

Caio Walter Dezidério Wanderley

USING MACHINE LEARNING FOR DETECTING SECURITY

VULNERABILITIES THROUGH BUG REPORT ANALYSIS

Dissertation in the context of the Master in Informatics Engineering, Specialization in
Intelligent Systems advised by Prof. Nuno Laranjeiro and Prof. César Teixeira and

presented to
Faculty of Sciences and Technology / Department of Informatics Engineering.

October 2021

U
SI

N
G

 M
A

C
H

IN
E

LE
A

R
N

IN
G

 F
O

R
 D

ET
EC

TI
N

G
 S

EC
U

R
IT

Y
 V

U
LN

ER
A

B
IL

IT
IE

S
TH

R
O

U
G

H
 B

U
G

R
EP

O
R

T
A

N
A

LY
SI

S
C

ai
o

 W
al

te
r

D
ez

id
ér

io
 W

an
d

er
le

y

Faculty of Sciences and Technology

Department of Informatics Engineering

Using machine learning for detecting
security vulnerabilities through bug

report analysis

Caio Walter Dezidério Wanderley

Dissertation in the context of the Master in Informatics Engineering, Specialization in
Intelligent Systems advised by Prof. Nuno Laranjeiro and Prof. César Teixeira and presented

to the
Faculty of Sciences and Technology / Department of Informatics Engineering..

October 2021

This page is intentionally left blank.

Abstract

A bug report is the description of an error in the program that was encountered by a
developer. With the increasing amount of complexity in software systems, they are prone
to have several bugs including those that could reveal sensitive information or allow for
attackers to run malicious software. This is especially true for banks and large scale com-
panies, in which a security bug that reveals the users’ credentials or leaves their platforms
vulnerable to malicious attacks, could affect human lives.

All modern large scale companies that have to create a software project have encountered
bugs and have to fill in a bug report, and it is the job of a triagger to classify it according
to its description. This task done by humans is very time-consuming and prone to a lot
of error if the triagger does not know certain areas the report could be mentioned, this
can lead to erroneous classification. So in recent decades, several studies are implementing
text classification to classify these reports.

This thesis, it is first presented an analysis regarding the different approaches in the liter-
ature of the past decade for classifying Bug Reports. After the analysis of the literature,
we experimented with different combinations of machine learning algorithms to determine
the different impacts in the performance when dealing with vulnerabilities classification.
We found that the results for the Area Under The Curve (AUC) being 81.21% ± 8.33
when using Title and Description of a bug report, 79.51% ± 7.96 when using the Title,
and 78.04% ± 8.2 when using the Description.

Keywords

Vulnerability Classification, Security Issues, Security Bug classification, Security Bug Re-
ports, Machine learning, Bag-of-words.

iii

This page is intentionally left blank.

Resumo

Um relatório de bug é a descrição de um erro no programa que foi encontrado por um
desenvolvedor. Com a crescente complexidade dos sistemas de software, eles estão propen-
sos a ter vários bugs, incluindo aqueles que podem revelar informações confidenciais ou
permitir que invasores executem software malicioso. Isso é especialmente verdadeiro para
bancos e empresas de grande porte, em que um bug de segurança que revela as credenciais
dos usuários ou deixar uma plataforma vulnerável para ataques maliciosos, podem afetar
vidas.

Todas as empresas de grande porte modernas que têm que criar um projeto de software
encontraram bugs e terão que preencher um relatório de bug, e é o trabalho de um triagger
para classificá-lo de acordo com sua descrição. Essa tarefa feita por humanos é muito
demorada e sujeita a muitos erros se o triagger não tiver o conhecimento de certas áreas
que o relatório poderá estar mencionando, isso pode levar a uma classificação incorreta.
Por causa disso, nas últimas décadas, vários estudos estão implementando a classificação
de texto para classificar esses relatórios.

Nesta tese, é apresentada inicialmente uma análise a respeito das diferentes abordagens
na literatura das última década para classificar relatórios de bugs. Após a análise da
literatura, nós experimentamos diferentes combinações de algoritmo de machine learnig
para determinar os diferentes impactos no desempenho ao lidar com a classificação de
vulnerabilidades. Foi descoberto que os melhores resultado para o AUC sendo 81.21 % ±
8.33 ao usar o Título e a Descrição de um relatório de bug, 79.51 % ± 7.96 ao usar o Título
e 78.04 % ± 8.2 ao usar a Descrição.

Palavras-Chave

Classificação de vulnerabilidades, Problemas de Segurança, Classificação de Bug de Segu-
rança, Relatório de Bug de Seguranças, Algoritmos de Machine Learning, Bag of Words.

v

This page is intentionally left blank.

Contents

1 Introduction 1

2 Basic Concepts 3
2.1 Bug Reports . 3

2.1.1 Bug Life Cycle . 3
2.2 Text Classification . 5

3 State of the Art 8
3.1 Review Methodology . 8

3.1.1 Analysis of related surveys . 8
3.1.2 Research questions . 9
3.1.3 Identification of studies . 10
3.1.4 Study selection and quality assessment 10
3.1.5 Data extraction and synthesis . 10
3.1.6 Outcome of the study identification and selection 11

3.2 Analysis . 11
3.2.1 Research questions discussion . 11
3.2.2 Summary and Gaps of Related work 19

4 Data and Methods 22
4.1 Colletion and preprocessing of the dataset 22
4.2 Feature Extraction . 24
4.3 Feature Selection . 25
4.4 Classifiers . 26
4.5 Classifiers Performance Assessment . 28

5 Results and Discussion 31
5.1 Analysis of results using all projects . 31
5.2 Analysis of results using one project . 36
5.3 Main findings . 38

6 Conclusion 41

vii

This page is intentionally left blank.

Acronyms

AUC Area Under The Curve. iii, v, 19, 29, 36, 40

CVE Common Vulnerabilities and Exposures. 12, 13

KNN K-Nearest Neighbors. xi, 27, 32–34, 37, 38, 41

MRMR Minimum Redundancy Maximum Relevance. 25, 26, 37

NVD National Vulnerability Database. 12, 13

RFE Recursive Feature Elimination. 32

ROC Receiver Operating Characteristics. xi, 29, 30

SVM Suport Vector Machine. xi, 26, 28, 32–34, 37–39, 42

TF Term Frequency. 6, 24

TF-IDF Term Frequency–Inverse Document Frequency. 6, 22, 24, 25

ix

This page is intentionally left blank.

List of Figures

2.1 Bug life cycle. (Image taken from [1]) . 4
2.2 Example of Bag of Words.(Image taken from [2]) 6
2.3 Example of usual Classification Model. 7

3.1 Distribution of data-set origin. 12
3.2 Distribution of data-set sizes. 14
3.3 Distribution of Feature Extraction used. 16
3.4 Distribution of Classification methods used. 17
3.5 Distribution of Metrics for evaluation used. 21

4.1 Example of a bug title . 23
4.2 Example of a bug description. 24
4.3 Example of a Receiver Operating Characteristics (ROC) curve.(Image taken

from [3]) . 29
4.4 Example of a optimal ROC curve.(Image taken from [3]) 30

5.1 Statistical comparison of the data used on the model. 32
5.2 Statistical comparison of the different Feature Selections used. 32
5.3 Statistical comparison of the K-Nearest Neighbors (KNN) with different

number of neighbors. 33
5.4 Statistical comparison of the Suport Vector Machine (SVM) with different

values for parameter C. 33
5.5 Statistical comparison of the different Classifiers. 34
5.6 Statistical comparison of the different quantities of features used. 34
5.7 Results from experiment using only the Titles. 35
5.8 Results from experiment using only the Description. 35
5.9 Results from experiment using Title and Description. 36
5.10 Statistical comparison of the data used on the model. 37
5.11 Statistical comparison of the different Feature Selections used. 37
5.12 Statistical comparison of the KNN with different number of neighbors. . . . 38
5.13 Statistical comparison of the SVM with different values for parameter C. . . 38
5.14 Statistical comparison of the different Classifiers. 39
5.15 Statistical comparison of the different quantities of features used. 39

xi

This page is intentionally left blank.

List of Tables

3.1 Number of studies analyzed in the related surveys 11
3.2 Counts of studies and each objective. 11
3.3 Data-set studies distribution. 12
3.4 Systems Used. 13
3.5 Dataset size studies distribution. 14
3.6 Pre-processing studies distribution. 15
3.7 Feature Extraction studies distribution. 16
3.8 Feature Selection studies distribution. 16
3.9 Dimension Reduction studies distribution. 17
3.10 Classifier studies distribution. 18
3.11 Data-set Partition studies distribution. 19
3.12 Data-set Partition techniques used. 19
3.13 Metrics studies distribution. 20

4.1 Number of bugs collected from each project. 23

xiii

This page is intentionally left blank.

Chapter 1

Introduction

Software verification and validation are a set of important activities that are part of software
projects, as they help build reliable software. These activities help keep track of bugs by
analysis of reports. The reports containing information such as the type of defect, impact,
and the steps to reproduce the bug are added to a given tracking system. The whole
process can become very inefficient if bugs are not properly detected and classified [4],
which is in itself a time-consuming task. This is especially true when dealing with security
vulnerabilities, with the addition that if they aren’t properly classified, they could have a
greater impact on the system [5, 6].

The information present in a bug report is unstructured, because of this analyzing the
text to understand its class is hard and time-consuming. This is where creating a text
classification with machine learning becomes important, using text classifiers, we can gather
the information available and structure it to allow a text classifier model to predict a
document’s class cost-effectively.

For that, many studies in the past decade were made to create a framework capable of
automatically categorizing Bug Reports [7, 8], to reduce the amount of human effort, the
time needed for the classification, and the number of bugs wrongfully categorized. And we
also set our goal on creating a classifier, based on different techniques.

In this work, we take a focus on security problems. The concept we are taking for security
is the set of controls that are put in place to provide confidentiality, integrity, and avail-
ability for all components of computer systems. These components include data, software,
hardware, and firmware.

Our goal is to present an analysis regarding the different approaches in the literature of
the past decade for classifying Bug Reports and experimental analysis of the different
approaches when creating a model capable of classifying bug reports, with a focus on
the classification of security bug reports. Particularly, we discuss techniques used for
classification, preprocessing of the data-sets, the characteristics of the data-sets, how the
set of features are handled, and the metrics for the evaluation of the models. With all that,
we begging to experiment with the different combinations when making a model capable
of classifying a bug report. As such, in this thesis, we implemented a model capable of
executing the different combinations automatically and saved the results obtained so we
could analyze and compare the impact each method from each different step has on the
results.

This thesis contributes with:

1

Chapter 1

• An analysis, in the form of a review, of the different approaches done in the past
decade, and used in the other works for classifying security vulnerabilities;

• An analysis of the impact of different aspects of a text classification model on the
performance.

This thesis is organized as follows. Chapter 2 provides some background on concepts
regarding a machine learning algorithm and bug reports. In Chapter 3, we describe how the
research for this thesis was performed and we discuss the answers to the research questions
and identify gaps in the state of the art. Chapter 4 it is discussed how the experiments
were made and how the different methods work. Chapter 5 presents the results obtained
and the findings we had when analyzing the results. Chapter 6 concludes this thesis and
presents the main threats to the validity of this work.

2

Chapter 2

Basic Concepts

In this section, we provide background concepts regarding bug reports and text classifica-
tion with a machine learning algorithm.

2.1 Bug Reports

A Bug is a flaw or an error in an application that is affecting the normal flow of an
application by mismatching expected behavior. Bug occurs when a mistake is made by a
developer during the designing or building of an application and when this flaw is found
by a tester.

A bug report is a document that has information about what is wrong and needs to be
fixed in software. The report lists what was viewed as wrong. But these documents are
usually unstructured, difficulting their analysis by automatic systems.

A bug report can have several types, but for this thesis, we defined a binary classification
problem defined by the classes:

• Security Bug: is a software bug that can be exploited to gain unauthorized access
or privileges on a computer system, for example, gaining authentication of users
and other entities, confidential data, getting authorization to of access rights and
privileges, etc;

• Non-Security Bug: would be bugs that do not affect security, simple examples would
be wrong visuals effects, or the link takes to wrong place.

2.1.1 Bug Life Cycle

The bug has different states in the Life Cycle. The Life cycle of the bug can be shown
diagrammatically in Figure 2.1 to help understand the workflow of a bug life cycle.

• New: This is the first state of a bug in the bug life cycle. When any new bug is
found, it falls in a New state, and validations and testing are performed on this bug
in the later stages of the bug life cycle.

• Assigned: After the tester has posted the bug, the lead of the tester approves that
the bug is genuine and he assigns the bug to a corresponding developer and the

3

Chapter 2

Figure 2.1: Bug life cycle. (Image taken from [1])

developer team and it is given the state Assigned.

• Open: At this state the developer has started analyzing and working on the bug fix.

– Duplicate: If the bug is repeated twice or the two bugs mention the same
concept of the bug, then one bug status is changed to Duplicate.

– Rejected: If the developer feels that the bug is not an actual defect, he rejects
the bug. Then the state of the bug is changed to Rejected.

– Deferred: The bug, changed to Deferred state means the bug is expected to
be fixed in the next releases. The reasons for changing the bug to this state
have many factors. Some of them are priority of the bug may be low, lack of
time for the release or the bug may not have a major effect on the software.

– Not a bug: The state given as Not a bug if there is no change in the function-
ality of the application. For example: If a customer asks for some change in the
look and feel of the application like the change of color of some text then it is
not a bug but just some change in the look of the application.

• Fixed: When the developer makes necessary code changes and verifies the changes
then it is given to the bug the status of Fixed and the bug is passed to the testing
team.

• Pending retest: After fixing the bug the developer has given that particular code
for retesting to the tester. Here the testing is pending on the testers end. Hence its
status is Pending retest.

• Retest: At this stage the tester does the retesting of the changed code which devel-
oper has given to him to check whether the bug got fixed or not.

4

Basic Concepts

• Verified: The tester tests the bug again after it got fixed by the developer. If the
bug is not present in the software, he approves that the bug is fixed and changes the
status to Verified.

• Reopen: If the bug still exists even after the bug is fixed by the developer, the tester
changes the status to Reopened. The bug goes through the life cycle once again.

• Closed: Once the bug is fixed, it is tested by the tester. If the tester feels that the
bug no longer exists in the software, he changes the status of the bug to Closed. This
state means that the bug is fixed, tested, and approved.

As observed in the steps above, a bug’s life cycle is costly and time-consuming. The real
problem comes when a security bug is incorrectly classified this makes it be longer time
unsolved allowing individuals with ill intention to take advantage of them, that is why
these bugs must be identified as soon as possible. For that reason, in recent decades, many
studies have focused on the development of text classification approaches to automatize
the identification of these bugs.

This life cycle of a bug begins when it is added to a tracking system, this system serves as
a database that keeps track of reported software bugs in software development projects.
Many bug tracking systems, most commonly those used by most open-source software
projects, allow end-users to directly make their reports, the most commonly known would
be Jira and Bugzilla.

2.2 Text Classification

In machine learning, a text classification is an approach that assigns to a text a set of
predetermined categories. These models or test classifiers can be used to organize and
categorize any kind of text or documents, like:

• Categorization of news articles into defined topics;

• Detection of spam and non-spam emails;

• Detection of urgency in Customer Support;

• Detection of fraud and online abuse.

The greater part of all available text information is composed of unstructured text. Because
of this unstructured nature manually analyzing, understanding, organizing, and sorting
through text data is hard, time-consuming, and much less accurate, leading to several
errors in its interpretation.

This is where text classification with machine learning comes in. With the use of text
classifiers, one can automatically find all manner of relevant patterns in text, from emails,
legal documents, surveys, and more in a fast and cost-effective way, allowing to save time
and automating the interpretation and classification of the texts.

Machine learning algorithms present advantages when compared to human text classifica-
tion:

• Scalability: Machine learning can automatically analyze documents at a fraction of
the cost, often in just a few minutes when compared to doing it manually, and text
classification tools are scalable to any needs, large or small.

5

Chapter 2

• Real-time analysis: There are critical situations that it is needed to identify as
soon as possible and take immediate action, machine learning text classification can
analyze documents in real time, so it enables the identification of critical information
and allows to take action right away.

• Consistent criteria: Human triaggers make mistakes when classifying text data
due to distractions, fatigue, boredom, and human subjectivity creates inconsistent
criteria, machine learning, on the other hand, applies the same lens and criteria to
all data and results.

Instead of relying on biased human behavior, machine learning learns to make classifications
based on observations of previously used texts by using pre-labeled examples as training
data. Machine learning algorithms learn the different associations between pieces of text
and learn to relate a particular output with a particular input. The collection of these
pre-labeled examples is also commonly known as a dataset.

The first step towards training a machine learning classifier is feature extraction, this
method is used to transform each text into a numerical representation in the form of a vec-
tor. One of the most frequently used approaches is bag-of-words, where a vector represents
the frequency of a word in a predefined dictionary of words, an example can be observed in
Figure 2.2. Other forms include Term Frequency (TF) demonstrate the importance of the
word to a document with an intuition that the more the term appears in a document means
higher the importance is. And there is also Term Frequency–Inverse Document Frequency
(TF-IDF) in which the importance of a word depends on the frequency it appears in a
document, but it is offset by the number of documents that contain the word to adjust for
the fact that some words appear more frequently in general.

Figure 2.2: Example of Bag of Words.(Image taken from [2])

But this approach causes a significant dimensionality problem, for the more documents
the larger is the vocabulary, making the feature matrix be a huge sparse matrix, for that,
the Bag-of-Words model is preceded by a preprocessing step (word cleaning, stop words
removal, stemming/lemmatization) aimed to reduce the dimensionality problem. Another
way that to reduce the dimensionality, and is usually used in conjunction with the pre-
processing step, is Feature Selection. Feature Selection is a step that is carried after we
already have a feature matrix this is done to drop some columns and reduce the matrix
dimensionality by selecting a subset of the most statistically relevant feature variables (i.e.,
words of the vocabulary).

Then, the machine learning algorithm is fed with training data that is a matrix that
consists of pairs of feature sets (vectors for each text example) and labels (e.g. security,
non-security) to represent the class of the text and to produce a classification model. Once

6

Basic Concepts

trained with enough samples, the model can be used to make automatic classifications.
The same feature extractor is used to transform the unseen text to feature sets, which
then can be fed into the classification model to get predictions on labels (Figure 2.3 for
reference).

Figure 2.3: Example of usual Classification Model.

7

Chapter 3

State of the Art

In this chapter, we describe the studies that will help us with the analyzes of the state-of-
the-art on software Security Vulnerability classification.

3.1 Review Methodology

Well-established guidelines for conducting this review [[9], [10]] were followed , and com-
prised the following steps:

• Analysis of related surveys: Identify and analyze secondary studies (i.e., surveys
or other reviews) that cover the topic of vulnerability report classification, even if
partially. The related surveys are analyzed so that gaps and limitations are identified
and covered in our discussion.

• Definition of research questions: After the gaps are identified, we define the
research questions that our thesis will focus on.

• Identification of studies: Identify relevant primary studies, that contribute to our
analyzes. We then identify a query to be used to perform the search and then the
snowballing process [11] is used to complement the identification of studies.

• Study selection: With this step, we refer to the application of criteria for the
inclusion and exclusion of the primary studies found, as well as for quality assessment.
The objective is to select the reviews that meet the goal and scope of our thesis.

• Data extraction and synthesis: We extract the important data, according to the
research questions, from the primary studies selected. The information gathered is
then synthesized to help us answer the research questions.

Each of these steps is described in further detail in the following sections.

3.1.1 Analysis of related surveys

In the following paragraphs, we present the related secondary studies (e.g., surveys, other
reviews):

8

State of the Art

• S. M. Ghaffarian and H. R. Shahriari, Software Vulnerability Analysis and Discovery
Using Machine-Learning and Data-Mining Techniques: A Survey, ACM Comput.
Surv., vol. 50, no. 4, p. 56:1-56:36, Aug. 2017, doi: 10.1145/3092566.

• D.-G. Lee and Y.-S. Seo, Systematic Review of Bug Report Processing Techniques
to Improve Software Management Performance, Journal of Information Processing
Systems, vol. 15, no. 4, pp. 967–985, Aug. 2019, doi: 10.3745/JIPS.04.0130.

• J. Zhang, X. Wang, D. Hao, B. Xie, L. Zhang, and H. Mei, A survey on bug-report
analysis, Sci. China Inf. Sci., vol. 58, no. 2, pp. 021101–021101, Jan. 2015, doi:
10.1007/s11432-014-5241-2.

S. M. Ghaffarian and H. R. Shahriari [12] provide an extensive review of many different
works in the field of software vulnerability analysis and discovery, using machine learning
and data mining techniques. They reviewed different types of works in the field, discussed
the advantages and disadvantages, and pointed out the challenges and some unknown areas
in such a field. At the end of the survey, they concluded that the approaches they studied
were still in an immature state of research.

The study conducted by Dong-Gun Lee and Yeong-Seok Seo [13] focuses on investigations
to improve the accuracy of existing techniques for bug report processing. They study
the bug report processing technology based on the following three factors: the techniques
used, the experimental goal, and the comparison with the two fields (duplicate bug report
identification and classification accuracy improvement) to improve software maintenance
performance. In this study, the authors found problems with the technique of identifying
similarities between bug reports.

Zhang et al. [14] present a detailed survey of the existing work of bug report analysis, such
as bug report optimization, triaging, and bug repair. In the end, the author concludes that
many problems are still unresolved or even researched, and many researchers are committed
to the automation of handling bug reports (e.g., bug-report assignment, duplicate detec-
tion, bug localization), but none achieved a satisfactory accuracy (e.g., more than 95%).
That is, it is difficult to apply existing automatic methods in practice. Furthermore, the
bug tracking system still can not provide any support for automatically processing bug
reports.

3.1.2 Research questions

Based on the analysis of existing secondary studies, we defined the following set of five
research questions that guided the guided objectives defined for this thesis:

• RQ-1: What are the objective of the works?

• RQ-2: What are the characteristics of the data-sets used?

• RQ-3: What are the most used Machine Learning approaches?

• RQ-4: How are the data-sets partitioned?

• RQ-5: What are the metrics used for the evaluation of the approach?

With the research questions, we intend to analyze the different types of approaches iden-
tified in the literature, by breaking down each approach into four parts.

9

Chapter 3

3.1.3 Identification of studies

Six well-known online libraries were used to search for primary studies, which are common
presence in related studies. The data sources are: Google Scholar [15], DBLP [16], IEEE
Xplore [17], ACM Digital Library [18], Scopus [19], Springer Link, [20]. To perform the
search, the following query string was used, built based on preliminary observations using
the respective search engines of the online libraries:

("vulnerability" OR "security defect" OR "security bug" OR "security issue") AND ("bug
report" OR "issue report" OR "defect report" OR "vulnerability report") AND

(classification OR detection OR identification)

As a complement to the online search and to enrich the set of selected studies, we also
used snowballing [11].

3.1.4 Study selection and quality assessment

We filtered the identified studies mostly by applying a set of inclusion and exclusion criteria,
which also reflects a conservative quality assessment criterion of keeping only peer-reviewed
(or otherwise cited) studies, to avoid erroneously excluding papers from the analyzes. The
criteria are as follows:

• Inclusion Criteria:

– A study whose focus is set on the automatic classification of security vulnera-
bility reports.

– The study should be sufficiently complete to allow answering the identified set
of research questions.

• Exclusion Criteria:

– A study whose focus is not set on automatic classification of security vulnera-
bility reports.

– Non-peer reviewed, or otherwise uncited, research should be excluded from the
analyzes.

To apply these criteria, we went through three pruning phases, each of which respectively
targeted the analysis of the title, abstract, and the full text.

3.1.5 Data extraction and synthesis

This step consists of analyzing all primary studies and gathering information regarding
their approach. As the authors use very diverse terms, this was carried out iteratively,
starting first with the identification of the specific terms used by the authors, that allow
responding to the research questions, which were then individually discussed and iteratively
generalized to more widely accepted consensual terms. This process involved discussion
and agreement between and the advisers.

10

State of the Art

3.1.6 Outcome of the study identification and selection

Table 3.1 sets the outcome of the selection and identification process in perspective with
what is analyzed in related surveys. On the left-hand side, the table identifies the related
surveys, the respective periods analyzed in each survey, the total number of papers ana-
lyzed, and how many of those relate to security bugs. Since having the idea of focusing
on classifying bug reports between security or non-security, the surveys did not show any
results, only one of them as we can see presented only two studies relate to our thesis.

Survey Period Total Papers Security bugs

S. M. Ghaffarian and H. R. Shahriari 2001 - 2016 39 2
Dong-Gun Lee and Yeong-Seok Seo 2006 - 2018 29 -

Zhang et al. 2003 - 2014 107 -
This work 2009 - 2021 42 42

Table 3.1: Number of studies analyzed in the related surveys

3.2 Analysis

In this section, are discussed the main findings identified during the analysis of the state-of-
the-art, in perspective with the research questions. After answering the research questions
it is presented a quick summary of our finds. We then highlight the gaps present in the
state-of-the-art.

3.2.1 Research questions discussion

We begin by discussing the research question RQ-1 What are the objective of the
works?. There are two types of studies that we have identified, those that focus on
identifying security bugs through its description, just like our own focus, and those that
want to classify already identified security bugs.

Objective Total

Identify 29
Classify 15

Table 3.2: Counts of studies and each objective.

The difference between these two approaches is within their objective the studies that
desire to identify bugs have the objective to see if a bug description relates to a security
issue by using information given by the one that identified it like the title and description
of the bug. The other objective that this thesis does not consider is classifying the security
bug by its type or severity using pieces of information to calculate the severity of a bug or
by the description and comments to give a type of security error that could be.

We continue discussing the research question RQ-2 What are the characteristics of
the data-sets used? for which, we found a plethora of sources for the data-sets. When
grouping the datasets used in the different approaches, the origin of most bug reports
datasets was identified as shown in Table 3.3. Figure 3.1 depicts a better visualization of
the distribution of the number of studies that used each tracking system.

11

Chapter 3

D
at
as
et

NVD

Shuai et al.[4], G. Spanos and L. Angelis [21], O. Jormakka [22], Huang et al.
[23], S. E. Sahin and A. Tosun [24], Le et al. [25], Kudjo et al. [26], A. Duppils
and M. Tullberg [27], T. M. Adhikari and Y. Wu [28], Spanos et al. [29], Chen
et al. [30]

CVE
M. M. Rahman and S. Yeasmin [31], Wijayasekara et al. [32], S. Mostafa and X.
Wang [6], Mostafa et al. [7], Kudjo et al. [26], S. S. Alqahtani [33], Palacio et
al. [34], Wijayasekara [5], Chen et al. [30]

Monorail O. Jormakka [22], Shu et al. [35], Peters et al. [36], Shu et al. [37], Wu et al.
[38], Jiang et al. [8], Aljedaani et al. [39], Wu et al. [40]

Bugzilla

Wijayasekara [5], Behl et al. [41], Wijayasekara et al. [32],S. Mostafa and X.
Wang [6], M. Davari [42],Y. Zhou and A. Sharma [43], Zou et al. [44], Mostafa
et al. [7], Catolino et al. [45], Z. S. M. Alharthi and R. Rastogi [46], Bhuiyan et
al. [47], Bulut et al. [48]

GitHub’s Issue tracking Y. Zhou and A. Sharma [43], L. Wan [49], Palacio et al. [34], A. Duppils and M.
Tullberg [27]

Jira

Y. Zhou and A. Sharma [43], D. C. Das and Md. R. Rahman [50], Pandey et
al. [51], Catolino et al. [45], O. Jormakka [22], Shu et al. [35], Peters et al. [36],
Xia et al. [37], Jiang et al. [8], Wu et al. [38], Pandey et al. [51], Wu et al. [40]

Launchpad Wu et al. [38], Wu et al. [40]
Miscellaneous Zhang et al. [52]

Table 3.3: Data-set studies distribution.

Figure 3.1: Distribution of data-set origin.

As we can see in Figure 3.1 that represents the distribution of the Table 3.3, most of the
bug reports were removed from two specific tracking systems. Jira contains the reports
from Apache projects. And Bugzilla where it contains the bug reports from their other
applications (e.g., Mozilla, Firefox, Thunderbird). Because of having bug reports of so big
applications, one can easily find a big quantity of Bug Reports separated per each of their
respective projects. Following them some works decide to collect information from tracking
systems with a focus on security description (i.e., National Vulnerability Database (NVD)
and Common Vulnerabilities and Exposures (CVE)) they, different from the Bugzilla and
Jira, don’t have bug reports, instead, they have the description of several most common
types of vulnerabilities. And within the analysis we noticed that 1/2 of the works that use
either CVE or NVD would make their data-set with information from bug reports removed
from tracking systems and the description of the security vulnerabilities to create a more
balanced data-set, the other half was experimenting with training a classifier using only
the descriptions available in NVD or CVE.

About the dataset, from each tracking system, with exception of the NVD and CVE, the

12

State of the Art

S
y
st

em
s

Operation System

Linux Wijayasekara et al. [32], L. Wan [49], Wijayasekara [5], Chen
et al. [30]

Enterprise Linux Chen et al. [30]
Mac OS Kudjo et al. [26]

Chrome OS Kudjo et al. [26]
Win 10 Kudjo et al. [26], Chen et al. [30]
Win 7 Kudjo et al. [26]

Cisco Software Gegick et al. [53]

Browser

Firefox M. Davari [42], Kudjo et al. [26], Z. S. M. Alharthi and R.
Rastogi [46], Zou et al. [44]

Chrome Kudjo et al. [26], Chen et al. [30]
Edge Kudjo et al. [26]
Safari Chen et al. [30]

Explorer Kudjo et al. [26]

Chromium
O. Jormakka [22], Shu et al. [35], Peters et al. [36], Shu et al.
[37], Wu et al. [38], Jiang et al. [8], Aljedaani et al. [39], Wu
et al. [40]

Seamonkey Zou et al. [44], M. Davari [42], Kudjo et al. [26]

Data Management

MySQL Wijayasekara [5]

Derby
D. C. Das and Md. R. Rahman [50], O. Jormakka [22], Shu
et al. [35], Peters et al. [36], Shu et al. [37], Wu et al. [38],
Jiang et al. [8], Wu et al. [40]

Hbase S. S. Alqahtani [33]
Hive S. S. Alqahtani [33]

Jackrabbit Pandey et al. [51]
Sling S. S. Alqahtani [33]
Spark S. S. Alqahtani [33]
Hadoop S. S. Alqahtani [33]
Lucene Pandey et al. [51]

Message Oriented Middleware Camel
D. C. Das and Md. R. Rahman [50], O. Jormakka [22], Shu et
al. [35], Peters et al. [36], Shu et al. [37], Jiang et al. [8], Wu
et al. [40]

Open Source Solutions

RedHat Mostafa et al. [7]

Mozilla J. P. Tyo [54], Mostafa et al. [7], Catolino et al. [45],Z. S. M.
Alharthi and R. Rastogi [46], Bhuiyan et al. [47]

Core (Mozilla) M. Davari [42]
Apache S. Mostafa and X. Wang [6], Xia et al. [37], Catolino et al.

[45]

File Editor/Reader

Microsoft Office Chen et al. [30]
Foxit Chen et al. [30]

PDFbox S. S. Alqahtani [33]
Tika S. S. Alqahtani [33]

Ffmpeg L. Wan [49]
QuickTime Chen et al. [30]

Adobe Flash Player Chen et al. [30]

Network HTTPClient Pandey et al. [51]
Wireshark L. Wan [49], Bulut et al. [48]

E-mail Thunderbird M. Davari [42], Zou et al. [44]

Software Development

Eclipse Catolino et al. [45], Z. S. M. Alharthi and R. Rastogi [46]
Openstak Wu et al. [38], Wu et al. [40]

Wicket
D. C. Das and Md. R. Rahman [50], O. Jormakka [22], Shu et
al. [35], Peters et al. [36], Shu et al. [37], Jiang et al. [8], Wu
et al. [40]

Qemu L. Wan [49]

Management
Ambari

D. C. Das and Md. R. Rahman [50], O. Jormakka [22], Shu et
al. [35], Peters et al. [36], Shu et al. [37], Jiang et al. [8], Wu
et al. [40]

Oracle Business Suite Chen et al. [30]
Stanbols S. S. Alqahtani [33]

Framework Felix S. S. Alqahtani [33]
Karaf S. S. Alqahtani [33]

No Group

Ground/Flight Missions J. P. Tyo [54], J. Tyo [55]
CFX S. S. Alqahtani [33]

Miscellaneous M. M. Rahman and S. Yeasmin [31], Palacio et al. [34], Y.
Zhou and A. Sharma [43], Zhang et al. [52]

Not Specified

Shuai et al.[4], G. Spanos and L. Angelis [21], Huang et al.
[23], S. E. Sahin and A. Tosun [24], Le et al. [25], A. Duppils
and M. Tullberg [27], T. M. Adhikari and Y. Wu [28], Behl et
al. [41], Spanos et al. [29]

Table 3.4: Systems Used.

bugs were recovered from specific applications. The ones that were retrieved from Jira
are Apache projects, namely: Lucene, Jackrabbit (JCR), HTTPClient, Wicket, Ambari,
Camel, Derby. Bugzilla since it is a tracking system from the Mozilla Foundation, like
Firefox or Thunderbird. From them, it was usually taken the entirety of bug reports.
Differently, NVD and CVE, they contain the description of specific vulnerabilities, each
containing an identification number, a description, and at least one public reference. Since
they have a great number of entries, around 140000, the studies contained with getting the
most recent entries, at the time.

As discussed above most studies preferred to take bug reports of real projects with its real
proportions between Non-Security Bug Report and Security Bug Report and some only
taking Security Bug Report, both of these approaches could be problematic faced with a
situation where the classifier can’t make a decisive decision in what to classify a report,

13

Chapter 3

making the classifier bias and it will end up classifying the report concerning its bigger class,
so a more correct approach to this would be taking a mixed data-set intending to create a
more balanced data to prevent class bias to guarantee a more accurate classification.

D
at
a-
se
t
S
iz
e

[1.000, 10.000] Behl et al. [41], J. P. Tyo [54], J. Tyo [55], Catolino et al. [45], Pandey et al. [51],
Wijayasekara et al. [32]

]10.000, 20.000] Kudjo et al. [26], O. Jormakka [22], Aljedaani et al. [39]

]20.000, 30.000] Zou et al. [44], D. C. Das and Md. R. Rahman [50], Chen et al. [30], Rahman and S.
Yeasmin [31]

]30.000, 40.000] Zhang et al. [52], Y. Zhou and A. Sharma [43]

]40.000, 50.000] T. M. Adhikari and Y. Wu [28],Shu et al. [35], Peters et al. [36], Shu et al. [37], Wu
et al. [38]

]50.000, 60.000] Shuai et al.[4], Huang et al. [23]
]60.000, 70.000] Mostafa et al. [7], L. Wan [49]
]70.000, 80.000] S. E. Sahin and A. Tosun [24], Spanos et al. [29]
]80.000, 90.000] G. Spanos and L. Angelis [21]

]90.000, 1.000.000[
Wijayasekara [5], M. Davari [42], Le et al. [25], Pereira et al. [56], S. S. Alqahtani
[33], Palacio et al. [34], A. Duppils and M. Tullberg [27], Jiang et al. [8], Bhuiyan et
al. [47], Wu et al. [40]

Table 3.5: Dataset size studies distribution.

Figure 3.2: Distribution of data-set sizes.

As we can see in the Figure 3.2 that represents the distribution of the Table 3.5, the
preferences to the size of the data-set are quite the opposite to each other, it either goes
to an interval between [1000, 10000] or an interval between]90000, +∞[with a few others
going in the middle]40000, 50000] with the median in located in this interval with around
45000 bug reports. Most of those in the]90000, +∞[interval do not go too far from the
100000 marks. Only one of them [56] goes way beyond that mark, by having the high value
of Bug Reports, more than 1000000, but because in this study the proposed method was
to create a classifier that could classify the report using only the Title and noise data, in
there case, a Bug Report is considered noise when parts of it would not be available to not
reveal sensitive information (i.e., password, personally identifying information, . . .).

This characteristic of the data-set is quite experimental since there a no decisive information
that says what is the perfect good size for training data, but what we can understand is
that more than half the works prefer the size of its training data to be smaller than 50000.

In this part, related to the third question, RQ-3 What are the most used Machine
Learning approaches? In this section, we will analyze the methods used in the different

14

State of the Art

stages of the approaches made, first, we will discuss the pre-processing techniques, following
it we have Feature Extraction, then Feature Reduction, and at last the Classifiers. At
first, we have the techniques used for pre-processing. The choice of techniques used does
not differ much from study to study. The part of pre-processing always begins with the
tokenization of the report description followed by these techniques.

P
re
-P

ro
ce
ss
in
g

Stop Words Removal

Gegick et al. [53], Wijayasekara [5], Shuai et al.[4], Behl et al. [41], Wijayasekara
et al. [32], J. P. Tyo [54], Spanos et al. [29], Pandey et al. [51], Zou et al. [44],
D. C. Das and Md. R. Rahman [50], G. Spanos and L. Angelis [21], O. Jormakka
[22], S. E. Sahin and A. Tosun [24], Le et al. [25], Pereira et al. [56], Peters et al.
[36], Catolino et al. [45], Kudjo et al. [26], S. S. Alqahtani [33], Zhang et al. [52],
Wu et al. [38], T. M. Adhikari and Y. Wu [28], Jiang et al. [8], Z. S. M. Alharthi
and R. Rastogi [46], Aljedaani et al. [39]

Lemmatization O. Jormakka [22], Huang et al. [23], T. M. Adhikari and Y. Wu [28], Aljedaani et
al. [39]

Stemming

D. C. Das and Md. R. Rahman [50], J. Tyo [55], G. Spanos and L. Angelis [21],
Mostafa et al. [7], Le et al. [25], Catolino et al. [45], Kudjo et al. [26], Palacio et
al. [34], T. M. Adhikari and Y. Wu [28], Jiang et al. [8], Chen et al. [30], J. P. Tyo
[54], Wijayasekara et al. [32], Spanos et al. [29], Huang et al. [23]

Not Specified
M. Davari [42], Y. Zhou and A. Sharma [43], L. Wan [49], Shu et al. [35], Bulut
et al. [48], Shu et al. [37], Bhuiyan et al. [47], Wu et al. [40], S. Mostafa and X.
Wang [6], M. M. Rahman and S. Yeasmin [31], A. Duppils and M. Tullberg [27]

Table 3.6: Pre-processing studies distribution.

Stemming or Lemmatization, the idea behind this is that since they tokenized the text in
the bug reports, using stemming they would find all the synonymous and use one word
to represent all of them, instead of having several representing the same thing. The other
method, lemmatization, is like the one mentioned before, but instead of identifying the
synonymous it puts the words in the base form and removes the duplicates.

Removal of stop words, which consists of removing commonly used words (such as “the”,
“a”, “an”, “in”) most of them did this because they would not want these words to take up
valuable processing time since these words would not bring anything of value to help in
the identification of the class in which the bug report should be in.

We are discussing these techniques even though they are common in pre-processing because
upon discussing with the supervisors, it was informed to them that most works were
referring to these techniques to be the ones for Feature Selection and Dimension reduction,
we further discussions with it became clear that this is a bad approach for these problems
and this was then identified as gaps in the works.

This second part of the question aims at learning the different types of algorithms of feature
extraction. Figure 3.3 shows the different techniques used in the studies.

As we can see in Table 3.7 represented by Figure 3.3, TF-IDF is the preferred algorithm
between those available. TF-IDF is most used because it does not look only at how many
times a term appears in a document it also calculates the importance the mentioned term
has in the document. Following the TF-IDF we have TF and N-Gram. TF is a simpler
version that only calculates the frequency a term appears locally in the document, this
method is more useful when classifying a single document without other references. And
the N-Gram is a technique more used to calculate the probability of a word appearing in
the context taking into account the N previous words, this is not much what we want, an
approach that gives more information of word importance is preferred.

Considering an approach where we have a balanced data-set between Security Bug Report
and Non-Security Bug Report using TF-IDF could be the best option comparing to the
other simply for seeing word importance on the overall set of reports used instead of looking
locally on the report description, but for that, it needs a well-balanced data between

15

Chapter 3

F
ea
tu
re

E
xt
ra
ct
io
n

TF - IDF

Wijayasekara [5], Shuai et al.[4], Behl et al. [41], S. Mostafa and X. Wang [6], J. P. Tyo
[54], D. C. Das and Md. R. Rahman [50], J. Tyo [55], Huang et al. [23], Mostafa et al.
[7], S. E. Sahin and A. Tosun [24], Peters et al. [36], Le et al. [25], Pereira et al. [56],
Catolino et al. [45], Bulut et al.[48], Zhang et al. [52], A. Duppils and M. Tullberg [27], T.
M. Adhikari and Y. Wu [28],Jiang et al. [8], Chen et al. [30]

TF - IGM Kudjo et al. [26], Chen et al. [30]

TF
Gegick et al. [53], Wijayasekara et al. [32], J. P. Tyo [54], Spanos et al. [29], Pandey et
al. [51], J. Tyo [55], G. Spanos and L. Angelis [21], Le et al. [25], Zhang et al. [52], S. E.
Sahin and A. Tosun [24]

N-Gram
O. Jormakka [22], Zhang et al. [52], Z. S. M. Alharthi and R. Rastogi [46],Y. Zhou and
A. Sharma [43], Zou et al. [44], L. Wan [49], Palacio et al. [34], Bhuiyan et al. [47], S. E.
Sahin and A. Tosun [24]

Manually M. M. Rahman and S. Yeasmin [31]

Not Specified M. Davari [42], O. Jormakka [22],Shu et al. [35], S. S. Alqahtani [33], Wu et al. [38], Z. S.
M. Alharthi and R. Rastogi [46], Shu et al. [37], Wu et al. [40]

Table 3.7: Feature Extraction studies distribution.

Figure 3.3: Distribution of Feature Extraction used.

Security Bug Report and Non-Security Bug Report, if we were to have more cases of
Non-Security Bug Report this could lead to problems where terms of importance in a
security context could be considered unimportant leading to that term have a lower value
of importance. So when using the TF-IDF to extract features of labeled data sets it seems
like a good idea to have a well-balanced data set.

In this following part of the question, what we could gather by analyzing the studies is
that most of the works do not consider using these methods, as mentioned before, and
consider the prepossessing techniques to be enough for them. But not all of them went in
that direction few of them did use specific techniques for the Feature Reduction instead of
keeping the results of simple techniques such as steaming and stop words removal.

F
ea
tu
re

S
el
ec
ti
on

Information Gain Huang et al. [23], Chen et al. [30]
Log Odd Ratio D. C. Das and Md. R. Rahman [50]

Not Specified

Gegick et al. [53] , Wijayasekara [5], M. M. Rahman and S. Yeasmin [31], Shuai et
al.[4], Behl et al. [41], Wijayasekara et al. [32], S. Mostafa and X. Wang [6], J. P. Tyo
[54], M. Davari [42], Spanos et al. [29],Y. Zhou and A. Sharma [43], Pandey et al. [51],
Zou et al. [44], J. Tyo [55], G. Spanos and L. Angelis [21], O. Jormakka [22], L. Wan
[49],Mostafa et al. [7], S. E. Sahin and A. Tosun [24], Le et al. [25],Shu et al. [35],
Pereira et al. [56], Peters et al. [36], Catolino et al. [45], S. S. Alqahtani [33], Palacio
et al. [34], Bulut et al. [48], Shu et al. [37], Zhang et al. [52], A. Duppils and M.
Tullberg [27] , Wu et al. [38] , T. M. Adhikari and Y. Wu [28] , Jiang et al. [8] , Z. S.
M. Alharthi and R. Rastogi [46] , Bhuiyan et al. [47], Kudjo et al. [26]

Table 3.8: Feature Selection studies distribution.

As mentioned before, when we referred to the prepossessing those were the only ones

16

State of the Art

D
im

en
si
on

R
ed

u
ct
io
n

Singular Value Decomposition Gegick et al. [53]
Linear Discriminant Analysis (LDA) Pandey et al. [51], Zhang et al. [52]

Not Specified

Wijayasekara [5], M. M. Rahman and S. Yeasmin [31], Shuai et
al.[4], Behl et al. [41], Wijayasekara et al. [32],S. Mostafa and X.
Wang [6], J. P. Tyo [54], M. Davari [42], Spanos et al. [29],Y. Zhou
and A. Sharma [43], Zou et al. [44], D. C. Das and Md. R. Rahman
[50], J. Tyo [55], G. Spanos and L. Angelis [21], O. Jormakka [22],
L. Wan [49], Huang et al. [23], Mostafa et al. [7], S. E. Sahin and A.
Tosun [24], Le et al. [25],Shu et al. [35], Pereira et al. [56], Peters
et al. [36], Catolino et al. [45], S. S. Alqahtani [33], Palacio et al.
[34], Bulut et al. [48], H. Altunel, and A. Tosun, Shu et al. [37], A.
Duppils and M. Tullberg [27] , Wu et al. [38] , T. M. Adhikari and
Y. Wu [28] , Jiang et al. [8] , Z. S. M. Alharthi and R. Rastogi [46]
,Chen et al. [30] , Bhuiyan et al. [46], Kudjo et al. [26]

Table 3.9: Dimension Reduction studies distribution.

used to reduce the features, and very few studies made use of formal techniques. From
each approach (i.e., Feature Selection, Dimension Reduction) the maximum number of
references by technique were 3 as can be observed on Tables 3.8 and 3.9, those techniques
were Information Gain and LDA.

It is a mistake not using techniques to properly reduce the features can deteriorate the
performance of the tool, having a large feature set could make the model related to the
training data and not generalize it well. If that happens the model would work too well
on the training data-set, but it would fail on future unseen data and make its prediction
unreliable.

At last, the techniques used for vulnerability report classification. We found some diversity
in the techniques used with a focus on known techniques.

Figure 3.4: Distribution of Classification methods used.

Figure 3.4 shows that the studies tend to be a bit experimental, but still have a preference
for well-known approaches, seeing that they are being the most used ones. The technique
that took a lead was Naïve Bayes with slightly more articles preferring this method, fol-
lowed by Support Vector Machine, and Random Forest. These techniques are of most
common use for their efficiency on problems with high dimensionality such as text classi-

17

Chapter 3

C
la
ss
ifi
er

Naive Bayes

M. M. Rahman and S. Yeasmin [31], Behl et al. [41], D. Wijayasekara
[32], S. Mostafa and X. Wang [6], J. P. Tyo [54], M. Davari [42],
Pandey et al. [51], D. C. Das and Md. R. Rahman [50], J. Tyo [55],
Le et al. [25],Shu et al. [35], Pereira et al. [56], Peters et al. [36], T.
M. Adhikari and Y. Wu [28], Z. S. M. Alharthi and R. Rastogi [46],
Wu et al. [40], Wijayasekara [5], Catolino et al. [45], Shu et al. [37]

Suport Vector Machine

S. Mostafa and X. Wang [6], J. P. Tyo [54], Spanos et al. [29],Y. Zhou
and A. Sharma [43], Pandey et al. [51], Zou et al. [44], J. Tyo [55],
Mostafa et al. [7], Le et al. [25], Bulut et al. [48], Zhang et al. [52],
T. M. Adhikari and Y. Wu [28], Jiang et al. [8], Bhuiyan et al. [47],
Shuai et al. [4], O. Jormakka [22], Catolino et al. [45]

Decision Tree
Gegick et al. [53], Wijayasekara et al. [32], M. Davari [42], Spanos et
al. [29], G. Spanos and L. Angelis [21], S. E. Sahin and A. Tosun [24],
Kudjo et al. [26], Chen et al. [30], Zhang et al. [52]

K-Nearest Neigbor
P. Tyo [54],Y. Zhou and A. Sharma [43], Pandey et al. [51], J. Tyo
[55],Shu et al. [35], Peters et al. [36], Kudjo et al. [26], Jiang et al.
[8], Chen et al. [30], Bhuiyan et al. [47]

Random Forest

J. P. Tyo [54], M. Davari [42],Y. Zhou and A. Sharma [43], Pandey et
al. [51], J. Tyo [55], G. Spanos and L. Angelis [21], Le et al. [25],Shu
et al. [35], Peters et al. [36], Kudjo et al. [26], T. M. Adhikari and
Y. Wu [28], Jiang et al. [8], Chen et al. [30], Bhuiyan et al. [47],
Catolino et al. [45], Shu et al. [37]

Bayes Network M. M. Rahman and S. Yeasmin [31], J. P. Tyo [54]
Long Short Term Memory L. Wan [49], S. E. Sahin and A. Tosun [24]

Convolutional Neural Networks L. Wan [49], S. E. Sahin and A. Tosun [24], Palacio et al. [34], A.
Duppils and M. Tullberg [27]

Logistic Regression
Y. Zhou and A. Sharma [43], Pereira et al. [56], Peters et al. [36],
Zhang et al. [52], Wu et al. [38], Jiang et al. [8], Bhuiyan et al. [47],
Catolino et al. [45], M. Davari [42], Shu et al. [37]

Support Vector Regression Bulut et al. [48]
Deep Neural Network Huang et al. [23], Bhuiyan et al. [47]

Latent Dirichlet Allocation (LDA) Shuai et al. [4], Pandey et al. [51], S. S. Alqahtani [33], Zhang et al.
[52], Aljedaani et al. [39], Catolino et al. [45]

Isolation Forest O. Jormakka [22]
Local Outlier Factor O. Jormakka [22]
Multilayer Perceptron Shu et al. [37]
Hierarchical Attention Network A. Duppils and M. Tullberg [27]
Bagging Zhang et al. [52]
Boosting Zhang et al. [52]

Table 3.10: Classifier studies distribution.

fication. We were also able to identify that, for the last two years, that Neural Network
approaches are being implemented.

In this section, we will discuss the fourth question RQ-4 How are the data-sets parti-
tioned? and see how the data-set was partitioned.

As we can identify in Table 3.12 it is mostly used K-fold, since it is one of the most common
techniques used in settings where the goal is prediction, and one wants to estimate how
accurately a predictive model will perform. In practice, this is the case of the studies
searched.

Makes sense for K-fold to be a more used method the way it implements the separation
of training and test sets ensures that all folds are allowed to be used as a test set 1 time
and used to train the model K-1 times, this sees if our model has properly generalized our
data. In Hold-out we can not compare the results to models that have different training
data we can not ensure that our model has the best performance for unseen data.

In this last research question RQ-5 What are the metrics used for the evaluation of
the approach? aims at characterizing the type o metrics utilized by the studies to validate
the results. Figure 3.5 shows a prevalence on four metrics (i.e., F-measure, Precision,
Accuracy, Recall) with a few others (i.e., AUC, Matthews Correlation Coefficient, G-Score)
used by some studies.

18

State of the Art

P
ar
ti
ti
on

K-fold Cross Validation

Wijayasekara et al. [32], S. Mostafa and X. Wang [6], J. P. Tyo [54], M. Davari
[42], Spanos et al. [29], Y. Zhou and A. Sharma [43], Pandey et al. [51], Zou
et al. [44], D. C. Das and Md. R. Rahman [50], J. Tyo [55], G. Spanos and
L. Angelis [21], L. Wan [49], Mostafa et al. [7], Le et al. [25], Shu et al. [35],
Catolino et al. [45], Kudjo et al. [26], Zhang et al. [52], Jiang et al. [8], Z. S.
M. Alharthi and R. Rastogi [46], Chen et al. [30], Bhuiyan et al. [47], Wu et al.
[40], Shu et al. [37], O. Jormakka [22], Bulut et al. [48], T. M. Adhikari and Y.
Wu [28]

Hold-oud
Gegick et al. [53], J. P. Tyo [54], S. E. Sahin and A. Tosun [24], Pereira et al.
[56], Palacio et al. [34], A. Duppils and M. Tullberg [27], Huang et al. [23], Shuai
et al.[4]

Not Specified Wijayasekara [5], M. M. Rahman and S. Yeasmin [31], Behl et al. [41], S. S.
Alqahtani [33], Wu et al. [38], Aljedaani et al. [39], Peters et al. [36]

Table 3.11: Data-set Partition studies distribution.

Algorithm Total

K-fold 28
Hold-out 8

Not Specified 7

Table 3.12: Data-set Partition techniques used.

As we could gather from our analysis F-Measure, also called F-Score, is a model that is
used for evaluation of binary classification, and it is the model with the highest use among
the other methods, followed by Precision and Recall, which was not to our surprise since
to calculate F-Measure it is needed to calculate both the Precision and Recall of the model
in question. But since 2018 after the work of D. C. Das and Md. R. Rahman [50] and the
increasing number of studies done, Area Under The Curve (AUC) has started to gain some
attention since it is also a technique most commonly used to evaluate the performance of
a binary classifier.

3.2.2 Summary and Gaps of Related work

As we could understand from answering our questions, is that some aspects of creating a
Security Bug Report classification tool are experimental in some of its aspects, like what
is the composition of the data-set as well the amount of reports needed with most studies
preferring data-sets that come from applications with a size less than 50000, as which
classifier is best for the approaches. Concerning the classifiers, where the three most used
are known to have good performance with high dimensional data but recently has begun
appear some studies with attempts to make unsupervised approaches. But other aspects
are not that much experimental, for extraction of features TF-IDF is mostly chosen for its
capacity to determine the importance of terms in the global of its data-set and not locally
(inside a Bug Report), the metrics and partition as well, both have its set of most used
techniques.

As identified and mentioned in theRQ-3 there is a gap associated with the processing of the
features, most did not make use of formal techniques, which may imply several challenges,
namely the complexity or time to process or even the result and reliability of the classifier.
This problem could come from the unnecessary large dimension of features, that may
come with a badly generalized set of features making the model present itself unreliable
when classifying future unseen reports, since having such a large dimension means that
the classifier could be too close to the information presented on the Bug Report that it
is not capable to generalize the information making it perform well on the same data-set,
but not well enough on others.

19

Chapter 3

M
et
ri
cs

F-measure

S. Mostafa and X. Wang [6], M. Davari [42], Spanos et al. [29], Pandey
et al. [51], Zou et al. [44], J. Tyo [55], G. Spanos and L. Angelis [21],
L. Wan [49], Huang et al. [23], Mostafa et al. [7], S. E. Sahin and A.
Tosun [24], Le et al. [25], Catolino et al. [45], Kudjo et al. [26], S. S.
Alqahtani [33], Bulut et al. [48], Shu et al. [37], A. Duppils and M.
Tullberg [27], Wu et al. [38], T. M. Adhikari and Y. Wu [28], Jiang et
al. [8], Z. S. M. Alharthi and R. Rastogi [46], Chen et al. [30], Bhuiyan
et al. [47], Wu et al. [40]

Precision

Shuai et al.[4], Behl et al. [41], M. Davari [42], Spanos et al. [29],Y.
Zhou and A. Sharma [43], Zou et al. [44], J. Tyo [55], G. Spanos and
L. Angelis [21], L. Wan [49],Huang et al. [23], Mostafa et al. [7], S.
E. Sahin and A. Tosun [24], Kudjo et al. [26], S. S. Alqahtani [33],
Bulut et al. [48], A. Duppils and M. Tullberg [27], Wu et al. [38], T.
M. Adhikari and Y. Wu [28], Jiang et al. [8], Z. S. M. Alharthi and R.
Rastogi [46], Chen et al. [30], Bhuiyan et al. [47], Wu et al. [40]

Accuracy

Gegick et al. [53], M. M. Rahman and S. Yeasmin [31] M. Davari [42],
Spanos et al. [29], Pandey et al. [51], Zou et al. [44], J. Tyo [55], G.
Spanos and L. Angelis [21], Huang et al. [23], Le et al. [25], Pereira et
al. [56], Kudjo et al. [26], Palacio et al. [34], Wu et al. [38], Z. S. M.
Alharthi and R. Rastogi [46]

Recall

M. Davari [42], Spanos et al. [29], Y. Zhou and A. Sharma [43], Zou et
al. [44], J. Tyo [55], G. Spanos and L. Angelis [21], L. Wan [49], Huang
et al. [23], Mostafa et al. [7], S. E. Sahin and A. Tosun [24], Shu et al.
[35], Kudjo et al. [26], S. S. Alqahtani [33], Bulut et al. [48], Shu et al.
[37], A. Duppils and M. Tullberg [27], Wu et al. [38], T. M. Adhikari
and Y. Wu [28], Jiang et al. [8], Z. S. M. Alharthi and R. Rastogi [46],
Chen et al. [30], Wu et al. [40]

Area Under the Curve
D. C. Das and Md. R. Rahman [50], O. Jormakka [22], Pereira et al.
[56], Catolino et al. [45], Kudjo et al. [26], Palacio et al. [34], Bulut et
al. [48], Zhang et al. [52], Chen et al. [30], Wu et al. [40]

Matthews Correlation Coefficient Kudjo et al. [26], Chen et al. [30]
G-Score J. P. Tyo [54], J. Tyo [55], Peters et al. [36], Jiang et al. [8]
Bayesian Detection Rate Wijayasekara [5]

Probability of false alarm Wijayasekara [5], J. Tyo [55], Shu et al. [35], Shu et al. [37], Jiang et
al. [8]

Table 3.13: Metrics studies distribution.

Another aspect that could be seen as a gap, is that most studies presented an unbalanced
distribution between Security Bug Report and Non-Security Bug Report, as mentioned
before when answering the research question RQ-2 this is problematic since it could lead
to creating a bias classifier, making it not have reliable results. Having a bias classifier
means that when faced with data where it does not have enough information to give a
classification they will end up classifying the data with the same class as the class with a
higher quantity of data.

20

State of the Art

Figure 3.5: Distribution of Metrics for evaluation used.

21

Chapter 4

Data and Methods

In this section, we will discuss the approach used on the experiments made in this thesis,
which encompasses the following steps:

1. Collection and preprocessing of the dataset: where it is explained where the
datasets were taken from as well as the techniques used for the reduction of the
vocabularies;

2. Feature Extraction: focus on the explanation of the TF-IDF;

3. Feature Selection: it is explained the functionality of the four feature selection
algorithms used;

4. Configuration and Training of the Classifiers: in here it is presented with the
explanations on how each classifier implemented;

5. Classifiers Performance Assessment: for last we have detailed all the metrics
used in the process of evaluating the performance of the experiments.

The experiments were done in a machine with the following configuration:

• Processor: Intel(R) Core(TM) i7-7700HQ CPU @ 2.80GHz 2.81

• Installed RAM: 16GB

• Operation System: Windows 10

• System Type: 64-bit operating system

4.1 Colletion and preprocessing of the dataset

The creation and preprocessing of the dataset used in this work involved the following
steps:

i Selection of a set of projects;

ii Retrieval of a set of bug descriptions related to security and non-security the projects
bug tracking platforms;

22

Data and Methods

iii Tokenization and filtering of the descriptions

We started by selecting seven different projects from three different tracking systems.
From Launchpad bugs from Openstack and Ubuntu; from Jira we picked bugs Kafka and
Hadoop; and bugs from MySql, Firefox, and Eclipse were taken from Bugzilla. In total
277093 closed and resolved bug reports were collected with 8689 of them being related to
security, in Table 4.1 it can be observed in more detail the composition of the dataset.
During this process, some reports were verified to ensure the reports were not misclassified
before our experiments so it would not affect the performance of the experiments.

Project Security Non-Security Tracking System Language

Kafka 42 2046 Jira Java
Hadoop 546 13938 Jira Java

Openstack 357 90728 Launchpad Python
Ubuntu 3157 87703 Launchpad C
Firefox 4229 32335 Bugzilla C++ and JavaScript
MySql 171 28477 Bugzilla SQL
Eclipse 187 13177 Bugzilla Java

Table 4.1: Number of bugs collected from each project.

The information gathered from the bug reports used for the experiments were the title
4.1, and description 4.2 of the bug. After collecting the bugs we start to preprocess
the information collected to execute this task the Matlab’s [57] toolbox Text Analytics
Toolbox [58].

Figure 4.1: Example of a bug title

We first tokenize all the document using tokenizedDocument function, after tokenizing the
document we intent remove unnecessary information and for that, we use the functions:

• addPartOfSpeechDetails: detects parts of speech in documents and updates the token
details. The function, by default, retokenizes the text for part-of-speech tagging. For
example, the function splits the word "you’re" into the tokens "you" and "’re";

• removeStopWords: removes the stop words from the tokenizedDocument array doc-
uments;

• normalizeWords: reduces the words in documents to a root form;

• erasePunctuation: erases punctuation and symbols from documents.

After preprocessing our data, the data is separated into training and testing sets using 10
Fold cross-validation. We decided to do undersampling for training while for the test we
keep all the data. The undersampling was implemented by randomly selecting reports from
the majority class (Non-security) to have at the end the same number of reports observed
in the minority class (Security).

23

Chapter 4

Figure 4.2: Example of a bug description.

4.2 Feature Extraction

The goal of this step is to extract representative values from the reports’ texts for in-
formative words. The Feature Extraction used was TF-IDF even though there are other
methods, namely: Bag-of-Words or Term Frequency.

The reason Bag-of-Words was not used is that because it only counts the number of times
a word appears in a document. Doing this does not distinguish properly represent the
importance a word has on a document or in the entire dataset.

The TF technique was not used because it counts the appearances of the word in the
document given a higher value to the words that appear often in a document. This is
problematic since the words that would have the highest value would be words common
to appear in our context, making the classifiers most likely show poor performance.

The TF-IDF evaluates the relevance of the word in the collection of documents allowing
us to understand its importance for a certain document, and to calculate the TF-IDF for a
word in a document it is needed to multiply two different metrics. The TF part counts the
appearances the world has in a document and the IDF is the ratio between the number of
documents where a certain term t appears and the total number of documents. Using this
method ensures that common words with higher counts in the entire dataset has a smaller
value of importance for the classification problem.

The IDF value for a certain term t in the dataset D is calculate by the given Equation 4.1:

IDF (t,D) = log

(
O

dft

)
. (4.1)

where O represents the number of documents in the data set D, and the denominator is

24

Data and Methods

the number of documents where the given term t appears, if the mentioned denominator
is 0, it is added 1 so that the division becomes possible. When the values for the TF and
IDF are multiplied we obtain the value TF-IDF, this allows us to know the importance a
word has to each document. A word has more importance when it appears several times
in a document and a few times in the dataset.

The TF represents the times a term t is in the a document d, in the end the reports are
represented, given us the following Equation 4.2

TF − IDF (t, d,D) = TF (t, d)× IDF (t,D) (4.2)

4.3 Feature Selection

Four feature selections were selected in this study and they were: Chi-Square, Minimum
Redundancy Maximum Relevance (MRMR) [59], F-Test, and SVM-RFE. The most com-
mon method used when dealing with text data is the Chi-Square or X 2. This is used to test
the independence of two events, more specifically in our case, test whether the occurrences
of a specific term and a specific class are independent.

X 2 dependence test is a hypotheses Test, so the two hypotheses are as follows:

• Null Hypothesis H0: Assumes there is no dependence between the term and the class
variables;

• Alternative Hypothesis H1: Assumes there is dependence between the two variables.

With it, we compare the results below:

• Expected Result - We calculate the result following the H0 assumption;

• Observed Result - This is what the testing(training) data presents

Then each term is ranked by the value returned by the following Equation 4.3:

X 2(D, t, c) =
∑
et∈1,0

∑
ec∈1,0

(Oetec − Eetec)2

Eetec
(4.3)

Where O is the observed frequency, in other words, the actual observed data, for example,
you roll a dice ten times and then count how many times each number is rolled and E the
expected frequency, meaning the count is calculated using probability theory, for instance,
before you roll a six-sided dice you calculate the probability of any one number being rolled
as 1/6, et takes the value 1 if the document contains the term t and 0 otherwise and ec
takes the value 1 if the document is in class c and 0 otherwise. The high scores a term
receives indicate that the term and the class of the document should be dependent.

A similar method to Chi-Square is using univariate Feature Ranking Using F-Tests ex-
amines the importance of each feature individually using an F-test. Each F-test tests the
hypothesis:

• Null Hypothesis H0: The class values grouped by feature values are drawn from
populations with the same mean;

25

Chapter 4

• Alternative Hypothesis H1: the population means are not all the same.

A small p-value of the test statistic indicates that the corresponding predictor is important.

Next, we have MRMR [59]. MRMR aims to select, from among the features, the ones
that show a low correlation among each other but still have a high correlation with the
classification labels, meaning if a feature A and a feature B are relevant, but they both
bring the same information, MRMR will select only one of them and discard the other.
MRMR works iteratively, it identifies the best feature and adds to a set of selected features.
A features importance can be obtained by the following Equation 4.4:

f(Xi) = I(Y,Xi)−
1

|S|
∑
Xs∈S

I(Xs, Xi) (4.4)

where Xi is the feature to determine the importance with i ∈ {1, 2, . . . , n} when n is the
total number of features and Xi /∈ S, Y is the class labels, S is the set of feature that
were already selected, |S| is the total number of features already selected, Xs is one of
the features belonging to the feature set S, and I(�, �) is the function that calculates the
mutual information.

And for last we have SVM-RFE which is a wrapper feature selection method. SVM-RFE
is an application of RFE using the weight magnitude of a linear SVM classifier as ranking
criterion. We present in Algorithm 1 an outline of the algorithm, made by Guyon et al. in
[60]:

Algorithm 1 SVM-RFE:
Input:
X0 = [x1, x2, · · · , xk, · · · , xl]T . Training examples, where each x is a vector with each
example information
y = [y1, y2, · · · , yk, · · · , yl]T . Class labels
Initialize:
s = [1, 2, · · · , n] . Subset of surviving features
r = [] . Feature ranked list
Repeat until s =[]
X = X0(:, s) . Restrict training examples to good feature indices
α = SVM − train(X, y) . Train the classifier
w =

∑
k αkykxk . Compute the weight vector of dimension length(s)

ci = (wi)
2 , for all i . Compute the ranking criteria

f = argmin(c) . Find the feature with smallest ranking criterion
r = [s(f), r] . Update feature ranked list
s = s(1:f - 1, f + 1:length(s)) . Eliminate the feature with smallest ranking criterion
Output:
r . Feature ranked list

4.4 Classifiers

In this section, we will discuss and explain the functionality of the five classifiers used
in this study: k-Nearest Neighbor, Naïve Bayes, SVM, Linear classifier, and Discriminant
classifier. For each classifier three types of experiment were made, one in which the training

26

Data and Methods

data is developed based on the title and description, another where training was just based
on the title, and one that is based on the description.

At first we describe a generic Linear classifier, defined as:

y = f(~w · ~x) = f

∑
j

wjxj

 (4.5)

where ~w is the vector of weights, ~x is the features vector and f(·) is the function given by:

f(w · x) =

{
1 if w · x > T

0 otherwise
(4.6)

where T is a threshold to determine in which value to separate the classes.

Following Linear classifier we have Discriminant Analysis classifier, this classifier uses three
values to classify its observation: posterior probability, prior probability, and cost.

ŷ = argmin
y=1,...,K

K∑
k=1

P̂ (k|x)C(y|k) (4.7)

where ŷ is the predicted class,K is the number of classes, P̂ (k|x) is the posterior probability
of class k for observation x and C(y|k) is the cost of classifying an observation as y when
its true class is k. In [61] Matlab explains in more detail and explanation this classifier.

KNN labels a new pattern by finding its k closest neighbors and by making its label the one
with the highest count among its neighbors, for that it is better to have an odd count of
neighbors to ensure there is a class with a higher count then the other. The best parameter
k is obtained with experimentation. In in this work eight different values were considered:
5, 7, 9, 11, 13, 15, 17, and 19. And for the calculation of the distance, we use the default
Euclidian distance.

Now we will discuss the Naïve Bayes. As the name implies it is based on the Bayes rule,
given by the Equation 4.8 bellow:

P(ω|x) = P(ωi)P(x|ωi)
P(x)

(4.8)

In the Equation 4.8 the x represents the feature vector of the report to be classified, ωi
represents the different classes, in our case SBR and NSBR, P(x|ωi) is the likelihood for
class ω and describes the probability of x knowing ωi, P(ωi) is the prior probability and is
computed by assessing the relative number of patterns belonging to ωi in the training data.
P(x) is the probability of x independent of its class. In the end the class of x is given by
the biggest P(ωi). Then in the training of the classifier its objective is to determine P(ωi)
and P(x|ωi) for every class, where P(x|ωi) can be given simply by:

P(x|ωi) ≈
n∏
k=1

P(xk|ωi) (4.9)

where xk is a given value of the kth feature and n is the total number of features. In
relation to the distribution type assumed for each P(xk|ωi), in this paper we considered
the Multivariate multinomial distribution.

27

Chapter 4

The SVM objective is to find a hyperplane in an N-dimensional space that can classify
the data points correctly, where n is the number of features. This hyperplane however can
not be any possible one, it has to be the one that maximizes the margin that separates
two different classes. This hyperplane is the boundary that classify the data points, the
class of the data points is attributed depending on which side of the hyperplane. If we
consider a training data pair {xi, yi} that is non-linearly separable where i = 1, · · · , N ,
the class labels are defined by yi ∈ [−1, 1] and the corresponding feature vectors can be be
represented as xi ∈ Rd, where the Equation 4.10 defines the hyperplane:

yi(wTxi + b) > 1− ξi; yi ∈ [−1, 1] (4.10)

where the vector normal to the hyperplane is represented byw = [w1, . . . , wd]
T and and the

degree of misclassifications is quantified by ξ. To obtain w and b it is needed to minimize
the criterion in Equation 4.11.

Ψ(w) =
1

2
‖w‖2 + C

N∑
i=1

ξi, is subject to yi(wTxi + b) > 1− ξi; i = 1, . . . , N (4.11)

where the influence of ξ on Ψ is defined by C, this influence of C is also tested in our
experiments.

But usually, the classification problem has fairly complex data that is not linearly separable.
For that SVM enable a data transformation to mirror the data into a new high-dimensional
space in a way that the problem becomes linearly separable.

d(x) = w1f1(x) + . . .+ wkfk(x) + b (4.12)

where the non-linear transformation from the original plane to the new plane of dimension
k is represented by f = [f1, . . . , fk]

T . And by considering the dual optimization we can
demonstrate that the decision function is as follows:

d(x) =
∑
SV s

αiyifT (xi)f(x) =
∑
SV s

αiyi(fT (xi) · f(x)) =
∑
SV s

αiyiK(xi,x). (4.13)

Where the Lagrange multipliers are the αi. K(xi,x) = f(xi) is inner-product kernel, where
the most popular and used one is the Gaussian RBF:

K(xi,x) = e
‖x−xi‖2

2σ2 = e−γ‖x−xi‖
2

. (4.14)

γ = 1
2σ2 is the parameter that controls the aperture of the kernel function, and go trough

a tuning procedure in conjunction with the parameter C.

4.5 Classifiers Performance Assessment

To validate the classifiers, it was used K-Fold Cross Validation was applied with the most
common number of folds, i.e, K = 10. Supposing that the dataset is composed of X reports,
the algorithm will split the dataset in K folds, after splitting the data the classifiers are
trained K times. In each iteration, the training set consists of K-1 parts, this way each part
is used once as the test set and K-1 times as the training set. After the test is complete
the following measurements were taken:

28

Data and Methods

• True positive (TP): number of reports correctly classified as security vulnerability;

• False positive (FP): number of reports of the non-vulnerability class wrongfully clas-
sified as containing a vulnerability issue;

• True negative (TN): number of reports correctly classified as non-vulnerability;

• False positive (FN): number of reports of the security vulnerability class wrongfully
classified as not containing a vulnerability issue;

We evaluate the algorithms with 5 metrics: accuracy, recall, precision, F-Measure

accuracy =
TP + TN

TP + FP + TN + FN
(4.15)

recall =
TP

TP + FN
(4.16)

precision =
TP

TP + FP
(4.17)

F −Measure =
(2× precision× recall)
precision+ recall

, (4.18)

and at last, the AUC, the AUC represents the performance measurement of the classifier
at a different threshold. By calculating ROC we get a probability curve between the TPR
and FPR, helping us visualize how much the model can distinguish two classes (see Figure
4.3).

Figure 4.3: Example of a ROC curve.(Image taken from [3])

A classifier with good performance can have the curve closer to the value 1 on the TPR
axis and closer to 0 on the FPR axis (Figure 4.4).

But having graphs is complicated when it is desired to make comparisons with several
other experiments, so AUC is used as a value that represents the graphs, it is the value of
the area below the curve. An AUC value close to 1 would mean the closer the curve is to
the optimal curve. .

29

Chapter 4

Figure 4.4: Example of a optimal ROC curve.(Image taken from [3])

30

Chapter 5

Results and Discussion

This section discusses the results obtained from the different experiments. The experiments
were made using undersampling to have the same quantity of reports from both classes
on the training data, while the test data remained with the same proportions as it is
found in a real world scenario. With it, three experiments were made one using the title
and description of the reports, another using only the title, and another using only the
description. The values presented in this section refer to the average of the Area Under
the Curve results obtained after running all experiments with K-Fold Cross-Validation. In
all experiments the test of Kolmogorov Smirnov was used to test normality and when then
the Kruskal-Wallis test was used when data normality was rejected.

This section is also divided into three parts, the first part is an analysis of the results when
using all the projects. In the second part, we have another analysis of results but based
on experimentation using one project. And for last a compilation of the main findings.

The stars in the graphs represent that there is a significant differences between pairs. Stars
are drawn according to:

• * represents a p-value≤ 0.05

• ** represents a p-value≤ 1× 10−2

• *** represents a p-value≤ 1× 10−3

5.1 Analysis of results using all projects

To verify the influence of the different aspects of our experiments a statistical analysis was
implemented to verify if there is or not a statistical difference between experiments. So in
the first place, an analysis of the data distribution was made to verify data normality, and
for that Kolmogorov Smirnov test was used. In the first case, we will analyze the impact
of information used, i.e., only Title, only Description, or Title and Description together.

The Kolmogorov Smirnov test was verified that, with a confidence level of 95%, indicated
that data is not normal and consequently, the non-parametric Kruskal-Wallis test was
considered. After executing the Kruskal-Wallis test, the observation was that all three
methods present performance values that are statistically different.

In Figure 5.1, we can see that using only the Title leads to slightly worst results than using
Title and Description, and using only the Description is the one with the worst values.

31

Chapter 5

Title Description Title and Description
50

55

60

65

70

75

80

85

90

95

100

Figure 5.1: Statistical comparison of the data used on the model.

Now to compare the different feature selections used in this study, we did the same test of
normality of Kolmogrov Smirnof. The hypothesis of the data following a normal distribu-
tion was rejected which makes use the same non-parametric test.

Chi MRMR F_Test RFE
55

60

65

70

75

80

85

90

Figure 5.2: Statistical comparison of the different Feature Selections used.

After implementing the Kruskal-Wallis test, we can observe in Figure 5.2 that Chi-Square
and F-test present similar results and above the other two feature selections, with Recursive
Feature Elimination (RFE) presenting the worst results overall. F-test and Chi-Square
presented the best results.

Before comparing the performance obtained with the different classifiers, an analysis of
which k in KNN, and which C in SVM presents best results was implemented. After that,
the best k and C values will be fixed and used in the remaining analysis.

Again with KNN we did the same test of normality of Kolmogorov Smirnov, and again the
data normality was rejected and with Kruskal-Wallis test, it was observed that using a k
equal to 15 is the one that has a difference with some of the other k’s as seen in Figure 5.3.

32

Results and Discussion

KNN5 KNN7 KNN9 KNN11 KNN13 KNN15 KNN17 KNN19
50

55

60

65

70

75

80

85

90

95

100

*

*

**

**

**
**

Figure 5.3: Statistical comparison of the KNN with different number of neighbors.

As we can observe in Figure 5.3 the mean results of k equal to 15 are the lowest of them.
So we used the k equal to 19 to make the comparison between models, although in this
case all others could be used in place of 19, the only exception being 15.

Again with SVM with the different parameter C we did the same test of normality and
also an individual test with the graphs for each, in the test used when the normality is
rejected it was observed that using a C equal to 2−14 is the one that has a difference with
the other parameter C as seen in 5.4, with the only exception being the parameter C equal
to 2−12.

C = 2^0 C = 2^-2 C = 2^-4 C = 2^-6 C = 2^-8 C = 2^-10 C = 2^-12 C = 2^-14
50

55

60

65

70

75

80

85

90

95

100

**

**

**

*

*

Figure 5.4: Statistical comparison of the SVM with different values for parameter C.

As we can observe in 5.4 the mean results of C equal to 2−14 are the lowest them, with C
equal to 2−12 the second-worst, and what can also be observed is that there is not a big
difference in means on the rest of experiments, so we used the C equal to 2−8 but any of
the others could also be used for the comparisons that follow.

Now it is time for the model comparison, same as the other tests we begging with testing
the normality of the data and once again it is rejected with a 5% significance level, then

33

Chapter 5

Kruskal-Wallis test is implemented that gives the results seen in Figure 5.5

Linear Discriminant NaiveBayes SVM KNN SVMGrid
55

60

65

70

75

80

85

90

Figure 5.5: Statistical comparison of the different Classifiers.

As we can observe both SVM with the default parameter C and the SVM with our selected
parameter C (SVMGrid) present no significant difference and have the highest mean fol-
lowed by Naive Bayes that has no difference with SVM, but does have with the SVM with
our custom parameter C. KNN on the other hand presents the worst results, this may be
because it has to look to the k closest points to determine the class, which can lead to
some miss classification if an appropriate k is not found.

For last we have the comparison of the different range of features used. In this part of the
experiments we wanted to see the influence in the use of a different range in features had
in the classification, our range varied from 120 features to 300 with jumps of 20. Just like
the others the test of the null hypothesis of the data following a normal distribution was
rejected, with that, a Kruskal-Wallis test is implemented as can be observed in Figure 5.6

120 140 160 180 200 220 240 260 280 300
50

55

60

65

70

75

80

85

90

95

100

* ** *** *** *** *** *** ***
* ** ** ** *** *** ***

* ** *** ***

* ** ***

* **

* **

*

Figure 5.6: Statistical comparison of the different quantities of features used.

Interestingly the means do not have a big difference for more than 240 features, and it
appears to stagnate for more features than this number.

34

Results and Discussion

To simplify the analysis, and give an overview of the obtained results, we selected the value
of 300 features, but as discussed in the previous section 240 and 280 do not have a big
difference from 300 so they could also be used for this presentation.

Figure 5.7: Results from experiment using only the Titles.

Figure 5.8: Results from experiment using only the Description.

As we can observe from the Tables 5.7, 5.8 and 5.9 that the results from measurements
that do not take into account the difference in data from the different classes have quite
mixed results, for example, accuracy represents the value of correctly classified documents
and looking at the results and not the data we could say that it has a great performance,
but the problem is that from ≈ 27.000 documents that were part of the testing set only
around 800 were considered the positive class, being a security bug report, so the high
value in the accuracy could be the correctly classified from the negative class, non-security
bug reports, that offsets the ones from the positive.

35

Chapter 5

Figure 5.9: Results from experiment using Title and Description.

The same can be observed with precision, the great difference in the number of documents
from each class especially having more documents from the negative one leads to a higher
quantity of false positives leading to very low precision. Recall although not affected by
the different quantity of reports of each class, in our case, is not a very good metric exactly
for that even though it presents good values.

We gave also importance to another metric the AUC, which is also an appropriate mea-
sure for unbalanced data-sets. The higher values of AUC the better the classifier are in
distinguishing the two classes.

5.2 Analysis of results using one project

A similar analysis as presented in the previous section was done, but this time only one
project is used. Firefox was the one decided to be used for having the highs number of
security bug reports compared to the other projects. The goal of the second experimen-
tation is to see if the use of multiple projects would have an impact on its performance
compared to using only one project.

As we can observe in Figure 5.10 for the different data used in the model, we see a significant
difference compared with the previous experiment. The title is now the one with a better
median instead of the use of Title and Description that has a lower median than the
experiments with all projects, and the same can be observed on Description. This difference
observed can probably be since we have only descriptions of the problem of Firefox and
descriptions that were identified as of a security problem on other projects are not present
and perhaps not pushing those terms to have a better relevance when identified by a
feature selection. On the other hand, Title has a better performance for it having terms
only related with their project which could make their specific terms more relevant overhaul
when helping identify their documents class.

This pattern can be observed on the other graphs as well, but we will discuss them one by
one. At first, we have the feature selection on Figure 5.11, this one does not have more to

36

Results and Discussion

Title Description TitleAndDescription
50

55

60

65

70

75

80

85

90

95

100

Figure 5.10: Statistical comparison of the data used on the model.

Chi MRMR F_Test RFE

55

60

65

70

75

80

85

90

Figure 5.11: Statistical comparison of the different Feature Selections used.

add, its differences with the experiment with multiple projects is the same as the previous
example, the difference is slightly lower medians and lower low values, with MRMR being
the only exception having a higher lower value than with all projects, this could be because
of how MRMR selects its features, as explained in Chapter 4m since all terms are related
to a single project it is easier to identify terms that are important since terms only present
in this project can be selected.

Now on KNN, Figure 5.12, the situation is a little different. The median value saw an
improvement instead of being worse, but the highest and lowest values saw a decrease in
value. This happens due to the presence of more particular terms is why we can see this
slight improvement in the median, these terms only present in the Firefox project probably
help in separate better between the two classes which helps the KNN to determine a reports
class.

With the different values of C when using SVM a similar decrease in performance is seen
like with using different data to do the experiment or feature selection, Figures 5.10 and
5.11, and also a worst statistical differentiation between them similar to what we saw in

37

Chapter 5

KNN5 KNN7 KNN9 KNN11 KNN13 KNN15 KNN17 KNN19
50

55

60

65

70

75

80

85

90

95

100

*

*

**

*

*

Figure 5.12: Statistical comparison of the KNN with different number of neighbors.

C = 2^0 C = 2^-2 C = 2^-4 C = 2^-6 C = 2^-8 C = 2^-10 C = 2^-12 C = 2^-14
50

55

60

65

70

75

80

85

90

95

100

*

*

*

Figure 5.13: Statistical comparison of the SVM with different values for parameter C.

KNN.

Now for last, we will discuss the different classifiers and numbers of features used, Figure
5.14 and 5.15 respectively. Here the difference in performance is slightly worse as well when
compared to when we used several projects. In the case of the classifiers, this could be for
the nonexistence of several terms that are present in the other projects that better help
in this problem in classification and its several aspects. KNN is the only exception, is the
only classifier that had an improvement in the use of only one project, but although with
this improvement it is not enough to make it the better option. In the case of the features,
there is a slight reduction in performance, but we can still see the indifference when using
more than 240 features.

5.3 Main findings

In this part, we will discuss the main findings when we look at the results that we obtained.

38

Results and Discussion

Linear Discriminant NaiveBayes SVM KNN SVMGrid

55

60

65

70

75

80

85

90

Figure 5.14: Statistical comparison of the different Classifiers.

120 140 160 180 200 220 240 260 280 300
50

55

60

65

70

75

80

85

90

95

100

* ** *** *** *** *** *** ***
* ** *** *** *** *** ***

* ** ** *** ***

* * ** **

* **

*

Figure 5.15: Statistical comparison of the different quantities of features used.

• As discussed previously in this chapter, using only the Title as input data to train the
model, produces results worst than using as input data the Title with Description,
But since the difference, although not negligible, are minimal we can search for other
aspects than simply the performance in results to see a benefit in using only the Title
as input data, for example when it is observed the time it takes to train the models
we could observe differences up to 3 days for the completion of the experiments with
using only the Title being the one that takes less time;

• A linear or probabilistic approaches like SVM and Naive Bayes are two of the best
approaches with the Discriminant classifier being a little behind them. Another clas-
sifier that sees a good result would be SVM when we execute a search for parameter
C, but the search for a parameter C has a negligible improvement in results compared
to the time it takes to conclude the experiments are. The lack of improvement makes
it not worth it when having large datasets since the normal SVM already obtains
great results;

• When using a single project to train the model, instead of using several projects, we

39

Chapter 5

can observe that it produces a minor difference between them. The use of one project
has a decrease in performance of the results, but all the steps for when training a
model took significantly less time than when using several projects, obviously because
of the low quantity of data to process;

• The more features (words) that are used the better the results obtained, as can be
observed in the two Figures 5.2 and 5.11 the higher the count of features used the
better they get, but as can also be observed that for more than 240 features no
significant improvements in performance was observed;

• Feature selection with filter is better than making use of SVM-RFE. But we can
not guaranty that they are better than a wrapper type since we do not have more
examples to compare.

Concerning how our work compares to the other works done previously, in terms of per-
formance. We had mixed conclusions, the precision and recall on those studies had better
results, but as far as we can tell we are the firsts to do undersampling only on the training
data and not on testing data. But the interesting aspect is that we do have higher values
in the AUC when compared to some studies [22, 26, 30, 34, 48] that made use of it with
a minimum improvement in the performance of around 3% [30], when comparing highest
value obtained.

40

Chapter 6

Conclusion

Software verification and validation include numerous important activities that can be used
to build more reliable software. Whenever a bug is registered, the proper resources need
to be allocated. The primary matter is to decide if the report is indeed a bug. Then a
priority is given, meanwhile, information such as the nature of the error, impact, how to
reproduce it, etc. have been added to the given tracking system, which allows the developer
to correct them. If it’s not detected and classified correctly, then the entire process will
become very inefficient, which in itself is a time-consuming task. Companies like Banks,
Google, Facebook, etc. could suffer if a bug is incorrectly classified as a non-security bug,
the company could suffer from hackers attacks or reveal user-sensitive information.

In this thesis, we present a review of the state-of-the-art concerning Security Bug Report
classification and the results and findings of our experimentation. We analyzed a final set
of 42 papers. The focus was to answer five main questions related to i) the objective of the
works ii) the characteristics of the datasets; iii) the most used pipeline; iv) the partition
of the dataset; v) the metrics used for the evaluation of the approach. The discussion
identified a clear gap related to how the features are processed.

Based on the analyzes of the state-of-the-art, we designed an approach for classifying
Security Bug Report. As our main findings, we found out that the use of several projects
have a performance similar to the use of a single project as well as finding out that some
of the approaches used do indeed affect the performance of the model for example KNN
presenting a visible performance problem when compared to the other classifiers.

One of the main difficulties found during the identification of works is related to the use of
different terms to refer to classifying Security Bug Report across authors. This may have
led us to wrongly exclude certain papers as well as to include less relevant papers. Since
the process relies heavily on the richness of the data available in the online databases, the
final set of papers may be incomplete, in case research is neither properly indexed nor
present by the online databases. To minimize the effects of this threat, we make use of
a total of six online databases, which are well-known and frequently used in this type of
study. Also, the search string used to search the online databases may be weak leading to
either too many results (including irrelevant ones) or too little. To resolve this issue, we
included different words based on common terms used by authors, which we found in a
preliminary analysis of the state-of-the-art.

The other difficulties came when executing the experiment those experiments took much
more time to execute than expected, due to the amount of data collected that we had to
make use of undersampling the data used for training although it had a much better time

41

Chapter 6

than using all the information collected it still took longer than expected to complete.

And as for some ideas on what to the in future experiments, that we were unable to execute
in this thesis. For starters what could be done in future work could be of making use of a
better method of fine-tuning the SVM with a better grid search approach not only to the
parameter C, but also to other aspects of this classifier, to do a more refined search for
configuration on different value like the parameter C, the Epsilon, KernalScale. The same
can be said for Naive Bayes, although not having as many values to test with as SVM it
does have some, like the Distribution of the data at the start we had it set for a normal
distribution, but after testing with Multivariate multinomial distribution we obtained a
better set of results and used it for the rest of experiments.

42

References

[1] TRY QA. http://tryqa.com/what-is-a-defect-life-cycle, Last accessed
September 2021.

[2] O’Reilly. https://www.oreilly.com/library/view/feature-engineering-for/
9781491953235/ch04.html, Last accessed September 2021.

[3] Towards Data Science. https://towardsdatascience.com/
understanding-auc-roc-curve-68b2303cc9c5, Last accessed June 2021.

[4] B. Shuai, H. Li, M. Li, Q. Zhang, and C. Tang. Automatic classification for vulnera-
bility based on machine learning. pages 312–318, 2013.

[5] D. Wijayasekara, M. Manic, J. L. Wright, and M. McQueen. Mining bug databases
for unidentified software vulnerabilities. pages 89–96, 2012. ISSN: 2158-2254.

[6] Shaikh Mostafa and Xiaoyin Wang. Automatic identification of security bug reports
via semi-supervised learning and CVE mining. 2016.

[7] S. Mostafa, B. Findley, N. Meng, and X. Wang. SAIS: Self-adaptive identification of
security bug reports. pages 1–1, 2019.

[8] Yuan Jiang, Pengcheng Lu, Xiaohong Su, and Tiantian Wang. LTRWES: A new
framework for security bug report detection. 2020.

[9] Pearl Brereton, Barbara A. Kitchenham, David Budgen, Mark Turner, and Mohamed
Khalil. Lessons from applying the systematic literature review process within the
software engineering domain. Journal of Systems and Software, 2007.

[10] Barbara Kitchenham. Procedures for performing systematic reviews. Keele, UK, Keele
Univ., 33, 2004.

[11] Claes Wohlin. Guidelines for snowballing in systematic literature studies and a repli-
cation in software engineering. In Proceedings of the 18th International Conference
on Evaluation and Assessment in Software Engineering. Association for Computing
Machinery, 2014.

[12] Seyed Mohammad Ghaffarian and Hamid Reza Shahriari. Software Vulnerability
Analysis and Discovery Using Machine-Learning and Data-Mining Techniques: A Sur-
vey. ACM Computing Surveys, 50:56:1–56:36, August 2017.

[13] Dong-Gun Lee and Yeong-Seok Seo. Systematic Review of Bug Report Processing
Techniques to Improve Software Management Performance. Journal of Information
Processing Systems, 2019.

[14] Jie Zhang, XiaoYin Wang, Dan Hao, Bing Xie, Lu Zhang, and Hong Mei. A survey
on bug-report analysis. SCIENCE CHINA Information Sciences, 2015.

43

http://tryqa.com/what-is-a-defect-life-cycle
https://www.oreilly.com/library/view/feature-engineering-for/9781491953235/ch04.html
https://www.oreilly.com/library/view/feature-engineering-for/9781491953235/ch04.html
https://towardsdatascience.com/understanding-auc-roc-curve-68b2303cc9c5
https://towardsdatascience.com/understanding-auc-roc-curve-68b2303cc9c5

Chapter 6

[15] Google. Google Scholar, Last accessed 03-11-2020. https://scholar.google.com/.

[16] DBLP Team. DBLP, Last accessed 03-11-2020. https://dblp.uni-trier.de/.

[17] IEEE. IEEE Xplore, Last accessed 03-11-2020. https://ieeexplore.ieee.org/
Xplore/home.jsp.

[18] Association for Computing Machinery. ACM Digital Library, Last accessed 03-11-
2020. https://dl.acm.org/.

[19] Elsevier BV. Scopus, Last accessed 03-11-2020. https://www.scopus.com/home.uri.

[20] Springer Nature Switzerland AG. Springer Link, Last accessed 03-11-2020. https:
//link.springer.com/.

[21] Georgios Spanos and Lefteris Angelis. A multi-target approach to estimate software
vulnerability characteristics and severity scores. pages 152–166, 2018.

[22] Ossi Jormakka. Approaches and challenges of automatic vulnerability classification
using natural language processing and machine learning techniques. 2019.

[23] G. Huang, Y. Li, Q. Wang, J. Ren, Y. Cheng, and X. Zhao. Automatic classification
method for software vulnerability based on deep neural network. 2019.

[24] Sefa Eren Sahin and Ayse Tosun. A conceptual replication on predicting the severity of
software vulnerabilities. In Proceedings of the Evaluation and Assessment on Software
Engineering. Association for Computing Machinery, 2019.

[25] T. H. M. Le, B. Sabir, and M. A. Babar. Automated software vulnerability assessment
with concept drift. pages 371–382, 2019. ISSN: 2574-3864.

[26] P. K. Kudjo, J. Chen, M. Zhou, S. Mensah, and R. Huang. Improving the accuracy of
vulnerability report classification using term frequency-inverse gravity moment. 2019.

[27] Anton Duppils and Magnus Tullberg. Semi-supervised text classication: Automated
weak vulnerability detection. 2020.

[28] T. M. Adhikari and Y. Wu. Classifying software vulnerabilities by using the bugs
framework. 2020.

[29] Georgios Spanos, Lefteris Angelis, and Dimitrios Toloudis. Assessment of vulnerability
severity using text mining. ACM Press, 2017.

[30] Jinfu Chen, Patrick Kwaku Kudjo, Solomon Mensah, Selasie Aformaley Brown, and
George Akorfu. An automatic software vulnerability classification framework using
term frequency-inverse gravity moment and feature selection. 2020.

[31] Mohammad Masudur Rahman and Shamima Yeasmin. Adaptive bug classification for
CVE list using bayesian probabilistic approach. 2013.

[32] Vulnerability identification and classification via text mining bug databases. pages
3612–3618, 2014.

[33] Sultan S. Alqahtani. Automated extraction of security concerns from bug reports.
pages 1–3, 2019. ISSN: 2643-4202.

[34] D. N. Palacio, D. McCrystal, K. Moran, C. Bernal-Cárdenas, D. Poshyvanyk, and
C. Shenefiel. Learning to identify security-related issues using convolutional neural
networks. pages 140–144, 2019. ISSN: 2576-3148.

44

https://scholar.google.com/
https://dblp.uni-trier.de/
https://ieeexplore.ieee.org/Xplore/home.jsp
https://ieeexplore.ieee.org/Xplore/home.jsp
https://dl.acm.org/
https://www.scopus.com/home.uri
https://link.springer.com/
https://link.springer.com/

References

[35] Rui Shu, Tianpei Xia, Laurie Williams, and Tim Menzies. Better security bug report
classification via hyperparameter optimization. 2019.

[36] Fayola Peters, Thein Than Tun, Yijun Yu, and Bashar Nuseibeh. Text filtering and
ranking for security bug report prediction. (6), 2019.

[37] Rui Shu, Tianpei Xia, Jianfeng Chen, Laurie Williams, and Tim Menzies. Improved
recognition of security bugs via dual hyperparameter optimization. 2019.

[38] Xiaoxue Wu, Wei Zheng, Xiang Chen, Fang Wang, and Dejun Mu. CVE-assisted
large-scale security bug report dataset construction method. 2020.

[39] Wajdi Aljedaani, Yasir Javed, and Mamdouh Alenezi. LDA Categorization of Security
Bug Reports in Chromium Projects. In Proceedings of the 2020 European Symposium
on Software Engineering, pages 154–161. Association for Computing Machinery, 2020.

[40] Xiaoxue Wu, Wei Zheng, Xiang Chen, Yu Zhao, Tingting Yu, and Dejun Mu. Im-
proving high-impact bug report prediction with combination of interactive machine
learning and active learning. Information and Software Technology, 2021.

[41] Diksha Behl, Sahil Handa, and Anuja Arora. A bug mining tool to identify and
analyze security bugs using naive bayes and TF-IDF. pages 294–299, 2014.

[42] Maryam Davari. Classifying and predicting software security vulnerabilities based on
reproducibility. 2016.

[43] Yaqin Zhou and Asankhaya Sharma. Automated identification of security issues from
commit messages and bug reports. In Proceedings of the 2017 11th Joint Meeting on
Foundations of Software Engineering - ESEC/FSE 2017, pages 914–919. ACM Press,
2017.

[44] Deqing Zou, Zhijun Deng, Zhen Li, and Hai Jin. Automatically identifying security
bug reports via multitype features analysis. In Willy Susilo and Guomin Yang, edi-
tors, Information Security and Privacy, Lecture Notes in Computer Science. Springer
International Publishing, 2018.

[45] Gemma Catolino, Fabio Palomba, Andy Zaidman, and Filomena Ferrucci. Not all
bugs are the same: Understanding, characterizing, and classifying bug types. 2019.

[46] Zaher Shuraym M. Alharthi and Ravi Rastogi. An efficient classification of secure
and non-secure bug report material using machine learning method for cyber security.
page S2214785320361836, 2020.

[47] Farzana Ahamed Bhuiyan, Raunak Shakya, and Akond Rahman. Can we use soft-
ware bug reports to identify vulnerability discovery strategies? In Proceedings of the
7th Symposium on Hot Topics in the Science of Security. Association for Computing
Machinery, 2020.

[48] F. G. Bulut, H. Altunel, and A. Tosun. Predicting software vulnerabilities using topic
modeling with issues. pages 739–744, 2019.

[49] Liuyang Wan. Automated vulnerability detection system based on commit messages,
2019.

[50] Dipok Chandra Das and Md. Rayhanur Rahman. Security and performance bug
reports identification with class-imbalance sampling and feature selection. pages 316–
321, 2018.

45

Chapter 6

[51] Nitish Pandey, Debarshi Kumar Sanyal, Abir Hudait, and Amitava Sen. Automated
classification of software issue reports using machine learning techniques: an empirical
study. 2017.

[52] X. Zhang, H. Xie, H. Yang, H. Shao, and M. Zhu. A general framework to understand
vulnerabilities in information systems. 2020.

[53] Michael Gegick, Pete Rotella, and Tao Xie. Identifying security fault reports via text
mining. 2009.

[54] Jacob P. Tyo. Empirical analysis and automated classification of security bug reports.
2016.

[55] Identification of security related bug reports via text mining using supervised and
unsupervised classification. pages 344–355, 2018.

[56] Mayana Pereira, Alok Kumar, and Scott Cristiansen. Identifying security bug reports
based solely on report titles and noisy data. pages 39–44, 2019.

[57] MathWorks. Matlab, Last accessed June 2021. https://www.mathworks.com/
products/matlab.html.

[58] MathWorks. Text Analytics Toolbox, Last accessed June 2021. https://www.
mathworks.com/products/text-analytics.html.

[59] Zhenyu Zhao, Radhika Anand, and Mallory Wang. Maximum relevance and minimum
redundancy feature selection methods for a marketing machine learning platform.

[60] Isabelle Guyon, Jason Weston, Stephen Barnhill, and Vladimir Vapnik. Gene selection
for cancer classification using support vector machines.

[61] MathWorks. Discriminant Analysis, Last accessed June 2021. https://www.
mathworks.com/help/stats/prediction-using-discriminant-analysis-models.
html.

46

https://www.mathworks.com/products/matlab.html
https://www.mathworks.com/products/matlab.html
https://www.mathworks.com/products/text-analytics.html
https://www.mathworks.com/products/text-analytics.html
https://www.mathworks.com/help/stats/prediction-using-discriminant-analysis-models.html
https://www.mathworks.com/help/stats/prediction-using-discriminant-analysis-models.html
https://www.mathworks.com/help/stats/prediction-using-discriminant-analysis-models.html

	Introduction
	Basic Concepts
	Bug Reports
	Bug Life Cycle

	Text Classification

	State of the Art
	Review Methodology
	Analysis of related surveys
	Research questions
	Identification of studies
	Study selection and quality assessment
	Data extraction and synthesis
	Outcome of the study identification and selection

	Analysis
	Research questions discussion
	Summary and Gaps of Related work

	Data and Methods
	Colletion and preprocessing of the dataset
	Feature Extraction
	Feature Selection
	Classifiers
	Classifiers Performance Assessment

	Results and Discussion
	Analysis of results using all projects
	Analysis of results using one project
	Main findings

	Conclusion

