it

somehow contributes to the human’s perception of the face.

In fact, the work on [1] was specially conducted with the aim to answer many of these ques­

tions. It was shown that the human eye is trained to be highly sensitive to facial movement,

since it is a great source of non­verbal communication cues during social interactions. In addi­

tion, it is a good indicator of liveliness, due to the fact that the lack of motion in someone’s face

is a strong sign of inauthenticity. Nevertheless, a lot of information is still conveyed by a face’s

static features. Apart from this, that same researching team was involved in another relevant

experiment [16] that evaluated how much identity can different facial movements convey. The

experiment consisted in recording a group of actors performing three types of facial motion ­ self­

induced facial expressions, facial expressions in a social context and conversational­induced

expressions. Subsequently, the movements were embedded into an avatar face to normalize

all faces and remove appearance features. Taken everything into account, it was concluded

that the conversational expressions revealed more identifiable traits than the rest.

On a separate note, one hypothesis that could be presented as to why facial dynamics

analysis improves accuracy and robustness over static analysis could be that the latter uses

quite less samples. This is not the case, however, as it was proven by [17]. The proof was

based on an experiment in which a group of people had to recognize a certain facial expression

through a static frame, a normal video sequence and a corrupted video sequence. The altered

video had noise masks inserted between frames, without the removal of any frame, thereby,

eliminating the dynamic component of the face in the video. The results showed that the rates of

correct identification of expression were better for single frame images compared to the multiple

frame sequences that lacked dynamic stimuli. On top of that, the accuracy was actually best
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for the raw video sequences, that is, those of which had maintained the dynamic features of the

face in the video.

Following all the advantages listed previously, plenty of research has been conducted with

facial recognition via facial dynamics being the main object of study [18]–[23]. Moreover, facial

motion has been used to identify potential attacks on face recognition systems [24]. In addition,

many studies have delved into mapping phonemes4 to visemes5 and which visemes generate

the most recognizable dynamic traits [25]–[27]. Based on this concept, lip reading applications

for speech recognition [28] and even language identification (visual­only) [29] are possible. Be­

sides, another similar application is facial expression recognition, both for standard emotions

[30], such as happiness or sadness, as well as for more subtle and micro expressions [31]–[33].

3.2 Event­Based Face Detection, Tracking and Alignment

On a more particular subject, there has already been work developed with neuromorphic vision

sensors and faces, mostly in the field of face detection, tracking and alignment. For instance,

this has been done for faces in constant movement, thus, being always depicted in the frame

[34], [35]. As a matter of fact, some have gone as far as creating and publishing datasets to

facilitate further research [36], [37]. These resource, however, do not focus on still heads with

dynamic frontal faces for their original goal is simple face detection and alignment, which, in

turn, does not fully serve the purposes of this work.

Alternatively, other applications use more than just head or face shape for detection­and­

tracking tasks, also taking advantage of facial dynamics. Namely, the work on [38] makes use of

a very strong dynamic feature of any face ­ eye blinking. Indeed, throughout time, an eye blink

is a very apparent feature captured by an event camera and strongly indicates the presence of a

face. Far and beyond goes the research on [39], which evaluates a driver’s level of drowsiness

based on the frequency of eye blinking and mouth opening. The event camera’s low power

consumption features, high temporal resolution, low latency, high dynamic range and reduced

motion blur make face analysis in these scenarios much simpler and robust in contrast with

conventional cameras.

3.3 Event­Based Object Detection and Classification

An issue not directly related to faces, highly relevant nonetheless, regards feature extraction,

object detection and classification from events. Similarly to face detection and such, the event
4The smallest unit of speech sound that, when grouped with others, composes the pronunciation of a word.
5The facial motion induced by voicing a specific phoneme.
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cloud needs to be processed and most methods take a frame­based approach, apart from

some works that use graphs [40] or operate directly over the point cloud [41]. Apart from this,

investigation on this field has led to the creation of large­scale datasets [42], [43].

In respect to the most common frame­based approaches, the Time Surface representation

(mentioned in section 2.2.4 of this work) is widely adopted. Various studies have used this repre­

sentation for feature extraction and tracking [5], [44], [45], meanwhile others [5], [42], [43] have

gone as far as to using it for object detection and classification tasks. Some methodologies em­

braced for classification were a Histogram of Averaged Time Surfaces (HATS) [42], a Synaptic

Kernel Adaptation Method (SKIM) [5] classifier (originally proposed by [46]) and a Histogram Of

Time Surfaces (HOTS) [47]. This last work also used their pattern recognition technique for a

facial recognition task for heads in constant movement that achieved a top identification rate of

79%.

3.4 Action and Gesture Recognition

In the realm of classifying actions and gestures, there has been work developed prior to the

surge of event cameras, with intensity­image cameras (both colored and gray­level). Namely, an

interesting approach uses a Dynamic Image Network [48], which condenses a video sequence

into one frame and then classifies over it. One other method, in fact, one that is this work’s

greater source of inspiration created the network architecture I3D [12], which obtained state

of the art classification on the HMDB­51 dataset with 80.9% and on the UCF­101 dataset with

98.0%.

Eventually, along with the rise of neuromorphic vision sensors, algorithms for identifying ac­

tions and gestures using this technology have been created. Similarly to other application fields,

there have been proposed multiple event processing techniques, ranging from direct point cloud

analysis [49] to graph oriented methods [50] to the most common frame­based approaches [3],

[51], including ones with stereo cameras [52]. The work on [51] actually developed a gesture

dataset ­ IBM DVS128 Gesture Dataset ­ on which most studies benchmark algorithm perfor­

mance, including another research [3] that had great influence on this dissertation. Particularly,

this work [3] achieved state of the art recognition using a self­proposed event frame repre­

sentation ­ Temporal Binary Representation, covered in section 2.2.2 ­ and the I3D network

architecture [12], obtaining a top recognition accuracy of 99.58% for 10 classes and 99.62% for

11 classes.
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4 Proposed Methodology

This chapter focuses on the body of work done for this dissertation. It covers the materials used,

and the techniques and procedures implemented to answer the primary questions of this work.

4.1 CeleX­V Camera

Figure 20: Picture of the CeleX­V Event Camera.

The Event­Camera used for the data acquisition process of the whole experiment was the

CeleX­V, from the company CelePixel, recently acquired by Will Semiconductor. The main

motivator for this choice was the superior specifications in comparison to its market competitors,

in terms of camera resolution and ability to output both events and grayscale images. The

CeleX­V specifications are detailed in table 1.

Table 1: CeleX­V Specifications and Market Comparison6

Specificatoins CeleX­V Market Comparison (out of 13)

Resolution (pixels) 1280 x 800 Top 2 best
Latency (µs) 8 Top 2 best
Dynamic Range (dB) 120 Top 5 best
Power Consumption (mW) 400 Top 1 worst
Pixel Size (µm²) 9.8 x 9..8 Top 5 best
Stationary noise (ev/pix/s) at 25º C 0.2 Top 1 worst
Grayscale Output Yes 7 out of 13 do
Maximum Frame Rate (fps) 100 Top 1 best

6The tabulated values were reported [2] at the date of publication.
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On another note, the published camera documentation, along with the API 7, served as the

basis of the entire development of the data acquisition software for this work. In addition, as table

1 details, the sensor can also output Grayscale images like a standard camera. Specifically, the

camera has two operating modes ­ Fixed Mode and Loop Mode. Firstly, the Fixed Mode is the

default working state of the camera in which it outputs one fixed modality of data continuously.

The returned objects range from Event Clouds (with or without Polarity or Intensity values) to

Grayscale and Optical Flow Frames. It also outputs some event frame representations, yet,

none of them were used or covered in the scope of this work. Lastly, the Loop Mode operates

in a manner that up to three different data classes are returned, virtually, simultaneously. In

reality, the camera’s kernel quickly switches between the various modes, looping through all

three, as illustrated in figure 21. By default, it outputs an Event cloud or frame, a Grayscale

frame, and an Optical Flow frame.

Figure 21: Visualization of the CeleX­V Loop Mode operation.

This comes, however, at a cost. The Event Data quality returned from this operation mode

is somewhat reduced in terms of both noise increase and event cloud fragmentation. Instead of

a uniform distribution of events along the time axis, the cloud seems to be broken into smaller

event clusters.

4.2 Neuromorphic­Vision Dataset for Speech­Induced Facial Dynamics

The fact that there is a massive shortage of neuromorphic resources that target facial analysis,

part of this work was focused on recording a considerably large dataset of rather still human

faces reading from a text or pronouncing words facing the camera ­ the Neuromorphic­Vision

for Speech­induced Facial Dynamics (NVSFD) Dataset. The aim of the dataset is not only to

satisfy the experiments’ needs but also to allow further research on the topic.
7https://github.com/CelePixel/CeleX5-MIPI
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4.2.1 Material and Recording Setup

The camera used for the data acquisition was the previously mentioned CeleX­V, which oper­

ated under a highly controlled environment ­ fixed on a sturdy tripod, inside a photo studio box,

with studio lighting to guarantee the most favorable conditions possible, as figure 22 depicts.

Figure 22: Data Acquisition Setup Environment.

In addition, inside the box, a table was equipped to support the user­interface monitor, key­

board, and mouse, along with a stool for the recorded subject to sit down directly in front of the

camera ­ figure 23 illustrates a closer look into the scenario.

Figure 23: Closer view of the Data Acquisition Setup Environment.
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4.2.2 Subject­Task Protocol

The Subject­Task protocol was specifically designed to meet this work’s experiment needs.

Namely, each individual was closely recorded somost of the frame area would be used to extract

the idiosyncratic features of each subject’s face. Consequently, problems such as face detection

and alignment had no need to be addressed. In addition, all recordings were performed in the

Camera’s Fixed Mode ­ for pure Event gathering ­ and in Loop Mode ­ for collecting Grayscale

frames and Event Clouds in a simultaneous fashion.

Regarding the actual assignments each individual had to perform, there were three for every

subject in the dataset and two additional ones for the first nine users. The two first exercises

had each person reading two different Nursery Rhymes. The third endeavor consisted of each

subject pronouncing their full name multiple times. Finally, the last two tasks were only done by

the first nine subjects. One of them was for spoofing purposes and only performed by user000

and user001, whereas the other task had the first nine users say every other user’s name of

those nine. The full dataset specifications can be found in Appendix I, while the two nursery

rhymes used are exhibited in Appendix II. Additionally, the illustration of the various tasks is

depicted in figure 24.

Figure 24: Various Dataset User Tasks: Tasks A­C were completed by all subjects in the dataset; Task
D was done by the first two users only; Task E was performed by the first nine subjects only.

This letter notation, A­E, will be used from this section forward to simplify the reference to

each one of the five activities performed by the Dataset participants. It is also important to

notice that tasks A and B were recorded twice for every subject. For the first recording, every

participant read the full nursery rhyme, whereas, for the second instance, only half of the verses

were read. The first will be referred to as activity A1, while the latter will be mentioned as activity

A2. Surely, it is the same case for task B. In addition, task C was recorded five times but all of

them were the same, however, a similar notation such as C1, C2, etc. will also be used.
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4.3 Video Processing and Classification

This dissertation workflow was greatly influenced by the work on [3]. Likewise, the event clouds

of the individuals speaking were converted to frame sequences and then fed into the I3D net­

work. For this study, however, given the high resolution of the camera and the image shape

supported by the network, the image frames had to be square cropped around the face (crop

size = 800×800) and resized to 224×224 pixels. In addition, to estimate the location of the face a

very rudimentary method was used. Accounting for the fact that throughout the video sequence

every subjects’ head was essentially still, for each clip it was produced an Event Frequency

Frame comprising the whole video, which was then filtered by a Gaussian kernel. The result­

ing image is then convolved with an Ellipse Mask followed by setting to 1 every pixel of value

greater than or equal to 0.2, otherwise, they were set to 0. Finally, since the consequent image

corresponds to the area of most event occurrences, the center of mass along the columns gives

a general estimation of the location of the center of the speaking face. Regarding the axis along

the image rows, it was always chosen half of the height of the image, since all subjects had their

heads roughly covering the whole height of the frame. Figure 25 illustrates the automatic crop

pipeline.

This methodology, however, is not foolproof as it can be observed by the example presented

in figure 26.

As for the classification endeavor, there were three main stages that took place for the vali­

dation of this methodology.

I. IBM DVS Gesture Dataset integration with I3D network (replicating the work on [3]).

II. NVSFD Dataset with 9 different subjects.

III. NVSFD Dataset with 40 different subjects.

The first step was dedicated to implementing the I3D network and convert the IBM DVS

Gesture Dataset point clouds to TBR frames. The network model used was one published

online 8 in PyTorch [53], however, the training and testing were separately carried out. The

accuracy results were not the exact same as the one in the paper, but definitely close enough

­ around 96.692% recognition rate. This was due to the fact that the training procedure was

not as exhaustive as the one in the original study. Regardless, the objective of validating the

network model was achieved. In order to obtain this result, the model was trained using a SGD

8https://github.com/piergiaj/pytorch-i3d
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Figure 25: Square Crop Automation: This filtering process was used to avoid cropping every clip by
hand.

Figure 26: Bad result of Crop Automation: This image crop was calculated via the automatic process
described before and it shows it is not perfect for every scenario. Nonetheless, it is good enough for this
task, since it successfully crops the whole face. Centering is not a huge problem due to the fact that the
video frames are transformed during training for data augmentation purposes.

optimizer with a learning rate and momentum of α = 0.001 and m = 0.9, respectively, while

feeding the network a batch of 13 samples at a time, for a total of 40 training epochs.

Consequently, the second iteration of the execution pipeline required recording people’s

faces while reading from a text or mouthing their own names. This motivated the experimental

creation of the NVSFD Dataset with 9 subjects to determine whether or not the network’s per­

formance for gesture classification would translate to facial recognition. This universe of users
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executed the four different tasks described in section 4.2.2, which were activities A­C and E.

However, only the first two subjects performed task D that consisted in reading a few verses of

nursery rhyme A while the eye­glasses wearer did it without glasses and the non­wearer used

its fellow’s glasses.

Eventually, the last phase of the operation workflow was executed to appraise the scala­

bility of this technique, hence, a universe of 40 subjects seemed reasonable to validate this

network’s feature. Alike the first 9 users, the rest of the subjects performed tasks A­C. Plainly,

not only being quite inconceivable that all users would perform activity E, it also did not present

considerable benefits for them to perform both tasks D and E.

Furthermore, it is important to state how the samples were extracted from the video se­

quences, since it also impacted the performance of the models. For the first stage of the process

(using the IBM Gesture Dataset), the samples were extracted with a stride of 12 frames, which

is the same size of each “learnable object”. For the second phase (NVSFD with a universe

of 9 speaking users), the stride was 1, so a lot more samples were retrieved from each video.

Finally, for the third stage (NVSFD with a universe of 40 users) the stride was 2, for the fact that

using a stride of 1 would represent a colossal amount of data, hence, harder to process given

the available tools. A visualization of this process for each phase is illustrated in figure 27.

Figure 27: Sample Extraction: Visualization of the stride of the samples extraction of the full clips for
each stage.

33



Proposed Methodology

These samples retrieved from the full video sequences were then used in the training and

testing of the models for the major experiments of each stage. Regarding the type of data

used for the development and evaluation of the network models, this work targeted mostly the

modality of pure events. Nevertheless, a shallow attempt at assessing the impact of using solely

Grayscale information or even combining both Events and Grayscale was conducted.
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5 Experimental Results

The aim of this chapter is to report and open a discussion on the outcome of the experiments

conducted for the last two stages of this work’s pipeline described in section 4.3. Since stage

1 was only a validation step for the efficacy of the methodology, its results are irrelevant to the

work at hand, although summarized in the previous section. Regardless, the training procedure

found best for the last two stages was different from the first stage and it is thoroughly specified

in table 2.

Table 2: Stage 2 and 3 ­ Training Specifications

Training Specifications Remarks

Optimzer SGD ­

Learning Rate 0.01 ­

Learning Rate Decay 10 Everytime the validation loss stalls.

Minimum Learning Rate 0.0001 No more learning rate decay once this value was reached.

Momentum 0.9 ­

Number of Epochs Ranged between 12­40 Varied with the amount of training data

Batch Size
12 (for stage 2)

32 (for stage 3)
­

Data Augmentation
Affine transformations;

Random Erase from top to half.

Rotation: [−10,+10]◦;

Translation: [−10,+10]pixels (each direction);

Scaling factor: [0.8, 1.8].

Notice that a training aspect of paramount importance for these stages was Data Augmenta­

tion, which allowed the models to shift its features extractors from solely considering the spatial

plane to give a little more emphasis to the temporal component as well.

5.1 Stage II ­ 9 speaking subjects

This stage evaluated the network’s ability to perform a facial identity recognition task instead

of what it was initially conceived to do ­ action and gesture classification. Thereby, and to

simplify further experiments, only one Event Frame Representation was chosen out of the five

representations thoroughly described in section 2.2. All the representations were created with

a Frame Accumulation Time of 40 ms and clips of 12 frames were fed into the I3D network

during training and testing of the models. In addition, Grayscale and Grayscale alongside Event

Representation clips were also tested. The models were trained on samples extracted from
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activities A1 and B1, and tested on the samples withdrawn from tasks A2 and B2. The stride of

sample extraction was 12 frames. Table 3 shows the results obtained from the experiment.

Table 3: Event Representation Comparison: Accuracy Comparison

Pure Events with Grayscale

TBR 97.701% 100%
AETS 98.851% 100%
SAE 98.161% 100%
Frequency 98.391% 100%
LIF 98.391% 100%
Only Grayscale 100%

The accuracy values presented were calculated over each sample prediction. As it shows,

whenever Grayscale is added the models are able to perfectly predict each and every subject

based on the 12­frame samples. Therefore, and since adding the gray­level component was

never the main focus of this work, there was no interest in considering it in further experiments.

Its discussion is therefore left open for further investigation.

Regarding the Pure Event modality, the actual recognition rates are outstanding given not

only its the sparse nature but also the little information each event frame usually conveys. The

accuracy rates were very similar between representations, despite the AETS representation

clearly being the front runner among all five. Hence, this representation is the one used to carry

out the rest of the experiments.

For this stage, four major experiments were conducted to challenge the network and under­

stand whether the dynamics of the face would origin a strong enough signature for each subject.

These four studies are listed below.

1. Train a model with tasks A1 and B1, and test it with tasks A2 and B2.

2. Train a model with task A and test it with task B.

3. Train one model with tasks C1­C3 and another one with tasks A, B and C1­C3, and test

both of them with tasks C4 and C5.

4. Train a model with tasks C1­C3 and test it with task E.

For these experiments, all samples were extracted with a stride of 1.

5.1.1 Experiment 1

The purposes of this first model were to maximize the performance obtained in the preliminary

experiment regarding event representations, to understand howmuch impact the facial dynamic
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component was having in the model’s decision and how prone the model was to spoofing.

Assessing the performance of this first model, the simple fact that the training was done with

more samples due to the extraction stride being 1, it improved the model’s accuracy by almost

an extra 0.25%. Figure 28 presents the confusion matrix obtained for this first scenario.

Figure 28: Confusion Matrix9for the model trained on A1 and B1 and tested on A2 and B2, which had a
sample extraction stride of 1 frame.

As it can be observed on the bottom right cell, the final accuracy value for all the “learnable

objects” extracted from A2 and B2 went up to 99.49%. This, however, is not the same testing

set as the one used for the event representation experiment, since the sample extraction stride

was different. For that previous testing set this model’s accuracy was 99.08%, which is an

improvement, nonetheless. Furthermore, the accuracy for each user can be observed along

the bottom row in green, while along the rightmost column the green values represent the true

positive rate for each subject and the red ones represent the false positive rate. Clearly, from

all the information displayed by the matrix, it can be noticed that there was a slight confusion

between subject 2 and 5, not all that relevant given its dimension compared to the 5094 samples

of the testing set. To put this matrix in perspective with the testing set created with an extraction

stride equal to the length of each learnable video sequence (12 frames), figure 29 shows the

confusion matrix for this model’s performance on that testing set.

Given that each learnable object is roughly a half­second, figure 29 shows that the confusion
9This confusion matrix was plotted using the software on https://github.com/wcipriano/

pretty-print-confusion-matrix
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Figure 29: Confusion Matrix for the model trained on A1 and B1 and tested on A2 and B2, which had a
sample extraction stride of 12 frames.

presented in figure 28 amounts to only one half­second out of the whole 46 half­seconds (23

seconds) of video for subject 2, one half­second out of 49 (24.5 seconds) for subject 3 and,

finally, roughly one full second (or two half­seconds) out of 49 half­seconds (24.5 seconds) for

subject 5. This whole assessment has no memory, all the model’s decisions are done in half

a second, therefore, for a real­time application, it would be wise to consider a short prediction

history record to make sure the effect of these sporadic outliers is attenuated.

On another note, one other objective of this experiment was to determine whether the dy­

namic component of the face was useful in the discrimination process. To prove that point, four

different tests were run, all for the testing set sampled at a stride of 1 frame. On each test the

following transformations were applied to each learnable video clip.

• No transformation on any plane (normal and dynamic faces).

• A 180◦ rotation on the spatial plane, with no transformation on the temporal plane (inverted

and dynamic faces).

• No spatial transformation, with a freezing of the frame, which had the most spatial infor­

mation, across the rest of the clip (normal and static faces).

• A 180◦ rotation on the spatial plane and a freezing of the frame, which had the most spatial

information, across the rest of the clip (inverted and static faces).
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The image illustrated on figure 30 helps visualize the four transformations previously de­

scribed.

Figure 30: This image represents the four different transformations described above applied for one
video sample.

The freezing frame transformation had the goal to remove the temporal evolution of each

sample giving it only static appearance information. This experiment was inspired by [54], which

advocates in favor of the usefulness of facial dynamics for face identity recognition. This work

described many experiments in which people were shown faces in “non­optimal viewing con­

ditions” and it happened that the subjects had more difficulties identifying the face when it was

static rather than when it had the dynamic component. Analogously, relative to this experiment,

the rotation makes for the “non­optimal viewing conditions” while freezing one frame across the

rest simulates a clip of static face that the network can process. The results can be observed

in table 4.

Table 4: Accuracies for each one of the four transformations tests

Normal Faces Rotated Faces

Dynamic Faces 99.490% 37.515%
Static Faces 94.641% 30.487%

Relative Difference from
Dynamic to Static Faces ­4.874% ­18.734%

In fact, it appears that there is a general drop of accuracy from dynamic to static faces, but

that does not necessarily prove the hypothesis. Sure, this assures that the network is extract­

ing temporal features, not solely focusing on spatial ones, but the point to be made clear is that
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dynamic stimuli actually helps the facial perception process, especially, under sub­optimal con­

ditions, such as for inverted faces. The simple fact that there is a drop of 18.734% in recognition

rate under abnormal conditions does not prove this by itself. Actually, it is the accuracy drop for

rotated faces being higher than the one under normal circumstances that surely confirms that

the dynamic aspect is truly relevant for unfavorable situations. Nonetheless, the results support

the relevance of dynamic information for facial perception in any circumstance.

On a final note, the last point to be lightly discussed is how prone to spoofing this system

can be. In general terms, since neuromorphic vision is such a novel field, there have not been

developed many spoofing techniques. However, the use of face masks or the use of videos of

other people may be some that could potentially attack this type of systems. The aim of this work

was never to develop a system that predicts spoofing methods and prevents them from working.

Nevertheless, a simple experiment was conducted to assess how dynamic stimuli was an anti­

spoofing mechanism by itself. To do that, Dataset participants 0 and 1 were asked to read the

first stanza of nursery rhyme A, with the particularity that user 1 wore subject 0’s glasses, while

user 0 did not. To evaluate the model’s performance under these special conditions another

confusion matrix was constructed and it is illustrated on figure 31.

Figure 31: ConfusionMatrix for themodel trained on A1 and B1 and tested on D, with a sample extraction
stride of 1 frame.

As it can be observed, on one hand, for subject 0, the model had great difficulty identifying it

as user 0 ­ classifying it correctly once out of 23 times. This can be easily deduced from the fact
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that during training, despite the random erase of the top half of the frame, the network never

really witnessed this subject without glasses, thus, making it seemingly impossible to make a

prediction on that user if the person speaking is not wearing anything. On the other hand, for

user 1 the model had an outstanding performance ­ correctly recognizing it 14 times out of 24

(above 50% accuracy). Even though during training the model never witnessed user 1 with

glasses and, in fact, only observed those same glasses on another subject is a very strong sign

that the facial dynamics of user 1 stood above the spoofing attempt.

5.1.2 Experiment 2

The aim of the model created under the scope of this second experiment was to understand

whether the dynamic traits generated by reading one nursery rhyme would generalize to some

other set of speaking words never experienced during the training phase. Hence, this model

was trained on task A and tested on B. The evaluation of the model’s performance is detailed

by the confusion matrix on figure 32.

Figure 32: Confusion Matrix for the model trained on A and tested on B, with a sample extraction stride
of 1 frame.

It is noticeable that the model displays somewhat more confusion, which is natural, given

that different tasks force the readers to have different facial behavior. Nonetheless, it is quite re­

markable that the accuracy has remained in the high nineties percentage wise, exactly, 97.37%.

Furthermore, it can be observed that for each subject the model has maintained the recogni­
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tion rate around 90% to 100%. Thus, despite being slightly more uncertain, the model’s final

prediction is still quite confident. In essence, two major conclusions can be deduced from this

data. The first one being that the model is able to extract certain dynamic features that can be

found generally throughout any speaking action. Secondly, the more diverse data the network

is exposed to throughout the training stages, the better it will perform in “never­seen­before”

scenarios.

Aside from that, similarly to the previous experiment described in section 5.1.1, a spoofing

attempt was also conducted. The outcome of the trial is described in the confusion matrix shown

in figure 33.

Figure 33: Confusion Matrix for the model trained on A and tested on D, with a sample extraction stride
of 1 frame.

It is important to stress that activity D, which is the spoofing task, had the two subjects read

the first stanza of nursery rhyme A. Thus, there is great similarity between facial movements

caused by each task, even though the facial appearance component is corrupted. Therefore,

given the fact that both this and the previous section’s models were trained during roughly the

same time, the current network has a greater familiarity with the movements executed in task

A. Consequently, the dynamic signatures for each user during activity D were better recognized

by the model. For subject 0, the accuracy rose from 4.35% to 17.39%, while, for subject 1, it

rose from 58.33% to 70.83%. This means that the glasses became a rather less relevant factor

of influence in the classification process.
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In conclusion, the decision to use people with glasses on the training stages of the models

and the hope that the network would be able to set subjects apart for tasks such as activity

D was quite an ambitious endeavour. However, it has sparked interesting results and could

certainly be considered for further investigation.

5.1.3 Experiment 3

The objective of this third experiment was to perform a sketchy simulation of a biometric access

system, which, similarly to the fingerprint system, people would be granted access by pronounc­

ing their full name to the camera. There are two major parameters that need evaluation to make

certain that this would be a robust and practical strategy. Firstly, whether one’s full name could

generate enough dynamic discriminatory stimuli. Secondly, howmuch data would be necessary

in training for the network to build a strong classification model. In attempt to judge these two

factors, there were trained two different models. One was trained with information solely from

tasks C1­C3, while the other one with information from activities A, B, C1­C3. Both were tested

on tasks C4 and C5. The confusion matrices for the models are presented in figures 34 and 35.

It should be brought into attention that for performance enhancement reasons, the data aug­

mentation practice was slightly altered. Namely, the rotation transformation range increased to

[−45◦, 45◦], so as to force the model to extract more temporal signatures.

Figure 34: Confusion Matrix for the model trained on C1­C3 and tested on C4 and C5, with a sample
extraction stride of 1 frame.
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As it can be observed, the model trained with only data from task C performed quite well. For

each user, the confidence rates ranged from nearly 85% to 100%. This fact, by itself, confirms

the biometric relevance of the type of data stemmed from activity C, since it proved it fits the two

criterion stated at the beginning of this section. However, an interesting question to pose would

be whether there would be improvements in accuracy, given it was provided more information

to the model, aside from solely each one’s names, during the training phase.

Figure 35: Confusion Matrix for the model trained on A, B and C1­C3, and tested on C4 and C5, with a
sample extraction stride of 1 frame.

The results of the second model’s evaluation can be misleading if the reason behind user 0’s

accuracy is left unexplained. All other subjects’ accuracies either rose or maintained, apart from

a slight and almost irrelevant drop for user 7. Had it not been for the colossal drop for subject 0,

the overall accuracy would definitely increase from the one achieved by the previousmodel. The

two potentially great influencing factors were that, firstly, for tasks A and B user 0 wore glasses,

whereas for task C all 9 participants performed without glasses, secondly, subject’s 0’s name is

shorter than the average name length among the 9 subjects. These two aspects combined in

having the network train on a quite short amount of “non­wearing­galsses” samples for user 0.

For instance, subject 4 also performed A and B with glasses and C without, however, user 4’s

name is actually longer than the average among all participants. Thus, that should explain the

reason behind the drop in accuracy for subject 0 but not for subject 4.

In conclusion, disregarding the effect of user 0 for the reasons presented above, the total
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accuracy increased from 93.777%, for the first model, to 95.823%, for the second model. This

proves, once again, the theory that the more diverse information is given during training, the

better the network can generalize for other data.

5.1.4 Experiment 4

This fourth and final experiment had the goal to assess whether the network, trained solely

with subjects mouthing their names (activity C), would be induced in error given the case that

one user uttered another one’s name. The idea was to understand how replicable could the

pronunciation of a subject’s name be by other users. For instance, if themodel predicted anyone

who said subject 0’s name to be subject 0, then the hypothesis that this methodology could serve

as a good biometric would be refuted.

In order to evaluate this scenario, the same model built for the experiment on section 5.1.3

was used, in which the training was done with tasks C1­C3. The testing, however, was con­

ducted with activity E. Indeed, it is important to note that task E is comprised of all nine subjects

mouthing every other user’s names. Therefore, to assess the performance of the model, two

different statistical results were withdrawn. The first one being a standard confusion matrix,

whereas the second being a set of nine matrices, one for each subject, each with nine rows and

nine columns. Each matrix row represents the number of the subject whose name was uttered,

while each column is the number of the user predicted by the model. For instance, for matrix

number k, cell (i, j) contains a percentage representing how many times the model predicted

subject k to be j, while subject k mouthed user i’s name, thus, the sum of all values of each

row should be 1. In addition, since task E does not contain subjects pronouncing their own

name, row i, in which i = k, is all zeros. A visualization on figure 36 is provided for clarification

purposes.

In addition, this tool allows to determine whether the final prediction of the whole video is

correct, incorrect or inconclusive using the following criteria, given a matrix Mk, k being the

number of the speaking subject:

• Correct: For a row, i, and a column, j: Mk(i, j) > 0.5, j = k.

• Incorrect: For a row, i, and a column, j: Mk(i, j) > 0.5, j ̸= k.

• Inconclusive: For a row, i, and any column, j: Mk(i, j) < 0.5, ∀j.

An additional illustration of two use­cases for user 3 are provided on figure 37.
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Figure 36: Evaluation Matrix Visualization

Figure 37: Evaluation Matrix Example

On one hand, the first scenario shows that the model predicted subject 3 to be subject 3

more often than not. For example, for the clip in which subject 3 mouthed user 6’s name (row

6), 90% of the time it correctly recognized user 3, while 10% of the time it classified it as user 8.

On the other hand, for the second scenario, the model predicted user 3 to be the subjects whose

name was being uttered. For instance, for the clip in which user 3 pronounced user 6’s name,

the matrix shows that, for 90% of the samples in the video, the model predicted the speaking

subject to be user 6 (incorrectly) and for user 10% to be user 3.

Regarding the actual results from the experiment, figure 38 illustrates the confusion matrix

for the general evaluation of the model’s performance.
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Figure 38: Confusion Matrix for the model trained on C1­C3 and tested on E, with a sample extraction
of 1 frame.

As it can be confirmed on the bottom right cell, the total accuracy for all samples was 78.85%,

which is quite a decrease relative to the testing set used in the experiment of section 5.1.3.

Furthermore, it can be concluded that there was a lot of confusion for subject 1 and 6. The

model predicted user 1 to be 0 and 3 almost 45% of the time, meanwhile for user 6 the model

confused it to be subjects 3 and 7 almost 44% of the time. This comes across as somewhat

natural given the low diversity of the training used to build the model. Figure 39 presents the

results in the nine­matrices format further detailing how each clip was perceived by the model.

It can be observed that generally all matrices follow the pattern of the good scenario de­

scribed in figure 37. The confusion for users 1 and 6 that was depicted in the confusion matrix

can also be found in this data representation, since for the fact that, in the case of subject 1,

columns 0 and 3 are both slightly highlighted. Furthermore, an interesting point this evaluation

tool makes is that for some clips the final prediction of the model was, in fact, inconclusive or

wrong. For instance, for subject 1 rows 0 and 7 are inconclusive, while the others are correct.

Besides, for user 6, rows 1, 3 and 8 are incorrect, whereas the others are correct. Apart from

that, there are no clear signs of the bad case depicted in figure 37. Therefore, it can be con­

cluded that the model might be wrong for these type of scenarios, but not necessarily fooled.

The spoofing would be working, only if the data representation would take a shape like the

second scenario illustrated in figure 37.
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Figure 39: Nine Evaluation Matrices. Red cells are closer to 1, while blue cells are closer to zero.
Furthermore, zero cells were omitted for cleaner visualization. On a final note, some row sums might not
be exactly 1 because of rounding of the values.

Finally, to check the effect of a more diverse training stage on the network’s performance,

it was also used a model trained on A1, B1 and C1­C3. The results are shown for the same

data representations as before, on figures 40 and 41. However, it is important to note the defect

described for user 0 in section 5.1.3 that caused a drop in the model’s recognition accuracy for

that subject.

As it can be noticed from figure 40, the total accuracy rose from the previous test. Further­

more, all users, but expectantly user 0, saw an increase in accuracy. Disregarding subject 0’s

effect on the results, the total accuracy rose from 78.298% to 88.631%, which is an extra 10%

overall.

Similarly to the experiment on section 5.1.3, and ignoring the accuracy drop of predictions

on user 0, there is a general improvement of the model’s performance for all subjects, as figure

41 shows. For the case of subject 1, all rows are now correct, meanwhile for user 6 all rows

are correct, but for one inconclusive one (row 5). Therefore, once again it was proved that the

models benefit from diverse training regimens.
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Figure 40: Confusion Matrix for the model trained on A1, B1 and C1­C3, and tested on E, with a sample
extraction of 1 frame.

5.2 Stage III ­ 40 speaking subjects

This final stage had the aim to assess the scalability of the network, meaning if it would still per­

form well for a larger universe of subjects. In order to do so, the first three studies conducted

for the previous stage were replicated for the new set of subjects. However, the sample extrac­

tion stride was increased to 2, for the increment of the number of users represented a colossal

increase in the amount of data to be processed. Given the available tools, a stride of 1 would

make the data volume insurmountable to be processed and, thus, a stride of 2 was chosen to

cut that volume in half. Furthermore, the details of each experiment replication are listed below.

1. Train a model on tasks A1 and B1, and test it on tasks A2 and B2.

2. Train one model on activity A and another one on B, and test them on task B and task A,

respectively.

3. Train one model on tasks C1­C3 and another one on A, B and C1­C3, and test them both

on activities C4­C5.
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Figure 41: Nine Evaluation Matrices for a more diversely trained model.

5.2.1 Experiment 1

This first experiment had exactly the same procedure as the one on section 5.1.1, the only dif­

ference being that during training the size of the batch forwarded into the network was increased

from 12 to 32, which was the maximum value the available hardware would allow. This had the

purpose to aid the network to iterate on more samples and, thus, improve the generalization

between all classes. Ideally, this number would be greater than the total number of classes, so

as to allow the model to update its parameters based on an evaluation done over more classes

at a time. Apart from that, regarding the evaluation of the trained model, a confusion matrix is

provided in figure 42, along with an accuracy histogram for each on of the subjects in figure 43.
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Figure 42: Confusion Matrix for the model trained on A1 and B1, and tested on A2 and B2.

Figure 43: Accuracy Histogram for each subject.
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As figure 42 illustrates, no clear confusion between any two users is too relevant. Moreover,

the final accuracy of this model was 98.439% and as figure 43 shows, the accuracies per user

ranged from nearly 90% up to 100%. Therefore, it can be concluded that, under these training

conditions, the network has the potential to scale and be highly effective even for larger sets of

speakers.

5.2.2 Experiment 2

This experiment had the goal to ensure that the second experiment of the second stage was

scalable. For the purpose of making it more complete, two models were built, one trained on

activity A and tested on activity B, and another the other way around. Figures 44 and 45 show

the results for the performance test of the first model, while figures 46 and 47 exhibit the outcome

of the performance test for the second model.

Figure 44: Confusion Matrix for the model trained on A and tested on B.
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Figure 45: Accuracy Histogram for each subject. Model trained on A and tested on B.

Figure 46: Confusion Matrix for the model trained on B and tested on A.
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Figure 47: Accuracy Histogram for each subject. Model trained on B and tested on A.

The overall accuracy for the first model was 95.287%, while the second one had a total of

94.809%. However, despite the apparently good generic performance of the models, it can be

noticed a big failure from both of them regarding subject 34. Indeed, it was only noticed at the

generation of these results, that the user 34 event data from task A was slightly altered, for the

camera lens was somewhat unfocused. Hence, the way events were triggered for this subject

differed between the two tasks. Consequently, since facial appearance information from event

data is quite imperceptible and due to the temporal evolution being disparate between the two

tasks, the models had great difficulty recognizing that user. The first model clearly made almost

random predictions between four different users, as column 34 shows on figure 44, whereas the

second model made its predictions particularly around a set of three different subjects, although

being more certain for one of the wrong users.

Nevertheless, there are great results overall for most users. It cannot be left unnoticed,

though, that for some subjects the models did not find much replicability of facial stimuli between

the two tasks. Moreover, it is important to refer that nursery rhyme A is slightly longer than B,

thus, the model trained with A had more data to train with than the one trained with B, which

explains the slight drop in recognition rates from the first model to the second one.

On a conclusive note, this experiment was crucial to detect some of the weaknesses of this

implementation. Namely, since no facial normalization, alignment or segmentation are done

over the images, this methodology relies solely on the networks’ capacity to extract features on

its own and, thus, is prone to failure on situations in which the training data is largely different

from the testing data. This, definitely, questions the reliability of this implementation in a less

controlled environment.
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5.2.3 Experiment 3

Regarding this final experiment, the main objective was to determine whether models built on

data of the sort of task C would still stand as potentially useful, and perform at a reasonable

level. One of the biggest factors that could spoil the task C trained models is the scarcity not

only of data, but also of diverse data. In any case, the evaluation of the model trained solely on

activities C1­C3 is depicted in figures 48 and 49.

Figure 48: Confusion Matrix for the model trained on C1­C3 and tested on C4 and C5.

As it can be observed in figure 48, there seems to be very little confusion of the model on

any particular pair of subjects. However, the model’s confidence window for each user suffered

a slight drop, ranging from just below 75% and 100%, which is, yet, quite acceptable. Overall,

the accuracy of the model for this testing set amounted to 95.213%, still a highly reasonable

rate of recognition, proving that, even for this kind of data, the model does not fail to scale.

Furthermore, to assess if the model would perform even better provided a richer and more
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Figure 49: Accuracy Histogram for each subject.

diverse training procedure, the model trained on A, B and C1­C3 was evaluated over the same

testing set. The results are illustrated in figures 50 and 51.

For the case of figure 50 it can be appreciated that not a lot of confusion was made by the

model, yet again. Besides, figure 51 reveals a great increase in recognition rates for every

subject, apart from user 0, which is still affected by the same issue described in the previous

stage, on section 5.1.3. Nevertheless, and aside from subject 0, it can be noticed that the

majority accuracy values below 90% (red and yellow) rose, in fact, above the 90% mark, thus,

proving the importance of diversity in training for better model generalization, once again.
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Figure 50: Confusion Matrix for the model trained on A, B and C1­C3, and tested on C4 and C5.

Figure 51: Accuracy Histogram for each subject.

57





6 Conclusions and Future Work

In conclusion, this work’s research contributed to the thesis that facial dynamics is, in fact, a

discriminatory trait that aids the process of facial perception and, thus, has great potential to

be a strong and robust biometric. Furthermore, it was demonstrated that the I3D network was

successful at performing facial recognition tasks and not only what it was first conceived to do ­

action and gesture recognition. Alike the work on [3], the network proved to operate extremely

well, even for sparse data such as events. Not only that, but also the fact that the network

was able to maintain high performance levels even for a scaling of the universe of subjects was

notable. Naturally, and as expected, it was also concluded that the more visemes and facial

expressions shown to the models during training, the better it will do at generally recognizing a

subject during the testing stages, independently of what the subject may be saying. Moreover,

this work proved that the potential of data provided by Neuromorphic Vision Sensors does not

stall in the realm of solely face detection and alignment, but, indeed, is expandable to theoret­

ically more complex tasks such as facial recognition. However, the methodology used in this

work is not infallible to the use of glasses, due to the fact that there is not an isolation of facial

dynamics from facial appearance, thus, the models consider glasses as part of the facial identity

of a person. Nevertheless, interestingly, for subjects, who did not wear glasses for training, the

network was still capable of identifying the person when glasses were worn during testing. For

a real application system, this might mean that subjects only have to remove their glasses for

training stages, while being allowed to wear them when being verified (analogous to the testing

phase). Possibly, this is something that can be done with Neuromorphic Vision data, along with

spatio­temporal classification, but not with an analysis over single light­intensity­frames, such

as RGB or gray­level. Certainly, this is quite an interesting point to be further investigated.

Regarding possible paths and further questions to be studied, apart from the one mentioned

previously, the integration of this methodology in a real­time system would be extremely com­

pelling and easy to execute. Additionally, a performance and robustness comparison between

Grayscale images and the combination of Grayscale with Events is a highly relevant study and

should definitely be further delved into. In relation to the particular methodology applied in this

work, there should be more precise solutions for the face normalization and alignment problem,

both offline and in real­time. Furthermore, additional studies could focus on possible spoofing

mechanisms and formulate techniques that could prevent them from being effective. Finally, the

technology used in this work to process event­data is far from being computationally inexpen­

sive. Essentially, for standard image processing techniques to be used, sparse data ­ the event
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cloud ­ is converted to dense information ­ the event frame ­ which is redundant for most pixels.

Definitely, a more elegant and less taxing methodology would be to process the spatio­temporal

data directly over the point clouds, which is already done for other types of work. Moreover, the

use of Graphs Neural Networks or even Spike Neural Networks would clearly be a better ap­

proach with the view to reduce the computational cost. This reduction in computational expense

would benefit the practicability of integration of this technology in a real­world system.
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Appendices

I Neuromorphic­VisionDataset for Facial Dynamics Specifications

This appendix serves the purpose to detail the layout of the Dataset built for this thesis. The

whole folder tree is presented in figure 52.

DATASET

FixedMode

userAAA

taskBB

recordingCC

pointcloud.csv

LoopMode

Events

userAAA

taskBB

recordingCC

pointcloud.csv

Grayscale

userAAA

taskBB

recordingCC

grayscaleframes.png
AAA = [000 .. 039]
BB = [01 .. 05]
CC = [01 .. 08]

Figure 52: Dataset Folder Tree

Firstly, there are two main folders: FixedMode and LoopMode. The FixedMode folder contains

solely “Comma Separated Values (csv)” files with Event Clouds, whereas LoopMode accommo­

dates both Event Clouds and Grayscale Frames. However, despite having the same tasks, the

data on these folders were recorded separately. That is to say, that the subjects had to record

everything twice, one for each camera modality.
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Secondly, the structure inside the two main directories has the subjects listed (userAAA),

followed by the tasks (taskBB) and, lastly, each recording instance (recordingCC) for each

task. More detailed information is provided by tables 5 and 7. Table 5 describes each and

every activity performed by the subjects, whereas table 7 reveals which activity was done on

each recording of each task.

Table 5: Task Activity Description

Activities Description

A1 Read Nursery Rhyme A
A2 Read half of the Nursery Rhyme A
B1 Read Nursery Rhyme B
B2 Read half of the Nursery Rhyme B
C Pronounce Full Name
D Odd videos for spoofing attempts10
E People mouthing the others’ names11

Regarding activity D, to be more specific than the remark on (10), user000 did not wear

glasses, while user001 wore user000’s glasses. Meanwhile, concerning activity E, going be­

yond the remark on (11), for the general cases of user000, user003, user006 and user008 the

correspondences between recording number and the number of the user’s name pronounced

go as follows in table 6.

Table 6: Recording Number to User Number Correspondence

user000 ... user003 ... user006 ... user008
Rec. No. User. No. Rec. No. User. No. Rec. No. User. No. Rec. No. User. No.

1 1 1 0 1 0 1 0
2 2 2 1 2 1 2 1
3 3 3 2 3 2 3 2
4 4 4 4 4 3 4 3
5 5 5 5 5 4 5 4
6 6 6 6 6 5 6 5
7 7 7 7 7 7 7 6
8 8 8 8 8 8 8 7

10Only user000 and user001 completed this activity.
11This was only done between the first 9 subjects of the dataset.
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Table 7: Task Layout Throughout the Recordings

Task Number

task01 task02 task03 task04 task05
R
ec
or
di
ng

N
um

be
r

recording01 A1 B1 C1 D E

recording02 A2 B2 C2 D E

recording03 ­ ­ C3 ­ E

recording04 ­ ­ C4 ­ E

recording05 ­ ­ C5 ­ E

recording06 ­ ­ ­ ­ E

recording07 ­ ­ ­ ­ E

recording08 ­ ­ ­ ­ E

Lastly, one final remark goes to the point cloud files of each modality. On one hand, for the

FixedMode event clouds, the event information goes as follows:

[timestamp, x, y]

Also, the timestamp column does not start at zero and the events are not sorted. On the

other hand, for the LoopMode clouds, the event information has one extra parameter:

[frame_number, timestamp, x, y]

The frame_number column links each event to a grayscale frame, which synchronizes both

data channels. For instance, the event point represented by [10, t, x, y] occurred some­

where after frame 10 and before frame 11. In addition, just like the case of FixedMode, LoopMode

clouds are not sorted by timestamp. Nonetheless, the frame_number column is sorted.
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II Nursery Rhymes

The Portuguese Nursery Rhymes used for the first two tasks of the subject task protocol for the

NVSFD Dataset were extracted from the website https://www.slideshare.net/MaraPinto2/

lengalengas-5967731. The first task used the one named “Gato Maltês”, meanwhile the sec­

ond used “O que está na varanda?”.

Gato Maltês

Era uma vez

Um gato maltês

Tocava piano

E falava francês

Queres que te conte outra vez?

Era uma vez

Um gato maltês

Saltou­te às barbas

Não sei que te fez

Queres que te conte outra vez?

Era uma vez

Um gato maltês

Tocava piano

Falava francês

A dona da casa

Chamava­se Inês

O número da porta era o 33!

Queres que te conte outra vez?

Era uma vez

Uma galinha perchês

E um galo francês

Eram dois

Ficaram três...

Queres que te conte outra vez?
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O que está na varanda?

O que está na varanda?

Uma fita de ganga.

O que está na panela?

Uma fita amarela.

O que está no poço?

Uma casca de tremoço.

O que está no telhado?

Um gato malhado.

O que está na chaminé?

Uma caixa de rapé.

O que está na rua?

Uma espada nua.

O que está atrás da porta?

Uma vara torta.

O que está no ninho?

Um passarinho.

Deixa­o no morno.

Dá­lhe pãozinho.
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