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RESUMO 

Sendo reconhecido que o processo de nocicepção está relacionado com o Sistema 

Nervoso Autónomo (ANS), os níveis de nocicepção podem ser indiretamente 

avaliados através da análise de parâmetros fisiológicos. Desta forma, a análise da 

variabilidade da frequência cardíaca (HRV) torna-se fulcral para o estudo das 

respostas autonómicas subjacentes aos estímulos nociceptivos. A importância da 

análise da HRV deve-se ao facto desta tornar possível a análise de alterações no 

equilíbrio do ANS. No entanto, torna-se bastante desafiador conseguir uma análise 

significativa e objetiva da HRV uma vez que este parâmetro é interdependente em 

sistemas regulatórios neuronais e cardíacos que se modelam a qualquer estímulo 

ambiental ou psicológico. Batimentos ectópicos representam um dos fatores que 

condicionam a análise significativa da HRV e, portanto, torna-se crucial que se limite 

o risco de conclusões erróneas aquando da interpretação de informações clínicas. 

A Analgesia Nociception Index (ANI) é uma tecnologia atualmente comercializada 

com o intuito de possibilitar um melhor controlo do stress cirúrgico através de uma 

medida contínua e não invasiva do tónus do sistema nervoso parassimpático. Ao 

longo deste estudo, tirando vantagem da simulação controlada de dados, verificou-

se a importância da correção de intervalos ectópicos antes da interpretação clínica 

dos valores de ANI, pois o algoritmo demonstrou ser sensível à identificação precisa 

da localização dos batimentos cardíacos.   

Foram construídos conjuntos de dados editados através da introdução de intervalos 

ectópicos nos sinais HRV de controlo que foram previamente extraídos de dados 

reais de pacientes. Os dados clínicos incluídos neste estudo fazem parte da VitalDB, 

uma base de dados intraoperatória disponibilizada publicamente, tendo sido 

incluídos 105 pacientes sujeitos a cirurgias de conservação mamária. Diversos 

métodos foram explorados para a correção dos intervalos ectópicos que foram 

artificialmente inseridos nos sinais de HRV de controlo. Para diversos graus de 

ectopia artificialmente introduzidos, o desempenho dos métodos referidos foi 

avaliado através do erro absoluto médio (MAE) e da informação mútua normalizada 

(NMI). 

Numa proporção de 10% de intervalos ectópicos e antes de aplicar algum método 

de correção ectópica, os valores de ANI calculados através dos sinais HRV editados 

eram significativamente diferentes dos valores ANI calculados através dos sinais 

HRV de controlo (MAE = 30.56 ± 10.18, NMI = 0.04 ± 0.07), limitando a 

monitorização adequada do tónus do sistema nervoso parassimpático. Depois de ser 

efetuada a validação estatística dos resultados, a técnica proposta neste trabalho 

para corrigir intervalos ectópicos consiste em substituir esses intervalos por 

intervalos R-R estimados com um modelo autorregressivo. As discrepâncias entre 
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as variáveis ANI calculadas através dos sinais de HRV de controlo foram 

significativamente reduzidas com a aplicação da técnica proposta (MAE = 1.66 ± 

0.78, NMI = 0.41 ± 0.11). Assim, é plausível assumir que a técnica proposta para 

corrigir intervalos ectópicos tornará a interpretação clínica do algoritmo de ANI 

mais robusto à presença de batimentos ectópicos numa proporção de 10%. 

Pode ser verificado que a previsão de amostras futuras dos sinais de HRV é um dos 

principais objetivos do processamento da sua informação, sendo benéfico para 

diversas aplicações clínicas, nomeadamente na monitorização de nocicepção em 

pacientes anestesiados. Apesar da dificuldade de treinar um modelo capaz de 

aprender o comportamento geral de sinais de HRV de diversos contextos clínicos e 

de ainda ser necessária uma futura validação dos resultados, a técnica proposta 

neste estudo poderá ser integrada no desenvolvimento de futuros algoritmos 

baseados na análise da HRV. 

 

Palavras-chave: Nocicepção, Batimentos ectópicos, Simulação de 

electrocardiogramas,  Analgesia Nociception Index, Variabilidade da frequência 

cardíaca 
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ABSTRACT 

Nociception and the autonomous nervous system (ANS) are recognized to be remarkably 

related, and, consequently, nociception levels can be indirectly assessed through the 

analysis of physiological parameters. Accordingly, analysis of Heart Rate Variability 

(HRV) becomes of utmost importance while studying the underlying autonomic response 

to nociceptive stimuli since it attempts to tease out the shifts in the sympathovagal 

balance. However, meaningful HRV analysis is a major challenge, as it may be constraint 

by the fact that this parameter is interdependent on regulatory systems corresponding to 

the neurocardiac modulation to any environmental and psychological stimulus. Ectopic 

beats represent one of the factors conditioning the measurement of HRV, and, therefore, 

it is crucial to limit the risk of erroneous conclusions during the interpretation of clinical 

information.  

The Analgesia Nociception Index (ANI) is a technology currently commercialized to allow 

better control of surgical stress by providing continuous and non-invasive measurement 

of the relative parasympathetic tonus. Throughout this study, taking advantage of 

controlled simulated data, the limits of the ANI were assessed, verifying the importance 

of correcting the ectopic intervals before attempting to clinically interpret the ANI values, 

as the algorithm would heavily rely on the precise identification of peak timing.  

Edited datasets have been composed by artificially introducing ectopic intervals into 

control HRV signals (ectopy-free) extracted from real patient data. The clinical data 

included in this study is part of VitalDB, an open-source intraoperative database, and 

comprised 105 patients undergoing breast-conserving surgery. Several methods had 

been explored to correct the ectopic intervals artificially introduced to the control HRV 

signals. The performance of the referred methods was assessed in terms of mean absolute 

error (MAE) and normalized mutual information (NMI) at varying degrees of ectopy 

artificially introduced into the baseline HRV signals.  

At a proportion of 10% of ectopy and prior to the correction of ectopic intervals, the ANI 

values calculated from the edited HRV signals were significantly different from the ANI 

values calculated from the control HRV signals (MAE = 30.56 ± 10.18, NMI = 0.04 ± 0.07), 

constraining the accurate monitoring of the parasympathetic tone. Posteriorly to 

statistical validation, the proposed technique to correct the ectopic intervals consists of 

replacing them with R-R intervals predicted with an autoregressive model. The 

discrepancies between the ANI variables calculated from the control HRV signals and the 

edited HRV signals were significantly reduced by the proposed strategy to correct ectopic 

intervals (MAE = 1.66 ± 0.78, NMI = 0.41 ± 0.11), being plausible to assume that the 

proposed technique for correction of ectopic intervals would robust the interpretation of 

the ANI algorithm in the presence of ectopic beats to an extent of 10%.  
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Therefore, it could be verified that the prediction of the HRV signals would be one of the 

main targets of information processing, being beneficial in several clinical applications, 

including the monitoring of nociception in anaesthetized patients. Notwithstanding the 

difficulty of training a model capable of learning the general behaviour of the HRV signal 

in a wide range of clinical settings and although further validation is required, the 

proposal of this study can be integrated into the development of oncoming HRV-based 

algorithms, thus allowing real-time correction of ectopic intervals present in HRV signals. 

 

Keywords: Nociception, Ectopic Beat, Simulation of Electrocardiograms, Heart Rate 

Variability, Analgesia Nociception Index 
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1 INTRODUCTION 

Global volume, complexity, and diversity of surgery has been increasing over the years 

[1], [2]. Consequently, challenges are created for the clinicians involved throughout the 

surgical care. Despite not being uniform worldwide, surgery is, undoubtedly, one of the 

components with the greatest impact for the global health development [1], [3]. 

Nowadays, it is hard to imagine what surgery would be like without anaesthesia. Seeking 

to improve health outcomes, anaesthesiology has been evolving alongside with the 

surgical procedures aiming to provide hemodynamic stability and a fast recovery for the 

patient [2]. Optimal adjustment of the anaesthetic state is beneficial to the patient's 

outcome but requires good insight in terms of physiological dynamics. This represents a 

major challenge for clinicians particularly during general anaesthesia, as the patient is 

unconscious and a direct assessment on the adequacy of anaesthetic management is not 

possible. 

General anaesthesia (GA) is commonly described in literature as a triad of core 

components: hypnosis (level of unconsciousness), muscle paralysis (immobility), and 

analgesia (pain relief) [4], [5]. No single drug can lead the patient to an optimum 

combined state and, consequently, the anaesthesiologist relies on the combination of 

specific drugs to ensure the monitoring of each of the components of GA, aiming to 

provide homeostasis throughout the surgical procedure [5], [6]. Anaesthetic drugs 

combination and titration depend on the available information, including drugs 

pharmacokinetic properties, patient data, clinical background, and monitored 

physiological responses to treatment [6]. A more automated anaesthetic administration, 

which allows the control of the three main components of the GA, is desirable, as it can 

contribute to the maintenance of homeostasis during surgery and improve the patient's 

outcome [7]. Hypnosis and muscle paralysis have monitors widely accepted and 

commercialized, but there is no standardized solution capable of objectively translating 

the analgesic component [8]–[11]. 

Nowadays, the clinicians’ decision-making process for the administration of analgesics 

mostly relies on the evolution of hemodynamic parameters controlled by the autonomous 

nervous system (ANS), such as heart rate (HR), sweating, pulse oximetry (PPG) and blood 

pressure (BP) [5], [11]. Nevertheless, it should be noted that these parameters lack 

specificity and sensitivity and, therefore, a state of homeostasis cannot be inferred from 

the absence of physiological response to stimulation.  

Since the quantification of pain is extremely difficult due to the inherent subjective 

psychological aspects, research has been directed towards the development of 

technologies to assess the nociception-antinociception (Noc/ANoc) balance, i.e., the 

balance between noxious stimulation and antinociceptive effects of the induced analgesia 
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[11]. Hence, these technologies assume that an autonomic stress response is triggered 

with noxious stimuli and can be controlled by continuously monitoring the 

administration of analgesics, blocking the activity of the sensory neurons [2], [5]. 

However, clinicians find it difficult to differentiate sensory responses to noxious 

stimulation under different levels of administration of analgesics. And, therefore, judging 

the adequate state of analgesia becomes extremely challenging, with both under- and 

overdosing having adverse outcomes (see Figure 1.1). 

In line with the above, it becomes of uttermost importance to develop an objective 

nociception index, allowing to personalize the analgesic component so that clinicians can 

make the best use of clinical information, validating predictions about the patient's 

homeostasis. 

 
Figure 1.1: Consequences of improper analgesia monitoring [12], and possible structure of an index 
translating the Noc/ANoc balance. 

 

1.1 MOTIVATION 

Pain is a quality indicator for hospitals, as it can provide information about patient safety, 

improvements in the delivery of care, and better patient outcomes [13]. From an 

immobilized or uncommunicative patient, it does not follow that the perception of pain 

cannot be extremely prevalent. Thus, consideration must also be given to the fact that, 

beyond perioperative care, the development of solutions for pain measurement and 

management can greatly impact a wide range of patients with cognitive or verbal 

impairments, such as those in intensive care units (ICU), palliative care units, neonatal 

intensive care units, and paediatrics. 

Not surprisingly, clinical monitoring of pain receives increasing interest among 

researchers. Despite enlarged scientific evidence in this area, the assurance of accurate 

levels of analgesia is still beyond some challenges to overcome, as perioperative 

complications related to improper analgesia monitoring are frequently reported, 

including postoperative delirium, awareness with recall after surgery and postoperative 

pain [14], [15]. Moreover, “more than a fifth of patients attending chronic pain clinics cite 

surgery as the cause for their chronic pain”[16] with perioperative pain control being 
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acknowledged as contributing to chronic pain after surgery and, subsequently, having a 

significant impact on the patient's quality of life [16], [17]. 

Thus, the major current goal of individually tailored anaesthesia is to develop a Noc/ANoc 

indicator to guide the maintenance of analgesia levels within a narrow therapeutic 

window. The reinforcement of best practices would lead to the administration of minimal 

efficient drug dose and, consequently, to the prevention of over- or underdosing avoiding 

adverse outcomes of improper monitoring of anaesthetics. So, moving towards a more 

dynamic monitoring of analgesia, it is not about suppressing everything (as much as it is 

not about not suppressing at all), but rather knowing what is being measured, combining 

the context and information obtained from the clinical monitors. 

Nowadays, there is a growing number of commercialized solutions for monitoring 

nociception in sedated unconscious patients that appear to reflect intraoperative stimuli 

slightly better than the subjective use of vital signs by the anaesthesiologists [11], [18]. 

Yet, although there are promising results, there is also potential for improvement since 

all the technologies proposed so far lack reliability and validity by presenting limitations 

in defining the adequate state of Noc/ANoc balance [11]. 

In fact, predicting nociceptive responses by assessing the autonomic balance is a major 

challenge since the ANS is responsible for regulating many bodily functions and, so, its 

activity is susceptive to the modulation by different mechanisms [19]. Thus, it may be 

difficult to interpret changes in the physiological parameters driven by the ANS activity 

as they vary in a complex and non-linear way, whatever the cause that led to it. 

Furthermore, the impact that variability inter-patient has on the evolution of 

physiological parameters must also be considered [19], [20]. 

Consequently, the interpretation of information retrieved by the majority of the current 

technologies for nociception monitoring is contraindicated in the presence of 

confounding factors for the sympathovagal balance [21], [22]. Arrhythmias and any 

medication affecting the cardiovascular autonomic control are two of the factors 

identified as confounders [22], [23]. This may represent a significant hindrance to the 

routine use of these technologies, as it is estimated that patients with heart and 

cardiovascular comorbidities represent a substantial part of the population included in 

the daily anaesthesiology practice [24]. Moreover, in Europe, 42% of surgical 

complications during non-cardiac interventions are associated with cardiac 

complications [24]. The occurrence of ectopic beats represents one of the significant 

confounder factors assessing the autonomic activity [25] because ectopic beats are 

commonly seen in the perioperative period and are highly incident in apparently healthy 

individuals [26]–[29].  

In this sense, a robust complementary quantitative solution is demanded to monitor 

nociceptive stress with sufficiently broad applicability. This measure would have to prove 

its clinical value by fulfilling numerous requirements, including be a real-time continuous 
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measurement of easy implementation and interpretability. While ensuring patient safety, 

it should allow predicting hemodynamic responses and reflecting the levels of 

responsiveness to noxious stimulation related to administration of analgesics in the 

various relevant clinical endpoints, taking into consideration the context and any 

confounding factors [30]. 

 

1.2 CONTEXTUALIZATION AND CONTRIBUTIONS 

Moving towards a more automatic, personalized, and effective administration of 

analgesic drugs, the most ambitious goal would be to develop an objective measure of 

nociception that should be able to support clinical decisions in a wide range of 

applications and to lower the incidence of postoperative pain and side-effects related to 

improper monitoring of analgesia. 

Given the broad scope of the pain measurement and management topic, this thesis is 

particularly focused on the exploration of the heart rate variability (HRV), because it is 

one of the most widely used parameters to assess changes in the autonomic activity and, 

over the past few years, research has been highlighting the potential of HRV for 

nociception measurement [22], [31]. Furthermore, HR is measured during all surgeries 

with anaesthesiologists primarily relying at variations in the HR as surrogate of the 

Noc/ANoc balance.   

Notwithstanding, among the technical and biological artefacts that may distort the 

measurements of HRV, ectopic beats represent one of the significant confounder factors 

for the HRV analysis, which, consequently, conditions the assessment of the 

sympathovagal balance [31]. From a clinical point of view, it becomes of uttermost 

importance to limit the risk of erroneous clinical conclusions while assessing the 

measurements of HR dynamics.  

In the light of the above, this thesis is not focused on the development of a new 

nociception monitoring tool, but rather on a new perspective to overcome the presence 

of ectopic beats or mis-detected heartbeats while analysing intraoperative HRV 

measurements. In this sense, since it provides both quantitative and qualitative 

information on the HRV, the Analgesia Nociception Index (ANI) was the main HRV 

measurement used throughout the assessment of the impact that ectopic beats could 

have on the HRV analysis [22]. To the best of knowledge, although studies have been 

concluding that the presence of ectopic beats distorts the ANI calculation [22], no study 

was found investigating to which extent the presence of non-sinus intervals would be 

acceptable. 

Research grasping the topic of nociception measurement still lacks pilot studies 

balancing factors known to influence nociceptive response [11]. Addressing this gap, the 

acquisition of biomedical data combining different parameters to assess autonomic 
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reactivity to noxious stimulation was initially planned. However, the clinical trial has 

been delayed due to constraints related to the COVID-19 pandemic and, under the scope 

of the internship at Philips Electronics Nederland B.V. (Eindhoven), no publicly available 

database was found to meet the requirements of the General Data Protection Regulation. 

Therefore, this dissertation has been redirected to the simulation of electrocardiograms 

(ECG). Thus, the HR dynamics could be derived in a controlled manner, allowing the 

testing of different processing techniques and algorithms.  

A comparative study was then carried out with the objective of exploring different 

methods of correction of ectopic intervals, attempting to diminish in some extent the 

sensibility of the ANI to the presence of ectopic beats. This part of the research was 

performed at CISUC and made use of both real intraoperative patient data and simulated 

data contaminated to various degrees of non-sinus beats. No data has been shared with 

Philips Research employees. 

 

1.3 GOALS 

From all that has been said, the main objective of this dissertation is to limit the impact 

that the occurrence of ectopic beats has on the analysis of HRV signals. In line with the 

main objective, specific goals have been defined as: 

- Development and validation of a tool to simulate ECGs with known HR dynamics. 

- Implementation of the ANI algorithm. 

- Assessment and interpretation of the impact that the occurrence of ectopic beats 
has on the ANI calculation and on the information that is provided by this 
technology. 

- Performance comparison between different methods applied for correction of 
ectopic intervals artificially generated. 

- Reduction of the sensibility of the ANI to the presence of ectopic beats, making it 
sturdier and leading to a substantial improvement in its clinical interpretation. 

 

1.4 STRUCTURE OF THE THESIS 

In terms of structure, this dissertation is organized into 6 Chapters. 

Chapter 2 describes the background concepts necessary for a better understanding of the 

work developed in this thesis. This chapter comprises the review of technologies 

currently proposed to augment the existing knowledge on the measurement of the 
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Noc/ANoc balance during GA. Moreover, the ANI index is revised in more detail so that 

the outlines of this study could be consolidated. 

Chapters 3, 4, and 5 represent the three different phases of this dissertation, presenting 

the methodologies employed in each one and respective descriptions and interpretation 

of results. Specifically, Chapter 3 comprises the process of developing a tool to simulate 

ECG in controlled clinical contexts encompassing normal and ectopic beats. Chapter 4 

focuses on the implementation and assessment of the limits of the ANI algorithm, namely 

with regard to its sensibility to the chosen beat detector and the occurrence of ectopic 

beats. Chapter 5 discusses the performance of different methods for correcting ectopic 

beats. 

Finally, Chapter 6 presents the global conclusions of the work developed in this thesis 

and opens the door for further work to be done. 
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2 BACKGROUND CONCEPTS 

The background concepts focus on the relevant clinical concepts addressed in this work.  

The chapter starts with the understanding of the concepts of pain and nociception: the 

fundamental pathways, and the mechanisms inherent to a stress response, followed by 

an overview of the different biomedical signals that could be employed to translate the 

dynamic of the autonomic activity; a more comprehensive review on the HRV analysis, 

since this physiological parameter is extensively studied throughout this work. The 

chapter ends with the state-of-art of nociception monitoring technologies and a 

systematic review on the ANI. 

 

2.1 PHYSIOLOGY OF PAIN 

2.1.1 Pain and Nociception 

It is noteworthy to mention that pain and nociception are distinct phenomena [32]. So, in 

order to proceed with the analysis, one needs to fully understand the difference between 

these two concepts. 

By the definitions of the International Association for the Study of Pain (IASP), pain is “an 

unpleasant sensory and emotional experience associated with, or resembling that 

associated with, actual or potential tissue damage” [32], whereas nociception refers to 

“the neural process of encoding noxious stimuli” [32].  

Contrary to pain, which is a multidimensional complex phenomenon influenced by 

biological, psychological, and social factors, nociception is not subjective and can be 

inferred from the activity in sensory neurons [32]. From nociception, it does not follow 

pain since pain involves the translation of the noxious stimulus in the cortex [32]. 

 

2.1.2 Mechanisms of pain perception 

Pain is a complex neurophysiological phenomenon that can be seen as a defence 

mechanism in response to sources of noxious stimulation since it cannot be deducted that 

an unresponsive and uncommunicative patient cannot experience pain [32]. 

The encoding of sensory information is a highly plastic and non-linear process that 

involves the transduction of physicochemical stimuli, transmission across the neuroaxis 

and cortico-thalamic signal processing (see Figure 2.1) [33].  
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Figure 2.1: Spinal and supraspinal pathways of pain: ascending nociceptive fast (red) and slow (green) 
pathways; descending inhibitory tracts (blue). (Source: [33]) 

 

Ascending pain pathways comprise nociception through the detection of potentially 

harmful stimuli by the primary afferent nociceptors and subsequent arousal of extensive 

interactions involving neurochemical and neuroanatomic systems [5], [33], [34]. As from 

the nociceptive input discrimination, the descending pain modulatory system regulates 

pain signalling in the nervous system and initiates autonomic, endocrine, and motor 

outputs [17], [33]–[35].   

Anatomically, the ANS is composed of two opposing branches: the sympathetic nervous 

system (SNS) and the parasympathetic nervous system (PNS). Known as the 

sympathovagal balance, the two branches of the ANS are tonically active and 

complementary: while the activation of the SNS is thought to promote “fight-or-flight” 

responses being quickly activated in processes of elevated activity (stress responses), the 

PNS stimulates the “rest-and-digest” mechanism in several aspects of function [2]. 

Functionally, many bodily functions depend on autonomic control, including breathing, 

cardiac activity and vasomotor activity [2]. 
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Being part of an integrated central network, it is recognized that the nociceptive stimulus 

and the ANS systems are remarkably related [35]. Consequently, nociception levels can 

be indirectly assessed through the analysis of physiological parameters such as HR, 

respiration rate, stroke volume, BP, pupil diameter and galvanic skin conduction.  

Furthermore, since the ascending and descending tracts of pain perception are within a 

loop, analgesic agents may be administrated to prevent stress responses by centrally 

inhibiting the pain pathways at the dorsal horn gate [5]. However, as previously 

mentioned, the administration of minimal efficient drug dose is still a major concern for 

clinicians because, despite being crucial to avoid adverse outcomes from improper 

monitoring of anaesthetic drugs, the precise mechanism by which these substances act is 

not fully understand and there is no quantitative standard technology to guide the 

administration of analgesic substances.  

 

2.2 BIOMEDICAL SIGNALS RELATING THE ANS MISBALANCE 

The understanding of how the experience of pain is processed in the brain has increased 

through clinical studies using neuroimaging techniques, such as Positron Emission 

Tomography and functional Magnetic Resonance Imaging [36]. While advances in 

neuroimaging have tackled the cortical structures related to the sensor neurons elicited 

by nociceptive stimuli, several biomedical signals have been studied to inspect autonomic 

activity through physiological parameters and augment the existing knowledge about 

manifestations of nociceptive stress [11], [36]. 

One of those biomedical signals is the ECG which allows detection of the electrical activity 

of the heart. The ECG is one of the most recognized and used biomedical signals since it 

is a non-invasive technique of easy acquisition that helps to diminish the patient's 

exposure to the risk of infection. Parameters derived from ECG measurements can 

provide clinicians a continuous assessment of ANS reactions to surgical stress [37], [38]. 

Providing a direct measurement on the electrical functioning of the brain, 

electroencephalography (EEG) has been extensively studied to inspect the autonomic 

activity regarding nociception. Namely, evoked potentials have been inspected through 

the EEG analysis in order to gain understanding on the cortical mechanisms inherent to 

nociceptive stimulation and perception of pain [39], [40]. 

Photoplethysmography is a non-invasive technique to detect local variations of blood 

volume [41], [42]. The standard PPG waveform comprises two components: direct 

current (DC) and alternating current (AC) components. While the DC component is 

mostly related with low-frequency variations (e.g., respiratory venous volume 

fluctuations, vasomotor activity, and thermoregulation), the AC component refers to 

beat-to-beat variations, high-frequency variations [41]. Several studies have addressed 
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the sympathetic vasoconstrictor reflex to measure nociception using techniques related 

to the AC component of the PPG waveform [21], [41].  

Reflecting the cardiovascular status, non-invasive blood pressure measurements may 

also be used to reflect changes in the sympathetic tone, namely increases in blood 

pressure as a response to noxious stimuli [41].  

Galvanic skin response (GSR) might be considered a vital sign representing the 

electrodermal activity in the palmar surface under sympathetic control [43]. 

Electromyography (EMG) measures somatic responses through the muscular electrical 

activity and can be employed to predict patient’s movements in case of improper 

anaesthetic state [44]. 

Meanwhile, practical difficulties in biomedical signal acquisition (such as physiological 

artefacts, interference and/or patient discomfort and safety) might undermine the 

intraoperative use of some of the aforementioned measurements [37]. It should be also 

taken into consideration the accessibility of variables to measurement in the context of 

an operation room (OR).  

Furthermore, as many factors can impact the interpretation of the different vital signs, it 

is required to inspect interrelationships and interactions among physiological systems. 

Hypothetically, a multivariate approach (comprising a combination of physiological 

parameters) might be required when attempting to strengthen nociception measures by 

diminishing sensitivity to confounding factors [11], [45]. Hence, a multi-parameter score 

would have to provide evidence of its advantageous usage by being capable of adding 

value to the anaesthesiology practice and provide a better (and more specific to surgical 

stress) insight into the ANS functioning. 

 

2.3 HEART RATE VARIABILITY 

The cardiac rhythm corresponds to the cycles co-ordinately controlled by an electrical 

conducting system composed of fibers that generate and conduct electrical potentials 

through the heart (see Figure 2.2) [37]. The sinoatrial node (SA), being considered the 

natural pacemaker of the heart, is controlled by autonomic processes and is crucial in 

determining cardiac electrical stability (see Figure 2.3) [19]. Because of autonomic 

regulation, triggering the SA leads to the release of neurotransmitters: acetylcholine for 

vagal stimulation; or epinephrine for sympathetic stimulation. 

According to the American Heart Association and the European Heart Network, the HRV 

parameter is a non-invasive technique relatively easy to calculate which consists of the 

variation in time between consecutive cardiac cycles [25]. Hence, among the wide range 

of parameters employed to measure the sympathovagal balance, HRV analysis has proved 
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its clinical importance being currently acknowledged as one of the most promising 

available techniques to provide insight into the sinus rhythm modulated by the 

autonomic function [19]. 

 
Figure 2.2: Representation of the heart (a hollow muscular organ composed of two atria and two 
ventricles) and the source nodes its electrical conducting system. (Source: [46]) 

 

 
Figure 2.3: Schematic representation of the different monitoring solutions according to the interactions 
between the subsystems involved in cardiac activity. ECG (electrocardiography), PCG 
(phonocardiography), ECHO (echocardiography), CMR (cardiac magnetic resonance), ICG (impedance 
cardiography), PPG (photoplethysmography) and PPW (pulse pressure wave). (Source [47]) 
 

 

As a matter of fact, the spectral analysis of HRV has demonstrated its potential to add 

value on the understanding of the activity underlying ANS reactivity: while the power in 

the Low Frequency band (0.04-0.15)Hz is said to be linked to both the sympathetic and 
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parasympathetic tone, the power in the High Frequency band (0.15-0.4)Hz is mediated 

by the parasympathetic tone and respiration (through the Respiratory Sinus Arrhythmia 

(RSA)) [25].  

As previously stated, the autonomic control is closely coupled with the systems 

modulating the perception of pain.  Therefore, HRV analysis has been indicated as a 

surrogate measure to enhance the current knowledge on the measurement of the 

Noc/ANoc balance through the assessment of the ANS activity.   

 

2.3.1 Measuring the HRV 

The measurement of HRV involves calculating the time interval of consecutive cardiac 

cycles. As from Figure 2.3, the cardiac cycle may be described by studying different 

biomedical signals and their derived parameters. So, compared to other physiological 

parameters, the main clinical advantage of HRV is the fact of reflecting the autonomic 

activity and, simultaneously, being easily derivable from biomedical signals typically 

available in the OR. This thesis focus on the ECG waveform, as it is readily identifiable, 

aiding to identify fiducial points for further investigation of the cardiac cycle events [37]. 

The typical ECG waveform (Figure 2.4) is closely related with the manifestation of cardiac 

contractile activity throughout the cardiac cycle. The sequence of waves that characterize 

the events of the electrical activity of the cardiac muscle can be briefly summarized. The 

cardiac cycle begins with the SA triggering the depolarization of the atria which 

represents the P-wave on the ECG. Combined with atrial repolarization, the QRS complex 

is caused by the rapid depolarization of the ventricles. And the slow T-wave results from 

the repolarization of the ventricles [37], [48]. 

 
Figure 2.4: Typical ECG waveform for one heartbeat and the action potentials of atrial and ventricular 
myocytes. (Source [37]) 

 

Notwithstanding, it is noteworthy that the use of ECG signals to assess the autonomic 

activity through the HRV analysis becomes a challenge as ECG waveforms are measured 

as electrical potentials and may be seriously impacted by various types of artefacts [25], 
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[37]. For example, cardiovascular disturbances and abnormalities modify the ECG 

waveforms; therefore, the ability to locate the R wave (often used as a fiducial point for 

beat-to-beat analysis) rely on signal processing techniques being highly dependent on the 

patient, the ECG equipment, and the beat detection algorithm utilized [31]. 

 

2.3.2 Factors influencing HRV 

Despite being an empirically and computationally tractable measure of the ANS 

processes, HRV lacks specificity as it is a complex and non-linear measure dynamically 

changing over time mediated by different factors [31], [49]. 

Inter-patient differences must be taken into account as multiple demographic factors 

contribute to differences in HRV baseline, including gender, age, genetics, and medical 

condition [20], [50]–[52]. Modifications of HRV may be introduced by several 

intervention strategies affecting the sinus node (the heart’s natural pacemaker) to 

achieve a better circulatory stability, namely the usage of β-blockers, α-2 agonists, and 

atropine [23], [31]. 

On an intra-patient basis, as many bodily functions are dependent on a neurocardiac 

modulation, the HRV analysis might not be specific to stress or pain and it may account 

other factors such as RSA, changes in the stroke volume, the baroreflex and the vasovagal 

reaction, and circadian rhythms [31]. 

Moreover, artefacts may be electro-physically originated and temporarily disrupting the 

analysis of heart-brain interactions [31], [37]. Besides technical artefacts, ectopic beats 

may occur prematurely in the cycle due to blocking the propagation of electrical 

potentials from the SA to the ventricles [31]. The occurrence of these non-sinus beats may 

masquerade the HRV measurement on the assessment of autonomic function. Therefore, 

all the ectopic beats must be effectively corrected [31]. Otherwise, the HRV metrics may 

not be a representative measure of the SA activity.  

 

VENTRICULAR PREMATURE BEATS  

Since the cardiac electrical conducting system is composed of subsidiary pacemakers, the 

non-sinus beats can be generated from any region of the heart with varying frequency of 

impulse formation and morphologies [26], [29], [53]. The ectopic beats correspond to 

beat-to-beat intervals deviating from the normal heartbeat intervals and are usually 

classified as atrial, auriculoventricular junctional or ventricular. The focus of this work is 

the ventricular premature beats (PVC) [26], [53]. Figure 2.5 illustrates an example of a 

segment of ECG with a PVC in a set of sinus beats.  

Instead of being initiated by the SA, PVCs are generated on the ventricles by the Purkinje 

fibers and are the most common arrhythmias detected in patients with no structural 
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heart disorder [54]. The mechanism underlying the occurrence of PVCs remains unclear, 

being hypothesized that it may result from more than one process [26], [53].  

Although descriptions and morphology of PVCs may vary according to their origin, the 

ventricular ectopic beats are often characterized by a broaden QRS complex since the 

impulses are conducted through differing conduction systems comprising the excitation 

of the ventricular muscle fibers [37]. In addition, unless it occurs a retrograde conduction 

through the atrioventricular node, the PVC is typically followed by occurrence of a full 

compensatory pause prior to the next normal beat [37]. 

Precise detection and classification of PVC is of uttermost importance since, despite 

commonly occurring in healthy individuals, a high incidence of PVCs may lead to 

ventricular arrythmias associated with various cardiac conditions. 

 
Figure 2.5: ECG signal with a ventricular ectopic complex (PVC) in a set of normal beats (N) for subject 228 
of the MIT-BIH Arrythmia Database [55]. 

 

2.4 THE STATE-OF-ART OF NOCICEPTION MONITORING 

TECHNOLOGIES 

As already outlined, pain has been seen as the new quality indicator for hospitals with 

studies for the development of a nociception monitoring tool being a topic of great 

research interest. This section gives a comprehensive analysis on the most reported and 

tested nociception monitoring indexes in unconscious patients.  

Nowadays, several methods are widely used to measure pain intensity or unpleasant 

sensations in conscious patients. These methods include numerical scales (e.g., Visual 

Analogue Scale, or Numerical Rating Scale) and multimodal questionnaires (e.g., McGill 

Pain Questionnaire) [56]. Although having proved to be valuable for pain management in 

conscious and communicative patients, these methods become obsolete when trying to 

assess pain in sedated patients. 

Over the past few years, several approaches have been trying to provide insights into the 

management of pain perception in patients unable to communicate, as is the case of 
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patients undergoing surgery with GA. While some of the proposed approaches rely on 

dose-dependent responses ([57]) and others on the strength of the reaction to a given 

stimulation([58], [59]), the main trend focuses on the indirect assessment of the 

Noc/ANoc balance by evaluating the response to surgical stress, i.e., using physiological 

signals during GA to analyse ANS reactions (increase in sympathetic activity or 

corresponding decrease in parasympathetic tone). However, no golden standard is yet 

established for objectively monitoring nociception in sedated unconscious patients.  

Only the technologies addressing the translation of the Noc/ANoc balance during surgery 

were investigated in this work. Table 2.1 presents an overview characterizing several 

indexes currently proposed to assist the anaesthesiologist in controlling analgesia during 

GA. More detailed review and comparison are available, e.g., in [11] and [60]. The 

aforementioned approaches differ mainly by the biomedical measurements explored for 

the translation of the Noc/ANoc balance, being generally based on algorithms that output 

an index score between a range of dimensionless values [11].   

Even proving their ability to assess the surgical stress response, all the proposed 

technologies present significant limitations that hinder their clinical standardization. 

Clinicians can only rely on the purposed indexes under very specific conditions. 

Mathematical processing and interpretation are a major concern when developing a 

Noc/ANoc indicator because the baseline values of physiological parameters vary inter- 

and intra-patient [11]. In fact, a transversal limitation to the clinical use of any of these 

indexes is the definition of an adequate state of Noc/ANoc balance due to the 

sympathovagal balance being strongly influenced by confounding factors.  

When attempting to implement and standardize a new analgesia assessment tool, one 

also needs to account for the economic feasibility demanded. The proposed approaches 

should warrant patient’s safety (e.g., non-invasively measure) while striving to overcome 

the shortcomings eventually originated by implementation settings of the monitoring 

system (e.g., easy installation and interpretability) [30]. Additionally, the requirement for 

any additional sensors (e.g., CARDEAN, see Table 2.1) to those already clinically available 

in anaesthesia practice may also hamper the routine use of a purposed approach. 

Several purposed technologies for nociception monitoring have been already 

commercialized (e.g., ANI and SPI). However, it should be emphasized that, beyond fully 

understanding the characteristics of the monitoring device, clinicians must still take into 

account the clinical context and the general purpose of monitoring in order to make 

proper use of the clinical information retrieved by the monitor and, eventually, adequate 

the administration of the analgesics.  

From a clinical point of view, a standard index should represent a significant 

improvement for the anaesthetic practice, adding value to both the patient and the 

anaesthetic practice, efficiently controlling the administration of analgesics, 

postoperative outcomes, and hemodynamic maintenance. 
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 INDEX BIOMEDICAL 
SIGNAL 

PHYSIOLOGICAL 
PARAMETERS 

MEASUREMENT 
PRINCIPLE 

LIMITATIONS REFERENCES 

ANI ECG HRV-HF - Cardiac 
parasympathetic 
tone 

- Physiological artefacts: arrhythmia, apnea, low 
respiratory rate, electric noise  

- Drugs or therapies affecting the sinus node  
- Irregular spontaneous ventilation due to speech, laugh 

or cough 
- Inconclusive studies revealed to validate ANI 

predictions of intraoperative hemodynamic changes 

[22] 

CARDEAN Non-invasive 
continuous BP 

and ECG 

HRV, SBP - Sympathetic tone 
(cardiac 
baroreflex) 

- Physiological artefacts: vasoconstriction, 
hypovolemia 

- Reports only an association between the inhibition of 
the cardiac baroreflex and nociceptive stimuli 

- Medication or therapy affecting the autonomic 
function 

- Designed to predict unexpected intraoperative 
movement in non-paralyzed patients 

- Requires additional sensors to those usually available 
in anaesthesia practice 

[61], [62] 

CVI EEG and facial 
EMG 

BIS, facial EMG - Somatic activity - Muscle relaxants may influence facial EMG activity 
- Physiological artefacts: hypoxia, hypotension, 

cerebral ischaemia or hypoperfusion, muscular 
activity  

- Unclear variability inter- and intra-patient due to the 
use of different types and concentrations of 
anaesthetics 

[44], [63] 

Table 2.1: List of some of the purposed nociception evaluating indexes; ANI (Analgesia Nociception Index), CARDEAN (CARdiovascular DEpth of ANalgesia), CVI 

(Composite Variability Index), NoL (Nociception Level Index), SC (Skin Conductance), SPI (Surgical Pleth Index), WTCRC (Wavelet Transform Cardiorespiratory 

Coherence) 
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INDEX BIOMEDICAL 

SIGNAL 

PHYSIOLOGICAL 

PARAMETERS 

MEASUREMENT 

PRINCIPLE 

LIMITATIONS REFERENCES 

NoL PPG and SC HR, HRV-HF, 

PPGA, SCL, NSCF, 

SC derivatives 

- Sympathetic 
tone 

- Temperature  
- Accelerometery 

- No proof of concept for clinical relevance on the use of 
NoL monitoring 

- No previous research on the applicability of this index 

on ICU or conscious patients. 

[64] 

NSCF SC Skin conductance - Peripheral 

sympathetic tone 

- Do not reflect antinociception reactions related to 

administration of analgesics 

- Many confounders and physiological artefacts 

- No proof of concept for clinical relevance on the use of 

SC monitoring 

[43], [65] 

SPI PPG PPGA, HBI - Peripheral 

vascular 

sympathetic tone   

- Cardiac 

sympathetic tone 

- Medication or therapy affecting the sympathetic 

nervous system act as confounders on the absolute SPI 

level 

- Patient’s medical condition: intravascular blood 

volume and chronic history of hypertension 

- Variability interpatient 

- No correlation found between SPI values and stimulus 

intensities 

[21] 

WTCRC ECG and 

capnometer 

HR, Respiration 

Rate (%CO2) 

- Coupling 

between RSA and 

HR 

- Physiological artefacts: arrhythmia, apnea 

- Medication, therapy, or disorders affecting autonomic 

function 

- The algorithm requires adaption for real-time analysis 

- Lacks sensitivity 

- Implementation settings of the monitoring system 

(capnometer usage) 

[66] 

Table 2.1 (continuation): List of some of the purposed nociception evaluating indexes; ANI (Analgesia Nociception Index), CARDEAN (CARdiovascular DEpth of 

ANalgesia), CVI (Composite Variability Index), NoL (Nociception Level Index), SC (Skin Conductance), SPI (Surgical Pleth Index), WTCRC (Wavelet Transform 

Cardiorespiratory Coherence) 
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2.4.1 Interpretation of the Analgesia Nociception Index 

The ANI is claimed by the manufacturer as an innovative technology that provides a 

continuous and non-invasive measurement of the relative parasympathetic tonus (p∑ 

tone) allowing monitoring of comfort and better control of the surgical stress [22]. The 

ANI relies on the quantification of the RSA through the calculation of the area delimited 

by the lower and the upper envelopes of the R-R time series (more detail on the ANI 

calculation in Chapter 4), so the higher the computed area, the higher the 

parasympathetic activity, the higher the ANI value and possibly lower physiological 

stress, and less nociception [11], [22]. 

In terms of clinical interpretability, the ANI is a dimensionless score (0-100) that may 

have a probabilistic role in predicting hemodynamic reactivity following nociceptive 

stimulation [22]. Preliminary studies have settled that the analgesia level is adequate if 

the ANI value falls in the range between 50 and 70 with hemodynamic reactivity being 

unlikely to occur in the following 10 minutes; the analgesia level is inadequate if the ANI 

value is lower than 50 with hemodynamic reactivity being likely to occur in the following 

10 minutes; there is possibly an excessive administration if the ANI value is above the 

level of 70 [11], [22]. 

Nowadays the MDoloris ANI monitor is the only commercialized one-parameter index 

based on HRV analysis. On the account of the goals of this thesis, a review was carried out 

to assess the importance and reliability of using the ANI monitor in different clinical 

contexts such as in surgeries under GA or in ICU.  

 

2.4.2 Literature review of the performance and limitations of the 

Analgesia Nociception Index 

Following the procedure described in Figure 2.6, the computerized databases PubMed 

and Scopus were searched in April 2021 without any restrictions to publication types or 

regions. To retrieve the possible relevant articles, the keywords “Analgesia Nociception 

Index”, “ANI”, “Mdoloris”, “pain monitoring”, “analgesia”, “nociception” and “pain” were 

used. An initial selection was performed only including studies (1) published between 

January 2018 and March 2021 in (2) English, and with (3) full text available.  Then, after 

removing duplicates, manuscripts were assessed for eligibility if either title, abstract, and 

full text met the following criteria: (4) empirical investigation in (5) human, (6) adults 

(aged between 18 and 65). 

Quantitatively assessing the overall results, it is possible to observe the increasing 

interest of the scientific community on this topic over the years. A total of 22 papers were 

included in the review and listed more detailed in Appendix A. When appropriate, studies 

prior to 2018 were also referenced for the robustness of the analysis performed. 
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Although the validation of the ANI monitor has been extensively studied under different 

conditions, reported results are controversially discussed, evidencing the clinical 

challenge of pain management.  

 
Figure 2.6: Flowchart of the studies search for systematic review. 

 

Firstly, clinical effectiveness of ANI in monitoring nociception/pain is analysed, 

optimizing opioid consumption, and preventing opioid-related adverse events in adult 

surgical patients undergoing GA. In fact, the ANI monitor has been being evaluated 

through its potential to provide information equivalent to the actions of the clinicians 

regarding monitoring of analgesia during surgery. While several studies have been 

reporting that ANI may outperform traditional physiological parameters (such as HR and 

BP) at reflecting noxious stimulation [67]–[70], others were found inconclusive in 

proving that ANI objectively assesses the balance between pain and analgesia during GA 

[71]. 

The performance of the ANI on the assessment of different levels of responsiveness to 

noxious stimulus in terms of noxious stimulus intensity and different levels of analgesic 

drugs have not been extensively studied. In this respect, considering [72], the amplitude 

of the variation of the ANI variable in response to different intensities of induced noxious 

stimulus revealed to not be predictive of hemodynamic or somatic reactions; a previous 

study performed with awake patients also concluded that ANI was not able to 

differentiate between sham and noxious stimuli, but other factors such as stress and 

emotions were recognized to influence the results [73]. Moreover, only one study was 

found on the inspection of the performance of ANI-monitoring reflecting the stress 

response to tetanic stimulation for different concentrations of analgesic drugs [68]. The 

authors concluded that ANI significantly varied at lower, but not at higher, concentrations 

of remifentanil. 
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Overall, inconclusive results were found about the impact of ANI-guided analgesia 

decreasing intraoperative stress responses, including the occurrence of hemodynamic 

events. Some studies have observed that the ANI may be appropriate to anticipate the 

demand for a dose change so that intraoperative adverse events can be circumvented 

[67], [70], [74], [75]. Others concluded ANI monitoring not to be clinically relevant in 

predicting undesirable intraoperative hemodynamic changes [30], [71], [72], [76]. The 

main differences with respect to results on the predictive value of the ANI-monitoring 

may lie in the use of dynamic variations of ANI and in its evaluation in distinct predefined 

time points with different sedation levels such as induction of anaesthesia (including 

intubation period, if applicable), first skin incision, steady state, and at emergence from 

anaesthesia (including extubating period, if applicable). 

Studies conducted over the past few years have been skimpy that ANI monitoring 

optimizes the opioid titration and may avoid under- or overdosing [77]–[81]. This finding 

is consensual among the studies, being transversal to the use of different opioids 

substances (remifentanil, sufentanil or fentanyl) and in different contexts (general 

anaesthesia, regional anaesthesia, or sedation in ICU) [77]–[81]. However, conflicting 

evidence is found regarding the postoperative opioid use and the capability of ANI-guided 

analgesia predicting opioid-related side effects, including acute postoperative pain. 

Visual Analog Scale, Verbal Rating Scales and Numerical Rating Scales are commonly 

employed to assess pain in conscious and cooperative patients during postoperative 

period. Previous studies have found a correlation between ANI-guided opioid 

administration and lower incidence of postoperative pain [82], [83], but, posteriorly, 

reports have concluded that ANI monitoring would not be clinically associated with 

reduced side effects or complication rates of improper analgesia [79], [84], being 

ineffective in predicting the occurrence of postoperative pain [69], [77]–[81], [85]. These 

differing findings may be attributable to the fact that these studies investigated patients 

undergoing surgeries with different incidence rates of postoperative pain and different 

protocolized anaesthesia techniques (for example, postoperative adverse events are 

specific to the type of analgesics administrated [6]). Yet concerning surgical outcomes, 

preliminary findings have been suggesting the potential of the ANI monitoring in 

predicting the risk of hypotension related to spinal anaesthesia [86]. Although a recent 

study suggested that maintaining ANI above 50 during, at least, 60% of the anaesthesia 

may be useful to reduce the length of stay in the postoperative recovery room [84], 

previous research found no statistical clinical benefit from ANI monitoring in terms of 

lengths of stay in the postoperative recovery room or hospital discharge [80], [81], [87], 

[88]. 

The results may seem to deviate since the findings on the usefulness of ANI monitoring 

in a perioperative context are overall inconclusive. In fact, to date, no proof-of-concept 

exists on clinical relevance of the use of ANI. Several reasons may be pointed out to 

partially explain the discrepancy observed between the findings from studies comprising 

patients under GA [19], [20]. These reasons may include the anaesthetic protocols [88], 
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[89] or severity of the painful stimulus during the type of surgery performed [69], [81], 

[84]. For example, hypnosis has been reported to cause an increase in the 

parasympathetic tone influencing the required administration of opioids and, so, 

although further validation is needed, ANI monitoring may be influenced by the type of 

hypnotic substances administrated and might be useful to measure the intensity of the 

hypnotic process [89].  

Notwithstanding, none of the above-listed findings can be extrapolated to all patients 

under GA since studies eligible for analysis were commonly performed without a 

representative sample in terms of both type of surgical procedures and inter-individual 

variability factors known to influence hemodynamic and stress responses to noxious 

stimulation. Many of the studies considered eligible for reporting only included healthy 

volunteers (ASA I) and common exclusion criteria were patients prescribed with drugs 

affecting the sinus node (atropine, anticholinergic drugs, beta-receptor blockers, 

vasoactive drugs, etc.) or having any disorder affecting the autonomic activity or the 

respiratory patterns, such as arrhythmia, apnea, irregular spontaneous ventilation, 

implanted pacemakers, or heart transplant. Therefore, statistical artefacts may 

contribute to the controversial findings reported by researchers as no heterogeneous 

studies were yet published and a large proportion of patients who comprise the routine 

clinical practice was commonly withdrawn from conducted research.  

The ANI was designed as a tool to monitor intraoperative pain in patients under GA, but 

its effectiveness has been investigated in (semi-) conscious patients, including sedated 

patients in ICU or under regional anaesthesia. To date, several studies in awake patients 

(with no effect of anaesthetic drugs) have concluded that the ANI may be employed to 

assess parasympathetic changes related to different emotional states, demonstrating that 

the higher levels of ANI are related to a more relaxed state [90]–[92]. Regarding conscious 

patients under the effect of analgesic drugs, contradicting results were published. Some 

authors reported significant differences in the ANI values between patients with and 

without pain [77], [78], [81], [93], [94], while others found no relationship between ANI 

and self-rated pain [76], [95]. This may be due to the fact that the interpretation of scores 

resulting from the application of the ANI to assess parasympathetic tone in conscious 

patients under the effect of analgesic medication must take into account the status of the 

patient. In fact, the ANI was designed to reflect the autonomic activity and, so, other than 

pain and anaesthetic protocols, a plethora of confounding factors experienced by the 

patient (such as emotions, stress, and anxiety) may cause an increased sympathetic tone. 

Consequently, the cut-off values for detecting pain in conscious state may be different 

from the suggested by the manufacturer for patients under GA and not proportional to 

the degree of analgesic dose [76], [77], [89], [96]. Moreover, a recent study with patients 

on ICU, diagnosed with COVID-19, and on mechanical ventilation revealed that the 

dynamic variations of ANI may reveal worse prognosis and higher mortality [93]. As for 

patients under GA, no evidence-based clinical benefit exists for ANI monitoring in 
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conscious patients in emergence units or ICU, demanding further research to validate the 

role of the ANI monitoring in the management of pain in conscious patients. 

Furthermore, the ANI monitor has been being compared to other monitors in terms of 

effectiveness for the assessment of nociception. Yet, no evidence has been identified that 

either index outperforms the others. Constraint by the limitations hindering the clinical 

use of pupillometry, one study reported that the variation coefficient of pupillary 

diameter correlates more strongly with the self-rated pain (using the Visual Analog Scale) 

than ANI [85]. Several studies reported the SPI and ANI to perform comparably for 

detecting pain in conscious patients but not to outperform the intraoperative analgesia 

guided by the anaesthesiologist [80], [94], [96]. Additionally, one study showed that, 

under the administration of remifentanil, the SPI may reflect the degree of pain more 

effectively than the ANI [94]. 

Overall, within the noticeable limitations, the ANI monitoring already present promising 

results for being clinically relevant benefit under strict conditions. Nevertheless, 

nociception monitoring remains an unmet challenge, being required more studies to 

corroborate and optimize the ANI interpretation in numerous clinical conditions. 

Therefore, future research would only benefit of more heterogeneous studies performed 

in more controlled environments to accurately assess the clinical impact of ANI 

monitoring. Furthermore, most of the studies included in this analysis correspond to 

observational studies. The controversy of the results published so far may highlight the 

need to move from observation to experimentation. 
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3 SIMULATION OF ECG  

HRV analysis and its clinical use have been recognized as of utmost importance for 

assessing the regulations of the autonomic and central nervous systems and obtaining 

the R-R intervals from ECG signal processing is one of the best-known methods for its 

calculation [31]. However, extracting useful clinical information from ECG requires 

reliable signal techniques to avoid erroneous conclusions.  

Over the years, the promising results from the multiple applications of simulators have 

accelerated the pace of research. Therefore, simulated ECG signals may be preferable to 

compare performances of competing signal processing techniques since the underlying 

dynamics of the ECG signal is then known [37].   

This chapter focus on the development of an ECG signal simulator that should be able to 

generate the heartbeat’s morphology, while accurately reproducing the inputted beat-to-

beat intervals according to the respective annotation vector on beats’ classification. So, 

this tool would allow to infer the performance of algorithms in different clinical scenarios 

by allowing to include, for example, ectopic beats in a quantifiable and controlled manner. 

 

3.1 METHODOLOGY 

The strategy consisted of exploring the already available ECG simulators and focus on the 

one that could be the most promising by simultaneously reproducing the input R-R time 

series and generating realistic synthetic ECG [97]–[99]. As a result, the ECGSYN simulator 

was identified as the most promising [55].   

 

3.1.1 ECGSYNmod: tool for ECG signal generation 

The ECGSYN model is available at [55] and it is explained in full detail elsewhere [99]–

[102]. Briefly, the software uses a model based on a three coupled ordinary differential 

equations to reproduce features of a typical human ECG signal with known characteristics 

[99]. The typical trajectory (Figure 3.1) is generated in a three-dimensional (3-D) state-

space with coordinates (𝑥, 𝑦, 𝑧) being obtained through a fourth order Runge-Kutta 

integration of dynamical equations of motion given by a set of three ordinary differential 

equations [102]. Accordingly, 

 �̇� =  𝛼𝑥 − 𝑤𝑦 (3.1) 

 �̇� =  𝛼𝑦 − 𝑤𝑥 (3.2) 
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�̇� =  − ∑ 𝑎𝑖∆𝜃𝑒

(−
∆𝜃2

2𝑏𝑖
2)

− (𝑧 − 𝑧0)

𝑖 ∈ {𝑃,𝑄,𝑅,𝑆,𝑇}

 
(3.3) 

, where 𝛼 = 1 −  √𝑥2 +  𝑦2, ∆𝜃𝑖 = (𝜃 − 𝜃𝑖)𝑚𝑜𝑑 2𝜋, 𝜃 = 𝑎𝑡𝑎𝑛2(𝑦, 𝑥), 𝑤 corresponds to 

the angular velocity [102]. The term 𝑧0 refers to the baseline wander and it was specified 

according to [102], being defined as 𝑧0(𝑡) = 𝐴 sin(2𝜋𝑓2𝑡) , with A = 0.15 mV and 𝑓2 

corresponding to the respiratory frequency. The average morphology is defined utilizing 

the motion of the trajectory in the z-direction and specifying the values of the parameters 

𝑎𝑖, 𝑏𝑖 and 𝜃𝑖  for the PQRST points [102]. The value of 𝑎𝑖 represents the z-position of 

extrema, the value of 𝑏𝑖 represents the Gaussian width of peaks and the value of 𝜃𝑖  

represents the angles of extrema (in degrees).  

 
Figure 3.1: Typical trajectory generated by the proposed model. (Source [99]) 

 

In addition to the average morphology, the original software determines the heart rate 

dynamics by allowing the operator to specify the mean and standard deviation of the 

heart rate and some spectral properties [99]. So, the first modification to the original 

software consisted of modifying it so that the operator specifies the R-R series instead of 

the model parameters to calculate its dynamics. 

From preliminary analysis performing the simulation of ECG with a normal sinus rhythm, 

it was noticed that the software had some limitations including timing discrepancies 

between the input and output R-R time series. Although these discrepancies were found 

not to be significant, they could lead to erroneous HRV analysis. So, the core of the 

software was inspected, and several potential causes were pointed, namely the use of 

different sampling frequencies, and different steps of integration. Both factors revealed 

to impact the generated ECG signal. To overcome these discrepancies and for further 

insertion of PVC, as suggested in [99], a beat-to-beat variation in the morphology was 

attempted by introducing a parameter to control the timing of the position of any of the 
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P, Q, R, S, and T events. The results still revealed differences on the R-R series. Since the 

priority was to obtain accurate reproduction of the location of the R peaks rather than 

detailed morphologies (e.g., useful to detect ST depression or elevation), a more 

pragmatic approach was therefore followed by introducing a post-processing step.  

Figure 3.2 illustrates the functioning mode of the tool developed to generate ECGs with 

known dynamics, here called ECGSYNmod. This tool consists of using the ECGSYN 

software to, individually, simulate different types of beats (‘Normal’ or ‘PVC’). Then, the 

simulated beats are concatenated with the previous segments to generate an ECG signal 

with known characteristics. Therefore, to operate the ECGSYNmod tool, one should 

define one vector with the positions of the R-peaks and another vector with the 

annotations for beat type. The annotation vector is binary, in which a value of 0 

corresponds to a normal beat, and a value of 1 corresponds to a PVC beat. 

 

 
Figure 3.2: Flow chart describing the ECG signal simulator developed 

 

The post-processing step differs between the beat types. Hence, it follows the description 

of the post-processing steps introduced when simulating normal or PVC beats. 

 

3.1.1.1 Post-processing of normal beats 

An annotation with value 0 corresponds to the so-called normal beats which represent 

the typical noise-free Lead II ECG waveform obtained from a signal with normal sinus 

rhythm. The generation of normal beats begins creating an interval time series within the 

range of 0.2 to 2 seconds and evenly spaced by 1/(𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦). Then, an 
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ECGSYN engine with the morphological parameters 𝑎𝑖, 𝑏𝑖 and 𝜃𝑖  defined in Table 3.1 is 

used to generate the PQRS and T waves for every interval.  

As the exact location of the R-peaks is retrieved by the ECGSYN engine, the generated ECG 

signal is segmented through the R-peaks events and the beats are stored, forming a beat 

repository that also contains information on the location of the respective PQRST events. 

 

Index (i) 𝑷𝒏𝒐𝒓𝒎𝒂𝒍 𝑸𝒏𝒐𝒓𝒎𝒂𝒍 𝑹𝒏𝒐𝒓𝒎𝒂𝒍 𝑺𝒏𝒐𝒓𝒎𝒂𝒍 𝑻𝒏𝒐𝒓𝒎𝒂𝒍 

𝜃𝑖  -70 -15 0 15 100 

𝑎𝑖 0.2 -2 15 -1 0.25 

𝑏𝑖 0.25 0.1 0.1 0.1 0.3 

Table 3.1: Morphological parameters of the ECG model for the simulation of normal beats. 𝜃𝑖  represents 
the angles of extrema (in degrees); 𝑎𝑖  represents the z-position of extrema; 𝑏𝑖  represents the Gaussian 
width of peaks. 

 

Generating a new normal beat, the ECGSYNmod tool performs a repository search for an 

existing beat with the specified R-R interval. If no result is found, the closest beat with a 

longer duration is selected, compressed, and concatenated into the new ECG signal. 

 

3.1.1.2  Post-processing of PVC episodes 

An annotation with value 1 corresponds to the simulation of a so-called ‘PVC’ beat, which 

represent a typical noiseless Lead II ECG waveform with a right bundle branch block 

(RBBB) morphology. PVC’s morphology depends on the site of origin. Since this work 

aimed to keep the model simple in terms of morphological parameters and so, only RBBB 

morphology was focused [26], [103]. 

The following cases are considered for simulation: consecutive PVC (sequence of 0-N-0 

in the annotation vector where N represents the sum of consecutive annotations with 

value one) and single PVC (sequence of 0-1-0 in the annotation vector, N = 1). According 

to the sequence of annotations, the locations of the previous beat with a null annotation, 

the N consecutive beats annotated with the value one, and the next beat with null 

annotation are considered to calculate the R-R time series of the PVC episode.  

From the beat repository, the beat with the longest duration is selected and assumed as 

the normal beat template. Then, another ECGSYN engine (using the morphological 

parameters 𝑎𝑖, 𝑏𝑖 and 𝜃𝑖  in Table 3.2) is seeded with the processed R-R time series 

outputting the PVC episode template. 
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Index (i) 𝑷𝑷𝑽𝑪 𝑸𝑷𝑽𝑪 𝑹𝑷𝑽𝑪 𝑺𝑷𝑽𝑪 𝑻𝑷𝑽𝑪 

𝜃𝑖  -50 -50 0 15 100 

𝑎𝑖 0 0 30 -45.5 7.5 

𝑏𝑖 0 0 0.2 0.15 0.3 

Table 3.2: Morphological parameters of the ECG model for the simulation of PVC. 𝜃𝑖  represents the angles 
of extrema (in degrees); 𝑎𝑖  represents the z-position of extrema; 𝑏𝑖  represents the Gaussian width of peaks. 

 

As the ECGSYN engines provide the locations of the PQRS and T waveform peaks, the 

simulation of the respective PVC episode is completed by segmenting, time-adjusting, and 

matching the PVC template and a normal beat template according to the methodology 

depicted in Figure 3.3. 

 

 
Figure 3.3: Reference points for the segmentation step on the simulation of a PVC episode. In grey the 
segments correspondent to the normal template and in blue the segments correspondent to the PVC 
template. 

 

3.1.1.1 Estimation of artificial non-sinus R-R time series 

Previous studies have revealed differing HRV analyses after the correction of ectopic 

beats [31], [104]. Comprehensively comparing techniques for ectopic correction, it would 

be preferable to have control data (the baseline data ectopy-free) and experimental data 

(data contaminated with ectopic beats) identically available, apart from the ectopic beats. 

However, as previously mentioned, the regulatory mechanisms of the HR are complex 

and constantly adapting to any stimulus and, therefore, it cannot be inferred HR dynamics 

to be stable over time [31].  

In conformity with the above, one extension has been added to the ECGSYNmod tool so 

that ectopic beats would be artificially introduced in the tachogram, changing the 

positions of the R-peak. Reviewing the available methods in the literature, the model 

described in [104] seemed to be the more appropriate. The referred model has 

demonstrated quantitatively and qualitatively to reproduce reasonably ectopic beats 

[104] and, thus, it was embedded in the ECG generator tool described previously. 

Accordingly, the ectopic beats are artificially introduced modifying the intervals before 

(𝐼𝐵) and after (𝐼𝐴) the ectopic beat (equations (3.4) and (3.5), respectively) [104]. 
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 𝐼𝐵 =  −0.0053 ∙ 𝐻𝑅 + 𝑏 (3.4) 

 𝐼𝐴 =  −0.0125 ∙ 𝐻𝑅 + 𝑎 (3.5) 

, where 𝑏 ϵ [0.9474, 1.1966] and 𝑎 ϵ [1.8956, 2.1024], chosen randomly. The  𝐼𝐵 and 𝐼𝐴 

intervals are function of the average 𝐻𝑅 of the respective ECG.  

The ectopic beats considered in this work are the PVC and consist of beats occurring 

instead of the sinus beat with an unusual timing (considerably earlier than expected and 

followed by a compensatory pause). This extension of the simulator can be executed by 

whether specifying the density of generated ectopic beats and randomly placing the 

resulting number of ectopic beats across the signal; or specifying the location of the 

ectopic beats, adapting the R-R time series accordingly. This study was based on the 

former alternative, while the latter is more useful when simulating specific medical 

conditions.  

This feature of the ECGSYNmod is particularly useful for the comparative study later 

described in Chapter 5. Figure 3.4 illustrates the effects in the R-R tachogram of artificial 

addition of ectopic beats. 

 
Figure 3.4: Control tachogram resulting from the baseline data ectopy-free (in blue) and superimposed 
artificially generated tachogram (in orange) resulting from the contamination of the baseline data with 
ectopic beats. 

 

3.1.2 Simulation Quality Assessment 

Across the development of the ECGSYNmod tool, it was necessary to evaluate the 

capability of the simulator to reproduce the inputted R-R time series. So, one training 

dataset was composed to analyse the simulator’s performance. The training dataset 

comprises two subsets with ECG signals and their respective annotations of the R-peak 

location and classification: Subset A contains ECG signals with a normal signal rhythm; 
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Subset B includes ECG signals with ectopic beats [55]. A more detailed description of the 

training dataset is available in Appendix B. The ECG signals originally from the subsets 

are referenced as MIT signals and the respective ECG signals generated at a sampling rate 

of 250 Hz using the ECGSYN tool are referenced as SYN signals. 

In order to assess the performance of the developed ECG generator tool, HRV metrics 

were computed for both the MIT signals and SYN signals. The computed metrics include 

the mean of the R-R intervals, the square root of the mean of the sum of the squares 

differences of successive R-R intervals (RMSSD), the absolute power of the low-frequency 

band (LF), the absolute power of the high-frequency band (HF), and the ANI variables. 

The measures in the frequency domain of HRV were computed by analysing the PSD, i.e., 

the distribution of power as function of the frequency. The PSD was estimated using a 

Welch's estimator with short-measurement window (300-second window) and 50% of 

overlap. The LF power is defined in the frequency range of (0.04-0.15)Hz and is said to 

be linked to both the sympathetic and parasympathetic tone; the HF power corresponds 

to the (0.15-0.4)Hz band and is mediated by the parasympathetic tone and RSA. The ANI 

variables considered in this chapter are the ANI instantaneous (ANIi) and the ANI 

averaged on a 120-second window (ANIlb). The calculation of these two variables is 

described in full detail in Chapter 4. 

For statistical validation, as the variables were not normally distributed (evaluated with 

the Kolmogorov-Smirnov test), non-parametric tests were employed [105], [106]. In a 

first approach, the Spearman correlation coefficient (𝑐) was employed in the statistical 

analysis to explore the relationships between the metrics extracted from the tachograms 

calculated from the reference R-peaks positions and that from the R-peaks outputted by 

the simulator. The interpretation of this coefficient is as follows: 𝑐 is comprised between 

-1 and 1 with these limits meaning, respectively, that the variables are the reverse or 

identical [105]. The Wilcoxon signed-rank test was then employed whenever it was 

required to perform a comparison between the input and output tachograms from the 

ECGSYNmod tool [107]. 

 

3.2 RESULTS AND DISCUSSION 

Regarding morphologies, it can be visually inspected (Figure 3.5 for normal beats and 

Figure 3.6 for PVC episodes) that the adjustment of variables for the two distinct 

waveforms considered (Table 3.1 and Table 3.2) yield synthetic ECG with realistic 

morphologies (no normally distributed noise was added). Notwithstanding, further 

mathematical refinement is needed to overcome some still existing morphological 

differences. 
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Figure 3.5: Comparison between a segment of ECG recorded from a normal human (on the left) and the 
respective synthetic segment generated with ECGSYNmod (on the right). 

 

 
Figure 3.6: Comparison between a PVC segment of ECG recorded from human (on the left) and the 
respective synthetic segment generated with ECGSYNmod (on the right). 

 

In terms of rhythmicity, exploring the performance of the ECGSYNmod tool in simulating 

signals with a normal sinus rhythm, the sum of the absolute values of the difference 

between the MIT R-R series and the SYN R-R series was found to be null in all simulations 

of subset A. Therefore, this tool was confidently validated for the simulation of ECG 

signals with a normal sinus rhythm.  

Concerning the ECGSYNmod engine for reproducing the input R-R series comprising 

ectopic beats, the MIT R-R series and the SYN R-R series were found to be highly 

correlated (𝑐 = 0.9997 ± 0.0003) with only slight differences observed when calculating 

the difference between the two series (see Table 3.3). 

Although these are minor discrepancies, it was assessed if they could lead to erroneous 

analysis in the context of this work and, thus, HRV metrics were made available for both 

MIT signals and SYN signals.  
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MIT signal SYN signal | ∆ R-R intervals (MIT, SYN) | (seconds) 

MIT_B1 SYN_B1 0.0013 ± 0.0015 

MIT_B2 SYN_B2 0.0018 ± 0.0013 

MIT_B3 SYN_B3 0.0011 ± 0.0015 

MIT_B4 SYN_B4 0.0018 ± 0.0013 

MIT_B5 SYN_B5 0.0013 ± 0.0011 

Table 3.3: Sum of the absolute values of the difference between the MIT R-R series extracted from the ECG 
signals of subset B and the respective SYN R-R series (∆ R-R intervals (MIT, SYN). 

 

 R-R mean RMSSD HF LF ANIi ANIlb 

p-value 0.8934 0.9753 0.9753 0.7182 0.7886 0.8079 

Table 3.4:  P-values for the HRV metrics computed for MIT R-R series extracted from the ECG signals of 
subset B and the respective SYN R-R series 

 

 
Figure 3.7: Boxplots showing the distributions of HRV metrics extracted for the MIT and SYN signals of 
Subset B. 
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From observation of Table 3.4, employing the Wilcoxon signed-rank test, the null 

hypothesis could be accepted for all comparisons performed and, so, there is no 

significant statistical difference between the R-R time series extracted from the MIT 

signals and the SYN signals. The more detailed distributions of the HRV metrics shown in 

Figure 3.7 corroborate these results.  

Note that the discrepancies observed between the R-R intervals series of the MIT signals 

and the R-R intervals series of the SYN signals may be due to the usage of different 

sampling rates. The sampling frequency of the MIT signals of subset B is 360 Hz, whereas 

the sampling frequency of the respective simulated signals was settled at 250 Hz in order 

to comply with the ANI algorithm specifications (see Chapter 4). Lowering the sampling 

rate may introduce temporal jitter in the estimation of the R-R intervals. To evaluate if 

the source of discrepancies between the MIT R-R series and the SYN R-R series is the 

different sampling rates, the ECGs of subset B were simulated at 360 Hz, and the quality 

of the simulation was evaluated through the same methodology (except that the ANI 

variables were not included in the analysis). The results revealed to be similar to those 

found simulating ECG with normal sinus rhythm and, therefore, it is corroborated that 

the sampling rate must be carefully chosen, as this may account for some inaccuracies in 

the results of the simulation. 

Overall, analysing the statistical properties of the simulated ECG signal, the ECGSYNmod 

tool could be validated within the context of this work as being performing according to 

the required for both normal sinus rhythm and PVC episodes. Figure 3.8 is representative 

of the generated output using the ECGSYNmod tool, including the ECG values, the R-peaks 

positions and respective classification (0 – normal beat; 1 – ectopic beat). 

 

 
Figure 3.8: Segment of an ECG simulated with the ECGSYNmod tool. 
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3.3 CONCLUSIONS 

The proposed modifications introduced to the ECGSYN software seem to suit the initial 

desired requirements, encompassing the realistic simulation of ECG signals in a 

controlled way and with characteristics known a priori. Notwithstanding the previously 

recognized limitations, the results revealed that the software is capable of simulating ECG 

signals (encompassing both normal and abnormal beats) statistically similar to the real 

signals taken from the training database.  

Moreover, an extension has been added to the ECGSYNmod tool so that normal beats can 

be both selectively or randomly converted to ectopic beats (namely PVCs) by modifying 

the tachogram based on a normal sinus rhythm. This extension is particularly valuable 

for further assessment of the effectiveness of different processing techniques for 

computing clinical metrics from the ECG since the baseline would be identical to the 

contaminated data, except for the additional ectopic beats. 

This tool can also be significantly beneficial for several other applications, allowing to 

identify possible sources of error and preventing their accumulation throughout the 

workflow. A more sophisticated approach to replace the post-processing step can be 

considered in the future in order to improve the performance of the ECGSYNmod tool. 
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4 LIMITS ASSESSMENT IN ANI  

Studies comprising the effectiveness of the ANI in different clinical contexts were 

reviewed in Chapter 2. Although the ANI algorithm appears to be more sensitive to 

noxious stimulation than the subjective use of vital signs by the anaesthesiologists [67]–

[70], the overall findings are inconclusive as the index reveals to be influenced by 

numerous confounders, including drugs or any other factor interfering with the 

parasympathetic tonus [22].  

The occurrence of ectopic beats is recognized as one of the significant confounding factors 

for the meaningful HRV analysis [25]. Ectopic beats are commonly seen in the 

perioperative period and are highly incident in apparently healthy individuals, with 

increased incidence with age [26]–[29]. Specifically, making use of Holter ECG recording, 

ventricular premature beats (PVCs) have been detected in 40–75% of clinically normal 

individuals [28], [29]. Therefore, this chapter is intended to assess how PVCs can impact 

the interpretation of ANI, an HRV-based metric.  

 

4.1 METHODOLOGY 

The approach taken in this chapter started with the implementation of the ANI algorithm, 

followed by an evaluation of the impact that the performance of the beat detector and the 

occurrence of ectopic beats could have on the calculation of ANI values. 

 

4.1.1 Implementation of the ANI algorithm 

As described in 2.4.1, the ANI algorithm is intended to provide both a qualitative and 

quantitative measurement of HRV being a dimensionless score varying between 0 and 

100 [11]. The implementation of this algorithm was based on both the publicly available 

descriptions in the literature and the MDoloris product brochure for the ANI Monitor V2 

[22], [38], [60], [82], [83], [90], [92], [108]–[116]. Figure 4.1 depicts the schematization 

for the implementation of the ANI algorithm. 

 
Figure 4.1: Steps described in the literature for the implementation of the ANI algorithm. 
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The ECG signal is digitized at 250 Hz and the R waves are detected using a R wave 

detection algorithm [110]. Inputting the R-peak positions, the computation method starts 

by measuring the evolution of R-R intervals over time.  

Before the computation of the ANI values, a real-time filtering procedure is applied so 

that the unnatural R-R intervals are removed and corrected [116]. The filtered R-R series 

is resampled at 8 Hz using a linear interpolation algorithm and then, the R-R samples are 

isolated into a 64-second window sliding by steps of 4 seconds  [110]. For inter-patient 

comparability, within each window, the resampled R-R series is mean-centered and 

normalized according to 

 

𝑅𝑅′𝑖 =  
𝑅𝑅𝑖  −  

1
𝑁

∑ (𝑅𝑅𝑖)
𝑁
𝑖=1

√∑ (𝑅𝑅𝑖)2𝑁
𝑖=1

 (4.1) 

, where 𝑅𝑅𝑖 represents the resampled R-R samples values and N is the number of samples 

in the window (N = 512) [113]. 

The method described in the literature is based on the analysis of changes in the HF band 

of the PSD, which is mainly modulated by the HRV in synchrony with respiration (RSA) 

[110], [112]. After normalization, the ANI algorithm proceeds to the usage of a numerical 

filter based on the 4 coefficients Daubechies wavelet to bandpass the respiration effect 

(0.15-0.5)Hz [115]. Given the sampling frequency of 8 Hz and the frequency bands listed 

in Table 4.1, levels 4 and 5 were kept and the frequency components between 0.125 and 

0.5 Hz were extracted to obtain a signal representative of the RSA for further analysis 

[38], [92]. 

 

Wavelet component Scale Frequency band (Hz) 

Detail level 1, d1 2 2 – 4 

Detail level 2, d2 4 1 – 2 

Detail level 3, d3 8 0.5 – 1 

Detail level 4, d4 16 0.25 – 0.5 

Detail level 5, d5 32 0.125 – 0.25 

Approximation level 6, a6 32 0 – 0.125 

Table 4.1: Frequency bands as function of wavelet decomposition levels, 𝑓𝑠 = 8 𝐻𝑧 

 

From the resulting series, the local minima and maxima are detected and connected, 

forming a lower and an upper envelope, respectively. Then, the 64-second window is 

divided into four sub-windows of 16-second and the area delimited by the envelopes is 

measured in the four sub-windows (AUC) (Figure 4.2) [113]. The 𝐴𝑈𝐶𝑚𝑖𝑛, defined as the 
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smallest of the four sub-areas, is retained and the instantaneous ANI value (𝐴𝑁𝐼𝑖)  is 

computed according to 

 
𝐴𝑁𝐼𝑖 =  

5.1 𝐴𝑈𝐶𝑚𝑖𝑛 + 1.2

12.8
  (4.2)  

Whereas the 𝐴𝑁𝐼𝑖  is said to be related to the instantaneous response of the ANS to a 

particular stimulus, the ANI values averaged on a 120-second window are used to 

evaluate the imbalance between analgesia and nociception [113]. 

In terms of clinical interpretability, according to the manufacturer, this index might have 

a probabilistic role on the prediction of hemodynamic reactivity episodes (correspondent 

to 20% increase of heart rate or systolic blood pressure compared to a reference) during 

nociceptive stimulation. Preliminary studies suggest that, in the following 10 minutes, a 

hemodynamic reactivity episode is unlikely to happen if the averaged ANI is between 50 

and 70, and very likely to happen if this measure is lower than 50 [22]. 

 

Figure 4.2: Mean centered, normalized and bandpass filtered RR series in a 64-second window during a 
surgical stimulus concerning an adequate NAN balance (upper panel) and in the case of inadequate anti-
nociception (lower panel). (Source: [60]) 

 

4.1.2 Metrics and statistical validation for limits assessment in ANI 

Results and analysis throughout this chapter were obtained with the training dataset 

used in the previous chapter to validate the ECGSYNmod tool and whose description is 

available in Appendix B. Thus, taking advantage of the ECGSYNmod tool, the SYN ECG 

signals were made available for subsets A and B according to the annotations of the MIT 

signals for the beat positions and respective classification. 

Evaluated with the Kolmogorov-Smirnov test, the ANI variables were found not to be 

normally distributed and non-parametric tests were applied [106]. To inspect the 

relationship between the ANI variables computed throughout this chapter, the Spearman 
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correlation coefficient (𝑐) was employed in the statistical analysis [105]. The Wilcoxon 

signed rank test was used to compare and infer on statistically significant differences 

between variables [107].  

Regarding the performance assessment of different signal processing techniques, the 

parameters of sensitivity (equation (4.3)), precision (PVV, equation (4.4)), and F −

measure (equation (4.5), metric weighting average of the recall and precision) were 

considered for analysis. 

 
𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (4.3) 

 
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  

𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (4.4) 

 
𝐹 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 =  2 ×

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦
 (4.5) 

, where TP represents the true positives, FN represents the false negatives, and FP 

represents the false positives. Moreover, inspecting the performance of different peak 

detectors, the temporal jitter was also considered as a performance parameter. Temporal 

jitter corresponds to the standard deviation between the reference R-peak position and 

the detected R-peak position. 

On the subject of the assessment of the impact of the occurrence of ectopic beats on the 

calculation of the ANI values through the implementation described, the mean absolute 

error (𝑀𝐴𝐸) and the respective standard deviation (𝑆𝐷) were the evaluation metrics 

chosen in this chapter. Accordingly,  

 
𝑀𝐴𝐸 =  

1

𝑛
∑(|𝑦 − �̂�|) (4.6) 

 

𝑆𝐷 =  √
∑((|𝑦 −  �̂�|) − 𝑀𝐴𝐸)2

𝑛
  

 (4.7) 

, where 𝑛 represents the number of ANI values calculated, 𝑦 represents the ANI values 

calculated for the reference R-peaks positions (ectopy-free), and �̂� represents the 

respective ANI values calculated for the reference R-peaks positions with artificially 

generated ectopic beats. 
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4.2 RESULTS AND DISCUSSION 

As described in chapter 2, the ANI is one of the currently commercialized technologies for 

nociception monitoring, being the only single parameter index based on HRV analysis. 

Therefore, throughout this thesis, the described literature-based implementation of the 

ANI algorithm (ANIlb) was the metric considered in the analysis of HRV measurements. 

The detailed assessment of the literature-based implementation of the ANI algorithm is 

discussed in Appendix C. 

 

4.2.1 Effect of beat detection in the computation of the ANI algorithm 

Reliable techniques to identify a fiducial point on the ECG waveform are crucial so that a 

meaningful tachogram can be obtained [25]. This section intends to explore the impact of 

inaccurate beat detection in the computation of the ANIlb variables. 

The most striking feature of the typical ECG waveform (Figure 2.4) would be the R-peak 

and, therefore, only detection algorithms written to locate this feature were considered 

in this work. The following R-peak detectors were considered:  

- Minimum detection: technique based on wavelet decomposition of the ECG signal 

in different frequency bands and employing a peak finding algorithm to detect the 

QRS complexes above the fixed threshold [117]. 

- Pan Tompkins: implementation of the Pan-Tompkins algorithm publicly available 

in [118]; This is a R-peak detector based on the peak energy-amplitude [37], [119]. 

- Ralph detector: R-peak detector provided by Philips Research, based on [120]. 

The three methods were then applied to the SYN signals of the two subsets and compared 

to the reference. Assessing the performance of different R-peak detectors, the detected 

peak was compared to the ground truth and considered a TP giving a detection tolerance 

of 72 ms. Otherwise, the detected beat is considered a FP. Within the range of the 

detection tolerance, the temporal jitter was calculated as the standard deviation between 

the reference R-peak position and the detected R-peak position. If no peak was detected 

within the range of ± 72 ms around the reference, it was accounted a FN. Since the 

objective was to assess whether the results would be dependent on precise timing 

detection by the R-peak detector, the temporal jitter was allowed to be large by arbitrarily 

establishing the detection tolerance at 72 ms. Table 4.2 and Table 4.3 list the performance 

for the R-peak detectors.  
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Detector PVV (%) 
Sensitivity 

(%) 

F-measure 

(%) 

Temporal 

jitter (ms) 

Minimum detection 99.96 ± 0.06 99.97 ± 0.08 99.96 ± 0.04 3.35 ± 0.15 

Pan Tompkins 100.00 ± 0.00 99.76 ± 0.02 99.88 ± 0.02 3.39 ± 0.25 

Ralph detector 100.00 ± 0.00 99.88 ± 0.01 99.94 ± 0.01 0.00 ± 0.00 

Table 4.2: Performance statistics for QRS detectors applied to the ECG signals of subset A. 

 

Detector PVV (%) 
Sensitivity 

(%) 

F-measure 

(%) 

Temporal 

jitter (ms) 

Minimum detection 99.25 ± 0.71 99.74 ± 0.38 99.49 ± 0.34 4.32 ± 7.04 

Pan Tompkins 99.89 ± 0.19 99.63 ± 0.40 99.76 ± 0.24 2.47 ± 2.03 

Ralph detector 100.00 ± 0.00 99.96 ± 0.01 99.98 ± 0.01 0.00 ± 0.00 

Table 4.3: Performance statistics for QRS detectors applied to the ECG signals of subset B. 

 

The Minimum Detection algorithm automatically identified the peak locations, but the 

performance of this algorithm depends on the prior adjustment of the threshold for R-

peak isolation according to the patient and hardware configuration. Hence, the 

performance of this method was biased by the manual selection of different thresholds 

for the subsets A and B. 

The evaluation of the results across the two subsets (Table 4.2 and Table 4.3) revealed 

that all the beat detectors perform comparably. However, it should be noted that for 

subset B, except in the Ralph detector, the performance of R-peak detectors dropped and 

diverged, demonstrating that the results from these methods are susceptible to artefact 

corruption. These discrepancies are even more noticeable for the Minimum Detection 

method.  

The temporal jitter can greatly impact the HRV analysis since it reflects the time 

variations in the detected R-peak positions from their reference. From Table 4.2 and 

Table 4.3, analysing the performance of employed detectors, temporal jitter was not 

observed only when applying the Ralph detector. The minimum detection method, 

although not being the method with the largest average jitter for both subsets, is the one 

presenting the largest dispersion of temporal jitter, which may also account for a worse 

performance of this method on the training dataset.  

More than identifying a beat detector outperforming the others, this section aims to 

inspect whether the use of beat detectors with different performance significantly 

impacts the calculation of the implemented ANI algorithm. So, the performance of the 

methods applied to the SYN signals of the two subsets was taken into consideration and 

the ANIlb variables were made available for the reference R-peak positions and for the 

three different methods.  
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Figure 4.3 depicts the results of ANI computation from the different R-peak positions 

(reference, Ralph detector, and Pan Tompkins) for the different cases of subset A. Testing 

the hypothesis of this implementation of the ANI algorithm being highly sensitive to 

erroneous peak detections, the Wilcoxon signed-rank test was employed to perform 

three different comparisons between: 

- ANIlb values from the reference R-peaks vs ANIlb values from the R-peaks by the 

Minimum Detection method 

- ANIlb values from the reference R-peaks vs ANIlb values from the R-peaks by the 

Pan Tompkins algorithm 

- ANIlb values from the reference R-peaks vs ANIlb values from the R-peaks by the 

Ralph detector 

 

 Minimum detection Pan Tompkins Ralph detector 

p-value 0.2015 0.2406 0.9978 

Table 4.4: P-values for three different comparisons testing for significant differences between ANIlb values 
from the reference R-peaks vs ANIlb values from the R-peaks by another R-peak detector. 

 

From the p-values in Table 4.4, with a significance level of 5%, there is no significant 

difference between an ANIlb variable computed with the reference R-peaks and that from 

another R-peak detector.  

Although the p-values above confirm that ANIlb variables are not significantly different, 

qualitatively analysing Figure 4.3, one can observe that whereas the ANIlb values from the 

R-peaks by the Ralph detector are superimposed with the ANIlb values from the reference 

R-peaks, the ANIlb values from the R-peaks by the Pan Tompkins and Minimum Detection 

methods are slightly different from that. It was expected to occur differences in ANIlb 

variables, but not to this extent, as the different methods performed comparably in 

detecting the R-peak positions. The Ralph detector was not able to detect the last R-peak 

position in each signal from subset A so only the last ANIlb value would change, as verified. 

The implementation of the Pan Tompkins algorithm was not able to detect the first and 

the last R-peaks positions in each signal of the subset A and, therefore, only the first and 

last ANIlb values should be impacted, which was not verified. 
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Figure 4.3: ANIlb values from the R-peaks by the Ralph detector (in red) superimposed to the ANIlb from 
the reference (in blue). Slightly differing from the previous, the ANIlb variables from the R-peaks by the Pan 
Tompkins (in green) and that from the Minimum Detection method (in orange). 

 

Inspecting the ANI computation, one can verify that the algorithm analyses the values 

within a 64-second window sliding in 4-second steps. This means that the non-detection 

of the first R-peak position introduces a border effect, lagging the R-R time series (see 

Figure 4.4). I.e., the windows of normalized and filtered R-R series resulting from the R-

peaks detected by the Pan Tompkins algorithm will not match those resulting from the 

reference R-peaks positions. Consequently, the ANIlb values computed are, inevitably, 

different (see Figure 4.5).  
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Figure 4.4: Representation of the border effect introduced in the ANI computation. As the implementation 

of the ANI algorithm performs in a sliding window, the values considered for AUC calculation are different 

between the methods. (Representation of the problematic, not scaled) 

 

 
Figure 4.5: The first window of the normalized and filtered R-R series (in blue) resulting from the reference 
([A]) and each peak detector ([B], [C], [D]). The ANI computation results from the minimum AUC delimited 
by the envelopes (in orange). As can be seen, by not detecting the R-peak of the first position, the resulting 
normalized and filtered R-R series on [C] and [D] differ from those on [A] and [B], which influences the AUC 
calculation and, posteriorly, on ANI computation. 

 

[A] 

[B] 

[C] 

[D] 
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These discrepancies can become problematic in practical situations, raising, for example, 

the question of when would be the ideal timing to start the recording. As this is an offline 

evaluation, it can be attempted to correct the discrepancies by synchronizing the vectors 

of detected R-peaks. Figure 4.6 summarizes the ANIlb variables derived from the 

reference R-peak positions and the three different methods after synchronization. Then, 

as the variables are non-normally distributed, the Wilcoxon signed-rank test was again 

employed to perform the different comparisons. 

 
Figure 4.6: ANIlb variables derived from the reference R-peak positions and the three different methods 

after synchronization. 

 

 Minimum detection Pan Tompkins Ralph detector 

p-value 0.4331 0.3738 0.9955 

Table 4.5: P-values for three different comparisons testing for significant differences after synchronization 
between ANIlb values from the reference R-peaks vs ANIlb values from the R-peaks by another R-peak 
detector. 
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Overall, there is no significant difference between the ANIlb variable computed from the 

reference R-peaks and that from the other R-peak detectors (Table 4.5). However, as 

qualitatively observed in Figure 4.6, there are still slight discrepancies between the ANIlb 

variable computed from the reference R-peaks and that from the Pan Tompkins detector 

or the Minimum Detection method. After synchronization, there is no difference between 

the recall and precision parameters of any of the R-peak detectors and the reference R-

peak positions, but the temporal jitter differs. The temporal jitter may represent an 

important indicator of performance in HRV analysis since it reflects the time variations 

in the detected R-peak positions from their reference. Thus, as the ANI algorithm is a 

measure of HRV analysis, the perceived discrepancies between the ANIlb variables 

evidence the impact of the temporal jitter on ANI computation. From Table 4.2, one can 

conclude that the implementation of the Pan Tompkins algorithm is the method with the 

highest average jitter and the largest dispersion of this parameter. In fact, the observed 

divergences are more noticeable for ANIlb values made available by the Pan Tompkins 

algorithm than for the Minimum Detection method. 

To objectively assess the impact of the sensitivity of the R-peaks detector on the 

calculation of ANI variables, the reference R-peak at the 350th position was intentionally 

deleted, forming the R-peaksmodified. Figure 4.7 summarizes the ANIlb variables derived 

from the reference R-peak positions and the R-peaksmodified for each ECG of subset A. 

Besides the deletion of the R-peak at the 350th position, there is no other difference 

between the ANI calculation processes.  

Testing whether this implementation of the ANI algorithm would be susceptible to 

detector sensitivity when failing to detect an R-peak, the differences between the ANIlb 

variable by the reference R peak positions vs the ANIlb variable by the modified vector 

were not considered significant (p-value = 0.0654). However, from Figure 4.7 the non-

detection of one R-peak can already impact the ANI output in up to one minute. The 

observed prolonged discrepancies might be due to the usage of a 4-second moving 

window to calculate the instantaneous value of ANI and, posteriorly, the application of a 

moving average to compute the ANIlb value.  

It can also be noted that the effect on ANI calculation of not detecting one R-peak is 

neither linear nor constant and is dependent on the use of the respective R-R interval for 

the construction of the envelopes. I.e., missing a beat depends on the context: if, after 

normalization and bandpass filtering, the respective R-R interval is above half of the 

mean of the detected local minima and below half of the average of the detected local 

maxima, no influence on the ANIlb calculation is introduced. Otherwise, different ANI 

values are possibly outputted.  
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Figure 4.7: ANIlb obtained with the reference R-peak positions and that removing the 350th R-peak. 

 

As firstly hypothesized, whether resulting from misdetection or non-detection, 

inaccuracies of the R-peak detector can greatly impact the R-R tachogram and derived 

metrics, as is the case of this implementation of the ANI algorithm.  

 

4.2.2 Effect of ectopic beats on ANI 

As mentioned in Chapter 2, ectopic beats are thought to occur either through other 

physiological mechanisms rather than those responsible for the variability in the R-R 

intervals or false QRS detection. It is investigated in detail how the occurrence of non-

sinus beats affects the calculation of ANI variables, allowing to verify if there is a need for 

correction of ectopic intervals before the analysis of this HRV metric. 

Making use of the ECG generator tool described in Chapter 3, ectopic beats were added 

to the R-R time series with a normal sinus rhythm (extracted from ECG signals of subset 
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A) so that the underlying oscillations introduced to the R-R tachogram were known. The 

reference and the modified R-R series are similar, except for the ectopic beats introduced. 

Then, the ANI computation is performed as before.  

Results obtained from varying the percentages of normal beats converted into ectopic 

beats (𝑥) are illustrated in Figure 4.8 with the R-R tachogram extracted from the ECG 

signal of Case 5 of subset A as reference. It can be observed that this implementation of 

the ANI algorithm can be extremely sensitive to ectopic beats. Even in case of single 

ectopic beat addition (𝑥 = 0.01%), slight discrepancies are noticed between the ANIlb 

variables around the time of ectopic occurrence. 

Averaging the results obtained for different random distributions and dealing with 

differing percentages of normal beats converted into ectopic beats, Figure 4.9 depicts the 

MAE and respective SD calculated between the ANIlb variable computed from the 

reference R-R tachogram and that from the R-R tachograms artificially generated by 

converting normal beats into ectopic beats. Note that, starting with the tachograms in the 

no ectopic case, the MAE between the ANIlb variables grows with increasing percentage 

of normal beats converted into ectopic beats. The results support the need for ectopic 

correction before the calculation of the ANI values. 

 
Figure 4.8: Using case 5 of subset A as an example, ANIlb values computed from the reference tachogram 
(in blue) and that dealing with varying the percentage of normal beats converted into ectopic beats (in 
orange) 
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Figure 4.9: MAE calculated between the ANIlb variable computed from the reference R-R tachogram and 
that from the artificial R-R tachograms varying the percentage of normal beats converted into ectopic beats 
(𝑥) 

 

Furthermore, to determine if it can be concluded that the difference between each of the 

ANIlb variables from artificially generated tachograms and that from the reference 

tachogram is statistically significant, different comparisons for the different 𝑥 were 

performed using the Wilcoxon Ranked-sum test since the variables were previously 

found not normally distributed. 

 

𝒙 (%) p-value 

1 5.98 ×  10−2 

2 1.36 ×  10−18 

3 5.56 ×  10−33 

4 2.52 ×  10−28 

5 6.16 ×  10−65 

6 9.09 ×  10−117 

7 6.46 ×  10−125 

8 2.08 ×  10−144 

9 8.26 ×  10−174 

10 9.29 × 10−196 
Table 4.6: P-values for different comparisons testing for significant differences between ANIlb values from 
the reference R-peaks vs ANIlb values from the R-peaks varying 𝑥 

 

From the observation of Table 4.6, significant statistical differences were found when 

converting more than 1% of normal beats into PVCs. These results confirm what has been 

observed qualitatively: ectopic beats lead to hardly interpretable and comparable 

outputs, causing noticeable changes in the measured ANI variables. 
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The artificially generated ectopic beats consisted of abnormal beats occurring 

considerably earlier than expected and followed by a compensatory pause. Thus, the 

estimation of HF components of the HRV was significantly increased by the shortened R-

R intervals. Since the ANI computation through the described implementation is based 

on the analysis of HF changes, it may be distorted by the occurrence of PVC. 

 
Figure 4.10: Reference tachogram extracted from the ECG of case 5 of subset A (in blue); Tachogram 
converting 5% of the normal R peaks from the reference tachogram to ectopic beats (in orange); Tachogram 
converting 5% of the normal R peaks positioned in the first quarter of the length of the reference tachogram 
to ectopic beats (in green); Respective ANIlb variables.  

 



4. Limits assessment in ANI 

50 

One additional remark is that, beyond the number of ectopic beats, the distribution of 

ectopic beats across the tachogram plays an important role in the impact that non-sinus 

beats cause on ANI values. For suspicion that the density of ectopic beats impacts the ANI 

values, the ANI variables were made available for the following R-R time series:  

- reference, the tachogram extracted from the ECG of case 5 of subset A; 

- conversion of 5% of the normal R peaks from the reference tachogram to ectopic 

beats; 

- conversion of 5% of the normal R peaks positioned in the first quarter of the length 

of the reference tachogram to ectopic beats; 

The modified tachograms were obtained making use of the extension to the ECGSYNmod 

tool. From Figure 4.10, the ANIlb variables calculated for the three tachograms 

corroborate the assumption previously made. The prolonged observed discrepancy 

between the blue and green lines of the lower plot in Figure 4.10 is probably due to the 

fact that the implemented algorithm uses moving average.  

Overall, the results evidenced that ectopic beats should be identified and corrected 

previous to the computation of the ANI. In the next chapter, the performance of different 

methods for ectopic correction is further compared using data acquired intraoperatively 

to ascertain if the changes introduced by ectopic beats are large enough to obscure the 

analysis of the output from this implementation of the ANI algorithm. 

 

4.3 CONCLUSIONS 

The implementation of the ANI algorithm has been shown to rely heavily on precise peak 

timing being impacted by the performance of the peak detector and the occurrence of 

ectopic beats. Therefore, signal processing and R-peak detection are of utmost 

importance before attempting to interpret ANI or any HRV-based index. 
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5 PERFORMANCE ASSESSMENT OF ECTOPIC 

BEATS CORRECTION METHODS 

With no data being shared with employees of Philips Research, this section was 

developed for research purposes at CISUC. 

As reviewed in the previous chapters, HRV analysis may add value to the study of the 

underlying autonomic response to nociceptive stimuli by attempting to tease out the 

timing variations in the sinus rhythm caused by alterations in the SNS and PNS [25]. 

However, the HRV analysis may be hindered by the fact that this parameter is 

interdependent on regulatory systems corresponding to the adaption of the cardiac 

rhythm to any environmental and psychological stimulus [25]. Moreover, the 

implementation of the ANI algorithm described in Chapter 4 is a HRV measure and has 

been demonstrated to be highly sensitive to ectopic beats, enhancing the need for 

correction of ectopic beats before analysing this metric.  

Accordingly, estimating the correct sinus R-R intervals is an essential technique for 

ectopy correction. In this chapter, several methods were applied to improve the 

estimation of R-R intervals and further ectopic correction, investigating to which extent 

the presence of ectopic beats would be quantitatively acceptable and contributing to a 

more robust solution for partial automatization of intraoperative analgesia in the future.  

 

5.1 METHODOLOGY 

A search for publicly available databases was performed so that any findings would be 

sufficiently reliable in an intraoperative context and passible of clinical utility. This search 

was carried out using keywords «Pain», «Intraoperative vital signs», «Intraoperative 

physiological», «perioperative physiological» and «Intensive Care Unit» conjugated 

either with «Database» or «Records».  

Amongst several results ([121]–[131]), VitalDB was the one that seemed to fulfil best the 

purposes of this thesis. Being the only intraoperative monitoring database is a plus, since 

conscious perception would not be a bias factor.  Notwithstanding, it is important to note 

that none of these databases fulfils all the requirements, since they were not acquired for 

the same purpose of this study. This would, therefore, constitute an observational study.  

Following a brief overview of the selected dataset, the methodology presented below is 

organized into two main sections: signal processing and signal analysis. Figure 5.1 

summarizes the strategy implemented in this chapter. 
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Figure 5.1: Flowchart describing the methodology adopted perform a comparative analysis of different 
methods for ectopic correction 

 

5.1.1 Dataset overview 

The VitalDB dataset is comprised of patients who underwent non-cardiac surgical 

procedures between June 2016 and August 2017 at Seoul National University Hospital, 

Seoul, South Korea. It contains information about the patients namely demographics, vital 

sign measurements and laboratory data. A more detailed description is available in [132].  

 
Figure 5.2: Criteria for patient selection from VitalDB. 



5. Performance assessment of ectopic beats correction methods 

53 

Although the dataset is composed of data from 6,388 patients, some criteria (including 

patient demographics, comorbidities, type of anaesthesia, and type of surgery) were 

employed for patient selection and further exploration (see Figure 5.2). These criteria 

were applied in an attempt of reducing as much as possible the confounding factors that 

could impact the HRV analysis. Thus, only normal healthy adult patients (ASA I) under GA 

with the administration of the same type of analgesics (remifentanil) were included in 

this study. Furthermore, among the surgical procedures, only patients undergoing 

‘Breast-conserving surgeries’ were selected to be explored in this work.  

 

5.1.2 Signal processing 

As previously stated, before interpreting any HRV-based index, it is of utmost importance 

to include a signal processing step to avoid erroneous analysis [37], [133]. Therefore, 

several methods were employed to prepare data for further analysis. 

The ECG data was sampled rated at 500 Hz and the down sampling for 250 Hz (the 

admitted by the ANI algorithm) was only performed in the last step of signal processing 

for classification purposes according to ANI values. 

 

5.1.2.1 Goal phase identification 

If existing, no protocol was publicly available, and no annotations of painful standard 

events could be assessed. Therefore, the ANI variables were made available and were 

analysed together with the anaesthesia start annotation, the operation start annotation, 

and the timing of the first remifentanil bolus. Remifentanil is an analgesic of high efficacy 

with a rapid onset and predictable cessation of effect [6]. The timing of the first 

remifentanil bolus in each case was taken from the records of the infusion rates of 

remifentanil 20 mcg/mL.  

So, the idea was to try to infer whether the timing of the first remifentanil bolus would 

correspond to the start of the anaesthesia (representing the anticipation of surgical 

stimuli warned by the surgeon) and whether the operation start annotation would 

correspond to the timing of the first incision (this would be verified if a drop in the 

instantaneous ANI values occurs at this time). 

While in some cases these assumptions could be verified, in others it was not possible to 

find any potential relationship between the events mentioned. This must be because the 

surgeries were performed in ten ORs by different anaesthesiologists. The timing 

information on the start and end of the anaesthesia and surgery was taken from the OR 

anaesthesia report and not protocolized but recorded by the anaesthesiologists when 

they thought that a significant action to initiate or terminate anaesthesia and surgery was 

taken [134].  
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Having no strong evidence that the timings would be coherent across the different 

records, a goal phase was defined instead of considering the entire record. The goal phase 

was designed to ensure that the anaesthetic state was maintained throughout the surgical 

period being considered and to avoid the disturbance of ANI scores by any event during 

anaesthetic induction and emergency. Therefore, it was included for analysis the surgical 

period between 5 minutes after the timing of the annotation related to the start of the 

anaesthesia and 5 minutes before the timing of the annotation on the end of the 

anaesthesia (Figure 5.3).  

 
Figure 5.3: Timeline for the goal phase of the records in patients selected for this study. (Adapted to the 
context of this study from [67]) 

 

5.1.2.2 Noise removal  

Despite of being a readily identifiable waveform, ECG signals are vulnerable to noise 

disturbances [37]. Therefore, the presence of several types of artefacts that could corrupt 

the ECG signals was inspected and filtering methods were explored. 

The signals were contaminated with a combination of high-frequency noise, and low-

frequency noise (wandering baseline). While trying to keep most of the signal clinical 

information and since the ST segment interpretation is not relevant in this approach, the 

ECG signals were bandpass filtered by a digital infinite impulse response filter 

(Butterworth) and the cut-off frequencies settled to 0.5 Hz and 30Hz, and order 6. 

 

5.1.2.3 Event detection 

The sequences of R-R intervals were obtained through the detection of QRS complexes. 

Taking into consideration the results from section 4.2.1, the Ralph detector would be the 

most appropriate as it was the algorithm performing best. However, as no data has been 

shared with employees of Philips Research, the full implementation of the Ralph detector 

algorithm was no longer accessible during the realization of this chapter. Therefore, the 
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implementation of the Pan Tompkins algorithm was applied to the filtered data since it 

seemed to be the more suitable and adaptive available algorithm. 

 

5.1.2.4 Signal quality assessment 

Following the beat detection and prior to assessing the beats’ classification, segments of 

data with bad quality (artefacts or missing data) were excluded from the analysis of the 

ECG records. These artefacts could be created during surgery due to several factors, 

including either unexpected patient movement or repositioning of the patient by the 

surgery staff.  

As the non-sinus beats are not representative of autonomic control mechanisms and may 

alter HRV analysis, the abnormal beats should be accurately identified [31]. The optimal 

solution to identify the abnormal beats would be the manual check of raw ECG. However, 

considering the number of recordings and their length, it is not practical to do it so. 

Numerous principles and strategies have been being employed to enhance the automatic 

classification of heartbeats [135]. Only approaches based on the HRV signal were 

considered in this thesis. In this sense, the SYN signals from subset B of the training 

dataset were considered to assess the ability of three techniques to distinguish between 

the different types of beats. The following methods were employed: 

- Method I: Implementation of the algorithm proposed at [116]. 

- Method II: Using timing information to identify ectopic intervals by comparing the 
distance between the current beat and the previous beat with the distance between the 
current beat and the next beat. 

- Method III: Calculation of the acceleration relatively to the previous N-N interval 
(equation (5.1)) and identification of the physiologically impossible beats (equation 
(5.2)) [46]. 

 △ 𝑅𝑅𝑛 =
|𝑅𝑅𝑛 −  𝑅𝑅𝑛−1 |

𝑅𝑅𝑛−1 
> 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 (5.1) 

 𝑅𝑅𝑛 > 2 𝑠𝑒𝑐𝑜𝑛𝑑𝑠 ∨  𝑅𝑅𝑛 < 0.2 𝑠𝑒𝑐𝑜𝑛𝑑𝑠 (5.2) 

Defining the threshold to be used when applying Method III, the threshold percentage 

was varied from 1 to 25% to optimize the removal of non-sinus R-R intervals, whilst 

retaining as many sinus R-R intervals as possible. Similar results to those of [46] were 

obtained and, therefore, the threshold was set to 10%. 

From this preliminary analysis on the ability of the different methods to identify ectopic 

intervals, the method I presented the worst performance in both terms of sensitivity and 

precision; method II was highly precise but failed in the detection of some of the abnormal 
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beats; method III presents high sensitivity but tends to overcorrect. Consequently, in 

order to create a control group of episodes with a normal sinus rhythm (without ectopic 

beats), a conservative methodology was followed by merging the cardiac cycles identified 

as abnormal by methods II and III. As method III tends to overcorrect, the ECG segments 

were manually inspected if cardiac cycles were classified as non-sinus only by this 

method. Then, it was composed the control dataset defining 10-minute ECG episodes with 

normal sinus rhythm. 

 

5.1.2.5 Subgrouping the episodes according to the ANIlb scores 

The episodes of the group control were resampled at 250 Hz, the R-R time series was 

calculated, and the ANIlb values were made available using the algorithm’s 

implementation described in the previous chapter. 

As mentioned in Chapter 2, according to the manufacturer, it is unlikely for hemodynamic 

reactivity to occur in the following 10 minutes if the ANI value falls in the range between 

50 and 70 [22]. To assess the impact that ectopic beats may have on the clinical decisions 

based on the information provided by the ANI algorithm, the episodes of the control 

dataset were then subdivided into two subgroups by being included in the ANI+ subgroup 

if at least 70% of the ANIlb values were of level 50 or more; otherwise, they were included 

in ANI- subgroup. 

 

5.1.3 Signal analysis 

Studying the reconstruction of the duration effects on R-R time series, edited datasets 

were constructed by replacing the normal samples of the control tachograms with ectopic 

samples. Then, it was assessed the performance of different methods for the correction 

the ectopic intervals by estimating the respective R-R intervals and performing the 

comparison of the results with the ones of the control dataset. 

 

5.1.3.1 Artificially generation of ectopic intervals 

Performing a comparative study, edited datasets were constructed for ten degrees of 

ectopic beats (𝑥). The edited datasets were created using the ECGSYNmod extension 

described in chapter 3, i.e., randomly inserting synthesized ectopic beats by modifying 

the position of the R-peak for one cycle of the dynamics. The ten degrees of artificially 

inserted ectopic beats vary in units from 1 to 10%. 

In this process it is ensured that the first fifty beats were not converted to ectopic beats. 

This rule was established in order to ensure the existence of a calibration period required 
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for the implementation of the autoregressive model (section 5.1.3.2.5) and further 

reliable comparison of all the techniques employed. 

Whereas the control dataset serves as reliable baseline to assess the quality of the ectopic 

correction, the methods for ectopic correction under investigation are employed on the 

edited datasets composed. 

 

5.1.3.2 Models for the correction of ectopic intervals 

Looking at the HRV signal as a sequence of observations (R-R intervals) taken 

sequentially in time, the performance of different real-time methods was assessed for 

correcting ectopic observations. From the simplest to the most robust, the methods 

inspected for ectopic correction included the deletion or replacement of ectopic intervals 

estimating the ectopic observations based on past normal samples. 

 

5.1.3.2.1 Deletion of ectopic intervals  

The ‘Deletion’ method is a commonly used and the simplest strategy to deal with the 

presence of ectopic beats [135]. This strategy corresponds to the elimination of the 

ectopic observations from the HRV signal, reducing the number of beat-to-beat intervals. 

Figure 5.4 illustrates the method followed to correct the abnormal intervals applying the 

‘Deletion’ method. 

 
Figure 5.4: Correction of ectopic observations deleting them. 

 

5.1.3.2.2 Interpolation  

Interpolation methods were employed to replace the ectopic intervals with interpolated 

R-R intervals. The following interpolation methods were assessed for analysis: zero-

order, first order, and spline [135]. The zero-order interpolation corresponds to the 

‘Nearest’ interpolation and replaces the query points by the adjacent observation; the 

first order interpolation method connects the adjacent normal R-R intervals deriving a 

straight line, corresponding to the ‘Linear’ interpolation; and the ‘Spline’ interpolation is 

based on the approximation of a polynomial cubic curve [136]. 
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5.1.3.2.3 Previous & Next 

In comparison to the normal beat-to-beat intervals, the ectopic episodes considered in 

this work correspond to a shorter R-R interval followed by a longer R-R interval (the 

compensatory pause). The ‘Previous & Next’ method estimates the former observation of 

the ectopic episode to be equal to the previous normal sample, and the last observation 

of the ectopic episode to be equal to the next normal sample. Figure 5.5 illustrates the 

method followed to correct the ectopic intervals applying the ‘Previous & Next’ technique.  

 
Figure 5.5: Correction of ectopic observations replacing the shortened interval by the previous normal 
observation and the longer interval by the next normal observation. 

 

5.1.3.2.4 Mean  

The ‘Mean’ method corrects the ectopic intervals by estimating the arithmetic average of 

the previous 𝑃 normal observations (equation (5.3)). 𝑃 was considered five and Figure 

5.6 illustrates the method followed to correct the ectopic intervals applying the ‘Mean’ 

method. 

 
�̃�(𝑛) =  

1

𝑃
(∑ 𝑥𝑖

𝑃

𝑖=1

) 
(5.3) 

 
Figure 5.6: Correction of ectopic observations replacing them by the mean of the previous five normal 
observations. 

 

5.1.3.2.5 Autoregressive model 

The autoregressive (AR) model assumes the linear modulation of the HRV signal {𝑦(𝑛)} 

by a time-varying system consisting of the combination of the 𝑃 past values of the output 

and the present input. Regarding the case of biomedical signals, there is no knowledge of 
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the input and, so, the current sample of the output can only predict using its past values 

(equation (5.4)) [37], [137].  

 �̃�(𝑛) = ∑ 𝑎𝑘 𝑦(𝑛 − 𝑘)

𝑃

𝑘=1

+  𝜖(𝑛) (5.4) 

, where 𝑃 refers to the model order, 𝑛 is the sample point, 𝜖(𝑛) is the white noise, and 

{�̃�(𝑛)} represents the predicted value. Accordingly, the residual error can be determined 

by 

 𝑒(𝑛) = 𝑦(𝑛) −  �̃�(𝑛) (5.5) 

Over the years, several studies have been inspecting the applicability of AR models in the 

domain of HRV spectral analysis [137]–[139]. Figure 5.7 represents the method applied 

in this study to correct ectopic beats using an AR model. 

 
Figure 5.7: Correction of ectopic intervals using an autoregressive model 

 

Regarding the computation of the model parameters, the least-squares method was 

employed to find the coefficients of the filter (𝑎1, 𝑎2, … , 𝑎𝑃) by iteratively minimizing the 

mean-squared error. Moreover, since the best choice for the model order was not 

established a priori, the calibration process of the AR model comprised the estimation of 

the optimum model order. The appropriate selection of a model order is crucial to 

prevent from inaccurate representations of the original signal [138]. While a lower model 

order may provide smooth information, higher orders may increase noise dramatically 

[138], [139].  

The Akaike Information Criterion (AIC, equation (5.6)) [140],  the Rissanen's Minimum 

Description Length (MDL, (5.7)) [141], and the criterion proposed at [142] (referred as 

Kahn criterion) have been applied to the control tachograms as functions of the model 

order 𝑃. The Kahn criterion consists of iteratively incrementing the model order P until 

the error between the signal estimated through model coefficients and original signal 

becomes greater than the previous error calculated [142]. 

 𝐴𝐼𝐶𝑃 = 𝑙𝑛(𝜎𝑃
2) +  

2(𝑃 + 1)

𝑁
 

(5.6) 
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 𝑀𝐷𝐿𝑃 =  𝜎𝑃
2  (1 + (

𝑃 + 1

𝑁
) ln (𝑁)) 

(5.7) 

The evolution in terms of error variance (𝜎𝑃
2)  of each of the four criteria were evaluated 

separately. 

 

5.1.3.2.6 Neural Network 

Inspired by the structure of the human brain, Neural Networks (NN) represent an 

experience-based learning category of Machine Learning architectures that are achieved 

from the model’s training with a backpropagation algorithm based on fault tolerance 

[37], [143]. A NN can be designed using layers and activation functions and Figure 5.8 

represents the NN designed in this work which is characterized as a fully connected 

neural network since all inputs from a layer are connected to every activation unit from 

the next one [143].  

 
Figure 5.8: Example of a neural network with multiple layers (Source [143]) 

 

The structure of an NN is composed of an input layer (interacts with the external 

environment, receiving information related to the system being investigated), one or 

more hidden layers (responsible for patterns extraction that compose the solution), and 

an output layer (calculation and presentation of the final output) [143].  

Figure 5.9 best summarizes the definition of a NN layer as an operation to its inputs 

generating an output that becomes the input of the next layer. Depending on the specific 

NN structure, each layer follows its own strategy. Basically, the activation potential (𝑢) is 

computed with equation (5.8) which represents the sum of the multiplication of each 

input (𝑥𝑖) by the correspondent weight (𝑤𝑖), followed by the subtraction of the bias (𝜃); 

then, the output is produced using equation (5.9), limiting the activation potential by 

applying an activation function specified a priori (𝑔(𝑢)) [143].  
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Figure 5.9: The artificial neuron (Source [143]) 

 
𝑢 = ∑ 𝑤𝑖 ∙ 𝑥𝑖 −  𝜃

𝑛

𝑖=1

 
(5.8) 

 𝑦 = 𝑔(𝑢) (5.9) 

The activation functions are implemented to limit the output within a reasonable range 

of values, adding a non-linear transformation into the layer [143]. Only fully 

differentiable activation functions were used to define the NN architecture, namely the 

sigmoid function and the linear function. The sigmoid function (equation (5.10)) is 

represented in Figure 5.10-A and returns a value between 0 and 1. The linear function 

(equation (5.11)) is represented in Figure 5.10-B and returns its input value. 

 
𝑔(𝑢) =  

1

1 + 𝑒−𝑢
 

(5.10) 

 𝑔(𝑢) = 𝑢 (5.11) 

 
Figure 5.10: Activation functions: [A] The sigmoid function and [B] the linear function. 

 

For the specific context of this study, Figure 5.11 represents the correction of ectopic 

intervals through the estimation of the respective R-R intervals with a neural network 

with the past 𝑃 sinus intervals as input. The HRV signals are standardized by removing 

the mean and scaling to unit variance. Then, the dataset for the learning strategy of the 

NN is formed by segmenting the control R-R series into non-overlapping segments of 𝑃 +

1 observations in which the first 𝑃 observations correspond to the 𝑖𝑡ℎ example 

[A] [B] 
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represented as a column vector (𝑥(𝑖) ∈  ℝ𝑛𝑥×𝑚) and the last observation of the segment 

is the 𝑖𝑡ℎ target output value (𝑦(𝑖) ∈  ℝ𝑛𝑦).   

 
Figure 5.11: Representation of the correction of ectopic intervals using a neural network. 

 

The NN can be seen as a modelling approach in which a mathematical model is trained to 

transform the input data (the past sinus observations) into a significant output (an 

accurate estimation of the R-R interval to replace the ectopic observation). The 

parameters of the NN (weights and biases) were optimized through a supervised learning 

strategy using the control HRV signals. The learning strategy is an iterative process of two 

stages: forward propagation and backward propagation [143]. The model parameters are 

gradually updated in a feedback mechanism through the minimization of a loss function 

by successively applying the forward and backward propagations. With the aim of 

minimizing the error between the predicted R-R interval and the target, the cost function 

used in this work was the Mean Squared Error (MSE – equation (5.12)) [143]. 

 𝑀𝑆𝐸 =  
1

𝑛
∑(𝑦𝑖 −  �̃�𝑖)2

𝑛

𝑖=1

 (5.12) 

, where 𝑛 is the number of samples, �̃� represents the predicted value, and 𝑦 refers to the 

sample of the control tachogram. 

Training the neural network involves a tuning process of hyperparameters (such as 

learning rate α, number of hidden layers, number of hidden units) [143], [144]. The 

random search technique was employed for hyperparameter optimization. Although the 

manual search and the grid search are the commonly employed strategies to optimize the 

hyperparameters, the random search has been demonstrated to be more efficient since 

the importance of tuning differs between different hyperparameters (e.g., it is more 

important to adjust the learning rate rather than the number of layers) [144]. Within a 

specified range of values, the random search sets different configurations of 
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hyperparameters at random and selects the best one [144]. Figure 5.12 illustrates the 

comparison between the grid search strategy and the random search method.  

 
Figure 5.12: Grid and random search of nine trials for optimizing two hyperparameters. With grid search, 
nine trials only test three different values of the most important parameter. With random search, all nine 
trials explore distinct values of the most important parameter. (Source [144]) 

 

Designing the NN, the cross-validation technique was adopted to select the best NN 

topology, evaluating the generalization capability of the predictive models and 

preventing from overfitting [37], [143]. This method consists of randomly dividing the 

total data set into training and test set. Then, applying the k-fold cross validation, the 

training dataset was split in 𝑘 partitions of equal size and with no overlap. Out of the 𝑘 

partitions, (𝑘 − 1) partitions are used to the learning process and the remain partition is 

set aside as a validation subset [143], [145]. All the partitions are used as validation 

subset by repeating the learning process 𝑘 times  [143], [145]. The 𝑘 results are averaged 

to obtain a measure of performance for the NN architecture. The test set is used to 

evaluate the final retained model. Figure 5.13 represent the statistical technique 

described. 

 

 

Figure 5.13: Data division for performance assessment of the neural network architecture (Source [145]) 
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5.1.4 Assessment metrics and statistical validation 

Implementing the different techniques considered for analysis, the architecture of both 

machine learning algorithms required training before proceeding to the assessment of 

which would be the best strategy to correct the ectopic intervals. So, initially, the same 

edited datasets (the random insertion of ectopic beats was performed only once) were 

used in the training and search for the best structure of the AR and NN models. These 

edited datasets were also used for a preliminary analysis of the results. 

As shown in Chapter 4, not only does the amount of ectopy present in the HRV signal 

impacts ANI scores, but also its distribution along the tachogram, i.e., it is the local density 

of ectopic beats that most affects the ANI calculation (see Figure 4.10). Therefore, 

carrying out a more exhaustive analysis to determine the suitability of the different 

methods for correcting ectopic intervals, the process was repeated ten times considering 

all the data selected for inclusion in this study. That is, the performance was assessed by 

averaging the results obtained for ten random and dissimilar ectopic distributions per 

episode for the varying degree of edited datasets built.  

The quantification of the performance of all the strategies was represented as mean ± 

standard-deviation and performed through both the MAE (equation (4.6)) and the 

Normalized Mutual Information (NMI) between the ANIlb variables computed from the 

control R-R series and the respective artificially generated tachograms. The NMI between 

the variables X and Y is computed using equation (5.13) according to Figure 5.14 and it is 

a normalized value between 0 (X and Y are completely different) and 1 (perfect 

correlation) [146]–[148]. This is a measure that was employed to compare the mutual 

dependence between the ANIlb variables calculated from the control R-R series and that 

from the R-R series corrected with each method for ectopic correction (𝐼(𝑌; 𝑋)), taking 

into consideration the entropy of each variable (𝐻(𝑌) and 𝐻(𝑋)) [146]–[148]. 

 
𝑁𝑀𝐼 (𝑌, 𝑋) =  

2 × 𝐼(𝑌; 𝑋)

𝐻(𝑌) + 𝐻(𝑋)
  

(5.13) 

 
Figure 5.14: Normalized Mutual Information: Venn diagram describing the relation between the measures 
of entropy and Mutual Information (Source [148]). 
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The data was found to be non-normally distributed (applying the Kolmogorov–Smirnov 

test). Consequently, validating and comparing the results of all the strategies, non-

parametric tests were employed [105]. The level of significance was settled at 5% 

throughout the analysis. The Spearman correlation coefficient (𝑐) was employed to 

inspect the relationship between the ANI variables [105]. The Kruskal-Wallis test was 

employed to test differences between the methods applied to correct the ectopic intervals 

[149]. If the null hypothesis was rejected, it means that there is a difference between at 

least two of the methods and a post-hoc multiple comparison test with a Bonferroni 

correction was then employed to determine which pairs of methods were statistically 

different [150]. The Wilcoxon signed-rank test was used to statistically evaluate the 

changes in the ANIlb variable calculated from the R-R series corrected with each method 

for ectopic correction [107]. 

 

5.2 RESULTS AND DISCUSSION 

Considering the selection criteria established, a total of 105 records of patients 

undergoing breast conserving surgery could be retrieved and analysed. Patient 

characteristics and surgery details are reported in Table 5.1. 

 

 Patients (n = 105) 

Gender (F/M) 104/1 

Age (years) 48 ± 8 

Weight (kg) 57 ± 8 

Height (cm) 159 ± 5 

BMI 22.64 ± 3.22 

Duration of anaesthesia (min) 116 ± 38 

Duration of operation (min) 89 ± 39 

Table 5.1: Demographics of the study population a breast conserving surgery (age, weight, height, and BMI 
data are represented as mean ± standard-deviation). 

 

After qualitatively isolating ECG segments and detecting the respective R-peaks as 

fiducial points, the classification of the R-R intervals was carefully performed trying to 

minimize the erroneous conclusions by including segments with non-sinus beats. 

Qualitative and quantitative processing of the ECGs signals verified the existence of a high 

number of artefacts and, although only non-cardiac surgeries were included, ectopic 

beats were highly incident among the signals, even leading to the complete exclusion of 

some cases initially considered for analysis. In total, 221 records during the goal phase of 

the surgery were isolated as 10-minute ECG episodes on normal sinus rhythm (Figure 

5.15). These episodes were used as the control group for assessing the performance of 

the methods for ectopic correction.  



5. Performance assessment of ectopic beats correction methods 

66 

 
Figure 5.15: Representations of the [A] R-R series of one episode of the control group classified as type 
ANI- and [C] respective ANI variables; that for one episode of the control group classified as type ANI+ ([B] 
and [D]). The ANI variables were computed with the algorithm described in chapter 4.  

 

The ANI variables were made available for each of the 221 episodes isolated and it was 

proceeded to their individual classification according to the ANIlb values computed. 

Accordingly, 17 episodes were classified as type ANI+ and 204 were classified as type 

ANI- (Table 5.2). 

 Number of episodes 

Subgroup ANI - 204 

Subgroup ANI + 17 

Table 5.2: Classification of the control group ECG episodes according to the ANIlb values (the episode is 
classified as type ANI+ if at least 70% of the ANIlb values are above the level of 50, otherwise it is classified 
as type ANI-). 

 

From Table 5.2, it can be noticed that the episodes considered for analysis are unbalanced 

in terms of classification according to the ANIlb variables, with the majority being 

classified as type ANI-. This imbalance will be taken into consideration along the analysis, 

and may be due to erroneous implementation of the ANI algorithm or improper 

monitoring of analgesia, since no monitor was used to guide the clinician on this 

component of the GA. There is not enough information to support any of the pointed 

reasons, as further research would be required, including more detailed information on 

the surgeries’ protocol and respective ANI variables provided by the monitor proprietary 

[A] 

[C] 

[B] 

[D] 
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of MDoloris. Yet, this study proceeds with the assessment of how different correction 

methods can reduce the impact that ectopic beats have on the ANI calculation through 

the implementation described in chapter 4.  

Then, unitary varying from 1 to 10 the percentage of ectopic beats (𝑥) introduced into the 

baseline episodes (control group, ectopy-free), ten edited datasets were constructed (one 

edited dataset per ectopy degree considered). The control R-R intervals and the 

respective edited R-R intervals are similar except for the ectopic samples randomly 

introduced. In a first approach, the results for the different methods considered for 

ectopic correction were all obtained based on the same edited data (the insertion of 

ectopic beats was performed only once).  

Exposing the problematic being treated, the ANI scores were computed for R-R series 

extracted from the episodes of the edited datasets and the respective MAE relatively to 

the control tachograms was calculated. The results depicted in Figure 5.16 corroborate 

the findings on the previous chapter: the MAE between the ANI variables from the control 

tachograms and the edited tachograms grows with increasing percentage of normal beats 

converted into ectopic beats, causing noticeable changes in the measured ANI variables.  

 
Figure 5.16: MAE calculated between the ANIlb variable computed from the R-R tachogram extracted from 
the control group and that extracted from the edited tachograms varying the percentage of normal beats 
converted into ectopic beats (x). 

 

Illustrating the extreme case considered in this work, it can be observed that there was a 

significant variation of ANI between the scores computed from the control group and the 

edited dataset converting 10% of the beats into ectopic beats. From Figure 5.17, the 

significant variation of ANI can be observed with the median [25th–75th percentile] at 

the control group (36 [30-44] ANIlb) being significantly smaller than at the edited dataset 

with 10% of ectopy added (63 [56-69] ANIlb).   
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Figure 5.17: Distribution of the ANIlb values calculated from the ectopy-free R-R series (in blue) and that 
converting 10% of the R-R intervals into ectopic beats. 

 

In this analysis, it can be clearly noticed that ectopic beats act as confounders to the 

interpretation of the ANI scores since their artificial addiction to the control R-R series 

led to hardly comparable results. As from Table 5.3, in case of ectopy-free, the ANI scores 

were mostly below the level of 50 (the state of Noc/ANoc misbalance, according to the 

manufacturer) with 204 episodes classified as type ANI- and 17 as type ANI+; whereas, 

in a presence of 10% of ectopy, the episodes’ classification was almost the opposite since 

most of the ANI scores fell within the range of adequate analgesia state (23 episodes were 

classified as type ANI- and 198 as type ANI+). From a clinical point of view, the mere 

interpretation of the ANI monitor would signify higher parasympathetic tone, 

representing a misinterpretation of the index for many of the episodes. 

 

  Control group 

  ANI- ANI+ 

Corrected group 
ANI- 21 2 

ANI+ 183 15 

Table 5.3: Confusion matrix without any ectopic treatment. According to the ANIlb values, classification of 
the control group ECG episodes and of the edited episodes converting 10% of the normal intervals into 
ectopic intervals. 

 

The ANI computation through the described implementation is based on the analysis of 

HF changes and, therefore, the distorted results were expected because the estimation of 

HF components of the HRV was significantly increased by the shortened R-R intervals 

(Figure 5.18). Although the ANI metric may add value to the study of the underlying 

autonomic response to nociceptive stimuli by attempting to tease out the 

parasympathetic tone, the described implementation of this metric revealed to be heavily 

impacted by the occurrence of ectopic beats. Thus, once again, it was enhanced that 
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ectopic beats correction methods must be appropriately chosen before the interpretation 

of the ANI scores. Accordingly, several strategies were tested for correction of ectopic 

intervals in ECG records.  

 
Figure 5.18: Using Welch's estimator with 300-second window and 50% of overlap, representation of the 
power spectrums of an R-R series extracted from one episode firstly classified as type ANI- in the control 
group (blue line) and that from the same episode after the introduction of 10% of ectopy then classified as 
type ANI+ (orange line). A significant increase can be observed between HF-HRV component of the baseline 
and that from the R-R series contaminated with ectopic-intervals. 

 

5.2.1 Models’ architecture 

Both the AR model and NN model are considered modelling approaches that analyse the 

patterns of the HRV signal over time and mathematically represent the process based on 

the previous variations of the R-R series.  

Different parametric modelling approaches were inspected in order to identify the 

models trying to lead to an efficient estimation of the R-R intervals. Figure 5.19 illustrates 

the flow chart followed to implement these two models forecasting the R-R intervals to 

correct ectopic intervals. 

 
Figure 5.19: Flow chart for the implementation of both the autoregressive model and the neural network 
estimating R-R intervals. 
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5.2.1.1 Modelling the autoregressive model 

Optimizing the AR modelling parameters before deploying the algorithm, the HRV signal 

of the control group (𝑦(𝑛)) has been assumed as the output: a discrete-time signal 

sampled at the unitary rate. The considered output signals were detrended and analysed 

individually in frames dimensioned at the respective total number of observations (N = 

the total number of R-R intervals). 

 
Figure 5.20: Optimum model order as found by the [A] AIC, [B] MDL, and [C] Khan criterion 

 

Defining fifty as the maximum model order, each output signal was checked for the 

described criteria, and the optimum model order (P) was settled on the most frequently 

chosen over the set of data tested. From the histograms showed in Figure 5.20, the 

optimum model order proposed for MDL was P = 11, for the AIC criterion was P = 17, and 

for the Kahn criterion was P = 12. A narrower distribution of the chosen order can be 

observed employing the MDL criteria. 

With the model orders proposed by the different criteria, the R-R intervals were 

estimated to correct the ectopic observations in the edited datasets. In a first approach, 

the R-R interval replacing an ectopic interval was predicted applying the model whose 

parameters were estimated using all the previous observations relative to the timing of 

the ectopic case (see Figure 5.21-A). Assessing the global MAE for the ANIlb variables as 

[A] [B] 

[C] 
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[B] 

 

[A] 

 

function of different percentages of ectopic beats present in the tachograms, it was 

noticeable that, regardless of the criteria chosen to optimize the model order P, the AR 

strategy to correct ectopic beats was not outperforming the other methods. 

Revising the process of calibrating the AR model, it was concluded that the performance 

of this strategy to correct the ectopic intervals was being critically impacted by the fact 

that any previous forecasting of R-R intervals was being included in the estimation of a 

new following AR model. So, the error accumulation inevitably resulting from each 

prediction was being amplified throughout the process. 

      
Figure 5.21: Representation of the forecasting of an R-R interval to replace an ectopic observation (in 
green). The estimation of the model parameters is performed using [A] all the previous observations or [B] 
the estimation within a specified window. The previous observations comprise sinus intervals (in blue) and 
R-R intervals already predicted to correct ectopic beats (in pink). 

 

Specifying the order P and assessing the referred dependency when predicting a new 

sample, the parametric model estimations were performed using the control R-R series 

instead of the R-R series comprising the previous predictions. Hence, the resulting errors 

would only be influenced by residuals from AR estimation. This approach represented a 

considerable reduction in MAE for each degree of normal beats converted into ectopic 

beats. However, it is not possible to apply this methodology in a real context because no 

control R-R series would be available.  

Trying to find a trade-off between system identification and the influence of previous 

predictions, a sliding window technique was employed by reducing the frame dimension 

used to estimate the model parameters (see Figure 5.21-B). Frames of N = 30, 60, 120, 

and 180 seconds before the ectopic timing were evaluated for model identification at a 

specified order P.  
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According to the results in Table 5.4, the MAE is overall diminished by reducing the frame 

dimension. The most considerable reduction corresponds to settling the frame dimension 

at 60 seconds, and this is also the setting with less significant variation of MAE between 

1% of ectopic presence and 10% of ectopic presence. Therefore, the frame dimension was 

settled at 60 seconds as it seems to be the best trade-off between system identification 

and dependency to previous predictions in this dataset.  

 

 𝒂 30 60 120 180 

1 0.49 ± 0.33 0.48 ± 0.31 0.47 ± 0.29 0.48 ± 0.20 0.47 ± 0.29 

2 0.77 ± 0.47 0.78 ± 0.46 0.76 ± 0.45 0.76 ± 0.45 0.76 ± 0.47 

3 0.96 ± 0.48 0.98 ± 0.49 0.93 ± 0.46 0.94 ± 0.49 0.95 ± 0.42 

4 1.12 ± 0.53 1.12 ± 0.49 1.08 ± 0.50 1.09 ± 0.50 1.10 ± 0.50 

5 1.25 ± 0.61 1.26 ± 0.59 1.20 ± 0.58 1.21 ± 0.59 1.21 ± 0.56 

6 1.56 ± 0.75 1.42 ± 0.67 1.37 ± 0.68 1.41 ± 0.74 1.43 ± 0.60 

7 1.75 ± 0.76 1.45 ± 0.73 1.43 ± 0.69 1.47 ± 0.72 1.49 ± 0.60 

8 1.91 ± 0.86 1.63 ± 0.71 1.62 ± 0.71 1.65 ± 0.76 1.67 ± 0.67 

9 2.17 ± 0.94 1.84 ± 0.91 1.76 ± 0.87 1.81 ± 0.89 1.82 ± 0.78 

10 2.50 ± 0.91 1.88 ± 0.81 1.78 ± 0.79 1.87 ± 0.80 1.91 ± 0.75 

Table 5.4: Different frame dimensions (𝑁): MAE ± SD for the ANIlb variables of control and corrected R-R 
series as a function of different percentages of ectopic beats (𝑥). (𝑎 refers to the total number of previous 
observations being considered to estimate the AR model parameters) 

 

Then, the R-R series of the group control were used to estimate the model parameters for 

the several frame dimensions, and it could be observed that the optimal model order 

chosen for each set of data using shorter segments was usually lower than the selected 

considering longer frames of data with the total number of observations. The same 

conclusions were found in [138] that additionally concluded that underestimating the 

model order would cause more dramatic effects by dampening the power spectra and not 

being able to fully estimate the original signal [138]. Hence, the model orders chosen by 

the AIC, MDL, and Kahn criterion for longer frames of data were kept in the settings for 

AR model identification using the 60-second window prior to the timing of the ectopic 

interval being corrected.  

Thus, the analysis proceeded with the R-R intervals to correct the ectopic beats being 

predicted using the AR model estimated with a frame of 60 seconds and for each of the 

model orders suggested by the different criteria considered. The ANI variables were 

made available for the control and the corrected R-R series, and then, the MAE and 

respective standard deviation were calculated per each model order tested.  

From Table 5.5, the estimated models using the MDL (P = 11) and Kahn criterion (P = 12) 

seem to be performing comparably but the Kahn criterion is computationally more 

expensive, having a larger running time. The MAE between the ANIlb values from the 

control tachograms and that from the estimated tachograms is reduced when estimating 

𝑁   𝑥   
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the R-R intervals to correct the ectopic intervals through AR models with order selected 

by these two criteria, overall outperforming the choice of the model order by the AIC 

criterion (P = 17). Besides the model orders, there was no difference in the processes that 

led to the calculation of the MAE and, therefore, these results corroborate the impact of 

an adequate choice for the order of the model [137]–[139], [142].  

 

 11 12 17 Adaptative 

1 0.44 ± 0.28 0.43 ± 0.28 0.46 ± 0.32 0.47 ± 0.30 

2 0.76 ± 0.47 0.75 ± 0.46 0.74 ± 0.40 0.76 ± 0.47 

3 0.84 ± 0.47 0.86 ± 0.42 0.87 ± 0.40 0.95 ± 0.52 

4 1.03 ± 0.50 1.00 ± 0.48 1.05 ± 0.46 1.10 ± 0.54 

5 1.16 ± 0.56 1.17 ± 0.59 1.17 ± 0.50 1.26 ± 0.63 

6 1.30 ± 0.60 1.31 ± 0.58 1.34 ± 0.63 1.40 ± 0.69 

7 1.37 ± 0.60 1.37 ± 0.60 1.40 ± 0.55 1.46 ± 0.72 

8 1.59 ± 0.67 1.59 ± 0.70 1.60 ± 0.75 1.62 ± 0.76 

9 1.65 ± 0.78 1.65 ± 0.76 1.71 ± 0.66 1.76 ±0.94 

10 1.67 ± 0.75 1.66 ± 0.78 1.83 ± 0.84 1.80 ±0.84 
Table 5.5: Different model orders (𝑃): MAE ± SD for the ANIlb variables of control and corrected R-R series 
as a function of different percentages of ectopic beats (𝑥). 

 

Nevertheless, it should be noted the disparity of selected model orders with multivariate 

signals (Figure 5.20). Additionally, by reducing the frame dimension used to estimate the 

model parameters, the model order predicted by the different criteria changes over time 

of the HRV signal, i.e., a progression of the model order is observed. Thus, it was 

investigated the use of an adaptative model order rather than specifying a fixed one. 

Using the MDL criterion, the optimum model order for each estimation of R-R intervals 

was selected from the information contained in the 60 seconds of the HRV signal before 

the ectopic intervals being corrected. From Table 5.5, comparing the results obtained for 

a fixed model order of 11 (the most frequently chosen with the MDL criterion) with the 

results obtained of using an adaptive model order, the global MAE between the ANIlb 

variables from the control tachograms and that from the estimated tachograms is not 

reduced with the use of an adaptative AR model order. This analysis evidence what has 

already been stated: parametric estimation with shorter segments may produce an 

underestimation of the model order. Consequently, one must choose a fixed model order 

that still allows an accurate estimate of the R-R intervals. 

Summing up, modelling an autoregressive model to estimate R-R intervals correcting 

ectopic intervals and subsequent ANI computation, the best architecture identified 

accounting the trade-offs previously mentioned was to estimate the model parameters 

with the 60-second frame of observations previous to the ectopic interval and settle a 

fixed model order of 11. 

𝑃  𝑥  
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5.2.1.2 Modelling the neural network  

As the choice of the AR model order is crucial, so is the choice of the neural network 

architecture, becoming of upmost importance [37]. The first decision to be made in the 

learning strategy of the NN was the number of R-R intervals considered to feed the 

network at the input layer. Through a trial error approach, several options were 

considered for the number of input values. It was even considered feeding the NN with 

the last eleven observations since this was identified as the optimum AR model order 

identified. With a maximum of 500 epochs in the learning process, the random search 

technique was employed to estimate the optimal learning rate parameter and number of 

units of the hidden layer(s). 

Preventing from unbiased prediction accuracy, the cross-validation was repeated fifty 

times considering all the data obtained from the selection process and the performance 

indicator was the MSE obtained for the test sets. The test set was randomly settled on 

20% of the total set and 80% of the data served as training set. The 5-fold cross validation 

was then applied on the training set. Table 5.6 summarizes parameters, 

hyperparameters, and performance of the best NN’s architectures identified by feeding 

the network with the previous 5, 11 or 20 values of the R-R intervals.  

 

Neural Network: best architectures 

Number of layers*1 3 3 4 4 

Number of nodes [5, 10, 1] [20, 10, 1] [5, 10, 7, 1] [11, 15, 7, 1] 

Activation function 
[sigmoid, 

linear] 

[sigmoid, 

linear] 

[linear, 

sigmoid, 

linear] 

[linear, 

sigmoid, 

linear] 

Learning rate α 0.08 0.40 0.25 0.15 

Epochs 5000 5000 5000 5000 

MSE 0.28 ± 0.05 0.31 ± 0.16 0.26 ± 0.01 0.23 ± 0.06 
Table 5.6: Best architectures identified for the neural networks in terms of number of input nodes and 
respective MSE (mean ± SD) (*1 Including the output layer of the neural networks) 

 

Moreover, suggesting that identified models were not overfitted, the learning curves for 

the validation sets when a given fold was left out and those of the corresponding training 

sets were analysed and found to be convergent. Additionally, it appears that losses were 

being gradually diminished and, thus, meaningful representations may be being achieved. 

Following the results in Table 5.6, the identified architecture that seems to have a more 

significant contribution to the prediction of the R-R intervals correcting ectopic beats can 

be described as a fully connected network consisting of four layers: an input layer with 

11 nodes representing the last 11 observations; two hidden layer capturing the non-

linearity of the problem, the first hidden layer consists of 15 nodes with linear activation 

function, and the second consists of 7 nodes with sigmoid activation function; an output 
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layer consisting of a node with a linear activation function and representing the 

dependent variable, the predicted R-R interval. 

 

5.2.2 Model selection for correction of ectopic intervals 

In a first approach, randomly inserting ectopic beats into the control R-R series, an edited 

dataset was constructed for each degree of ectopy considered in this study. The 

comparisons were performed between the ANIlb variables calculated from the control R-

R series and that from the surrogated R-R series. As expected, there are differences 

between the medians and interquartile ranges of the computed ANIlb variables, verifying 

that, additionally to the need for ectopic correction, the strategy applied for correcting 

the ectopic intervals would influence the similarity between the ANIlb variables (Figure 

5.22).  

 
Figure 5.22: Distribution of the ANIlb variables calculated from the control R-R series and that from the R-
R series corrected applying the different strategies for a proportion of 10% of ectopic beats.  

 

Table 5.7 and Table 5.8 summarize the performance in terms of NMI and MAE applying 

the different ectopic correction methods to the edited datasets with different degrees of 

ectopy. Higher performances would imply decreased MAE (as close as possible to 0) and 

increased NMI (as close as possible to 1). Hence, performing the comparison between the 

ANIlb variables calculated without ectopic treatment against each of the ANIlb variables 

calculated applying one of the ectopic correction methods, it could be verified that the 

performance significantly increased when ectopic treatment was applied (Mann-Whitney 

rank test, p-value < 0.05). Figure 5.23 depicts a graphical comparison of the performance 

reached by all the strategies for ectopic correction depending on the percentage of 
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normal beats converted to ectopic beats (𝑥 = 1%, 𝑥 = 5%, 𝑥 = 10 %). Moreover, 

increasing the presence of ectopy, it was observed a decrement in the NMI metric and an 

increment in the MAE between the ANIlb variables calculated from the control R-R series 

and the respective estimated R-R series. 

For suspicion of high variability in results since both the amount and distribution of 

ectopy along the tachogram were shown to affect the calculation of ANI scores, the 

process of inserting ectopic beats artificially was repeated ten times for each episode and 

each degree of ectopy. Table 5.9 and Table 5.10 list the averaged results by quantifying 

the performance of the different methods for correcting ectopic intervals. Figure 5.24 

depicts the graphical comparison of Table 5.9 and Table 5.10 depending on the ectopy 

degree (𝑥 = 1%, 𝑥 = 5%, 𝑥 = 10 %). Performance evaluation for the different 

strategies in the same degree of ectopy and variable distributions of ectopic intervals 

along the HRV signal would reveal the prediction potential of each method. Regardless of 

the ectopic correction strategy, similar results were obtained among the iterations, which 

may disclose that the performance of each technique would be comparable 

independently of the clinical context. Nevertheless, this observation requires further 

clinical validation in a more heterogeneous dataset. 

Despite being the simplest technique and one of the most reported for correction of 

ectopic intervals [135], [151], the ‘Deletion’ method presented the lowest performance 

in terms of NMI and MAE metrics. This technique implies reducing the number of R-R 

intervals under analysis because it removes all the ectopic intervals and, subsequently, 

shifts the HRV signal posterior to them. Other researches have reported similar findings 

since the phase shift introduced in the HRV signal by the Deletion method would have an 

effect on the PSD estimation, leading to changes in the frequency domain parameters 

[135]. The ANI values are calculated through the analysis of the HF-band of the PSD, so 

this should be the main source for the discrepancy in the calculation of ANI variables 

through the control R-R series and the R-R series in which the ectopic intervals were 

corrected by this method. Taking into account the previous statements, the ‘Deletion’ 

method was excluded from the procedure to select the most suitable model for correcting 

ectopic intervals in this work.  

Furthermore, the performance of the different interpolation methods revealed that these 

techniques would only be suitable when the ectopic beats occur very occasionally (𝑥 =

1%). Previous studies have already demonstrated that correcting ectopic applying 

interpolation strategies may change extremely the PSD estimation and assessment of 

non-linear parameters in the analysis of HRV signals having a similar effect as the 

‘Deletion’ method [116], [135]. Thus, these three methods (‘Linear’, ‘Spline’ and ‘Nearest’ 

interpolation) were also not considered in the statistical analysis for the evaluation of 

which method would be performing best for the correction of ectopic intervals. 

Therefore, further performance analysis was restricted to the following methods: 

‘Previous & Next’, ‘Mean’, ‘AR Model’, ‘NN Model’. 
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𝒙 (%) 
No ectopic 

treatment 
Deletion 

‘Linear’ 

interpolation 

‘Spline’ 

interpolation 

‘Nearest’ 

interpolation 

Previous & 

Next 
Mean  AR model NN 

1 0.15 ± 0.10 0.51 ± 0.11 0.59 ± 0.11 0.58 ± 0.11 0.57 ± 0.11 0.70 ± 0.10 0.68 ± 0.10 0.70 ± 0.11 0.71 ± 0.09 

2 0.06 ± 0.03 0.46 ± 0.11 0.52 ± 0.11 0.51 ± 0.12 0.50 ± 0.11 0.61 ± 0.10 0.60 ± 0.10 0.60 ± 0.12 0.63 ± 0.10 

3 0.04 ± 0.03 0.40 ± 0.11 0.49 ± 0.12 0.48 ± 0.12 0.48 ± 0.11 0.57 ± 0.11 0.55 ± 0.10 0.56 ± 0.12 0.59 ± 0.10 

4 0.04 ± 0.03 0.37 ± 0.11 0.46 ± 0.12 0.45 ± 0.12 0.45 ± 0.12 0.53 ± 0.11 0.51 ± 0.11 0.52 ± 0.11 0.55 ± 0.11 

5 0.04 ± 0.02 0.34 ± 0.11 0.45 ± 0.11 0.44 ± 0.11 0.44 ± 0.11 0.51 ± 0.11 0.48 ± 0.11 0.48 ± 0.12 0.54 ± 0.11 

6 0.04 ± 0.02 0.32 ± 0.11 0.43 ± 0.11 0.41 ± 0.11 0.42 ± 0.12 0.48 ± 0.11 0.45 ± 0.11 0.47 ± 0.12 0.50 ± 0.11 

7 0.04 ± 0.01 0.30 ± 0.12 0.44 ± 0.12 0.41 ± 0.12 0.43 ± 0.11 0.47 ± 0.11 0.44 ± 0.11 0.46 ± 0.12 0.50 ± 0.11 

8 0.04 ± 0.01 0.28 ± 0.12 0.41 ± 0.12 0.38 ± 0.12 0.40 ± 0.11 0.45 ± 0.11 0.42 ± 0.11 0.42 ± 0.11 0.47 ± 0.10 

9 0.05 ± 0.02 0.27 ± 0.11 0.40 ± 0.12 0.37 ± 0.12 0.38 ± 0.11 0.42 ± 0.11 0.40 ± 0.11 0.43 ± 0.12 0.46 ± 0.11 

10 0.04 ± 0.01 0.26 ± 0.10 0.39 ± 0.12 0.36 ± 0.11 0.38 ± 0.11 0.41 ± 0.11 0.39 ± 0.10 0.41 ± 0.11 0.44 ± 0.11 

Table 5.7: ANIlb calculation performance in terms of NMI (mean ± standard deviation) for the different methods proposed for ectopic correction. 

 

𝒙 (%) 
No ectopic 

treatment 
Deletion 

‘Linear’ 

interpolation 

‘Spline’ 

interpolation 

‘Nearest’ 

interpolation 

Previous & 

Next 
Mean AR model NN 

1 6.09 ± 3.55 1.21 ± 0.69 0.92 ± 0.61 0.93 ± 0.60 0.93 ± 0.65 0.54 ± 0.42 0.56 ± 0.36 0.43 ± 0.28 0.49 ± 0.36 

2 10.21 ± 4.02 1.58 ± 0.67 1.33 ± 0.77 1.35 ± 0.80 1.32 ± 0.69 0.91 ± 0.63 0.88 ± 0.51 0.75 ± 0.46 0.78 ± 0.47 

3 13.86 ± 5.14 1.94 ± 0.83 1.63 ± 0.95 1.63 ± 0.98 1.51 ± 0.81 1.16 ± 0.77 1.12 ± 0.58 0.86 ± 0.42 0.97 ± 0.57 

4 17.34 ± 6.55 2.24 ± 0.94 1.92 ± 0.98 1.91 ± 1.05 1.77 ± 0.92 1.44 ± 0.97 1.34 ± 0.70 1.00 ± 0.48 1.18 ± 0.71 

5 21.34 ± 8.05 2.55 ± 1.04 2.16 ± 1.16 2.08 ± 1.20 1.92 ± 1.00 1.67 ± 1.00 1.54 ± 0.73 1.17 ± 0.58 1.33 ± 0.76 

6 24.16 ± 8.79 2.77 ± 1.10 2.45 ± 1.38 2.38 ± 1.45 2.15 ± 1.22 1.90 ± 1.34 1.78 ± 1.05 1.31 ± 0.59 1.56 ± 0.96 

7 27.06 ± 9.56 2.98 ± 1.20 2.62 ± 1.40 2.52 ± 1.41 2.17 ± 1.15 2.11 ± 1.40 1.86 ± 0.96 1.37 ± 0.60 1.63 ± 0.99 

8 28.24 ± 10.22 3.19 ± 1.45 3.01 ± 1.71 2.88 ± 1.77 2.55 ± 1.42 2.42 ± 1.62 2.09 ± 1.16 1.59 ± 0.70 1.88 ± 1.13 

9 29.48 ± 10.24 3.47 ± 1.49 3.28 ± 1.86 3.08 ± 1.87 2.80 ± 1.69 2.67 ± 1.84 2.31 ± 1.38 1.65 ± 0.76 2.01 ± 1.34 

10 30.56 ± 10.18 3.63 ± 1.62 3.63 ± 2.00 3.56 ± 2.19 3.02 ± 1.78 2.90 ± 1.98 2.46 ± 1.43 1.66 ± 0.78 2.16 ± 1.32 

Table 5.8: ANIlb calculation performance in terms of MAE (mean ± standard deviation) for the different methods proposed for ectopic correction. 
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Figure 5.23: Graphical comparison of the performance metrics (represented as mean ± standard deviation) between the ANIlb variables calculated from the control 
R-R series and that from the R-R series after correcting the ectopic intervals using each of the different methods. 
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𝒙 (%) 
No ectopic 

treatment 
Deletion 

‘Linear’ 

interpolation 

‘Spline’ 

interpolation 

‘Nearest’ 

interpolation 

Previous & 

Next 
Mean  AR model NN 

1 0.14 ± 0.00 0.50 ± 0.01 0.59 ± 0.00 0.57 ± 0.01  0.56 ± 0.00 0.70 ± 0.00 0.68 ± 0.01 0.71 ± 0.01 0.71 ± 0.01 

2 0.06 ± 0.00  0.45 ± 0.00  0.52 ± 0.00  0.51 ± 0.00  0.50 ± 0.01  0.62 ± 0.01 0.60 ± 0.01 0.70 ± 0.02  0.64 ± 0.00  

3 0.04 ± 0.01  0.41 ± 0.00  0.50 ± 0.00  0.48 ± 0.00  0.48 ± 0.00  0.57 ± 0.00  0.55 ± 0.00  0.58 ± 0.00  0.60 ± 0.01  

4 0.04 ± 0.01  0.38 ± 0.00  0.47 ± 0.01  0.45 ± 0.01  0.45 ± 0.01  0.53 ± 0.01  0.51 ± 0.01  0.54 ± 0.01  0.55 ± 0.01  

5 0.04 ± 0.00  0.34 ± 0.01 0.45 ± 0.00  0.43 ± 0.00 0.44 ± 0.00 0.50 ± 0.01 0.48 ± 0.01  0.51 ± 0.01  0.53 ± 0.00 

6 0.04 ± 0.00  0.32 ± 0.00  0.43 ± 0.01  0.42 ± 0.00  0.42 ± 0.01  0.48 ± 0.01  0.46 ± 0.01 0.50 ± 0.00  0.51 ± 0.01  

7 0.04 ± 0.00  0.30 ± 0.00  0.42 ± 0.01  0.40 ± 0.00   0.41 ± 0.01  0.46 ± 0.01  0.44 ± 0.01  0.48 ± 0.01  0.49 ± 0.01  

8 0.04 ± 0.00  0.28 ± 0.24  0.41 ± 0.00  0.38 ± 0.01  0.40 ± 0.00 0.45 ± 0.01  0.42 ± 0.00  0.47 ± 0.01  0.48 ± 0.01  

9 0.04 ± 0.00  0.27 ± 0.00  0.39 ± 0.01  0.37 ± 0.00  0.39 ± 0.00  0.42 ± 0.01  0.40 ± 0.00 0.45 ± 0.00  0.46 ± 0.00  

10 0.04 ± 0.00  0.26 ± 0.00  0.39 ± 0.00 0.36 ± 0.01  0.38 ± 0.00  0.41 ± 0.01  0.39 ± 0.01  0.44 ± 0.01  0.45 ± 0.01  

Table 5.9: ANIlb calculation performance in terms of NMI (mean ± standard deviation) for the different methods proposed for ectopic correction considering ten 
distributions of ectopic beats. 

 

𝒙 (%) 
No ectopic 

treatment 
Deletion 

‘Linear’ 

interpolation 

‘Spline’ 

interpolation 

‘Nearest’ 

interpolation 

Previous & 

Next 
Mean AR model NN 

1 6.22 ± 0.06 1.26 ± 0.03 0.91 ± 0.02 1.01 ± 0.03  1.00 ± 0.02  0.53 ± 0.01 0.55 ± 0.02 0.45 ± 0.02 0.47 ± 0.02 

2 9.94 ± 0.09  1.58 ± 0.03  1.29 ± 0.02  1.35 ± 0.02 1.31 ± 0.03  0.84 ± 0.04  0.86 ± 0.02  0.63 ± 0.00  0.74 ± 0.02  

3 13.73 ± 0.12 1.86 ± 0.03  1.53 ± 0.03  1.58 ± 0.02  1.49 ± 0.04  1.11 ± 0.01  1.10 ± 0.02  0.89 ± 0.01  0.94 ± 0.04  

4 17.74 ± 0.22  2.16 ± 0.03  1.86 ± 0.06  1.90 ± 0.07  1.75 ± 0.05  1.41 ± 0.03  1.33 ± 0.04  1.06 ± 0.04  1.18 ± 0.04  

5 21.29 ± 0.22  2.46 ± 0.03  2.14 ± 0.03   2.16 ± 0.04  1.95 ± 0.03  1.65 ± 0.04  1.54 ± 0.04 1.19 ± 0.05  1.33 ± 0.02 

6 23.96 ± 0.16  2.73 ± 0.02  2.42 ± 0.03  2.37 ± 0.04  2.15 ± 0.04  1.92 ± 0.04 1.74 ± 0.05 1.27 ± 0.03  1.50 ± 0.02 

7 26.90 ± 0.13  2.94 ± 0.03  2.74 ± 0.09  2.63 ± 0.10  2.38 ± 0.08  2.15 ± 0.06  1.92 ± 0.06  1.42 ± 0.07  1.68 ± 0.05  

8 28.21 ± 0.24  3.17 ± 0.03  3.02 ± 0.03  2.94 ± 0.05  2.56 ± 0.03  2.37 ± 0.02  2.08 ± 0.04  1.52 ± 0.02  1.79 ± 0.03 

9 30.12 ± 0.24  3.39 ± 0.04  3.40 ± 0.04  3.25 ± 0.06  2.81 ± 0.06  2.68 ± 0.09  2.30 ± 0.04  1.63 ± 0.03  2.01 ± 0.05  

10 30.78 ± 0.14  3.60 ± 0.04 3.69 ± 0.07 3.54 ± 0.06  3.03 ± 0.05  2.88 ± 0.05  2.40 ± 0.07  1.71 ± 0.04  2.11 ± 0.05  

Table 5.10: ANIlb calculation performance in terms of MAE (mean ± standard deviation) for the different methods proposed for ectopic correction considering ten 
distributions of ectopic beats. 
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Figure 5.24: Considering ten distributions of ectopic beats, graphical comparison of the performance metrics (represented as mean ± standard deviation) between 
the ANIlb variables calculated from the control R-R series and that from the R-R series after correcting the ectopic intervals using each of the different methods. 
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The performance of the four methods to correct ectopic intervals was evaluated for three 

different degrees of ectopy (𝑥 = 1%, 𝑥 = 5%, 𝑥 = 10 %) (Figure 5.25). Regardless of 

the proportion of ectopic intervals to correct, the best performance in terms of MAE was 

obtained by replacing the ectopic intervals with R-R intervals estimated using the AR 

model. In terms of NMI, when a percentage of 1% of ectopy is present, the AR model 

seems to be the best performing technique but at 5% or 10% of ectopic presence applying 

the NN model to estimate R-R intervals seems to perform best. Hence, it becomes more 

difficult to select the method with the best performance, and statistical validation was 

implemented to compare the performance of the different methods considered for 

ectopic correction.  

For the NMI and the MAE and for each of the three different degrees of ectopy, the Kruskal 

Wallis H test was employed to determine if the differences between the performance of 

the methods to correct the ectopic intervals would be statistically significant. The given 

p-values were all < 0.05 when compared with a 𝜒2 distribution with 3 degrees of 

freedom which indicates that, at each degree of ectopy, there is a significant difference in 

the ANIlb variables between at least two of the strategies applied for ectopic correction.   

Since the null hypothesis of no difference between the methods to correct ectopic 

intervals were rejected, the post-hoc multiple comparison test with a Bonferroni 

correction was employed to determine which groups would be statistically different. 

However, in the three different degrees of ectopy, all NMI and MAE differences between 

the ectopic interval correction methods were found to be statistically significant (p-value 

< 0.05). According to each performance metric, one of the methods used to correct the 

ectopic intervals would be outperforming the others. However, there is no guarantee that 

the same method was considered the best by both the NMI and the MAE metrics. These 

results indicate that the ideal method employed to correct the ectopic intervals would 

depend on the proportion of ectopic intervals present in the HRV signal and the operating 

region, taking into account the dynamics of the HRV signal and the position of the ectopic 

intervals to be corrected. 

Accordingly, at 𝑥 = 1%, 𝑥 = 5%, and  𝑥 = 10 %, the Mann–Whitney rank test was 

employed to test whether the ANIlb variables calculated from the R-R series corrected 

with each method were statistically different from the ANIlb variables calculated from the 

control R-R series (Table 5.11). 

Table 5.11: P-values for 𝑥 = 1%, 𝑥 = 5%, and  𝑥 = 10 % performing the comparison of the ANIlb 
variables calculated from the control R-R series and that from the R-R series after correcting the ectopic 
intervals using the ‘Previous & Next’, ‘Mean’, ‘AR Model’, and ‘NN Model’ methods. 

𝒙 (%) Previous & Next Mean AR Model NN model 

1 0.0045 0.2030 0.8526 0.0845 

5 3.28 × 10−45 9.31 × 10−7 0.1304 6.62 × 10−17 

10 3.41 × 10−90 7.77 × 10−8 0.0433 1.32 × 10−30 
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Figure 5.25: Distribution of the MAE and NMI metrics at 𝑥 = 1%, 𝑥 = 5%, and  𝑥 = 10 % correcting the 
ectopic intervals using the ‘Previous & Next’, ‘Mean’, ‘AR Model’, and ‘NN Model’ methods. 

 

[A] 
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The evaluation was performed by assessing the similarity between the ANI scores 

calculated from control R-R series (ectopic-free) and that from R-R series contaminated 

with ectopic intervals and posteriorly corrected making use of different strategies. 

Analysing the results in Table 5.11, at 𝑥 = 1%,  a statistically significant difference was 

only found performing the comparison between the ANIlb variable calculated from the 

control R-R series and that calculated from the R-R series after the correction of ectopic 

intervals with the ‘Previous & Next’ method. Except when applying the ‘AR Model’, at a 

proportion of 5% of ectopy presence, the ANIlb variable calculated from the control R-R 

series was proved to be significantly different from that calculated from the R-R series 

after the correction of ectopic intervals with any of the considered methods. At 𝑥 =

10%,  statistically significant differences were found performing the comparisons 

between the ANIlb variable calculated from the control R-R series and that from the R-R 

series after the correction of ectopic intervals with any of the considered methods.  

The techniques assessed to correct ectopic intervals are of real-time implementation and 

easily derived from HRV signals obtained from the physiological parameters available in 

the OR. Although results have shown that performance is strengthened by using any of 

the ectopic correction methods, they also showed that performance is influenced by the 

strategy used to do it. 

Regarding the 'Previous and Next' method, despite showing comparable performance to 

the AR model at 𝑥 = 1%,  its performance rapidly deteriorates increasing the percentage 

of ectopic intervals in the HRV signal and, in a proportion of 10% of ectopy, this method 

has identical effect and performance to the 'Nearest interpolation' method (Figure 5.23). 

With a high density of ectopic intervals, this method is not able to translate the oscillation 

in consecutive cardiac cycles as it does not have adaptive modulation capacity and, 

therefore, it becomes ineffective in describing the autonomic dynamics. In fact, being 

influenced by the distribution of ectopic intervals across the HRV signal, this is one of the 

methods with the highest standard deviation in calculating the MAE (Table 5.8). 

The ‘Mean’ method outperformed the 'Previous and Next' in terms of MAE (Table 5.8), 

which may be explained by the fact that this method, replacing the ectopic intervals with 

the arithmetic mean of the last five samples, is capable of translating more appropriately 

the oscillation of the consecutive cardiac cycles. However, any event may lead to a sudden 

variation in the HRV signal and then, in case of a high presence of ectopic intervals, the 

performance of the "Mean" method would also be worsened because, apart from the last 

five samples, the system is memoryless and not enough information exists to describe the 

activity of the HRV signal. 

Concerning the ‘AR Model’ approach, as described in section 5.1, a straightforward 

method was applied by assuming that the HRV signal would exhibit serial autocorrelation 

and then, using the past eleven observations to predict the R-R interval and correct the 

ectopic samples in the HRV signal. Despite being the most effective among the strategies 
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implemented to correct ectopic intervals, the approach of using the AR model to estimate 

R-R intervals is mathematically limited as it only considers the linear modulation of the 

HRV signal and non-linear phenomena are indicated as responsible for the dynamics of 

this signal [25]. Furthermore, the performance of this method may depend on the ability 

of the estimated model parameters to describe the system's behaviour and recognize 

patterns in data. The influence of the parametric modelling approach was observed to 

differ between the HRV signals and may be related to the fact that each HRV dynamics is 

defined by distinct physical or physiological aspects, including the complex interactions 

of neurocardiac regulations [25], [138]. Therefore, the loss of HRV information predicting 

R-R intervals using this linear approach and the influence of previous predictions on the 

parametric model estimations (fully explained in section 5.2.1.1) may account for the 

error accumulation throughout the process. 

Using the architecture defined in section 5.2.1.2, the ‘NN model’ predicts the R-R intervals 

to replace the ectopic intervals by feeding a multi-layer artificial neural network with the 

last eleven observations. Although this strategy is usually employed for automatic feature 

extraction and classification problems [37], [143], the NN was applied for a task of system 

identification. Results have shown that using NNs to correct ectopic intervals can improve 

the similarity of ANI scores computed from the R-R series contaminated with ectopic 

intervals compared to that from the ectopic-free R-R series (Figure 5.24). Compared to 

the other strategies, the NN model could be expected to be a more effective predictor for 

time-varying signals due to their non-linear properties. However, from the presented 

results, the use of the AR model outperformed the NN strategy.  Training a NN with a high 

capability to predict future samples in HRV signals requires a large number of examples 

[143], [152]. Accordingly, as only those ECG records of a single type of surgery would be 

analysed and a high proportion of data was qualitatively discarded, the relatively small 

size of the dataset could constraint the learning strategy and, consequently, the drawing 

of meaningful conclusions through the employment of this method to estimate R-R 

intervals and correct the ectopic intervals. Additionally, the complexity of the learning 

algorithm is rather dependent on the complexity of the inputted data than by the network 

structure [152]. Notwithstanding its simplicity, the input vector considered seemed to be 

adequate for the context, as results showed that valuable information for the prediction 

of HRV signal was retrieved. Even so, it is expectable that the performance of the ‘NN 

Model’ method would be improved by incorporating additional information investigating 

the extraction of features in the time, frequency, and non-linear domains of the HRV 

signal. 

In line with the presented and discussed results, it is proposed to correct ectopic intervals 

by replacing them with R-R intervals predicted with an AR model with parametric 

estimation based on the 60-second frame previous to the timing of the ectopic 

observation and model order 11. 
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5.2.3 Clinical implications from the use of the selected model 

The method of correcting ectopic intervals estimating R-R intervals with the AR model 

compares well with the reference ANI score at a proportion of 𝑥 = 1% and 𝑥 = 5% of 

ectopic beats (Table 5.11). Despite not being highly significant (p-value > 0.01), a 

statistically significant difference was found when 10% of the normal intervals were 

converted into ectopic intervals (p-value ˂ 0.05) (Table 5.11).  

The implementation of this strategy for correction of ectopic intervals may not appear to 

be sufficiently significant for clinical implementation in a level of 10% of ectopy presence. 

However, it is noteworthy the significant performance improvement compared to when 

no ectopic treatment is applied (Figure 5.26) or even compared to the most currently 

employed techniques, the deletion and interpolation methods (Figure 5.23). The 

improved performance is perceived by a substantial reduction in the MAE and a 

considerable increase in the NMI. 

 

Figure 5.26: [A] MAE and [B] NMI calculated between the ANIlb variable computed from the R-R tachogram 
extracted from the control group and that extracted from the edited tachograms (with no ectopic treatment 
or applying the proposed AR model to correct ectopic intervals) and varying the percentage of normal beats 
converted into ectopic beats.  

 

Even though no statistical difference was found, the impact that the use of the AR model 

strategy to correct ectopic intervals could have in the decision-making process according 

to the ANI interpretation was assessed for 𝑥 = 1% and 𝑥 = 5%. Results are summarized 

in the confusion matrices shown in Table 5.12 and Table 5.13, respectively. Since no 

episode was misclassified, it is thus corroborated that this technique is a promising tool 

for correction of ectopic intervals to an extent of up to 5%.  

 

 

[A] [B]  



5. Performance assessment of ectopic beats correction methods 

86 

  Control group 

  ANI- ANI+ 

Corrected group 
ANI- 204 0 

ANI+ 0 17 

Table 5.12: At a proportion of 1% of ectopy, confusion matrix for the classification of the episodes 
according to the ANIlb values and using the ‘AR model’ to correct ectopic intervals. 

 

  Control group 

  ANI- ANI+ 

Corrected group 
ANI- 204 0 

ANI+ 0 17 

Table 5.13: At a proportion of 5% of ectopy, confusion matrix for the classification of the episodes 
according to the ANIlb values and using the ‘AR model’ to correct ectopic intervals. 

 

Illustrating the extreme case studied in this thesis, it has already been assessed the impact 

on the ANIlb values converting 10% of the normal beats into ectopic beats and without 

applying any ectopic treatment (Figure 5.17). A significant variation of ANI was found 

between the scores computed from the control group and the edited dataset with a 

proportion of 10% of ectopic beats. However, as from the detailed distributions of the 

ANIlb variables in Figure 5.22, correcting the ectopic intervals with the ‘AR Model’ method 

lead to much more comparable results, since the median [25th–75th percentile] at the 

control group is (36 [30-44] ANIlb) and that at the edited dataset with 10% of ectopy 

added and posteriorly corrected is (35 [29-43] ANIlb).  

Additionally, at 𝑥 = 10%, the ANIlb variable calculated from the control R-R series proved 

to be uncorrelated with the ANIlb variable calculated from the R-R series in a proportion 

of 10% of ectopy and with no ectopic treatment; whereas the ANIlb variable calculated 

from the control R-R series and that from the R-R series in a proportion of 10% of ectopy 

and posteriorly corrected using the ‘AR Model’ method were found to be highly correlated 

(𝑐 > 0.98).  

In case of no ectopic treatment being applied, the ectopic intervals artificially introduced 

were found to act as confounders to the interpretation of the ANI scores since they would 

lead to the misclassification of many of the episodes (Table 5.3).  The analysis proceeded 

to the interpretation of whether the ANIlb scores derived in the presence of 10% of ectopy 

and posteriorly corrected using the 'AR Model' would be able to replicate the 

classification made using the control group. Thus, the suitability of the ‘AR Model’ to 

correct ectopic intervals was analysed in terms of its impact on the prediction of the 

different clinical situations defined according to the specifications of the ANI 

manufacturer. Results are summarized in the confusion matrix shown in Table 5.14. 
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  Control group 

  ANI- ANI+ 

Corrected group 
ANI- 203 5 

ANI+ 1 12 

Table 5.14: At a proportion of 10% of ectopy, confusion matrix for the classification of the episodes 
according to the ANIlb values and using the ‘AR model’ to correct ectopic intervals. 

 

Comparing to the performance when no ectopic treatment was employed (Table 5.3), the 

results showed in Table 5.14 evidence that the identified ‘AR Model’ may contribute to 

the drawing of meaningful conclusions while interpreting ANI values in the presence of 

non-sinus intervals at a degree of 10%. The accuracy of 97.29% was reached. However, 

the analysis must be carefully driven due to the existing unbalance between the original 

classification of the episodes, which can lead to unfounded optimistic conclusions. In fact, 

representing a considerable proportion, approximately 29% of episodes originally 

classified as type ANI+ were misclassified when a proportion of 10% of ectopic beats was 

added to the control R-R series and posteriorly corrected applying the ‘AR Model’. This 

may indicate that correcting ectopic intervals with the ‘AR Model’ is leading to an 

underestimation of the parasympathetic tone according to the interpretation of the ANI 

values, and thus, rise false alarms of inappropriate levels of analgesia. Verifying the 

previous findings, it may be hindered the clinical implementation of this strategy to 

correct ectopic intervals to an extent of 10% of ectopy presence. To overcome this 

limitation, it would be interesting to attach a confidence measure to the calculated ANI 

values. 

To understand whether this strategy for correcting ectopic intervals would be 

appropriate to be clinically implemented, it is important to understand the intrinsic 

medical connotation of the proportions 𝑥 = 1%, 𝑥 = 5%, and 𝑥 = 10 % of ectopic beats 

introduced in the ECG records. From a clinical point of view, the proportion 𝑥 = 1% of 

ectopic beats may represent the single premature ventricular contraction (PVC) in which, 

sporadically, one ectopic beat is superimposed with the normal sequence of heart beats 

[28], [104]. This is the most recurrent situation in healthy individuals and often benign 

in nature without clinical significance [27], [28]. At the proportion 𝑥 = 5% of ectopic 

beats, more complex medical cases of single PVCs were simulated to occur. Specifically, 

the simulated medical conditions associated with PVC comprise the occurrence of 

bigeminy (every other beat is a PVC), trigeminy (every third beat is a PVC), and couplet 

(two consecutive PVCs) [104], [153]. At the proportion 𝑥 = 10% of ectopic beats, most of 

the simulated clinical situations correspond to non-sustained ventricular tachycardias 

(NSVT) characterized by sequences of three or more consecutive PVCs [154]. NSVT is 

linked to a wide range of prognostics, as it may be a marker of increased risk of 

subsequent sustained ventricular tachycardias and sudden cardiac death, or it may have 

no significant clinical importance [154], [155]. As previously stated, the results have 

evidenced the proposed AR model to be capable of accurately limiting the impact that the 
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occurrence of ectopic beats in a proportion of up to 5% has on the analysis of HRV signs 

in different clinical situations and, at 𝑥 = 10%, it was verified a reduction of the 

sensibility of the ANI to the presence of ectopic beats, making it sturdier and leading to a 

substantial improvement in its clinical interpretation.  

Nonetheless, the clinical implementation of the proposed technique still requires further 

validation in real contexts since this study was performed with controlled simulated 

constraints. This analysis covered a wide range of clinical conditions to various degrees, 

but, in addition to PVCs, it should also be studied other phenomena recognized to be 

associated with the occurrence of ectopic beats, namely modifications of HRV by other 

pathologies or specific interventions [25]. Accordingly, the application of the proposed 

method to correct ectopic intervals in HRV signals should be independently assessed in 

the several clinical pathologies, as they may have different statistical characteristics. 

Feedback from physicians would be of uttermost importance to obtain accurate 

descriptions of the possible clinical situations, including more realistic assumptions 

about the prevalence, proportion, and distribution of ectopic intervals on ECG recording 

during surgery. 
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6 CONCLUSION AND FURTHER WORK 

This dissertation outlined that the correction of ectopic intervals by predicting samples 

of the HRV signal would be one of the main targets of information processing in the 

monitoring of analgesia through the assessment of the parasympathetic tonus in 

anaesthetized patients. 

The ECGSYNmod tool was developed as a basis for this research with the aim of 

generating ECG signals with realistic features and R-R series dynamic known a priori. 

Notwithstanding the recognized limitations, the results revealed that the software is 

capable of simulating ECG signals (encompassing both normal and abnormal beats) 

statistically similar to real signals. The ECGSYNmod tool was extended, allowing to 

modify the original tachograms by selectively or randomly converting normal intervals 

to ectopic intervals. Beyond the scope of this thesis, a more sophisticated approach to 

replace the post-processing step can be further considered so that the performance of the 

ECGSYNmod tool is improved. 

The described implementation of the ANI algorithm could be assumed as an HRV metric 

throughout this thesis. The limits of this metric were assessed, and it could be verified 

that this implementation of the ANI algorithm heavily relies on precise peak timing being 

impacted by the performance of the peak detector and the occurrence of ectopic beats. 

This was an expected finding because the ANI computation is based on the analysis of HF 

changes, and the estimation of HRV-HF components was significantly distorted by the 

shortened R-R intervals characteristic of the ectopic episodes. Therefore, it was 

evidenced the importance of signal processing and accurate R-peak detection before 

attempting to interpret the ANI values. 

The presence of ectopic beats proved to be a significant hindrance for a meaningful 

interpretation of the ANI values and the assessment of autonomic reactivity, 

consequently constraining the accurate monitoring of the parasympathetic tone. This 

thesis found that predicting R-R intervals based on the previous samples of the HRV 

signals might represent an important step towards the accurate correction of ectopic 

beats. Although results have shown that performance is strengthened using any of the 

ectopic correction methods, they also showed that it depends on the applied strategy.  

The proposed technique to correct the ectopic intervals consists of replacing them with 

R-R intervals predicted with an autoregressive model with a parametric estimation based 

on the 60-second frame prior to the timing of the ectopic observation and a model order 

of 11. Throughout this study, the technique based on the autoregressive model proved its 

potential towards a proper assessment of HRV dynamics in the presence of non-sinus 

beats. Accordingly, it is plausible to assume that the strategy proposed to correct ectopic 

intervals would make the ANI algorithm sturdier to the presence of ectopic beats to an 
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extent of 10%, leading to a substantial improvement in the interpretation of the 

parasympathetic tone assessment through this technology. 

Despite being verified a significant performance improvement compared to the 

techniques most currently employed, correct ectopic intervals using a strategy based on 

an autoregressive model has some inherent limitations. Some HRV information can be 

lost by not including the non-linear phenomena responsible for the HRV dynamics in the 

signal modelling approach. Furthermore, regardless of being shown that the parametric 

modelling approach often led to efficient representations of the HRV signals, its 

performance is dependent on the capability of the estimated parameters to model the 

specific HRV dynamics resulting from inter- and intra-patient variability. Further 

performance improvements can be obtained by incorporating complementary 

information, such as different physiological parameters. Additionally, the potential of 

other strategies to correct ectopic intervals can be assessed by either introducing more 

advanced non-linear models (including random forest or support vector regression) to 

better deal with the characteristic neurocardiac complexity of the HRV signal or by 

attempting to characterize and quantify the HRV dynamics integrating a mathematical 

combination of linear and non-linear methods.  

From a clinical point of view, further research should be carried out with a larger number 

of records covering other types of surgery with more heterogeneous and balanced data, 

as not all possible situations observed in clinical practice were included in this analysis. 

Specifically, patients with frequent comorbidities or any systemic condition in their 

medical history were automatically excluded by only including for analysis patients of 

ASA I. Moreover, the application of the proposed method to correct ectopic intervals in 

HRV signals should be independently assessed in several clinical pathologies, as they may 

have different statistical characteristics.  

Furthermore, for the clinical implementation of the proposed technique, the encouraging 

results still require further validation in real contexts since this study was mainly 

performed with controlled simulated constraints. It would also be interesting to add a 

confidence measure on the clinical information provided by the ANI metric when ectopic 

beats are present in the HRV signal. This confidence measure would require validation 

from clinicians involved throughout the perioperative period in order to enable realistic 

assumptions on the different clinical contexts and understand the clinical value intrinsic 

to the proposed strategy. 

As the proposal of this study can be integrated into the development of oncoming HRV-

based algorithms, further work comprises the submission of one paper covering the main 

findings of this thesis. 
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APPENDIX A: ANI STUDIES 

REF. YEAR 
N 

(M/F) 
DESCRIPTION OF THE CONTEXT MAIN FINDINGS/CONCLUSIONS 

[68] 2020 16 
(5/11) 

Procedure Craniotomy - ANI may perform better than traditional 
hemodynamic parameters at reflecting 
noxious stimulation. 

- Following a noxious stimulation, the 
results showed that it takes around 1 min 
for the ANI to change which may be 
considered too long for clinical purposes. 

Stimulation Tetanic 

Anaesthesia General 

Analgesics Remifentanil 

[87] 2018 44 
(-/44) 

Procedure Breast - ANI monitoring may optimize opioid 
consumption in patients 

- It was not precisely concluded that ANI 
monitoring help hemodynamic 
stabilization neither reflects Noc/ANoc 
balance 

Stimulation None 

Anaesthesia General 

Analgesics Remifentanil 

[67] 2020 17 
(4/13) 

Procedure Cholecystectomy - ANI monitoring outperforms decisions only 
based on hemodynamic parameters 

- ANI may be suitable for anticipate the need 
of a change of dose before the occurrence 
of a hemodynamic event 

Stimulation None 

Anaesthesia General 

Analgesics Remifentanil 

[85] 2019 345 
(170/175) 

Procedure All types of surgery 
conducted in the 
institution (except for 
heart, intracerebral, 
and ophthalmologic) 

- VCPD correlated more strongly with pain 
(VAS measurement) than ANI, HR, and SBP 

- ANI discrepancies between patients with 
pain and those without pain revealed to be 
clinically irrelevant. 

Stimulation None 

Anaesthesia General 

Analgesics Not protocolized 

[84] 2020 129 
(45/86) 

Procedure Varicose vein 
(saphenectomy) 

- Hospital discharge might be reduced by an 
adequate nociception level measured by 
ANI. 

 
Stimulation None 

Anaesthesia General 

Analgesics Metamizole 

[72] 2020 35 
(18/17) 

Procedure Inner or middle ear - ANI varied after a short moderate tetanic 
stimulation before laryngoscopy 

- The variation of the ANI pre-laryngoscopy 
was not predictive of any hemodynamic or 
somatic reaction during intubation 

Stimulation Tetanic stimulation of 
the ulnar nerve 

Anaesthesia General 

Analgesics Remifentanil 

[89] 2018 40 
(9/31) 

Procedure Hypnotic trance - ANI monitoring may provide an objective 
tool for the measurement of the intensity 
of the hypnotic process; 

Stimulation None 

Anaesthesia None 

Analgesics None 
[96] 2019 192 

(84/108) 
Procedure Thyroid, breast or 

abdominal 
- ANI values significantly different between 

conscious patients with and without pain. 
- The cut-off values for detecting pain in 

postoperative conscious state were 
calculated different from the suggested by 
the manufacturer. 

Stimulation None 
Anaesthesia General 

Analgesics Remifentanil 

Table A - 1: ANI studies elected for systematic review between 2018 and 2021 
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REF. YEAR 
N 

(M/F) 
DESCRIPTION OF THE CONTEXT MAIN FINDINGS/CONCLUSIONS 

[80] 2019 32 
(76/76) 

Procedure Neurosurgical spinal - ANI monitoring significantly impacted the 
intraoperative opioid use, but no effect 
was observed on the postoperative cortisol 
levels and postoperative pain. 

Stimulation None 
Anaesthesia General 

Analgesics Sufentanil 
[88] 2018 30 

(-/30) 
Procedure Hysteroscopy - Maintaining the ANI measurements within 

the target range (50-70), the ANI was 
statistically higher in the group with 
administration of remifentanil. 

- No difference was found between the 
postoperative VAS scores of the group with 
remifentanil administration and the group 
with dexmedetomidine administration. 

Stimulation None 
Anaesthesia General 

Analgesics Remifentanil or 
dexmedetomidine 

[79] 2019 60 
(7/53) 

Procedure Bariatric - The intraoperative consumption of 
sufentanil was reduced using ANI 
monitoring, but it does not appear to be 
associated with by a reduction in the side-
effects of sufentanil. 

Stimulation None 
Anaesthesia General 

Analgesics Sufentanil 

[76] 2021 36 
(15/21) 

Procedure Laparoscopic 
cholecystectomy 

- ANI monitoring seemed ineffective 
predicting potential postoperative pain. 

Stimulation None 
Anaesthesia General 

Analgesics Remifentanil 
[70] 2019 57 

(29/28) 
Procedure Craniotomy for supra-

tentorial brain 
tumours 

- Unlike systemic hemodynamic 
parameters, ANI provides an objective 
assessment of the balance between pain 
and analgesia during intubation. Stimulation None 

Anaesthesia General 
Analgesics Fentanyl 

[69] 2021 60 
(-/60) 

Procedure Mastectomy - ANI may be a reliable monitor for analgesia 
intraoperatively since the ANI values of the 
control group and of the ANI-guided group 
were almost parallel. 

- The intraoperative consumption of 
fentanyl in patients undergoing 
mastectomy was not reduced using ANI 
monitoring. 

- The clinical outcomes were not impacted 
by ANI-guided intraoperative 
administration of fentanyl. 

Stimulation None 
Anaesthesia General 

Analgesics Fentanyl 

[94] 2021 20 
(7/13) 

Procedure Parturients (natural 
childbirth) vs healthy 
volunteers 

- ANI and SPI were found to effectively 
distinguish between intensity of pain in 
healthy volunteers and parturients. 

- Under administration of remifentanil, SPI 
may be more appropriate for reflecting the 
degree of pain because, although ANI may 
have good responsiveness to opioids, it 
may be likely to overestimate pain in case 
of remifentanil infusion. 

Stimulation Healthy volunteers: 
pressure area over the 
anterior tibial bone; 

Anaesthesia Parturients: regional 
anaesthesia (epidural) 

Analgesics Healthy volunteers: 
Remifentanil 

Table A – 1 (continuation): ANI studies elected for systematic review between 2018 and 2021 
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REF. YEAR 
N 

(M/F) 
DESCRIPTION OF THE CONTEXT MAIN FINDINGS/CONCLUSIONS 

[81] 2018 57 
(29/28) 

Procedure Craniotomy for supra-
tentorial brain 
tumours 

- The intraoperative consumption of 
fentanyl was reduced using ANI 
monitoring, but it does not appear to be 
associated with by a reduction of 
postoperative pain. 

Stimulation None 
Anaesthesia Regional 

Analgesics Fentanyl 
[156] 2019 57 

(29/28) 
Procedure Craniotomy for supra-

tentorial brain 
tumours 

- Both the ANI monitoring and 
hemodynamic parameters reported a 
reduction of the autonomic response to 
noxious stimulus using the scalp block 
technique rather than the pin‑site 
infiltration. 

-  A strong negative linear correlation was 
reported between ANI and HR, and ANI 
and mean BP following skull pin 
application. 

Stimulation None 
Anaesthesia Regional 

Analgesics Fentanyl 

[78] 2020 102 
(34/68) 

Procedure Colonoscopy  - The intraoperative consumption of 
opioids was reduced using ANI 
monitoring. 

- No differences were found in terms of 
side effects, complications or duration of 
recovery using ANI monitoring. 

Stimulation None 
Anaesthesia Sedo-analgesia 

Analgesics Remifentanil 

[93] 2021 14 
(11/3) 

Procedure Patients diagnosed 
with COVID-19 and on 
mechanical ventilation 
(orotracheal 
intubation or 
tracheostomy) 

- The spectral analysis of HRV may allow to 
infer the state of the ANS and the 
immune system of critically ill patients. 

- High ANIm values were associated with 
worse prognosis, higher mortality, and 
higher IL-6 levels. 

Stimulation None 
Anaesthesia Sedo-analgesia 

Analgesics Remifentanil  
and/or 
dexmedetomidine 

[86] 2021 100 
(-/100) 

Procedure Caesarean delivery - ANI may predict the risk of spinal 
anaesthesia-related hypotension. Stimulation None 

Anaesthesia Spinal 
Analgesics Not specified 

[90] 2019 20 
(10/10) 

Procedure Awake healthy 
volunteers 

- ANI may be employed for assessment of 
parasympathetic changes related to the 
emotional state of conscious patients. Stimulation Emotional stimulus 

Anaesthesia None 
Analgesics None 

[77] 2020 15 
(11/4) 

Procedure Patients in ICU for 
severe COVID-19 
pneumonia 

- ANI monitoring significantly impacted 
the intraoperative opioid use, but no 
effect was observed on the 
postoperative cortisol levels and 
postoperative pain. 

Stimulation None 
Anaesthesia Sedation 

Analgesics Remifentanil or 
sufentanil 

 

Table A – 1 (continuation): ANI studies elected for systematic review between 2018 and 2021 
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APPENDIX B: TRAINING DATASET 

The training dataset is based on physiological data acquired from Phisionet.org, a free 

online archive of physiological signals. Two subsets (subset A and subset B) have been 

composed using different databases. The ECG records of these databases were annotated 

using Physionet tools, and these annotations were used as a reference for further 

categorization in segments. 

Subset A was taken from the MIT-BIH Normal Sinus Rhythm Database.[55] This database 

comprises 18 records of mixed-gender adult individuals aged 20 to 50 who did not 

present significant arrhythmias. Accordingly, subset A is composed of six ECG segments 

with a Normal Sinus Rhythm, duration of 10 minutes, and sampled at a frequency of 250 

Hz. The segments composing the subset A were acquired from the parts of the MIT 

records whose annotations other than normal beats were not found. Table B - 1 details 

the ECG segments that were selected. 

 

MIT SYN N A V F S J ~ | + 

19140m Norm1 959 0 0 0 0 0 0 0 0 

19140m Norm2 829 0 0 0 0 0 0 0 0 

18184m Norm3 911 0 0 0 0 0 0 0 0 

18184m Norm4 780 0 0 0 0 0 0 0 0 

16795m Norm5 787 0 0 0 0 0 0 0 0 

16483m Norm6 821 0 0 0 0 0 0 0 0 

Table B - 1: Description of the ECG signals composing the subset A of the training dataset.1 

 
Subset B was taken from the MIT-BIH Arrhythmia Database.[157] This database 

comprises ECG records of 47 subjects of mixed gender aged 23 to 89 who presented 

clinically significant arrhythmias. Although only PVC beats were considered throughout 

the study presented in this thesis, the construction of this subset also considered signals 

with premature auricular contractions (PAC) because the only differences in terms of ECG 

analysis are that PAC does not have a full compensatory pause and the morphology. Table 

B - 2 details the ECG segments sampled at 360 Hz that were selected. 

 
 

 
1 N - Normal beat; A - Atrial premature beat; V - Premature ventricular contraction; F - Fusion of ventricular 

and normal beat; S - Supraventricular premature or ectopic beat (atrial or nodal); J - Nodal (junctional) 

premature beat; ~ - Change in signal quality; | - Isolated QRS-like artifact; + - Rhythm change. 
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MIT SYN N A V F S J ~ | + 

106m PVC1 959 0 0 0 0 0 0 0 0 

116m PVC2 2302 1 10 0 0 0 8 0 1 

119m PVC3 1543 0 444 0 0 0 4 0 103 

209m PVC4 2621 383 1 0 0 0 19 7 21 

228m PVC5 1688 3 362 0 0 0 20 24 41 

Table B - 2: Description of the ECG signals composing the subset B of the training dataset2.

 
2 N - Normal beat; A - Atrial premature beat; V - Premature ventricular contraction; F - Fusion of ventricular 

and normal beat; S - Supraventricular premature or ectopic beat (atrial or nodal); J - Nodal (junctional) 

premature beat; ~ - Change in signal quality; | - Isolated QRS-like artifact; + - Rhythm change. 
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APPENDIX C: IMPLEMENTATION OF THE ANI 

ALGORITHM 

The implementation of the ANI algorithm described in chapter 4 (𝐴𝑁𝐼𝑙𝑏) was compared 

against another literature-based implementation that has been shown in previous works 

to be congruent with the ANI monitor (𝐴𝑁𝐼𝑙𝑏2).  Proper statistical validation of the 𝐴𝑁𝐼𝑙𝑏 

would require comparison to data provided by an ANI monitor commercialized by 

MDoloris. As no ANI monitor was available for set-up, statistical tests were employed to 

evaluate whether there is a statistically significant difference between the performances 

of 𝐴𝑁𝐼𝑙𝑏 and 𝐴𝑁𝐼𝑙𝑏2. The two implementations of the ANI algorithm may differ because 

the details publicly available at the moment of their implementation could be different. 

Regarding the validation of 𝐴𝑁𝐼𝑙𝑏 implementation against the 𝐴𝑁𝐼𝑙𝑏2 implementation, the 

ANI variables from the two implementations were tested for correlation and were found 

to be highly correlated. As data was found not to be normally distributed, employing the 

Wilcoxon rank-sum test, the null hypothesis stating that the two ANI variables would 

follow the same distribution could be accepted (p-value = 0.8412) which is corroborated 

by the detailed distribution of the variables depicted in Figure C - 1.  

 
Figure C - 1: Boxplots showing the distributions of the ANI variables corresponding to R-R times series 
extracted from the ECGs of subset A computed applying the two implementations of the ANI algorithm. 

 

To note that the same R-R time series and strategies to remove ectopic or incorrectly 

detected beats were employed to compute the ANI values from the two implementations 

so that this would not be a source of the discrepancies between the two curves in this 
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analysis. Nevertheless, no information was found in the publicly available literature 

regarding the techniques employed by algorithm proprietary of MDoloris.  

From Figure C - 2, slight differences can be observed between the ANI variables 

corresponding to R-R times series extracted from the ECGs of subset A (described at 

Appendix B) and computed applying the two considered implementations of the ANI 

algorithm. These differences are probably because the publicly available information on 

the details of ANI calculation is ambiguous and scarce and, so, at certain points some 

assumptions had to be made. Figure C - 3 illustrates the step-by-step output of the ANIlb. 

 

 
Figure C - 2: ANI variables computed for each case of subset A. The ANI variables were computed with a 

moving window of 44 seconds and using the implementation 𝐴𝑁𝐼𝑙𝑖𝑡1  (in blue) and 𝐴𝑁𝐼𝑙𝑖𝑡2  (in orange). 
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Figure C - 3: First window output for each step of the described implementation of the ANI algorithm 
applied to the R-R time series extracted from the Case 1 of subset A of the training dataset. 

 

Wavelet component Scale Frequency band (Hz) 

Detail level 1, d1 2 2 – 4 

Detail level 2, d2 4 1 – 2 

Detail level 3, d3 8 0.5 – 1 

Detail level 4, d4 16 0.25 – 0.5 

Detail level 5, d5 32 0.125 – 0.25 

Approximation level 6, a6 32 0 – 0.125 

Table C - 1: Frequency bands as function of wavelet decomposition levels, 𝑓𝑠 = 8 𝐻𝑧 
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As the ANI calculation is based on the analysis of high frequency changes, the R-R series 

is bandpass filtered between 0.15 and 0.5 Hz using a Daubechies wavelet filter which 

allows isolating the frequency domains of the signal without any phase shift [92], [108], 

[110]–[112], [115]. When designing the filter, contradictory information was found in the 

literature: [92] states that wavelet levels 3 to 5 must be maintained, while [38] claims 

that only wavelet levels 4 and 5 must be kept to apply the reverse wavelet transform and 

retrieve the signal in the time-domain without the frequencies outside the range of 

[0.1667; 0.6667] Hz. As the highest frequency in the resampled RR-series signal is not 

specified, it was assumed to be 4 Hz and, considering the frequency bands in Table C - 1, 

wavelet levels 4 and 5 were kept for the design of the bandpass filter and the extraction 

of the frequency components between 0.125 and 0.5 Hz.  

Furthermore, the method used by MDoloris [22] to detect local minima and maxima and 

construct the envelopes was not specified in the publicly available literature. Based on 

the observation of ANI monitors from previous publications, it was hypothesized that 

only the local maxima above half the mean of the maxima points detected and the local 

minima below half the average of the minima points detected would be considered. Then, 

the trapezoidal numerical integration method was employed to determine the area 

delimited by the envelopes.  

Additionally, it was noticed that the border conditions on the construction of the 

envelopes are defined differently in the two considered implementations of the ANI 

algorithm. Attempting to disclose this difference, another version of 𝐴𝑁𝐼𝑙𝑏  was developed 

in which the first sample of envelopes is defined based on the last sample of the respective 

envelope from the previous window; and the last sample of envelopes is defined based 

on the first sample of the respective envelope from the next window. Inspecting the 

results, this second version was discarded as the discrepancies between the curves 

increased slightly, altering only the first and last samples of the envelopes. Although the 

discrepancies between the curves were not disclosed, this observation envisioned that 

this implementation of the ANI algorithm would not be robust to timing interferences. 

The referred assumptions are probably the sources of discrepancy between the output 

values of 𝐴𝑁𝐼𝑙𝑏 and 𝐴𝑁𝐼𝑙𝑏2. Overall, the 𝐴𝑁𝐼𝑙𝑏 implementation could be validated against 

the 𝐴𝑁𝐼𝑙𝑏2. Yet it should be noted that, because the methods employed in the algorithm 

proprietary of MDoloris are not publicly referenced and could be others than the ones 

mentioned here, it is expected to obtain even more noticeable differences performing a 

comparison against ANI values output by the monitor commercialized by MDoloris [22]. 
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