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Resumo

Esclerose múltipla é a doença neurológica mais predominante em jovens adultos

globalmente. A complexidade e heterogeneidade da sua progressão, e o consequente

desafio de um prognóstico adequado, levaram à criação de modelos de Machine

learning (ML), capazes de fornecer um prognóstico auxiliado por computador. No

entanto, os modelos desenvolvidos podem não oferecer garantias de confiança ou

segurança que promovam a sua aplicação num contexto cĺınico.

Explicabilidade é um conceito recente que visa criar explicações compreenśıveis so-

bre os modelos de ML, para ajudar a mitigar a desconfiança associada à falta de

informação sobre a lógica dos mesmos.

O objetivo deste projeto é compreender se os modelos desenvolvidos por Pinto et al.

[81], que preveem a progressão da doença, podem ser aplicados em ambiente cĺınico,

e que tipo de explicações adicionais podem ajudar a atingir esse objetivo.

Nesta dissertação de mestrado, vários métodos de explicabilidade foram desenvolvi-

dos para gerar explicações humanamente compreenśıveis sobre os modelos de pre-

visão. As explicações continham informações gerais sobre os modelos, e o estudo

de previsões de doentes espećıficos. Os resultados foram avaliados qualitativamente,

com base na teoria fundamentada, através de entrevistas com cientistas de dados.

As explicações mostraram que, geralmente, a escala de quantificação da condição

neurológica (EDSS) e os Scores de alguns sistemas funcionais, nomeadamente os

sistemas piramidal, cerebelar e mental, tiveram maior relevância nas previsões. A

análise dos cientistas de dados sugeriu que os métodos de explicabilidade mais ad-

equados para apoiar os modelos de previsão eram o poder preditivo de Pinto et

al. [81], a permutation feature importance, os partial dependence plots (PDPs), e os

valores de Shapley.

Keywords: Esclerose Múltipla, Progressão, Previsão, Explicabilidade, Machine

Learning
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Abstract

Multiple Sclerosis (MS) is the neurological disease most prevalent in young adults

worldwide. The complexity and heterogeneity of its progression and consequent

challenge of an adequate prognosis have led to the creation of ML models capable

of providing a computer-aided prediction. However, the developed models may not

offer trust or safety guarantees that promote their application in a clinical context.

Explainability is a recent field of study that aims to create human-comprehensible

explanations about ML models to help mitigate the doubts associated with the lack

of information about the models’ logic.

The goal of this project is to understand if the models developed by Pinto et al.

[81], that predict the progression of the disease, are able to be applied in a clinical

environment, and what type of additional explanations can help to achieve that

objective.

In this master thesis, several explainability methods were developed to produce

human-comprehensible explanations about the prediction models. The explanations

contained general information about the framework and analysis of specific patient

predictions. Then, these results were qualitatively evaluated through interviews

with data scientists that were analysed based on the Grounded Theory (GT).

The explanations showed that, in general, the Expanded disability status scale

(EDSS) and the scores of some Functional System (FS), namely the pyramidal,

cerebellar, and mental systems, had the most predictive relevance. The analysis by

the data scientists suggested that the explainability methods most suited to support

the prediction models were the predictive power by Pinto et al. [81], the permutation

feature importance, the PDP, and the Shapley Values.

Keywords: Multiple Sclerosis, Progression, Prediction, Explainability, Machine

Learning
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Introduction

This chapter is divided into four sections. The section 1.1 explains the mo-

tivation of the developed work, while the section 1.2 presents the context of the

disease. The third section shows the context of explainability in Machine learning

(ML) models. The main goals of this master thesis appear in section 1.3. Lastly,

the last section presents the outline of the document.

1.1 Motivation

Multiple Sclerosis (MS) is the neurological disease that most affects young

adults. Currently, more than 2 million people are diagnosed with MS worldwide.

This disease is more prevalent in adults between 20 to 45 years old. It is generally

defined by reversible events of neurological problems, called relapses, that regularly

alter to a progressive state of deterioration. The cause of such modification in the

disease’s characteristics is still unknown [37].

With severe physical and cognitive impairment, MS can cause a significant

loss on quality of life for the patient and people around them, since many family

members become lifelong caregivers as the condition worsens. Additionally, the

treatment expenses tend to increase over time drastically. Nonetheless, an early

diagnosis results in the delay of the progression of MS and reduction of disability,

which leads to a better quality of life in the long run [36].

The symptoms of this disease and its severity development depend from patient

to patient, which contributes to its unpredictability and, consequently, makes it a

challenge to identify how MS will evolve over the years. This can cause some doubts

on the best approach of treatment and medication administrated.

A ML model capable of predicting MS progression in the early years of follow-up

could help the physicians significantly. It would help to inform the patients of their

prospects and their expectations in the long term. Most importantly, it would be

beneficial as a resource tool to identify early-stage cases that need a more aggressive
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therapeutic intervention, to prevent the rapid development of the disease that would

result in severe disability in the long term otherwise [8].

However, these developed models must be robust, without any bias, not only to

fulfil the General Data Protection Regulation (GDPR) of 2018 [24], but to give data

scientists reinsurance of their work and clinicians reasons to trust them. The goal is

to mitigate the scepticism surrounding ML, and, most of all, to secure the safety of

the patient. Therefore, an algorithm that gives human-comprehensible explanations

is essential to the acceptance of these models in the clinical community [35].

1.2 Prognosis Context

MS is characterized by the demyelination of the axons in the Central Nervous

System (CNS). It is an inflammatory autoimmune disease that affects millions of

people by inducing neurological deterioration associated with long term disability.

People with MS may experience physical, sensory and cognitive dysfunction,

often with memory and attention deficit, a decline in mobility, spasticity, and paral-

ysis, and vision loss in some cases. Fatigue, pain, anxiety, and depression are also

prevalent symptoms [49].

Although the MS development is quite unpredictable, and its symptoms vary

from patient to patient, most patients are firstly diagnosed with a Relapse-remitting

(RR) MS course, defined by relapses followed by a partial or complete recovery. Over

time these patients might develop a Secondary Progressive (SP) state, characterized

by an inhibition of recovery that results in progressive neurological deterioration

regardless of relapse episodes [18].

The prediction of a SP course continues to be challenging, since there is not

a clear criterion of this alteration with clinical and imaging data analysis. Precise

identification of this modification has a determinant role on the efficiency of the

therapy prescribed. Therefore, the delay of this diagnosis is a significant factor for

permanent disability [87].

The disease is frequently evaluated on its severity, which is an informal clas-

sification. There is a distinction between benign and malignant cases. Benign MS

is associated with low tissue damage, high capacity of repair after relapses, and

slight physiological disability with the absence of functional problems. Malignant

MS is a more severe stage with a fast progression of the disease, an evident difficulty

of compensation after an attack, and serious body’s impairment. So far, there is

not a universal definition to determine what type of severity level a patient has, as

experts usually use different criteria to identify mild cases. Nonetheless, the recogni-
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tion of the disorder’s severity offers essential information on the therapeutic decision

making, since a patient with benign MS needs medication less aggressive and fewer

monitoring appointments [19, 86].

Explainability Context

Having in mind all the complexity associated with the MS progression, predic-

tion ML models have been in development recently, since this type of models can

achieve high performances and be effective in larger data sets.

However, there is incoherence in these studies about the most significant pre-

dictors and the definitions used to identify benign cases of the disease, which leads

to inconsistency and heterogeneity. Thus, validating the results is a challenge.

In addition, considering that the success of ML models depends considerably

on the data set’s quality, the existing diversity in the characteristics analyzed may

also contribute to this discrepancy. Furthermore, the different levels of patients’

diversity and the prevalence of RR patients, which leads to imbalanced data, may

contribute to this heterogeneity as well.

To help combat the different disease’s courses problematic, our lab created a

framework [81] that predicts the progression of MS based on two predictions, the

development of SP and the disease’s severity, with good performance results. The

partition of data was created with the K-fold method, to explore all information

available and assure the absence of bias, which results in the development of several

runs and a final performance, resultant of the different models mean. However, the

used data set consists of a low number of patients (145 in the prediction of the

disease’s severity and 187 in the prediction of SP development) [81]. With a low

amount of samples, the results might be limited to a possible over-fit and biases, due

to lack of representation. As the data was also retrospective, the risk of exhausting

the database with several methodologies by the authors is also possible.

Therefore, there are still some doubts if the developed work is effectively robust

and can be trusted. In addition, the absence of information about the relations

between features that trigger a prediction is a problem towards their applicability.

The absence of human-comprehensible explanations, often associated with ML

models that deal with several variables, is a big obstacle that needs to be addressed.

It contributes to the distrust of the models and uncertainty regarding the patients’

safety, which hinders their real-world applicability in a clinical environment. These

explanations may also contribute to understanding if they are logically in agree-

ment with clinical observations and, therefore, diminish the doubt surrounding the
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generalization power of the models for new data.

1.3 Main goals

This theses aims to answer the following essential questions: ’Can the frame-

work in [81] be applied in a clinical setting?’ and ’What are the human-comprehensible

explanations more suited to provide trust?’. This goal can then be divided into:

• Explore distinct methods of explanation’s formulation from the previously

created models;

• Evaluate the produced explanations with data scientists;

• Analyse the applicability of these models in future evaluation context with

clinicians;

• Contribute to a better understanding of the disease’s dynamics.

1.4 Structure

This document contains six chapters beyond the introduction.

Chapter 2 presents background information about MS, ML, explainability and

grounded theory terminology that will be referred to through all the document.

Chapter 3 presents the state of art concerning explainability in MS progression

models and related problems.

Chapter 4 describes the experimental procedure used in this thesis.

Chapter 5 contains the results obtained.

Chapter 6 presents the discussion about the methodology used and the results

obtained with this work.

Chapter 7 presents the conclusion and future plans about the developed work.
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Background Concepts

This chapter introduces the main concepts necessary to understand this doc-

ument. Section 2.1 is a summary of the definitions regarding Multiple Sclerosis

(MS) with additional information about its risk factors and available therapies.

The section 2.2 presents a description of Machine learning (ML), while section 2.3

summarizes the explainability concepts with a description of some methods used

to achieve it. Lastly, the section 2.4 gives a brief description about the Grounded

Theory (GT).

2.1 Multiple Sclerosis

Multiple Sclerosis (MS) is a chronic autoimmune neurological disease identified

as the demyelination and loss of axons in the Central Nervous System (CNS). The

patient’s immune system attacks and destroys an electrical surface axon layer called

myelin responsible for providing fast communication between neurons [41]. With

the destruction of the myelin sheath, the transmission of electrical impulses between

nerve cells significantly decreases velocity and, consequently, efficacy, leading to a

neurological deficit. This causes mental damage and physical disability and induces

a substantial loss of quality of life.

Around 2.8 million people are diagnosed with MS globally [68]. This irreversible

and debilitating disease is predominant in young adults and affects more females

than males [14, 15]. Patients with MS often suffer from fatigue, mobility issues, a

higher risk of depression and anxiety, pain, and cognitive decline, with relapses that

can last weeks. It reduces their ability of day-to-day activities, capacity to work,

and life in general [77]. Yet, the progression of this disease can be inhibited and its

symptoms prevented if it is identified early and treated properly according to each

patient’s needs.
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2.1.1 Risk factors

MS is a very complex disease in terms of etiopathogenesis. The cause of this

disease continues unknown. However, it is possible to say that there is a genetic

predisposition to MS that, combined with a triggering environment, induces MS

development [76]. This thesis does not consider risk factors, despite all this influence,

due to the lack of data available to explore this aspect. Still, it is important to

mention the main risk factors to understand some limitations about the developed

work in this project associated with the lack of analysis of such information.

Its incidence worldwide has increased throughout the years, probably because

people have a higher life expectancy and there is an increase of access to medical

facilities capable of dealing with MS [52]. The cases of MS in females have also

been significantly rising, with the prevalence now almost three times more frequent

in women than in men [25, 42]. This increment might be associated with the better

accessibility of medical care to females over the years and that women tend to look

for a medical consult for minor symptoms more often than men [58].

It exists a strong relation between genetics and developing MS, since the con-

cordance increases with the amount of shared Deoxyribonucleic Acid (DNA). Still,

it is safe to say that it is not the only factor associated with the disease. Several

studies found that the environment has a significant influence on the level of risk of

contracting the disease as well [66].

The prevalence of MS in geographic terms has some distinctions, being higher

in northern Europe, North America, south of Australia, and New Zealand, and

lower in South America and Asia, as observed in Figure 2.1. These differences may

occur because of the disparities in diagnosis criteria and methods countries adopt.

However, some studies relate the higher disease’s risk in higher latitude regions with

the levels of sun exposure [58] and, directly associated, vitamin D deficiency [52, 66].

However, this is not verified all over the world, since diet can also provide good levels

of vitamin D [25, 58].

The increase of MS risk is also associated with unhealthy habits in adolescence,

and young adulthood, such as obesity and smoking [76].

After several studies performed about infectious agents and the disease risk,

it was determined that the presence of an Epstein-barr Virus (EBV) infection in

childhood and adolescence also contributes to a higher risk of MS development

[58, 76].
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Figure 2.1: Prevalence of Multiple Sclerosis worldwide [67].

2.1.2 Diagnosis

Although this aspect is not studied in this thesis, it is important to note that

the diagnosis does not occur in the same moment of life for every patient. This

may influence the prognosis quality of the disease, as expected, which is a reason

for the complexity associated with the prediction of the MS progression. Since this

disease is characterized by heterogeneity in clinical and imaging traits, the diagnosis

of multiple sclerosis is not fulfilled with a simple exam, but rather with the analysis

of imaging, laboratory, and physical examinations [91].

To simplify the identification of MS, clinicians generally apply the McDonald

Criteria 2017 [91], a standard that aims to give a reliable diagnosis as soon as

possible to start therapy that can inhibit the effects of the disease. The presence

of inflammation in distinct zones of the CNS i.e. dissemination in space (DIS), and

dissemination in time (DIT), the recurring inflammation of the CNS, is the base to

diagnose an individual with this disorder. Thus, this criteria use examinations of

the Cerebrospinal Fluid (CSF) to identify CSF-specific oligoclonal bands, a possible

indicator, but not exclusive to MS, Magnetic resonance imaging (MRI) findings, and

the number of relapses [43].

The application of the McDonald Criteria 2017, represented in Table 2.1, results

in three different outcomes:

• Confirmed Multiple Sclerosis - if the criteria are fulfilled, and there is an ab-

sence of a better diagnosis for the clinical evidence;

• Possible Multiple Sclerosis - if the 2017 McDonald Criteria are only partially
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Table 2.1: McDonald criteria 2017 for MS diagnosis [91].

Number of relapses
Number of with objective

clinical evidence
Additional data needed

to the MS diagnosis

≥ 2 ≥ 2 No further data is needed

≥ 2
1 (as well as clear-cut historical

evidence of a previous attack involving a lesion
in a distinct anatomical location)

No further data is needed

≥ 2 1
Dissemination in space demonstrated

by an additional clinical attack
implicating a different CNS site or by MRI

1 ≥ 2

Dissemination in time demonstrated
by an additional clinical attack or by MRI

OR
demonstration of CSF-specific oligoclonal bands

1 1

Dissemination in space demonstrated
by an additional clinical attack

implicating a different CNS site or by MRI

AND

Dissemination in time demonstrated
by an additional clinical attack or by MRI

OR
demonstration of CSF-specific oligoclonal bands

fulfilled, even if Clinically Isolated Syndrome (CIS) leads to the suspicious of

the disease;

• Not Multiple Sclerosis - if it exists clinical evidence of a better diagnosis.

2.1.3 Expanded disability status scale (EDSS)

The progression of disability for MS patients is usually evaluated by the EDSS

[55], a scale based on the 8 different functional systems (FS) with values between 0

(healthy) and 10 (death by MS) in steps of 0.5. The systems considered are:

• Pyramidal - Associated with muscular weakness and lack of voluntary control

of movements;

• Cerebellar - Related to deficiency of balance and coordination;

• Brain Stem - Can cause speech problems as well as difficulties on swallowing

and breathing;

• Sensory - Related to loss of feeling under the head;

• Bowel and Bladder - Associated with urinary retention and incontinence;
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• Visual - Responsible for loss of visual keenness;

• Cerebral - Involved with memory and concentration deficit, as well as thinking

and mood disturbances;

• Other - Covers all the symptoms not comprehended in the other functional

systems, e.g. pain or fatigue.

All the functional systems are evaluated on a scale of 0 to 5/6 with a direct in-

crease of impairment, except the last one, defined as 0 if there are no other symptoms

and one if there are specific neurological findings. With all the values attributed,

the EDSS is then calculated with the combination of those FS scores for the values

between 0 to 3.5. The next steps also regard the level of mobility incapacity [55].

Therefore, represented in Figure 2.2, the different levels of the EDSS are:

• EDSS 0 - Normal neurological exam with all FS graded 0 with the possibility

of grade 1 in the cerebral system;

• EDSS 1 - No disability with minor signs in one FS with grade 1, except the

cerebral system that can also grade 1;

• EDSS 1.5 - No disability with more than one FS grade 1 except cerebral

grade 1;

• EDSS 2 - Minimal disability in one FS with grade 2 and the others graded 0

or 1;

• EDSS 2.5 - Minimal disability in two FS (grade 2) with the rest FS graded

with 0 or 1;

• EDSS 3 - Fully ambulatory but with moderate disability in one FS (grade 3)

and the others graded 0 or 1 OR slight disability in three or four FS graded

with 2 with the others graded with 0 or 1;

• EDSS 3.5 - Fully ambulatory but with moderate disability in one FS (grade

3) and mild disability in one or two FS (grade 2), or two FS graded 3, or five

FS graded 2; all the others graded 0 or 1;

• EDSS 4 - Fully ambulatory without aid and self-sufficient but with severe

disability in one of the FS (grade 4) and the others graded 0 or 1, or a combi-

nation of lower grades that go beyond the limits of the previous levels; capable

of walking without aid or rest approximately 500 meters;

• EDSS 4.5 - Fully ambulatory, able to do a full workday, may have slight limi-

tations of complete activities or need some assistance and is capable of walking

without resting or aid some 300 meters; one FS graded as 4 or combinations

of lesser grades that exceed the limits of the prior steps;

• EDSS 5 - Disability capable of impairing full daily activities with the ability
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to walk approximately 200 meters without rest or aid; associated frequently

with one FS grade 5 alone or combination of lower grades that exceed the

limits of the level 4;

• EDSS 5.5 - Disability capable of precluding full daily activities with the

ability to walk about 100 meters without aid or rest; only one FS graded 5

and other 0 or 1 or combinations of lower grades that pass the limits of the

previous steps;

• EDSS 6 - Intermittent or unilateral aid (canes, crutch or brace) required to

walk about 100 meters independently of possible resting; a combination of

more than two FS graded 3 or higher;

• EDSS 6.5 - Necessary constant bilateral assistance with canes, braces or

crutches to walk approximately 20 meters without resting; a combination of

more than two FS graded 3 or higher;

• EDSS 7 - Impossibility of walking more than 5 meters regardless of assistance,

restricted to a wheelchair with the capacity to transfer alone and wheel self

in a standard wheelchair. More than one FS is graded as 4 or higher or,

sporadically, the pyramidal system is graded 5 alone;

• EDSS 7.5 - Inability to take more than a few steps, restricted to wheelchair

without the capacity to be in a standard wheelchair a full day (may need a

motorized wheelchair). More than one FS has the value of 4 or higher;

• EDSS 8 - Essentially restricted to bed or passively in a wheelchair with the

possibility to be out of bed much of the day and ability to do most self-care

functions with efficient use of arms. Frequently, several FS are graded with 4

or higher;

• EDSS 8.5 - Restricted to bed the majority of the day with some effective

use of arms and ability to perform some self-care activities. Several systems

usually are graded with four or more.

• EDSS 9 - Extreme incapacity but able to communicate and eat with most of

the FS with values equal to four or higher;

• EDSS 9.5 - Entirely helpless patient without the capacity to effectively com-

municate, eat nor swallow with almost all FS graded with four or higher;

• EDSS 10 - Death by MS.
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Figure 2.2: Representation of the EDSS [13].

.

Although a standard in the evaluation of MS disability, EDSS is not perfect.

The application of this scale largely depends on the subjective opinion of the spe-

cialists. It prompts disparities in the attribution of a score, regarding different

neurologists or even the same clinician. It is also mainly based on motor function

evaluation, without much importance to other affected functions, such as cognitive

capacity. Furthermore, the analysed impairment is not always the same from step

to step, and the difference between the steps is not homogeneous [32].

2.1.4 Courses

Considering all the diversity of the expressions of the disease, the different

courses of MS were defined to improve the communication between specialists and

provide better treatments by identifying the patients included in each course [61].

Established by the 2017 McDonald Criteria, there are three different courses

of the disease [69]. The most easily identifiable course is the Primary Progressive

(PP). It is represented as a gradual increase of neurological deterioration from the

onset with a possibility of occasional stagnation of the disease’s development and a

temporarily minor improvement of its effects. It is predominant in men and usually

occurs in patients older at onset [70].

Since only around 15% of patients have PP, generally, people diagnosed with MS

have previously a CIS, defined as the first episode of neurological problem associated

with inflammation or demyelination of the CNS. The CIS is a part of the spectrum

of the Relapse-remitting (RR) course. The RR is characterized by various relapse

episodes (neurological attacks or new symptoms) followed by periods of remission

with full or partial recovery [59]. Therefore, initially, a patient can only be diagnosed
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with PP or RR, depending on if there is already deterioration of the CNS.

RR often develops a state where significant recovery of the relapses is not pos-

sible anymore, where there is disease progression independently of possible relapses

or minor recovery, and moments of stagnant periods of disease’s development [93].

This course is the Secondary Progressive (SP). The characteristics of the different

courses can be observed in Figure 2.3.

Besides the phenotype described, the disease’s courses can also be classified in

their activity and progression, as referred to in Table 2.2.

Table 2.2: Definitions of disease’s activity and progression [60].

Disease activity
Active

Presence of gadolinium-enhancing or new/larger T2 lesions or manifestations of
episodes of new or advancing neurological impairment

through a specific time period.

Not active No demonstration of disease’s activity

Disease progression
Progressive

Evidence of an increase in the neurological disability without an apparent recovery,
with the possibility of some periods of stability, during at least one year.

Nor progressive No demonstrations of the worsening of the disease during at least one year

All courses can be characterized by their activity (CIS, RR, SP and PP). A

patient with an active CIS can be diagnosed with MS if all the requirements of the

McDonald Criteria of 2017 are fulfilled, where the CIS belongs to the spectrum of

the RR course [61].

If a patient shows evidence of a progressive state (SP or PP), those courses can

also be characterized by progressive or not progressive. Thus, these MS courses can

be associated with four distinct classifications over time [61]:

1. Active with progression: The patient is gradually worsening and has attacks

throughout time;

2. Active without progression: The patient has relapses but the condition state

is stagnant;

3. Not active but with progression: The patient does not suffer from relapses,

but there is evidence of neurological worsening;

4. Not active without progression: The patient has a stable form of MS.

In this project, only the forms RR, SP and PP of the disease were analysed

to include a reasonable amount of data. Patients with a PP course suffer from a

gradual deterioration soon after diagnosis, easily identifiable. These patients’ data

is therefore not relevant for this study. The focus of this thesis is to help understand

the evolution of unexpected courses starting with apparent RR, by implementing
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explainability procedures over ML models.

Figure 2.3: MS courses [50]. RRMS defines a RR course, PPMS defines a PP
course, and SPMS represents a SP course of the disease. the purple arrows represent
when a new MRI was performed.

Disease’s severity

The terminologies benign and malignant are often used as indicators of the

expected severity of MS over time, although they are not phenotyping descriptors of

the disease [61]. Benign MS represents the lack of impairment and symptoms after

several years of onset (approximately 15 years) with all neurological systems fully

functional. It is mostly associated with young female patients, that were initially

diagnosed with RR [18].

Since this disease can worsen unpredictably after a long time of apparent sta-

bility, it is necessary to use the term benign with caution, since it may not be a

definitive characteristic [60, 61]. In addition, the boundaries that recognise mild

cases are not precisely identified due to lack of consensus between specialists [18].

It is also important to note the difference between the concepts of worsening

and progressing. The term worsening is related to patients whose disease is advanc-

ing because of recurrent relapses or lack of total recovery. In contrast, the term

progressing refers to evidence of gradual worsening over time in a progressive course

of the disease [60].

13



2. Background Concepts

2.1.5 Therapy

The basis of the therapy of MS lies on disease-modifying agents that decrease

the frequency and duration of the neurological attacks, suppress the progression of

the disease, and may inhibit or even modestly reduce disability [44].

In the last decades, there was significant progress in discovering highly effective

treatments that reduce the relapse rate. However, there is still a deficiency of ther-

apies capable of combat progressive courses of the disease [44]. Table 2.3 provides

information about several Food and Drug Administration (FDA) approved therapies

for MS.

Table 2.3: Summary of Approved Disease-Modifying Therapies used in MS treat-
ment [44].

Name
Type and frequency

of administration
Disease’s Course Action Side effects

Ocrelizumab
Intravenous (IV)
infusion, every 6

months
RR and PP

Reduction of annualized relapse’s rate
and disability’s progression

Infusion-related reaction, nasopharyngitis, urinary
and upper respiratory tract infection, headache

and oral herpes infection

Ofatumumab
Subcutaneous (SC)

injection, every
4 weeks

RR Reduction of annualized relapse’s rate
Injection-related reaction, nasopharyngitis,

urinary and upper respiratory tract infection
and headache

Natalizumab
IV infusion, every 4

weeks
RR

Reduction of annualized relapse’s rate
and disease’s progression

Fatigue and allergic reaction

Alemtuzumab
IV infusion, once

daily
RR Reduction of annualized relapse’s rate Headache, rash, nausea and pyrexia

Mitoxantrone
IV infusion, every

month or 3
months

RR and SP Reduction of relapses
Dose-related cardiomyopathy and promyelocytic

leukemia

Fingolimod Oral, once daily RR Reduction of annualized relapse rate
Bradycardia, atrioventricular conduction block,

macular edema, elevated liver-enzyme levels
and mild hypertension

Siponimod Oral, once daily CIS, RR and active SP Reduction of disability’s progression
Headache, nasopharyngitis, urinary tract infection

and falls
Ozanimod Oral, once daily CIS, RR and active SP Reduction of annualized relapse’s rate Headache and elevated liver aminotransferase

Dimethyl fumarate
and diroximel

fumarate
Oral, twice daily RR Reduction of annualized relapse’s rate

Flushing, diarrhea, nausea, upper abdominal pain,
decreased lymphocyte counts and elevated

liver aminotransferase

Cladribine
Oral, 4-5 days over
2-week treatment

courses
RR Reduction of annualized relapse’s rate

Headache, lymphocytopenia, nasopharyngitis,
upper respiratory tract infection and nausea

Teriflunomide Oral, once daily RR Reduction of annualized relapse’s rate
Nasopharyngitis, headache, diarrhea and alanine

aminotransferase increase

Glatiramer
acetate

SC injection, once
daily or 3 times

weekly
RR Reduction of annualized relapse’s rate Injection-site reactions

Rebif
(IFN-β-1a)

SC injection,
3 times weekly

CIS and RR Reduction of annualized relapse’s rate
Injection-site inflammation, flu-like symptoms,

rhinitis and headache

Avonex
(IFN-β-1a)

Intramuscular (IM)
injection,

once weekly
CIS and RR Reduction of disability’s progression

Flu-like symptoms, muscle aches, asthenia, chills
and fever

Plegridy
(IFN-β-1a)

SC injection, every
2 weeks

CIS and RR Reduction of annualized relapse’s rate
Injection-site erythema, influenza-like illness,

pyrexia and headache
Betaseron
(IFN-β-1a

SC injection, every
other day

CIS and RR Reduction of annualized relapse’s rate
Lymphopenia, flu-like symptoms and injection-site

reactions

It is possible to verify that the prescription of these therapies depends on each

clinical condition, since different medications have different objectives (to prevent

relapses, disability, or MS progression). Additionally, they are associated with sev-

eral adverse effects that potentially cause a decrease in the patient’s quality of life.

It is also important to note that some medications are being applied on the MS

treatment, even though they still are not FDA approved (e.g. IV immunoglobulin)
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[44].

Since the administration of medications depends on the physicians’ judgement

and may alter the development of the disease, the use of therapy’s information may

lead to a biased outcome and, therefore, prediction models may not use this type of

data. In addition, the purpose of these models is to identify the disease’s courses to

provide adequate therapy before any medication is prescribed that could lead to a

potential risk to the patient. However, the data used in the developed models have

information from several years of follow up, where therapies are administrated to

the patients. Therefore, the medication is regulating other variables of the disease,

which indirectly influences the disease’s course and possibly the results, even though

it is not directly considered. It is an essential limitation of this study that can not

be combated, as it is not ethical to deprive patients of the treatment that makes

them better.

2.2 Machine learning

Machine learning is a form of Artificial Intelligence (AI) focused on providing

computer learning skills based on experience and inductive methods that mimic

the human approach to learning [46]. It can explore complex data without specific

knowledge, that otherwise would turn out to be a challenge or even impossible, with

the intuit to learn behaviours or to be used as a prediction tool [72].

ML can be divided into unsupervised learning, supervised learning and rein-

forcement learning. Unsupervised learning characterizes models that only have

information about the input. Supervised learning defines models with knowledge

about the input and output that find the best function representing their relation.

Reinforcement learning is also influenced by rewards and penalties from the envi-

ronment [74].

ML models, specifically supervised learning, start with the acquisition of raw

data that may then be pre-processed and transformed to create inputs with impor-

tant information for prediction, the features. These inputs are used afterwards in

different classifiers that find relations between features, and predict the outcome of

new data. Lastly, the predictions’ performance is evaluated with several metrics to

measure the model’s generalization ability [21].

The focus of this thesis is supervised learning, since this was the type of learning

used in the prediction models. With the input as the information of the first years

of follow-up, models were generated to predict the outcome, medical annotations of

several years after the input data acquisition.
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2.2.1 Data preparation

Since ML is greatly dependent on the input data characteristics, models that

perform efficiently are only possible if the data set is a good representation of the

problem studied, i.e., if it is representative.

Therefore, firstly, it is important to analyse if the input will be raw or trans-

formed data that may have more relevant characteristics to study. Since raw data

generally presents inadequate formats with unnecessary information, the latter hy-

pothesis is usually more suitable. Thus the raw data is processed to obtain the best

possible features [75].

2.2.1.1 Missing data

As models can not use data with missing values, it is necessary to eliminate

samples with missing values, which possibly causes loss of relevant characteristics

for learning and may lead to bias results, or impute the values.

With the application of imputation of missing values, it is necessary to take

into account if the values are Missing Completely at Random (MCAR), Missing at

Random (MAR), or Missing Not at Random (MNAR). MCAR represents values

where the probability of missing values does not depend on any variable. MAR

defines incidents where the probability of missing values on one variable may depend

on the values of other variables. Lastly, MNAR consists of when the probability of

missing values relies on unobserved data [22, 78].

Single imputation is frequently used in this problem. The imputation of values is

associated with the use of estimations from the self variable value (e.g. the variable’s

mean), or by considering information from other variables. Multiple imputation can

also be applied, e.g, by a multivariate regression as a resource to add diverse values

that guaranty a level of uncertainty and maintain variables connections [78].

Missing data is often observed when dealing with the progression of MS prob-

lems [81, 88]. Generally, the data sets are created in a natural hospital environment

by manually imputing the different variables’ values, which may occasionally lead

to some unfilled fields.

Single imputation overcame this problem in the mentioned models [81], by filling

the missing data with the mean value of the specific variable in the training set, and

with the mean of the training set in the testing group.
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2.2.1.2 Feature Engineering

The creation of features that best represent the studied problem by transforming

data is called feature engineering [84]. This transformation may be associated with

the combination or segmentation of information. Furthermore, the features must be

normalized to prevent heterogeneity in scale.

It is also important to make a selection of the most significant features, not

only to avoid redundancy and irrelevance in data, but also to prevent overfitting,

the lack of generalization ability caused by noise and detail learning [95]. There are

three types of feature selection methods:

• Filter methods - Based on ranking criteria, these methods often select features

with the highest scores regarding several metrics, e.g. correlation criteria. It is

independent of the learning algorithm and ignores features’ interactions [11];

• Wrapper methods - They act by analysing all features combinations and evalu-

ating the resultant performance through model training until its maximization.

Wrapper methods consider feature interactions and offer the best accuracy but

are computationally expensive and may lead to overfitting [16];

• Embedded methods - These methods apply feature selection when training the

model, to spend less computational time than wrapper methods but maintain-

ing a better performance than filter methods [95]. They may be tree-based

(decisions trees) or regularization (Least Absolute Shrinkage and Selection Op-

erator (LASSO) or Ridge regression) methods. The last incorporates penalties

depending on the model’s dimensionality, reducing its levels of freedom and

consequently increasing the generalization power and robustness of the model

[16].

The developed framework to select the most significant features included two

forms of filter methods and one embedded method. Firstly, Pearson’s linear cor-

relation coefficient method was applied to choose the best 100 features, and then

the area under the curve method was used to select the best 50 features. Lastly, to

find the optimal set of features and eliminate redundancy, the LASSO method was

applied [81].

2.2.2 Classification

Supervised learning generally starts the division of data into three distinct

groups: one for training the models by learning interactions between features and

labels, the training set; one used to evaluate the trained models’ performance, the

validation set; and the last to confirm the results of the final model after all im-
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provements made, the testing set [54].

An often used technique to data partition is Cross Validation (CV) methods,

and specifically K-fold CV for studies with small data sets, as used in Pinto et al.

[81]. K-fold CV consists of dividing the data into k groups, k-1 parts of training the

model and the other for validation. It operates by doing k iterations to guaranty

the analysis of the complete data set [83].

The existence of considerable differences in the number of the class examples

in classification influences negatively model training, as it learns the patterns from

the class that has more examples (majority) to the detriment of the minority class.

This leads to underestimating classification errors related to the lack of detection of

the minority class and, therefore, to a false sense of good results. Imbalanced data

generally is found in real-world problems [33].

It is possible to balance classes by undersampling, oversampling or weight bal-

ancing. Undersampling consists of eliminating (often randomly) samples of the

majority class from the training set. On the contrary, oversampling duplicates sam-

ples from the minority class and adds them to the training set. Moreover, weight

balancing is a method that gives increased weight to samples from the minority

class, since usually are the classes with greater importance in prediction problems

[33].

2.2.2.1 Classifiers

There are several classification methods available in ML that function in differ-

ent techniques to suit specific needs about the studied problem and data set.

A very simple classifier is the K-nearest neighbors (KNN). This instance-based

algorithm decides which classes to attribute to an instance, based on the similarities

with the training data points. This method assigns to the sample in the study the

class that is most predominant among the k number nearest neighbours [74].

Decision trees are logic-based algorithms with a tree-like structure where each

node is a feature instance, and each branch possible values for the node. It starts

at the root and, in each node, the model decides which branch represents better the

data until it reaches a classification, the leaf nodes [90].

Linear regression is also frequently used in ML. It considers linear relationships

between features and the output. Therefore, in the training phase, these models

obtain a combination of linear functions representative of the mentioned relationship

and use it to predict new data [2].

It is important to highlight support vector machines (SVMs). These algorithms
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map each instance into a feature dimension space and find a hyperplane that sepa-

rates the classes with the most significant separation margins possible. New samples

are then classified depending on what side of the hyperplane they are positioned [74].

Lastly, deep learning is increasingly popular to manage large amounts of data

in ML, often getting valuable knowledge unobtainable by other methods [71, 74].

It consists of neural networks with multiple nonlinear layers associated with mul-

tiple weight parameters, optimised to perform the most efficiently possible. It is,

therefore, a very complex algorithm [71].

Since the data set available for this thesis was very limited [81], it was not

possible to apply deep learning classifiers. Neural networks need significant amounts

of data to learn feature relations correctly and consequently offer a good prognosis.

Therefore, with the used data set, the models would overfit. However, when there

is sufficient data, these models generally provide higher performance values, due to

their ability to analyse and transform the input through their layers. It is possible

to find essential hidden relations with the target with neural networks, which makes

this type of classifiers frequently used in similar prognosis problems [88].

2.2.3 Performance evaluation

Various metrics can evaluate the performance of the models. For binary clas-

sification, one class is frequently considered positive and the other negative. These

metrics are generally based on the number of samples correctly classified as positive,

the True Positives (TP) and the number of instances identified correctly as nega-

tives, the True Negatives (TN). They also consider the samples classified as positives

but are negatives, the False Positives (FP) and vice-versa, the False Negatives (FN)

[64].

Thus, the prediction’s performance can be evaluated by [64]:

1. Accuracy - Ratio of correctly classified samples considering all data. This

measure is not suited to evaluate imbalanced data since a FN has minimal

weight in this measure. The accuracy may be high but the model not adequate;

2. Sensitivity - Also called as recall, it is the proportion of correctly samples

classified as positive given all real positive samples:

Sensitivity =
TP

TP + FN
(2.1)

3. Specificity - Proportion of correctly samples classified as negative given all
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real negative samples:

Specificity =
TN

TN + FP
(2.2)

4. G-mean - It calculates the geometric mean of sensitivity and specificity:

G-mean =
√
sensitivity ∗ specificity (2.3)

This metric is very popular to evaluate the performance of imbalanced data

problems, since it is not significantly influenced by the heterogeneous distri-

bution [6]. Therefore it gives a better notion of the general classification’s per-

formance than accuracy in MS prediction models, which use data sets largely

imbalanced.

5. F1-score - It is the harmonic mean of precision, the ratio of TP considering

all samples classified as positive, and recall [6].

Precision =
TP

TP + FP
(2.4)

F1-Score =
2 ∗ precision ∗ recall
precision+ recall

(2.5)

It is greatly related to the prediction of rare cases and the sensitivity. A large

amount of false positives in MS predictions can cause serious adversities on the

patient’s health caused by unnecessary aggressive medication, a problem that

can be evaluated by this important metric. Considering the high percentage of

imbalanced data, often the F1-score has lows values in MS problems [81, 88].

6. Area Under the Curve (AUC) - It is the area under the Receiver Operating

Characteristic (ROC) curve, a plot graphic that represents the True Positive

Ratio (TPR), or sensitivity, dependent of the False Positive Ratio (FPR), or 1-

specificity, depending on different thresholds to evaluated which class a sample

belongs. An AUC equal to 1 represents an ideal model, capable of correctly

predicting every instance, and an AUC equal to 0 demonstrates that the model

is inversely identifying the samples. If the AUC has a value of 0.5, the model

follows a random classification.
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Figure 2.4: ROC curve [79].

Other ML problems in clinical problems

To study this type of problems is associated with some challenges. In these

clinical problems, it is necessary to assess data relative to several years of patient

monitoring. Since acquiring such data can be a difficult task, generally it is used

retrospective data. The analysis of retrospective data, specially associated with

a low number of samples, can lead to over-fitting or overestimation, due to the

exhaustion of the data with various implemented methods.

Thus, it is important to apply, step by step, the methodologies to prospective

data. However, it takes several years of patient monitoring, and consequently, several

years to collect this data.

2.3 Explainability

With the rising use of ML systems in real-world applications, specific criteria

need to be assured when dealing with critical safety activities. However, only general

performance metrics may completely meet them, e.g. accuracy or sensitivity [23].

The concern regarding this problem has been rising in recent years, ideally

reinforced by the creation of the right to explanation in the General Data Protection

Regulation (GDPR) 2018 [38].

The addition of the regulation demonstrates the need to guarantee the users’

safety. Criteria such as fairness, i.e. the reassurance that there is no discrimination

associated with the predictions towards protected groups, need to be assured. Ad-

ditionally, it is vital to guaranty that robustness, i.e. the ability to maintain the
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same performance levels when submitted to variations of the input or parameters, is

fulfilled [23]. It is also fundamental to trust the used models from the human users

and guarantee that the results are not effects of randomness. To assure causality in

the model’s behaviour is essential, i.e. that the model prediction perturbations will

also be observed in the real-world system [23].

It might be possible to achieve these requirements by evaluating the model’s

logic if, indeed, they can explain it [23].

Interpretability represents the ability of a system to present its logic so that a

human can easily predict the output with the analysis of the input. Methods like

KNN or decision trees are considered interpretable models, due to the simplicity of

their mechanisms. However, with the increase of features, the gain of complexity

is guaranteed, and even those models become less and less comprehensible, thus

loosing this capacity [34].

Interpretability may not respond to all requirements needed, since generally

interpretable models lack performance compared to complex models, but explainable

ML might. Interpretability offers the simplicity of understanding the model’s logic so

that it is effortless to know the result of new predictions easily. However, an essential

condition for the success of prediction models is high performance. Interpretable

models may not achieve that. Due to their absence of complex learning, it may

be possible to loose essential relations between the input and outcome, resulting in

unsatisfactory performance values.

Explainability is the ability of a model to explain its reasoning and behaviour

in human terms, without the necessity to comprehend the underlying mechanisms of

the models fully [34]. The techniques that implement explainability may only work

in particular machine learning models, such as neural networks or linear regressions,

or applied after training any model, with the analysis of the system’s internals

knowledge [72].

These models can support their actions with explanations, fighting the incom-

pleteness of ML models and, consequently, gaining validation and trust from the

scientific community [35]. The challenge is to know where interpretability is nec-

essary, or when explainability is enough to ensure their applicability in a clinical

environment. The difference relies on the type of medical problems analysed. If

grounded knowledge about the studied problem and risk score models are already

being applied, the best option is to create interpretable models. However, explain-

ability is fundamental to dealing with issues without a high underlying knowledge

about its real dynamics, which requires models with complex internal structures.
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2.3.1 Taxonomy

There are several methods used for ML interpretability and to produce expla-

nations that can be analysed having in mind different concepts.

Firstly, it is possible to analyse the models if the interpretability is intrinsic, by

limiting the model’s complexity, or, post hoc, by using methods that produce expla-

nations after the training step of the ML models [72]. It is also possible to distinguish

the methods if the explanations are associated with the system’s global behaviour,

i.e. if the explanation is global, or if they are related to specific predictions and

groups of instances, defined as local explanations [23].

The results can differ in the type of explanations desired. It is possible to analyse

summaries about the features’ characteristics with statistics (e.g. importance of each

element) or visualise graphic plots. There is also the possibility to understand the

model’s internals, such as linear weights or the structure of the trees, as it happens

with intrinsic interpretability. Another way to understand a classification model is

to study the samples of the data set and find specific characteristics to compare new

data points to their dynamics [72].

This is still a very recent field of study. Thus, there is still no consensus on

many issues, namely, how to group types of explanations, evaluate them, and specify

the definitions of interpretability and explainability.

2.3.2 Explainability Evaluation

It is necessary to explore three levels of evaluation to evaluate the interpretabil-

ity of a model: application, human, and function level of evaluation [34], as observed

in Figure 2.5.

Application-level evaluation lies on the creation of human experiments with

specialists regarding the real end task in study [34]. The foundation is how efficiently

human-created explanations help other humans to complete the tasks. Although,

this evaluation is challenging. It requires a significant time and cost to analyse the

methods, since it requires people exceptionally trained in the subject difficult to

enter in contact and need to be compensated for their work [23]. In this thesis, it is

possible to divide the evaluation of the developed work into two groups, evaluation

by clinicians and data scientists. This thesis focuses on this level of assessment,

directed at data scientists.

Human-level evaluation combats the limitations of application-level evaluations

[34] by the generation of human experiments with laypeople on simplified applica-

tions, representative of the end tasks without jeopardising their essence [23]. This
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type of experiment can be applied by asking a person to choose between a set of ex-

planations which is better [72]. Human-level evaluations are critical to simplify some

studies and understand which type of data is more suited to explain the prognosis

to patients.

Finally, the function level evaluation uses formal interpretability definition as

proxies to analyse the quality of the explanations, without the involvement of human

experiments [72]. It is very popular, as it does not require necessary approvals

and additional cost and time related to the other type of evaluations, conditions

that often are untenable for ML researchers [23]. Due to all these difficulties, the

prediction developed models [81] only evaluated the results with proxies intrinsically.

The authors considered that a model with fewer features and simpler classifiers was

interpretable. Therefore, the generated framework would be relatively interpretable,

depending on the number of features used in the classification.

It is fundamental to validate the explainability with human experiments to

ensure that a model is indeed explainable or interpretable. It is important to note

that there is still a lot to do before these models are ready to be applied in the real

world, and the future tasks are challenging, but the path to do so is being set.

Figure 2.5: Evaluation of Explanations [23].

2.3.3 Explainability methods

As referred before, it is possible to distinguish the methods that produce ex-

planations by their ability to be used in any model or be specific to an application.

With the creation of methods independent of the models, defined as model-

agnostic explanation methods, it is possible to achieve high levels of flexibility, since

there is no limitation on used techniques. Additionally, it can facilitate model’s re-

sults comparisons, as the used explanation methods can be the same. The restriction
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of applying only intrinsic interpretable models can come with the cost of significant

loss of performance compared to black-box models. Generally, as a part of the

model-agnostic type of methods, example-based explanations use specific samples

of the data set to characterise the behaviour of the models, or to represent the data

set distribution without the study of every observation [72].

Although it is possible to use model-agnostic explanations to comprehend neural

networks, these models benefit from explanations specific for neural network inter-

pretation. Special tools are necessary to discover the concepts of their many hidden

layers, that could not be uncovered by universal models [72]. This type of methods

can gradient interpret the different layers of the models, which is a considerable

advantage compared to procedures that only consider their final results.

2.3.3.1 Model-Agnostic methods

These methods are based on the generation of feature summaries, by visualisa-

tion, their importance degree, or highlighting important interactions between them

[72]. Here are some examples of such techniques:

Partial Dependence Plot (PDP)

It shows through graphic plots the marginal influence of one or two independent

features in the prediction, given by a ML model, i.e, with the output g(x), the partial

dependence of the XS domain (the features studied) is given by [98]:

gS(xS) = EXC
[g(xS,XC)] =

∫
g(xS,XC)dP (xC) (2.6)

Where XC is the rest of the features used in the ML model and gS is the prospect

of g on the marginal distribution of XC .

For example, it is possible to understand how a model predicts the number

of bicycles rented (g(x)) in a specific season by analysing the PDP of the features

humidity, temperature and wind speed at Figure 2.6.
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Figure 2.6: PDP for the prediction count model of bicycle renting of the most
significant features [72].

It is possible to observe from the plots that the hotter the day is, the more

rented bikes, until it is too hot, which leads to a decrease in rented bicycles [72].

This causal interpretation method is straightforward to implement and intu-

itive. Still, it is limited in the number of features studied, as it is only possible

to analyse two features simultaneously. Another problem is that only the average

marginal effects are shown, which might hide disparate influences. This leads to the

possibility to see results that do not represent the real nature of the problem [72].

The Accumulated Local Effects (ALE) plot is a similar and faster alternative to

PDP that demonstrates the features’ influence on the model’s prediction on average

[98], using intervals of data points. It is not affected by bias, but its implementation

is more intricate. It is necessary to smooth the plots for a more readable analysis,

by decreasing the number of intervals used, which may result in loss of the actual

influence of the variables. It also can not be directly linked with Individual Condi-

tional Expectation (ICE) (ICE) plots, i.e. it is not possible to analyse these results

in the different samples [72].

Individual Conditional Expectation (ICE) plots

These plots differ from PDP since they show the dependence for each distinct

instance, not the overall average. It resolves the problem of heterogeneous effects

related to PDP. Still, its interpretation is only evident in one feature at a time. It

might be challenging to distinguish relevant characteristics due to the possibility to
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overcrowd the plots with instances [98].

Given the bicycle renting example, the corresponding ICE plots are represented

in Figure 2.7, demonstrating a similar result as in the PDP.

Figure 2.7: ICE for the prediction count model of bicycle renting of the most
significant features [72].

Feature Interaction

With the intuit to understand how the relations between features influence

the predictions, this method evaluates to what degree two components interact with

each other using Friedman’s H statistics [31], as well as the interaction of one feature

with the rest of the data variables. It recognises all interactions, no matter their

form, which is an adequate method to implement before the creation of the PDPs

of the relevant discovered interactions. However, these metrics are computationally

expensive, and there is no definition of the threshold to distinguish what interactions

are high enough to be considered relevant [72].

Permutation Feature Importance

This method consists of evaluating the importance of a feature by permuting it

and analysing the prediction’s error increase. It gives a global understanding of the

model’s behaviour considering all interactions between variables, but it is sensible

to unrealistic instances. Thus it can be biased [72].
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Global Surrogate

Global surrogate method is used to approximate the predictions of black-box

models with simpler models that are interpretable. These models are applied after

the black-box models’ training phase, without the need of any internals’ informa-

tion from them. It uses their prediction as the target to evaluate the ability of

approximation of the surrogate model easily, being a very flexible method [28]. It is

important to note that this technique does not have information about the actual

outcome and, therefore, the resultant interpretability is only related to the model

itself.

Another form of model surrogates is local. Local Interpretable Model-Agnostic

Explanations (LIME) trains models for specific prediction explanations. This method

is very promising, since it is easy to use and produces short and simple explana-

tions. However, its implementation has some problems, as it is a method still in

development with room for improvement [72].

Scoped Rules (Anchors)

With reinforcement learning algorithms, this technique explains single predic-

tions by discovering decision rules that link the forecast, considering that the change

of other features does not alter the prognosis. Similar to LIME, this method uses

perturbations to find IF-THEN rules that anchor the instance to its outcome, with

the consequent creation of local explanations. It is a method easily understand-

able, since it is based on rules, albeit it needs a lot of configuration time, and the

method’s coverage may vary due to exceeding specification, generally associated

with the necessity of discretisation [72].

Shapley Values

A game theory-based method, the Shapley values analysis is grounded with the

notion that each feature is a player in a game where the prediction is the payout

for an individual instance. For each feature, the Shapley Values method evaluates

the model with all possibilities of feature coalitions, with and without the studied

variable, in the analysed instance. The objective is to distribute the payout fairly

through the features [28]. Returning to the bicycle renting example, Figure 2.8

shows the Shapley values for a predicted value having in mind each feature. In

this instance, the most significant contribution to the predictions was humidity and

weather, with the number of bicycles below average.
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Figure 2.8: Shapley values regarding an instance from the prediction model of the
daily rented bicycles number [72].

This method is very time consuming and may include instances that are not

realistic when there is a correlation between the variables [72].

2.3.3.2 Example-based methods

As the name suggests, example-based methods differ from the model-agnostic

methods because they produce explanations based on significant data instances and

not the features characteristics. These methods are great tools to help explain

structured data, but to use them in tabular data sets with several features might

be difficult and result in a lack of meaningful information due to the absence of

human-comprehensibility [72].

A well-known technique associated with example-based interpretability is the

already mentioned KNN, a model whose foundation is to compare the similarities

between neighbour points to make a prediction. Other methods that can be example-

based are the LIME and the Shapley values as they produce explanations to specific

observations.
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Counterfactual Explanations

This method uses statements in a conditional form that demonstrate how a

particular prediction would change if specific variables had different values for that

instance [94], i.e., to have hypothetical scenarios that contradict the observation. For

example, if someone wants a loan but the request is rejected, with counterfactual

examples, this person could understand why it was not approved with explanations

like “if the annual income was 5000 euros higher, the loan would be accepted” [72].

This technique is relatively simple to implement, and its explanations are ap-

parent for a human to understand. It is not restricted only for ML systems[72].

However, the possible counterfactual statements are endless for a ML model. Thus

it is important to produce explanations that only explore the smallest or the most

applicable changes necessary to alter an outcome [94].

Similarly to counterfactual examples, it is possible to use feature alterations,

adversarial examples, to confuse the model and consequently evaluate the systems’

vulnerability to outliers and attacks [72].

Prototypes and Criticisms

Although insufficient, using examples representing the data behaviour is a great

asset to understand the data distribution. Having in mind the data points that

do not fit into the prototypical examples, defined as criticisms, is fundamental to

understand the complex distribution of data. In other words, “data points from

regions that are not well explained by the prototypes are selected as criticisms”, [72],

as observed in the Figure 2.9.
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Figure 2.9: Prototypes and criticisms for a data set with two dimensions [72].

An example of methods that find prototypes and criticisms is the Maximum

Mean Discrepancy (MMD)-critic [48], a technique that, with MMD statistic, mea-

sures the points’ similarity and finds prototypes that maximise it. In addition, it

also finds the criticisms with a regularised witness function score. This method is

easily understandable and can study any form of data. But it does not consider the

existence of irrelevant features [72] and the distinction of criticisms and prototypes

is generally only based on the desired number of prototypes [40].

Influential Instances

This method aims to identify samples that significantly influence the model’s

predictions, when removed from the training data, as represented in Figure 2.10 [51].

A popular approach to identify these instances is to remove them and then train

the model. This method is defined as deletion diagnostics, but it is costly in terms

of computational time, and storage [51]. It is possible to use influential functions

instead to overcome these limitations, by increasing the loss weight of an instance

using robust statistics without the need to retrain the model [53]. However, this

method needs knowledge about the loss gradient, which restricts the application to

specific ML models [72].
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Figure 2.10: Linear model with one feature with and without an influential in-
stance [72].

2.3.3.3 Neural network interpretation

With the popularisation of neural networks in ML comes the need to develop

methods that explain their behaviour global and clearly to human users. This task

is very challenging, due to the several layers and weights used in these networks that

provide high complexity associated with their logic mechanism.

Therefore, most techniques are model specific methods that can discover the in-

formation of the hidden layers, by learning created features in each unit or extracting

the concepts that each layer learned from the data.

Feature visualisation is a method that shows the new learned features by dis-

covering the data that maximises the activation of a unit. It demonstrated that the

first layers learned more straightforward characteristics in images, and increased the

complexity along the network. This method can be linked with network dissection,

a method that labels units from the neural network with human concepts, to show

what that unit learned in an understandable manner [72]. Another method benefi-

cial to deal with images is pixel attribution, a technique that evaluates the relevance

of each pixel in the classification of an image.

It is also possible to try to explain a neural network model by simpler models,
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with the resource of model distillation or the study of the relevance that each feature

has on the prediction [7].

Considering all the complexity of a neural network system, it is impossible

to fully interpret the associated internal mechanisms, which is perhaps absurd to

affirm that these methods can turn these models entirely explainable. However,

these techniques have a fundamental role in keeping users and scientists a bit less

out of the dark on comprehending systems too complex for human understanding

capacity. They are therefore critical in the development of such systems now and in

the future.

2.3.4 Explainability Methods remarks

Since the created framework [81] does not apply neural networks for the progno-

sis of the disease, methods specifically focused on developing explanations for deep

learning will not be used.

From the previous work, some features appeared to have a significant influence

on the outcome but, because the dynamics of MS is very complex, it is fundamental

to understand the degree of features interactions and how these interactions operate.

It would be interesting to implement the PDP methods as the explanations created

show visually the relationship between each feature (or pairs of features) with the

predicted outcome, which makes it possible to compare directly with the already

known clinical information of the dynamics of the disease. This assures the clinicians

if the model is learning the correct logic of the features’ evolution considering the

different courses of MS.

Shapley values are known to provide grounded explanations with a solid logic

base behind them, with the advantage of not assuming linear behaviour, an approx-

imation not proven to represent correctly the real-world although frequently used

by other methods. Its implementation might unravel important information about

each feature’s contribution to a result of an instance, possibly increasing the knowl-

edge already acquired by the analysis of the general predictive power of the most

features.

Explanations similar to those obtained by counterfactual examples have a high

level of human-comprehension, and are typically used as a learning technique in the

real-world by everyone. Thus, its application to produce and find causal explanations

for the models’ predictions is also very appealing.
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2.4 Grounded theory (GT)

Evaluating explanations given by models is challenging, and it may be difficult

to do so quantitatively. An explanation is an exchange of beliefs. Different people

may have different priorities when it comes to an explanation. So, more than just

understanding which are the most used explanations, it is more significant to under-

stand people’s reasoning to choose them and what they think is important. Thus

the developed explanations in this thesis will be presented to data scientists, fol-

lowed by open question interviews. These interviews must be analysed formally and

rigorously. As such, this analysis will be executed by resorting to a very common

tool used in major scientific research, the grounded theory (GT).

GT is an inductive research approach that creates theories based on collected

data, without a preconceived hypothesis formed beforehand. This approach is fre-

quently used to study qualitative, and sometimes quantitative information, grounded

in the collection and analysis of the data systematically. With GT, the experience

of the people in the survey guides the research, and the results are a reflection of

the found patterns. This concept avoids the research to be led by the investigator’s

assumptions a priori, but rather by an impartial view of the social phenomena. It

is a technique to generate a theory, not to test an existent hypothesis [29].

Since the information is generally acquired by interviews or in observational

fields, the data sampling does not focus on population’s representation but on col-

lecting emergent considerations about the problem in study, until it achieves theo-

retical saturation. Theoretical saturation describes the point where there are no new

relevant insights obtained in the data collection [47]. Large amounts of interviews

and data are not crucial in GT, but the sufficient quantity to execute this saturation

[39].

With the ongoing data acquisition, the emerging issues and incidents are noted

and constantly compared, where the similarities and differences with the remaining

examples are found [47].

The next step is data coding, i.e., combining significant incidents and issues ac-

cording to their similarities. These incidents may be the topics that most frequently

occur or new perspectives that may not be obvious to most but, either way, inter-

esting points of view [39]. With the combinations, categories are formed that are

constantly refined, through constant comparison that redefines and reorganises the

categories, according to the ongoing data acquisition that, over time, it gets increas-

ingly focused and selective [47]. The categories are linked, and notes, or memos,

are written to identify patterns in each theme and between them. This concept
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is beneficial to organise and fit the data, and express the emerging formed links.

Memos’ purpose is to help shape the writing of the final theory, as they transform

the information to a conceptual level and help to rework ideas until the final product

is achieved. The generation of a theory consists of the organisation and combina-

tion of memos and the theoretical draft into a thoroughly connected and attainable

hypothesis [29]. A scheme of the approach of GT is presented in Figure 2.11.

Figure 2.11: GT methodology scheme.

Succinctly, the GT is a methodology that, resourcing to iterative cycles of

acquisition of data and the associated comparative analysis, generates explanations

and hypothesis, grounded in practical background, not preexisting assumptions [47].
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State of the art

This chapter provides an explanation synopsis of the current state of the art

related to explainability of Multiple Sclerosis (MS) progression models. This thesis

focuses on prediction Machine learning (ML) models to offer insights about the pro-

gression of MS. Thus, firstly a synopsis is presented that summarizes the developed

prediction models over the years, regarding MS progression.

The summary shows all the similarities and discrepancies in the literature and

the already achieved in this area of study. The project lies in the production of

explanations about the work of Pinto et al. [81]. Therefore this study is then

highlighted. An overview of the projects that use explainability in models related to

MS is also performed. Lastly, it is shown a summary of studies about explainability

in other prognosis problems in healthcare, due to the lack of literature about the

creation of human-comprehensible explanations in MS progression models.

3.1 Prediction of MS progression

Some studies have already been developed that use ML to offer a prognosis

of the different MS courses. Table 3.1 represents a summary created by Seccia et

al. [89] of studies that use clinical data in this area, as this type of data has been

characterised as relevant for long term prognosis. Besides the comparison of the

different results of performance, this summary also contains information acquired

about the most predictive features in each model.
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Table 3.1: Summary of studies that predict MS progression with ML extracted
from Seccia et al. [89].

Author

year

Problem

in study

Type of

data;

subjects

Classifiers Performance

Most

relevant

variables

in the best

model

Bejaro et al.

2011 [5]

EDSS change>1

and EDSS range

after 2 years and

relapse ocurrence

MRI, MEP

and clinical

data;

71 + 96

Naive Bayes,

decision tree

logistic

regression

and neural

network

EDSS change>1:

accuracy=75%

sensitivity=82%

specificity=52%

AUC=74%

EDSS range:

accuracy=80%

sensitivity=92%

specificity=61%

AUC=76%

Relapses:

accuracy=67%

sensitivity=53%

specificity=77%

AUC=65%

EDSS and MEPs

Wottschel et al.

2015 [96]

Progression of

CIS to MS

in 1 or 3 years

MRI and

clinical data;

74

SVM

In 1 year:

sensitivity=77%

specificity=66%

In 3 years:

sensitivity=60%

specificity=66%

In 1 year:

lesion load,

type of

presentation

and gender

In 3 years:

age, EDSS

at baseline,

lesion

attributes

(count, average

distance

from center

of the brain,

average proton

density and

smallest

horizontal

distance

from the

vertical axis)

Yoo et al.

2017 [97]

Progression

of CIS to

MS in

2 years

MRI and

clinical data;

140

Logistic

regression,

random forest

and CNN

accuracy=75.5%

sensitivity=78.7%

specificity=70.4%

AUC=74.6%

Not studied

Zhao et al.

2017 [99]

EDSS change ≥ 1.5

at 5 years

MRI and

clinical data;

maximum

of 1693

Logistic

regression

and SVM

accuracy=67%

sensitivity=81%

specificity=59%

Progressive:

EDSS change,

pyramidal function

and its

change at 1 year

of follow-up,

disease activity,

active disease

at baseline,

T2 lesion

volume

Non-progressive:

EDSS and

disease activity

at 0,6 and

12 months,

brain parenchymal

fraction,

ethnicity,

race and

family history
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Table 3.1: Summary of studies that predict MS progression with ML extracted
from Seccia et al. [89].

Author

year

Problem

in study

Type of

data;

subjects

Classifiers Performance

Most

relevant

variables

in the best

model

Law et al.

2019 [57]

EDSS change ≥ 1

in 2 years

for patients with SP MS

MRI and

clinical data;

485

Logistic

regression,

SVM,

decision tree,

radom forest

and decision

tree with

AdaBoost

sensitivity=59%

specificity=61%

PPv=32.1%

NPv=82.8%

EDSS, timed

25-foot

walk and

9-hole

peg test

Seccia et al.

2020 [88]

Progression

from RR to SP

at 0.5 to 2 years

MRI and

clinical data;

maximum

of 1515

SVM,

random forest,

decision tree

with AdaBoost,

KNN

and CNN

Random forest:

accuracy=86.2%

sensitivity=84.1%

specificity=86.2%

PPv=8.9%

NN:

accuracy=98%

sensitivity=67.3%

specificity=98.5%

PPv=42.7%

Not analysed

Brichetto et al.

2020 [12]

Progression

from RR to SP

within 4 months

Clinical data

and patient

described

effects;

810

Logistic

regression,

SVM, KNN

and other

linear

classsifiers

accuracy=82.6%
Lack of

information

Zhao et al.

2020 [100]

EDSS

change ≥ 1.5

at 5 years

of follow-up

MRI and

clinical data;

724+400

Logistic

regression,

SVM,

random forest

and boosting

methods

XGBoost:

accuracy=71%

sensitivity=79%

specificity=69%

AUC=78%

EDSS,

pyramidal and

cerebellar

functions,MRI

lesions, ambulatory

index and

disease course

(RR,

SP and PP)

Pinto et al.

2020 [81]

Progression

from RR to SP

at 5 years,

EDSS¿3 at

the 6th or

10th year

clinical data

maximum

of 187

KNN, SVM

decision tree,

logistic

regression

SP development:

sensitivity=76%

specificity=77%

AUC=86%

EDSS at the

6th year:

sensitivity=84%

specificity=81%

AUC=89%

EDSS at the

10th year:

sensitivity=77%

specificity=79%

AUC=85%

SP development:

Age at onset,

EDSS,

FS scores

(sensory,

cerebellar,

brainstem and

mental),

CNS in

relapses

(brainstem,

pyramidal tract

and

neuropsychological)

EDSS¿ 3:

EDSS,

FS scores

and CNS

affected

functions

in relapses

As demonstrated by Table 3.1, the progression of MS problem was tackled from

different approaches. Some studies concentrated their efforts to predict the evolution

from Clinically Isolated Syndrome (CIS) to MS [96, 97], while others developed a
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prognosis of the long-term course of the disease. The difference between problems is

clear. While some focus on MS diagnosis, with the prediction of cases that develop

MS from CIS, others concentrate their efforts to analyse the progression of the

disease, with the prediction of long-term effects through the Expanded disability

status scale (EDSS) or the Secondary Progressive (SP) development. This thesis

only focuses on the latter.

The analysis of the progression of the disease is made either with the predic-

tion of the SP course from Relapse-remitting (RR) patients [12, 81, 88], or with the

evaluation of the disease severity, regarding the values of the EDSS or its changes

[5, 57, 81, 99, 100]. Although the EDSS values are commonly studied to evaluate

the disease’s severity in literature, there is a lack of coherence in terms of the identi-

fication of the threshold that distinguishes severe cases. It shows that there is still a

lot of deliberation in creating the most accurate definitions, as previously mentioned

in 2.1.4. There may be a lot of reasons that explain such inconsistencies, being one

the availability of data and the distribution of classes, since it dramatically differs

depending on the used threshold in the problem.

The used classification models can vary from one of the simplest classifiers

in ML, like K-nearest neighbors (KNN), to one of the most complex and opaque

methods, like neural networks. Some studies opt for models easier to explain and

understand, whereas others prefer classifiers that offer better performance despite

their lack of interpretability.

It is also possible to note that some researchers gave some insights about the

logic of the created models, and a level of explainability, with the offer of information

about the most relevant features in the predictions [5, 57, 81, 96, 99, 100]. Informa-

tion about the EDSS is often considered important in the MS prognosis, classified

as relevant in every study with this type of data. The functional systems (FS) be-

haviour, such as the pyramidal, cerebellar and mental functions, is also viewed as

relevant in the prediction of the progression of MS [57, 81, 99, 100] as well as char-

acteristics about brain lesions [96, 99, 100]. Although there are some similarities in

the analysis of the most relevant features, the results show inconsistency in selecting

predictive features. Such inconsistency is also visible in the study from Zhao et

al. [99], where some variables were predictive when maximised a positive outcome

but not predictive when the focus is a non-progressive result [89]. Despite not be-

ing possible to select the universally important features, due to the demonstrated

heterogeneity in these studies, this type of analysis is extremely important. The

presented information gives necessary insight about the models, even if insufficient

to apply them in the real-world. However, such results start the path to comprehend
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MS models and to increase the knowledge of the disease’s progression overall.

3.1.1 Framework from Pinto et al.

All the created methods are applied to the models developed by Pinto et al.

[81] framework. It is important to particularly highlight and explain this study as

it is directly associated with the developed thesis. As mentioned before, Pinto et al.

[81] developed three frameworks, one to predict a SP course in patients that appear

to have RR MS, one to predict the severity of the disease by identifying benign and

severe cases in the 6th year of follow-up and the last to predict the severity of the

disease in the 10th year after the diagnosis.

This framework was created with k-fold Cross Validation (CV) with a k=10,

where this process was repeated 10 times. Therefore with 100 runs, 100 different

models were developed in order to explore the whole data and give some security

about the obtained performance. To select the most relevant features, firstly the

Pearson’s linear correlation coefficient was applied to select the best 100 features

and then the Area Under the Curve (AUC) to select the best 50. Lastly, the Least

Absolute Shrinkage and Selection Operator (LASSO) method was implemented to

select the optimal predictive set of features. Posteriorly, some classifiers were used

in the predictions, where the linear Support Vector Machine (SVM) was considered

the one with the best results. The used pipeline in this study is represented in

Figure 3.1.

The data used to create these models consists in static and dynamic data,

about patients with RR and SP courses provided by the Neurology Department

of Centro Hospitalar e Universitário de Coimbra (CHUC). Patients with Primary

Progressive (PP) MS were excluded from these studies, since this course presents

distinct manifestations that make it easily identifiable.
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Figure 3.1: ML pipeline from Pinto et al. 2020 [81].

Database description

After a MS diagnosis, a patient is medically monitored through routine consulta-

tions every 3 to 6 months, depending on medical opinion. In these appointments, the

patient’s neurological status is analysed and registered. During unscheduled visits

due to relapses, corticosteroids (methylprednisolone) are administered as treatment,

and information about which areas of the central nervous system are affected and

the severity of the relapse is documented. These data were temporal segmented and

afterwards transformed into features. Each resultant dynamic feature represents

the information from the visits of a specific year (e.g. the EDSS mean of the first

year) or the accumulated information of several years, up until a specific year (e.g.

the mean of the visits from the first and second year). Their used values are the

statistics mean, median, mode and standard deviation of the considered temporal

windows (years).

The static data used in the Pinto et al. studies [81] is acquired at baseline when

the diagnosis is obtained being the used information the following characteristics:

• Gender;

• Age of Onset: calculated using the date of birth and date of diagnosis;

• Date of birth;

• Date of diagnosis;

• Supratentorial: boolean field (yes/no). It specifies if there are initial mani-
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festations of MS related to the supratentorial region;

• Optic Pathways: boolean (yes/no). It specifies if there are initial manifes-

tations of MS related to optic Pathways;

• Brainstem-Cerebellum: boolean (yes/no). It specifies if there are initial

manifestations of MS related to the brainstem and/or cerebellum;

• Spinal Cord: boolean (yes/no). It specifies if there are initial manifestations

of MS related to the spinal cord;

• Clinical findings: boolean (yes/no). It specifies if there are initial clinical

evidence of manifestations of MS;

• Magnetic resonance imaging (MRI): boolean (yes/no). It indicates if

there are MS manifestations visualized in MRI scans (lesions) at baseline;

• Evoked Potentials: boolean (yes/no). It indicates if there are MS manifes-

tations visualized in the evoked potentials test at baseline;

• Cerebrospinal Fluid (CSF): boolean (yes/no). It indicates if there are MS

manifestations visualized in the lumbar puncture exam at baseline.

The dynamic data can be divided into visits and relapses. The used information

in the developed models from the database and their missing data ratio is presented

in the following Table 3.2.

Table 3.2: Database information concerning visits and relapses, the dynamic in-
formation, that was used in the models [81].

Characteristic Description
Missing data

ratio

Visits 0.00

Visit Date 0.00

Routine boolean (yes/no): routine visit; 0.00

Score Pyramidal numeric (0-6): Pyramidal FS score; 0.20

Score Cerebellar numeric (0-5): Cerebellar FS score; 0.20

Score BrainStem numeric (0-5): Brain Stem FS score; 0.20

Score Sensory numeric (0-6): Sensory FS score; 0.20

Score Bowel & Bladder
numeric (0-6): Bowel & Bladder

FS score;
0.20

Score Visual numeric (0-6): Visual FS score; 0.20

Score Mental numeric (0-5): Mental FS score; 0.20

Score Ambulation numeric (0-12): Ambulation FS score; 0.20

Cerebellar Weakness
boolean (yes/no): MS manifestations

of cerebellar weakness
0.00

Visual Symptoms boolean (yes/no): visual symptoms; 0.00

gdAtaxia
boolean (yes/no): manifestations of

gait disturbances related to ataxia;
0.00

dysaesthesiae
boolean (yes/no): manifestations of

dysaesthesiae;
0.00

ataxiaLowerExtrem
boolean (yes/no): manifestations of

ataxia in the lower extremities;
0.00
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Table 3.2: Database information concerning visits and relapses, the dynamic in-
formation, that was used in the models [81].

Characteristic Description
Missing data

ratio

paresthesiae
boolean (yes/no): manifestations of

paresthesiae;
0.00

cognitionPb
boolean (yes/no): manifestations of

perturbances in cognition;
0.00

gdParesis
boolean (yes/no):manifestations of

gait disturbances related to paresis;
0.00

gdSpasticity
boolean (yes/no): manifestations of

gait disturbances related to spasticity;
0.00

mwUpperExtrem
boolean (yes/no): manifestations of

muscular weakness in the upper extremities;
0.00

micturitionPb
boolean (yes/no): manifestations of

perturbances in micturition;
0.00

fatigue boolean (yes/no): manifestations of fatigue; 0.00

mwLowerExtrem
boolean (yes/no): manifestations of

muscular weakness in the lower extremities;
0.00

moodPb
boolean (yes/no): manifestations of

mood perturbances;
0.00

EDSS numerical (0-10): the EDSS value; 0.00

Relapses 0.04

Relapse Date 0.00

Impact ADL Functions
boolean (yes/no): impact on activities

of daily life;
0.00

Recovery
boolean (yes/no): the patient recovered

from the relapse;
0.83

Severity numerical (0-2): relapse severity; 0.79

CNS Pyramidal Tract
boolean (yes/no): MS manifestations

related to the Pyramidal tract;
0.00

CNS Brain Stem
boolean (yes/no): MS manifestations

related to the Brain Stem;
0.00

CNS Bowell & Bladder
boolean (yes/no): MS manifestations

related to Bowel and Bladder;
0.00

CNS Neuropsycho Functions
boolean (yes/no): MS manifestations

related to Neuropsycho functions;
0.00

CNS Cerebellum
boolean (yes/no): MS manifestations

related to the Cerebellum;
0.00

CNS Visual Functions
boolean (yes/no): MS manifestations

related to Visual Functions;
0.00

CNS Sensory Functions
boolean (yes/no): MS manifestations

related to Sensory Functions;
0.00

Hospital
boolean (yes/no): the relapse required

hospitalization;
0.00

Ambulatory
boolean (yes/no): the relapse affected

ambulatory capacity;
0.00
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3.1.1.1 Features’ Predictive Power

The analysis of the data set variables’ predictive power by Pinto et al. [81] was

executed by counting how many times a specific characteristic, e.g. the EDSS or

the ScorePyramidal, was selected in the feature selection as part of the classification

model input in the 100 runs. For example, if a characteristic has the predictive

power of 0.67, it was selected as part of the input 67 times in 100 models. Moreover,

this information is linked with the type of relationship that each characteristic has

with the target, positive (+) if it relates with a benign outcome or negative (−)

if it promotes a severe case of MS. Pearson’s correlation between features and the

target classification output was calculated to study such relations. If the correlation

is negative, the feature promotes a mild case, while if the correlation is positive, it

is associated with leaning the result to a malignant outcome.

The predictive power results show that the EDSS and the scores of the pyrami-

dal, mental, cerebellar, and bowel and bladder systems have the highest predictive

power, which are the only variables with a constant relevance over the studied years,

as represented in Figure 3.2. Although Age and Gender appear to have a significant

impact in the 1-year framework, that influence does not appear in the other models.

Figure 3.2: Predictive power of each characteristic. The values represent the
recurrence of the characteristics in the 100 runs, being the predictive power superior
to 0.90 represented by diamonds. The signs represent the influence that the variables
have in the classifications: positive (+) if it promotes a good prognosis and negative
(−) if it promotes a severe outcome.

Most characteristics negatively influence the outcome, i. e. they promote a se-

vere case of the disease, except in the characteristic Recovery, as expected. However,

the characteristics CNS BrainStem and Score Visual do not show a clear relation

with the predictions. The authors explain the indicated results by affirming that

patients who persistently display these symptoms occasionally have a higher proba-

bility of having mild disease effects. In contrast, the patients that suffer from these

symptoms irregularly are more likely to be associated with a severe case of MS [81].
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In general, the results are in accordance with the literature and what is al-

ready known clinically. However, there are still some discrepancies between studies

regarding what variables are the most relevant to the MS prognosis.

This shows not only the evolution in the predictive power of the characteristics

but also the type of influence that they have in the outcome (positive or negative).

This analysis is prevalent among these studies, since it provides fundamental insight

into the models. Nevertheless, the method does not consider feature’s interactions

that are frequently present in complex problems. Moreover, it is not possible to

directly compare the recurrence of a characteristic with its impact on the prediction

as a characteristic may only be selected as input, e.g. five times in 100 runs, but

may significantly influence the classifications of those specific models. Moreover,

the amount of analysed patients causes doubts about the conclusions of this study,

lacking further tests in other databases.

3.2 Explainability and MS

Recently, a few applications of explainability in MS-related problems have

emerged that show the rising need to study such concepts in this area. However, the

encountered research on this topic is not aimed to investigate the disease’s progres-

sion yet, but to explain diagnosis models instead. Therefore, although the studies

presented are not directly compared to this thesis, they also help to comprehend

further MS-related models.

Aiming to create an understandable model that diagnoses the disease, Eitel et

al. [26] created an explainable framework with 3D convolutional neural networks

(CNNs). The authors implemented Layer-wise Relevance Propagation (LRP), a

method that creates heatmaps from the holdout sets that show the relevance of

every voxel in an individual decision [10] for each subject. Dealing with Fluid-

attenuated Inversion Recovery (FLAIR) image sequences, the authors used LRP to

validate the results of the model by comparing the most relevant features with the

already clinically used markers in MRI images of individual predictions. This com-

parison showed that indeed the identified features were consistent with the clinical

knowledge, able to distinguish features only discovered in MRI advanced techniques.

The created explanations proved that the model was learning what was supposed to

for those samples. However, since the used data is relatively small, it is necessary

to do further analysis with more extensive and diverse data sets, to assure that the

results are robust and able to generalise to other samples. The used method does not

consider voxel interactions nor has information about the inherent mechanisms of
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the neural networks. However, it showed that it is capable of learning expected MS

markers from FLAIR image sequences by explaining the results in a very clear and

intuitive way with heatmaps. This study is, therefore, very important, as this type

of research helps to decrease the scepticism that surrounds neural network models

in the diagnosis of MS.

The LRP was also used by Creagh et al. [20] in a transfer learning Deep

Convolutional Neural Network (DCNN) framework. This framework uses collected

ambulatory time-series data from wearable smartphone sensor data to distinguish

healthy individuals, patients with mild MS and patients with moderate MS. This

analysis made it possible to find relevant ambulatory patterns for diagnosis, such as

the gait power. Through the results provided by this method, it was also possible

to observe a clear distinction between healthy patients, patients with mild MS and

moderated MS in the gait domain. It visually demonstrated the distinct character-

istics of the signals for the three different classifications very intuitively. This work

used two opened-source data sets, also having problems regarding low-subject data

set that the authors helped combat with the implementation of transfer learning.

Despite the relevancy of the LRP explanations, the evaluation was only visual, in-

fluenced by clinical hypothesis. Thus it is necessary to conduct and analyse these

studies in a more controlled manner.

With demographic and MRI information, as well as disease covariates, Reinhold

et al. [85] developed a structured causal model based on counterfactual images and

variational autoencoders to help diagnose and make a prognosis of MS cases. With

a limited data set as well, the study focused on the analysis of counterfactual images

regarding questions like ‘what happens when the lesion volume is equal to 0 mL?’ or

‘if the EDSS of this patient was 4, how would the MRI be?’. With exciting results

in the training test, the developed model created weak counterfactual explanations

in the test and validation sets, which shows its inability of generalisation. Addi-

tionally, the counterfactual explanations were not validated significantly, since it is

challenging to evaluate hypothetical outcomes caused by imaginary transformations

to a specific variable. Despite its flaws, this type of work could possibly be used in

the future to assess MS dynamics, as the created explanations might give insights

into the evolution of the MS courses.

Even though these studies [20, 26, 85] also focus on MS, their efforts are concen-

trated mainly in the creation of explainability in diagnosis models, which deviates

from this thesis objective. Additionally, there are no similarities in the input data, as

this project uses longitudinal clinical data collected from hospital admissions with-

out image information. However, all of them have a fundamental role not only to
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help ML models to gain trust from both the medical and computer science experts

but also to expand the knowledge about this very complex disease that torments so

many.

3.3 Explainability in healthcare models

Since this study is not comparable with other research about ML models that

predict MS progression, the next best thing is to find research that applies explain-

ability methods in healthcare, that may present an analogous concept to this thesis.

Therefore the research further focused on problems that concentrate on applying

explainability in black-box frameworks related to medical issues with characteristics

somewhat comparable with MS or the type of problem studied. Therefore, the focus

of this research lies in the prognosis of a health problem with ML models, consid-

ering data from different time-period moments. This study consisted of the search

of articles linked to the words ‘machine learning’ and ‘interpretability’ or ‘explain-

ability’, and ‘neurodegerative disease’, ‘autoimmune disease’, ‘prognosis’, ‘risk’ or

‘healthcare’. Table 3.3 summarises the results of this research.

With this research, it is possible to note the prominence of the use of SHapley

Additive exPlanations (SHAP) in black-box models [1, 3, 4, 9, 27, 45, 56, 63, 73, 80,

92]. Methods that are based in the Shapley values are often characterized by the

creation of the only explanations that guaranty a fair distribution of effects of each

feature [72], a very appealing advantage that may justify its popular implementation.

The Local Interpretable Model-Agnostic Explanations (LIME) are also fre-

quently applied in these problems, since they offer similar information to the Shapley

values but with less computational costs. It is important to note that some SHAP

methods connect the data of Shapley values and LIME without being computation-

ally expensive. All the advantages related to Shapley values, together with the fact

that they offer prediction models and are easy to implement in decisions trees, make

SHAP very popular [72].

There is a predominance of more complex prediction classifiers, like neural

networks and Extreme Gradient Boosting (XGBoost), representing their significant

popularity associated with higher performance results than simpler models.

It is possible to observe the range of different problems and medical areas that

include explainability to the discussion. From all-causes mortality risk problems to

neurodegenerative diseases diagnosis, understanding black-box models is essential,

since patients health is at risk if those models fail.

It should be noted that there is no direct comparison of the explanations given
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Table 3.3: Studies associated with explainability in healthcare.

Author, year Problem in study Data Type
Recurrence of data

acquisition
Classifier

Explainability
methods

Antoniadi et al., 2021 [3]
Quality of life prediction

for ALS patients

Patient and caregiver ’s
interviews information

and clinical data

3 time-instances
with 4 to 6

months intervals
XGBoost SHAP

El-Sappagh et al., 2021 [27]

Early diagnosis of
Alzheimer’s disease;

Progression from
MCI to Alzheimer

within 3 years

MRI, PET
and

clinical data
Baseline Random Forest

SHAP +
22 explainers

based on decision
trees and fuzzy

rule-based systems

Bloch et al., 2021 [9]

Progression from MCI
to Alzheimer without

time of conversion
defined

MRI and
demographic data

Baseline and
follow-up

XGBoost
and Random Forest

SHAP

Maggesh et al., 2020 [65] Parkinson Diagnosis SPECT scan images
Initial screening
of each patient

CNN LIME

Peng et al., 2021 [65]
Mortality risk for
hepatitis patients

Clinical data
Baseline and

follow-up
Random Forest

SHAP, LIME
and PDP

Moncada-Torres et al.,
2021 [73]

Prediction of breast
cancer survival

Clinical data
Baseline and

follow-up
Random Forest, SVM

and XGBoost
SHAP

Prentzas et al., 2019 [82] Stroke prediction Clinical data
Every 6+ months
after recruitment

Random Forest
Decision rules from
Georgias framework

Lv et al., 2021 [63]

All-cause mortality;
All-cause readmission

for patients with
heart failure

EHR

All information
from the first

hospitalization due
to heart failure

Random Forest,
linear regression,

SVM, ANN
and XGBoost

SHAP

Cho et al., 2019 [17]
Post-stroke

hospital discharge
Clinical data

Information of
primary stroke

diagnosis

Logistic regression,
Random Forest,

AdaBoost
and MLP

LIME

Athanasiou et al., 2020 [4]
Cardiovascular disease

risk in Type 2
Diabetes patients

Clinical data
5 years of
follow up

XGBoost SHAP tree

Jiang et al., 2020 [45]
In-hospital mortality

risk in sepsis
survivors

Clinical data
first day of

readmission data
light gradient-boosting

tree
SHAP and PDP

Epifano et al., 2020 [30]
Mortality prediction

in septic and
all-comers patients

Test results first-day admission DNN Influence functions

Thorsen-Meyer t al., 2020 [92]
90 day mortality

prediction
Longitudinal, static
and time-series data

Baseline and
follow-up

LSTM SHAP

Lauritsen et al., 2020 [56]
Acute critical

illness prediction
EHR 24h admission records TCN SHAP

Lundberg et al, 2018 [62]
Prediction of hypoxaemia

during surgery
Times-series, dynamic

and static data
pre and during
surgery data

Gradient Boosting
PDP, Shapley

values and averaged
feature importance

Agius et al., 2020 [1]

Risk of infection
prediction in

chronic lymphocytic
leukemia patients

Clinical data
Baseline and

follow-up

Random Forest, elastic
networks, logistic

regression and
XGBoost

SHAP

by different methods in most of these studies. Thus, it is difficult to evaluate if

they are the best explanations for the addressed problems or if there are better

alternatives yet to analyse in the future. Since the explainability and interpretability

concepts are still in development, most of these studies are just the beginning of the

investigations. This newness can be demonstrated by observing the year that the

mentioned studies were conducted, where the majority of studies were published in
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2019, 2020, or in the present year.

Although there is already some research about explainability in medical prob-

lems, there is still a long way to go and a lot more to develop. Not only in MS but

also healthcare problems in general, as it is already known that, in some areas of

study, the information provided by ML black-box models is not enough.

3.4 Final observations

The inclusion of information about the relevance of features is currently a pop-

ular analysis in the available studies about MS prediction models, as well as in other

medical issues. However, such research does not consider feature interactions that

may drastically influence the conclusions about the model’s intrinsic logic. It may

give a false sense of simplicity about the dynamics of the models and the disease

itself.

The need to guarantee that the prediction models operate with causal thinking

is also fundamental, but not completely achieved only by analysing the most pre-

dictive features. It is imperative to assure that a model is learning correct reasons

to classify a sample and not random links between features and target.

With the increase of information about explainability methods, it is believed

that the production of clear explanations can combat the aforementioned limita-

tions. Explainability is already a focal point of study in some healthcare problems.

However, it is not a popular approach yet, particularly in MS progression models.

The necessity of studies such as this is evident.

These studies commonly create explanations by implementing one or two meth-

ods without the analysis if the obtained insight is sufficient to turn a model clearly

explainable. The importance of the comparison of multiple explainability methods

in the same problem must be reported, as some methods might be more suited than

others or might complement other types of explanations.

Additionally, most available studies lack an evaluation of the produced expla-

nations, a common problem, due to the complexity of this topic. The indicated

limitation needs addressing, regardless of its difficulty, to provide full validation to

all the work already achieved and to put ML models a step closer to being a resource

in clinical environments.
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Methodology

The main goal of this thesis is to understand if the developed work can be

applied in a clinical context and what type of produced explanations can influence

the most to achieve such accomplishment.

The models developed by Pinto et al. [81] focused on three different predictions,

the disease’s severity at the sixth and tenth years of follow-up, and the Secondary

Progressive (SP) development. Since the available information increases over the

years, in each problem, n-year models were created, each using accumulative in-

formation up until the respective year. The analysed data consisted of clinical

annotations from the first to the fifth year of follow-up, depending on the n-year

model generated. The 1-year model studied data from the first year of follow-up,

while the 5-year model used accumulative information from the first to the fifth year

of follow-up.

The number of different models could cause considerable entropy if all data was

studied. Therefore only one model was selected as the focus of this thesis. Firstly

the problem regarding the prediction of the disease’s severity in the sixth year was

chosen. The higher performance of these models was one of the reasons for this

decision. Additionally, in the previous work, it was possible to observe that the

prediction of the Multiple Sclerosis (MS) severity had more discriminant features

than the SP progression. Due to its complexity, this case is intriguing to analyse the

true potential of the explanation methods. Considering the different n-year models,

the authors assumed that the model about information up until the second year

of follow-up presented the best trade-off between the value of performance and the

time of the prediction, as represented in Figure 4.1. It is imperative to give a correct

prognosis the quickest as possible, since a later prediction and, consequently, a late

therapy administration might be ineffective in inhibiting the disease’s progression.

With that in mind, the taken approach started with the implementation of

different explainability methods that produced explanations about the model that

predicts the disease’s severity in the sixth year of follow-up, using the clinical infor-
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mation of the first two years after diagnosis.

Figure 4.1: SVM classifier performance in every year-framework.

The produced explanations were then compared with each other and with what

is already clinically known about the MS progression and its characteristics. Then

the results were presented to a group of people that daily work with Machine learning

(ML), with different levels of knowledge, to be evaluated. This evaluation focused

on understanding if the developed work can guarantee trust and safety if used in

the real-world. The produced explanations were presented, followed by an interview

of open questioning to know their opinions about the different explanations and

understand the reasons that support such responses.
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4.1 Model agnostic explainability methods

With all the information about the created models from the Pinto et al. frame-

work [81], several explainability methods were implemented. Such methods can be

divided into three subgroups, depending on the type of explanations they generate.

Some methods explain the framework’s logic, give universal insights and possible in-

consistencies about all of the 100 originated models, and methods that only present

the global behaviour of specific models. Additionally, methods that produce local

explanations about individual predictions of specific samples were also developed

and analysed.

The implementation of these methods was performed in MATLAB® version

R2021a with the Statistics and Machine Learning Toolbox.

4.1.1 Framework-related methods

These methods give general explanations observed in every model and offer

some analysis of the differences between them. The logic of a model directly relates

to the input data of the classifiers. In a real-world environment, it is improbable to

know a priori the characteristics of the models’ input. Thus, it is not possible to

conclusively know what is the best model, in practice. Therefore, it is important to

understand if, in general, the models are consistently learning the same relations in

different sets of data, or if there is a lack of coherence between them.

Three methods were developed that give information about all models, the

analysis of the recurrence of features, the calculation of the permutation feature

importance, and the analysis of the partial dependence plots (PDPs). Furthermore,

it is essential to mention the study of the predictive power by Pinto et al. [81].

Although this analysis was not developed in this thesis, it also considers and

evaluates these results. The information given by the indicated method is a form of

insight about the created framework and the disease’s dynamic itself. Therefore, it

is valuable information for the comparison of the different forms of understanding.

Similar to the feature predictive power, the first method executed in this thesis

was the analysis of the recurrence of the features obtained in their selection. The

goal was to conclude if an entire input set of features stands out in the 100 runs, i.e.

if the full selected combination of features is significantly repeated. Additionally,

this method aims to possibly show which partial combinations of features are the

most recurrent, to give insight into the models’ granularity. Firstly, this procedure

counted how many times a single feature, and combinations from two to 10 features,
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were part of the input in the 100 models. The limit was set to 10 because it was

the threshold in Least Absolute Shrinkage and Selection Operator (LASSO), the

last technique used in feature selection. Then, the best results were analysed and

presented in the form of a dendrogram. Thus, the links were analysed starting from

the smallest combination (pairs), adding the best following combination (trios) that

contains the previous variables and so on until it is impossible to distinguish the

most recurrent group of features.

The following developed method was the permutation feature importance, a

method that measures each variable’s importance in the classification ability of

generalisation. This method was applied by permuting the values of the test data set

of one specific feature and calculating the loss of performance in the new classification

results by calculating the difference between the original G-mean of the model and

the G-mean of the permuted one. The permutation was created by altering the

samples’ values order of the studied feature and predicting the altered data set again.

The permutation order was randomly assigned, which was repeated 200 times for

each feature in each model to stabilise the results for each feature in different runs.

This analysis was performed in each feature and combinations of two variables. The

function predict was used with the new permuted data set but with the original

model to predict the new altered instances. The same method was implemented

with the train data set, to evaluate the feature importance in the models’ learning

ability. As the obtained values were similar to the results with the test data set,

this work presents only the results of the test data set.

Lastly, the PDPs of the most recurrent features from the previous analysis were

produced, as well as the most recurrent pair of variables. Therefore, in each model

that contained the analysed variable, its PDP was calculated and registered with

the use of the function plotPartialDependence. Subsequently, it was calculated the

mean value of the obtained PDPs from every model and presented a plot with all

the PDPs for each model and their mean value. Although Individual Conditional

Expectation (ICE) explanations were considered and developed, the results were

discarded from this thesis, due to the lack of increase of information when compared

with the PDPs explanations, as the results showed that all the effects were equal in

the different points.

4.1.2 Model-specific global explanations: Linear regression

The only method that explains model-specific mechanisms in this project is the

classifier linear regression. The function fitlm created the linear regression models,

in which the classification labels of the data test were acquired by the use of the
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function predict. As there is no highlighted unique recurrent model in the 100 runs,

the selection of the to be analysed models consisted of identifying the runs with

the best and worst values of G-mean and one model with the most similar G-mean

to their mean value. The regression models can be represented by a function with

linear relations between the features and the target, where the learning task focus

on finding what the most appropriate estimate of coefficients for each variable that

best fit the data is:

y = α1x1 + α2x2 + α3x3 + ...+ αnxn + ε (4.1)

To distinguish each class, the used criterion was if the function’s value was equal

or higher than 0.5, the analysed point belonged to class 1. In contrast, the prediction

indicated a benign outcome if the function’s value was lower than 0.5. With the

inherent information resultant from the function fitlm, the estimated coefficients

(α) of each feature (xii = 1,...,n) from the selected models were then documented

in a bar plot. This study was also performed in every model, where the total

coefficients per variable and their mean were collected. Since these results had

a significant variability, the analysis of every model was also excluded from the

posterior comparison and evaluation.

4.1.3 Sample specific explanations

Some local methods were implemented to create specific explanations. To pro-

duce them, the first procedure was to find what Support Vector Machine (SVM)

models had the best, worst and average value of G-mean, being the methods only

related to them. With these models, the next move was to find representative data

points to which the created explanations were applied. The test data set was di-

vided into points correctly classified as benign (class 0), points correctly identified

as malignant (class 1), and the misclassifications to select the indicated samples in

each model.

To find a group of points that represent all the data distribution, in each set of

samples, a dendrogram of points’ similarity was created using the functions pdist,

linkage and dendrogram using the euclidian distance to compare them. With the

observation of the dendrograms, 3 to 4 clusters were manually created, since the

goal was to analyse 3 to 4 points from each type of points (points belonging to class

0, 1 and misclassifications). Due to the non-systematic distribution of samples in

each group, particularly in the observation from class 0, it was not possible to use a

clustering technique with a relative homogeneous distribution of points per cluster.
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Thus the division was executed manually delimited subjectively. This selection was

only created as it was impossible to study every sample in this thesis.

In each cluster created, the point with the highest classification score in mod-

ule was selected to be posteriorly studied. Figure 4.2 presents an example of this

division. The classification score is directly linked with a confidence level in each

classification, i. e. the higher of score is in module, the more distance the point

has with the decision hyperplane. Therefore, the greater the classifier’s certainty to

identify the sample as a part of the determined class.

Figure 4.2: Obtained dendrogram about the similarities of points that were cor-
rectly classified as benign cases (class 0) in the model with the best g-mean. The
manually selected clusters are delimited by the coloured rectangles, being each point
represented by each tick in the x-axis.

With all the points selected, three different methods were developed.

The first method studied was the Local Interpretable Model-Agnostic Expla-

nations (LIME). These method’s explanations were created by using the function

lime with the parameter ’DataLocality’ defined as ’local’. The number of neigh-

bours necessary to develop LIME was defined with a rule of thumb, equal to the

round value of the square root of the complete test data set. The indicated choice

was made because the optimisation of this parameter is complex, and there was a

lack of knowledge to make a more rigorous decision. This function generates syn-

thetic points regarding the predictor data and uses them to create a local intrinsic

interpretable model. In this case, it was linear regressions. Then, the function fit

was used to fit the local simple linear model to the studied point being its results

visualised when used the function plot.
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The Shapley values were also calculated for the selected observations using the

function shapley, fit and plot in the respective order. Only the predefined parameters

were used.

The final approach was to develop counterfactual explanations in the form of ’If

the feature X had the value X1, then the outcome would be Z, not Y’. The goal is to

know the minor change in the features’ values that can alter the prediction. With

this in mind, firstly, each variable is independently altered, according to its domain.

The step used to vary the values of the features systematically also depends on each

feature. The domain and step used in the variations are presented in Table 4.1.

After analysing all the possible changes in each feature, only the top three minor

alterations of values were selected as explanations. This method does not study

changes of combinations of features.

Table 4.1: Values’ domain and selected intervals for each characteristic

Variables’
identifying words

Domain Interval between values

EDSS (mode) 0 - 10 0.50

EDSS
(mean, median, std)

0 - 10 0.20

Scores Pyramidal,
Visual, Sensory and

Bowel & Bladder
0 - 6 0.10

Scores Mental,
Brainstem and

Cerebellar
0 - 5 0.10

Score Ambulation 0 - 11 0.20

Supratentorial, Optic, Spinal,
BrainStemCerebellum,

clinical findings,
evoked potencials,

CSF, MRI,
and gender

0 - 1 1.00

Age 0 - 100 1.00

Other 0 -1 0.05

4.2 Evaluation of the developed work

After implementing so many methods, the principal question is ‘how to evaluate

this information?’. With this in mind, the initial goal was to present the data

to specialists, both in the MS-related clinical field and to the computer science

environment. However, it became clear that the explanations need to be different
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for each context since the concerns of the data scientists differ from the ones of a

clinician. The explanations presented to data scientists need to probably be more

complex in terms of an algorithmic perspective than those shown to clinicians. In

addition to the challenge to contact clinicians that directly work with MS, in the

available time, it is essential first to assure the models’ robustness and confidence

in an algorithmic perspective. Therefore, the evaluation was firstly performed at a

data science level before being analysed in a clinical context.

This evaluation consisted of a presentation for computer scientists of how the

prediction framework was created and the explanations produced. After the presen-

tation, the scientists were interviewed to analyse all the developed work qualitatively.

Ten ML scientists were contacted and accepted to be part of this analysis, where

eight of them work on the laboratory responsible for this project and two are exter-

nal investigators. No participant had prior knowledge about what was developed in

this thesis.

The presentation consisted of explaining how the prediction framework was

created, the performance results of the generated models, and all the explanations

produced by implementing the mentioned methods. This presentation was made

individually to each participant. Afterwards, each scientist was asked to answer

some questions about all the created work. Some results were discarded from this

presentation as it had a limited time per person. It would be impossible to fully

explain all the data without being too exhausting to the listeners. Therefore only

the most relevant aspects of each method and explanations were presented. The

interviews were all recorded to posteriorly being analysed. The interview was based

on the following questions:

• Regarding the ML context, are the prediction models trustworthy?

• Is all the developed work fit to be applied in a clinical environment?

• What can be improved regarding the prediction framework?

• What explanations are more suited to support the work’s decision making?

• Is there any limitations linked with the produced explanations?

• Do different types of explanations give different types of trust? What are they?

• Are there any unfilled gaps in all this work?

• What could be improved and developed to combat those limitations?

After all these questions, it was asked if there was any missing observation that

the participant wanted to expose. These statements were also taken into consid-

eration. While listening to the recordings, all the data was transcribed into text
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data. Through an iterative analysis, based on Grounded Theory (GT), the emer-

gent topics in the interviews were found and documented, up until the saturation of

the data, i.e. when no new information emerges from the interviews. If the data did

not saturate with ten interviews, more of them would be performed to achieve this

goal. All the emergent topics were afterwards organised in a diagram to explain the

obtained results.
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Results

This chapter shows the produced explanations by the different methods and the

results acquired in the interviews. The explanations are divided into three groups,

according to the type of given information. Therefore, it is first presented general ex-

planations about all the 100 models, afterwards global explanations about a specific

model and, lastly, the methods that generate explanations about a single prediction.

The name of the features represents the type of information associated with them,

where the number related to a y represents the analysed year by the variable, and

the acc shows that the feature is associated with accumulative information of several

years. For example, the feature EDSS mode 2y acc is the mode value of the EDSS

documented in the visits from the first and second year of follow-up.

5.1 Framework-related explanations

The analysis of the behaviour of all the models started previously with the

study of the predictive power by Pinto et al. [81]. The predictive power is described

as the recurrence of each characteristic in the 100 runs, associated with the type

of influence that the variables have in the prediction (positive, if they promote for

a mild case, or negative if they promote for a severe course of Multiple Sclerosis

(MS)). The results are presented in Figure 3.2.

The analysis of the recurrence of the features’ combinations is represented in

Figure 5.1. In the scheme, the numbers represent the number of times a variable

or combination was selected in the 100 runs as input of the classifier. The inter-

mittent lines represent the features associated with accumulative information. The

saturation is directly related to the links’ recurrence, e.g. a combination with 67

selections of input has a saturation equal to 67% and the thickness of each line,

which is directly associated with the year of follow-up that the feature is related to.

The links on the left side of the scheme represent features with the same studied

characteristic.

61



5. Results

Figure 5.1: Dendrogram-like scheme that shows the recurrence of the variables in
the 100 models.

Similarly to the predictive power, the results of the recurrence of variables and

their combinations show that the Expanded disability status scale (EDSS) and the

Scores of some Functional System (FS) (pyramidal, cerebellar, mental and bowel

and bladder) have the highest results. It is relevant to highlight the blue and green

clusters due to their prominent recurrence. The feature EDSS mode 2y acc is

selected in almost all the models as well as the Score Cerebellar mode 1y.

The results do not significantly differ from the predictive power as the analysis

is based on the same logic, the number of times a variable is selected to be a part

of the input in the classification. However, since this method has in regard combi-

nations between features, it enables to observe possible variables’ interactions, and

therefore it is an asset. The analysis of the models’ granularity provides a path to an

interesting study that may be worth investigating more thoroughly. However, the

indicated explanations lack insight about the relations between variables and target,

if positive or negative. This data can easily compare what a model is learning and

what is observed in the real-world.

In Figure 5.2, the permutation feature importance shows the combinations with

the highest results, where the feature EDSS mode 2y acc is related with most

interactions. It is also the feature with the highest importance value when analysing

individual features. The combinations with the highest loss of performance were the

pairs EDSS mode 2y acc - ScoreVisual median 2y acc and EDSS mode 2y acc -

ScoreAmbulation avg 2y. However, these combinations are only present in 1 and 2

models, respectively.
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Figure 5.2: Permutation feature importance. Only the interactions with a value
higher than the mean value and the standard deviation are demonstrated. Each
interaction is represented by the links between features and each coloured rectangle
the importance of the correspondent feature. The darker the colour, the higher is
the importance value. The individual values vary from -0.039 to 0.100. The values
from the links vary from 0.070 to 0.234.

It is important to notice the predominance of the characteristics EDSS and

scores of some FS e.g. the scores of the pyramidal system. Although some features

individually do not significantly impact the predictions, when combined with other

features, they greatly influence the forecast, associated with a high loss of perfor-

mance. It is possible to verify this by observing, e.g. the interaction CNSCerebellum

mode 2y relapses acc - ScorePyramidal mode 1y.

This technique offers an effortless way to evaluate the features’ importance and

combinations. It is easy to understand that, if the values’ alteration of a variable

triggers an accentuated loss of performance, its impact on the classification is sig-

nificant. All the adaptability associated with the method is also a favourable point,

since it is possible to analyse individual features and interactions between two or

more variables. Regardless, it is important to note that, due to all the randomness
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linked with each permutation, there is the possibility to generate unrealistic sam-

ples that influence the results. This randomness also creates a high variability of

results between all the runs, which causes some uncertainty when trying to retrieve

conclusions. Like the analysis of the models’ granularity, these explanations do not

have information about the variables’ type of influence in the predictions, i. e. if

they promote malignant or benign courses of the disease.

By observing Figure 5.3, it is possible to say that all partial dependence plots

(PDPs) from the different models have the same appearance. The influence of each

feature is a positive linear relation with the outcome, i.e. they always promote a

bad prognosis. Although there is some variance in the slope of the segments, it is

not very prominent since the behaviour of the features is very similar in every run.

Figure 5.3: PDP of the features ScorePyramidal mode 2y acc, Recovery std 2y
relapses acc, EDSS mode 1y and EDSS mode 2y acc. The blue outlines represent
the feature’s PDP of each model and the red outline the mean PDP value of every
model that contains the analysed feature.

In the graphs of the Figure 5.4, the mean PDPs are identical to the ones shown

in Figure 5.3. However, these features have some discrepancies between models as

some present a negative influence on the outcome. The logic of those models when

learning the relation between the studied variable is sometimes different, showing

here some inconsistencies. Additionally, the slope of the segments vary greatly

compared with the features analysed in Figure 5.3.
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Figure 5.4: PDP of the features ScorePyramidal avg 2y, ScoreMental median 1y,
ScoreCerebellar mode 1y, ScoreBowel mode 2y and EDSS avg 2y. The blue outlines
represent the feature’s PDP of each model and the red outline the mean PDP value
of every model that contains the analysed feature.

The PDPs of the Figure 5.5 show that their mean value has a positive linear

influence in the prediction, where the highest the values of the features, the higher

the probability of a malignant prediction.

Figure 5.5: PDP of the interactions ScoreCerebellar mode 1y - EDSS mode 2y
acc and ScorePyramidal mode 2y acc - EDSS mode 2y acc. Only the PDP mean
value is presented, where the red outline is the representation of the classification
score that equals to 0.

With the PDPs, it is possible to verify the influence of each feature (and pairs of

features) in the outcome. Consequently, it is also possible to assess if the behaviour
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is similar in every model or if there are some incongruities. It also provides a visual

idea of the level of effect that each feature has in the outcome, in this case, with

the slope of the linear relations. In some features, a small change has a significant

impact on the outcome, while in others, some alterations are not relevant to the

model’s classification.

With no limitations associated with the study of the relation between features

and target, this study is a valuable safety tool since it is possible to observe if

the variables act like expected, considering the established clinical findings or if

the models are not learning as expected. Although, it is important to indicate

some restraints regarding the PDPs as it does not take into account interaction

between features higher than two variables and does not give clear insights about

the variables’ weight in the predictions.

5.2 Model-specific explanations

Figure 5.6 demonstrates the estimated coefficients of the linear regression mod-

els.

Figure 5.6: Estimated coefficients from the models with the best, worst and value
most similar to the average G-mean. A positive coefficient promotes a severe case
of MS while a negative coefficient promotes a benign outcome.

Considering the model with the best performance, the feature with the highest

coefficient is the ScorePyramidal mode 2y acc. However, the feature ScorePyrami-

66



5. Results

dal avg 2y acc has a strong negative impact on the predictions. In the average

performance model, there are also two features with a negative influence but with

shallow values (ScoreCerebellar mode 1y and ScorePyramidal median 2y), not hav-

ing a significant impact on the outcome. The same scenario is verified with the

feature ScoreBowel avg 2y. The behaviour of the features EDSS mode 2y acc and

ScorePyramidal mode 2y acc is relatively similar in every model with high positive

values of coefficients. However, there are features with distinct weights in different

models like the feature ScoreCerebellar mode 1y. The values of this feature vary

from a high positive coefficient to a low negative impact, being very inconsistent.

As mentioned before, the linear regression classifiers are intrinsically inter-

pretable, i.e. the logic of the models is understandable in such a degree that it

is possible to know the respective outcome very clearly with the input. However,

these classification models only consider linear feature relations with the target and

do not consider interactions between variables. This may jeopardise their perfor-

mance when compared with more complex models such as support vector machines

(SVMs), as it generally does. However, this discrepancy is not visible in the studied

problem, as it is represented in Table 5.1.

Table 5.1: Performance of models with best, worst and average performance asso-
ciated with the linear regression and the linear SVM classifiers.

Best Average Worst

Linear

regression

G-mean = 91.5%

Sensitivity = 100.0%

Specificity = 83.6%

AUC = 89.0%

F-score = 62.9%

G-mean = 82.2%

Sensitivity = 81.8%

Specificity = 82.5%

AUC = 86.3%

F-score = 53.0%

G-mean = 65.5%

Sensistivity = 54.6%

Specificity = 78.6%

AUC = 84.5%

F-score = 35.3%

Linear

SVM

G-mean = 92.9%

Sensitivity = 100.0%

Specificity = 86.2%

AUC = 94.0%

F-score = 66.7%

G-mean = 82.2%

Sensitivity = 81.8%

Specificity = 82.5%

AUC = 89.9%

F-score = 53.9%

G-mean = 68.1%

Sensitivity = 54.6%

Specificity = 85.0%

AUC = 84.4%

F-score = 41.4%

Another limitation of these explanations is associated with the simultaneous

analysis of multiple models. Although it is easy to interpret a single model, sub-

stantial entropy is linked with all the distinct results of coefficients in the models

making the interpretation task challenging. This phenomenon is slightly hinted in

Figure 5.6.
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5.3 Individual prediction explanations

Three different models (best, worst and average) were considered in these expla-

nations. In each model, three or four samples were selected per group of classifica-

tions (class 1 and class 0, and misclassifications in the counterfactual explanations).

Due to the high amount of studied samples and its inherent redundancy of informa-

tion, that do not increase the insights on this subject of study, only a few samples’

explanations are presented here. The selection of these samples was performed to

represent as well as possible the data set distribution.

The estimated coefficients by Local Interpretable Model-Agnostic Explanations

(LIME), in the results of the Figures 5.7, 5.8, 5.9, 5.10, and 5.11, are negative if the

variables promote to a severe MS and positive if they influence the prognosis to a

mild form of the disease.

Feature

Observation

(Classification

score=1.690 )

Hospital std 2y relapses 0.000

EDSS mode 2y acc 1.000

EDSS mode 2y 1.000

ScorePyramidal avg 2y acc 1.636

ScorePyramidal median 2y 1.594

ScoreCerebellar mode 1y 1.214

CNSCerebellum mode 1y relapses 0.133

ScorePyramidal mode 2y acc 1.448

ScoreMental median 1y 0.286

EDSS avg 2y 1.000

Figure 5.7: Estimated coefficients by the LIME model for the first selected sample
belonging to the class 0 (benign case) of the best model.

Feature

Observation

(Classification

score=2.372 )

Hospital std 2y relapses 0.049

EDSS mode 2y 1.000

ScoreMental median 1y 0.000

EDSS avg 2y 1.250

CNSCerebellum mode 1y relapses 0.000

ScoreCerebellar mode 1y 2.000

ScorePyramidal median 2y 1.000

EDSS mode 2y acc 1.000

ScorePyramidal avg 2y acc 0.750

ScorePyramidal mode 2y acc 0.000

Figure 5.8: Estimated coefficients by the LIME model for the second selected
sample belonging to the class 0 of the best model.
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Feature

Observation

(Classification

score=4.136 )

Hospital std 2y relapses 0.049

ScoreMental median 1y 0.000

CNSCerebellum mode 1y relapses 0.000

ScoreCerebellar mode 1y 0.000

ScorePyramidal mode 2y acc 0.000

ScorePyramidal median 2y 0.000

EDSS avg 2y 0.000

ScorePyramidal avg 2y acc 0.000

EDSS mode 2y 0.000

EDSS mode 2y acc 0.000

Figure 5.9: Estimated coefficients by the LIME model for the third selected sample
belonging to the class 0 of the best model.

Feature

Observation

(Classification

score=3.496 )

Hospital std 2y relapses 0.049

ScorePyramidal mode 2y acc 0.000

EDSS mode 2y 0.000

ScoreMental median 1y 0.000

EDSS avg 2y 0.000

ScorePyramidal median 2y 1.594

ScorePyramidal avg 2y acc 1.500

EDSS mode 2y acc 0.000

CNSCerebellum mode 1y relapses 0.000

ScoreCerebellar mode 1y 2.000

Figure 5.10: Estimated coefficients by the LIME model for the fourth selected
sample belonging to the class 0 of the best model.

Firstly it is important to note that the LIME was unable to estimate the

prediction coefficients of every feature of the sample in the Figure 5.9.

Some features’ values express a great variance in their classification impact,

as in some cases, a feature is associated with a high weight in the prediction. In

contrast, in other samples, its influence is relatively low, as demonstrated when

analysing the results of the feature EDSS avg 2y. The variable Hospital std 2y re-

lapses has significantly high coefficients in every explanations with constant values

throughout, not only the observations of the Figures 5.7, 5.8, and 5.10, but also in

the malignant cases. The ScorePyramidal avg 2y acc promotes a benign course in

the predictions, in the Figures 5.8 and 5.10, which is also present in the results of the

linear regression classifier in the best model. Additionally, the feature CNSCerebel-

lum mode 1y relapses also has a positive coefficient in prediction of the Figure 5.10.
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However, both of these features do not have a significant impact on the predictions.

The results of the Figure 5.11 demonstrate an incorrect classification made by

the LIME model. Thus the explanations of this prediction are not plausible as

every explanation is directly linked with the simpler LIME model.

Both incorrect predictions and the lack of estimated coefficients appeared in

different samples. These cases were not a one time case scenario.

Feature

Observation

(Classification

score=0.500 )

EDSS mode 2y acc 1.500

EDSS mode 1y 1.500

Recovery std 2y relapses 0.707

ScoreCerebellar mode 1y 0.000

ScorePyramidal avg 2y acc 1.000

ScoreMental median 1y 0.000

ScoreSensory avg 1y 1.500

EDSS mode 2y 1.500

ScoreBowel mode 2y 0.000

ScorePyramidal median 2y 1.000

Figure 5.11: Estimated coefficients by the LIME model for a selected sample
belonging to the class 0 of the worst model.

The fact that the produced explanations are a simpler and interpretable local

model is very helpful since it explains the complete logic of a prediction without

jeopardising the performance of the original model, the prediction model. Addition-

ally, this method is relatively versatile since it is possible to restrict the number of

considered predictors, which allows to create simpler explanations depending on the

problem. Regardless, the lack of knowledge to optimise all the related parameters

makes the LIME implementation challenging, possibly where the absence of a rig-

orous assessment of their values is one of the reasons for the anomalies mentioned

before. However, this method still in development may be improved in the future.

The Figures 5.12, 5.13, and 5.14 show the results of the calculus of the Shapley

values related to three predictions of malignant cases. For this set of cases, a positive

Shapley value promotes a severe scenario, whereas a negative result promotes a mild

course of the disease.
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Feature

Observation

(Classification

score=1.117 )

EDSS mode 2y acc 4.000

ScoreMental median 1y 0.000

ScorePyramidal mode 2y acc 2.000

ScorePyramidal avg 2y acc 2.000

CNSCerebellum mode 1y relapses 0.000

ScoreCerebellar mode 1y 1.000

EDSS avg 2y 2.614

ScorePyramidal median 2y 1.594

EDSS mode 2y 2.446

Hospital std 2t relapses 0.049

Figure 5.12: Shapley values of the first selected sample belonging to the class 1 of
the best model.

Feature

Observation

(Classification

score=2.579 )

EDSS mode 2y acc 6.500

ScorePyramidal mode 2y acc 1.448

CNSCerebellum mode 1y relapses 0.133

EDSS avg 2y 2.614

ScorePyramidal median 2y 1.594

EDSS mode 2y 2.446

ScoreMental median 1y 0.286

ScorePyramidal avg 2y acc 1.636

ScoreCerebellar mode 1y 1.214

Hospital std 2y relapses 0.049

Figure 5.13: Shapley values of the second selected sample belonging to the class
1 of the best model.

Feature

Observation

(Classification

score=2.512 )

ScoreMental median 1y 2.000

EDSS mode 2y acc 3.000

ScoreCerebellar mode 1y 2.000

ScorePyramidal mode 2y acc 2.000

ScorePyramidal avg 2y acc 2.000

CNSCerebellum mode 1y relapses 0.000

Hospital std 2y relapses 0.049

EDSS avg 2y 2.614

EDSS mode 2y 2.446

ScorePyramidal median 2y 1.594

Figure 5.14: Shapley values of the third selected sample belonging to the class 1
of the best model.
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In the Figures 5.12 and 5.13, the EDSS mode 2y acc was considered the feature

with the highest weight in the predictions. It is important to mention that its values

in these studied samples are already higher than 3, the threshold in the sixth year.

In the third observation, this feature is the second with the highest Shapley value,

where the value of the ScoreMental median 1y was considered by these explanations

as the most relevant in the classification.

It is possible to observe that the Shapley values greatly depend on the value of

each feature of the studied sample where each point explanation is very distinct from

the others due to this direct link between the attributed weight and each variable’s

value.

These explanations assume any features’ interactions and any relation between

them and the outcome, where the results directly measure the weight of the features’

values in the studied prediction. Since it is a direct weight of each variable, the

explanations are easily understandable and clinically verifiable. They have indirect

information about the relation between features and the classification result, i.e. if

it is positive or negative. However, even with this information, it is not possible to

anticipate what a change in a feature’s value may cause, which may not be achievable

to create a simple prediction model with the produced explanations.

The counterfactual explanations of samples that belong to severe cases of MS

are represented in the Tables 5.2 and 5.3.

Table 5.2: Original data point and the respective counterfactual explanations of
the first sample from the class 1 of the best model.

Feature
Observation
(Classification
score=1.117 )

EDSS mode 2y acc 4.000
ScoreMental median 1y 0.000
ScorePyramidal mode 2y acc 2.000
ScorePyramidal avg 2y acc 2.000
CNSCerebellum mode 1y relapses 0.000
ScoreCerebellar mode 1y 1.000
EDSS avg 2y 2.614
ScorePyramidal median 2y 1.594
EDSS mode 2y 2.446
Hospital std 2y relapses 0.049

Real outcome: class 1 - Predicted outcome: class 1

1. IF EDSS mode 2y acc WAS 1.5 THEN OUTCOME WOULD BE 0.
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Table 5.3: Original data point and the respective counterfactual explanations of
the second sample from the class 1 of the best model.

Feature

Observation

(Classification

score=2.579 )

EDSS mode 2y acc 6.500

ScorePyramidal mode 2y acc 1.448

CNSCerebellum mode 1y relapses 0.133

EDSS avg 2y 2.614

ScorePyramidal median 2y 1.594

EDSS mode 2y 2.446

ScoreMental median 1y 0.286

ScorePyramidal avg 2y acc 1.636

ScoreCerebellar mode 1y 1.214

Hospital std 2y relapses 0.049

Real outcome: class 1 - Predicted outcome: class 1

1. IF EDSS mode 2y acc WAS 1.5 THEN OUTCOME WOULD BE 0.

Only a change in the value of the feature EDSS mode 2y acc generates an

alteration of the outcome in the samples represented in the Tables 5.2 and 5.3. It

is possible to assume that, because the values of this feature are already so high,

that any value decrease in the other variables would not have a significant impact

on the predictions since these alterations are compensated by the elevated values of

the EDSS mode 2y acc.

Having in mind the samples of the Tables 5.4, 5.5, 5.6, and 5.7, their variables’

values are already so low that only drastic changes in the EDSS or the hospital visits

due to relapses can cause an outcome transformation. It is also possible to observe

that the higher the classification score of the sample, the more drastic the necessary

changes need to be to transform the prediction, as expected.
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Table 5.4: Original data point and the respective counterfactual explanations of
the first sample from the class 0 of the best model.

Feature

Observation

(Classification

score=1.690 )

Hospital std 2y relapses 0.000

EDSS mode 2y acc 1.000

EDSS mode 2y 1.000

ScorePyramidal avg 2y acc 1.636

ScorePyramidal median 2y 1.594

CNSCerebellum mode 1y relapses 0.133

ScoreCerebellar mode 1y 1.214

ScorePyramidal mode 2y acc 1.448

ScoreMental median 1y 0.286

EDSS avg 2y 1.000

Real outcome: class 1 - Predicted outcome: class 1

1. IF Hospital std 2y relapses WAS 0.2 THEN THE OUTCOME WOULD BE 1

2. IF EDSS mode 2y acc WAS 4.5 THEN THE OUTCOME WOULD BE 1

3. IF EDSS mode 2y WAS 5.5 THEN THE OUTCOME WOULD BE 1

Table 5.5: Original data point and the respective counterfactual explanations of
the second sample from the class 0 of the best model.

Feature

Observation

(Classification

score=2.372 )

EDSS mode 2y acc 1.000

EDSS mode 2y 1.000

ScoreCerebellar mode 1y 2.000

ScorePyramidal avg 2y acc 0.750

ScoreMental median 1y 0.000

ScorePyramidal mode 2y acc 0.000

EDSS avg 2y 1.250

CNSCerebellum mode 1y relapses 0.000

ScorePyramidal median 2y 1.000

Hospital std 2y relapses 0.049

Real outcome: class 1 - Predicted outcome: class 1

1. IF Hospital std 2y relapses WAS 0.3 THEN THE OUTCOME WOULD BE 1

2. IF EDSS mode 2y acc WAS 5.5 THEN THE OUTCOME WOULD BE 1

3. IF EDSS mode 2y WAS 7.5 THEN THE OUTCOME WOULD BE 1
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Table 5.6: Original data point and the respective counterfactual explanations of
the third sample from the class 0 of the best model.

Feature

Observation

(Classification

score=3.496 )

EDSS mode 2y acc 0.000

EDSS mode 2y 0.000

ScorePyramidal mode 2y acc 0.000

ScoreCerebellar mode 1y 2.000

ScoreMental median 1y 0.000

EDSS avg 2y 0.000

CNSCerebellum mode 1y relapses 0.000

ScorePyramidal acg 2y acc 1.500

Hospital std 2y relapses 0.049

ScorePyramidal median 2y 1.594

Real outcome: class 1 - Predicted outcome: class 1

1. IF Hospital std 2y relapses WAS 0.4 THEN THE OUTCOME WOULD BE 1

2. IF EDSS mode 2y acc WAS 6.5 THEN THE OUTCOME WOULD BE 1

3. IF EDSS mode 2y WAS 9.5 THEN THE OUTCOME WOULD BE 1

Table 5.7: Original data point and the respective counterfactual explanations of
the fourth sample from the class 0 of the best model.

Feature

Observation

(Classification

score=4.136 )

EDSS mode 2y acc 0.000

EDSS mode 2y 0.000

ScorePyramidal mode 2y acc 0.000

ScorePyramidal avg 2y acc 0.000

ScoreCerebellar mode 1y 0.000

ScoreMental median 1y 0.000

EDSS avg 2y 0.000

ScorePyramidal median 2y 0.000

CNSCerebellum mode 1y relapses 0.000

Hospital std 2y relapses 0.049

Real outcome: class 1 - Predicted outcome: class 1

1. IF Hospital std 2y relapses WAS 0.45 THEN THE OUTCOME WOULD BE 1

2. IF EDSS mode 2y acc WAS 7.5 THEN THE OUTCOME WOULD BE 1

The counterfactual explanations are straightforward to comprehend since they

appear as a rule, a concept frequently used in learning in the real world. Because

they show what is the smallest change to be made to alter a prediction, these

explanations might give a new perspective to the specialists in more complex cases.

The fact that the alterations do not consider correlation between features, there is
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the possibility to create unrealistic data points that influence the interpretation of

the explanations. Still, they may be a good form of explaining the prognosis to a

patient due to their already mentioned simplicity. Despite this method also offering

indirect information if a feature promotes a benign case or a more severe MS course,

there is no insight about the impact that each variable has on the classification,

lacking therefore essential data about the models’ logic.

5.4 Qualitative evaluation

When asked if the developed work was ready to be used in a medical context,

the response frequently was affirmative, but it was generally associated with some

doubt.

The participants felt overwhelmed by the number of different explanations pre-

sented, and they found it difficult to completely understand every method. However,

the increase of explanations provides a more complete analysis. With so many dis-

tinct explanations, it is easier to assess their reliability, by analysing their coherence.

Furthermore, different methods tackle different perspectives that complement each

other, giving, as already mentioned, the idea of a complete study. Therefore, the

explanations are not fully comparable, in which it exists a hierarchy/ granularity

between them. Some help to verify the models’ robustness, and others are more

focused on explaining the decision making.

The lack of full data familiarity and understanding is related to the presen-

tations’ limited available time, as some explanations needed more time and effort.

There was a preference for visual explanations as they are easier to apprehend. It

was recommended to study further the type of relations between features and tar-

get and the feature interactions. The results of the interviews are represented in a

diagram in the Figures 5.15 and 5.16.
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Figure 5.15: Scheme about the significant data collected in the interviews, grouped
by categories (part 1).

The responses about the most valuable explanations were diverse. Shapley val-

ues were a prevalent choice and were characterised as very intuitive. It is often

compared to LIME, a method that was defined by needing more time to be un-

derstood. It had contradictory opinions as some participants found its explanations

helpful, and others did not think that the advantages of this method were sufficient

to justify all its limitations. In this comparison between LIME and Shapley values,

frequently, the Shapley values were considered better.

The discrepancies in opinions appeared when discussing the counterfactual ex-

planations as well, since some trust the produced explanations and others do not.

The indicated distrust is highly associated with the production of unrealistic data.

Nevertheless, the counterfactual examples are very easy to assimilate, and although

not considered visual information, they may be very informative to clinicians.

The PDPs were considered interesting to evaluate the features’ behaviour and

understand that some runs do not operate as the norm. One interviewee said that

this method provides excessive information that may not be necessary.
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Regarding the permutation feature importance, it was observed that it was

useful to analyse feature interactions, although it also created unrealistic data points.

The predictive power was often considered a useful analysis as it showed the relevance

of feature and their relation with the outcome providing a lot of information in

advance. Lastly, the linear regression was important due to its simplicity and the

associated performance in this problem, being possibly justifiable to use this classifier

in the problem in detriment of SVM models. However, most participants affirmed

that they trust the SVM models as their results are always better than the linear

regression.

As highlighted in black in the Figure 5.15, it was noted that the study lacked

explanations that demonstrated meticulously the models’ limitations and failures,

which is beneficial information. Additionally, the explanations are directly linked

with the input data of the prediction framework. Since the disease’s characteris-

tics and effects are highly heterogeneous, these explanations may not suit all cases

associated with this disease.

Regarding Data scientists vs Clinician category of the scheme in Figure 5.16,

according to the interviewees’ opinions, to a data scientist, the presented expla-

nations should be technical (from an algorithmic point of view), and it needs to

be complete and detailed. However, the explanations should be more ‘fluid’, less

technical and more conceptual for a clinician. It is also important to show a more

selective analysis as it might be too overwhelming and unnecessary to present so

much information to a medical specialist. This leads to an explanation refinement.

With the suggestion to only show some explanations, preferably the most visual

and simple information, the participants also proposed to explain the most chal-

lenging prognosis. The focus would be the cases that a clinician could not give a

clear prediction in the first years of follow-up, but the models correctly identified

the outcome.

In addition, it would be important to show the prediction results in probabilities

or confidence level metrics in detriment of models only saying if the sample belongs

to class 1 or class 0. The use of calibration curves was also suggested.

Since there is no information about the influence that a prediction has in a

clinical situation, it was recommended to create explanations with variables that

can be controlled by clinicians and patients, such as medication or diet. These

explanations would provide a study of what changes would be the most suitable

to inhibit the MS progression of a specific patient, giving important additional

information to the explanations of a prediction. All these suggestions are represented
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Figure 5.16: Scheme about the significant data collected in the interviews, grouped
by categories (part 2).

in the Figure 5.16 as Work refinement.

Finally, the most popular insight is the fact that it is indispensable the valida-

tion of the results by MS specialists. Some questions only have definitive answers

with this communication, e.g. ‘should the studies focus on under or over-prognosis?’

i.e. what is the best compromise between having mild cases classified as malignant

and severe cases not correctly predicted? And ‘is the used data set enough to vali-

date all the developed work?’. The next step is, therefore very clear. The principal

efforts should be to improve the presented data and contact clinicians to enable this

work to move forward and achieve its ending objective.
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Discussion

This chapter presents a discussion about the used approach in the experimental

procedure and the analysis of the results. This chapter is divided by the data

about the produced explanations and the qualitative evaluation performed by the

interviews.

6.1 Explainability methods

In this master thesis, several explainability methods were tested. The analysis

of several explanations provided the possibility to verify the consistencies between

the results, which promotes a higher sense of trust in the prediction models and

the explanations. It also provided a constant comparison between methods. This

comparison is essential to understand which explanations are more suited to assure

the safety and reliability of the prediction framework.

Distinct types of explanations were created, from general insights about all de-

veloped models to information about single predictions. This range of explanations

is essential, as it targets different requirements and concerns inherent to the studied

topic.

To the best of knowledge, this may be the first explainability analysis on Mul-

tiple Sclerosis (MS) disease progression. However, the use of such approach may

be generalised in similar studies, since explainability is increasing popularity among

data scientists. Nonetheless, there are some limitations associated with its applica-

tion in this thesis.

6.1.1 Implementation of the methods

Framework-related explanations

Considering that some of the methods summarise the behaviour of all the mod-

els, it is important to highlight the approach used in the permutation feature impor-
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tance. This analysis provides very interesting insights about features’ interaction,

since it enables to examine the influence of different sets of variables. However, no

information verifies if the results of each combination of features are the effect of a

feature interaction or only the sum of each variable value. This analysis would be

beneficial to understand the models’ logic with clarity, since it may find hidden be-

haviours related to the combination of different variables. In addition, this method

was related to significant variation in each run. To have conclusive results, it would

be interesting to further analyse the data, beyond the calculation of the mean and

standard deviation of the values.

Model-specific explanations

Regarding the model-specific explanations, due to the impracticability related

with the study of all models separately, only the models with the best, worst, and

value most similar to the average G-mean were selected to study model-specific ex-

planations. This decision was made as no complete combination of features were

significantly recurrent in the 100 runs. Since it is not possible to select a definitive

prediction model yet, this analysis promoted a broader idea of the type of expla-

nations associated with the framework, not just single models. Nevertheless, The

results significantly change from model to model, which does not permit to take

global conclusions about the behaviour of the disease and predictions.

Sample-specific explanations

Moreover, in the explanations about specific predictions, clusters were created

manually to select the samples studied with the local methods, since, with automatic

techniques, the distribution of data points was not homogeneous, i.e. the clusters

were not formed with a similar number of samples. Some clusters had almost all

the observations, while the others contained only one or two observations. However,

this decision is associated with the subjectivity of the researcher. The goal of this

selection was to provide a set of examples that represent the data distribution.

However, since each sample is different, the respective explanations are distinct

from each other. Therefore it is not possible to completely compare the results of

the several samples nonetheless.

Additionally, by selecting the samples that present the highest classification

scores, it was possible to choose the predictions with the highest certainty in the

classification. The easiness in the identification of the correct class is also probably

verified in a clinical context, where the confirmation of Machine learning (ML)

in these cases may not be necessary. However, by presenting such examples, it is
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possible to clearly compare them with the insights of the clinicians and, consequently,

validate the explanations and used methods.

The implementation of Local Interpretable Model-Agnostic Explanations (LIME)

also needs improvement. The parameters were not optimised, but instead selected

with a rule of thumb. The lack of optimisation possibly poorly influenced the re-

sults. It would be possible to generate more suitable explanations with a complete

studied optimisation.

6.1.2 Produced explanations

In general, the produced explanations highlighted the influence of the features

related with the EDSS and the scores of some Functional System (FS), with em-

phasis on the pyramidal, mental, and cerebellar systems. These features were often

associated with the highest prediction weights, where the feature EDSS mode 2y

acc was particularly predictive in most explanations. Since the disease is normally

monitored with the analysis of the neurological deterioration, and the MS effects

are measured by the EDSS and the scores of the FS, it is easy to understand why

those features have the most impact in the classification.

With some exceptions, the influence of the variables is following theoretical

knowledge and clinical observations, e.g. the higher the EDSS, the higher the prob-

ability of a severe case of MS. However, the exceptions must be taken into account,

as they might significantly impact the predictions and show essential limitations of

the models. It is, therefore, fundamental to identify those exceptions and further

analyse them, since performance metrics are incapable of representing such anoma-

lies. These problems can be demonstrated in the Partial Dependence Plot (PDP)

explanations. Some models were associated with variables’ effects contrary to the

norm. Similar observations were present in specific explanations, such as the anal-

ysis of the estimated coefficients of the linear regression and the LIME models. A

feature that often showed some inconsistencies was the ScorePyramidal avg 2y acc,

since it promoted for a mild case of MS in some studied models.

Results constraints

It is important to note that this work was developed with a small data set

compared to the literature [12, 57, 88, 99, 100], that lacked demographic diversity

and had a high amount of missing values. Since the data set only contained caucasian

people, mainly from the central zone of Portugal, the results are only associated with

a particular group of patients. Due to this limitation, it is not possible to conclude
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that these findings cover diverse patient cases.

The low value of the F1-score of the prediction models also can not be ignored.

Although the other metrics have values very satisfactory, the F1-score transmits

that the models are classifying a high amount of benign cases as severe MS. This

might lead to overmedication if these models were used as a prognosis tool without

any medical confirmation. Models are not intended to make the decisions for the

clinicians, but rather be a resource tool to help them in complex cases where the

prognosis is challenging and unclear. The low values of the F1-score are probably

caused by the highly imbalanced data set, which is very common in prognostic

healthcare problems.

With so many methods applied, the entropy caused by the number of differ-

ent explanations can be exaggerated. This diversity also showed that some variables

have different levels of influence from method to method. For example, although the

feature ScoreCerebellar mode 1y was one of the most relevant variables in the recur-

rence analysis, it had a relatively low impact on the permutation feature importance

explanations. Since the methods use distinct mechanisms and logic to calculate the

features’ effect in the predictions, it is expected that not all the produced information

is always completely congruent. Nevertheless, it is impossible without an expert’s

help to know which method is adequate due to a lack of certainties or dogmas about

the disease’s dynamics. This study only considers the opinions of the interviewees

to analyse the explanations, since, without a formal and rigorous analysis, it is not

possible to assume which explanation is the best approach to support the prediction

models.

6.2 Qualitative evaluations

To qualitatively evaluate the produced explanations, interviews were performed

with data scientists. This approach was based on the grounded theory. Not doing

a purely quantitative analysis of the results made it possible to analyse interesting

details and ideas, even if only stated by one interviewee. This type of analysis

allowed to have new perspectives about the developed work that otherwise would

not be apparent, as the participants worked in different fields of ML and thus had

different experiences and knowledge to share.
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6.2.1 Interviews development

Starting with an evaluation by data scientists was very important, due to the

confidence given to the project. Since data scientists have the technical knowledge

to understand what was applied in this project, it is possible to rigorously evaluate

all the approaches and results. This is fundamental to improve and validate all the

work surrounding this thesis, before the presentation of the results to MS specialists.

The validation of the results by clinicians is essential to completely evaluate the

developed work, but it is currently missing at this stage. In the future, the goal is

to reach MS-related clinicians that are available to perform this analysis.

In the interviews, the limited time of the presentations (around 17 minutes)

partially hindered the assimilation of the results. Most of the interviewees did not

know all the information, as only one participant was already aware of explainabil-

ity and explainability methods. However, with a more detailed presentation, the

interviewees’ attention would lose focus. A possible solution would be to perform

more than one presentation to promote a complete comprehension of all the data.

Although, the first impression with a lack of complete knowledge about this subject

might also be considered an asset, since clinicians frequently do not have insights

about such topics. Therefore, it provides beforehand the necessary changes to make

in the explanations to better understand the results when presented in a clinical

context.

It is also important to note that the interviews can be greatly influenced by

how one understands and presents the explanations, during the presentation of the

results.

6.2.2 Explainability methods evaluation

The opinions of the interviewees allowed us to gather some conclusions. A

comparison between LIME and the Shapley values was frequently observed, generally

with a preference for the Shapley values. The inherent logic of LIME is to create a

new model, that only has in consideration local characteristics of the data set. Thus,

more time is needed to understand its mechanisms due to the increased complexity of

this method compared to others. This causes doubts that compromise trust in these

explanations, as it is difficult to trust something that is not entirely understood.

The same can also be stated about the Shapley values, since calculating them might

be challenging to comprehend without much experience in the field. However, when

presenting all the methods, the complexity associated with the Shapley values was

suppressed, possibly a partial reason for its popularity. This method has in mind
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every type of interaction, and relations between features and outcome, which is the

essential cause for its preference. It guarantees that all the possible learned relations

between the data and model are considered, which, therefore, offers confidence that

the explanations represent the logic behind each prediction accurately. Nevertheless,

this needs to be confirmed by clinicians.

The counterfactual explanations also had contrasting responses. There were

opinions that the explanations did not offer much trust and did not increase the

knowledge about the predictions, since they only provided superficial insights. How-

ever, it was also stated that they would be a great asset to explain the clinicians’

decisions due to their simplicity. Additionally, the use of features that could not

be directly changed was also a pointed limitation, since the biggest advantage of

counterfactual explanations is to show what would be possible to change for a more

favourable outcome, for example. The use of features that can be regulated, such

as medication and diet in this scenario, would create interesting, and perhaps more

useful explanations. They would provide concrete insights about what changes could

the patients do to alter their prognosis, even if the influence of those variables was

not dramatic. This idea of controlled variables can also be applied to the other

explanations. It is a very appealing concept, as it allows a patient to intervene in

the decision-making.

The analysis of the recurrence of variables had a very consistent approval by

the participants. In feature selection, it is studied and selected the best set of

variables, that have the most power to distinguish the different classes. Thus, this

type of analysis already provides a significant amount of information about the data

dynamics, as it shows the granularity of the 100 models. Therefore it offers the

features that have a substantial role in the prognosis due to their high selection

as input. If they are constantly selected as input, no matter the train data set

differences in each run, the conviction that those features are significant in the

disease’s prognosis is increasingly assured. This study is, therefore, a standard

procedure in similar problems [89]. The predictive power by Pinto et al. [81] was

a frequent choice by the interviewees as a good method to support the prediction

models. It provided a continuous analysis over the years, as it studied from 1 to 5-

year models, which was constantly highlighted. This analysis offers insight into the

influence of characteristics in different stages of the disease and, therefore, additional

information about the MS dynamics that were lacking in the other methods.

The permutation feature importance was also considered an interesting ap-

proach to find the most predictive feature. It was also often chosen as a good

resource to help in the analysis of the developed models. With several runs related
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to each feature, a limitation of this method was all the dispersed values of perfor-

mance loss. The performance loss not only depends on the model itself but also on

the permutation in each run. This makes it difficult to conclude which features and

interactions of variables are the most important in the predictions. The analysis

executed about feature interactions was a great asset, since it offered valuable data

that is missing from the other methods. Feature interactions are a frequent topic of

concern in these studies. They can provide essential links with the target that are

nonexistent in the respective features individually. Since a group can be significantly

more valuable than the sum of the members, the lack of information about feature

interactions can lead to false conclusions about the real impact of the variables in

the prognosis.

Some participants mentioned that the application of the Support Vector Ma-

chine (SVM) classifier might not be necessary, as the regression models did not

present a significant loss of performance. However, it was frequently stated that

that they trusted the SVM. The reason to chose the SVM models in detriment of

the linear regression is focused on the fact that the SVM models always presented

the highest performance in all the n-year models of all the studied problems by

Pinto et al. [81]. Since the SVM is linear, the complexity does not increase expo-

nentially in comparison with the linear regression. Still, even if not very significant,

the performance increase has high advantages in the real-world since it represents

that more patients have a correct prognosis.

Lastly, the PDPs had dividing opinions. While some interviewees stated their

information was very helpful, since it was not a quantity of importance or impact,

but visual data about the influence of features in the outcome, which complements

the other type of explanations, one stated that it might be too much information to

interpret.

6.2.3 Global improvements

The simplicity of the explanations is constantly put into consideration. Simpler

explanations are easier to understand by all, and therefore they are a more reliable

option to be presented in a clinical context. From more visual explanations to rules-

based descriptions, although sometimes simpler explanations are not as complete as

other options, if the robustness of the work is assured, they probably are sufficient

to guaranty safety and trust in a clinical environment.

Moreover, it is essential to consider the available time that each person has

to comprehend the different explanations. Generally, people have limited time.

Consequently, they are more inclined to straightforward and simple data. Therefore,
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the presentation of the information is a crucial component for the acceptance of the

developed work. To data scientists, the explanations should be the most technical

and detailed as possible to describe completely all the inherent logic associated

with the predictions. By doing so, it is assured that no risks are taken with the

application of this classification tool as a resource. Similar concerns exist in the

clinical environment, but this type of presentation would be overpowering. Clinicians

do not study ML in their field. Thus they do not have basic knowledge about all

the mechanisms used to create classification models. Therefore, the data should be

presented in a more practical manner, without unnecessary redundancy that can

confuse the information’s receptor.

Some aspects could be improved and further developed considering the opinions

of the interviewees. The project is missing explanations about all the limitations

of the prediction models. It would be beneficial to present all those issues and

discrepancies into one explanation to simplify its interpretation.

Additionally, more than to only claim if a sample is from class 1 or 0, it would

be interesting to provide a level of certainty about the predictions. A probability

of an observation belonging to a severe case of MS offers the right of uncertainty

to the models. A sample with 90% certainty to belong to a malignant course is

very different from having a probability of 55%. This data is very relevant to inter-

pret the prediction results. Another suggestion was to generate calibration curves.

Calibration curves are plots where the x-axis is the prediction probability, and the

y-axis are the actual values. These plots are very helpful to know how close the

classification models are to reality. It is important to understand if a model with

a good performance adequately represents the reality or if it is over-forecasting or

under-forecasting.

The idea to particularly present samples that do not have a conclusive prognosis

by the clinicians but are correctly classified by the ML models is very appealing.

Those are the cases where this type of tool is necessary. To help, especially, the

decision-making of these cases is the primary goal of studies similar to this. For

simple cases, the clinicians do not need the confirmation of other resources due to

the already confidence in the prognosis. However, the analysis of simple cases is also

fundamental, as those are the cases that can demonstrate if the models are reliable

and safe.

The problem about the selection of the explanation lies in the fact that the

methods are not fully comparable, since their approaches and results are distinct and

focused on different topics. Thus, this selection can only be executed considering the

qualitative evaluation acquired by the interviews and the opinion of other specialists.

88



6. Discussion

The validation by clinicians is critical, since, without it, it is impossible to achieve the

end goal, which is to apply this type of work in a medical context. It is fundamental

to adapt the information to clinicians and thoroughly analyse their input on the

matter.

6.3 Refined model

With the data collected and studied from the interviews, the path for this work

is evident. The validation from clinicians is crucial as the next step. However, the

developed work must be refined. The information presented to clinicians must be

straightforward and clear. A selection of the most suited explanations is necessary.

This selection of explanations was performed with in mind all the suggestions and

opinions of the interviewees, as there is no literature about which explainability

method is more suited to help prediction models in their decision-making.

It is fundamental to have two types of explanations, explanations that represent

the models’ global behaviour and explanations that show the reason for an individual

prediction. This complementary relationship provides information about different

issues that need to be addressed. Global explanations can offer information about

the global dynamic of the models, and possibly the dynamic of the disease. In

contrast, local explanations about an observation provide the reasons for a decision

specific to a patient. It can show new perspectives and reassurance in particular

predictions. Due to the heterogeneity of characteristics of the MS patients, local

explanations also show with clarity the differences in decisions between different

classifications in other samples, which is highly beneficial.

6.3.1 Global explanations

The predictive power provides general but essential information about the re-

lation between the data and the outcome. In addition, it shows the evolution of

the impact of the features and, therefore, a perspective that no other explanation

can offer. Although a simple approach, this analysis is essential, as it presents the

features that are constantly selected in feature selection. The selection is based on

the capacity of the variables to distinguish both classes. Thus, the characteristics

that have the highest values in the explanation are the ones with the highest power

to identify the different cases of MS.

To complement the information of the predictive power, the permutation feature

importance is very valuable. These explanations provide information about feature
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interactions in an apparent and intuitive manner. In addition to the methods’

adaptability to show information about combinations of more than two features,

the simplicity associated with the logic behind the importance definition is a great

advantage to this method.

Since general information and interactions between features are already covered,

the last selected global explanations are the PDPs. Although some interviewees con-

sidered that these explanations were excessive and that may bring difficulties, the

PDPs information is beneficial to understand the logic of the developed models.

Since the PDPs demonstrate the average influence of the features in the predictions,

it is possible to understand if their behaviour is identical to what is clinically ex-

pected or if there are anomalies that jeopardise the produced work. They are a very

valuable safety resource that provides significant trust to users and specialists.

For an easy comprehension of these explanations, the results of the different

methods would be combined and grouped to each feature, and created straightfor-

ward explanations to the detriment of a presentation of the different methods. It

would enable more ’fluid’ explanations that focus more on the results, not on the

technical aspects of the techniques.

6.3.2 Specific predictions explanations

To cover the necessity of explanations specific to individual prediction, the

Shapley values were the preferable choice. As these explanations have in mind every

type of relation between features and the predictions, and consider feature inter-

actions, they offer significant advantages in comparison with the other techniques.

The direct link between the features values and the classification provides a complete

and simple explanation about the impact of the different variables in the outcome,

delivering a clear cause for the prognosis of the analysed patient.

The examples shown in this method would be samples that, with initial data

from the first year, did not show signs of the actual course of the disease progression

(e.g. a patient appeared to present a severe course of the disease, however over the

years, the patient only had a mild disability), but were correctly classified by the

models.

The ideal scenario would be to have access to samples that clinicians incorrectly

predicted. Still, that information would only be possible to have if MS specialists

provided their predictions to this study. The most similar concept is the simplifi-

cation to assume that a patient with the Expanded disability status scale (EDSS)

higher than three in the second year of follow-up will continue to worsen and con-
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sequently belong to a severe case of MS. This criteria was used to compare the

different classifiers in the Figure 4.1 from the chapter 4, where it is defined as EDSS

control. The samples of the explanations represented in the Figures 6.1 and 6.2 were

selected with a similar definition. These patients present the average value of the

EDSS in the first year of follow-up equal to three, but are examples of benign cases.

One may assume that, with such a high EDSS value in the first year of follow up,

the tendency is that the condition of the patient will only worsen over time. This

may lead a clinician to believe that the patient has a severe case of MS. However

it might not be accurate, as represented by the examples of the Figures 6.1 and

6.2. In these examples, a positive Shapley value demonstrates that that value of

the feature promotes a benign course of the disease. In contrast, a negative Shapley

value means that the value of a feature influences the prognosis to a severe case of

MS.

Feature Observation

ScoreBowel avg 2y 0.000

ScoreCerebellar mode 1y 0.000

ScorePyramidal median 2y 1.000

EDSS mode 1y 3.500

ScoreMental avg 2y acc 0.600

ScorePyramidal mode 2y acc 1.000

ScoreAmbulation median 2y acc 0.000

ScorePyramidal mode 1y 1.000

EDSS avg 2y 2.750

EDSS mode 2y acc 2.500

Figure 6.1: Shapley values of the first example of a benign case that presented an
average EDSS equal to three on the first year of follow-up.

Feature Observation

ScoreBowel avg 2y 0.000

ScorePyramidal median 2y 1.000

EDSS avg 2y 1.500

ScoreMental avg 2y acc 0.714

EDSS mode 2y acc 1.500

EDSS mode 1y 2.000

ScorePyramidal mode 2y acc 1.000

ScoreAmbulation median 2y acc 0.000

ScorePyramidal mode 1y 2.000

ScoreCerebellar mode 1y 1.000

Figure 6.2: Shapley values of the second example of a benign case that presented
an average EDSS equal to three on the first year of follow-up..

The Shapley values of these examples show that while the EDSS values in

the Figure 6.1 promote for a benign course, in the Figure 6.2 they have a negative
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influence on the prediction. With the analysis of those features, it is possible to verify

that the values of the EDSS are significantly higher in Figure 6.1 than of the sample

in the Figure 6.2. This shows that low values of the EDSS promote a mild disability

in the long term while high values promote a malignant course, as expected. These

observations show that the EDSS may not be the most relevant predictor in some

cases, which demonstrates the complexity of this disease and consequent challenge

of prognosis associated with such heterogeneous characteristics.

6.3.3 Work development

It is important to highlight the potential of the counterfactual explanations

as they are so intuitive, simple, and provide a new perspective to the analysis of

the predictions. However, these explanations would only be significantly beneficial

when used with controllable variables, since they explain what needs to change to

alter the outcome. Apart from the patients’ medication, data that can be externally

controlled is not available in the database of this project. Therefore, although it is a

good idea that most certainly would increase the value of the developed work, this

is not currently executable.

Lastly, the addition of information about the models’ certainty in a prediction

would help understand the level of confidence that a model has in a patient’s prog-

nosis. This provides insights to the clinicians that allow them to better understand

the models, adjust the prediction results and explanations offered more adequately,

and explain concretely to patients the challenges associated with their prognosis.

A model with these four types of explanations would not only show general

feature insights, but also information about feature interactions and a comparison

between their behavior in the models and what is clinically observed. It also cov-

ers local explanations, as the norm represents not all samples, and it is imperative

to understand the different characteristics of the analysed samples. This analysis

would offer a broad study of the developed work without unnecessary redundancy.

However, this is not the final model. This work will possibly be refined and improved

with the validation of the clinicians, as it is an approach based on communication

between both fields, MS specialists and data scientists. This communication is es-

sential not only in this problem but in other healthcare problems that are associated

with ML models.
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Conclusion

The overall goal of this study was to understand if the developed work by

Pinto et al. [81] has the ability to be applied in a clinical environment, and which

explanations are more suited to achieve that objective.

Although it is not possible to confidently state that the models are ready to be

applied in practice yet, the accomplished work in this master thesis provided the

first step to achieve it.

Several explainability methods were implemented that showed various charac-

teristics about the logic of the prediction framework, as well as the causes of indi-

vidual predictions. This analysis provided a better comprehension of the decision-

making of the models. The feature EDSS mode 2y acc showed consistently relevance

through most explanations as well as some scores of the FS, namely, the pyramidal,

cerebellar, and mental systems.

The qualitative evaluation from the data scientists demonstrated that the ex-

planations that support the prediction models need to be simple, straightforward,

and concise to clinicians, but more technical and detailed to validate the results from

an algorithmic perspective. This evaluation was essential to understand which im-

provements are necessary to perform before the presentation of the developed work

to Multiple Sclerosis (MS) specialists. The use of the Grounded Theory (GT) to

analyse the interviews was extremely important to find and organize all the informa-

tion without preconceived assumptions. This allowed to discover the main concerns

and ideas about the project and consequently a refined model that will be validated

in the future. The selected explanations for such model were the predictive power,

by Pinto et al. [81], the permutation feature importance, and the partial dependence

plots (PDPs) to explain the global behavior of the framework and data relations,

and the Shapley values to explain individual predictions.

Due to the low number of patients considered in this study and consequent lack

of a diverse and representative data set, it is not possible to affirm that this work

completely covers the different cases of MS, which is a big limitation.
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Additionally, definitive conclusions can not be made without the validation from

clinicians, since it is only possible to know if the explanations actually represent

adequately the reality through the MS specialists input.

The future work will focus on that validation, to improve and develop the work,

until the models are safe and reliable to help the prognosis of MS. It would also be

interesting to add a measure of the models’ confidence of each classification. The

comparison of these results with different data sets may also be necessary to validate

the findings of this study.
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O. Soto, U. D. Carro, G. Comi, L. Leocani, and P. Villoslada. Computational

classifiers for predicting the short-term course of Multiple sclerosis. BMC

Neurology, 11, 2011.

[6] M. Bekkar, H. K. Djemaa, and T. A. Alitouche. Evaluation Measures for

Models Assessment over Imbalanced Data Sets. Journal of Information Engi-

neering and Applications, 3(10):27–38, 2013.

[7] V. Belle and I. Papantonis. Principles and practice of explainable machine

learning. arXiv preprint arXiv:2009.11698, 2020.

95



Bibliography

[8] R. Bergamaschi. Can we predict the evolution of an unpredictable disease like

multiple sclerosis? European Journal of Neurology, 20:995–996, 2013.

[9] L. Bloch, C. M. Friedrich, and D. Neuroimaging. Data analysis with Shapley

values for automatic subject selection in Alzheimer ’ s disease data sets using

interpretable machine learning. pages 1–32, 2018.
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