




Kalman Filter-based Object Tracking
Techniques for Indoor Robotic

Applications

Guilherme de Sousa Carvalho

October of 2021





Kalman Filter-based Object Tracking Techniques for
Indoor Robotic Applications

Dissertation supervised by Professor Doctor Urbano José Carreira Nunes and submitted to
the Electrical and Computer Engineering Department of the Faculty of Science and

Technology of the University of Coimbra, in partial fulfillment of the requirements for the
Master’s Degree in Electrical and Computer Engineering, specialization in Automation.

Supervisor:
Prof. Dr. Urbano José Carreira Nunes

Co-Supervisor:
Master Ricardo Manuel Teixeira Pereira

Jury:
Prof. Dr. Rui Alexandre de Matos Araújo
Prof. Dr. Ana Cristina Barata Pires Lopes

Coimbra, October of 2021





Acknowledgments

Throughout the development of this dissertation I have received constant support and
assistance.

I would like to express my sincere gratitude to my supervisor Dr. Professor Urbano
Nunes, for providing me every material needed and feedback throughout the development
of this dissertation. Furthermore, I would like to thank Master Ricardo Pereira for deliv-
ering me guidance, motivation and knowledge to complete and go through every challenge
that was faced with the right attitude, and also Master Luis Garrote for his opinion and
criticism.

I would like to acknowledge my team, Daniel Craveiro, Daniel Palaio, Francisco Alves,
Gonçalo Lopes, Hugo Figueiras and João Duarte, for being my reference of work and closest
friends throughout the development of this dissertation. We are slowly changing to the
”Master Team Eletro”.

The development of this dissertation wold not be the same without the support of my
parents that always provided me comfort and motivation, and also Daniela Pereira that
was always there throughout every moment and for providing me the strength to be a
better person. Moreover, i would like to mention David Pereira, Diogo Almeida, Francisco
Fernandes, João Pedro Almeida and Pedro Santos for their friendship and presence.

This work has been supported by MATIS-CENTRO-01-0145-FEDER-000014, Portu-
gal, and by ISR-UC FCT through grant UIDB/00048/2020.

i



ii



Abstract

The improvement of social robots have significantly increased, having in view an
“intelligent” mobile robot system, that must be able to perform basic tasks, without
compromising the human environment. Therefore, perception module has to be robust
enough in object detection and tracking. Thus, the proposal of this dissertation, aims to
integrate a multi-object tracking method in a mobile robotics context, mainly focusing on
efficiency and performance, using the YOLOv3 object detector to acquire objects location
in the image.

This dissertation presents a study and exploitation of the SORT and the Deep-SORT
Multi-Object Tracking by Detection methods. Aiming to increase robustness of assigning
measurements to existing tracks, are introduced different conjugation of similarity metrics,
regarding the data association module. Furthermore, to avoid the association between
tracks and measurements of different classes, an object class based constraint is applied.
These proposed data association techniques, were incorporated in the SORT and the
Deep-SORT methods.

The SORT, the Deep-SORT, and proposed data association techniques, were eval-
uated on the MOT17 training set and on the ISR Tracking Dataset (dataset labeled in
this study). Moreover, an experiment for evaluating the performance of each method on a
lower frame rate condition was performed, showing a decrease of performance. Neverthe-
less, experimental results attained without using object detector, shown an improvement of
performance, when formulating the association problem with different similarity metrics.

Throughout the development of this study, an indoor multi-class tracking dataset
was labeled, providing useful conditions to validate the proposed framework. Therefore, a
general evaluation of the SORT, the Deep-SORT and proposed data association techniques,
using the YOLOv3 object detector, was performed in the referred labeled multi-class
dataset.

Keywords : Multi-Object Tracking, Motion Estimation, Data Association, Autonomous
Robotic Platforms

iii



iv



Resumo

A melhoria dos robôs sociais tem aumentado significativamente, tendo em vista um
sistema robótico móvel “inteligente”, que deve ser capaz de executar tarefas básicas, sem
comprometer o ambiente humano. Portanto, o módulo de perceção tem de ser suficiente-
mente robustos na deteção e rastreamento de objetos (rastreamento equivale à tradução
portuguesa de tracking). Portanto, a proposta desta dissertação, pretende integrar um
método de rastreamento de múltiplos objetos, num contexto de robótica móvel, focando-
se em questões de eficiência e desempenho computacional, utilizando o detetor de objetos
YOLOv3 para adquirir a localização de objetos na imagem.

Esta dissertação apresenta um estudo e exploração dos métodos de rastreamento por
deteção, o SORT e o Deep-SORT. Com o objetivo de reforçar a robustez da atribuição de
objetos medidos a objetos rastreados, são introduzidas conjugações diferentes de métricas
de similaridade, no módulo de associação de dados. Adicionalmente, para evitar a asso-
ciação de objetos medidos com objetos rastreados de diferentes classes, é aplicada uma
restrição baseada em classes de objetos. Estas técnicas propostas de associação de dados,
foram incorporadas nos métodos SORT e Deep-SORT.

O SORT, o Deep-SORT, e as técnicas de associação de dados propostas, foram avali-
ados nos dados de treino do MOT17 e no ISR Tracking Dataset (conjunto de dados eti-
quetado neste estudo). Foram realizados testes ao desempenho dos métodos em condições
de taxa reduzida de imagens, evidenciando uma diminuição do desempenho. Contudo, os
resultados experimentais obtidos sem utilizar o detetor de objetos, mostram uma melho-
ria do desempenho, ao formular o problema de associação com métricas de semelhança
diferentes.

Ao longo do desenvolvimento deste estudo, um conjunto de dados de ambientes multi-
classe e de interiores, foi etiquetado com dados de rastreio, fornecendo condições úteis
para validar a estrutura proposta. Consequentemente foi realizada uma avaliação geral
dos métodos SORT, Deep-SORT e técnicas de associação propostas, utilizando o detetor
de objetos YOLOv3, no referido conjunto de dados de rastreio multi-classe etiquetado.

Palavras-Chave : Rastreamento de Múltiplos Objectos, Estimação de Movimento,
Associação de Dados, Plataformas Róboticas Autónomas
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”The only way to do great work is to love what you do. If you haven’t found it yet, keep
looking. Don’t settle.”

Steve Jobs
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1
Introduction

In this dissertation, a study and exploitation of two Multi-Object Tracking (MOT)
algorithms, the SORT [2] and the Deep-SORT [1], having in view indoor mobile robot
applications, are presented.

1.1 Context and Motivation

In the past decade, service robots appeared in the scene, requiring complex and high
level navigation autonomy [3]. Service robots typically share the human environment and
exhibit “intelligent” behavior to accomplish assigned tasks [4]. Moreover, they have to
collaboratively interact and navigate throughout the scene with the presence of humans,
requiring explicit actions to fulfill their mission [5]. Therefore, sensors and perception sub-
modules, have to be integrated, collecting and processing environment information. Multi-
Object Tracking (MOT) is one of the most important subjects of Computer Vision (CV),
aiming to estimate the state of multiple entities (including humans) in the scene. Moreover,
MOT maintains the knowledge of objects exclusivity over time, identifying each object
with an unique tracking ID [6]. MOT is applied in a variety of other applications, such as:
surveillance [7, 8], traffic monitoring [9], medical instruments control [10, 11] and mobile
robot navigation, including collision avoidance [12] or target following [13].

Throughout the years, MOT tasks were mainly performed in a tracking by detection
paradigm, requiring detections of objects as measurements in frames, to process tracking
tasks. This paradigm has the benefit to convert MOT to an association method between
measurements and existing tracks [2]. Most of MOT algorithm proposals, are based on
different methods of association. Some use the power of Deep Learning (DL) based al-
gorithms computing similarities between appearance features [14, 1], others use linear
assignment algorithms associating objects with state information [15, 2]. Nevertheless,
a motion module is sometimes required to predict the position of objects of interest in
the current frame, facilitating associations. Moreover, by integrating motion modules, a
smoother trajectory is computed by the tracker, not relying only on measurements that
could be inaccurate [1]. To ensure a good tracking performance, detection and tracking
should be performed frame-by-frame, which is time-consuming and can lead to the inability

1
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Figure 1.1: Example of a Tracking by Detection algorithm implemented in a mobile
platform architecture.

of performing the MOT in real-time [16]. However, technology advance conjugated with
the emergence of fast and accurate DL techniques to detect object in the scene [17, 18, 19],
promoted the usage of DL techniques to be used as appearance descriptors, contributing
with more accurate associations in MOT tasks [1, 20, 21, 22].

Unfortunately, there are significant number of people unable to perform daily tasks
on their own, due to severe motor impairments. Service mobile robots can be used to
assist motor impaired people, increasing their autonomy and mobility. For that, MOT
methods are crucial to endow a robot to perform tasks such as object following [13],
object picking [23] or navigating in dynamic environments [24]. Furthermore, is necessary
for this algorithms to perform in real-time and to be able to module the motion of entities,
limiting the the number of MOT solutions. The usage of Kalman Filter (KF) based
algorithms, models trajectories robustly against sensor and modeling noises, and provide
feasible predictions.

1.2 Problem Formulation and Proposed Framework

A real-time MOT by Detection algorithm for service robots, must have the ability
to accurately estimate the state of every object of interest in real-time. Moreover, the
hardware found onboard of a mobile robotic platform has a limited computational power,
which implies the development of optimized algorithms. Hence, it is important to find a
good compromise between model’s accuracy and inference speed [25]. A representation of
a tracking by detection method implemented in a mobile platform, is shown in Fig. 1.1.
The proposal of a tracking by detection algorithm, requires the usage of an object detector
model. Therefore, tracking tasks are limited by the performance of the detector, that is
in charge of processing measurements. Occurrences of errors in bounding box detections,

2
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Figure 1.2: Representations of SORT and Deep-SORT MOT methods.

may lead to disturbances (not critical) to the tracking phase, however, a miss-detection
can lead to the wrong conclusion that the object no longer exist. Thus, is imperatively to
develop a MOT system that is able to handle miss-detections and accurately re-identify
the track that is being processed.

With the aforementioned aspects, this dissertation focus on the exploitation of asso-
ciation modules, aiming to enhance the association of measurements to existing tracks of
two state-of-the-art MOT by detection methods (SORT [2] and Deep-SORT [1]). To have
a MOT end-to-end pipeline, the well known object detector network, the YOLOv3 [19],
is used to recognize the objects available on images, and feeding the MOT methods. The
YOLOv3 has been exploited and applied in works [25, 26] developed at the HCMR-ISR
research lab, which makes the YOLOv3 well suited for the tasks proposed in this disserta-
tion. Moreover, the training and evaluation of the YOLOv3’s models are not part of the
scope of this dissertation.

The SORT [2] and the Deep-SORT [1] are two tracking by detection methods that are
focused on performance and inference speed, using the KF algorithm for object tracking.
An overview representation of each method is shown in Fig. 1.2. The SORT is focused
on associate objects using bounding box states to match measurements with predicted
tracks, using the overlap of bounding boxes. On the other hand, to improve the bounding
box association, the Deep-SORT uses a DL technique that extracts appearance features
from objects bounding box images, in order to associate measurements to tracks. In this
dissertation, the SORT and Deep-SORT MOT methods are exploited regarding the data
association module, proposing different data association techniques.

1.3 Objectives and Key Contributions

In chronological order, the following list presents established objectives for the devel-
opment of the proposed study:

1. Detailed analysis of SORT [2] method;

2. Implementation of SORT method, with different Linear Assignment Problem (LAP)
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formulations;

3. Detailed analysis of Deep-SORT [1] method;

4. Implementation of Deep-SORT method, with different LAP formulations;

5. Labeling of ISR Tracking Dataset, using the indoor ISR RGB-D Dataset [25];

6. Evaluation and analysis of configurations for the SORT and Deep-SORT algorithms
on the MOT17 Dataset [27], using dataset detection file as measurements;

7. Evaluation and analysis of configurations for the SORT and Deep-SORT algorithms
on the ISR Tracking Dataset, using ground truth bounding boxes as measurements;

8. Validation and analysis of algorithm configurations on the ISR Tracking Dataset.

The main implementations and contributions of this study are described in the fol-
lowing Chapters of this dissertation:

Developed Work (Chapter 4)

A detailed analysis of the SORT and the Deep-SORT MOT methods is summarized in
this chapter. Moreover, an alternative of LAP cost matrix formulation, that have in view
to enhance the performance of each MOT method, is presented. Furthermore, specific
conditions that were necessarily adopted in the labeling of the new ISR Tracking dataset
are described.

Results and Discussion (Chapter 5)

Experimental validation of the SORT, the Deep-SORT and proposed association tech-
niques is presented. Finally, a validation of an end-to-end tracking by detection pipeline
using the YOLOv3 object detector on the ISR Tracking dataset is presented.

1.4 Concepts

In this dissertation context, are used the following concepts:

• Object state - Representation of an object, composed by bounding box coordinates
and geometric shape. When estimated with a motion model, is also represented with
velocity information.

• Appearance features - Vector containing deep appearance information of an image.

• Appearance descriptor - Model capable of extracting deep appearance features from
images.

• Track - Object being tracked by a MOT algorithm, contains information of object
state and tracking ID. Moreover, in DL-based MOT methods, a track has appearance
features information.
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• Detection - Object location and classification, attained by an object detector.

• Measurement - Object bounding box attained by an object detector, as a candidate
to be associated to tracks on MOT methods. In the context of using class gate
metrics, measurement also has the class information.

• Motion module - Module where object state estimation is modeled over time. In the
context of this dissertation is denominated as KF Estimation module.

• Motion Model - Mathematical model that represents the evolution of the object’s
state. In the context of this dissertation, is used the KF.

• Data association module - Module responsible to associate measurements to existing
tracks.

• Track management module - Module responsible to delete tracks, initialize new
tracks and to establish the output of the MOT method.
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2
State of the Art

In this chapter, proposed works in the literature related to the tasks of Online Multi-
Object Tracking (MOT), capable of performing in a real-time fashion will be summarized.

MOT consists of analyzing a video in order to preserve the exclusivity and track the
displacement of objects belonging to one or more categories, without any prior knowledge
about appearance or location of targets [6]. Online MOT represents the processing of
MOT tasks using only past and present information [28]. Despite real-time MOT being
based on online MOT, methods applied in real-time are limited by inference speed, which
can directly affect the performance of the tracker. Recent progress on MOT has two
focuses: Tracking by Detection and Joint Tracking and Detection (Fig. 2.1). Tracking by
Detection [2, 1, 20, 29, 22, 30, 31, 21] makes usage of object detection algorithms [18, 17],
before processing tracking tasks [6]. This simplifies tracking as an object association task
over consecutive frames, receiving an array of measurements and outputting bounding
boxes with a respective tracking ID (Fig. 2.1a). On the other hand, Joint Tracking and
Detection methods [16, 32, 33, 34, 35, 36, 14, 37] are able to detect and track objects in a
single model (Fig. 2.1b). This approach is an attempt to share detection and appearance
embedding extraction tasks in a single model, which can decrease the running time of a
tracker [33].

2.1 Tracking by Detection

Over the past years MOT was dominated by the tracking by detection paradigm [37].
This approach took the benefit of object location knowledge to generate a association
model that would be able to associate objects over time. Multiple Hypothesis Tracking
[15] is a known method capable of calculating hypotheses over measurements to estimate
if they should be associated to a track, to be considered as a new track or if it is a miss
measurement. The method uses the Kalman Filter (KF) algorithm to model the state
of a track and a probabilistic distribution over hypotheses to associate measurements to
tracks. In recent works, some algorithms use motion models to assist association of ob-
jects over time [2, 1]. Alex Bewley et. al. [2] proposed the SORT, a fast and efficient
work based on KF to estimate the state of objects. Moreover, for data association, the
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Figure 2.1: Different MOT approaches.

Hungarian algorithm [38] was used, associating KF predicted bounding boxes with mea-
surements. An year later, Nicolai Wojke et. al. [1], improved the SORT algorithm to
the Deep-SORT, by including a novel association step using a DL-based methodology as
an appearance descriptor, describing each measurement with appearance features. Fur-
thermore, the association algorithm combines appearance features similarity metric and
the Mahalanobis distance between objects states. Despite the usage of DL architectures
in detection and association phases, the Deep-SORT method achieved fast inference time
and considerable performances on object tracking benchmarks. The Deep-SORT proposal
opened a new strand to explore, introducing DL-based appearance descriptors to help
association tasks in tracking. Some algorithms follow the CNN methodology to extract
features [1, 20, 30, 21], while others use Siamese [39] architectures to compute similarities
values between two images [29, 22, 31].

Long Chen et. al. [20] proposed the MOTDT, which uses as candidates to associate
with existing tracks, a set of measurements and KF predicted object states of tracks.
Moreover, a scoring function based on a fully convolutional neural network is used to apply
optimal selection from candidates. Furthermore, an appearance descriptor is used, and
the euclidean distance between appearance features is calculated to promote associations.
Recently, Jiawei He et. al. [30] proposed the GMT-CT algorithm that incorporates Graph
Partitioning with Deep Feature Learning. It uses appearance features to construct a graph
of features. Furthermore, for association tasks, it matches a measurement graph and a
track graph, modeling the relationship between measurements and tracks with higher
accuracy. Xueqin Zhang et. al. [21], developed the DROP framework that consists in a
fast object appearance descriptor and a confidence-based data association algorithm. The
DROP algorithm extracts appearance features from measurements using a fast pedestrian
re-identification network, and then each appearance feature score is used as input in an
Hungarian matching algorithm.

Sangyun Lee et. al. [29] introduced the FPNS-MOT, which integrates a Siamese
architecture and the Feature Pyramid Network [40], uses appearance features and motion
features to the association stage. The method computes a similarity vector between fea-
tures from two different inputs, and then updates tracks using an iterative selection of
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Table 2.1: Description of Tracking-by-Detection methods.

Method Year DL-Based KF-Based Description
SORT [2] 2016 × Simple and fast KF-based algorithm, that associate objects

based on their bounding box appearance.
Deep-SORT [1] 2017 × × KF-based algorithm, associate objects based on their ap-

pearance description extracted by a CNN re-identification
network.

MOTDT [20] 2018 × × Deep-SORT related algorithm that uses predicted bounding
boxes as candidates for association, in an attempt to solve
occlusion problem.

GMT-CT [30] 2021 × × Deep-SORT related algorithms, that solves association
problem using a graph partitioning based on appearance
features.

DROP [21] 2020 × × Associates objects using a confidence-based cost to con-
struct the Hungarian algorithm solver. Furthermore, it uses
appearance features to determine occlusions in the scene.

FPSN-MOT [29] 2019 × Uses Siamese and Feature Pyramid based Networks ad-
dressing appearance and motion features in the association
stage.

Jiating Jin et. al. [22] 2020 × × Deep-SORT related algorithm that uses Siamese network
to process association tasks and also introduce optical flow
information to the motion model, in order to improve ac-
curacy.

the maximum scored pair of tracks and measurements. Furthermore, the method outper-
formed previous proposed methods on the MOTChallenge benchmark [27] with inference
time of 10Hz. Jiating Jin et. al. [22], developed a MOT method that uses Siamese archi-
tecture to enhance the performance of the feature extractor in Deep-SORT [1] algorithm.
In addition, it introduced optical flow [41] in the motion module, in order to improve
motion model estimation accuracy. Table 2.1 highlights the main characteristics of the
aforementioned tracking by detection MOT methods.

2.2 Joint Tracking and Detection

The emergence and fast development of DL techniques helped combining both detec-
tion and tracking tasks in the same framework. Besides the aggregation of tasks, DL-based
joint tracking and detection approaches, can also increase the performance of object detec-
tion [42]. Philipp Bergmann et. al. [32] proposed the Tracktor++. The method uses the
power of the Faster-RCNN [17] object detection network, in the context of joint tracking
and detection. It exploited the bounding box regression of the object detector to predict
position of an object in the next frame. In the same year, Zhongdao Wang et. al. [33]
proposed the joint detection and embedded learning (JDE). The method simultaneously
output the location and appearance features of objects in a single forward pass, and for
tracking purposes, it does a similar association of that used in Deep-SORT association
method, combining appearance features similarity metric and the Mahalanobis distance
between objects states. In a different approach, Xingyi Zhou et. al. [34] developed the
CenterTrack that tracks objects based on their central point. It is a joint tracking and
detection algorithm based on a CenterNet [43] object detector that produces detection and

9



Kalman Filter-based Object Tracking Techniques for Indoor Robotic Applications

Table 2.2: Description of Joint Tracking and Detection methods.

Method Year Description
Tracktor++ [32] 2018 CNN-based object detector converted into an object detec-

tor and tracking algorithm, using training methodologies
based on tracking.

CenterTrack [34] 2020 Network that produces detection and tracking offsets in cen-
tral point coordinates.

FairMOT [35] 2020 JDE related algorithm that addresses the unfairness of joint
tracking and detection algorithms treating association as a
secondary task.

CSTrack++ [36] 2020 Cross-correlation network and Scale-aware attention net-
work to improve collaborations of detection and association
sub-tasks.

Siamese Track-RCNN [14] 2020 Siamese network that unifies detection, tracking and asso-
ciation, and can be trained jointly in an end-to-end fashion.

TraDeS [37] 2021 Model that exploits tracking cues in order to improve de-
tection tasks.

SiamMOT [31] 2021 Siamese-based algorithm that computes spacial matching
and also models the object motion with an explicit motion
model.

tracking offsets by receiving the current image frame, the past image frames, and an image
of the previous frame, with objects centers highlighted similarly to an heat map. More
recently, Yifu Zhang et. al. [35] proposed a anchor-free single-shot deep network, the
FairMOT. FairMOT is a method based on previous JDE [33] and TrackRCNN [44] joint
tracking and detection methods, and addressed the unfairness of other joint tracking and
detection treating association task as a secondary task. A similar work, also based on JDE
[33], Chao Liang et. al. [36] proposed the CSTrack++, which is a one-shot online model,
with two branches. A novel cross-correlation network, to learn similarities of appearance
features for detection and for association tasks, and a Scale-aware attention network to ag-
gregate appearance features from different resolutions. Bing Shuai et. al. [14], developed
a Siamese Track-RCNN that unifies detection, tracking and association in a single net-
work architecture. This approach achieved the best published results on MOTChallenge
[27], nonetheless it runs at around 5 FPS. Jialian Wu et. al. [37], proposed the Track
to Detect and Segment (TraDeS) method, focusing on exploiting tracking cues to help
detection. Furthermore, it uses a Cost Volume Association module that models object
motion via a 4D cost volume. Furthermore, motion cues are used to enhance detections
using a Motion-guided Feature Warper module. Bing Shuai et. al. [31] proposed the
SiamMOT, through the use of Siamese architectures to compute a spatial matching be-
tween the object image and a region of interest. Furthermore, SiamMOT uses an explicit
motion model integrated in the final layers of the Siamese network, to compute motion of
objects. Aforementioned methods are summarized in detail in Table 2.2.
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3
Background Material

In this chapter, a detailed description of the methods that support the development
of this dissertation will be presented.

3.1 Kalman Filter

The Kalman Filter (KF) [45] is an optimal recursive data processing algorithm, that
estimates the current value of variables of interest, by processing two phases, based on
the system and the measurement models. The KF has a remarkable role in sensor fusion
applications, once it is able to process measurements of variables of interest. It is also
been widely used in robot localization applications [46].

The KF is divided into two phases: Prediction and Update. The prediction phase, uses
information of the system model to compute an a priori estimation of new state variables
(x̂−k ), and also the error covariance matrix (P−

k ) associated to the a priori estimation
of the state. The system is modeled with the transition function (F ), that represents
the evolution of the state in optimal conditions, and with an input control matrix (B)
applied to the control input (uk−1). Furthermore, is assumed the existence of a zero-mean
normal distribution process noise (wk−1), with covariance Q, this is: wk−1 ∼ N (0, Q). This
assumption allows to calculate an a priori estimation of error covariance matrix (P−

k ). This
phase is also processed, with information of the previous time-step state vector estimated
(x̂k−1) and error covariance matrix estimated (Pk−1). It is represented by the following
linear equations:

x̂−k = Fx̂k−1 +Buk−1 (3.1)

P−
k = FPk−1F

T +Q (3.2)

The KF update phase, uses a measurement (zk) acquired by a measurement de-
vice, and the measurement model, to correct the a priori state estimated and respective
covariance matrix. The measurement system is modeled by the state to measurement
matrix (H), which relates the state vector to the measurement vector. Furthermore, is
also assumed the existence of a zero-mean normal distribution measurement noise (vk)
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with covariance R, this is: vk ∼ N (0, R). Using the a priori estimation of error covariance
matrix and the measurement model, the time-step Kalman Gain (Kk) is calculated. More-
over, the measurement residual (ỹk) is computed, using the measurement acquired on the
time-step (zk) and the a priori estimation of the state (x̂−k ). Then, with the measurement
residual and the Kalman Gain, the state estimation (x̂k) and respective error covariance
matrix (Pk) are corrected. This phase is represented by the following linear equation:

Kk = P−
k HT (R+HP−

k HT )−1 (3.3)

ỹk = zk −Hx̂−k (3.4)

x̂k = x̂−k +Kkỹk (3.5)

Pk = (I −KkH)P−
k (3.6)

3.2 Hungarian Algorithm

The Hungarian algorithm [38] is an approach to solve the Linear Assignment Problem
(LAP). LAP can be defined as a problem to assign N individuals to N tasks. Moreover,
every individual i (i ∈ N) has a different cost (ci,j) to complete the task j (j ∈ N). In
addition, the LAP requires a problem formulation, which is the formulation of the cost
matrix (CN×N ). The objective of the Hungarian algorithm is to associate each individual
to a task using the minimum possible cost. Furthermore, each task can only be assigned
to a single individual.

Hungarian algorithm steps are listed in Algorithm 1. The algorithm is based on the
fact of the addition/subtraction of a constant from the lines/columns of the cost matrix,
does not influence the final assignment result. Furthermore, by adding and subtracting
constants (such as the smallest element of the matrix), it tries to find the N zero valued
elements, which can associate N individuals (lines) to N tasks (columns). Hungarian
algorithm receives as input a matrix of cost (CN×N ) and outputs an N × 2 array with
individuals indices as first column and respective assigned task indices as second column.
An overview example of each step of the Hungarian algorithm is shown on Fig. 3.1.

When the number of tasks is different from the number of individuals, additional
columns/rows are added into the cost matrix to shape it as a squared matrix. Furthermore,
values of those additional columns/rows should be filled by the maximum value of the
initial cost matrix.

3.3 Online Multi-Object Tracking

Data Association and motion modules are key components for Online MOT approach,
to understand the exclusivity of objects in the scene. Each object in the scene modeled by
a MOT algorithm is denominated as track. The SORT [2] and the Deep-SORT [1] are two
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Algorithm 1: Hungarian algorithm
Data: Cost matrix CN×N

Result: Assigned Indexes
1 Subtract the smallest entry in each row from each entry in that row;
2 Subtract the smallest entry in each column from each entry in that column;
3 Cover all zeros with the minimum number of lines over rows and columns;
4 while number of lines < N do
5 s = smallest element, uncovered by a line;
6 Subtract s from all uncovered elements;
7 Add s to elements covered by two lines;
8 Cover all zeros with the minimum number of lines over rows and columns;
9 end

10 Optimal assignment is found by assigning indices lines with indices columns where
the matrix has element value of 0 (start with lines covering less 0’s).

2 3 4
2 4 6

10 13 16

Cost Matrix

C(NxN) =

0 1 2
0 2 4
0 3 6

Step 1: 
Apply 1

0 0 0
0 1 2
0 2 4

Step 2: 
Apply 2

Step 3: 
Apply 3

0 0 0
0 1 2
0 2 4

Step 4: 
# Lines < N, do 4 
Apply 5, 6 and 7

1 0 0
0 0 1
0 1 3

Step 5: 
# Lines = N 

1 0 0
0 0 1
0 1 3

Index Array 
Attained:

1 3
2 2
3 1

Line
Index

Column
Index

Figure 3.1: Representation of Hungarian algorithm steps described in Algorithm 1.

well known KF-based tracking methods. The Deep-SORT is an upgraded version of the
SORT algorithm, as it introduces DL based association metrics on Data association mod-
ule. Both methods have an identical structure with three main modules: KF Estimation,
Data Association and Track Management. An overview of both methods is presented in
Fig. 3.2.

3.3.1 SORT

The SORT1 [2] algorithm recurrently calculates the state of the objects being tracked
through a KF algorithm. Moreover it uses Hungarian algorithms to accurately associate
modeled objects that are being tracked, to new measurements acquired by an object
detector. A detailed overview of SORT algorithm is represented in Fig. 3.3.

1https://github.com/abewley/sort
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Figure 3.2: An overview example of SORT and Deep-SORT pipelines.

3.3.1.1 KF Estimation

The SORT KF Estimation module uses the KF for each track, to assign the state of
the object’s bounding box, with a linear constant velocity model, independent to other
objects and camera motion. The track state vector (x = [u, v, s, r, u̇, v̇, ṡ]T ) is composed
by central bounding box coordinates (u) and (v), bounding box scale and aspect ratio (s
and r), velocities of central bounding box coordinates (u̇ and v̇) and bounding box scale
velocity (ṡ). Aspect ratio is considered to be constant.

The KF Estimation module computes an a priori estimation of the state (x̂−k ) for
every active track assigned on the previous frame step, using Eq. (3.1). Then, an asso-
ciation between KF predicted bounding boxes and measurements is performed. Matched
measurements are used on the KF algorithm, to update the object state. Existing tracks
that were not associated with measurements, do not go through update stage, instead
prior estimation of the state (x̂−k ) is used as the state of the object in that frame.

3.3.1.2 Data Association

The Data association module is responsible for matching KF’s predicted bounding
boxes with measurements on the image. This module receives as input, N measurements
and M predicted bounding boxes, acquired from each respective KF Estimation module.
The module formulates the LAP by computing a cost matrix between each measurement
and all predicted bounding boxes (respectively Di, i ∈ {1 . . . N} and Pi, i ∈ {1 . . .M}),
with the IoU distance as cost, using the following equations:
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Figure 3.3: SORT detailed workflow representation.

IoU(D,P ) =


iou(D1,P1) . . . iou(D1,PM )

iou(D2,P1) . . . iou(D2,PM )

... . . . ...

iou(DN ,P1) . . . iou(DN ,PM )

 (3.7)

where

iou(BBd,BBp) =
Area of intersection

Area of union
(3.8)

CostMatrix = −IoU(D,P ) (3.9)

Then, the Hungarian algorithm (Algorithm 1) is computed, attaining an N × 2 array,
representing N measurements associated to N tracks. Moreover, associations made are
filtered by the IoU threshold (IoUmin), discarding associations with IoU cost lower than
the threshold. Furthermore, measurements and tracks which were not associated, are used
to initialize new tracks and delete tracks.

3.3.1.3 Track Management

This module is responsible to delete and initiate tracks, and to generate the output
composed by bounding boxes and respective tracking id, through predefined conditions.
Tracks are initialized when a measurement was not matched in Data association module.
A track is deleted when it has no matched measurement for a TLost consecutive number
of frames, considering that the object has left the scene. This means that every other
track that had matched measurements in less than TLost frames, will be saved to the next
frame step array of tracks. In paper [2], experiments were performed using TLost = 1.
Furthermore, the following output condition was applied to the final array of tracks:
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1. Track was associated with measurements in every hitmin last frames.

3.3.2 Deep-SORT

The Deep-SORT [1] is an improvement of the SORT algorithm, integrating appear-
ance information of objects to enhance associations. Association has an additional ap-
pearance metric based on pre-trained Convolutional Neural Network (CNN)s allowing
re-identification of tracks, after a long period of occlusion. The KF Estimation and the
Track management modules have the same flow as SORT. An overview of the method can
be described as in Fig. 3.4.

3.3.2.1 KF Estimation and Track Management

The KF Estimation module is mostly identical to SORT algorithm. The KF has
the same constant velocity and linear observation model. However, the state is now an
eight-dimensional vector (x = [u, v, r, h, u̇, v̇, ṙ, ḣ]T ), represented by the bounding box
center position (u and v), bounding box aspect ratio (r), bounding box height (h) and all
respective velocities (u̇, v̇, ṙ, ḣ).

The Track management module is identical to the SORT algorithm (section 3.3.1.3),
with an addition of deleting tracks that are not successfully associated in their first three
frames. This procedure brings improvements, enabling the algorithm to anticipate a track
deletion before it reaches a maximum of age. The method considers every initialized track
as tentative, until it is successfully associated in its first three frames, changing its status
from tentative to confirmed. Each track k has an age counter (ak) that increments during
KF prediction step and resets to 0 when it is successfully associated with a measurement.
The method uses a maximum age of 30 frames (Amax = 30), meaning that every track
that got the last thirty frames non associated, are considered to have left the scene.

3.3.2.2 Data Association

Assignment Problem Association of measurements to tracks is also solved by the
Hungarian algorithm. In order to compute the cost matrix, motion and appearance met-
rics were combined. Motion information was incorporated by the (squared) Mahalanobis
distance [47] between predicted states and arrived measurement states:

d(1)(i, j) = (dj − yi)
TS−1

i (dj − yi) (3.10)

where (yi, Si) is the projection of the i-th track distribution into measurement space and
(dj) is the j-th measurement. To evaluate if the association between the i-th track and
j-th measurement is admissible, a 95% confidence interval computed from the Inverse Chi-
Squared (χ2) distribution is applied (3.11). Since the bounding box is represented in a
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Figure 3.4: Deep-SORT detailed workflow representation.

4-dimensional space, the threshold of confidence is t(1) = 9.4877:

b
(1)
i,j =

1 if d(1)(i,j) ≤ t(1)

0 otherwise
(3.11)

In addition to Mahalanobis metric, a second metric based on smallest cosine distance,
measures the distance between the i-th track and j-th measurement appearance features:

d(2)(i,j) = min{1− rTj r
(i)
k | r

(i)
k ∈ Ri} (3.12)

The appearance features (rj) are computed by a pre-trained CNN model, with structure
shown in Table 3.1. The CNN was trained on a large-scale person re-identification dataset
[48] using a deep cosine metric learning [49]. Furthermore, a pre-trained model is provided
on the authors [1] GitHub2 repository. For each track k a gallery Ri = {r(i)k }

Lk
k=1 of the

last Lk = 100 associated appearance features, are kept in memory. Moreover, a binary
variable indicates if an association is admissible according to a t(2) threshold:

b
(2)
i,j =

1 if d(2)(i,j) ≤ t(2)

0 otherwise
(3.13)

To build the association problem, both metrics are combined using a weighted sum

2https://github.com/nwojke/deep_sort

17

https://github.com/nwojke/deep_sort


Kalman Filter-based Object Tracking Techniques for Indoor Robotic Applications

Table 3.1: CNN structure of the Deep-SORT’s appearance descriptor. Taken from [1].

Layer Patch Size / Stride Output Size
Conv 1 3× 3/1 32× 128× 64

Conv 2 3× 3/1 32× 128× 64

Max Pool 3 3× 3/2 32× 64× 32

Residual 4 3× 3/1 32× 64× 32

Residual 5 3× 3/1 32× 64× 32

Residual 6 3× 3/2 64× 32× 16

Residual 7 3× 3/1 64× 32× 16

Residual 8 3× 3/2 128× 16× 8

Residual 9 3× 3/1 128× 16× 8

Dense 10 128
Batch and l2 normalization 128

as follows:

ci,j = λd(1)(i,j) + (1− λ)d(2)(i,j) (3.14)

Associations are only admissible if they are within the gating region of both metrics
bi,j = 1:

bi,j =
2∏

m=1

b
(m)
i,j = 1 (3.15)

During experiments, the authors discovered, when there is substantial camera motion,
the reasonable setting for this metric is to have λ = 0 [1]. Moreover, Mahalanobis gating
metric (3.11) is still used in this setting [1].

Matching Cascade A matching cascade method is proposed to prioritize asso-
ciations for more frequently seen objects. The Matching cascade algorithm relies on
the iteration over tracks age to solve the LAP for tracks of increasing age. It is out-
lined on Algorithm 2. Receiving confirmed tracks (T = {1, . . . ,M}) and measurements
(D = {1, . . . , N}) indices as input, the algorithm starts by computing the cost and gated
matrix (Lines 1 and 2). Then, iterates the age n from 1 to Amax and computes the linear
assignment between confirmed tracks (Tn) and unmatched measurements (U). This gives
priority to tracks of smaller age. At last, it updates the set of unmatched and matched
measurements (U ,M). After matching cascade, remaining unmatched tracks of age n = 1

and tentative tracks, go through the association algorithm proposed in SORT (Section
3.3.1.2). This is a second association metric that helps to account for sudden appearance
changes for tracks with no history.
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Algorithm 2: Matching Cascade, from [1].
Data: Confirmed Track indices T = {1, . . . ,M}, Measurement indices

D = {1, . . . , N}, Maximum age Amax

1 Compute cost matrix C = [ci,j ] using Eq. 3.14
2 Compute gate matrix B = [bi,j ] using Eq. 3.15
3 Initialize set of matches M← ∅
4 Initialize set of unmatched measurements U ← D
5 for n ∈ {1, . . . , Amax} do
6 Select tracks by age Tn ← {i ∈ T |ai = n}
7 [xi,j ]← min cost matching(C, Tn,U)
8 M←M∪ {(i,j = |bi,j · xi,j > 0}
9 U ← U \{j |

∑
i bi,j · xi,j > 0}

10 end
Result: M,U

3.3.3 Multi-Object Tracking Metrics

In a frame to frame evaluation, to recognize if an object is being correctly identified,
an association algorithm is computed between bounding boxes resulted from MOT method
and ground truths. This association algorithm can be replicated as the one described in
sub-section 3.3.1.2. The association method is used with an IoU threshold of 0.5. True
Positive (TP) are the number of correctly matched pairs of ground truths and bounding
boxes. Is only a TP when the previous matched tracking ID is the same as the current
one. If the ground truth sequence has no previous matched tracking ID associated, it also
counts as TP. For ground truth sequences that are matched with a bounding box with a
new tracking ID (previous matched tracking ID is different from the new one), they are
counted as an Identification Switch (IDs). For ground truth objects without any matched
bounding box resulted, they are counted as False Negative (FN). For bounding boxes that
do not have any matched ground truth objects, they are counted as False Positive (FP).

The Multi-Object Tracking Accuracy (MOTA) (3.16), which is a score of accuracy, is
interpreted as a sum of misses (FN, FP, and IDs) of the method in the video sequence,
over the total number of ground truth bounding boxes (g):

MOTA = 1−
∑

t (FNt + FPt + IDst)∑
t gt

(3.16)

The Multi-Object Tracking Precision (MOTP) is a score of precision related to matched
ground truths and bounding boxes (IoU greater than 0.5):

MOTP =

∑
i,t IoUi,t∑

t ct
(3.17)

where ct is the number of matches in frame t and IoUi,t is the bounding box overlap of
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bounding box i with its assigned ground truth. MOTP (3.17) represents the total position
error for matched track-measurement pairs over all frames, averaged by the total number
of matches. It quantifies the localization accuracy of the detector, therefore, it provides
some information related to the state modeled by the KF Estimation.

Mostly Tracked (MT), Mostly Lost (ML) and Fragmentation (FM) define an evalua-
tion correspondent to the quality of ground truth sequences tracked. Mostly Tracked (MT)
represent the percentage of ground truth object sequence mostly tracked by the method.
In other words, it is the percentage of the ground truth sequences, which have the same
label for at least 80% of their life span. Otherwise, Mostly Lost (ML) is the percentage
of sequences, which are tracked for at most 20% of their life span. Fragmentation (FM)
is the total number of times a ground truth trajectory is interrupted, i.e., a ground truth
sequence changes status from tracked to untracked and later it resumes the tracked status.

Frames Per Second (FPS) metric evaluates the mean speed of the method. It is the
total number of frames divided by the time spent to process all of them (3.18):

FPS =
Number of Frames

Time (3.18)

3.4 Deep Learning Approaches

3.4.1 Convolutional Neural Network

CNNs are a type of Neural Network (NN) with impressive success on top classification
competitions [50, 51] and object detection tasks [18, 17]. CNN is a feed forward NN that
use convolutional layers to extract features from input data. It is in charge of extracting
appearance features, such as corners, lines, shapes and patterns among classes. A CNN
architecture is composed by two main modules, as shown in Fig. 3.5: Feature extraction
and classification. The feature extraction module is the stage were the CNN generates
feature maps with information captured by convolutional layers and pooling layers. The
classification module uses Fully Connected (FC) layers to accurately classify the outputted
feature map into different predefined classes.

The feature extraction module is mostly composed by convolutional layers. In first
convolutional layers, low level appearance features are extracted, such as corners, edges
and lines, as more layers are added, more high level appearance features are captured, such
as objects, structures or shapes, combining low level appearance feature information [52].
The extraction of features is made by kernels, also called filters. As more kernels are used in
one layer, more feature maps are added to the output depth dimension, constructing a 3D
output volume. A kernel is a weight matrix, with a much smaller dimension compared to
input width and height. Also, they are applied systematically in a sliding window manner,
across the width and height of the input volume. Each convolutional layer computes a
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Figure 3.5: Overview of a CNN for 2D RGB image classification.

sum of the scalar product between input data local mask and the kernel matrices weights.
To introduce non-linear proprieties, an activation function is used to transform the feature
map data. Each activation function has its proprieties and they are used dependently to
the objective of the layer [50].

Pooling layers are also used in CNNs to appropriately reduce feature map’s spatial
size and to decrease computational needs. Furthermore, pooling layers help to control the
overfitting during training stage by extracting dominant features. There are some different
pooling operations such as: Max pooling, Average pooling and Sum pooling [50].

As shown in Fig. 3.5, the classification stage is composed by the flatten layer, and FC
layers. The flatten layer is responsible to reshape the feature map attained in the Feature
extraction module, into a vector. FC layers can be added sequentially and process all the
information from previous layers, aiming to score different labeled classes on an output
vector.

3.4.2 Deep Residual Learning

As NN use more layers to get deeper features, accuracy gets saturated and then
degrades rapidly [53]. Deep residual learning [53] was proposed in 2015 to counter this
consequence and to ease the optimization of networks. Networks based on residual learn-
ing reached promising results and won first places on image classification, detection and
segmentation contests [51, 54]. Residual block is represented in Fig. 3.6. Residual blocks
compute a sum between the previous layer feature map with an early computed feature
map. This maintains a reference to the block input, as the function of the output is based
on it. Moreover, residual blocks allow memory to flow from early to future layers and
also keep a reference throughout the network showing optimization and accuracy gain, by
increasing networks number of residual layer [53].

3.4.3 YOLOv3

The YOLOv3 [19] is a successful real-time CNN-based object detector developed by
Joseph Redmon et. al.. YOLOv3 uses the Darknet-53 [19] as its backbone network for fea-
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Figure 3.7: Representation of YOLOv3 architecture.

ture extraction. The Darknet-53 network is composed by convolutional layers and residual
blocks having a total of 53 layers. For detection purposes, YOLOv3 integrates more 53
layers are added (totaling 106 layer), combining convolutional, upsampling, residual and
detection layers. The YOLOv3 architecture, represented on Fig. 3.7, has three detection
layers over the pipeline, allowing to recognize objects using different feature map sizes.
Each detection layer, known as YOLO layer, divides the input image into S×S grid cells.
Respectively they have strides of 32, 16 and 8, meaning that for an input of 416 × 416,
detections will occur on 13× 13, 26× 26 and 52× 52 scales. Each grid cell in the YOLO
layer, is responsible to detect the object that has his center on it. This means that if a
cell contains the center of an object, it must be able to detect that object, since other
cells wont be able to detect it. Bounding boxes are predicted using dimensional clusters
as anchor boxes. Furthermore, each cell predicts three anchor boxes, respective confidence
scores and respective class prediction. Residual layers compute a concatenation between
upsampled and early calculated feature maps, initializing new processes of detections for
new scales. Each identity route used to compute residual layers are taken from different
feature extraction layers, thus performing detection steps with different processed features
for different scales. After all detection stages, to eliminate multiple detection of the same
object, the Non-Maximum Suppression (NMS) method is used.
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Developed Work

In this chapter, the developed work to fulfil the proposed dissertation, is presented in
detail.

4.1 Methodology

In this work, the SORT [2] and the Deep-SORT [1] were exploited to operate as
Multi-Object Tracking (MOT) algorithms. Also, a YOLOv3 [19] object detector network,
was used to evaluate an end-to-end tracking by detection pipeline. The study got started
by analyzing and comprehending each online code, for some important parameters not
mentioned on each paper [2, 1]. Furthermore, the SORT and the Deep-SORT algorithms,
were exploited with different data association techniques. New formulations of the LAP
were implemented, by adding new distance metrics to establish the cost matrix for the
LAP formulation. Moreover, in order to apply the SORT and the Deep-SORT methods in
a multi-class environment, a class gate metric, to disallow association between objects from
different classes, was implemented. For evaluation and validation tasks in indoor, multi-
class and lowered point of view conditions, a labeling of an indoor tracking dataset was
performed, using the ISR RGB-D Dataset [25]. An overview of the pipeline is described
in Fig. 4.1.

4.2 Multi-Object Tracking Methods

4.2.1 SORT

To implement the SORT [2] algorithm, the main code available online1 was used.
Furthermore, new formulations of the LAP are implemented, by combining different met-
rics based on bounding box shape, euclidean distance and IoU, between bounding boxes
over consecutive frames. Moreover, a class gate metric, indicating admissible associations
according to the class of objects, is implemented. Also, to test different values of the vari-
able TLost, a different approach, based on dividing the acquired scene image into critical
and non critical zones, to delete tracks that could be out of the scene, is implemented.
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Figure 4.1: Multi-Object Tracking overview pipeline, using YOLOv3 as object detector,
and the SORT and the Deep-SORT as MOT methods.

4.2.1.1 KF Estimation

An identical Kalman Filter (KF) Estimation module to the one online available1 [2] is
implemented. Each new object tracking sequence is initialized with a new KF. The initial
state (x0) is assembled with the central point of the bounding box in pixel coordinates
(u, v), the bounding box scale (s = width × height), the bounding box ratio (r = width

height)
and null velocities:

x0 =
[
u, v, s, r, 0, 0, 0

]T
(4.1)

Furthermore, the initial covariance matrix (P0) is initialized with higher uncertainty to
initial velocities, since the state is initialized with velocities at null value:

P0 =



10 0 0 0 0 0 0

0 10 0 0 0 0 0

0 0 10 0 0 0 0

0 0 0 10 0 0 0

0 0 0 0 104 0 0

0 0 0 0 0 104 0

0 0 0 0 0 0 104


(4.2)
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The KF matrices are implemented as follows:

F =



1 0 0 0 1 0 0

0 1 0 0 0 1 0

0 0 1 0 0 0 1

0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1


(4.3)

Q =



1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 10−2 0 0

0 0 0 0 0 10−2 0

0 0 0 0 0 0 10−4


(4.4)

H =


1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 1 0 0 0

 (4.5)

R =


1 0 0 0

0 1 0 0

0 0 10 0

0 0 0 10

 (4.6)

4.2.1.2 Data Association

Different approaches to formulate an association problem with different bounding
box distance metrics were studied. An euclidean distance based cost matrix (ED(D,P )) is
proposed:

ED(D,P ) =


ed(D1,P1) . . . ed(D1,PM )

ed(D2,P1) . . . ed(D2,PM )

... . . . ...

ed(DN ,P1) . . . ed(DN ,PM )

 (4.7)
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where

ed(BBd,BBp) = 1−
√
(ud − up)2 + (vd − vp)2

1
2

√
image2height + image2width

(4.8)

which is the distance between bounding box central points normalized into half of the
image dimension. Furthermore, to incorporate the matrix into a maximization solution
using the Hungarian algorithm, is subtracted the normalized euclidean distance to the
value 1 (4.8). The bounding box ratio based cost matrix (BBr(D, P )) is implemented as
a ratio between the product of each width and height:

BBr(D,P ) =


bbr(D1,P1) . . . bbr(D1,PM )

bbr(D2,P1) . . . bbr(D2,PM )

... . . . ...

bbr(DN ,P1) . . . bbr(DN ,PM )

 (4.9)

where

bbr(BBd,BBp) = min(
wd ∗ hd
wp ∗ hp

,
wp ∗ hp
wd ∗ hd

) (4.10)

Also, for boxes with similar shape, this metric outcomes with a value closer to 1, con-
trasting to values close to 0 or much greater than 1 otherwise. For that reason, the
minimum between the ratio and its inverse is applied, to get a value that is within [0, 1]

range (4.10). Due to the implementation of new cost matrices, the IoUmin variable is
changed to Threshcost, and will be denominated as so throughout the following chapters.
With the aforementioned cost matrices and also the IoU cost matrix used by the SORT
algorithm, the following six configurations are implemented:

IoUED(D,P ) = IoU(D,P ) ◦ ED(D,P ) (4.11)

IoUBBr(D,P ) = IoU(D,P ) ◦BBr(D,P ) (4.12)

EDBBr(D,P ) = ED(D,P ) ◦BBr(D,P ) (4.13)

where this first three, are the Hadamard product (element-wise product) between two
matrices. Then, the other three conjugations get a cost based on every matrix. The
Hadamard product of every cost matrix:

Mult(D,P ) = IoU(D,P ) ◦ ED(D,P ) ◦BBr(D,P ) (4.14)

The element-wise mean of every cost matrix:

Mean(i,j) =
IoU(i,j) + ED(i,j) +BBr(i,j)

3
, i ∈ D, j ∈ P (4.15)
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And the element-wise weighted mean of every cost matrix:

WMean(i,j) = λIoU · IoU(i,j) + λED · ED(i,j) + λBBr ·BBr(i,j),

i ∈ D, j ∈ P, λIoU + λED + λBBr = 1 (4.16)

To improve tracking algorithms in multi-class environments, a new cost matrix is
computed based on tracks and measurements object class:

CostC(i,j)(Cost(i,j)) =

Cost(i,j) if Classi = Classj

0 otherwise
, i ∈ D, j ∈ P (4.17)

Computing the final cost matrix as follows:

CostMatrix = −CostC(D,P )(matrix(D,P )) (4.18)

where matrix is selected form one of the following: IoU (3.7), ED (4.7), BBr (4.9), IoUED

(4.11), IoUBBr (4.12), EDBBr (4.13), Mult (4.14), Mean (4.15), WMean (4.16).

4.2.1.3 Track Management

Deletion of tracks is computed for tracks that have a number of frames since the
last association bigger than the maximum age of tracks (time_since_update > TLost).
Furthermore, the output array containing bounding boxes and tracking identifications, is
elaborated using following conditions:

1. Track is associated with measurement in the current frame;

2. The hit streak of the track is greater or equal to the number of minimum hits, or
method is running for a shorter or equal period of hits margin.

Increasing the number of TLost frames had the drawback of trying to associate tracks
that could already be out of the scene, or possibly associate lost tracks with recently en-
tered measurements in the scene. Therefore, conditions to delete tracks that could possible
go out of the scene are added to the implementation. The deletion approach consists in
dividing the image in tracking zone and critical zone. It is considered a critical zone the
two side margins of the frame that correspond to ρ % of the frame width, indicating the
zone were objects normally appear or disappear. In example of ρ = 20%, the frame had
10% of the width frame corresponding to the left side and 10% to the right side, has seen
in Fig. 4.2. Furthermore, using “OR” logic operators, the following delete conditions are
applied:

1. Track skipped_frames > TLost.

2. Track central point is outside of frame.
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Figure 4.2: Representation of critical zone, for ρ = 20%.

3. Track skipped_frames > TLost
2 and Track predicted central point is inside critical

zone.

4.2.2 Deep-SORT

The Deep-SORT follows a publicly GitHub online code1, with the feature extractor
model modified to PyTorch library, and with a provided pre-trained model.

To the Deep-SORT implementation, Eq. (3.14) is added, since the code was only as-
sembled for λ = 0. Furthermore, the second matching stage is implemented with different
cost matrix formulation. Moreover, a class gate metric is added to the gate metric, and
to the second matching stage problem formulation.

4.2.2.1 KF Estimation

Each new track is initialized with a KF. The initial state (x0) is assembled with the
central point of the bounding box in pixel coordinates (u, v), the bounding box ratio(r =
width
height), the bounding box height (h), and null velocities:

x0 =
[
u, v, r, h, 0, 0, 0, 0,

]T
(4.19)

Furthermore, motion and observation uncertainty are chosen relative to the current aspect
ratio (r) of the state estimate and uses two weights (λσpos and λσvel

) to control the amount
of uncertainty in each model. Moreover, the initial error covariance matrix (P0) is also
projected with uncertainty weights, some element factors and the aspect ratio. The two
weights used in the algorithm are: λσpos = 1

20 and λσvel
= 1

160 . This is an irregular
projection of the KF, but is useful to discriminate objects further, from objects closer to
the camera. This implies that each track has different process and measurement noise
matrices over time, based on their aspect ratio (r) estimation. The KF matrices are
projected similarly to the online code,1 as following:

1https://github.com/ZQPei/deep_sort_pytorch
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P0 = diag





2 · λσpos · x0(r)

2 · λσpos · x0(r)

10−2

2 · λσpos · x0(r)

10 · λσvel
· x0(r)

10 · λσvel
· x0(r)

10−5

10 · λσvel
· x0(r)



2

(4.20)

F =



1 0 0 0 1 0 0 0

0 1 0 0 0 1 0 0

0 0 1 0 0 0 1 0

0 0 0 1 0 0 0 1

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1



(4.21)

Qk = diag





λσpos · xk(r)

λσpos · xk(r)

10−2

λσpos · xk(r)

λσvel
· xk(r)

λσvel
· xk(r)

10−5

λσvel
· xk(r)



2

(4.22)

H =


1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

 (4.23)

Rk = diag




λσpos · xk(r)

λσpos · xk(r)

10−1

λσpos · xk(r)



2 (4.24)
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4.2.2.2 Data Association

In the first stage association, the association problem is built with Eq. (3.14). Fur-
thermore, the distance between track appearance features and measurement appearance
features (d(2)) can also be computed by the squared euclidean distance between appearance
features, which is given by the follow equation:

d(2)euc(i, j) = ∥Ai∥22 − 2AT
i Fj + ∥Fj∥22, i ∈ {1, . . . , L}, j ∈ {1, . . . , N} (4.25)

where A is an L × B matrix with L last associated appearance features of dimension B,
F is an N × B matrix with N measurements with a B dimensional appearance features
and AT

i is the transpose vector of Ai. Moreover, a class gate metric is added to the gate
metric as following:

b
(3)
i,j =

1 if Classi = Classj

0 otherwise
(4.26)

bi,j =
3∏

m=1

b
(m)
i,j (4.27)

to filter possible associations between tracks and measurements with different classes.

In the second stage association, the different cost matrices formulated on SORT al-
gorithm, are also applied. Small differences, such as formulation of a minimum cost LAP
and the different approach to associate tracks to measurements and not otherwise, were
taken into account. The following cost matrices are used:

Cmetric
(T,D) = [1−metric(T,D)], metric ∈ [IoU, ED, BBr] (4.28)

CMult
(T,D) = Ciou

(T,D) ◦ C
ED
(T,D) ◦ C

BBr
(T,D) (4.29)

CMean
(i,j) =

Ciou
(i,j) + CED

(i,j) + CBBr
(i,j)

3
, i ∈ T, j ∈ D (4.30)

CWMean
(i,j) = λIoU · Ciou

(i,j) + λED · CED
(i,j) + λBBr · CBBr

(i,j) ,

i ∈ T, j ∈ D, λIoU + λED + λBBr = 1 (4.31)

Paired with the threshold to associate tracks to measurements, an indicator to filter asso-
ciations made with different object classes is implemented.

Since the Mahalanobis threshold (t(1)) is a constant based on the the inverse Chi-
Squared distribution, further mentions of the first stage threshold will be referred to the
appearance-based association threshold (t(2)), and will be introduced as dist1. Moreover,
the second association stage threshold will be mentioned as dist2.
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4.2.2.3 Track Management

Each track is represented by a state: Tentative, Confirmed or Deleted. Every track
is initialized in the Tentative state. Tracks need to pass the Tentative stage by getting
three consecutive associations (hitmin = 3) to be considered as Confirmed. Once a track
is Confirmed, it only needs a single association to be considered as an output, on that
current time-step. A track is Deleted if it is in the Tentative state and no association was
made in the current time-step, or it is in the Confirmed state and no associations were
made in the last Amax = 30 frames.

4.2.3 Multi-Object Tracking Evaluation Metrics

For quantitative evaluation of each method and proposed data association techniques,
was implemented an evaluation script with MOTA, MOTP, TP, FN, FP, IDs, MT, ML
and FM metrics. The script gets the result and ground truth .txt files and evaluates every
sequence with a matching threshold of IoU = 0.5.

4.3 Object Detection + Object Tracking

As referenced in Fig. 4.1, the overall pipeline to fulfil this study, requires an object
detector method to obtain objects bounding boxes and classifications in order to perform
tracking methodologies. Therefore, YOLOv3 object detector network was used.

The overall pipeline is implemented to evaluate each SORT and Deep-SORT methods
in a real-time strategy. Moreover, the best configuration for the two MOT methods, are
chosen, to understand the importance of the object detector and how it affects tracking
methodologies. Bounding boxes attained by the YOLOv3 method are filtered using a
NMS algorithm, only for bounding boxes with confidence over 0.5 (confmin = 0.5), and
with an overlap threshold of 0.5 (nmsmin = 0.5).

4.4 ISR Tracking Dataset Labeling

The ISR RGB-D Dataset [25], is an object-related dataset, recorded in the ISR facil-
ities using a camera sensor onboard the InterBot [55] platform. The dataset presents a
mission performed by the platform in a real scenario setting, representing the object con-
ditions under mobile robot platforms may navigate. The ISR dataset was recorded at 30

FPS in 640× 480 resolution. Moreover, this dataset contains a total of 10000 RGB-D raw
images and labels of 10 object classes (unknown, person, laptop, tv-monitor, chair, toilet,
sink, desk, door-open and door-closed) labeled in every 4th frame achieving a total of 7832
object-centric RGB-D images. Since this dataset represents the object conditions from a
mobile robot point-of-view, it is utmost important to evaluate object tracking methods in
such conditions. To accomplish that, object tracking labels need to be add to the original
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labels. Also, due to objects being labeled every 4th frame, a procedure of labeling bound-
ing boxes throughout every frame was necessary. Therefore, the YOLOv3 [19] network
was trained using labeled frames and executed to detect objects in every other non-labeled
frame. To label an indoor object tracking dataset based on detections, some conditions
have to be defined. The reason is in respect of the same objects being present in the
scene multiple different times. Moreover, an image detector does not handles occlusions,
so this dataset has no labeled occluded objects. Also, the existence of miss detections
of objects in a continuous frame sequence are recurrent in this dataset. Based on the
existence of tracks fragmentation in ground truth parameters, the same tracking label was
used to a maximum number of 15 frames without detections. Concerning the frame rate
of the dataset being 30 FPS, the limit time that an object continue with its ground truth
tracking ID, is if the object got detected every half a second.

The tracking labeling by hand was proceeded for the entire 10000 frame dataset, for
every object except “unknown” labeled objects. The ISR Tracking dataset ground truth is
included in a single “.txt” file, with rows corresponding to the amount of object instances
in the dataset. Each line contains 7 values, respectively corresponding to: <Frame num-
ber>, <Tracking id>, <Bounding box center x>, <Bounding box center y>, <Bounding
box width>, <Bounding box height>, <Object class>. The decision of maintaining the
object class in the dataset, is for the possibility of understanding the behaviour of static
and dynamic objects, in future works. After proper labeling, the dataset got a total of
32635 bounding boxes, 329 sequences of objects and a video length of 05 : 33 minutes.
Furthermore, the ISR Tracking Dataset only contains RGB images.

4.5 Implementation Details

This study was performed by the usage of a NVIDIA GeForce RTX 2060 SUPER
Graphics Processing Unit (GPU) and AMD Ryzen™ 5 3600 Central Processing Unit
(CPU). Moreover, every algorithm is implemented in Python 3.8.5 object-oriented pro-
gramming language, with help of Numpy, SciPy and OpenCV Python Libraries and the
PyTorch framework. Also, to speed up computing applications using the power of GPU,
the PyTorch with CUDA toolkit version 11.2.152 is used, that includes GPU-accelerated
libraries. Furthermore, the PyCharm Community edition open sourced Python Integrated
Development Environment, is used to elaborate the Python project in study.
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5
Results and Discussion

This chapter presents the results of the SORT, the Deep-SORT and proposed data as-
sociation techniques, in the MOT17 Training Sequences Dataset and ISR Tracking Dataset.
Furthermore, a tracking by detection framework was evaluated, using the YOLOv3 object
detector to obtain measurements for the MOT algorithms, in the context of indoor robotic
platforms

5.1 Dataset

To evaluate the performance of object tracking methods, is fundamental to have a
reliable dataset. This dissertation proposes a study on MOT algorithms for indoor, multi-
class and recorded in mobile robotic platforms, in which datasets with this conditions are
required. The MOT benchmarks do not fulfill the requirements for our study. Nonetheless,
MOT benchmarks are useful in performing comparative analysis of results. Therefore, to
discuss the performance of the adopted methodology, the MOT17 Training set [27] and
the ISR Tracking Dataset (labeled to fulfill requirements of this study) were used.

5.1.1 MOT17

The MOT17 [27]3 is a multi person tracking benchmark divided into 14 sequences with
highly crowded scenarios, different viewpoints, weather conditions and camera motion.
Each sequence comes in three different files that contain detections acquired from three
different detectors: FasterRCNN [17], SDP [56] and DPM [57]. The MOT17 dataset is also
divided into training and test sets, where training sequences are integrated with detection
and ground truth files, whilst test sequences have only detection files. Consequently, we
chose to only use the training dataset, in order to run our own evaluations. The dataset
is labeled with visible and also occluded humans on the scene as previewed in Fig. 5.1. A
brief description of each training sequence is presented on Table 5.1.

3https://motchallenge.net/data/MOT17/
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Table 5.1: Description of the MOT17 training sequences.

Sequence FPS Resolution Length Tracks Boxes Density Description
Number

02 (Fig. 5.1a) 30 1920× 1080 600(00 : 20) 62 18581 31.0 People walking around a
large square.

04 (Fig. 5.1b) 30 1920× 1080 1050(00 : 35) 83 47557 45.3 Pedestrian street at
night, elevated viewpoint.

05 (Fig. 5.1c) 14 640× 480 837(01 : 00) 133 6917 8.3 Street scene from a
moving platform.

09 (Fig. 5.1d) 30 1920× 1080 525(00 : 18) 26 5325 10.1 A pedestrian street scene
filmed from a low angle.

10 (Fig. 5.1e) 30 1920× 1080 654(00 : 22) 57 12839 19.6 A pedestrian scene filmed
at night by a moving

camera
11 (Fig. 5.1f) 30 1920× 1080 900(00 : 30) 75 9436 10.5 Forward moving camera

in a busy shopping mall.
13 25 1920× 1080 750(00 : 30) 110 11642 15.5 Filmed from a bus on a

busy intersection.
Total 5316(03:25) 546 112297

(a) MOT17 02 FRCNN. (b) MOT17 04 FRCNN.
(c) MOT17 05 FRCNN.

(d) MOT17 09 FRCNN. (e) MOT17 10 FRCNN. (f) MOT17 11 FRCNN.

Figure 5.1: Image examples of the MOT17 Train sequences with ground truth bounding
boxes.

5.1.2 ISR Tracking Dataset

The ISR Tracking Dataset was used in two different ways: To evaluate MOT algo-
rithms using detections from the dataset and to evaluate MOT methods with YOLOv3
object detector, using images as input. For MOT methods evaluation, the ISR Tracking
Dataset was used as it was labeled, containing a total of 32635 bounding boxes, 329 se-
quences of objects and a video length of 05 : 33 minutes in 30 FPS. It was also used in
a lower frame rate condition, by collecting data from the dataset in a step of four frame
gap, starting at the 2nd frame. The dataset in this condition contains a total of 8434

bounding boxes, 321 sequences of objects and frame rate of 7.5 FPS. Moreover, ground
truth will be used as detections, which will be favorable to the evaluation of each MOT
method. Besides that, it is attainable an adequate form of comparison through the two
MOT methods for conditions presented in the scope of this study. For the usage of the
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Table 5.2: Evaluation of different weight conjugation, cost matrix computation, on the
MOT17 training set (Detections acquired from FRCNN file). TLost = 1. Threshcost = 0.3.
hitmin = 3.

Weights Evaluation Metrics
σIoU σEuc σBBr MOTA↑ MOTP↑ TP↑ FP↓ FN↓ IDs↓ % MT↑ % ML↓ FM↓
5/10 4/10 1/10 44.93 87.84 56677 6223 54772 848 12.3% 33.0% 946
5/10 3/10 2/10 44.99 87.84 56713 6196 54757 827 12.3% 33.3% 932
4/10 3/10 3/10 44.85 87.76 56688 6323 54776 833 13.0% 32.8% 953
3/10 4/10 3/10 44.64 87.71 56613 6479 54832 852 12.8% 33.0% 948
3/10 3/10 4/10 44.58 87.70 56558 6492 54858 881 12.8% 33.0% 967
4/10 5/10 1/10 44.75 87.75 56627 6379 54793 877 12.6% 33.3% 961
6/10 3/10 1/10 45.25 87.90 56803 5984 54695 799 12.1% 33.0% 912
6/10 2/10 2/10 45.25 87.92 56801 5990 54705 791 12.1% 33.0% 907
7/10 2/10 1/10 45.53 88.09 56552 5426 54996 749 12.6% 33.5% 853

YOLOv3 object detector combined with MOT methods, the ISR Tracking Dataset was
split in sequences of training and testing. The dataset was divided in sequences of 500

(ISR500 sub-dataset) and 200 (ISR200 sub-dataset) frames, respectively containing 20 and
50 sequences. Sequences are numbered from 1 to 20 in the ISR500 sub-dataset and 1 to
50 in the ISR200 sub-dataset. Furthermore, even numbered sequences integrate the Test
split, and odd numbered sequences integrate the Training split.

5.2 SORT

The SORT algorithm has TLost, hitmin and Threshcost constants that can be chosen.
The main algorithm was configured with TLost = 1, hitmin = 3 and Threshcost = 0.3.
Therefore, the following evaluation was primarily based on those values and without the
usage of object detector algorithm.

5.2.1 WMean Cost Matrix Weights Selection

The different formulations of cost implemented in the SORT algorithm, were estab-
lished using IoU (IoU), euclidean (ED) and bounding box ratio (BBr) distance metrics.
Table 5.2 shows the evaluation of different weight conjugations (λIoU, λED and λBBr) on
the MOT17 Dataset for the WMean cost matrix. As shown in Table 5.3, due to the
lack of spatial information on the BBr distance metric, results of the BBr cost matrix
are significantly unfavorable than using ED and IoU cost matrices. Based on the results
of these three metrics, the best combination of weights to the weighted mean (WMean)
cost matrix, was fond for values of λIoU = 7

10 , λED = 2
10 and λBBr = 1

10 with MOTA
score of 45.53. Aforementioned configuration has the less number of FP and IDs, despite
the higher number of FNs. Furthermore, it has the less number of track FM by a large
amount. Therefore, throughout the following evaluations of proposed data association
techniques, WMean cost matrix is configured with those aforementioned values.
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Table 5.3: Evaluation of the SORT method and proposed data association techniques on
the MOT17 training set (Detections acquired from FRCNN file). TLost = 1. Threshcost =
0.3. hitmin = 3.

Cost Matrix Evaluation Metrics
MOTA↑ MOTP↑ TP↑ FP↓ FN↓ IDs↓ % MT↑ % ML↓ FM↓ FPS↑

IoU (SORT) 45.56 88.19 56298 5136 55281 718 11.5% 35.3% 798 516
ED 41.24 86.99 54292 7977 56271 1734 7.9% 33.7% 1915 500
BBr 14.15 83.06 37236 21351 70281 4780 4.9% 37.5% 4730 510

IoUED 45.55 88.20 56275 5126 55305 717 11.5% 35.3% 799 486
IoUBBr 45.55 88.21 56263 5111 55324 710 11.5% 35.5% 797 499
EDBBr 44.40 87.79 56329 6470 55028 940 11.7% 32.4% 1090 480
Mult 45.54 88.21 56245 5107 55344 708 11.5% 35.7% 797 469
Mean 44.72 87.72 56636 6417 54811 850 13.0% 33.0% 958 472

WMean 45.53 88.09 56552 5426 54996 749 12.6% 33.5% 853 473

Table 5.4: Best MOTA score of the SORT method and proposed data association tech-
niques, on the MOT17 training set (Detections acquired from FRCNN file). TLost = 1.
hitmin = 3.

Cost Matrix Threshcost
Evaluation Metrics

MOTA↑ MOTP↑ % MT↑ % ML↓ Frag↓
IoU (SORT) 0.25 45.57 88.16 12.1% 34.8% 808

ED 0.625 41.87 87.17 8.1% 33.3% 1870
BBr 0.7 22.01 84.47 4.9% 36.1% 4077

IoUED 0.125 45.57 88.11 12.3% 33.9% 841
IoUBBr 0.125 45.58 88.11 12.3% 33.9% 838
EDBBr 0.7 44.82 87.97 12.1% 33.0% 1045
Mult 0.1 45.58 88.11 12.3% 33.7% 840
Mean 0.65 45.59 88.10 12.5% 33.7% 850

WMean 0.375 45.56 88.11 12.3% 33.9% 840

5.2.2 Evaluation on the MOT17 Dataset

All different formulations of cost matrices implemented, were evaluated on the MOT17
Dataset, with results shown in Table 5.3. While the SORT’s IoU cost matrix formulation
shows the best MOTA score, all the other evaluation metrics achieved a better performance
on remaining cost matrices. The Mult cost matrix formulation has the lower number of
FP, IDs and FM, which represents the most accurate tracking for sequences generated
by the algorithm. On the other hand, the Mean cost matrix formulation has the higher
number of TP and lower number of FN, which is proportional to the percentage of MT
sequences. This represents a robust result when associating tracks, but has the downside
of a lower MOTA score due to increased number of IDs and FP. In a general view, is
observable an inverse proportionality between IDs and MOTP score, caused by the poor
state representation of the KF when it gets shifted associations (compared to the ground
truth) as observation or it is initialized as a new track. This evaluation shows positive
results to the IoU, IoUED, IoUBBr, Mult and Mean cost matrices formulations and the
fast frame processing of the method.
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Figure 5.2: SORT method and proposed data association techniques MOTA Scores for
different values of Threshcost threshold on the MOT17 Train Dataset (Detections acquired
from FRCNN file).

Table 5.5: Evaluation of the SORT method for different number of maximum age (TLost).
Threshcost = 0.3. hitmin = 3.

Dataset TLost
Evaluation Metrics

MOTA↑ MOTP↑ % MT↑ % ML↓
ISR 1 90.57 92.21 60.5% 1.5%

Tracking 15 90.57 92.21 60.5% 1.5%
MOT17 1 45.56 88.19 11.5% 35.3%
Training 15 45.56 88.19 11.5% 35.3%

Concerning the fact that each cost matrix is computed based on different operations,
each should have its respective threshold that can better identify the limit between bad
and good associations. Fig. 5.2, shows the MOTA score fluctuating with Threshcost

in a range of [0.0, 0.7]. Fig. 5.2b shows a decline on MOTA score for threshold values
higher than 0.3, excluding the EDBBr, Mean and WMean cost matrices formulations,
where the increase of threshold value helps the track association to be more accurate. The
Mult cost matrix formulation curve, shows a similar behaviour to the IoU cost matrix
formulation curve, were a decrease of MOTA score is expected for thresholds higher than
0.3, since the cost of each metric had to be higher or around 3√

0.3 ≃ 0.66. Therefore, for
Threshcost = 0.3, the Mult cost matrix formulation discards tracks that have lower values
in at least one of the three distance metrics. Fig. 5.2 is complemented with Table 5.4,
where is shown a promising result for the Mean cost matrix formulation, with the best
MOTA score of 45.59 for Threshcost = 0.65.

Table 5.5 shows attained results of the SORT algorithm using different values of
TLost. The method was performed on the MOT17 Train and ISR Tracking Datasets
to distinguish differences when the variable TLost was increased from 1 to 15. Without
any changes observed in the evaluation of both variables, is assumed that the method
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Table 5.6: Evaluation of the SORT method and proposed data association techniques,
with new track management conditions, on MOT17 Train Dataset (Detections acquired
from FRCNN file). TLost = 15. Threshcost = 0.3. hitmin = 3.

Cost Matrix Evaluation Metrics
MOTA↑ MOTP↑ TP↑ FP↓ FN↓ IDs↓ % MT↑ % ML↓ FM↓

IoU (SORT) 45.37 88.20 56048 5095 55533 716 10.8% 35.9% 787
ED 41.16 87.01 54130 7910 56472 1695 7.3% 34.1% 1870
BBr 14.98 83.12 37612 20788 69925 4760 4.2% 38.5% 4601

IoUED 45.37 88.21 56032 5085 55549 716 10.8% 35.9% 788
IoUBBr 45.36 88.22 56011 5070 55576 710 10.8% 36.1% 787
EDBBr 44.21 87.81 56077 6430 55284 936 10.6% 33.2% 1085
Mult 45.35 88.22 55997 5066 55592 708 10.8% 36.3% 786
Mean 44.48 87.74 56338 6391 55087 872 12.1% 33.7% 950

WMean 45.37 88.11 56323 5373 55231 743 11.9% 33.9% 837

is not capable of re-encounter a track when it is not associated for more than 1 frame.
Consequently, it is assumed that the KF cannot accurately predict the state of bounding
boxes without observations in a short period of time. Furthermore, due to camera motion
on some sequences of the MOT17 Train Dataset and throughout the entire ISR Tracking
Dataset, is understandable that the KF is incapable of modeling the state of bounding
boxes, without any camera motion information. Therefore, the new track management
formulation implemented on the SORT algorithm, has no affect on these results. In fact,
the new track management formulation has a slight negatively affect in the performance
of the tracker, once it is more intrusive in early deletion of tracks. Evaluation of this
experience can be visualized at Table 5.6.

5.2.3 Class Gate Metric Evaluation on the ISR Tracking Dataset

The SORT class gate metric (CostC) was implemented to discard association of dif-
ferentiated class objects. For that, due to the multi-class concept of the ISR Tracking
Dataset, it is the one capable of evaluating such implementation. Moreover, it is achiev-
able an evaluation of the tracking method in an indoor, multi-class, not crowded and
lowered point of view scenario. Table 5.7 represents the evaluation of the SORT method
and proposed data association techniques, in the ISR Tracking Dataset, with and without
the usage of the CostC class gate metric. Due to the usage of ground truth bounding boxes
as measurements on the ISR Tracking Dataset, is observable an increase of MOTA and
MOTP score in every evaluated data association technique. Furthermore, it is perceptible
the effectiveness of the CostC gate metric in such conditions, reaching the highest MOTA
score of 91.02 and percentage of MT sequences of 69.3%, for the Mean cost matrix formu-
lation with CostC gate metric. Excluding the usage of the class gate metric, WMean cost
matrix formulation shows the best MOTA score with 90.90. It is also noticeable the low
number of FP of the Mult cost matrix formulation, whilst for Threshcost = 0.3, it tend
to easily reprove tracks that have at least one distance metrics with low value of cost.

To find the best Threshcost for this conditions using the CostC gate metric, Fig. 5.3
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Table 5.7: Evaluation of SORT method and proposed data association techniques,
on the ISR Tracking Dataset (Detections acquired from ground truth file). TLost = 1.
Threshcost = 0.3. hitmin = 3.

Cost Matrix Evaluation Metrics
MOTA↑ MOTP↑ TP↑ FP↓ FN↓ IDs↓ % MT↑ % ML↓ FM↓ FPS↑

IoU (SORT) 90.57 92.21 29589 31 2932 114 60.5% 1.5% 556 1368
CostC+IoU 90.63 92.20 29611 33 2926 98 61.7% 1.5% 550 1404

ED 88.85 91.48 29307 310 3031 297 59.0% 0.9% 618 1389
CostC+ED 90.82 92.00 29739 100 2830 66 66.9% 1.2% 566 1408

BBr 68.23 88.45 25015 2748 5550 2070 30.7% 3.6% 1179 1380
CostC+BBr 87.74 91.56 29134 500 3216 285 63.2% 1.2% 642 1425

IoUED 90.44 92.27 29538 22 2974 123 59.0% 1.5% 561 1317
CostC+IoUED 90.49 92.27 29553 22 2969 113 59.6% 1.5% 556 1337

IoUBBr 90.34 92.30 29491 9 3008 136 58.7% 1.8% 566 1377
CostC+IoUBBr 90.36 92.32 29497 8 3015 123 59.3% 1.8% 559 1392

EDBBr 90.77 92.00 29713 91 2827 95 65.0% 0.9% 562 1368
CostC+EDBBr 90.98 92.05 29767 77 2813 55 68.1% 0.9% 555 1375

Mult 90.21 92.35 29445 5 3053 137 57.4% 1.8% 564 1311
CostC+Mult 90.24 92.36 29456 5 3050 129 58.1% 1.8% 559 1307

Mean 90.87 91.96 29756 101 2799 80 67.5% 1.2% 558 1288
CostC+Mean 91.02 92.02 29785 81 2799 51 69.3% 1.2% 554 1292

WMean 90.90 92.10 29715 50 2832 88 64.4% 1.2% 558 1298
CostC+WMean 90.93 92.10 29727 53 2837 71 65.3% 1.2% 552 1305
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Figure 5.3: SORT method and proposed data association techniques MOTA Scores,
for different values of Threshcost using CostC gate metric, on the ISR Tracking Dataset
(Detections acquired from ground truth file).

shows the MOTA score of each metric throughout a range of thresholds, whilst Table
5.8 summarizes each best evaluation. In Fig. 5.3 is shown a decrease of MOTA values
for higher thresholds. Moreover, IoUBBr and Mean cost matrices formulations curves,
present a threshold independent behaviour. Table 5.8 exhibits the best MOTA score
acquired from the range of different Threshcost thresholds, for the SORT method and
proposed data association techniques. Furthermore, it is noticeable that the Mean and

39



Kalman Filter-based Object Tracking Techniques for Indoor Robotic Applications

Table 5.8: Best MOTA score of the SORT method and proposed data association tech-
niques, using CostC gate metric, on the ISR Tracking Dataset (Detections acquired from
ground truth file). TLost = 1. hitmin = 3.

Cost Matrix Threshcost
Evaluation Metrics

MOTA↑ MOTP↑ % MT↑ % ML↓ FM↓
IoU 0.05 90.93 92.08 66.3% 1.2% 552
ED 0.05 90.84 91.99 67.8% 1.2% 565
BBr 0.5 87.82 91.60 62.9% 0.9% 639

IoUED 0.05 90.92 92.09 65.3% 1.2% 552
IoUBBr 0.05 90.93 92.08 66.3% 1.2% 551
EDBBr 0.25 90.99 92.04 68.4% 0.9% 555
Mult 0.05 90.91 92.10 65.0% 1.2% 551
Mean 0.3 91.02 92.02 69.3% 1.2% 554

WMean 0.15 91.02 92.02 69.3% 1.2% 554

the WMean cost matrices formulations outperformed remaining ones, achieving promising
results comparing to the IoU cost matrix formulation.

5.2.4 Lower Frame rate Condition of the ISR Tracking Dataset

The ISR Tracking dataset lower frame rate condition was processed with the SORT
algorithm acknowledging usefulness of the CostC gate metric. The dataset was reduced
by collecting frames in a four frame gap step. In this condition is expected an abrupt
reduction of the MOTA score for cost matrices formulations that use the IoU distance
metric, due to the spacial distance between bounding boxes in consecutive frames. In
Table 5.9 is shown the results of the SORT and proposed data association techniques,
using the CostC gate metric. Is observable the decrease of MOTA score of IoU cost matrix
formulation, and the outperform of ED and BBr cost matrices formulations. Despite BBr

cost matrix formulation present flaws when used alone, in this experiment it achieved
the second best result of MOTA score, compared to other single metric cost matrices
formulations (IoU, ED). This conditions have to be tested with different Threshcost to
identify higher MOTA scores that could be shadowed by the threshold. Fig. 5.4 exhibits
the MOTA scores throughout a range of thresholds (Threshcost = [0, 0.7]), with ED,
BBr, EDBBr and Mean cost matrices formulations presenting a consistent behaviour.
Each cost matrix formulation best MOTA score has their evaluations summarized at Table
5.10. Nonetheless, WMean cost matrix formulation reaches the highest MOTA score with
81.71 for Threshcost = 0.25. Moreover, Mean cost matrix formulation attain an optimistic
MOTA score of 81.54, for a Threshcost = 0.55.
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Table 5.9: Evaluation of proposed data association techniques, using CostC gate metric,
on the ISR Tracking Dataset (Gap = 4) (Detections acquired from ground truth file).
TLost = 1. Threshcost = 0.3. hitmin = 3.

Cost Matrix Evaluation Metrics
MOTA↑ MOTP↑ TP↑ FP↓ FN↓ IDs↓ % MT↑ % ML↓ FM↓ FPS↑

IoU 75.65 86.99 6419 39 1886 129 23.1% 12.8% 82 1430
ED 80.63 84.29 7088 288 1308 38 40.5% 6.2% 51 1363
BBr 75.90 83.79 6831 430 1446 157 38.6% 6.5% 90 1448

IoUED 74.15 87.37 6268 14 2020 146 18.7% 14.3% 95 1376
IoUBBr 73.30 87.64 6193 11 2096 145 18.7% 15.0% 95 1403
EDBBr 80.63 84.48 7058 258 1339 37 38.3% 6.5% 54 1369
Mult 71.47 88.05 6030 2 2241 163 15.3% 15.6% 116 1354
Mean 80.97 84.41 7093 264 1295 46 40.2% 6.2% 47 1364

WMean 81.16 85.31 6932 87 1422 80 33.0% 8.7% 42 1356
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(b) Combination of cost matrices.

Figure 5.4: Proposed data association techniques MOTA Scores, for different values of
Threshcost using CostC gate metric, on the ISR Tracking Dataset (Gap = 4) (Detections
acquired from ground truth file).

Table 5.10: Best MOTA score of the SORT method and proposed data association
techniques, using CostC gate metric, on the ISR Tracking Dataset (Gap = 4) (Detections
acquired from ground truth file). TLost = 1. hitmin = 3.

Cost Matrix Threshcost
Evaluation Metrics

MOTA↑ MOTP↑ % MT↑ % ML↓ FM↓
IoU (SORT) 0.05 81.35 85.35 34.3% 8.4% 38

ED 0.65 80.77 84.62 37.4% 6.2% 46
BBr 0.4 76.58 84.01 36.4% 6.9% 89

IoUED 0.05 81.18 85.42 33.0% 8.4% 39
IoUBBr 0.05 81.27 85.43 34.0% 8.4% 37
EDBBr 0.35 80.84 84.73 37.4% 6.2% 49
Mult 0.05 81.06 85.48 33.0% 9.0% 38
Mean 0.55 81.54 85.14 33.3% 7.2% 42

WMean 0.25 81.71 84.98 34.3% 6.9% 42
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Table 5.11: Evaluation of Deep-SORT method, for different values of λ and appearance
feature association metric, on the MOT17 training set (Detections acquired from FRCNN
file). Amax = 30. dist1max = 0.2. dist2max = 0.7. hitmin = 3.

Feature
λ

Evaluation Metrics
Association

Metric MOTA↑ MOTP↑ TP↑ FP↓ FN↓ IDs↓ % MT↑ % ML↓ FM↓ FPS↑

Cosine

0 45.57 88.26 55689 4513 56161 447 12.8% 35.9% 655 13
0.3 45.23 88.32 55273 4484 56426 598 12.8% 36.1% 668 13
0.5 45.23 88.32 55274 4486 56415 608 13.0% 36.1% 665 13
0.7 45.13 88.34 55242 4561 56364 691 12.3% 36.1% 684 13

Euclidean

0 45.12 88.33 55113 4449 56559 625 11.7% 36.3% 664 13
0.3 45.12 88.34 55108 4436 56571 618 11.7% 36.3% 659 13
0.5 45.15 88.33 55148 4443 56538 611 12.1% 36.3% 660 13
0.7 45.16 88.34 55182 4464 56502 613 12.5% 36.3% 658 13
1 45.07 88.33 55242 4632 56322 733 11.9% 36.1% 697 13

5.3 Deep-SORT

The Deep-SORT algorithm is implemented with the possibility of selecting different
constants and settings: The λ value for the weighted sum of object appearance feature
and Mahalanobis distance metrics, the appearance feature distance metric (Euclidean or
Cosine), association gating threshold for initial and second matching stage (dist1max and
dist2max), age of track without associations Amax and minimum of hits hitmin of a track
to be considered as Confirmed. The main algorithm was configured with λ = 0, Cosine
distance metric, dist1max = 0.2, dist2max = 0.7, Amax = 30 and hitmin = 3. Furthermore, it
was used the appearance descriptor trained on a large-scale person re-identification dataset
[48]. Therefore, in this experiments, was used the pre-trained network available online as
appearance descriptor, and aforementioned constants as base configuration to evaluate
different proposed data association techniques. Following evaluations on this section are
attained without the usage of object detector algorithm.

5.3.1 λ Value and Feature Association

In order to obtain a solid performance of the Deep-SORT algorithm on the ISR Track-
ing Dataset, the λ values were ranged from 0 to 1 (with λ = 1 meaning no usage of feature
association metric). Furthermore, in different occasions, the cosine and euclidean distance
were applied, as appearance feature association metrics. Results of such experience in
MOT17 training set are shown in Table 5.11. As expected, the method configured with
λ = 0 and cosine distance as appearance feature association metric outperformed others.
As reported in [1], λ = 0 is a reasonable choice when there is a notable camera motion,
since the algorithm performs the first association stage metric only with appearance infor-
mation. Moreover, since the appearance descriptor is trained using cosine metric learning,
cosine distance is the adequate choice as feature association metric. Table 5.12 exhibits
the evaluation of the aforementioned configurations indicated before, on the ISR Tracking
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Table 5.12: Evaluation of Deep-SORT method, for different values of λ and appearance
feature association metric, on the ISR Tracking Dataset (Detections acquired from ground
truth file). Amax = 30. dist1max = 0.2. dist2max = 0.7. hitmin = 3.

Feature
λ

Evaluation Metrics
Association

Metric MOTA↑ MOTP↑ TP↑ FP↓ FN↓ IDs↓ % MT↑ % ML↓ FM↓ FPS↑

Cosine

0 90.73 89.65 30974 1366 1439 222 71.4% 0.3% 147 152
0.3 87.35 89.70 29833 1328 2227 575 55.3% 0.6% 442 145
0.5 86.97 89.70 29715 1332 2297 623 55.0% 0.6% 478 145
0.7 86.76 89.70 29661 1347 2316 658 54.4% 0.6% 485 145

Euclidean

0 86.65 89.65 29539 1262 2478 618 53.8% 0.6% 533 144
0.3 86.25 89.65 29427 1278 2525 683 53.2% 0.6% 549 142
0.5 86.70 89.67 29571 1277 2432 632 53.5% 0.6% 510 143
0.7 86.69 89.69 29604 1312 2380 651 53.8% 0.6% 500 143
1 86.66 89.70 29635 1355 2323 677 53.8% 0.6% 484 143

Dataset. Reported results, manifest the same behaviour as in the MOT17 training set,
moreover, it is detected a major increase of MT sequences and an impressive number of
ML sequences of 0.3%, corresponding to only one sequence Mostly Lost. Despite the lower
value of FPS on the MOT17 Dataset, this evaluation shows an optimistic result for not
crowded scenarios.

5.3.2 First Stage Association Threshold Value

The dist1max threshold was applied in different values to evaluate its influence on both
datasets (Evaluation shown on Table 5.13). It is noticeable that the higher MOTA score
has a different threshold for both datasets. Furthermore, the results are not capable of
manifest any dependence with MOTP score, since the association is obtained based on the
accuracy of detection and feature extraction, and trajectory modulation is achieved by the
KF. dist1max = 0.2 is the configuration with lower number of FP on both datasets, which
is an expected behaviour, since lower values of dist1max are more critical to the feature
association metric. This critical behaviour is also seen in the decreased number of TP and
in the increased number of FN. However, dist1max = 0.2 configuration exhibits the higher
value of IDs, which can be caused by the final stage association metric for objects that
are not associated in the initial association stage. In results attained in the ISR Tracking
dataset, configuration with dist1max = 0.3 outperforms remaining ones, despite the higher
number of FP compared to dist1max = 0.2.

5.3.3 Second Stage Association Cost Matrix

The Deep-SORT second association stage was evaluated using different thresholds
(dist2max) for different cost matrices formulations. As a backup association technique, it
is expected to achieve similar MOTA results with minor changes on the number of TP,
FP, FN and IDs. Fig. 5.5 shows the MOTA score variation for different cost matrices
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Table 5.13: Evaluation of Deep-SORT different values of dist1max on the MOT17 training
(Detections acquired from FRCNN file) and on the ISR Tracking (Detections acquired from
ground truth file) Datasets. λ = 0. Amax = 30. dist2max = 0.7. hitmin = 3. Appearance
feature association: Cosine distance metric.

Dataset dist1max

Evaluation Metrics
MOTA↑ MOTP↑ TP↑ FP↓ FN↓ IDs↓ % MT↑ % ML↓ FM↓ FPS↑

MOT17 0.2 45.57 88.26 55689 4513 56161 447 12.8% 35.9% 655 13

Training 0.3 45.94 88.17 56247 4659 55694 356 15.8% 34.2% 706 13
0.4 46.10 88.12 56492 4722 55423 382 15.4% 33.0% 738 13

ISR 0.2 90.73 89.65 30974 1366 1439 222 71.4% 0.3% 147 152

Tracking 0.3 91.24 89.62 31178 1403 1272 185 76.0% 0.3% 95 159
0.4 91.16 89.67 31176 1427 1247 212 75.4% 0.3% 97 156
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(b) Combination of cost matrices.

Figure 5.5: Deep-SORT and proposed data association techniques MOTA Scores, for
different values of dist2max on the MOT17 training set (Detections acquired from FRCNN
file). λ = 0. Amax = 30. dist1max = 0.2. hitmin = 3. Appearance feature association:
Cosine distance metric.

formulations through a range of dist2max values. In Table 5.14, is presented the best MOTA
score with dist2max value for the proposed data association techniques, with IoU, ED,
IoUED, Mean and WMean cost matrices formulations outperforming remaining ones. It
is noticeable the increase of the MOTA score, FP, IDs and FM, for the IoU cost matrix
formulation when compared to the Table 5.13, Moreover, since the LAP is formulated for
the minimization of cost, having an higher valued threshold is not the adequate choice.
Therefore, ED, IoUED, Mean and WMean cost matrices formulations attained superior
performance, whereas the percentage of MT sequences for each threshold exceed other
evaluated proposals.

5.3.4 Class Gate Metric Evaluation

To use the Deep-SORT algorithm in a multi-class environment, a class gate metric
was implemented to each stage association. This evaluation was proceeded in the ISR

44



5. Results and Discussion

Table 5.14: Best MOTA score of the Deep-SORT method and proposed data association
techniques, on the MOT17 training set (Detections acquired from FRCNN file) λ = 0.
Amax = 30. dist1max = 0.2. hitmin = 3. Appearance feature association: Cosine distance
metric.

Cost Matrix dist2max

Evaluation Metrics
MOTA↑ MOTP↑ FP↓ IDs↓ % MT↑ % ML↓ FM↓

IoU 0.95 45.68 88.21 4538 488 13.7% 34.8% 675
ED 0.3 45.67 88.18 4602 491 14.3% 34.6% 696
BBr 0.35 43.31 87.96 5649 946 11.0% 35.3% 1040

IoUED 0.3 45.68 88.18 4580 508 14.1% 34.4% 701
IoUBBr 0.35 44.82 88.17 5010 622 13.2% 35.2% 770
EDBBr 0.3 45.17 88.08 4863 582 13.2% 34.6% 778
Mult 0.3 45.24 88.10 4829 573 12.6% 34.6% 775
Mean 0.4 45.70 88.22 4519 486 14.3% 34.8% 665

WMean 0.75 45.71 88.20 4569 486 14.5% 34.8% 685

Table 5.15: Best MOTA score of the Deep-SORT method and proposed data association
techniques using class gate metric, on the ISR Tracking Dataset (Detections acquired
from ground truth file). λ = 0. Amax = 30. dist1max = 0.2. hitmin = 3. dist2max = 0.7.
Appearance feature association: Cosine distance metric.

Cost Matrix Evaluation Metrics
MOTA↑ MOTP↑ TP↑ FP↓ FN↓ IDs↓ % MT↑ % ML↓ FM↓ FPS↑

IoU (Deep-SORT) 90.80 89.66 30989 1357 1447 199 72.3% 0.3% 142 163
ED 91.09 89.53 31100 1372 1367 168 76.3% 0.3% 131 167
BBr 89.12 90.27 30467 1384 1783 385 62.3% 0.3% 292 166

IoUED 91.15 89.52 31124 1376 1350 161 78.4% 0.3% 130 165
IoUBBr 90.90 89.86 30994 1328 1401 240 75.7% 0.3% 160 166
EDBBr 91.07 89.54 31087 1367 1381 167 76.3% 0.6% 134 169
Mult 91.15 89.55 31116 1370 1354 165 77.8% 0.6% 125 163
Mean 91.23 89.55 31123 1350 1350 162 78.7% 0.3% 126 168

WMean 91.09 89.56 31103 1376 1363 169 76.6% 0.3% 119 166

Tracking Dataset and achieved results using the dist2max = 0.7 are presented in Table
5.15. The decrease of FP and IDs support the benefit of using the class gate metric in
multi-class environments. IoUED and Mean cost matrices formulations achieved the best
performances, since they reached the 91 scored MOTA with more than 78% sequences MT.
Besides the elevated value of FP acquired from IoUED cost matrix formulation, it attains
the lower number of IDs. Furthermore, both IoUED and Mean cost matrices formulations,
exhibit a comfortable value of FN and FM. Fig. 5.6 exhibits the variance of MOTA score
for a range of dist2max values, for the IoU, IoUED and Mean cost matrices formulations.
Table 5.16 summarizes the best MOTA scored evaluations based on different values on
dist2max, expressing the dominant performance of the Mean cost matrix formulation for a
threshold of 0.65.
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Figure 5.6: Proposed data association techniques MOTA Scores, for different values of
dist2max on the ISR Tracking Dataset (Detections acquired from ground truth file). λ = 0.
Amax = 30. dist1max = 0.2. hitmin = 3. Appearance feature association: Cosine distance
metric.

Table 5.16: Best MOTA score of IoU, IoUED and Mean cost matrices formulations,
for different values of dist2max, on the ISR Tracking Dataset (Detections acquired from
ground truth file). λ = 0. Amax = 30. dist1max = 0.2. hitmin = 3. Appearance feature
association: Cosine distance metric.

Cost Matrix dist2max

Evaluation Metrics
MOTA↑ MOTP↑ FP↓ IDs↓ % MT↑ % ML↓ FM↓

IoU 0.95 91.09 89.53 1367 164 76.6% 0.3% 129
IoUED 0.45 91.17 89.54 1376 161 77.5% 0.3% 127
Mean 0.65 91.30 89.54 1358 150 79.3% 0.3% 124

5.3.5 Best Deep-SORT Configuration

Based on results achieved in previous Deep-SORT and proposed data association
techniques experiments, the IoUED and Mean cost matrices formulations for the second
matching stage configurations, were chosen. Since the MOT17 dataset is a single class
benchmark, the results using and not using the class gate metric, will be the same. Nev-
ertheless, the selection of final stage association cost matrix and dist2max was based on
the higher MOTA score and percentage of MT sequences, with lower number of FP and
IDs. Furthermore, results attained on the ISR Tracking dataset represented a substantial
influence on this selection. Table 5.17 shows the contrast between the Deep-SORT method
proposed data association techniques, on both datasets, including the ISR Tracking with
four frame gap regime. IoUED and Mean cost matrices formulations have their respective
dist2max threshold, based on previous experiments performed on the MOT17 training and
the ISR Tracking Datasets. IoUED cost matrix formulation evaluation was obtained for
dist2max = 0.3 and Mean cost matrix formulation was evaluated for dist2max = 0.5. Fur-
thermore, λ = 0, Amax = 30, cosine distance metric for appearance feature association,
hitmin = 3 and dist1max = 0.3 configuration was used. The value of 0.3 for the dist1max

threshold, is based on the quality of the ISR Tracking Dataset ground truth bounding
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Table 5.17: Evaluation of Deep-SORT, DSORT-CIoUED and DSORT-CMean methods
on the ISR Tracking and MOT17 Datasets.

Dataset Method Evaluation Metrics
MOTA↑ MOTP↑ TP↑ FP↓ FN↓ IDs↓ % MT↑ % ML↓ FM↓ FPS↑

MOT17 Deep-SORT 45.57 88.26 55689 4513 56161 447 12.8% 35.9% 655 13

Training DSORT-CIoUED 46.13 87.69 57720 5923 54042 535 16.1% 31.5% 891 13
DSORT-CMean 46.07 87.71 57712 5972 54075 510 16.3% 31.9% 878 13

ISR Deep-SORT 90.73 89.65 30974 1366 1439 222 71.4% 0.3% 147 152

Tracking DSORT-CIoUED 91.66 89.56 31310 1397 1199 126 81.8% 0.3% 80 167
DSORT-CMean 91.65 89.65 31292 1383 1203 140 80.5% 0.3% 79 168

ISR Deep-SORT 69.30 83.30 6529 684 1719 186 30.8% 10.0% 108 148
Tracking DSORT-CIoUED 74.85 80.95 7149 836 1196 89 48.9% 2.5% 58 151

(Gap = 4) DSORT-CMean 77.27 81.49 7231 714 1130 73 52.6% 3.1% 57 151

boxes, implying substantial differences when comparing extracted appearance features
(results reported on Table 5.13). For simplicity purposes, proposed data association tech-
nique with IoUED cost matrix formulation and class gate metric, will be denominated
as DSORT-CIoUED, while proposed data association technique with Mean cost matrix
formulation and class gate metric will be denominated as DSORT-CMean.

In Table 5.17 is presented the evaluation of proposed data association techniques and
main Deep-SORT method. Each proposed data association technique achieve promising
results in each dataset used. Nevertheless, for low frame rate conditions (ISR Tracking
(Gap = 4)), DSORT-CMean outperform remaining methods. Since, neither Deep-SORT
and DSORT-CIoUED have bounding box ratio associated in the second stage association
cost matrix formulation. The bounding box ratio metric is exhibited as an important factor
for the second stage association in lower frame conditions. Furthermore, as reported on
section 5.2.4, in lower frame rate conditions, spacial distance between bounding boxes in
consecutive frames, is increased, causing spacial distance based metrics to fail when using
a lower dist2max.

5.4 YOLOv3 + MOT Method

To validate the tracking by detection end-to-end pipeline, YOLOv3 object detector
to detect objects in raw images, and SORT and Deep-SORT different proposals of data
association techniques, that achieved the best performances on previous evaluations, were
used. The YOLOv3 + MOT evaluation was divided into two different arrangements on
the ISR Tracking Dataset, described in Subsection 5.1.2: ISR200 sub-dataset and ISR500
sub-dataset. YOLOv3 network was trained using training sequences of each ISR sub-
dataset. Related to the SORT algorithm, the Mean and WMean cost matrix formulation
proposals, with cost matrix gate metric, were chosen. For simplicity, SORT method
data association proposals will be denominated as SORT-CMean and SORT-CWmean.
SORT-CMean is configured for Threshcost = 0.6 and SORT-CWmean is configured for
Threshcost = 0.4. Furthermore, Deep-SORT related data association proposals were the
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ones chosen in section 5.3.5, denominated as DSORT-CIoUED and DSORT-CMean. To
equally compare different data association technique proposals with the main methods,
the SORT and the Deep-SORT were also evaluated with class gate metric.

Observing Table 5.18, the SORT, the SORT-CMean and the SORT-CWMean, out-
performed other data association techniques, on MOTA score. Based on previous evalua-
tions (where Deep-SORT related data association techniques outperformed SORT related
data association techniques, in the ISR Tracking dataset), this experiment results, using
the object detector algorithm, were caused by two factors: (1) Dividing the ISR Dataset
into sequences of 200 or 500 images, may not be enough to properly represent the ob-
ject conditions to train the YOLOv3 network in an efficient way, which can led to some
miss-classifications or miss-detected bounding boxes. This is also seen when comparing
results from each sub-dataset, where evaluations on the ISR200 sub-dataset outperformed
those done on the ISR500 sub-dataset; (2) Using an object detector method instead of the
dataset labels may introduce additional errors to the overall pipeline, since the tracking
method can receive as input incorrect bounding boxes. Besides the higher MOTA score
on SORT related data association techniques, a substantial increase of MT sequences is
observable, indicating higher capacity of tracking sequences using Deep-SORT related
data association techniques. On the other hand, the Deep-SORT related data association
techniques, reached higher values of TP, which is directly related to the higher number of
MT sequences. Deep-SORT related data association techniques, achieved more FP results,
with minimum differentiation on IDs values, indicating more objects identified compared
to SORT related data association techniques. This shows the capacity of Deep-SORT
related data association techniques, to easily associate bounding boxes, which is caused by
the continuous attempt to associate objects, after a track is marked as confirmed. In other
words, a Deep-SORT related data association technique, after initiating and confirming a
track (object got three consecutive matches), the track does not need another three hits
to be identified as a possible track to be outputted by the method, instead, when it is
associated, the output conditions integrate it on the output array in that frame. Compar-
ing to SORT related data association techniques, where, despite the same need of three
consecutive matches to be confirmed as a track, two miss association forces a track to
be deleted, requiring a new track initialization with three consecutive associations and a
new tracking ID. Each aforementioned track management description, imposes the SORT
related data association techniques to be more critical to tracking tasks, despite their as-
sociation algorithm being less critical. Furthermore, since the computation of TP, FP or
FN is based on the Intersection over Union, which determines the overlap between the
tracked bounding box and the ground truth, errors in detections and in KF state repro-
duction, cause tracked bounding boxes fail to be associated to the ground truth, producing
the increase of FPs. Moreover, since Deep-SORT related data association techniques are
capable of re-identifying a lost sequence, the KF is obligated to produce a state after
some considerable frames without measurements, increasing state errors and consequently
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Table 5.18: Evaluation of SORT, SORT-CMean, SORT-CWmean, Deep-SORT, DSORT-
CIoUED and DSORT-CMean MOT data association techniques using YOLOv3 object
detector, only accepting detections with confidence over thconf = 0.5, on the ISR200 and
the ISR500 Datasets.

Dataset Tracking Evaluation Metrics
Method MOTA↑ MOTP↑ TP↑ FP↓ FN↓ IDs↓ % MT↑ % ML↓ FM↓ FPS↑

ISR200

SORT 64.33 83.03 11881 1719 3770 145 45.3% 18.2% 142 52
SORT-CMean 63.71 83.04 11828 1765 3782 186 42.2% 18.2% 162 52

SORT-CWmean 63.78 83.03 11827 1753 3783 186 42.2% 18.2% 162 52
Deep-SORT 61.07 81.38 12077 2430 3526 193 46.1% 17.1% 129 32

DSORT-CIoUED 60.86 81.21 12188 2575 3431 177 48.8% 16.7% 125 33
DSORT-CMean 61.16 81.30 12202 2541 3430 164 50.0% 16.7% 123 32

ISR500

SORT 50.49 79.95 9123 1636 5478 228 30.9% 24.0% 238 53
SORT-CMean 49.65 79.94 9038 1676 5509 282 32.6% 24.0% 261 53

SORT-CWmean 49.57 79.99 9034 1684 5517 278 30.9% 24.0% 264 53
Deep-SORT 47.18 78.86 9561 2564 4993 275 33.1% 21.7% 266 33

DSORT-CIoUED 46.33 78.68 9812 2942 4748 269 37.7% 21.1% 266 34
DSORT-CMean 46.67 78.65 9838 2918 4734 257 38.9% 21.1% 269 34

FPs. Furthermore, sequence related metrics are outperformed by DSORT-CIoUED and
DSORT-CMean configurations, with higher values of MT sequences, lower value of ML
sequences, and lower values of FM, in the ISR200 sub-dataset.

The best arrangement of the ISR Tracking dataset, to evaluate tracking algorithms,
is the ISR200 sub-dataset, where the ISR Tracking dataset was divided into more 30
sequences, providing more comparable object appearances between training and test se-
quences. There are some important concerns that must be taken into account, when
choosing the best performance achieved in this experiment: a FP being the miss match of
returned tracks in each frame; the critical behaviour to track sequences of SORT related
data association techniques causing the increase of FN; the performance of the object de-
tector in each sub-dataset. Observing Table 5.18, the SORT data association technique
outperform others, by achieving the higher MOTA score, with less FP ans IDs, and best
value of FPS. Nonetheless, DSORT-CMean technique, outperformed other techniques in
number of TP, FN, percentage of MT and ML, and FM (in ISR200 sub-dataset), attain-
ing the best performance on tracking ground truth sequences with the same tracking ID,
with less FM. Moreover, the capacity of Deep-SORT related association techniques to
re-identify and associate lost tracks, is crucial, indicating a promising usability in indoor
multi-object tracking tasks.

49



50



6
Conclusion

This dissertation presented a study and an exploitation on Multi-Object Tracking by
Detection algorithms (the SORT, the Deep-SORT, and proposed data association tech-
niques), having in view indoor mobile robot applications, where the performance of asso-
ciating measurements to existing tracks and inference speed are crucial aspects.

The SORT algorithm was enhanced by novel Linear Assignment Problem (LAP)
formulation for the Hungarian Algorithm solver, using arrangements of different similarity
metrics, such as the Intersection over Union (IoU), euclidean distance, and bounding box
ratio. Also, a gate metric based on object classes, that disallowed measurements and tracks
from different classes to be associated, was implemented. Moreover, in lower frame rate
conditions, where objects bounding boxes differ in distance between frames, bounding
box ratio metric was discovered to be successful, despite the metric compromises the
association algorithm for not addressing spacial properties into the association. The IoU,
the euclidean distance and the bounding box ratio metrics, showed promising results when
assembled together, increasing the robustness of associating measurements to tracks. The
SORT-CWMean data association technique, outperform other SORT related proposed
data association techniques in most of experiments performed on this dissertation, showing
the importance of the IoU distance conjugated with euclidean distance and bounding box
ratio metrics.

The Deep-SORT was also enhanced with different approaches for the association prob-
lem. The same LAP formulations implemented in the SORT algorithm, were implemented
for the second matching metric of the Deep-SORT method. Once again, an increase of per-
formance was observed, when using cost formulation not only based on IoU metric. Also,
a class gate metric was implemented, to disallow possible associations of objects with dif-
ferent classes. In most of experiments performed on this dissertation, the DSORT-CMean
data association technique achieved better MOTA score compared to other Deep-SORT
data association techniques. Moreover, it showed the importance of conjugating different
association metrics when formulating the LAP. Also, when detection appearance features
are dubious, the usage of alternative LAP formulations showed the importance to have a
reliable backup association algorithm in the Deep-SORT method.
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An end-to-end evaluation of a tracking by detection method was performed. Using the
YOLOv3 object detector to attain measurements for the MOT algorithms, an evaluation
on the ISR Tracking dataset was performed. Results achieved in this condition showed the
importance of having a proper dataset, for adequate training of neural networks. Moreover,
the importance of having a reliable object detector to perform tracking tasks, was also
shown. Nonetheless, the SORT, the Deep-SORT and proposed association techniques
evaluated on this condition, revealed a promising result of tracking ground truth sequences.
Furthermore, a proposed data association technique, the DSORT-CMean, achieved the
most ground truth sequences tracked with a single tracking id, and the less ground truth
sequences without tracking.

Promising results were achieved by the SORT, the Deep-SORT and proposed data
association techniques, performing experiments with promising inference speed. The capa-
bility of Deep-SORT related data association techniques, to easily re-identify lost tracks,
show an importance of such algorithms to the motivation of this dissertation.

6.1 Future Work

This dissertation presented the potential of using YOLOv3 with DSORT-CMean
framework for autonomous indoor mobile robot platforms. Moreover, the need of a reliable
indoor dataset (ISR Tracking dataset) is also fundamental for such appliances. However,
improvements can be made, to further improve the performance of such frameworks.

ISR Tracking Dataset

Improve the ISR Tracking Dataset with more labels and sequences.

Different Appearance Descriptor Network

Study different appearance descriptor networks for the appearance feature extraction
in the Deep-SORT method. Train and apply the network using different re-identification
datasets and the ISR Tracking dataset.

Camera Motion Information on Kalman Filter

Introduce camera motion information to the KF algorithm, improving the accuracy
of predictions and consequentially the overall method.

Scene information

Use MOT methods to identifying dynamic or static objects.
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6. Conclusion

3D Representation

Use MOT methods and other sensor information to generate a 3D representation of
the scene.

Predictive Module

Add a predictive module that uses object states to accurately predict future states of
objects. This strategy has benefits on occluded object tracking and also, can estimate the
dynamical behaviour of objects and be merged with navigation units, to calculate more
accurate paths, based on predictive scenes.
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