

Rodrigo António Marques Quelhas

SECURE AND CONNECT SMART-CONTRACTS TO THE OUTSIDE

WORLD

Internship report in the context of a Master's in Informatics Security, Specialization in
Blockchain Systems, advised by Professor Fernando Boavida and presented to the Faculty

of Sciences and Technology / Department of Informatics Engineering.

October 2021

SE
C

U
R

E
A

N
D

 C
O

N
N

EC
T

SM
A

R
T-

C
O

N
TR

A
C

TS
 T

O
 T

H
E

O
U

T
SI

D
E

W
O

R
LD

R
o

d
ri

go
 A

n
tó

n
io

 M
ar

q
u

es
 Q

u
e

lh
as

Faculty of Sciences and Technology

Department of Informatics Engineering

Secure and connect smart-contracts
to the outside world

Rodrigo António Marques Quelhas

Internship report in the context of a Master’s in Informatics Security, Specialization in
Blockchain Systems, advised by Professor Fernando Boavida and presented to the
Faculty of Sciences and Technology / Department of Informatics Engineering.

October 2021

Abstract

Smart contracts are an emerging and promising blockchain technology with a vast
set of use cases, which is recently getting more and more attraction due to the rise of
decentralized markets and applications. A few examples are decentralized finance,
electronic voting, real estate titling records, non-fungible tokens, and supply chain.

The fact that smart contracts run in decentralized systems makes them a viable
solution against single entity abuses, which is crucial to prevent corruption.

Unfortunately, a well-known limitation of blockchain systems is the lack of direct ac-
cess to real-world information (e.g., weather forecasts, stocks, and fiat prices). This
constraint makes the technology difficult to use when operations depend on data pro-
visioned by external sources due to the lack of trustfulness with the data providers.
Consequently, layer two solutions are necessary to solve the lack of trust and ex-
tend the features provided by the bare-metal of blockchain protocols. Layer two is
the term used to categorize technologies built on top of the underlying blockchain
protocol known as layer one.

The principal focus of the internship was to research and implement secure, reliable,
and cost-effective solutions that allow smart contracts to access and use real-world
information within the Tezos blockchain. As pointed above, access to external data
sources is not supported natively by blockchains, and advancements in this space
are necessary for the technology to become more robust and attractive for the less
experienced public.

Keywords

blockchain, chainlink, oracle, security, smart-contract, tezos, layer-2

iii

Resumo

Contratos inteligentes são uma tecnologia blockchain promissora com um vasto con-
junto de utilidades, sendo que têm recentemente ganho mais atração devido ao
crescimento das aplicações e mercados descentralizados. Alguns exemplos reais para
uso da tecnologia são o voto eletrónico, registos prediais para real estate, finanças
descentralizadas, criação de testemunhos não fungíveis e registo em cadeias de dis-
tribuição.

O facto dos contratos inteligentes viverem em sistemas descentralizados faz com que
os mesmos sejam uma solução viável no combate a abusos provenientes de entidades
singulares, sendo isso crucial na prevenção de corrupção.

Infelizmente, um problema bastante conhecido em sistemas blockchain é a impossi-
bilidade de acesso direto a informações externas, tais como, previsões meteorológ-
icas, preços de ações ou até mesmo rácios de câmbio. Esta limitação faz com que
a tecnologia seja difícil de usar com segurança quando as operações dependem de
informação provinda de fontes externas devido à necessidade de confiança para com
os distribuidores da informação.

Consequentemente, soluções de segunda camada são necessárias para mitigarem a
necessidade de confiança e estender as funcionalidades disponibilizadas pelas blockchains.
O termo "segunda camada" é usado para categorizar as tecnologias construídas por
cima dos protocolos nativos da blockchain, também categorizados como "primeira
camada".

O estágio teve como objetivo investigar e implementar soluções seguras, confiáveis
e de baixo custo que permitam aos contratos inteligentes acederem e usarem infor-
mação disponível no mundo exterior ao sistema blockchain. Como referido acima, o
acesso à informação provinda de fontes externas não é suportado nativamente pelas
blockchains, por isso, avanços neste espaço são necessários para que a tecnologia se
torne mais robusta e atrativa ao público menos experiente.

Palavras-Chave

blockchain, chainlink, oráculo, segurança, smart-contract, tezos, layer-2

v

Contents

1 Introduction 1
1.1 Scope . 1
1.2 Motivation . 2
1.3 Objectives . 3
1.4 Report Structure . 3

2 State-of-the-Art and Background 5
2.1 Introduction . 5
2.2 State-of-the-Art on Tezos . 5

2.2.1 What problems does Tezos aim to solve? 6
2.2.2 Smart Contracts & Formal Verification 7

2.2.2.1 High level languages: 7
2.2.3 Why using Tezos for developing smart-contracts? 9

2.2.3.1 Why do protocol upgrades usually take three months? 10
2.3 Known problems in smart-contracts 11

2.3.1 Reentrancy Vulnerabilities . 11
2.3.2 Scaling problems and access to real-world data 11

2.3.2.1 What are layer two solutions? 12
2.3.2.1.1 State Channels 12
2.3.2.1.2 Oracles . 12

2.4 State-of-the-Art in Oracle Solutions 13
2.4.1 The Oracle Problem . 13
2.4.2 Oracle Solutions . 14

2.4.2.1 Chainlink . 14
2.5 Smart contract applications . 15

2.5.1 Land Registry . 15
2.5.1.1 Adoptions in the real world 16

2.5.2 Escrow Services . 17
2.6 Conclusion . 18

3 Security Considerations 19
3.1 Introduction . 19

vii

Chapter 0

3.2 Replay Attacks . 19
3.2.1 What makes this attack possible? 19
3.2.2 How can it be prevented? . 20

3.3 Reentrancy Attacks . 20
3.3.1 What makes this attack possible? 20
3.3.2 How can it be prevented? . 21

3.4 Open Proxy Attacks . 21
3.4.1 What makes this attack possible? 21
3.4.2 How can it be prevented? . 21

3.5 Execution Order . 22
3.5.1 Breadth-first Search . 22
3.5.2 Depth-first Search . 22

3.6 Gas and Storage (Denial of Service) 23
3.6.1 How can it be prevented? . 23

4 Requirements and Design 24
4.1 Introduction . 24
4.2 Solution Requirements . 24

4.2.1 Purpose . 24
4.2.2 On-demand request model . 25

4.2.2.1 Non-optional contracts: 25
4.2.2.2 Optional contracts: 26
4.2.2.3 Provider requirements: 26
4.2.2.4 Escrow requirements: 27
4.2.2.5 Token requirements: 27
4.2.2.6 Consumer requirements: 28

4.2.3 Decentralized data model . 28
4.2.3.1 Aggregator requirements: 28

4.2.4 Contract Administration . 29
4.2.4.1 Multi-signature contract requirements: 29

4.3 High level design . 30
4.3.1 Multi-signature contract . 30

4.3.1.1 Storage interface . 31
4.3.1.2 Method interfaces 33

4.3.1.2.1 "proposal" entry point 33
4.3.1.2.2 "endorsement" entry point 34
4.3.1.2.3 "aggregated_proposal" entry point 34
4.3.1.2.4 "aggregated_endorsement" entry point . . . 35
4.3.1.2.5 "cancel_proposal" entrypoint 35

4.3.1.3 Preventing Replay Attacks 36
4.3.1.4 Diagrams . 36

viii

Contents

4.3.2 On-Demand Oracle . 37
4.3.2.1 Token contract . 38

4.3.2.1.1 Storage interface 38
4.3.2.1.2 Method interfaces 39

4.3.2.2 Oracle contract . 40
4.3.2.2.1 Storage interface 40
4.3.2.2.2 Method interfaces 42

4.3.2.3 Escrow contract . 43
4.3.2.3.1 Storage interface 43
4.3.2.3.2 Method interfaces 44

4.3.3 Decentralized model . 44
4.3.3.1 Aggregator contract 45

4.3.3.1.1 How is the median obtained? 45
4.3.3.1.2 Client Requests 46
4.3.3.1.3 Storage interface 46
4.3.3.1.4 Diagrams 49

4.4 Conclusion . 50

5 Implementation Overview 51
5.1 Introduction . 51
5.2 Implementation Structure . 51

5.2.1 Tasks . 51
5.3 Tools Implementation . 52

5.3.1 External initiator driver . 52
5.3.2 External agent . 53
5.3.3 Command-line interface . 54

5.4 Technologies Used . 54
5.5 Conclusion . 55

6 Testing 56
6.1 Introduction . 56

6.1.1 Types of testing in use . 56
6.1.2 Tasks Structure . 57
6.1.3 Objectives . 57

6.2 Sandbox setup . 57
6.2.1 Sandbox specification: . 57

6.3 Contract testing . 58
6.4 End-to-end testing . 60
6.5 Conclusion . 60

7 Conclusions and Future Work 61

ix

Chapter 0

7.1 Conclusion . 61
7.2 Future work . 61

Appendices 66

A Multi-signature Contract 68
A.1 Multi-signature Proposal Workflow 69
A.2 Multi-signature Endorsement Workflow 70
A.3 Multi-signature Aggregated Proposal Workflow 71
A.4 Multi-signature Aggregated Endorsement Workflow 72
A.5 Multi-signature Proposal Cancellation Workflow 73

B Price-Feed Contracts 74
B.1 Price Submission Control-flow Graph 75
B.2 Proxied Request Sequence Diagram 76

x

Acronyms

API Application Programming Interface. 14

BFS Breadth-first search. 10

CBDC Central Bank Digital Currency. 61

DAO Decentralized Autonomous Organization. 29

DeFi Decentralized Finance. 14

DFS Depth-first search. 10

DPoS Delegated Proof of Stake. 6, 11

DSL Domain Specific Language. 7, 9

eDSL Embedded Domain Specific Languages. 7

EVM Ethereum Virtual Machine. 11, 54

LPoS Liquid Proof of Stake. 1, 6

NAPR National Agency of Public Registry. 16

NFT Non-Fungible Token. 14

NPoS Nominated Proof of Stake. 11

PoS Proof of Stake. 1, 6, 11

PoW Proof of Work. 1, 11

PRE Polkadot Runtime Environment. 11

TDD Test Driven Development. 56

TTL Time to Live. 28, 29, 41, 43

VRF Verifiable Random Function. 14

xii

List of Figures

1.1 Oracles in a blockchain system. 2

2.1 Liquid Proof of Stake on Tezos. 6
2.2 An illustration of how state channels work. 12
2.3 A simple illustration of how oracles work. 13
2.4 Usage of smart contracts for land titling. 15
2.5 Georgian land titling workflow. Source: [16] 16
2.6 An illustration of electronic auction using smart contracts. 17

3.1 Reentrancy attack illustration. Source: [22] 20
3.2 Open Proxy problem illustration. 21

4.1 A general picture of the solution. 25
4.2 Mandatory contract types in the on-demand request model. 26
4.3 Optional contract types in the on-demand request model. 26
4.4 Indirect requests in the on-demand request model. 26
4.5 Direct requests in the on-demand request model. 27
4.6 Multi-signature actions. 31
4.7 Administrate entry point control graph. 33
4.8 On-Demand Oracle without an escrow contract. 37
4.9 On-Demand Oracle with an escrow contract. 38
4.10 Decentralized model diagram. 45
4.11 Client request (Direct) . 46
4.12 Client request (Proxied) . 46

5.1 External initiator interactions. 52
5.2 Solution demo. 55

6.1 Continuous integration pipeline. 56
6.2 Sandbox components. 58

A.1 Multi-signature proposal workflow. 69
A.2 Multi-signature endorsement workflow. 70
A.3 Multi-signature aggregated proposal workflow. 71

xiv

List of Figures

A.4 Multi-signature aggregated endorsement workflow. 72
A.5 Multi-signature proposal cancellation workflow. 73

B.1 Price submission control-flow graph. 75
B.2 Sequence diagram that illustrates the proxy workflow. 76

xv

List of Tables

2.1 Smart Contract Platforms . 11

3.1 Breadth-first search example . 22
3.2 Depth-first search example . 22

xvii

Listings

2.1 A minimal smart contract example written in SmartPy. 8
2.2 A minimal smart contract example written in Cameligo. 8
2.3 A minimal smart contract example written in Archetype. 9
4.1 Multi-signature contract storage interface. 31
4.2 Interface of the "proposal" entry point. 33
4.3 Interface of the "endorsement" entry point. 34
4.4 Interface of the "aggregated_proposal" entry point. 34
4.5 Interface of the "aggregated_endorsement" entry point. 35
4.6 Interface of the "cancel_proposal" entry point. 35
4.7 Token contract storage interface . 38
4.8 Interface of the "transfer_and_call" entry point in the token contract. 40
4.9 Oracle contract storage interface . 40
4.10 Interface of the "on_token_transfer" entry point in the oracle contract. 42
4.11 Interface of the "create_request" entry point in the oracle contract. . 42
4.12 Escrow contract storage interface . 43
4.13 Interface of the "fulfill_request" entry point in the escrow contract. . 44
4.14 Interface of the "on_token_transfer" entry point in the escrow contract. 44
4.15 Aggregator contract storage interface 46
4.16 Interface of the "submit" entry point in the aggregator contract. . . . 49
4.17 Interface of the "latest_round_data" entry point in the aggregator

contract. 49
5.1 Environment variables. 53
5.2 POST body of the "/submit" end-point. 53
5.3 Success response. 53
5.4 Success response. 53
5.5 CLI usage example. 54
6.1 Compilation example . 59
6.2 Test scenario example . 59

xix

Chapter 1

Introduction

1.1 Scope

This document reports the work done in an internship whose principal focus was
researching and implementing secure, reliable, and cost-effective solutions that allow
smart contracts to access and use information from the real world within the Tezos
blockchain.

Smart contracts are digital protocols intended to facilitate, perform, verify and en-
force the negotiation and performance of agreements or tasks without the need for
trust and third parties [33].

Tezos is a three-year-old blockchain that uses a variant of Proof of Stake (PoS) as a
consensus algorithm, called Liquid Proof of Stake (LPoS) [14]. PoS was officially in-
troduced 1 in 2012 with the purpose of solving the high energy consumption problem
existent with Bitcoin mining [20]. When comparing PoS with Proof of Work (PoW),
the principal difference is that PoW relies on the users computational power, where
PoS relies on the amount of security deposits users have at stake [15].

The internship occurred during my full-time consulting activities for Smart Chain
Arena, a company based in the United States. Our focus is on developing tools and
infrastructure for Tezos, including providing technical knowledge to the community,
where one of those tools is SmartPy, an embedded domain-specific language and
platform for writing contracts. The platform currently offers three dialects, Python,
Typescript, and Ocaml, where the Typescript and Ocaml dialects are still recent
and considered experimental.

1The original idea comes from a forum named bitcointalk.org in 2011, where a user proposed the
Proof of Stake concept for the first time. https://bitcointalk.org/index.php?topic=27787.
msg349645

1

https://bitcointalk.org/index.php?topic=27787.msg349645
https://bitcointalk.org/index.php?topic=27787.msg349645

Chapter 1

At SmartPy, we received a grant from Chainlink to provide Tezos developers with
several key Chainlink functionalities to build more advanced and secure smart con-
tracts applications. Chainlink is a set of protocols and tools that enable smart
contracts on any blockchain to leverage off-chain resources, such as verifiable ran-
domness, tamper-proof price data, external APIs, and various other things [24]. I
found the topic interesting, which led me to choose it as a base for the internship’s
proposal.

The information about the Chainlink grant is available at:
https://blog.chain.link/smartpy-receives-grant-to-integrate-chainlink-price-feeds-on-
tezos

The core idea is to increase decentralization by having pools of oracles provisioning
and aggregating data on-demand or between specific time intervals. An oracle is a
bridging mechanism that interfaces smart contracts with off-chain data sources [4]
as illustrated in figure 1.1.

Figure 1.1: Oracles in a blockchain system.
Oracle smart contracts allow the interconnection between other contracts and

off-chain data sources.

For the solutions to be secure, reliable, and cost-effective, this work looked into
approaches to prevent the loss of funds and provision of false information while still
allowing for low gas and storage consumption, which result in cheap transaction fees
compared with other blockchains like Ethereum.

1.2 Motivation

I have been involved with blockchain technologies for almost three years, including
developing minting software and a meta-programming language and platform called
SmartPy for writing smart contracts, which is currently the most used language in
the Tezos blockchain.

2

https://blog.chain.link/smartpy-receives-grant-to-integrate-chainlink-price-feeds-on-tezos
https://blog.chain.link/smartpy-receives-grant-to-integrate-chainlink-price-feeds-on-tezos

Introduction

Also, I find blockchain technologies interesting because of their decentralized nature,
which in my opinion, is becoming more relevant and pivotal in this new digital world.

1.3 Objectives

Apart from what was described in the scope of this chapter, the principal objective
was to provide solutions on the Tezos blockchain to enable users to connect their
smart contracts with external data sources by using state-of-the-art technology pro-
vided by the Chainlink ecosystem.

It also includes adding and adapting new features into SmartPy that contribute to
the language and platform to become more robust, easy to use, and feature-complete.

1.4 Report Structure

This section describes the report structure. It is composed of four main chapters
that contain the ultimate conclusions of the internship.

1. Introduction – Introduces the reader to the subject of the report, the mo-
tivation behind it, the scope, the objectives, and a compact overview of the
report organization;

2. State-of-the-Art and Background – Aims to show and explain best prac-
tices and technologies that can be used to improve the security and reliability
of smart contracts when accessing off-chain information;

3. Security Considerations – Presents various security considerations taken
into account during the development of the solution;

4. Requirements and Design – This chapter presents the requirements and
high-level design of the solution.;

5. Implementation Overview – A brief overview of the implementation pro-
cess and the technologies used;

6. Testing – This section details the testing procedures taken to ensure and
validate the quality of the solution;

7. Conclusions and Future Work – Presents the most important conclusions
of the internship and adds suggestions of features that could be implemented
to improve the project’s overall workflow, making it more complete and user-
friendly.

3

Chapter 2

State-of-the-Art and Background

2.1 Introduction

This chapter focuses on some of the best practices and technologies currently being
used in blockchain systems, mainly on their capability to improve the security and
reliability of smart contracts.

• Section [2.2] describes why the Tezos blockchain is an excellent platform for
smart-contract applications;

• Section [2.3] presents some of the current issues when using smart contracts
in real-world applications and proposes viable solutions for those problems.

• Section [2.4] shows some of the technologies and practices currently in use to
connect smart contracts to the outside world;

• Section [2.5] presents examples of applications for smart contracts, where the
technology would bring benefits;

• Section [2.6] includes the main conclusions of this chapter.

2.2 State-of-the-Art on Tezos

The popularization of Bitcoin, a decentralized cryptocurrency, has inspired the cre-
ation of several alternative solutions that bring their own source of innovation.
Cardano, Ethereum, Monero, and Zcash are good examples since they all repre-
sent unique contributions to the cryptocurrency space. However, most blockchains
have no means of adopting the advancements from other cryptocurrencies without

5

Chapter 2

a strong possibility of causing hard-forks [34]. Tezos was built with this problem in
mind and includes a self-amending mechanism that facilitates protocol upgrades by
leveraging the consensus algorithm to give the right to its validators to elect a new
protocol in the blockchain [1].

2.2.1 What problems does Tezos aim to solve?

As mentioned above, Tezos attempts to remedy the upgradeability problem in the
cryptocurrency space by having a self-amending mechanism that facilitates protocol
upgrades through an election process. It gives its validators the power to vote if a
new protocol should be adopted or not, reducing the need for hard-forks significantly
[1]. New protocols can even amend the self-amending mechanism itself and include
development rewards that get distributed once the protocol is adopted.

Tezos was one of the first blockchains to implement the Liquid Proof of Stake (LPoS)
consensus algorithm, a variant of Proof of Stake (PoS) designed to solve the high
energy consumption problem present in blockchains like Bitcoin and Ethereum [20].
LPoS extends PoS by allowing every wallet to delegate their balance to a block
producer/validator, where each wallet can explicitly give staking rights to their
bond without transferring the ownership to the tokens [2].

In figure 2.1 is possible to see the differences between LPoS and Delegated Proof of
Stake (DPoS), which are both variants of Proof of Stake.

Figure 2.1: Liquid Proof of Stake on Tezos.
A comparison between LPoS and DPoS consensus algorithms.

Source [2]

6

State-of-the-Art and Background

2.2.2 Smart Contracts & Formal Verification

Smart contracts on Tezos are expressed in a stack-based programming language
called Michelson, the native language understood by Tezos interpreter, which was
developed explicitly for Tezos. It contains strict type-checking and high-level data
types and primitives. Furthermore, Michelson was designed with formal verification
in mind, a method used to improve the security and testability of smart contracts
by mathematically proving the properties of programs [5].

Developing smart contracts on Tezos is straightforward, thanks to the high-level
programming languages available in the ecosystem, giving many options to devel-
opers wanting to write applications on top of smart contracts. In addition, some of
those languages are Embedded Domain Specific Languages (eDSL)’s hosted in well-
known programming languages like Python, Haskell, and Ocaml, facilitating the
learning curve for those already accustomed to these syntaxes. An embedded Do-
main Specific Language (DSL) inherits the features provided by its host language,
like controls, standard libs, expressions–and adds domain-specific abstractions on
top to facilitate the programmer’s work.

2.2.2.1 High level languages:

Disclaimer: It is important to note that I may be biased towards SmartPy in
the advantages and disadvantages mentioned below, mainly due to being one of the
maintainers of SmartPy.

• SmartPy1 - An embedded Domain Specific Language eDSL, which supports
three dialects, Python, Typescript and Ocaml;

Pros:

– Has three dialects: Python, Typescript and Ocaml;

– Offers a powerful test framework that users can use to unit test most of
the functionalities;

– Provides a great variety of templates that users can use to learn or boot-
strap their projects;

– Supports the majority of the features allowed by Michelson;

– Has an online IDE that supports all three dialects;

– Offers meta-programming capabilities, which is helpful for creating con-
figurable contracts.

1https://smartpy.io

7

Chapter 2

– Short learning curve;

Cons:

– In the Python dialect, variables have to be wrapped in a local construct,
which can cause some confusion to the users;

Below is a code snippet 2.1 that shows a minimal example of a smart contract
written in SmartPy.

import smartpy as sp

class MinimalContract(sp.Contract):
def __init__(self):

self.init (1)

@sp.entry_point
def updateStorage(self , newStorage):

self.data = newStorage

Listing 2.1: A minimal smart contract example written in SmartPy.

• Ligo2 - A polyglot language with various syntaxes, like Ocaml, Pascal, Rea-
sonML and Javascript;

Pros:

– Provides four dialects: Ocaml, Pascal, ReasonML and Javascript;

– Supports the majority of the features allowed by Michelson;

– Good integration with formal verification tools;

– Has an online IDE;

Cons:

– The test framework is still very limited;

– Long learning curve for non-function developers;

Below is a code snippet 2.2 that shows a minimal example of a smart contract
written in Cameligo.

type storage = nat

type parameter =
Update_storage of nat

2https://ligolang.org

8

State-of-the-Art and Background

type return = operation list * storage

let update_storage (new_value: nat) : storage = new_value

let main (action , store : parameter * storage) : return =
([] : operation list),
(match action with

Update_storage (n) -> update_storage (n))

Listing 2.2: A minimal smart contract example written in Cameligo.

• Archetype3 - A DSL which facilitates formal verification;

Pros:

– Good integration with formal verification tools;

– Can transpile to Ligo;

– It integrates well with VS Code.

Cons:

– Doesn’t have a test framework;

– Its syntax can be difficult to understand;

Below is a code snippet 2.3 that shows a minimal example of a smart contract
written in Archetype.

archetype minimal

variable value : int = 1

entry main (new_value : int) {
effect {

value := new_value
}

}

Listing 2.3: A minimal smart contract example written in Archetype.

2.2.3 Why using Tezos for developing smart-contracts?

As previously mentioned, I have been working with the Tezos blockchain for almost
three years now, including being one of the maintainers of a high-level smart contract

3https://archetype-lang.org

9

Chapter 2

programming language and platform called SmartPy. I find the self-amending
mechanism a significant advantage since it allows the blockchain protocol to upgrade
every three months through an election process, where the community has the power
to decide if the protocol should be adopted or not.

2.2.3.1 Why do protocol upgrades usually take three months?

In theory, the duration of a protocol proposal is two and half months, divided into
five phases of fourteen days4: Proposal, Exploration, Cooldown, Promotion,
andAdoption. Furthermore, proposals take between three and four months because
they require preparation and testing before getting injected for election on-chain.

The latest upgrades to the Tezos blockchain provided many improvements to the
Michelson language. Those improvements include:

• Gas cost reductions which resulted in cheaper transactions;

• Increased storage and gas limits, doubling the maximum allowed size for smart
contracts;

• Changed the execution order of operations from Breadth-first search (BFS) to
Depth-first search (DFS) solving a variety of potential runtime vulnerabilities
as described in section 2.3.1;

• Support for multiple big maps containing huge amounts of data accessed only
on-demand resulting in fewer deserialization costs.

Michelson was also designed to facilitate formal verification [6]. Formal verifica-
tion is a considerable advantage since it allows the contracts to be proved correct
mathematically against a specification.

Fee costs are a huge consideration when choosing the platform for smart contracts,
and Tezos is currently one of the cheapest.

Table 2.1 provides a list containing some of the platforms for smart contracts, which
in my opinion, are the most promising. I consider Polkadot parachains the best
alternative to Tezos since it is a relay chain that improves interoperability between
multiple chains, which has enormous potential.

4https://www.tezosagora.org/learnthe-five-stages-of-tezos-governance
5IELE is a variant of LLVM (a register-based machine)
6Polkadot doesn’t support smart-contracts natively, only its parachains support it.

10

State-of-the-Art and Background

Blockchain Runtime Consensus Native Language
Tezos Tezos VM DPoS Michelson

Ethereum EVM PoW, moving to PoS EVM Code
Cardano KEVM, IELE 5 PoS KEVM code, IELE code
Polkadot PRE NPoS WebAssembly6, ...

Table 2.1: Smart Contract Platforms

2.3 Known problems in smart-contracts

2.3.1 Reentrancy Vulnerabilities

Reentrancy is a vulnerability that usually affects smart contracts. The vulnerability
exists when a contract calls another contract without first updating the storage
state, allowing malicious contracts to take advantage of the faulty state by calling
back the original contract as many times as they deem necessary, resulting in the
loss of funds in most cases [12].

A well-known exploit to this vulnerability happened on Ethereum, the so-called The
DAO Hack7 and resulted in a hard-fork which originated Ethereum Classic.

2.3.2 Scaling problems and access to real-world data

Blockchains are secure systems that achieve data security and integrity by having
a distributed and auditable storage validated by multiple entities through the con-
sensus algorithm that enforces rules for all participants. It makes the scalability of
the technology very difficult, and in most cases, the supported amount of operations
per second is meager compared to technologies like Paypal or Visa.

Furthermore, some consensus algorithms like the one used inAvalanche, a layer one
PoS blockchain, can achieve quick finality and high throughput, allowing thousands
of transactions per second [28]. Tezos is working on adding deterministic finality,
which improves the block finality from a minimum of 15 minutes to 30 seconds, where
the state of the blockchain becomes irreversible after two blocks [3]. Consequently,
smart contract applications will become quicker, which should attract more users to
the ecosystem.

Layer two solutions are also great to improve the scalability and access to real-world
data in blockchain systems. The term "Layer two" is used to categorize technologies

7https://www.gemini.com/cryptopedia/the-dao-hack-makerdao

11

Chapter 2

built on top of the underlying blockchain protocol known as "Layer one".

2.3.2.1 What are layer two solutions?

Layer two solutions are protocols or frameworks built on top of the underlying
blockchain technology by extending its features and use cases. The principal objec-
tives of these frameworks are usually to improve scalability limitations by adding
high throughput, reducing cost fees, bridging multiple blockchains, and facilitating
interoperability with off-chain applications [17]. The majority of consensus algo-
rithms currently being used by public blockchains cannot yet compete with standard
payment solutions, which is undoubtedly a significant limitation presently blocking
mass adoption of the technology.

2.3.2.1.1 State Channels

Figure 2.2 illustrates a kind of layer two solution, usually called state channels. The
objective of state channels is to increase operations throughput and reduce fees by
aggregating multiple off-chain commitments into a few on-chain operations, resulting
in fewer on-chain calls while keeping security and data integrity.

Figure 2.2: An illustration of how state channels work.

Good examples of state channel solutions are the Lightning network8 on bitcoin,
Plasma9 and ZK-Rollups10 on ethereum [27].

2.3.2.1.2 Oracles

Another layer two solution is oracle services, which consist of external agents con-
necting smart contracts to the outside world. Those oracles can be used as single

8https://lightning.network
9https://ethereum.org/en/developers/docs/scaling/plasma

10https://docs.ethhub.io/ethereum-roadmap/layer-2-scaling/zk-rollups

12

State-of-the-Art and Background

agents that simply provide information on-demand into the smart contract or as
distributed networks that use on-chain mechanisms to reach consensus between all
the participants when submitting new information [4].

Figure 2.3 illustrates the core concept of an oracle, where a smart contract can re-
quest and receive off-chain data from external API’s through the use of a middleware
agent. This simple approach has a few security concerns, as I will explain below in
section 2.4.1.

Figure 2.3: A simple illustration of how oracles work.

2.4 State-of-the-Art in Oracle Solutions

Oracles are data sources/providers used as bridge mechanisms between smart con-
tracts and the outside world. Furthermore, an oracle or a group of oracles are
external agents connected to the smart contract and off-chain data sources. They
can verify and authenticate the authenticity of the data being provided through con-
sensus, and they are vital for providing reliable information into smart contracts.

2.4.1 The Oracle Problem

The principle behind oracles goes against the main objective of blockchain systems,
which is to have a fully decentralized ecosystem where every interaction is trustless.
In most situations, oracles are implemented as centralized applications and have
tremendous power over smart contracts since they can mutate their state [11]. Fur-
thermore, being centralized opens the possibility for many vulnerabilities because
it only has a single source of truth. If the oracle gets controlled by a malicious
actor, the resulting consequences can be catastrophic. However, consensus oracles
can solve this problem since they are designed similarly to blockchains and can be
secure, reliable, and trustless by applying decentralized aggregation of data.

13

Chapter 2

2.4.2 Oracle Solutions

2.4.2.1 Chainlink

Chainlink is one of the most advanced oracle systems currently available [26]. Its first
white-paper [30] was released in September of 2017, and its implementation launched
in May of 2019. The technology was initially built on top of the Ethereum network
and is now available in multiple blockchains. It is supported by a big community and
is successfully being used by many applications, like Decentralized Finance (DeFi),
external payments, gaming (Non-Fungible Token (NFT)s and Randomness), supply
chain, and utilities.

Chainlink is composed of various frameworks, protocols, and a digital token. The
digital token is called Link and is used as a currency in the Chainlink ecosystem.
It serves as a business model providing incentives for a healthy ecosystem, where
participants get incentivized to participate by offering services in exchange for pay-
ments with Link.

What solutions does chainlink protocol provide?

These are a few solutions extracted from the information available on the Chainlink
website11.

• Price Feeds - Chainlink provides decentralized price feeds, which are aggre-
gated and validated on-chain by multiple trusted entities. Those price feeds
contain pairs of commodities prices like precious metals, fiat currencies, and
cryptocurrencies.

• Verifiable Random Numbers - Verifiable Random Function (VRF) is a
verifiable source of randomness and is often used for:

– Games built on top of smart contracts;

– Generating NFTs with random properties that make them valuable;

– Consensus mechanisms implemented on smart-contracts;

• Access to external APIs - These Application Programming Interface (API)s
allow interoperability between blockchains and outside data sources.

Recently, chainlink released two new white papers [24] and [23], which bring signifi-
cant improvements to the underlying solutions by adopting a consensus mechanism

11https://docs.chain.link

14

State-of-the-Art and Background

for off-chain reporting that will result in a more efficient approach for distributed
oracles. It suggests various algorithms, which consist of aggregating, signing, and
broadcasting information off-chain between multiple nodes in a peer-to-peer net-
work, including the random selection of responsive leaders to inject the operations
into the chain.

2.5 Smart contract applications

2.5.1 Land Registry

Land titling usually involves many steps, is a cumbersome process, typically too
fragmented, and manual processes can lead to document manipulation and, conse-
quently, fraud. The process requires various entities to examine reasonable amounts
of documents regarding the agreements, construction history, land past owners and
mortgage confirmations [29].

In figure 2.4 we can see the entities and the workflow differences between the tradi-
tional system and the one leveraging smart contract technologies.

Figure 2.4: Usage of smart contracts for land titling.
Source: [21]

Smart contracts leverage the cryptographic primitives available in blockchains to
keep a trusted, distributed, and continuous history of all land registrations, securing
and facilitating the validation process when changing the land ownership. It re-
duces third-party dependencies and, as a result, could reduce the total cost of land
registrations.

15

Chapter 2

2.5.1.1 Adoptions in the real world

• Securitize and Elevated Returns are digital asset management firms focused
on decentralized finance in digital asset securities. The quotes bellow refers to
their intention to move one Billion dollars worth in real estate assets to Tezos
smart contracts from their initial deployments on the Ethereum blockchain.

“Securitize and Elevated Returns to Tokenize $1 Billion of Real Es-
tate Assets on Tezos”

“Having worked closely with regulators and local authorities around
the world, we understand the need for the highest security and com-
pliance features. There is no better solution than working on a Tezos-
based token implementation. We have a number of very high-profile
deals lined up and we could not afford to compromise the technolog-
ical product. With the Tezos-powered solution and its integration in
the Securitize portal technology, we feel we have a total solution.”
Source: [13]

• Another use case in the Tezos blockchain, Vertalo, a digital transfer agent,
is helping to tokenize a Pennsylvania-based real estate portfolio of class A
properties.

“Vertalo, tZERO Are Bringing $300M in Real Estate to the Tezos
Blockchain”
Source: [9]

• A Blockchain-Based Land Titling project in the Republic of Georgia

Figure 2.5: Georgian land titling workflow. Source: [16]

Republic of Georgia’s National Agency of Public Registry (NAPR) adopted
the first-ever blockchain used for land registry. It was developed by Bitfury

16

State-of-the-Art and Background

and launched in 2016, aiming to secure property ownership rights, facilitating
registration processes, and increasing trust in the government. Since then, the
pilot has been a success, and citizens now use digital certificates to prove their
land ownership, with over 1.5 million land titles already registered[29].

2.5.2 Escrow Services

Smart contracts are a good addition to escrow services. They can automate the
process, ensuring trust and removing intermediate third parties, which may result
in cost reductions [31].

Applications for escrow smart contracts:

• Decentralized freelance platforms - Smart contracts are also an excellent
solution for freelancing service payments. Task and job postings can be sub-
mitted on a platform running on top of a smart contract that holds the service
payments while the work is not finished, removing the need for intermediaries.
Examples of platforms of this kind are cryptotask12 and SmartLink13 on
Tezos.

• Electronic auctions - Sellers would put their items for sale in an "Auc-
tion smart-contract" where bidders bid on items by depositing the respective
amounts and refreshing the highest bid. As illustrated in figure 2.6, the bid-
ding process could be automated by a smart contract, leaving only the pre-sale
and item validations to be managed by an off-chain entity where oracles could
be used to update item status and initiate the auction of items. One example
of a platform of this kind is tzcolors14, an NFT auction experiment on Tezos.

Figure 2.6: An illustration of electronic auction using smart contracts.

12https://app.cryptotask.org/en/freelancers
13https://www.smartlink.so/products
14https://www.tzcolors.io

17

Chapter 2

2.6 Conclusion

This chapter presented relevant features currently being used in blockchain systems,
the concepts, and the ideas that make them promising for the future of smart con-
tracts.

It also focused on why the Tezos blockchain is an excellent platform for hosting
secure, reliable, and cost-effective smart contracts. No matter what innovations
other blockchains produce, it will be possible for Tezos validators to adopt these
innovations without a high risk of causing hard-forks.

18

Chapter 3

Security Considerations

3.1 Introduction

The Michelson language was designed with the purpose to make smart contracts
more secure and easy to write. Although writing vulnerable ones is still possible,
developers should always think deeply about the security issues that can occur by
looking at the history of previous vulnerabilities, understanding them, and finding
solutions to prevent them from happening. In addition, various kinds of vulner-
abilities exist that primarily affect smart contracts. This section studies some of
those vulnerabilities, which were taken into account when designing the solution
specification.

3.2 Replay Attacks

Replay attacks are a recurrent issue in smart contracts and almost always happen
because the developer did not understand well enough how signatures work.

3.2.1 What makes this attack possible?

It is pretty simple. Suppose that the same contents to be signed can occur multiple
times. In that case, it means that a malicious actor could record all previous sig-
natures and wait for a chance where the contents will be identical to allow him to
bypass the signature validation and impersonate the original wallet.

19

Chapter 3

3.2.2 How can it be prevented?

The implementation must ensure that the contents to be signed cannot happen more
than once. There are many solutions for this problem, like appending a random
nonce to the contents before signing it. The multi-signature contract specification
has been designed with this in mind.

3.3 Reentrancy Attacks

Reentrancy attacks are probably the most known since one of those caused a hard-
fork on Ethereum after the famous the DAO Hack1 where millions of dollars
got stolen, causing the network to hard-fork as a solution to recover the funds,
which originated the Ethereum Classic. Figure 3.1 illustrates how reentrancy attacks
happen.

Figure 3.1: Reentrancy attack illustration. Source: [22]

3.3.1 What makes this attack possible?

This attack is possible when the state of a contract is not updated before initiating
the call to another contract. The other contract can take advantage of this by calling
back the parent contract and abusing its outdated state because it is still waiting
for the original call to terminate.

1https://www.gemini.com/cryptopedia/the-dao-hack-makerdao

20

Security Considerations

3.3.2 How can it be prevented?

Tezos is not affected by the same problem as Ethereum. Internal calls are non-
blocking, meaning that they only get executed once the parent operation terminates.
As described in section 3.5, Tezos previously suffered from an identical issue, which
is now solved.

3.4 Open Proxy Attacks

Open proxy attacks are usually not recurrent. Nevertheless, they can cause critical
issues to the application and must get prevented at all costs.

3.4.1 What makes this attack possible?

This attack is usually possible when a given contract receives a callback as a parame-
ter and then uses it to callback another contract. Imagine that some malicious actor
forges a callback that points to the target address instead of himself. Consequently,
the target address calls itself when resolving the callback, potentially resulting in
the loss of funds, as shown in figure 3.2.

Figure 3.2: Open Proxy problem illustration.

3.4.2 How can it be prevented?

It can be prevented by validating the address associated with the callback, making
sure that the sender’s address is the same as the address of the callback.

21

Chapter 3

3.5 Execution Order

Execution order used to be a problem in the Tezos blockchain. It initially used
breadth-first search as shown in table 3.1, which consisted of a "first-in, first-
out" approach that led to anti-patterns and originated security flaws similar to the
reentrancy bugs. The issue was recently solved when the calling convention was
changed to depth-first search as shown in table 3.2, a "last-in, first-out" approach
that ensures the correct execution order.

3.5.1 Breadth-first Search

As exemplified in table 3.1, operation D gets executed before operation C which is
older and could cause reentrancy vulnerabilities. A caching mechanism would have
to be put in place to protect the contract against reentrancy vulnerabilities.

Executing Emissions Resulting Queue Detail
Initial A A new operation A
A B, C B, C new operations B, C

B, C D D, C new operation D
D, C - C no new operations
C - - no new operations

Table 3.1: Breadth-first search example

3.5.2 Depth-first Search

The depth-first search uses "first-in, last-out" and does not suffer from the problem
explained above because the calling convention always resolves the latest operations
first.

Executing Emissions Resulting Queue Detail
Initial A, B B, A new operations A, B
B C, D D, C, A new operations C, D
D - C, A no new operations
C - A no new operations
A - - no new operations

Table 3.2: Depth-first search example

22

Security Considerations

3.6 Gas and Storage (Denial of Service)

Gas and Storage limits are also a frequent issue in smart contracts, where the storage
of a contract can become so big that any operation will reach the gas limit and fail.

The problem can also happen without any relation to the storage. In this case, the
contract logic is so complex that it can reach the gas limit depending on certain
conditions and get locked forever without the possibility of recovery.

3.6.1 How can it be prevented?

This kind of issue can be prevented by extensively testing the contract with the
insertion of vast amounts of data and seeing how it behaves after each operation,
ensuring that most conditions (code branches) get reached and that the growth in
size is within the expected threshold.

On Tezos it is also possible to use big data structures (called big maps), which
allow the storage not to get fully deserialized when calling the contract and provide
on-demand access to its data.

23

Chapter 4

Requirements and Design

4.1 Introduction

This chapter describes the requirements and the design of the solution.

• Section [4.2] Presents the requirements of the solution;

• Section [4.3] Describes an high level design of the solution;

• Section [4.4] Contains the main conclusions of this chapter.

4.2 Solution Requirements

This section aggregates the requirements concerning connecting smart contracts to
external sources. It divides the requirements per component to facilitate the general
understanding of the solution.

4.2.1 Purpose

The general purpose of the solution is to build a secure and reliable system capable
of interfacing smart-contracts in the Tezos blockchain with external data sources by
leveraging state-of-the-art technology provided by the Chainlink ecosystem.

Figure 4.1 presents the general picture of the intended solution.

24

Requirements and Design

Figure 4.1: A general picture of the solution.

The solution must support the following two models:

• On-demand request model: 4.2.2

• Decentralized data model: 4.2.3

Including contract administration through the use of a multi-signature contract:

• Contract administration: 4.2.4

4.2.2 On-demand request model

This model is the most basic, used for specific use cases where data manipulation is
not a considerable risk. Its purpose is to serve as a basic interface between consumer
contracts and the outside world.

This model expects four contract kinds, which get divided into two groups, optional
and non-optional contracts.

4.2.2.1 Non-optional contracts:

The model must implement the contracts in figure 4.2, which will be the prominent
participants in the model.

1. Provider - Oracle contracts, which are used to interface the consumer con-
tracts with the outside world;

2. Consumer - Client contracts, which send requests to the providers with the
purpose of interacting the external sources.

25

Chapter 4

Figure 4.2: Mandatory contract types in the on-demand request model.

4.2.2.2 Optional contracts:

The model must support two optional contract kinds, used as middleware to give
economic incentives and enforce good behavior in the system. By optional, it means
that these contracts in figure 4.3 may or may not be part of every use case.

Figure 4.3: Optional contract types in the on-demand request model.

1. Escrow - These contracts enforce good behavior between consumers and
providers. Their purpose is to hold rewards while requests from consumers
do not get answered by providers.

2. Token - These are contracts that provide economic incentives to the partici-
pants of the system. Providers get rewards from consumers when they answer
their requests.

4.2.2.3 Provider requirements:

1. Must be an abstract contract capable of receiving multiple direct or indirect
requests;

• Indirect: Requests proxied from white-listed contracts that are not con-
sumers themselves. These can be Escrow or Token contracts that act
as middleware as illustrated in figure 4.4.

Figure 4.4: Indirect requests in the on-demand request model.

• Direct: Requests coming directly from Consumer contracts as illus-
trated in figure 4.5.

2. After receiving and processing a request, the Provider must call back the
client with a response;

26

Requirements and Design

Figure 4.5: Direct requests in the on-demand request model.

3. When receiving an indirect request, the Provider must verify if the request
comes from a white-listed address that can either be a Token or an Escrow.
Every indirect request from addresses that are not white-listed must be re-
jected;

4. If the request comes from a Token or Escrow, the Provider must ensure
that the amount included as payment in the request is equal or greater than
the payment amount configuration.

5. The contract must support the following administrative actions:

• Must be possible to disable and enable the acceptance of direct requests;

• Must be possible to specify the payment amount required for its services;

• Must be possible to add and remove Escrow and Token contracts from
an white-list;

4.2.2.4 Escrow requirements:

1. Must allow Consumers to transmit their requests to a Provider.

2. Must freeze Provider rewards while the Consumer request does not get an
answer.

3. Must unfreeze the Provider rewards once the response gets transmitted to
the Consumer.

4.2.2.5 Token requirements:

1. Must implement the TZIP-121 token standard, a specification for financial
application contracts;

2. Must implement the ERC-6772 specification from Ethereum to allow Con-
sumers to make payments and transmit their requests to a Provider or
Escrow.

3. The contract must support the following administrative actions:
1https://gitlab.com/tezos/tzip/-/blob/master/proposals/tzip-12/tzip-12.md
2https://github.com/ethereum/EIPs/issues/677

27

Chapter 4

• Mint tokens;

• Burn tokens;

• Change the administrator address (useful in case the multi-signature con-
tract needs to be updated);

• Pause the contract, useful for maintenance or in case any vulnerability
gets detected;

4.2.2.6 Consumer requirements:

1. Must be able to send requests directly to the Provider;

2. Must be able to send requests indirectly to the Provider or Escrow through
the Token contract by using the ERC-677 specification;

4.2.3 Decentralized data model

The decentralized model extends the on-demand request model 4.2.2.2 by re-implementing
the Provider contract as a singleton aggregation contract (an Aggregator) to
work as a decentralized pool of oracles responsible for feeding prices from external
sources into the blockchain environment. The contract aggregates the provisioned
prices from multiple white-listed wallets and provides the median result as its latest
price.

4.2.3.1 Aggregator requirements:

1. The contract must have a notion of rounds, where each round represents an
aggregation attempt;

2. Rounds must have a Time to Live (TTL), enforcing a threshold for price
submissions to avoid big price deviations;

3. For a price update to be accepted, a minimum number of submissions must
be enforced. The minimum number of submissions is must be a configurable
setting;

4. Oracles must be approved before being able to participate in the aggregation
process;

5. The contract must provide an entry point to allow oracles to submit data;

6. When oracles submit round prices, they must be rewarded. But only once per
round. The reward amount must be a configurable setting;

28

Requirements and Design

7. Any oracle shall be able to withdraw their rewards whenever they want;

8. An entry point view must exist to allow client contracts to access the latest
price. The view must provide the following information:

• Latest price;

• Round Identifier;

• Timestamp of the latest price update.

9. The administration of the contract in section 4.2.4 must be done through a
multi-signature contract (usually called Decentralized Autonomous Organiza-
tion (DAO), which is composed by multiple entities), the base administrative
actions to be supported are:

• Change the administrator address (useful in case the multi-signature con-
tract needs to be updated);

• Pause the contract, useful for maintenance or in case any vulnerability
gets detected;

• Changing the minimum number of submissions;

• Add and remove oracles;

• Changing the round TTL;

4.2.4 Contract Administration

The solution must provide a multi-signature contract that allows multiple entities
to govern/administrate contracts through a voting mechanism. Having a multi-
signature contract for ruling contracts provides more trust in the solution since, by
design, no single entity will be able to apply changes to any contract without the
consensus of other participants.

4.2.4.1 Multi-signature contract requirements:

• Approved entities shall be allowed to propose administrative actions;

• Proposals shall be endorsable by other approved entities;

• Proposals must only be committed once endorsed by the majority of the par-
ticipants;

• The following administrative action kinds shall be supported:

29

Chapter 4

– Internal actions: Actions that administrate the administrative contract
itself;

– External actions: These are actions that administrate other contracts.
They must have a generic format to allow any type of administrative
operation on target contracts.

• The contract must allow proposals and endorsements to be aggregated off-
chain and submitted in a single atomic operation on-chain;

The process shall be the following:

1. A participant creates and signs a proposal to then broadcast it to the
remaining participants;

2. The participants receive a proposal receipt, and if they agree with the
proposed changes, an endorsement operation is created and signed to
then be transmitted back to the proposer;

3. Once the proposer receives enough endorsements, he batches all of them
together with a the proposal and commits it on-chain;

4. In a final step, the contract iterates over all endorsements, verifying the
signatures against the proposal content, and if every endorsement is valid,
including achieving the necessary quorum, the action is committed suc-
cessfully.

4.3 High level design

This section focuses on describing the system’s high-level design. It starts by describ-
ing the Multi-signature contract design, a contract used to administrate contracts
owned by multiple parties, allowing a decentralized distribution of power.

4.3.1 Multi-signature contract

The multi-signature contract is used to administrate other contracts through a vot-
ing mechanism. Its design is generic, allowing arbitrary administrative actions to be
performed on a target contract as long as it implements the administration interface.

The contract supports two kinds of actions, internal and external, as shown in figure
4.6. The internal kind is specific for the administration of the contract itself, and
the external action is used to administrate the remaining contracts of the system.

30

Requirements and Design

Figure 4.6: Multi-signature actions.

4.3.1.1 Storage interface

The contract storage interface in listing 4.1 shows the storage attributes necessary
in the multi-signature contract. Their purpose is described below.

Internal administration action type specification
InternalAdminAction = sp.TVariant(

changeSigners = sp.TVariant(
removed = sp.TSet(sp.TAddress),
added = sp.TList(

sp.TRecord(
address = sp.TAddress ,
publicKey = sp.TKey

).right_comb ()
)

).right_comb (),
changeQuorum = sp.TNat ,
changeMetadata = sp.TPair(sp.TString , sp.TOption(sp.TBytes)),

).right_comb ()

External administration action type specification
ExternalAdminAction = sp.TRecord(

target = sp.TAddress ,
actions = sp.TBytes

).right_comb ()

Proposal action type specification
ProposalAction = sp.TVariant(

internal = sp.TList(InternalAdminAction),
external = sp.TList(ExternalAdminAction)

).right_comb ()

Proposal type specification
Proposal = sp.TRecord(

startedAt = sp.TTimestamp ,
initiator = sp.TAddress ,

31

Chapter 4

endorsements = sp.TSet(sp.TAddress),
actions = ProposalAction

).right_comb ()

Storage type specification
Storage = sp.TRecord(

quorum = sp.TNat ,
lastProposalId = sp.TNat ,
signers = sp.TMap(

sp.TAddress ,
sp.TRecord(

publicKey = sp.TKey ,
lastProposalId = sp.TOption(sp.TNat)

).right_comb ()
),

proposals = sp.TBigMap(sp.TNat , Proposal),
activeProposals = sp.TSet(sp.TNat),
metadata = sp.TBigMap(sp.TString , sp.TBytes),

).right_comb ()

Listing 4.1: Multi-signature contract storage interface.

• quorum - Is a natural number that specifies the minimum of endorsements
each proposal must have before being considered approved;

• lastProposalId - A sequential natural number that increments by one when
a new proposal is submitted and is used to provide unique integer identifiers
to proposals;

• signers - A hash map with all approved signers, the key of the map is the
signer address, and the value is a record that stores the signer public key and
the identifier of the latest submitted proposal;

• proposals - A big map that stores proposals submitted by signers. The key is
the proposal identifier. The value is a record that stores the proposal action,
the endorsements, the signer’s address that created the proposal, and the
creation date.

• activeProposals - A simple set that stores the ongoing proposal identifiers
which caches the proposal identifiers to decrease the gas costs;

• metadata - It is a big map used for off-chain purposes, where it provides in-
formation about the contract to indexers. The key is a string that specifies the
field name, and the value is bytes that decode to a UTF-8 string, representing
the field value. The value needs to be in bytes format because the blockchain
only supports 7-bit ASCII characters in strings.

32

Requirements and Design

4.3.1.2 Method interfaces

Since Michelson is statically typed, the multi-signature contract must use bytes to
represent external actions. Those bytes are then decoded and processed by the des-
tination, allowing the multi-signature contract to be generic and compatible with
any contract that implements the following entry point interface:

(bytes %administrate)

The administrate entry point in figure 4.7 is implemented on the contract where
the administrative action will take effect, it expects bytes as argument and is called
by the multi-sig contract.

Figure 4.7: Administrate entry point control graph.

The multi-sig specification consists of five primary entry points (functions), specified
below:

4.3.1.2.1 "proposal" entry point

An entry point that is used to submit individual proposals of administrative actions.
The argument is a variant representing two branches (internal and external), where
each branch contains a list of actions that will take effect if the proposal is approved.

(or %proposal
(list %external

(pair (bytes %actions) (address %target))
)

33

Chapter 4

(list %internal
(or

(pair %changeMetadata string (option bytes))
(or

(nat %changeQuorum)
(or %changeSigners

(list %added (pair (address %address) (key %
publicKey)))

(set %removed address)
)

)
)

)
)

Listing 4.2: Interface of the "proposal" entry point.

4.3.1.2.2 "endorsement" entry point

An entry point used for endorsing ongoing proposals, where the argument is a list
with all the proposal identifiers being endorsed.

(list %endorsement nat)

Listing 4.3: Interface of the "endorsement" entry point.

4.3.1.2.3 "aggregated_proposal" entry point

Entry point responsible for the submission of proposals in a single batch operation,
where the argument is a pair that has as the first element a variant that represents
two branches (internal and external) and as the second element the signatures from
other participants for endorsing the proposal.

(pair %aggregated_proposal
(or %actions

(list %external
(pair (bytes %actions) (address %target))

)
(list %internal

(or
(pair %changeMetadata string (option bytes))
(or

(nat %changeQuorum)
(or %changeSigners

(list %added

34

Requirements and Design

(pair (address %address) (key %
publicKey))

)
(set %removed address)

)
)

)
)

)
(pair

(nat %proposalId)
(list %signatures

(pair (signature %signature) (address %signerAddress))
)

)
)

Listing 4.4: Interface of the "aggregated_proposal" entry point.

4.3.1.2.4 "aggregated_endorsement" entry point

An entry point that allows submitting endorsements in a single batch operation,
where the argument is a list of pairs containing the proposal identifier and a list of
signatures signed by the participants.

(list %aggregated_endorsement
(pair

(nat %proposalId)
(list %signatures

(pair (signature %signature) (address %signerAddress))
)

)
)

Listing 4.5: Interface of the "aggregated_endorsement" entry point.

4.3.1.2.5 "cancel_proposal" entrypoint

An entry point used to cancel individual proposals, where the argument is a natural
number representing the porposal identifier.

(nat %cancel_proposal)

Listing 4.6: Interface of the "cancel_proposal" entry point.

35

Chapter 4

4.3.1.3 Preventing Replay Attacks

Aggregation operations include endorsements that are validated and authenticated
by using signatures. As discussed previously, the signing mechanism should have
measures to prevent repeated signatures, meaning that the content to be signed
should always be different.

The multi-sig contract was designed to prevent this vulnerability. The protection
consists of adding the proposal identifier, the contract address, and the chain iden-
tifier to the signed contents.

Why is it enough, and what do those components mean?

• Proposal identifier - Only one endorsement signed by the same key is allowed
per proposal. Having the proposal identifier in the signed contents ensures that
every new proposal will result in a different signature.

• Contract address - Having only the proposal identifier is insufficient when
the wallet is used to endorse proposals from other multi-signature contracts.
The issue can be solved by adding the contract address to the contents being
signed.

• Chain identifier - This is already overkill, but having the chain identifier can
prevent replay attacks from test chains.

4.3.1.4 Diagrams

The workflows are somewhat extensive, and for that reason, I have included them
as appendices.

• Multi-signature proposal: A.1

• Multi-signature endorsement: A.2

• Multi-signature aggregated proposal: A.3

• Multi-signature aggregated endorsement: A.4

• Multi-signature proposal cancellation: A.5

36

Requirements and Design

4.3.2 On-Demand Oracle

The system has two different designs, one has an escrow contract that serves as
middleware, and the other has not. Both designs have advantages and disadvantages
over one another.

Below I explain the designs and also provide some illustrative examples (4.8 and
4.9).

Figure 4.8: On-Demand Oracle without an escrow contract.

The first design comprises three contract abstractions, the oracles, the token, and
the clients. It does not contain an escrow service.

In this design, clients send requests to the oracle through the token contract together
with the service payment, and oracles send responses directly to the clients.

This design reduces gas costs because there is no escrow. Having an escrow in
between would add extra calls that would result in more gas usage.

As a consequence of not having an escrow, the client is forced to believe that the
oracle is well-intentioned and that he will complete his part of the agreement by
fetching data from outside sources and sending it back to the client.

The escrow increases clients’ trust when sending requests to the oracles because the
escrow locks oracle payments and unlocks them only when they send a response.
Thus, if the oracle doesn’t send a reply and the request times out, the client is free
to cancel his request and refund the payment.

37

Chapter 4

Figure 4.9: On-Demand Oracle with an escrow contract.

4.3.2.1 Token contract

4.3.2.1.1 Storage interface

The contract storage interface in listing 4.7 shows the storage attributes necessary
in the token contract. Their purpose is described below.

sp.TRecord(
administrator = sp.TAddress ,
all_tokens = sp.TNat ,
ledger = sp.TBigMap(

sp.TPair(sp.TAddress , sp.TNat),
sp.TRecord(

balance = sp.TNat
).layout("balance")

),
metadata = sp.TBigMap(sp.TString , sp.TBytes),
operators = sp.TBigMap(

sp.TRecord(
operator = sp.TAddress ,
owner = sp.TAddress ,
token_id = sp.TNat

).layout (("owner", ("operator", "token_id"))),
sp.TUnit

),
paused = sp.TBool ,
token_metadata = sp.TBigMap(

sp.TNat ,
sp.TRecord(

token_id = sp.TNat ,
token_info = sp.TMap(sp.TString , sp.TBytes)

38

Requirements and Design

).layout (("token_id", "token_info"))
)

).layout ((("administrator", ("all_tokens", "ledger")), (("metadata"
, "operators"), ("paused", "token_metadata"))))

Listing 4.7: Token contract storage interface

• administrator - This attribute contains the address of the contract adminis-
trator;

• all_tokens - A natural number that provides the number of existing distinct
tokens minted by the contract;

• ledger - The ledger attribute is a big map that stores the ownership of tokens,
where the key is a pair composed by the owner address and the token identifier,
and its value is the balance owned;

• metadata - It is a big map used for off-chain purposes, where it provides in-
formation about the contract to indexers. The key is a string that specifies the
field name, and the value is bytes that decode to a UTF-8 string, representing
the field value. The value needs to be in bytes format because the blockchain
only supports 7-bit ASCII characters in strings.

• operators - The operators attribute stores permissions used to permit ad-
dresses to operate the balance of other addresses;

• paused - The attribute is used for enabling or disabling the contract. When
disabled, only administration operations are allowed;

• token_metadata - Similar to the attribute metadata, token_metadata
is also used for off-chain purposes, where it provides information specific to a
given token (e.g., the number of decimals places, name, description, and icon).

4.3.2.1.2 Method interfaces

Most methods are inherited from TZIP-123 specification. The implementation will
add a new entry point named transfer_and_call, which the clients will use to
transfer the ownership of tokens from one address to another and transmit infor-
mation to the recipient when the transfer is successful. The argument is a list of
transactions containing the amount to be transferred, the recipient address, the
token identifier, and the payload to be sent to the recipient.

3https://gitlab.com/tezos/tzip/-/blob/master/proposals/tzip-12/tzip-12.md#interface-
specification

39

Chapter 4

(list %transfer_and_call
(pair

(address %from_)
(list %txs

(pair
(address %to_)
(pair

(address %callback)
(pair

(bytes %data)
(pair

(nat %token_id)
(nat %amount)

)))))))

Listing 4.8: Interface of the "transfer_and_call" entry point in the token contract.

4.3.2.2 Oracle contract

4.3.2.2.1 Storage interface

The contract storage interface in listing 4.9 shows the storage attributes necessary
in the oracle contract. Their purpose is described below.

Parameter type specification
Parameter = sp.TVariant(

int = sp.TInt ,
string = sp.TString ,
bytes = sp.TBytes

).right_comb ()

Parameters type specification
Parameters = sp.TMap(sp.TString , Parameter)

Request type specification
Request = sp.TRecord(

request = sp.TRecord(
id = sp.TNat ,
jobId = sp.TString ,
clientAddress = sp.TAddress ,
callbackAddress = sp.TAddress ,
cancelTimeout = sp.TTimestamp ,
parameters = Parameters ,

).right_comb (),
payment = sp.TNat

40

Requirements and Design

).right_comb ()

Storage type specification
sp.TRecord(

config = sp.TRecord(
adminAddress = sp.TAddress ,
tokenAddress = sp.TAddress ,
active = sp.TBool ,
minCancelTimeout = sp.TNat ,
minPayment = sp.TNat ,

),
requests = sp.TBigMap(sp.TBytes , Request),
metadata = sp.TBigMap(sp.TString , sp.TBytes),

).right_comb ()

Listing 4.9: Oracle contract storage interface

• config - Stores the contract configurations.

Attributes:

– adminAddress - The administrator address;

– tokenAddress - The address of the token contract;

– active - Disables or enables the orable;

– minCancelTimeout - Specifies the minimum acceptable TTL;

– minPayment - Specifies the minimum acceptable payment amount;

• requests - A big map that stores requests from clients, where the key is a
blake2b hash of the value, and the value is composed of the request data and
the payment amount sent by the client. Off-chain agents will listen to this
attribute to extract requests sent from clients and then apply actions off-chain.

Request attributes:

– id - A natural number identifier sent by the client;

– jobId - A hexadecimal identifier of a Chainlink job;

– clientAddress - The original client address;

– callbackAddress - A callback address used to send the response to the
client or escrow;

– cancelTimeout - The TTL of the request;

– parameters - Request query, it can be a string, an integer or bytes;

41

Chapter 4

• metadata - It is a big map used for off-chain purposes, where it provides in-
formation about the contract to indexers. The key is a string that specifies the
field name, and the value is bytes that decode to a UTF-8 string, representing
the field value. The value needs to be in bytes format because the blockchain
only supports 7-bit ASCII characters in strings.

4.3.2.2.2 Method interfaces

Entry point on_token_transfer is used when the client does not want to use an
escrow contract and instead sends the request through the token.

(pair %on_token_transfer
(nat %amount)
(pair

(bytes %data)
(pair

(address %sender)
(nat %tokenId)

)))

Listing 4.10: Interface of the "on_token_transfer" entry point in the oracle contract.

Entry point create_request is used by the escrow contract to transmit requests
from clients.

(pair %create_request
(nat %payment)
(pair %request

(address %callbackAddress)
(pair

(timestamp %cancelTimeout)
(pair

(address %clientAddress)
(pair

(nat %id)
(pair

(string %jobId)
(pair

(address %oracleAddress)
(map %parameters

string
(or (bytes %bytes) (or (int %

int) (string %string)))
))))))))

Listing 4.11: Interface of the "create_request" entry point in the oracle contract.

42

Requirements and Design

4.3.2.3 Escrow contract

4.3.2.3.1 Storage interface

LockedRequest type specification
LockedRequest = sp.TRecord(

payment = sp.TNat ,
oracleAddress = sp.TAddress ,
clientAddress = sp.TAddress ,
callbackAddress = sp.TAddress ,
cancelTimeout = sp.TTimestamp

)

Storage type specification
sp.TRecord(

adminAddress = sp.TAddress ,
tokenAddress = sp.TAddress ,
locked = sp.TBigMap(sp.TPair(sp.TAddress , sp.TNat),
LockedRequest)
metadata = sp.TBigMap(sp.TString , sp.TBytes)

).right_comb ()

Listing 4.12: Escrow contract storage interface

• adminAddress - The administrator address;

• tokenAddress - The token address;

• locked - Is a big map that stores the requests transmitted from the client to
the oracle contract while those do not get fulfilled. The key is composed by
the client address and the request identifier–the value is part of the request
data sent by the client.

Request attributes:

– payment - The amount to be sent to the oracle once he fulfills the
request;

– clientAddress - The oracle address;

– clientAddress - The original client address;

– callbackAddress - A callback address used to send the response to the
client;

– cancelTimeout - The TTL of the request;

• metadata - It is a big map used for off-chain purposes, where it provides in-
formation about the contract to indexers. The key is a string that specifies the

43

Chapter 4

field name, and the value is bytes that decode to a UTF-8 string, representing
the field value. The value needs to be in bytes format because the blockchain
only supports 7-bit ASCII characters in strings.

4.3.2.3.2 Method interfaces

Entry point fulfill_request is used by oracles to fulfill client requests and claim
the payment.

(pair %fulfill_request
(address %clientAddress)
(pair

(map %parameters
string
(or (bytes %bytes) (or (int %int) (string %string)))

)
(nat %requestId)

))

Listing 4.13: Interface of the "fulfill_request" entry point in the escrow contract.

Entry point on_token_transfer is similar to the oracle, but in this case, the
payment gets locked on the escrow side and is only sent to the oracle once he claims
the reward.

(pair %on_token_transfer
(nat %amount)
(pair

(bytes %data)
(pair

(address %sender)
(nat %tokenId)

)))))

Listing 4.14: Interface of the "on_token_transfer" entry point in the escrow
contract.

4.3.3 Decentralized model

The decentralized model is more secure than the on-demand oracle model explained
above because it comprises multiple entities that submit data to the contract, where
the data gets aggregated and computed. The information gets aggregated in rounds.
Clients can always request the information computed in the latest round by paying a
given amount to the contract that gets distributed between the entities participating
in the aggregation process. Figure 4.10 illustrates the scenario.

44

Requirements and Design

Figure 4.10: Decentralized model diagram.

4.3.3.1 Aggregator contract

The main component of the decentralized price feed is the aggregation contract,
which relies on multiple agents that gather data about the current prices of precious
metals, fiat, or other cryptocurrencies and submit them into the contract as shown
in appendix B.1. The contract then stores the submissions in a map and recalculates
the median price of the round submissions.

A new round can start at any time when one of the following conditions occur:

• Time based - A new round can start every X minutes, but the countdown
resets every time a new round starts;

• Price based - When price deviates from a given percentage when compared
to the latest price;

4.3.3.1.1 How is the median obtained?

If the number of submissions is odd, then the median will be the middle of a sorted
list of all submissions. But if the number of submissions is even, then the average
of the two middle indexed items becomes the median price.

45

Chapter 4

4.3.3.1.2 Client Requests

Clients can obtain the latest price by calling the aggregator directly as shown in
4.11 or by calling a proxy contract that points to the aggregator as shown in 4.12.

Figure 4.11: Client request (Direct)

Figure 4.12: Client request (Proxied)

4.3.3.1.3 Storage interface

The contract storage interface in listing 4.15 shows the storage attributes necessary
in the aggregator contract. Their purpose is described below.

Round type specification
Round = sp.TRecord(

roundId = sp.TNat ,
answer = sp.TNat ,
startedAt = sp.TTimestamp ,
updatedAt = sp.TTimestamp ,
answeredInRound = sp.TNat

).right_comb ()

Round details type specification
RoundDetails = sp.TRecord(

submissions = sp.TMap(sp.TAddress , sp.TNat),
minSubmissions = sp.TNat ,
maxSubmissions = sp.TNat ,
timeout = sp.TNat ,
activeOracles = sp.TSet(sp.TAddress)

).right_comb ()

Oracle details type specification
OracleDetails = sp.TRecord(

startingRound = sp.TNat ,
endingRound = sp.TNat ,

46

Requirements and Design

lastStartedRound = sp.TNat ,
lastReportedRound = sp.TNat ,
withdrawable = sp.TNat ,
adminAddress = sp.TAddress

).right_comb ()

Storage type specification
sp.TRecord(

active = sp.TBool ,
decimals = sp.TNat ,
adminAddress = sp.TAddress ,
tokenAddress = sp.TAddress ,
metadata = sp.TBigMap(sp.TString , sp.TBytes),
minSubmissions = sp.TNat ,
maxSubmissions = sp.TNat ,
restartDelay = sp.TNat ,
timeout = sp.TNat , # In minutes
oraclePayment = sp.TNat ,
latestRoundId = sp.TNat ,
reportingRoundId = sp.TNat ,
rounds = sp.TBigMap(sp.TNat , Round),
previousRoundDetails = RoundDetails ,
reportingRoundDetails = RoundDetails ,
recordedFunds = sp.TRecord(

available = sp.TNat ,
allocated = sp.TNat

),
oracles = sp.TMap(sp.TAddress , OracleDetails)

).right_comb ()

Listing 4.15: Aggregator contract storage interface

• active - Disabled or enables the contract;

• decimals - The number of decimals of the answer. Necessary because there
is no floating point numbers in smart contracts;

• adminAddress - The address of the administrator contract;

• tokenAddress - The address of the token contract;

• metadata - It is a big map used for off-chain purposes, where it provides in-
formation about the contract to indexers. The key is a string that specifies the
field name, and the value is bytes that decode to a UTF-8 string, representing
the field value. The value needs to be in bytes format because the blockchain
only supports 7-bit ASCII characters in strings.

• minSubmissions - The minimum amount of submissions required per round;

47

Chapter 4

• maxSubmissions - The maximum amount of submissions per round;

• restartDelay - Defines a threshold enforcing that a round cannot start within
a given time interval from the previous round.

• timeout - Defines the round timeout. If a round is not completed after a
given period, the current round gets terminated and a new round starts;

• oraclePayment - Specifies the amount paid to oracles when they submit
data. Occurs once per round.

• latestRoundId - Stores the round identifier of the latest round to be com-
pleted;

• reportingRoundId - Stores the identifier of the current round;

• rounds - A big map containing historical data of each round ;

Round attributes:

– roundId - Round identifier;

– answer - Contains the aggregation result. It is only fulfilled when the
number of submissions is equal or bigger than minSubmissions.

– startedAt - Timestamp of the round started;

– updatedAt - Timestamp of when the latest answer was submitted;

– answeredInRound - The identifier of the round where the latest answer
was submitted;

• previousRoundDetails - Previous round details;

• reportingRoundDetails - Current round details;

Round detail attributes:

The round details contain cloned fields from the root record–they are necessary
because rounds must not be updated once the round starts, and the values in
the root record can be updated at any time.

– submissions - Oracle submissions in the round;

– minSubmissions - A clone of the minSubmissions field when the
round started;

– maxSubmissions - A clone of the maxSubmissions field when the
round started;

– timeout - A clone of the timeout field when the round started;

48

Requirements and Design

– activeOracles - A clone of the oracles field when the round started.

• recordedFunds - Stores the number of funds owned by the contract, where
allocated funds are payments not yet claimed by oracles;

• oracles - A map containing all oracles participating in the aggregation. Ora-
cles are indexed by their addresses.

Oracle attributes:

– startingRound - The round identifier when the oracle added;

– endingRound - The round identifier when the oracle will disabled;

– lastStartedRound - The latest round started by the baker;

– lastReportedRound - The latest round where the baker submitted an
answer;

– timeout - The amount of uncollected payments;

– adminAddress - The address of the administrator, which can be the
contract address.

Method interfaces

Entry point submit is used by external adapters to submit answers to the current
round.

(pair %submit nat nat) # Round identifier on the left and answer on
the right

Listing 4.16: Interface of the "submit" entry point in the aggregator contract.

Entry point latest_round_data is used by clients to obtain the latest round data.

(address %latest_round_data)

Listing 4.17: Interface of the "latest_round_data" entry point in the aggregator
contract.

4.3.3.1.4 Diagrams

The diagrams are somewhat extensive, and for that reason, I have included them as
appendices.

• Price Submission: B.1

• Proxied Request: B.2

49

Chapter 4

4.4 Conclusion

I believe that the requirements and design of the solution were adequately defined,
starting with the aggregation of requirements and then the definition of a high-level
specification. However, it is natural to think that a few things may still change in
the future as the solution evolves.

A friend once told me the following:

“Every non-trivial project needs to reinvent itself at least once.”

50

Chapter 5

Implementation Overview

5.1 Introduction

This chapter presents a brief overview of the implementation process by explaining
how it was structured and the technologies used.

• Section [5.2] - Implementation structure;

• Section [5.4] - Technologies used;

5.2 Implementation Structure

The project uses GitLab as a version control tool, where all the code lives in a single
repository (mono-repository). It leverages Make to compose multiple targets used
to install, compile, test, and deploy parts of the solution independently.

5.2.1 Tasks

The implementation was structured in the following way:

1. Pipeline preparation, which consisted in the creation of a Makefile with targets
to prepare the environment, compile and test the contracts;

2. Implementation of the contracts for the on-demand request model;

3. Implementation of the contracts for the decentralized model;

4. Chainlink node setup;

51

Chapter 5

5. Implementation of a driver for listening to smart contracts and call the Chain-
link node;

6. Implementation of an oracle agent used to connect the Chainlink node with
smart contracts;

7. Creation of job specs used by the Chainlink node;

8. Preparation of a sandbox to emulate the production environment. Described
in 6.2;

9. Implementation of a command-line interface to communicate with the smart-
contracts;

10. Creation of a small frontend used as proof of concept for the solution;

11. Document the solution.

5.3 Tools Implementation

5.3.1 External initiator driver

The external initiator is written in Golang. It listens to specific contract operations
by looking into the operation metadata and checking if an operation destination is a
monitored contract and if the operation targets the "request" or "on_token_transfer"
entry-points.

If the operation matches the condition, the initiator parses the storage difference
to extract the request parameters and then calls the Chainlink node to dispatch an
action to the external agent.

Figure 5.1 shows the external initiator interactions with other components.

Figure 5.1: External initiator interactions.

52

Implementation Overview

5.3.2 External agent

The external agent is implemented in Typescript and consists of a simple web server
with a single end-point /submit that the Chainlink node can call to request the
submission of data into the smart contract as shown if figure 5.1. It can fetch data
from three data sources Kraken, Coingecko, and Coinbase, which are configured
by the user.

Environment variables:

Web server port (Optional: 3000 is the default)
PORT=<...>
Price API (Optional: COINBASE is the default)
PRICE_SOURCE=<KRAKEN|COINGECKO|COINBASE >
Private key
SECRET_KEY=edsk <...>
Tezos RPC
TEZOS_RPC=https ://<...>

Listing 5.1: Environment variables.

Web server end-points:

{
id: string;
data: {

aggregatorAddress: string;
},

};

Listing 5.2: POST body of the "/submit" end-point.

Web server responses:

{
jobRunID: string; // Job ID that dispatched the request
result: string; // The hash of the onchain operation.
statusCode: 200;

}

Listing 5.3: Success response.

{
jobRunID: string; // Job ID that dispatched the request
status: ’errored ’;

53

Chapter 5

error: {
name: string;
message: string;
errors: string []; // Error details

},
statusCode: 500;

}

Listing 5.4: Success response.

5.3.3 Command-line interface

The command-line interface is written in Typescript. It allows the user to call
smart contracts from the terminal and is heavily used by the continuous integration
pipeline.

Deploy contracts related to the decentralized model
./cli.js originate -contracts --config "config/pricefeed.yaml"

Listing 5.5: CLI usage example.

It is composed of three components:

1. Call builder - Constructs the entry point calls that are sent to smart con-
tracts;

2. Commander - Reads the user inputs and performs the requested actions;

3. Packer - Encodes Michelson instructions into bytes. Necessary in the multi-
signature contract, where external actions need to be generic by being encoded
as bytes.

5.4 Technologies Used

• Chainlink - It offers a set of tools for node operators to connect smart
contracts to external data sources. The tools are mainly compatible with
blockchains built on top of Ethereum Virtual Machine (EVM) but are modu-
lar enough to support the Tezos blockchain. I took responsibility for adding a
generic external initiator driver that listens to Tezos transactions, parses their
content, and dispatches actions based on the configured job specification;

54

Implementation Overview

• SmartPy and Ocaml - SmartPy is a high-level programming language for
writing and testing smart contracts on Tezos efficiently. The compiler is writ-
ten in Ocaml, which makes Ocaml also a direct dependency;

• Typescript - It is being used to write the external agent and the command-
line interface that injects operations into the blockchain and the front-end tools
for demo purposes. Typescript allows writing cleaner and easier to use code.
Writing in pure javascript can be cumbersome since it lacks type checking, and
Typescript is a good solution since it is a superset of javascript that provides
types on top;

• Golang - Mainly used to add extra functionalities to the chainlink toolkit,
like the external initiator mentioned above;

• React - Web framework used to write the UI/UX for interacting with the
smart contracts;

• Docker and Make - Tools used for the development and testing environ-
ments, multiple containers will encapsulate the necessary tools.

5.5 Conclusion

The implementation phase had a few challenges related to the integration between
multiple contracts and the listening of contract transactions from off-chain agents,
which got surpassed. Figure 5.2 shows a demo of the solution–it presents a decen-
tralized model composed of 6 oracles provisioning price data into the aggregator
contract every five minutes.

Figure 5.2: Solution demo.

55

Chapter 6

Testing

6.1 Introduction

This section details the testing procedures taken to ensure and validate the quality
of the solution.

The testing followed a Test Driven Development (TDD) approach, where most tests
got implemented before the features. It enforced a better coverage of the solution
and provided a more reliable development experience.

The solution has a continuous integration pipeline, which runs against every pull
request and is composed of three jobs (contracts/tools compilation, contracts
testing, and end-to-end testing).

Figure 6.1 shows the pipeline during a run of a merge request.

Figure 6.1: Continuous integration pipeline.

6.1.1 Types of testing in use

• Unit tests - Test the logic of each contract entry point;

• Functional tests - Test the integration between multiple contracts against
the specification;

56

Testing

• Regression tests - Verify differences between committed and non-committed
compilation and test outputs;

• End-to-end tests - Test the integration between multiple contracts and tools
in a sandbox environment.

6.1.2 Tasks Structure

• Section [6.2] Sandbox setup;

• Section [6.3] Smart contract testing;

• Section [6.4] End-to-end testing;

6.1.3 Objectives

• Preparation of a sandbox to emulate the production environment. It provides
trustable test baselines and enables the tests to run in a continuous integration
pipeline on every pull request;

• Test implementation for smart contracts and tools, ensuring the solution gets
adequately tested;

• Prepare a continuous integration pipeline to run the whole battery of tests on
every pull request and in the main branch;

• Ensure good coverage of the whole solution.

6.2 Sandbox setup

This section describes the setup of a sandbox that emulates the production environ-
ment.

Having a sandbox similar to the production environment provides high-quality test
baselines, facilitates the development, and allows the tests to run in a continuous
integration pipeline on every pull request;

6.2.1 Sandbox specification:

The sandbox is composed of several docker containers, which connect to a single
network. Figure 6.2 illustrates the communication workflow between components,

57

Chapter 6

and below is a description of each component and its role in the system.

Figure 6.2: Sandbox components.

Components:

• Tezos (Test Network) - This component deploys a Tezos test network run-
ning the latest protocol, composed of two validators, and produces a new block
every minute. All smart contracts get deployed in this network.

• Chainlink (External Initiator) - It is a Chainlink tool that runs a Tezos
driver explicitly developed for this solution, which listens to the contracts and
dispatches actions that get transmitted to the external adapter.

• External Adapters - This tool was developed specifically for this project, and
its purpose is to communicate with external APIs and call smart contracts on
the Tezos blockchain. In figure 6.2 each external adapter represents an oracle
agent that fetches information off-chain and submits it to the contract.

6.3 Contract testing

The unit and functional testing of contracts are composed of 2 steps performed
against all implemented contracts. It first checks the compilation of contracts and
then runs test various scenarios.

• Compilation to Michelson - This step ensures that there are not compila-
tion errors, meaning that the high-level code is valid.

58

Testing

import smartpy as sp

Client = sp.io.import_script_from_url("file:contracts/
price_feed/client.py").Client

#####################
Compilation Targets
#####################

sp.add_compilation_target(
"price_feed_client",
Client(

admin = sp.address("KT1_ADMIN_ADDRESS"),
proxy = sp.address("KT1_PROXY_ADDRESS"),

)
)

Listing 6.1: Compilation example

• Test of scenarios - This step runs test scenarios on an internal interpreter,
where various conditions get asserted, including the interaction with other
contracts. This step does not run on the blockchain.

import smartpy as sp

Client = sp.io.import_script_from_url("file:contracts/
price_feed/client.py").Client

@sp.add_test(name = "Test Client")
def testClient ():

scenario = sp.test_scenario ()

scenario.h2("Originate client")
client = Client(

admin = sp.address("KT1_ADMIN_ADDRESS"),
proxy = sp.address("KT1_PROXY_ADDRESS"),

)
scenario += client

scenario.h2("Administrate client")
client.administrate(

admin = sp.address("KT1_ADMIN_ADDRESS_NEW"),
proxy = sp.address("KT1_PROXY_ADDRESS_NEW"),

).run(sender = sp.address("KT1_ADMIN_ADDRESS")

Listing 6.2: Test scenario example

59

Chapter 6

6.4 End-to-end testing

The end-to-end testing uses the sandbox setup explained above in section 6.2 to
deploy a test network and various other tools that interface the smart contracts
with external APIs.

1. It starts by bootstrapping the sandbox containers;

2. Setups the Chainlink node and initiator;

3. Compiles the contracts;

4. Deploys the contracts in a test blockchain;

5. Does functional testing to the solution by calling each contract individually
and checking that the expected action was performed;

6. Validates the final state of the contracts.

6.5 Conclusion

Test automation is fundamental to a project like this. It brings many benefits,
including keeping a certain level of quality by forcing the implementation to com-
ply with given requirements, avoiding regressions, and excluding trust on a human
level. It also facilitates the developer’s work by reducing the amount of manual test-
ing and providing helpful feedback while implementing, maintaining, and reviewing
features.

60

Chapter 7

Conclusions and Future Work

This last chapter assembles the main conclusions taken from the internship and
aggregates objectives for future work.

7.1 Conclusion

It became clear that blockchains are a promising technology much-discussed nowa-
days and can initiate a new era of data storage and code execution by leveraging
smart contracts, changing how people do business. Layer two technologies like off-
chain data provision and scaling solutions are pivotal for the future of blockchain
applications and an excellent area for research.

The technology is still early in adoption and has seen tremendous technological ad-
vancements in the last few years. Nevertheless, it can still fail due to the possibility
of new regulations or people’s skepticism in adopting the technology. Furthermore,
central banks are starting to experiment with their own Central Bank Digital Cur-
rency (CBDC), where China already has a pilot project in use by a percentage
of their public workers. So, this leads me to believe that once the currency part
of the technology becomes standard, smart contracts will be the norm for service
payments.

7.2 Future work

For future work, the plan is to keep evolving the SmartPy platform by improving
the current features, user experience, and adapting new features as they get included
in Tezos.

61

Chapter 7

Additionally, I plan to finalize the bridge between Ethereum and Tezos and integrate
on-chain views into the existing contracts once the new protocol Hangzhou gets
adopted.

62

References

[1] Victor Allombert, Mathias Bourgoin, and Julien Tesson. Introduction to the
tezos blockchain, 2019.

[2] Jacob Arluck. Liquid proof-of-stake. https://medium.com/tezos/
liquid-proof-of-stake-aec2f7ef1da7, 2020.

[3] Lăcrămioara Aştefanoaei, Pierre Chambart, Antonella Del Pozzo, Thibault
Rieutord, Sara Tucci, and Eugen Zălinescu. Tenderbake – a solution to dy-
namic repeated consensus for blockchains, 2021.

[4] Abdeljalil Beniiche. A study of blockchain oracles. https://www.
researchgate.net/publication/340662783_A_Study_of_Blockchain_
Oracles, 2020.

[5] Bruno Bernardo, Raphaël Cauderlier, Guillaume Claret, Arvid Jakobsson,
Basile Pesin, and Julien Tesson. Making tezos smart contracts more reliable
with coq. Leveraging Applications of Formal Methods, Verification and Valida-
tion: Applications, page 60–72, 2020.

[6] Bruno Bernardo, Raphaël Cauderlier, Zhenlei Hu, Basile Pesin, and Julien
Tesson. Mi-cho-coq, a framework for certifying tezos smart contracts, 2019.

[7] Chainlink. Asset tokenization: Bringing real-world
value to the blockchain. https://blog.chain.link/
asset-tokenization-bringing-real-world-value-to-the-blockchain.

[8] Deloitte. The tokenization of assets is disrupting the fi-
nancial industry. are you ready? https://www2.deloitte.
com/content/dam/Deloitte/lu/Documents/financial-services/
lu-tokenization-of-assets-disrupting-financial-industry.pdf,
2020.

[9] Nate DiCamillo. Vertalo, tzero are bringing $300m in real es-
tate to the tezos blockchain. https://www.coindesk.com/
vertalo-tzero-are-bringing-300m-in-real-estate-to-the-tezos-blockchain,
2020.

63

https://medium.com/tezos/liquid-proof-of-stake-aec2f7ef1da7
https://medium.com/tezos/liquid-proof-of-stake-aec2f7ef1da7
https://www.researchgate.net/publication/340662783_A_Study_of_Blockchain_Oracles
https://www.researchgate.net/publication/340662783_A_Study_of_Blockchain_Oracles
https://www.researchgate.net/publication/340662783_A_Study_of_Blockchain_Oracles
https://blog.chain.link/asset-tokenization-bringing-real-world-value-to-the-blockchain
https://blog.chain.link/asset-tokenization-bringing-real-world-value-to-the-blockchain
https://www2.deloitte.com/content/dam/Deloitte/lu/Documents/financial-services/lu-tokenization-of-assets-disrupting-financial-industry.pdf
https://www2.deloitte.com/content/dam/Deloitte/lu/Documents/financial-services/lu-tokenization-of-assets-disrupting-financial-industry.pdf
https://www2.deloitte.com/content/dam/Deloitte/lu/Documents/financial-services/lu-tokenization-of-assets-disrupting-financial-industry.pdf
https://www.coindesk.com/vertalo-tzero-are-bringing-300m-in-real-estate-to-the-tezos-blockchain
https://www.coindesk.com/vertalo-tzero-are-bringing-300m-in-real-estate-to-the-tezos-blockchain

Chapter 7

[10] Stefan Dziembowski, Sebastian Faust, and Kristina Hostáková. General state
channel networks. https://eprint.iacr.org/2018/320.pdf, 2018.

[11] Alexander Egberts. The oracle problem - an analysis of how blockchain oracles
undermine the advantages of decentralized ledger systems. Organizations &
Markets: Policies & Processes eJournal, 2017.

[12] Noama Fatima Samreen and Manar H. Alalfi. Reentrancy vulnerability iden-
tification in ethereum smart contracts. 2020 IEEE International Workshop on
Blockchain Oriented Software Engineering (IWBOSE), Feb 2020.

[13] Tim Fries. Securitize and elevated returns to tokenize $1 bil-
lion of real estate assets on tezos. https://tokenist.com/
securitize-and-elevated-returns-to-tokenize-1-billion-of-real-estate-assets-on-tezos,
2021.

[14] LM Goodman. Tezos — a self-amending crypto-ledger white paper. https:
//tezos.com/whitepaper.pdf, 2014.

[15] BitFury Group. Proof of stake versus proof of work. https://bitfury.com/
content/downloads/pos-vs-pow-1.0.2.pdf, 2015.

[16] Bitfury Group. Land-titling project will extend to other government depart-
ments and increase blockchain capabilities for georgian citizens, 2016.

[17] Lewis Gudgeon, Pedro Moreno-Sanchez, Stefanie Roos, Patrick McCorry, and
Arthur Gervais. Sok: Layer-two blockchain protocols. In Joseph Bonneau
and Nadia Heninger, editors, Financial Cryptography and Data Security, pages
201–226, Cham, 2020. Springer International Publishing.

[18] Weilian Xue Honglei Li. A blockchain-based sealed-bid e-auction scheme with
smart contract and zero-knowledge proof. Security and Communication Net-
works, vol. 2021, Article ID 5523394, 10 pages, 2021, 2021.

[19] Pete Cannistraci John Liu, Anant Kadiyala. Enhancing supply chains
with the transparency and security of distributed ledger technology.
https://www2.deloitte.com/content/dam/Deloitte/global/Documents/
Technology/gx-tech-oracle-blockchain-cover-2019.pdf, 2019.

[20] Sunny King and Scott Nadal. Ppcoin: Peer-to-peer crypto-currency with proof-
of-stake. 2012.

[21] Ivan Kot. Smart contract applications, limitations and future outlook. https:
//www.itransition.com/blog/smart-contract-applications, 2021.

64

https://eprint.iacr.org/2018/320.pdf
https://tokenist.com/securitize-and-elevated-returns-to-tokenize-1-billion-of-real-estate-assets-on-tezos
https://tokenist.com/securitize-and-elevated-returns-to-tokenize-1-billion-of-real-estate-assets-on-tezos
https://tezos.com/whitepaper.pdf
https://tezos.com/whitepaper.pdf
https://bitfury.com/content/downloads/pos-vs-pow-1.0.2.pdf
https://bitfury.com/content/downloads/pos-vs-pow-1.0.2.pdf
https://www2.deloitte.com/content/dam/Deloitte/global/Documents/Technology/gx-tech-oracle-blockchain-cover-2019.pdf
https://www2.deloitte.com/content/dam/Deloitte/global/Documents/Technology/gx-tech-oracle-blockchain-cover-2019.pdf
https://www.itransition.com/blog/smart-contract-applications
https://www.itransition.com/blog/smart-contract-applications

References

[22] Quantstamp Labs. What is a re-entrancy attack? https://quantstamp.com/
blog/what-is-a-re-entrancy-attack, 2019.

[23] Alex Coventry Ari Juels Andrew Miller Lorenz Breidenbach, Christian Cachin.
Chainlink off-chain reporting protocol. https://research.chain.link/ocr.
pdf, 2021.

[24] Benedict Chan Alex Coventry Steve Ellis Ari Juels Farinaz Koushanfar Andrew
Miller Brendan Magauran Daniel Moroz Sergey Nazarov Alexandru Topliceanu
Florian Tram‘er Fan Zhang Lorenz Breidenbach, Christian Cachin. Chainlink
2.0: Next steps in the evolution of decentralized oracle networks. https://
research.chain.link/whitepaper-v2.pdf, 2021.

[25] Fernando P. Méndez. Smart contracts, blockchain and land registry. European
Land Registry Asociation (ELRA) General Assembly, 2018.

[26] Amirmohammad Pasdar, Zhongli Dong, and Young Choon Lee. Blockchain
oracle design patterns, 2021.

[27] Blaž Podgorelec, Marjan Heričko, and Muhamed Turkanović. State channel as
a service based on a distributed and decentralized web. IEEE Access, 8:64678–
64691, 2020.

[28] Team Rocket, Maofan Yin, Kevin Sekniqi, Robbert van Renesse, and Emin Gün
Sirer. Scalable and probabilistic leaderless bft consensus through metastability,
2020.

[29] Qiuyun Shang and Allison Price. A Blockchain-Based Land Titling Project in
the Republic of Georgia: Rebuilding Public Trust and Lessons for Future Pilot
Projects. Innovations: Technology, Governance, Globalization, 12(3-4):72–78,
01 2019.

[30] Sergey Nazarov Steve Ellis, Ari Juels. Chainlink - a decentralized oracle net-
work. https://research.chain.link/whitepaper-v1.pdf, 2018.

[31] Koji Takahashi. Blockchain technology for letters of credit and escrow arrange-
ments. Banking Law Journal pp. 89-103, 2017.

[32] Dan Wang, Jindong Zhao, and Chunxiao Mu. Research on blockchain-based
e-bidding system. Applied Sciences, 11(9), 2021.

[33] Shuai Wang, Yong Yuan, Xiao Wang, Juanjuan Li, Rui Qin, and Fei-Yue Wang.
An overview of smart contract: Architecture, applications, and future trends.
In 2018 IEEE Intelligent Vehicles Symposium (IV), pages 108–113, June 2018.

[34] Neo C.K. Yiu. An overview of forks and coordination in blockchain develop-
ment. https://arxiv.org/pdf/2102.10006.pdf, 2021.

65

https://quantstamp.com/blog/what-is-a-re-entrancy-attack
https://quantstamp.com/blog/what-is-a-re-entrancy-attack
https://research.chain.link/ocr.pdf
https://research.chain.link/ocr.pdf
https://research.chain.link/whitepaper-v2.pdf
https://research.chain.link/whitepaper-v2.pdf
https://research.chain.link/whitepaper-v1.pdf
https://arxiv.org/pdf/2102.10006.pdf

Appendices

66

Appendix A

Multi-signature Contract

68

Multi-signature Contract

A.1 Multi-signature Proposal Workflow

Figure A.1: Multi-signature proposal workflow.

69

Appendix A

A.2 Multi-signature Endorsement Workflow

Figure A.2: Multi-signature endorsement workflow.

70

Multi-signature Contract

A.3 Multi-signature Aggregated Proposal Workflow

Figure A.3: Multi-signature aggregated proposal workflow.

71

Appendix A

A.4 Multi-signature Aggregated EndorsementWork-
flow

Figure A.4: Multi-signature aggregated endorsement workflow.

72

Multi-signature Contract

A.5 Multi-signature Proposal Cancellation Work-
flow

Figure A.5: Multi-signature proposal cancellation workflow.

73

Appendix B

Price-Feed Contracts

74

Price-Feed Contracts

B.1 Price Submission Control-flow Graph

Figure B.1: Price submission control-flow graph.

75

Chapter 7

B.2 Proxied Request Sequence Diagram

Figure B.2: Sequence diagram that illustrates the proxy workflow.

76

	Introduction
	Scope
	Motivation
	Objectives
	Report Structure

	State-of-the-Art and Background
	Introduction
	State-of-the-Art on Tezos
	What problems does Tezos aim to solve?
	Smart Contracts & Formal Verification
	High level languages:

	Why using Tezos for developing smart-contracts?
	Why do protocol upgrades usually take three months?

	Known problems in smart-contracts
	Reentrancy Vulnerabilities
	Scaling problems and access to real-world data
	What are layer two solutions?
	State Channels
	Oracles

	State-of-the-Art in Oracle Solutions
	The Oracle Problem
	Oracle Solutions
	Chainlink

	Smart contract applications
	Land Registry
	Adoptions in the real world

	Escrow Services

	Conclusion

	Security Considerations
	Introduction
	Replay Attacks
	What makes this attack possible?
	How can it be prevented?

	Reentrancy Attacks
	What makes this attack possible?
	How can it be prevented?

	Open Proxy Attacks
	What makes this attack possible?
	How can it be prevented?

	Execution Order
	Breadth-first Search
	Depth-first Search

	Gas and Storage (Denial of Service)
	How can it be prevented?

	Requirements and Design
	Introduction
	Solution Requirements
	Purpose
	On-demand request model
	Non-optional contracts:
	Optional contracts:
	Provider requirements:
	Escrow requirements:
	Token requirements:
	Consumer requirements:

	Decentralized data model
	Aggregator requirements:

	Contract Administration
	Multi-signature contract requirements:

	High level design
	Multi-signature contract
	Storage interface
	Method interfaces
	"proposal" entry point
	"endorsement" entry point
	"aggregated_proposal" entry point
	"aggregated_endorsement" entry point
	"cancel_proposal" entrypoint

	Preventing Replay Attacks
	Diagrams

	On-Demand Oracle
	Token contract
	Storage interface
	Method interfaces

	Oracle contract
	Storage interface
	Method interfaces

	Escrow contract
	Storage interface
	Method interfaces

	Decentralized model
	Aggregator contract
	How is the median obtained?
	Client Requests
	Storage interface
	Diagrams

	Conclusion

	Implementation Overview
	Introduction
	Implementation Structure
	Tasks

	Tools Implementation
	External initiator driver
	External agent
	Command-line interface

	Technologies Used
	Conclusion

	Testing
	Introduction
	Types of testing in use
	Tasks Structure
	Objectives

	Sandbox setup
	Sandbox specification:

	Contract testing
	End-to-end testing
	Conclusion

	Conclusions and Future Work
	Conclusion
	Future work

	Appendices
	Multi-signature Contract
	Multi-signature Proposal Workflow
	Multi-signature Endorsement Workflow
	Multi-signature Aggregated Proposal Workflow
	Multi-signature Aggregated Endorsement Workflow
	Multi-signature Proposal Cancellation Workflow

	Price-Feed Contracts
	Price Submission Control-flow Graph
	Proxied Request Sequence Diagram

