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Abstract

Facial recognition research has been around for longer than a half-century, as of today. This
great interest in the field stems from its tremendous potential to enhance various industries,
such as video surveillance, personal authentication, criminal investigation, and leisure. Most
state-of-the-art algorithms rely on facial appearance, particularly, these methods utilize the static
characteristics of the human face (e.g., the distance between both eyes, nose location, nose
shape) to determine the subject’s identity extremely accurately. However, it is further argued
that humans also make use of another type of facial information to identify other people, namely,
one’s idiosyncratic facial motion. This kind of facial data is relevant due to being hardly replicable
or forged, whereas appearance can be easily distorted by cheap software available to anyone.

On another note, event-cameras are quite recent neuromorphic devices that are remark-
able at encoding dynamic information in a scene. These sensors are inspired by the biological
operation mode of the human eye. Rather than detecting the light intensity, they capture light
intensity variations in the setting. Thus, in comparison to standard cameras, this sensing mech-
anism has a high temporal resolution, therefore it does not suffer from motion blur, and has
low power consumption, among other benefits. A few of its early applications have been real-
time Simultaneous Localization And Mapping (SLAM), anomaly detection, and action/gesture
recognition.

Taking it all into account, the main purpose of this work is to evaluate the aptitude of the tech-
nology offered by event-cameras for completing a more complex task, that being facial identity
recognition, and how easily it could be integrated into real world systems. Additionally, it is
also provided the Dataset created in the scope of this dissertation (NVSFD Dataset) in order to

facilitate future third-party investigation on the topic.

Keywords: Neuromorphic Vision; Facial Identity Recognition; Event-Cameras; Facial Dynamics;

NVSFD Dataset






Resumo

A investigacdo na area do reconhecimento facial existe ja ha mais de meio século. O grande
interesse neste topico advém do seu tremendo potencial para impactar varias industrias, como
a de videovigilancia, autenticagéo pessoal, investigagao criminal, lazer, entre outras. A maioria
dos algoritmos estado-da-arte baseiam-se apenas na aparéncia facial, especificamente, estes
métodos utilizam as carateristicas estaticas da cara humana (e.g., a distancia entre os olhos,
a localizagédo do nariz, a forma do nariz) para determinar com bastante eficacia a identidade
de um sujeito. Contudo, é também discutido o facto de que os humanos fazem uso de outro
tipo de informacao facial para identificar outras pessoas, nomeadamente, o movimento facial
idiossincratico de uma pessoa. Este conjunto de dados faciais é relevante devido a ser difi-
cil de replicar ou de falsificar, enquanto que a aparéncia é facilmente alterada com ajuda de
ferramentas computacionais baratas e disponiveis a qualquer um.

Por outro lado, camaras de eventos sao dispositivos neuromorficos, bastante recentes, que
sdo 6timos a codificar informagao da dindmica de uma cena. Estes sensores sao inspirados
pelo modo de funcionamento biolégico do olho humano. Em vez de detetarem as varias inten-
sidades de luz de uma cena, estes captam as variagdes dessas intensidades no cenario. De
modo que, e comparando com camaras standard, estes mecanismos sensoriais tém elevada
resolugao temporal, ndo sofrendo de imagem tremida, e sdo de baixo consumo, entre outros
beneficios. Algumas das suas aplicagbes sao Localizacdo e Mapeamento Simultaneo (SLAM)
em tempo real, detegdo de anomalias e reconhecimento de agbes/gestos.

Tomando tudo isto em conta, o foco principal deste trabalho é de avaliar a aptiddo da tec-
nologia fornecida pelas camaras de eventos para completar tarefas mais complexas, neste
caso, reconhecimento de identidade facial, e o quao facil sera a sua integragdo num sistema
no mundo real. Adicionalmente, é também disponibilizado o Dataset criado no dmbito desta

dissertagao (NVSFD Dataset) de modo a possibilitar investigagéo futura sobre o tépico.

Palavras-Chave: Visdo Neuromorfica; Reconhecimento de Identidade Facial; Camaras de Eventos;

Dinadmica Facial; NVSFD Dataset
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1 Introduction

This chapter has the objective to state the thesis of this dissertation, discuss the objectives and

contributions, and preview the structure of the document.

1.1 Context and Motivation

Face Recognition algorithms have been around for the past half-century and have maintained
their relevance and interest around the Computer Vision research community, thus far. This
comes by as no surprise for there is still room for enhancements in robustness and compu-
tational cost despite the already great recognition rates. Consequently, a wide range of tech-
niques have been explored and proposed with the intention of achieving these goals.

Furthermore, a trending philosophy of problem solving and algorithm implementation is ris-
ing, especially in the field of Computer Vision - bio-inspired techniques. Like the name suggests,
the concession of these types of methodologies are inspired by biological systems, in a way that
the techniques emulate their functioning. Since everything in nature operates very efficiently
and optimally due to the countless years of evolution, it is wise to design systems that mimic its
behavior. Thereupon, and regarding facial recognition, the variables humans take into account
in the face perception process have been examined. It has been concluded that apart from the
static appearance of a face, its characteristic movement also conveys a lot of information on
which humans naturally rely on to recognize someone’s facial identity [1].

Along with it, a new bio-inspired sensor has taken the Computer Vision and Robotics world
by storm - Neuromorphic Vision Sensors - also known as Event-Cameras. This kind of cam-
eras are inspired by the biological working of the human retina. Unlike conventional cameras
that output intensity images at a constant frame rate, Event-Cameras asynchronously measure
light variation on each pixel and output a stream of events that encode time of activation, pixel
position and sign of the variation (polarity). This type of sensor has a number of advantages
over the standard camera, such as: high temporal resolution (in the order of us); very high dy-
namic range (140 dB), which allows it to perform under extreme lighting conditions; low power
consumption, since there is no need to process light information throughout the whole frame,
just a simple asynchronous calculation of light variation at each pixel; high pixel bandwidth (in
the order of the k£ H z) which contributes to motion blur reduction [2].

This type of sensors are already used in many Computer Vision and Robotics applications,
such as Object Detection and Tracking, Gesture Recognition, Face Detection, Anomaly Detec-

tion and SLAM, however, very little work has been published with focus on Facial Recognition.
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1.2 Objective

The main purpose of this work is to explore the potential of Neuromorphic Vision Sensors to
perform a complex task in facial recognition through facial dynamics derived from speech and
to validate how contributory facial motion is for face perception. Secondly, a complementary
aim is to publish a Neuromorphic Facial Motion Dataset, which not only served this work’s

investigation, but also to ease and allow further research on this topic.

1.3 Contributions

The two main contributions of the work developed in the scope of this dissertation are firstly,
the creation of a novel approach to perform facial recognition tasks using Neuromorphic Vision
Sensors, facial dynamics and a network architecture first conceived to perform action classifi-
cation, and, secondly, the publication of the Dataset utilized to complete this work with the view
to grant the continuity of investigation on this field.

Important Disclaimer: All the participants who volunteered to take part in the Dataset formally

consented its use for this work and future third-party investigation.

1.4 Dissertation Structure

This document is divided in six different chapters, of which the first one - Section 1 - is the
current one and has introductory purposes. Secondly, in Section 2, some background scientific
context is given so as to introduce important concepts about this subject. Subsequently, in Sec-
tion 3, some relevant applications and studies conducted among the researching community,
which contributed or inspired this work in some way or another, are covered and delved into.
Thereafter, Section 4 deep dives into the actual work that was conducted in order to prove and
defend the thesis of this dissertation. Later, on Section 5, the outcome of the work described in
the previous section is carefully reported and discussed intending to clarify some of the ques-
tions raised in the scope of this thesis. Finally, Section 6 summarizes all the relevant aspects
presented in previous sections, and sheds a light on possible future research paths and on

further questions that still need to be answered.



2 Background Knowledge

In this section, a batch of important concepts is presented to better understand the intricacies

of this work, while introducing some fundamental terminology as well.

2.1 Neuromorphic Vision Sensors

Neuromorphic Vision Sensors, commonly referred to as Event-Cameras, have a distinctive op-
erating mode from standard cameras, as mentioned previously in the section 1.1. For better
understanding of the functioning of the camera a visualization is provided with a simple case
on figure 1, with two different situations being portrayed. The first scenario (figure 1a) has the
camera capture a non-rotating disc with a black dot on it, and since there is no movement on
the scene, the event camera does not output any information for there is no light variation,
while a standard camera would still capture a sequence of frames at a fixed rate. On the latter
case (figure 1b) the disc is rotating, which induces variation of light in the scene caused by the
circular motion of the black dot, consequently, triggering the Event-Camera to output a three
dimensional point cloud composed of spatial and temporal information. Each element of the
point cloud can be represented by a triad as shown in equation (1) and it is usually designated

as an Event, ¢;.

er = (T, Yk, tr), VE (1)

The (z1, yx) pair represents the pixel location on the frame where the event was triggered,
while ¢ represents the time at which the event occurred. Thus, e, represents the k-th occur-
rence of an event. Nevertheless, at a higher tier of event encoding, both the sign and value of
light variation can be contemplated, which in turn gives way to a richer descriptor of the event,

presented in equation (2).

ex = (Tk, Yk, th, D> V), VK (2)

The sign of the light change that triggers an event is commonly referred to as Polarity, rep-
resented by pk, and its value is 1 for Positive variation of light and —1 for Negative variation.
On the other hand, the value of the change of light represents how steep that variation was.

However, for this work, only the event descriptor given by equation (1) was used.
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Time

(a) Event Camera Output (No Output) vs. Standard Camera Output (Frames), without movement on the scene.

v

Y

Time

(b) Event Camera Output (Magenta) vs. Standard Camera Output (Rotating Disc Frames), with movement on the
scene.

Figure 1: Event Camera Output (Magenta) vs. Standard Camera Output (Rotating Disc Frames) both
with and without movement on the scene captured from the angle of the Red Camera.

2.2 Frame Representation of Events

The intrinsic nature of an Event-Camera output makes any kind of conventional image process-
ing like a Convolutional Neural Network (CNN), also known as ConvNet, seemingly unfeasible
to process it. In fact, there are methodologies that work directly over the event cloud. How-
ever, since research using intensity images is decades ahead of the one using event clouds,
not only is it viable to use the already available techniques, but it could also present itself as
more advantageous. Yet, the event data must, first, be adapted to work with those conventional
techniques, which implies converting the point clouds to frames. In order to do that, a Frame
Time must be chosen - this is the time taken to accumulate all the events that will take part of
each frame. Naturally, it will both determine the frame rate and also how many events contribute
to the construction of each image. The image on figure 2 illustrates the concept.

This process, in turn, carries its own disadvantages. One could argue that this type of
data formatting neglects the inherent higher temporal resolution of these cameras. Moreover,
another argument is that converting a sparse set of data into a dense set such as an image
frame, will result in the unavoidable increment of the data size. For instance, if there is a small
number of events on a scene, the converted frames will have a lot of pixels set to 0, which is

redundant. On the flip side, a Point Cloud solely conveys information about the activated pixels,

4
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Figure 2: Event-Cloud to Event Frames: This image portrays a small proportion of the event cloud
(magenta) and the event frames (black and white) constructed from it. The temporal slice between both
frames is called the Frame Accumulation Time or simply Frame Time. All events triggered during this
period will be used to build the next event frame.

hence, cutting down the size of the whole video sequence.

Despite the two valid arguments presented, none of them pose too big of a problem for the
intended analysis of this work. Perhaps the temporal resolution loss with the conversion may
be a factor that might have had a small impact on the results, and should further be studied,
however, it was not relevant enough throughout the experimentation process of this work. Fur-
thermore, many other studies have had exceedingly satisfactory results using these types of

event representation.

2.21 Binary Event Representation

The Binary Event Representation is the simplest representation method to implement. Conse-
quently, it also is the one which conveys the least amount of information. In essence, during the
frame accumulation time if an event is triggered at least once, it immediately sets that pixel to
its maximum value. In other words, a pixel is either ON or OFF. This, of course, neglects all the
temporal resolution of the event cloud that was generated during that frame time. Furthermore,
it is especially susceptible to event noise, meaning all noisy events will have the same value as
other relevant and, perhaps, more frequent ones. The event frame on figure 3 depicts a real
example of an image frame built using this Binary Representation.

Every single pixel that was acitvated during the Frame Accumulated Time is represented with
maximum intensity on the image frame. In turn, this makes it hyper sensitive to any existing
noise in the scene. For its loss of temporal information, this method was not taken into account

on any of the experiments.
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Figure 3: Example of a Binary Event Frame: This is a Binary Event frame of a user face integrated
during 40ms. The yellow frame pixels have the maximum intensity, whereas the dark blue colored pixels
have the lowest intensity.

2.2.2 Temporal Binary Representation

The Temporal Binary Representation (TBR) was first proposed by [3]. Its core concept is based
on slicing the Frame Accumulation Time evenly, in a predetermined number of slots. For demon-
stration purposes, figure 4 illustrates the idea with a practical example. Additionally, the algo-

rithm used to compose a TBR frame is depicted in algorithm 1.

Frame Time

Pixel K 5 time
— 00— *>—o . : “‘ >

Pixel K

Bin0O Bin1 Bin2 Bin3 Bin4 Bin5 Bin6 Bin7

Figure 4: Temporal Binary Representation Frame Pixel Construction: During the Frame Time, Pixel K
was activated multiple times (magenta dots). The Frame Time is then divided in 8 time bins and for any
activation during N-th Bin, that Bin is immediately activated. Thus, this means that the final value of Pixel
K for this current Frame is (10101101)2 = (173)10.
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Algorithm 1: Algorithm for constructing a TBR frame.
Data: All Event Cloud Points that occurred during the Frame Accumulation Time

BINyNo < Number of Total Bins;
AT < Frame Time;

to « Initial Timestamp of the Frame;
F < Frame to be constructed,

for Each Incoming Event given by (z;,y;, t;) do

bing, + floor(Lil® x BINNo) ; /* get the slot number */
pizelyy, < decimal2binary(F(z;,v:));
if pizely;, [bin,] = 0 then

F(xi,y;) < F(xi, 1)) + 20, /* activate bin, if not already */

end

end
Result: F

The image presented in figure 5 is an example of a final frame constructed through this
representation. It is clear that the most active facial features are more noticeable, meaning

those were the regions with most movement on the scene.

Figure 5: Example of a Temporal Binary Representation Frame: This is a TBR frame of a user face
integrated during 40ms. It can be observed that there is a lot less noise compared to the previous
method. Moreover, the intensity variations are noticeable

A great feature of this methodology compared to the others ones is that exact temporal in-

formation of the events is encoded in each pixel. Although still losing temporal resolution, this
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method has (BINyo)x more resolution than the Binary Event Representation. Namely, if the
total number of Bins is 8, BINyo = 8, then it has 8x more resolution. In fact, if BINyo = 1,
then they are the same representation. However, this feature is slightly altered if some affine
transformations are applied to the image, which makes it rather irrelevant when data augmen-
tation is used in the training phases of a Neural Network. Nevertheless, it is just as valid and

useful a representation as the other ones.

2.2.3 Surface of Acitve Events

The Surface of Active Events (SAE) is the oldest frame representation [4] but equally effective
and simple to implement. Similarly to TBR, it is a timestamp normalization technique, yet, in-
stead of time discretization through time slots, it works directly with the time value normalization.

The algorithm 2 depicts how a SAE uint8 frame can be constructed.

Algorithm 2: Algorithm for constructing a SAE frame.
Data: All Event Cloud Points that occurred during the Frame Accumulation Time

AT « Frame Time;
to < Initial Timestamp of the Frame;
F' < Frame to be constructed;

for Each Incoming Event given by (z;,y;,t;) do
| F(2,;) = round(255 - Ll0)

end

Result: F

Figure 6 displays an exmaple frame obtained through the SAE representation. As it can be
observed, this is a method that is quite rich in terms of the amplitude of values, so regions of

high activity are quite emphasized.
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Figure 6: Example of a Surface of Active Events Frame: This is a SAE frame of a user face integrated
during 40ms. Itis noticeable that this representation, while low on noise, has the dynamic features of the
face highly emphasized.

2.2.4 Time Surface

The representation of Time Surface [5], also called Surface of Time, is a similar approach to
SAE. Both methods construct a surface that encodes the timestamp of the last activation of each
frame pixel. However, this methodology, not only takes into account the events that occurred
during the current Frame Time, but also pixels triggered prior to that, depending on a time
decaying factor, . To put it in another way, this decaying factor gives memory to each event
so its influence is felt throughout time, rather than just being a mere pulse. The work on [5],
suggests three different Decaying Time Surfaces: a Linear Decay Time Surface, an Exponential
Decay Time Surface and an Accumulated Exponential Time Surface (AETS), depicted by the
image on figure 7.

The first scenario represents events that occurred at a Pixel K during a certain period of time
and no decay is applied, therefore having no memory. In the second case, a linear decay is
applied, therefore in the Time Surface this pixel is active during more time. On the other hand,
the following methods implement an exponential decaying behavior to each event. However,
the latter of these two cases, accumulates activations, giving it more emphasis on regions that
are more frequently triggered.

The representation taken into consideration for this work was the last of all three - AETS.

Thus, solely that methodology’s formulation is covered in this section. The algorithm 3 demon-

"This figure was adapted from [5].
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Figure 7: Various Time Surface Decaying methods."

Eme

strates the pseudo-code to construct an uint8 AETS frame. Moreover, the picture on figure 8

portrays a resulting AETS frame. This is the method with the highest sensitivity to the movement

in the scene, apart from the Binary Event Representation.

Algorithm 3: Algorithm for constructing an AETS frame.

Data: All Event Cloud Points that occurred during the Frame Accumulation Time
7 < Decaying Factor (time unit);

S < Map of Timestamps (¢;);

P + Map of Event Polarity G <+ Surface of Time;

F <+ Frame to be constructed;

for Each Incoming Event given by (z;,y;,t;) do

S(xp, yr) « ts

P(zp,y) < 1;

if Last Incoming Event then

G+ (G+P)- exp(s_tk);

T

F<—round(255-$(61)); /* Only if Polarity is always positive */
end
end
Result: F

For this formulation, the temporal decay factor affects neighboring frames, giving the current

image some temporal history from past frames.
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Figure 8: Example of an Accumulation of Exponential Time Surface Frame: This is a AETS frame of a
user face integrated during 40ms.

2.2.5 Event Frequency Representation

The Event Frequency Representation was first proposed by [6]. The concession of this method-
ology was justified through the fact that the majority of events are triggered in regions that are
edges of the scene’s subject. In detail, this formulation relies on the frequency of activation of
a certain pixel - the more it occurs, the higher that pixel's value will be. Moreover, in conse-
quence, image noise is effectively reduced. Essentially, this is a simple map of counters that
is then normalized utilizing a normalization equation inspired by the "Sigmoid Representation”

proposed by [7]. The pseudo-code of this strategy is shown in algorithm 4.

Algorithm 4: Algorithm for constructing an Event Frequency frame.
Data: All Event Cloud Points that occurred during the Frame Accumulation Time

C + Map of Counter of Pixel Activations, initialized with zeros;
F < Frame to be constructed;

for Each Incoming Event given by (x;,y;,t;) do

Cl@r, yi) < Clop,yr) + 1;

if Last Incoming Event then

\ F(zg, yg) < 255-2 - ( —0.5)

1
1+exp(C(zk,yk))

end

end

Result: F
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The frame illustrated in figure 9 is an example of a resulting frame from this technique.
Although looking very similar to other representations, this construction has the drawback of
not contemplating time information in any way. Nonetheless, this fact did not pose a problem in

the experimental stages of this work, since the Frame Accumulation Time was short.

Figure 9: Example of an Event Frequency Frame: This is a Event Frequency frame of a user face
integrated during 40ms.

2.2.6 Leaky Integrate-and-Fire Event Representation

Finally, the last Event Representation covered in this work dives into a method denominated
Leaky Integrate-and-Fire (LIF) also proposed by [6], which is inspired in the Leaky Integrate-and-
Fire neuron model [8]. For illustration purposes, the image in figure 10 represents an elementary

representation of how a neuron operates.

Neuron

Voltage A ‘ ‘ ‘
(MP) 1 |
1 Y\ 1
|
Threshold
\}V
o
|

L L
0 JZ 212 time

Figure 10: High-level visualization of the functioning of a neuron for the LIF model. Input spikes raise
the neuron’s Membrane Potential (MP), which then fires once that Voltage exceeds a certain Threshold.
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Fundamentally, a neuron’s membrane is electrically charged and its voltage increases in
steps due to input spikes that discharge throughout time. In addition, the membrane potential
value decays at a fixed rate, provided no spikes occur in the meanwhile. Whenever the mem-
brane’s voltage exceeds a particular threshold, the neuron fires. Given this, an event image
representation analogy can be established. Assuming a Membrane Potential Map the size of
the image frame and regarding all events as input spikes, then the Neuron parallelism can be
set. Every time an event occurs at a pixel location it increases the value of the Membrane Po-
tential in that location. Unless there is a new discharge, its value will forever decrease at a fixed
rate until it is zero. The moment the Membrane Potential Map exceeds the stipulated threshold
at those coordinates, the image frame pixel fires at the corresponding location. The result-
ing frame is a Map of the number of times each pixel was fired. Intrinsically, it is a very similar
method to the Event Frequency Representation. Hence, it inherits its downsides. Both methods
are frequency-based, which neglects the temporal information given by the event cloud. Alike
its counterpart, this did not represent a problem in the experimental stages, quite the opposite

in fact.

The algorithm for this strategy is a little more extensive than the rest and since there is an
implementation of it online 2 [6], along with implementations for the Event Frequency Repre-
sentation and Surface of Active Events, it will not be presented in this work. Regardless, an

illustration of a resulting frame is provided in figure 11.

Figure 11: Example of a Leaky Integrate-and-Fire Frame: This is a LIF frame of a user face integrated
during 40ms.

https://github.com/CrystalMiaoshu/PAFBenchmark

13


https://github.com/CrystalMiaoshu/PAFBenchmark

Background Knowledge

2.3 Convolutional Neural Network (ConvNet)

The Convolutional Neural Network was first devised to recognize handwritten digits [9] three
decades ago, left disregarded for “it was impractical for real-world applications with complicated
images” [10]. Only to be revisited two decades later [11] for the ImageNet LSVRC-2010 contest
that attempted to classify over a million images into a thousand different classes, and be one of
the top performers.

The working principle of this type of architecture is based on adjusting two-dimensional fil-
ters that are convolved with the input image to extract features in the Convolutional Layers,
which in turn are compressed in the Pooling Layers and, sequentially, output the correct clas-
sification decision. In essence, each element of these filters corresponds to a neuron, hence
it is updated and optimized accordingly during training phases. Figure 12 illustrates well the

network’s pipeline.

g EE] - Features
-~ Extracted

= EE] -] =) Classification -
ad

-> EE] -]

Convolutional  Pooling
Layer Layer

Figure 12: Standard 2D ConvNet pipeline. This figure was adapted from [10]

By way of explanation, on one hand, a Convolution is a mathematical operation between
two signals. More specifically, for the case of ConvNets this operation is discrete and two-
dimensional. Essentially, the operation is computed between an image and a kernel, commonly
referred to as a filter. The operation requires the kernel to slide over the image and execute an
element-wise multiplication between the filter and the sub-matrix, which have the same dimen-
sions, followed by a sum of all results. The produced value is then placed in the corresponding
coordinates in the subsequent image. This calculation is demonstrated through a simple exam-
ple on figure 13.

On the other hand, there are various Pooling methods, of which the two most typically used
in these so