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ABSTRACT 

The simulation of nonlinear strain paths is important both for the design and 

development of tools for sheet metal forming processes, which can present very complex 

geometries, as well as for the prediction of failures during the process. Despite the evolution 

of computational methods, the prediction of ductile failure continues to be a challenge, 

especially in complex geometries. In this context, a benchmark was proposed within 

Numisheet 2020 conference, with the objective to evaluate the state of the art in the 

prediction of ductile fracture under nonlinear strain paths, for an advanced high strength steel 

(DP1180). 

Numerical models were built for the Marciniak and the Nakazima test, enabling 

the analysis of both linear and non-linear strain paths, as well as the strain localization in the 

specimens. Regarding the constitutive model, the Hill48 and the Barlat91 anisotropic yield 

criterion were adopted. The Swift hardening law parameters were calibrated as well as a 

combination with the Voce law, including the weighting parameter. The tests were 

performed for conditions close to uniaxial tension, plane strain and different biaxial stress 

ratios.  

In all tests performed, it was possible to predict the strain localization and the 

consequent drop in the forming force. The results from the monotonic strain paths tests 

highlight the importance of the yield criterion, which has a greater influence on the strain 

path predicted than the hardening law. This is more evident under conditions close to plane 

strain, which is the region were the yield criteria present higher differences in terms of the 

normal to the yield loci. Besides, the Barlat91 leads to strain paths closer to the experimental 

ones, when compared with the ones predicted by Hill48. Regarding the hardening law, the 

combined Swift and Voce always leads to a lower maximum punch force, which is attained 

also for a lower displacement. The same effects are valid for the bilinear strain paths. Finally, 

the information extracted on this work regarding the evolution of the stress triaxiality and 

the Lode parameter can be used in future works to calibrate uncoupled fracture models. 

 

Keywords Finite Element Method, Sheet Metal Forming, Plastic 
Anisotropy, Nonlinear strain paths, Material flow, DD3IMP. 
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RESUMO 

A simulação de trajectórias de deformação não linear é importante tanto para o 

projeto e desenvolvimento de ferramentas para processos de conformação de chapas 

metálicas, que podem apresentar uma geometria muito complexa, quanto para a previsão de 

fractura durante o processo. Apesar da evolução dos métodos computacionais, a previsão da 

fractura dúctil continua a ser um desafio, principalmente em geometrias complexas. Neste 

contexto, foi proposto um benchmark na conferência Numisheet 2020, com o objetivo de 

avaliar o estado da arte na previsão de fratura dúctil em trajectórias de deformação não linear, 

para um aço avançado de alta resistência (DP1180).  

Foram construídos modelos numéricos para os testes de Marciniak e Nakazima, 

de modo a permitir a análise de trajectórias de deformações lineares e não lineares, bem 

como da localização da deformação nos provetes. Em relação ao modelo constitutivo, foram 

adotados os critérios anisotrópicos de plasticidade de Hill48 e Barlat91. Foram calibrados os 

parâmetros da lei de encruamento de Swift, bem como de uma combinação com a lei de 

Voce, incluindo o parâmetro de ponderação. Os testes foram realizados para condições 

próxima de tensão uniaxial, deformação plana e diferentes razões de tensão biaxial. 

Em todos os ensaios realizados, foi possível prever a localização da deformação 

e a consequente queda da força de conformação. Os resultados dos testes para trajectórias de 

deformação monótonas destacam a importância do critério de plasticidade, que tem maior 

influência na trajectória de deformação prevista do que a lei de encruamento. Isso é mais 

evidente em condições próximas da deformação plana, que é a região onde os critérios de 

plasticidade apresentam maiores diferenças em termos da normal à superfície de 

plasticidade. Além disso, o critério de Barlat91 conduz a trajectórias de deformações mais 

próximas das experimentais, quando comparadas com as previstas por Hill48. Em relação à 

lei de encruamento, a combinação de Swift e Voce apresenta sempre uma força de punção 

máxima inferior, que é atingida também para um deslocamento menor. Os mesmos efeitos 

são válidos para trajectórias de deformação bilinear. Por fim, as informações extraídas neste 

trabalho a respeito da evolução da triaxialidade de tensões e do parâmetro de Lode podem 

ser utilizadas em trabalhos futuros para calibrar modelos não-acoplados de previsão de 

fratura dúctil. 
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1. INTRODUCTION 

1.1. Motivation 

Numerical methods, such as the finite element method, have evolved over time, 

enabling the representation of increasingly complex physical phenomena, with more accurate 

results. The simulations processing time has also undergone developments and various 

techniques have been introduced to optimize the calculations and reduce the computational 

cost, in addition to the evolution of the processing power of computers. The future of 

engineering has been directed towards the increasing use of computational methods, due to 

all the benefits they provide. Today these methods are used in almost all industrial sectors in 

different engineering applications, from structural simulations, to fluid dynamics, and 

electromagnetic simulations, in addition to simulations using coupled multiphysics, as shown 

in the example in Figure 1.1 [1].  

 

Figure 1.1. (a) Deformation of a stent due to the blood flow as predicted by multiphysics. (b) Fluid–structure 
interaction tracks displacement of the heart valve [1]. 

According to Banabic, “The concept of virtual manufacturing has been developed in 

order to increase the industrial performances, being one of the most efficient ways of reducing 

the manufacturing times and improving the quality of the products” [2]. The finite element 

method has been one of the most used numerical approaches for performing simulations of 

manufacturing processes, due to its great versatility of solutions and the great accuracy of its 

results, leading to a substantial reduction in design time and cost reduction in prototyping tests 
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[2]. In this context, many experimental and numerical methodologies have been proposed for 

the characterization and prediction of failure occurrence during sheet metal forming processes 

and crash tests of automotive components. Nevertheless, the inconsistency in the results 

obtained with these models reflects a general lack of maturity in the field of failure modelling.  

1.2. Objective 

One of the challenges in industry is the reliable prediction of failure under complex 

deformation histories, since it poses questions not only to the model selection but also to its 

calibration. In this context, the Numisheet 2020 conference proposed a benchmark with the 

objective to evaluate the state of the art in the prediction of fracture, during deformation of 

advanced high strength steel and aluminum alloys, under nonlinear strain paths. Localized 

necking plays an important role in fracture events, being also an unwanted effect during the 

forming process, as highlighted in Figure 1.2, which shows an example of localized thinning 

prediction in a simulation of an automotive component. Therefore, participants were also 

asked to predict if localized necking occurs in each test [3]. 

 

Figure 1.2. Thinning distribution on an automotive inner hood [2]. 

The present work aims to contribute to the objective of this benchmark. The focus will 

be given for one of the materials, the DP1180 steel. Since necking is mainly controlled by the 

plastic behavior of the material, particular focus was given to the selection of models that best 

describe this behavior. Moreover, the numerical models for some linear and bilinear strain 
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paths were built and analyzed, allowing to evaluate the ability to forecast localized necking, 

without using damage models. The study of the monotonic trajectories was performed to 

improve the understanding about the differences observed between the different plasticity 

models selected in the prediction of the strain paths and the strain localization. 

1.3. Dissertation outline 

The dissertation structure was organized into six chapters and an appendix. Chapter 

2 contains a brief theoretical presentation of each experimental result supplied by the 

Numisheet 2020 benchmark 2 committee and used in the constitutive models definition. 

Chapter 3 describes the procedure adopted for the calibration of the work hardening laws 

and the plasticity criteria.  

In chapter 4, details of the numerical model are provided, as well as a description of 

the discretization process of the specimens' geometries and the tools used in each simulation. 

In chapter 5, the numerical results are presented and discussed, including their comparison 

with the experimental results provided by the Numisheet 2020 benchmark 2 committee.  

Chapter 6 presents a brief summary of the conclusions obtained from the work 

carried out, as well as some recommendations for future work. 
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2. ANALYSIS OF THE EXPERIMENTAL DATA 

2.1. Tests for characterizing the elastoplastic behavior 

2.1.1. Uniaxial Tensile/Compression Test 

The uniaxial tensile test is one of the most used for characterizing the mechanical 

properties of materials, including metallic sheets. It is a standardized test that allows 

obtaining the engineering or real stress-strain curve of the material, as shown in Figure 2.1 

[4]. This test enables determining properties such as the Young's modulus, the yield stress 

and the yield strength [5]. Moreover, thin metallic sheets are generally anisotropic materials, 

since they are produced using the rolling process. In order to evaluate their anisotropic 

behavior, besides the yield stress it is also usual to evaluate the r-value, also known as the 

Lankford anisotropy coefficient. This parameter is defined as: 

 𝑟 =
휀w

휀t
, (1) 

where 휀w is the strain in the width direction and 휀𝑡 is the strain along the thickness direction, 

both perpendicular to the loading (length) direction. For metallic sheets, uniaxial tensile tests 

are commonly performed with samples taken at different angles from the rolling direction 

(RD), as shown in Figure 2.2 (a) [6], allowing to evaluate the in-plane distribution of the 

yield stress and of the r-value. These results are used to characterize the orthotropic behavior 

and, accordingly, to calibrate the anisotropic yield criterion parameters. Therefore, the 

benchmark committee supplied results for uniaxial tensile tests, performed for every 15 

degrees to the RD, from 0 to 90 degrees, repeating the test three times for each angle. The 

data was acquired up to the maximum load point, using a virtual strain gauge of 50 mm from 

the centerline of the specimen, but it was also recorded with Digital Image Correlation (DIC) 

technology [7]. 

The traditional application of the virtual strain gauge is only able to characterize the 

material behavior while the onset of necking does not occur. Indeed, it can lead to errors in 

the stress evaluation once a triaxial stress state is installed. Therefore, it can only be used to 

determine the stress-strain curve until the maximum load. However, this means that data can 

only be extracted for strain values much lower than the ones commonly attained in forming 

processes. On the other hand, the use of DIC during the test enables a more aggressive 
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approach to measure deformations after the onset of necking, as proposed by Min et al. [8] 

and others. In this work, the DIC technology was applied to 201 points positioned along the 

specimen's centerline; each point positioned at 0.25 mm from each other, and treated 

assuming an average gauge length of 0.5 mm. This allows the identification of the points 

where the strain localization occurs, as well as the evaluation of the stress-strain evolution 

for those specific points. The data obtained using this second approach, combined with the 

one from the traditional 50 mm strain gauge can be used to determine the material hardening 

behavior [8]. Moreover, the DIC data concerning the deformations after necking, until the 

material fractures, is used to determine the fracture strain for the uniaxial stress state [9]. 

 

Figure 2.1. Schematic representation of the stress-strain curve obtained from the tensile test: (a) 
engineering stress-strain curve ; (b) beginning of the stress-strain diagram, comparing the real and the 

engineering stress-strain curves [5]. 

Besides the isotropic hardening behavior, highlighted in Figure 2.1, metallic 

materials can also show sensitivity to strain paths changes. Therefore, uniaxial tension 

followed by compression and tension were also performed, for specimens oriented only in 

the RD. The specimen used in these tests was a sample of thin rectangular section, as shown 

in the Figure 2.3. The average thickness of the specimens was 1.055 mm [7]. To avoid 

buckling effects of the thin sheet, an anti-buckling device that follows the ASTM E9 standard 

was used, as shown in Figure 2.2 (b). To reduce the friction between the anti-buckling device 

and the plunger body, PTFE adhesives were glued to the contact regions, as highlighted also 

in Figure 2.2 (b). These tests with strain path reversal were performed using a sequence of 

6 steps: (i) load control, to adjust the machine and leave it with zero load; (ii) displacement 

control, to apply a fixed displacement that produces a nominal strain of about 75 % of the 
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maximum uniform strain; (iii) holding for 10 s; (iv) displacement control, to apply a fixed 

inverse displacement until the axial strain is close to zero; (v) holding for 10 s; (v) 

displacement control, until the tension failure of the material. The test parameters were 

defined according to the ASTM E8 and E9 standard [10][4][11]. 

 
Figure 2.2. Tensile specimen with:(a)(left) the indication of the lateral strains, εw/εt, during the extension; 

(right) the indication of the cut direction from a sheet, according to the RD [6]; (b) Anti-buckling fixture used 
in the uniaxial tension-compression-tension. 

 

Figure 2.3. Specimen used for the tension-compression and uniaxial tensile tests [7]. 

The tension/compression test seeks to characterize the material behavior under 

reverse strain-paths, allowing to define the parameters to describe the isotropic and 

kinematic hardening behavior. The latter is typically described as the translation of the yield 

surface with the plastic deformation, associated to a change in the flow stress due to the 

strain reversal, as shown in Figure 2.4 (a) [2]. The stress-strain curves obtained for the 

material under analysis are shown in Figure 2.4 (b), highlighting the fact that the hardening 

behavior is quite sensible to the inversion of the strain path. However, since the region of 

interest for this study, i.e. the central point of the metal sheet, is not submitted to strain paths 

reversal, this effect will not be taken into account in this work. 
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Figure 2.4. (a) Isotropic hardening – homothetic dilatation of the yield surface and kinematic hardening—
translation of the yield surface with the same shape and size [2]. (b) Engineering stress-strain diagram for 

DP1180 in the low-strain region [10]. 

2.1.2. Hydraulic Bulge Test 

The hydraulic bulge test is used to determine the strain hardening properties of sheet 

materials in biaxial tension stress state. Usually, in sheet metal forming processes the 

attained strains are larger than the uniform strain obtained under the uniaxial tension test 

conditions. This makes the bulge test a better option for the characterization of the hardening 

properties of metal sheets at large strains [12]. The test is performed by restraining the 

boundary edges of the metal sheet with a drawbead, to prevent the occurrence of radial 

displacements. Applying hydraulic pressure to the metal blank, the geometry changes to a 

hemispherical shape. Since there is no use of a punch, the influence of contact with friction 

is reduced to a minimum. Figure 2.5 shows a schematic representation of the test layout 

[13].   

 
Figure 2.5. Schematic representation of the bulge test, with the identification of the tools (adapted from 

[13]). 
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The data acquired in both the uniaxial tensile tests and the bulge tests was analyzed 

using the software CalSysSmart™, developed by Yoon [3]. It calculates an average of the 

values that follow a non-discrepant behavior, to determine mechanical properties in a more 

representative way, i.e. it identifies and excludes outliers. The software automatically adjusts 

the test data determining the elastic and plastic properties of the material. Along with the 

Young modulus data, the program also determines the parameters of some hardening laws, 

such as Swift, Voce, Hockett-Sherby, modified Voce, modified Hockett-Sherby. Moreover, 

it also identifies the parameters of some yield criteria, such as the Hill48, Hill90, Barlat91, 

Barlat2000 and Barlat2004 [7].  

2.2. Tests for characterizing the fracture behavior 

The approaches for sheet metal forming processes have to consider the material's 

ability to undergo plastic deformation to the desired shape without the appearance of defects. 

Necking is a limiting factor not only for the appearance of fracture, but also for other 

undesirable effects in the sheet metal forming process. In fact, it represents the beginning of 

the structural instability of the material. Usually, the occurrence of necking and/or fracture 

is evaluated based on specific experimental tests, which enable the determination of the 

forming limit diagram (FLD). This was originally proposed by Keeler and Goodwin and is 

used to evaluate the material formability, as shown in Figure 2.6 (a). The diagram provides 

the major (휀1) and minor (휀2) strain at the onset of necking. Currently, different diagrams 

are used depending on the type of application desired, which can consider only the onset of 

necking or also fracture, as shown in Figure 2.6 (b) [5]. 

The data supplied by the benchmark committee for the calibration of fracture models, 

under nearly monotonic strain paths, was acquired from the following seven tests: (i) Simple 

shear; (ii) Uniaxial Tension: JIS Tensile Test, Hole Tension Test, Conical Hole Expansion 

Test; (iii) Plane Strain Tension: V-Bend Test and Plane Strain Notch Test; (iv) Biaxial 

Stretching: Hemispherical Punch test with a 5 mm or 10 mm Radius [3]. These tests try to 

cover a wide range of stress states, enabling the proper calibration of fracture models. In the 

context of the present work, they are relevant because they allow the study of different 

monotonic strain paths. Nevertheless, several tests were performed under uniaxial tension 

conditions, meaning that more information is available for this specific path. In the following 

section, some details concerning the tests under uniaxial tension are given, to highlight the 
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difficulties inherent to the evaluation of the fracture strain, even under nearly linear strain 

path conditions. 

 
Figure 2.6. Diagrams for predict the occurrence of necking and/or fracture: (a) FLD concept as defined by 

Keeler and Goodwin; (b) FLD for necking and for fracture [5]. 

2.2.1. Fracture Characterization in Uniaxial Tension 

One of the reasons for using different test methodologies to determine the strain at 

fracture is that, in uniaxial tests, the strain values may be slightly different depending on the 

strategy adopted for their evaluation. The use of DIC enables the measurement of strains in 

the specimen surface, but it may not correctly capture the large gradient in the strain field 

that occurs in the material, due to the instability caused by the necking, which occurs before 

fracture. Therefore, the measured value may be below the actual fracture strain value. 

Accordingly, post-Mortem thickness measurement can also be used to assist in the 

evaluation of the fracture strain, trying to approximate better the actual value. In this 

procedure, the thickness of the specimen is measured near the fracture site using optical 

microscopy. Using the principle that the behavior of the material follows plastic 

incompressibility, the principal strains in the sheet metal plane can be determined from the 

thickness strain at the fracture location. However, since the other two principal strains are 

unknown, it is necessary to assume that the strain path (ratio between the in-plane principal 

strains) is also known. This is commonly evaluated based on the average strain path within 

the neck [9].  



 

 

  ANALYSIS OF THE EXPERIMENTAL DATA 

 

 

  11 

 

2.2.2. Uniaxial Tension Test according to the Japanese Industrial Standards 

All tests were performed at a cross-head velocity of 0.05 mm/s and at least three 

repetitions were performed per orientation. Figure 2.7 shows the geometry of the specimen 

used in the tests [9]. In the JIS Uniaxial Tension Test, the major strain presents a uniform 

distribution until the onset of necking, as shown in Figure 2.8 (a). The plastic instability will 

occur on the surface of the specimen in a strain localization band that extends along the width 

of the gauge region. Necking can occur at any point along the length of the test piece and the 

localization band will form an angle in relation to the principal stress generated in the test 

piece, as shown in Figure 2.8 (b). The virtual strain gauge, 50 mm long and 25 mm wide, is 

also displayed in Figure 2.8 (a). For the local analysis of the strains along the necking region, 

the aggressive approach was also applied, considering an average gauge length of 0.2 mm 

for the analysis. After the fracture, the post-mortem thickness measurement procedure was 

applied using an optical microscopy, as shown in the Figure 2.8 (c) [9].   

 

Figure 2.7.  Uniaxial tension specimen geometry. All dimensions are in millimeters [9]. 

The DIC analysis enables the definition of the strain path, until the last point before 

fracture. The post-mortem thickness measurement allows defining the thickness strain, 휀𝑡. 

The assumption of volume conservation enables the definition of the relation between the 

major and minor strain: 휀1 + 휀2 = − 휀𝑡. Therefore, the fracture strain can be estimated using 

one of two methodologies for correction, as shown in the Figure 2.9 [9]. Method I was 

proposed by Gorji et al. [14], based on the principle that all deformations, between the last 

measurement by DIC images and fracture, occur under plane strain condition. Method II is 

based on the extrapolation of the DIC strain path. Although the two methodologies provide 

the same final thickness strain, the strains paths and stress states are different [9]. The 

analysis of these methods also highlights the fact that the change of the strain path due to the 

onset of necking is acknowledge by many researchers. 
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Figure 2.8. JIS uniaxial tension test: (a) major strain distribution obtained by DIC and the box inspector tool 
at the Ultimate Tensile Strength; (b) Strain distribution one image prior to fracture; (c) Thickness at the 

minimum cross-section in the  specimen [9]. 

 

Figure 2.9. Example of a re-construction of the strain path to failure based upon the post-mortem thickness 
strain and the DIC measured strain path in a JIS tensile test [9]. 

2.2.3. Hole Tension Test 

The specimens used in this test were manufactured by CNC machining with a central 

hole of 5 mm, as shown in the Figure 2.10 (a). The other dimensions of the specimen were 

the same as those defined for the JIS tensile test. For DP1180 steel, the specimens were 

manufactured with the length aligned with the transversal direction to the rolling (TD). The 

tests were performed with displacement control with a crosshead speed of 0.005 mm/s. The 

hole in the specimen generates a stress concentration at the edges of the hole, as shown in 
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the Figure 2.10 (b). Previous works shown that the stress state at the free edges correspond 

to uniaxial [15], [16]. Therefore, fracture occurs in the plane perpendicular to the tensile 

direction. Although the fracture is ideally formed at the edge of the hole, it can occur in a 

short distance from the edge because of imperfections in the material and defects generated 

in the manufacturing process. Thus, post-mortem thickness was measured at two locations: 

at the edge and at the point where the greatest reduction in cross section occurs, as shown in 

the Figure 2.11 [9].  

 

Figure 2.10. Hole tension test: (a) specimen geometry; (b) Zoomed-in view of the major strain distribution 
[9]. 

 

Figure 2.11. Cross-section of a DP1180 hole tension specimen showing the thickness: (a) at the hole edge; 
(b) maximum thinning location behind the edge  [9]. 

2.2.4. Conical Hole Expansion Test 

According to Pathak et al. [17]–[19], the Conical hole expansion test allows the 

characterization of fracture in uniaxial tension, since this stress state occurs at the free edge 

of the expanding circumferential hole. The occurrence of fracture behind the edge of the hole 

is prevented by the conical shape of the punch, phenomenon that occurs in hole expansion 
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tests performed with cylindrical and flat punches. In addition, the flat punch also changes 

the results, providing smaller strains due to the failure generated behind the edge, which is 

in plane strain mode. Figure 2.12 (a) shows the geometry and dimensions of the metallic 

sheet used in the test while the tools are shown in Figure 2.12 (b). The test was performed 

on a double-acting hydraulic MTS formability press with an annular die with an external 

diameter of 225 mm and an internal diameter of 30 mm, in addition to a 12 mm inlet radius. 

A constant clamping force of 640 kN was used to prevent the metal sheet from sliding. At 

least four tests were performed. In the results, there was a tendency for cracks to form 

approximately in line with the rolling direction [9]. 

 

Figure 2.12. Conical hole expansion test: (a) geometry of the specimen; (b) Schematic of the toolset. All 
dimensions are in millimeters. The conical punch head has an angle of 60 degrees with a truncated tip with 

a diameter of 3 mm and a base diameter of 20 mm [9]. 

This test presents difficulties in performing accurate strain measurements using DIC 

technology, since it is difficult to measure the thickness of the edge from the images. As an 

alternative, the DIC system was used to measure the internal and external diameters of the 

hole, until the moment before fracture. The true circumferential tensile strain at fracture is 

defined as: 

 휀1
f = ln(

𝑑f
out

𝑑0
) , (2) 

where 𝑑0 is the initial diameter and 𝑑f
out is the external diameter (at fracture). From the value 

determined with equation (2) it is possible to estimate the minor strain at the outer edge, 

which can be defined as: 
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 휀2
f = −(

𝑅𝜃+90

𝑅𝜃+90 + 1
) 휀1

f  , (3) 

where 𝑅𝜃+90 is the r-value at 90 degrees to the cracking orientation [9]. This is related with 

the fact that the major strain occurs along the circumferential direction. 

In order to locate any necking at the fracture location, two methods were used for 

post-mortem thickness measurements. The first assumes that the edge is under uniaxial 

tension conditions and the local thickness strain is used to determine the major and minor 

strains. The second combines circumferential and thickness strains into an equivalent strain. 

As in the other tests, post-mortem thickness measurements were also obtained by optical 

microscopy, as shown in the Figure 2.13 [9].  

 

Figure 2.13. Fracture location in the hole expansion test and thickness measurement [8]. 

2.2.5. Fracture Characterization in Biaxial Tension 

The determination of the FLD is standardized in the international standard 12004-2 

[2] by two different experimental methods, the Marciniak- and the Nakazima-test. The use 

of these type of tests enables the description of monotonic strain paths from nearly 

equibiaxial tension up to uniaxial tension, under the same test conditions. This section 

describes both methods, following the approaches adopted by the benchmark committee. 

2.2.5.1. Nakazima Test 

The Nakazima test uses a spherical punch and a circular die, as shown in Figure 2.14 

(a) [2]. In order to generate different strain paths, the specimen geometry is modified, from 

a perfect circle into a specimen with a rectangular shape in the central part, as schematically 

shown in Figure 2.14 (b). The change in width of the specimen, as shown in Figure 2.15, 
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enables to cover the major-minor strain space from uniaxial tension to nearly equibiaxial. 

Nevertheless, it is important to mention that it is known that the results obtained are sensitive 

to the lubrication conditions, as a result of the contact between the punch and the blank [20]. 

In this context, another test was proposed: Marciniak test, which will be described latter. 

Nevertheless, the Nakazima test uses a simpler geometry than the one adopted in the 

Marciniak. Moreover, the Nakazima test can also be performed with a miniaturized set of 

tools, enabling the use of smaller samples. This was the approach followed in this 

benchmark, resorting to a punch with a radius of 5 mm, to perform only tests under biaxial 

conditions [21]. 

 
Figure 2.14. Nakazima test: (a) Schematic of the tool set  ( Adapted from [22]); (b) Shape of the specimens 

[2]. 

 
Figure 2.15. Set of specimens used in the Nakazima test for a complete FLD [2]. 

2.2.5.2. Marciniak Test 

This test was proposed by Marciniak [23] and it is performed using a flat punch, 

instead of the spherical one used in the Nakazima test, as shown in the Figure 2.16. 
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Moreover, in order to minimize the influence of lubrication conditions, an intermediate 

blank, with a circular hole, is placed between the punch and the metallic specimen. This way 

the tearing in the material located in the planar bottom of the cup is guaranteed. In order to 

obtain different strain paths, punches with different cross sections can be used, such as 

circular, elliptical or rectangular. Nevertheless,  the most used solution is to vary the width 

of the specimen, as schematically shown in the Figure 2.14 (b), obtaining all regions of the 

FLD [2]. In the context of the current work, this test was selected for imposing the pre-strain 

because it is relatively easy to extract specimens for the following test, from the flat central 

region of the metallic pre-deform blanks. 

 
Figure 2.16. Schematic layout of the device used in the Marciniak test [21]. 

2.2.6. Fracture Characterization in nonlinear strain paths 

As mentioned before, the aim of this benchmark is to evaluate the fracture model’s 

ability to predict strain localization and fracture occurrence under nonlinear strain-paths. In 

this context, several tests were carried out to characterize the fracture strain under 

monotonous deformation trajectories, enabling the fracture models calibration. Moreover, 

experimental tests were performed considering a strain-path change. According to the 

preliminary instructions, the first strain path was always performed using the Marciniak's 

test, using different specimen geometries, to attain a pre-tension. The different trajectories 

considered are presented in Table 2.1, as well as the tests used to perform the first and second 

strain-path, until fracture [3]. This approach was adopted to guarantee the required specimen 

size, for instance, to perform the Nakazima with a miniaturized set of tools. 
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Table 2.1. Adapted table from the data provided by Numisheet 2020 benchmark 2 committee with the 
stages for nonlinear tests. [3]. 

Pre-strain Second stage deformation to fracture 

Uniaxial (TD) * 

Equibiaxial using mini-Nakazima tool set Plane strain in a 5.5 in specimen (TD) ** 

Biaxial in a 6.5 in specimen (TD) ** 

* Using uniaxial tensile test on a wide blank (250x70 mm) 

** Using Marciniak tooling 
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3. CONSTITUTIVE MODELS 

The constitutive models used in the numerical simulation of sheet metal forming 

processes consist basically of the laws that enable the description of the elastic, the plastic 

and the damage behavior. The description of damage can be performed either using a 

coupled or an uncoupled approach. In the first, the internal variable(s) used to represent 

damage affect the material elastoplastic behavior. In the uncoupled approach, the damage 

has no effect on the material behavior and, consequently, these types of models are usually 

named as fracture criterion. For metallic sheets, it is more or less consensual that the 

elastoplastic model controls the material behavior until the onset of necking. Therefore, the 

current study was performed without taking into account the damage behavior. For metallic 

sheets, the elastic behavior is assumed as isotropic. The Hooke’s law is adopted, which 

requires de definition of the Young’s modulus, that for DP1180 steel is 𝐸 = 202822 𝑀𝑃𝑎, 

and of the Poisson coefficient, 𝜐 = 0.292. The plastic behavior is defined by a flow rule, a 

hardening law and a yield criterion [24]. In the current study, an associated flow rule is 

adopted, meaning that the yield criterion has the dual role of plastic potential. The following 

sections present the details concerning the hardening laws and yield criteria considered in 

this work.  

3.1. Hardening laws 

The benchmark committee suggested the use of a hardening law that adds two well-

known laws: Swift and Hockett-Sherby. The Swift's law is described as: 

 𝑌 = 𝐾(휀0 + 휀p̅)
𝑛
 , (4) 

where 𝑌 is the flow stress and 휀p̅ is the equivalent plastic strain. 휀0, 𝐾 and 𝑛 are material 

parameters, with the latter being commonly referred as the strain-hardening coefficients [25]. 

The initial yield stress is defined as 𝜎0 = 𝐾(휀0)
𝑛 . The Hockett-Sherby hardening law 

corresponds to: 

𝑌 = 𝐴𝐻 − 𝐵𝐻𝑒(−𝐶𝐻�̅�p
𝑏𝐻) , 

(5) 

where 𝐴𝐻, 𝐵𝐻, 𝐶𝐻 and 𝑏𝐻 are material parameters [3][26], such that the initial yield stress 

𝜎0 = 𝐴𝐻 − 𝐵𝐻 . The material parameters for the combination of these laws were determined 

by benchmark committee, based on the uniaxial tensile test results (all directions) and on the 
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results of the hydraulic bulge tests. Figure 3.1 (a) shows the comparison between the 

experimental result and each individual law, as well as their sum, labelled as Swift+Hockett-

Sherby. All series are labelled with BM to highlight that they correspond to the identification 

supplied by the benchmark committee. The combined law allows to describe the hardening 

behavior, but it is clear the discrepancy for low values of equivalent plastic strain. 

Unfortunately, the direct sum of these two laws is not implemented in DD3IMP. The option 

available corresponds to the weighted combination of the Swift and Voce law (S_V), where 

the latter is defined as: 

𝑌 = 𝐴 − 𝐵𝑒(−𝐶∙�̅�p), 
(6) 

where 𝐴, 𝐵 and 𝐶 are material parameters [3][26], such that the initial yield stress 𝜎0 = 𝐴 −

𝐵. The weighted combination of these two laws is defined as follows: 

𝑌 = 𝛼[𝐾(휀0 + 휀p̅)
𝑛
] + (1 − 𝛼)[𝐴 − 𝐵𝑒(−𝐶∙�̅�p)], 

(7) 

where 𝛼 is the weighting parameter.  

 
Figure 3.1. Comparison between experimental and numerical stress-strain: (a) Experimental data obtained 
from the uniaxial tensile test at RD and the numerical results obtained using the Benchmark parameters of 

Swift, Hockett-Sherby and the combined Swift with Hockett-Sherby law; (b) Experimental data from uniaxial 
test, bulge test and the combined curve using the uniaxial test results for the first part  until 0.063 of 

equivalent plastic strain and the bulge test for the rest of the curve. 

Since it was not possible to use the law suggested by the benchmark committee, it 

was decided to perform the identification of the parameters of the isotropic hardening laws 

available in DD3IMP, using the experimental results of the uniaxial tensile test at the RD, 

as well as from the bulge tests [3]. By adding the information from the bulge test, it is 

expected to improve the description of the hardening behavior, namely for a wider strain 

range, since the tensile specimens attain the onset of necking for very small strain values, as 

shown in the Figure 3.1 (a).  
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The benchmark committee supplied three results for the uniaxial tensile test, at RD, 

as well as for the bulge test. The first step that had to be performed was to convert the true 

stress- true strain curves into true stress- equivalent plastic strain ones, assuming the von 

Mises yield criterion. This also involves the evaluation of the initial yield stress, i.e. the 

identification of the strain value corresponding to the transition between the linear elastic 

regime and the plastic one. To estimate the elastic limit, a parameter d𝐸 was defined, 

corresponding to the value of the Young modulus for every 10 experimental points. An 

average d𝐸 value was calculated in the central region of the linear elastic part. It was 

considered that the elastic regime ended when the d𝐸 value is less than 10% of the average 

value. This strain value was assumed as the elastic limit and a correction was made in the 

following points, in order to assure the proper representation of the equivalent plastic strain. 

This procedure was applied to both the uniaxial test results and the ones from the bulge test. 

Figure 3.1 (b) exemplifies the true stress- equivalent plastic strain curves obtained following 

this procedure, for the uniaxial tensile test and the bulge test. Note that in this case, the 

extension of the hardening curve with the bulge test results does not requires any correction. 

Thus, the first points of the plastic strain region of the bulge test were replaced by the points 

of the plastic strain region of the uniaxial test. These curves were the ones used as input data 

for the hardening parameters identification procedure adopted, which will be described in 

the following sections [27]. 

3.1.1. Identification of the Swift law parameters 

The Swift hardening law (see equation (4)) can be linearized as follows: 

 ln(𝑌) = ln(𝐾) + 𝑛 ∙ ln(휀p̅) , (8) 

This allows applying the Least Square Method to determine the coefficients of the 

polynomial function of degree one, 𝑦 = 𝑎0 + 𝑎1𝑥, which minimizes the difference to all 

experimental points, using for instance Excel. Figure 3.2 illustrates this procedure, 

considering only the results from the uniaxial tensile test, leading to the following parameters 

for Swift's law: 𝑛 = 𝑎1 and 𝐾 = exp(𝑎0). The same procedure was repeated for the 

experimental data of the bulge test and the results are listed in the Table 3.1. 
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Figure 3.2. Linear regression of the set of points ln(σ) x ln(εp) obtained from the uniaxial test 1. 

3.1.2. Identification of the Voce parameters 

The identification of the parameters for the Voce hardening law was more 

challenging because the equation is more difficult to manipulate, since it is not possible to 

linearize. Thus, the identification was performed with the aid of the software Maple, through 

the nonlinear curve fitting option [28]. In a general sense, the objective consists of adjusting 

the parameters of the hardening law to best fit the experimental data set. The data set consists 

of 𝑛 points (data pairs) (휀𝑖
p
, 𝜎𝑖  ), 𝑖 =  1, … , 𝑛, where 휀𝑖

p
 is the independent variable and 𝜎𝑖 is 

the dependent variable, which has to be fitted. The model function has the form 𝜎(휀p, 𝛃) 

were 𝛃 is the vector containing the material parameters. The fit of a model to a data point is 

measured by its residual, defined as the difference between the actual value of the dependent 

variable and the value predicted by the model: 

 𝑟𝑖 = 𝜎𝑖 − 𝜎(휀𝑖
p
, 𝛃). (9) 

The least-squares method finds the optimal parameter values by minimizing the sum of the 

squared residuals,  

 𝑆𝑖 = ∑(𝑟𝑖)
2

𝑛

𝑖=1

. (10) 

A standard measure of the goodness of fit for mathematical models fitted to experimental 

data by means of least squares regression is the coefficient of determination, which for 

nonlinear models should be defined as: 

 𝑅2 = 1 −
∑ (𝑟𝑖)

2𝑛
𝑖=1

∑ (𝜎𝑖 − 𝜎𝑚)2𝑛
𝑖=1

, (11) 

where 𝜎𝑚 is the mean of the experimental values. 

The nonlinear curve fitting function randomly generates parameters that follow the 

experimental data provided in a minimally acceptable way. However, some refinements of 
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the command were necessary, in order to reliably represent the mechanical behavior, such 

as the introduction of initial search values: 1500, 1000 and 1, for constants A, B and C of 

equation (6), respectively. These values were selected based on values found in the literature 

for the same material [29]. The parameters obtained with this procedure for the Voce 

hardening law are listed in Table 3.1. 

However, the Voce hardening law was not considered in its isolated form, but always 

combined with the Swift hardening law, as defined in equation (7). The weighting factor 𝛼 

was calculated with the aid of the Solver function, available in Excel. It was determined such 

that the value of 𝑅2 is minimized, considering always the experimental stress-strain curve 

build with the uniaxial tensile test and the bulge test results. The analysis of the 𝑅2 values 

presented in Table 3.1 for the Swift hardening law, 𝑅Swift
2 , and for the combined law (S_V), 

𝑅Swift+Voce
2 , indicates that this approach leads to the improvement of the fit. 

Table 3.1. Hardening laws parameters obtained from the experimental results of the uniaxial test (UN) and 
the bulge test (BI). 

  Swift   Voce     

 n [-] K[MPa] 휀0[-] A[MPa] B[MPa] C[-] 𝑅Swift
2 [-] 𝛼[-] 𝑅Swift+Voce

2 [-] 

UN 0.12 1802.8 0.000293 1242.3 500.8 99.9 0.901 0.390 0.982 

BI 0.84 1574.5 1.5E-05 1392.3 615.4 30.4 0.966 0.565 0.980 

3.1.3. Improvement of hardening law parameters 

Figure 3.3 presents the comparison between the experimental and the fitted hardening 

laws. Despite the fact that the 𝑅2 values are very close to 1, which would indicate that the 

curve presents a good approximation, it is possible to observe some discrepancies. Figure 

3.3 (a) shows that the combined law identified with the uniaxial tension test renders an 

excellent fit for an equivalent plastic strain lower that 0.06, but results in an underestimation 

of the hardening behavior for higher strain value (Figure 3.3 (b)). On the other hand, the 

models that allow a better description of the hardening behavior for high values of equivalent 

plastic strain, present some deviation from the trend observed for the uniaxial tensile test. 

Therefore, some identification procedure was applied to the experimental data set that 

considers the uniaxial test for low strain values and from the ones from the bulge test for 

high values, as shown in the Figure 3.1 (b). Note that it is known that the bulge test results 
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are more sensitivity to inaccuracies in the measurement of the radius of curvature and the 

thickness, for low strain values [30]. 

The material parameters determined using the combined experimental data are 

shown in Table 3.2. As it is possible to see in Figure 3.4, although the 𝑅2values are very 

close to the ones previously obtained using exclusively the bulge test results (see Table 3.1), 

the new set of parameters enable an improved fitting for the complete strain range. 

Nevertheless, it should be noted that, the Swift law overestimates the hardening behavior, 

while the combined law underestimates, for large strain values. Finally, the criterion for the 

onset of necking for a uniaxial tensile stress state states that it occurs for a strain 휀neck such 

that 𝑑𝜎 𝑑휀⁄ = 𝜎. According to this condition, for the Swift law 휀neck corresponds to 0.093 

while for the combined law it is slightly smaller, with a value of 0.083. 

 
Figure 3.3. Comparison between experimental and numerical stress-strain curves: (a) experimental stress-

strain curve of the uniaxial test with the hardening laws determined using either the uniaxial test or the 
bulge test results; (b) experimental stress-strain curve of the bulge test with the hardening laws determined 

using either the uniaxial test or the bulge test results. 

 
Figure 3.4. Comparison between experimental and numerical stress-strain curves: (a) experimental data 

from the uniaxial test with the hardening laws determined using the combined experimental data; (b) 
experimental data from the bulge test with the hardening laws determined using the combined 

experimental data. 
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Table 3.2. Improved hardening laws parameters. 

  Swift   Voce     
 n [-] K[MPa] 휀0[-] A[MPa] B[MPa] C[-] 𝑅Swift

2 [-] 𝛼[-] 𝑅Swift+Voce
2 [-] 

Improved 0.093 1619 0.0001 1383.1 542.6 36.1 0.966 0.73 0.985 

3.2. Yield criteria 

Among the yield criteria for which the Benchmark committee provided the set of 

anisotropy parameters, two were available in the software DD3IMP: the Hill 1948 and Barlat 

1991. These yield criteria are briefly described in this section. 

The Hill 1948 yield criterion was proposed as a generalization of the Huber-Mises-

Hencky isotropic criterion for anisotropic materials, assuming the yield function as [5][2]:  

 
𝐹(𝜎𝑦 − 𝜎𝑧)

2
+ 𝐺(𝜎𝑧 − 𝜎x)

2 + 𝐻(𝜎x − 𝜎y)
2
+ 2𝐿𝜏yz

2 + 2𝑀𝜏zx
2 + 2𝑁𝜏xy

2

= 𝑌2, 
(12) 

where 𝐹, 𝐺, 𝐻, 𝐿, 𝑀 and 𝑁 are the anisotropy coefficients defined in the material axis. The 

normal and shear stress subscripts x, y, and z are related, respectively, to the rolling, 

transverse, and thickness directions of the metal sheet [25]. 

The Barlat 1991 yield criterion (Yld91) was proposed as a generalization for 

anisotropic materials of the Hershey isotropic criterion, which is based on the 

crystallographic structure of the material [5][2]. The yield criterion is defined by: 

 |𝑆1 − 𝑆2|
𝑚 + |𝑆2 − 𝑆3|

𝑚 + |𝑆3 − 𝑆1|
𝑚 = 2 ∙ 𝑌𝑚, (13) 

where 𝑆1, 𝑆2 and 𝑆3 are the principal stresses of the deviator stress tensor, obtained from the 

linear transformation of the Cauchy stress tensor, 𝛔, to an equivalent isotropic stress state, 

defined as follows: 

 𝐒 = 𝐋: 𝛔. (14) 

The tensor 𝐋 can be defined, using Voigt notation, as follows: 

 𝐋 =

[
 
 
 
 
 
(𝑐2 + 𝑐3) 3⁄ −𝑐3 3⁄ −𝑐2 3⁄ 0 0 0

−𝑐3 3⁄ (𝑐3 + 𝑐1) 3⁄ −𝑐1 3⁄ 0 0 0

−𝑐2 3⁄ −𝑐1 3⁄ (𝑐1 + 𝑐2) 3⁄ 0 0 0
0 0 0 𝑐4 0 0
0 0 0 0 𝑐5 0
0 0 0 0 0 𝑐6]

 
 
 
 
 

, (15) 

where 𝑐𝑖, 𝑖 = 1,… , 6 are the anisotropy coefficients [31]. The value of the exponent 𝑚 is 

based on the crystallographic structure (𝑚 = 6 for BCC materials and 𝑚 = 8 for FCC 
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materials)[5][2]. As previously mentioned, the parameters of the yield criteria were provided 

by the benchmark committee, which are listed in Table 3.3 for each criterion. 

The comparison between experimental and predicted in-plane variation of the 

normalized yield stress and r-value is shown in Figure 3.5 (a) and (b), respectively. Globally, 

both yield criteria overestimate the increasing trend for the yield stress while the r-values 

predicted by both criteria overlap and are very close to the experimental values provided by 

the benchmark committee, with a slight deviation only for angles of 30 and 60 degrees. The 

benchmark committee provided only yield stress in-plane variation for a strain value of 

0.2%. Thus, in the Figure 3.6 it is plotted the comparison between the experimental and 

predicted yield stress distribution for an equivalent plastic strain of 0.2%. The figure also 

shows the initial yield stress in-plane distribution to highlight the different hardening 

behavior predicted by both hardening laws (see also Figure 3.4). The differences observed 

in the initial yield stress become less evident for slightly higher strain values, but the trend 

changes with the hardening behavior. The results highlight that the differences are less 

relevant for an equivalent plastic strain of 0.2%. In fact, as shown in Figure 3.6, the 

differences in the trend can be quite sensitive to the value selected for the equivalent plastic 

strain. 

Table 3.3. Parameters of the yield criteria Hill 1948 and Barlat 1991 provided by the benchmark committee.  

Hill 1948 

𝑭[-] 𝐺[-] 𝐻[-] 𝐿[-] 𝑀[-] 𝑁[-] 

0.401317 0.529207 0.470793 1.5 1.5 1.302234 

Barlat 1991 

𝒄𝟏[-] 𝑐2[-] 𝑐3[-] 𝑐4[-] 𝑐5[-] 𝑐6[-] 𝑚[-] 

0.9221 1.0225 0.9772 1 1 0.9476 6 

 

Figure 3.5 (c) shows the yield surfaces for the two yield criteria projected in the 

plane corresponding to 𝜎TD-𝜎RD, assuming that all other stress components are null. Since 

these surfaces are plotted for a null value of the equivalent plastic strain, it is possible to 

observe that the plastic deformation will occur for lower stress values when the Swift law is 

selected. Regarding the differences between the two yield criteria, the Barlat91 criterion will 

also lead to initial yielding at lower stress values, particularly around plane strain stress 

states. 
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In order to better understand the differences between both yield criteria, Figure 3.7 

presents the strain ratios distribution as a function of the loading direction (𝜑), defined by 

equation (16), obtained analytically with the Hill48 and the Barlat91 yield criterion. The 

normal to the yield surface defines the ratio between the two in-plane strains: 휀RD and 휀TD. 

From this ratio it is possible to determine which one of these two in-plane strains will be the 

highest, 휀1, and the lowest, 휀2. The strain occurring in the thickness direction, 휀𝑡, can always 

be estimated based on the condition of volume conservation.  

 𝜑 = tan−1 (
𝜎TD

𝜎RD
), (16) 

 

 

Figure 3.5. In-plane variation of the: (a) Normalized yield stress – θ (angle from the RD). (b) r-value – θ. (c) 
Yield surface assuming plane stress conditions with the 𝝈𝟑 = 𝟎. 
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Figure 3.7 (a) presents the 휀2 휀𝑡⁄  ratio, which corresponds to the r-values for the 

loading direction of 0º and 90º. This figure highlights that both yield criteria lead also to a 

similar ratio for the equibiaxial stress state (loading direction of 45º). Besides, the plane 

strain condition along RD occurs for both yield criteria for a similar loading direction of 

approximately 28º, while for TD it occurs at approximately 61º. Also, it is observed that, for 

stress states between uniaxial tension and plane strain, the 휀2 휀𝑡⁄  is higher for the Hill48 yield 

criterion, which indicates that for a similar in plane minor strain the material will deform 

less through the thickness direction. The opposite is observed for stress states between plane 

strain and equibiaxial tension.  

 
Figure 3.6. Comparison between experimental and numerical in-plane variation of the yield stress, 

comparing different combinations of yield criteria and hardening laws. Continuous line: Swift+Voce 0.2%; 
circle marker: Swift 0.2%; square marker: Swift+Voce; triangular marker: Swift.   

 

Figure 3.7. Strain ratio evolution as a function of the loading direction obtained analytically with the Hill48 
and the Barlat91 yield criterion: (a) ratio between the minor and the through-thickness strain; and (b) ratio 

between the strain in the transverse and the rolling directions. 



 

 

  CONSTITUTIVE MODELS 

 

 

  29 

 

Figure 3.7 (b) presents the 휀TD 휀RD⁄  ratio, which corresponds to the biaxial value for 

a loading direction of 45º. As previously mentioned, both yield criteria lead to a similar 

value, which can be confirmed in the figure to be of approximately 0.76. This figure is also 

interesting because it allows the analysis of the slope of the 휀1 휀2⁄  strain paths expected for 

specific loading directions. Thus, for uniaxial tension along RD, the strain path will present 

a slope equal to approximately -2.1 (=1/(-0.47)) for both yield criteria, since the r-value for 

this direction is lower than 1.0 (slope of -2.0). For uniaxial tension along TD, the strain path 

will present a slope equal to approximately -1.9 for both yield criteria, since the r-value for 

this direction is higher than 1.0. For equibiaxial tension, the slope is of approximately 1.3 

(=1/(0.76)). 
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4. NUMERICAL MODEL 

The numerical models for analyzing the evolution of the strain path under some 

specific conditions were built, as described in this chapter. All numerical simulations were 

performed with the in-house finite element solver DD3IMP (Deep Drawing 3D IMPlicit) 

[32][33]. The mesh generation, for both the tools and the blanks, and the post processing 

analysis of the results was performed with the help of the software GID [34]. 

In order to reduce the computational time, only a quarter of each mechanical test 

was modelled, taking advantage of the geometrical, loading and material symmetry 

conditions. This implies that symmetry boundary conditions were always applied to the 

surfaces of the blank located in the symmetry plane. The blank sheet was always discretized 

with 3D 8-node hexahedral finite elements, combined with a selective reduced integration 

technique [35]. The mesh of the blank sheet is always composed of two layers through the 

thickness, which allows an accurate evaluation of the through-thickness stress gradients. The 

construction of the mesh for the blank resorted to structured meshes, with zones with an 

element size defined based on the contact conditions. Moreover, a smaller element size was 

also applied in the central area of the blank, where it is intended to follow the evolution of 

the strain path. In some cases, a mesh sensitivity analysis was performed, but in this chapter, 

only the selected meshes are reported. The blank rolling direction was always assumed to be 

oriented along Ox. 

All forming tools are considered rigid and were modelled by Nagata patches 

[36]. This approach requires the definition of the CAD model for the tools (IGES file), as 

well as the finite element mesh of the outer surface. The finite element mesh adopted can be 

coarse and the rules proposed for its construction in [37] were followed. The contact with 

friction conditions were modelled with the Coulomb friction model. As previously 

mentioned, these tests are performed using lubricants to reduce friction, in order to minimize 

the influence of this parameter in the FLD [38]. Thus, the numerical simulations were mainly 

performed using a null friction coefficient value. This simplification can also help reducing 

the computational time, although this depends on the influence on the overall displacement 

of the blank. 
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The numerical simulations were mainly performed until the occurrence of strain 

localization in the specimen. This means that, in general, the final displacement imposed to 

the punch was not fixed to a constant value, since it is known that the plasticity model affects 

the strain localization. 

4.1. Monotonic strain paths  

The analysis of monotonic strain paths was mainly performed with the Marciniak 

test. The dimensions of the Marciniak tool set are shown in Figure 2.16. However, as 

previously mentioned, in this test an intermediate blank, with a circular hole, is placed 

between the punch and the metallic specimen, to minimize the influence of friction. This 

implies that during the test there is contact between two deformable bodies, the two blanks. 

In order to minimize the computational time, the numerical model adopted neglect the 

deformation of the intermediate blank, which was replaced by an offset to the dimensions of 

the punch and lower die, equal to the thickness of the intermediate blank.  

 

Figure 4.1: Meshes adopted for the tools of the Marciniak test: (a) Blank-holder (with draw bead); (b) Die 
(with draw bead); (c) Blank-holder (without draw bead); (d) Die (without draw bead); and (e) Punch.   

Figure 4.1 shows the meshes adopted for the Marciniak tools. The tools present 

a draw bead to restrain the radial displacement of the blank. The numerical simulation of the 

draw bead requires the use of a refined mesh in the contact area, due to the small radius 
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presented by this detail. Therefore, in order to reduce the computational time, the 

geometrical draw bead can be replaced by a boundary condition, imposing a null 

displacement to the external radius where the draw bead is located. The impact of this 

simplification on the results depends on the influence of the bending step, imposed by the 

draw bead, on the central area of the blank [39]. Therefore, the two models were considered 

and Figure 4.1 also presents the tools used in the numerical model that uses simplified 

boundary conditions to represent the draw bead. 

 

Figure 4.2: Meshes adopted for the blank of the Marciniak test: (a) 1 inch width (with draw bead); (b) 1 inch 
width (without draw bead); (c) 5.5 inches width; (d) 6.5 inches width; and (e) 8 inches width. 



 

 

PREDICTION OF STRAIN LOCALIZATION IN NONLINEAR STRAIN PATHS  

 

 

34   

 

As previously mentioned, different monotonic strain paths can be achieved by 

changing the blank shape (see Figure 2.15). In this study, four different shapes for the blank 

were considered. The nomenclature used to identify each shape is the same used in the 

benchmark, i.e. the width of the specimen in inches. The four different widths considered 

were 1, 5.5, 6.5 and 8, since they enable covering the strain space from uniaxial tension until 

equibiaxial stress. Figure 4.2 shows these geometries, as well as the meshes adopted in the 

numerical models. The blank with a width of 1 inch was used to analyze the influence of the 

presence of the draw bead in the numerical model. Thus, Figure 4.2 shows the two meshes 

adopted for this blank. The simulations were always performed considering a constant blank-

holder force of 160 kN (1/4 model) [21]. 

 

Figure 4.3: Meshes adopted for the tools of the (a): Nakazima test: (i) Punch (101.6 mm); (ii) Blank-holder; 
and (iii) Die; (b) Mini-Nakazima test: (i) Punch (5 mm); (ii) Blank-holder; and (iii) Die. 

The analysis of the equibiaxial strain path was also performed considering the 

Nakazima and the Mini-Nakazima test conditions. The tools used for the Nakazima test are 

shown in Figure 2.14 and the corresponding models are presented in Figure 4.3 (a). In this 

case, the draw bead was always replaced by adequate boundary conditions. The Mini-

Nakazima tool set is the same used for the Hole Expansion test (see Figure 2.12). However, 

the conical punch with a 3 mm radius on the tip is replaced by a spherical punch with a radius 

of 5 mm. The corresponding models for the Mini-Nakazima are presented in Figure 4.3 (b). 

The simulations were always performed considering a constant blank-holder force of 160 

kN (1/4 models) for both Nakazima and Mini-Nakazima [9], [40]. The Nakazima tests were 

performed considering the equibiaxial stress state, with a circular blank identical to the one 

used in the Marciniak test, whose mesh is presented in Figure 4.4 (a). Regarding the Mini-
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Nakazima test conditions, it was used to reproduce the equibiaxial monotonic strain path, 

using the geometry and specimen discretization shown in Figure 4.4 (b). Moreover, it was 

also used to reproduce the equibiaxial strain path after a pre-strain, as indicated in Table 2.1. 

The pre-strain was performed using both the Marciniak test conditions and a wide blank 

submitted to uniaxial tensile test conditions. For the Marciniak test conditions, the blank 

geometry shown in Figure 4.2 was adopted. 

 

Figure 4.4: Mesh adopted for the blank: (a) Nakazima test (8 inches width); (b) Mini-Nakazima test with 8 
inches width; (c) Specimen used for uniaxial pre-strain followed by equibiaxial trajectory.    

4.2. Nonlinear strain paths 

The complex strain paths considered in the analysis comprise mainly two 

monotonic branches. The first branch, also called pre-strain, was attained using two different 

approaches. The first approach involves a uniaxial tensile test on a wide blank, i.e. the pre-

strain follows the uniaxial tension paths. In the second approach, the pre-strain is performed 

using the Marciniak test conditions, in particular the specimens with a width of 5.5 and 6.5 

inches. The following subsections describe the specific details of the numerical models 

adopted for each approach. It should be mentioned that both approaches try to resemble the 

tests conditions, i.e. they consider the unloading stage that occurs between the two 

monotonic branches. 

4.2.1. Pre-strain in uniaxial tension 

The numerical model considers a total of four phases: (i) pre-strain loading; (ii) 

pre-strain unloading; (iii) blank-holder closure and (iv) punch displacement. The blank used 

in the numerical model is a rectangular geometry with a length of 90 mm in length and a 
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width of 70 mm. Note that in the experimental procedure the blank submitted to uniaxial 

tension had a length of 250 mm and a width of 70 mm. Then, the specimen geometry used 

in the Mini-Nakajima test was cut from that metallic sheet. The numerical model considered 

a smaller length, in order to avoid any trimming operations. The discretization of the 

specimen adopted in the model is shown in Figure 4.4 (c). 

For the uniaxial tensile pre-strain phase, a displacement of 2.7 mm was imposed 

in the direction along the length of the specimen, in order to obtain a final major strain of 

6%, as defined by the benchmark committee [41]. Note that this value of displacement was 

determined based on a preliminary numerical simulation. The second phase corresponds to 

the removal of the imposed displacement, until the force attains a null value. The third phase 

corresponds to the closure of the blank-holder, until the predefined force is attained. The last 

phase corresponds to the punch displacement.  

4.2.2. Pre-strain using Marciniak test conditions 

Adopting this approach, the pre-strain is attained with the Marciniak test 

conditions (see Figure 4.1, without draw bead) and the second strain path with the Mini-

Nakazima (Figure 4.3 (b)). The specimens used presents 5.5 inches width (Figure 4.2 (c)), 

which imposes a pre-strain path in approximately plane strain conditions; and the other with 

a width of 6.5 inches (see Figure 4.2 (d)), for a pre-strain under biaxial condition. The 

numerical model considers four phases: (i) closure of the blank-holder of the Marciniak tool; 

(ii) displacement of the Marciniak punch; (iii) closure of the Blank-holder of the Mini-

Nakazima tool; and (iv) displacement of the Mini-Nakazima punch. In order to impose major 

true strains identical to the ones provided by the benchmark committee for the Marciniak 

test conditions, the punch displacements applied were of: 11.05 mm, for the plane strain 

condition; and 18, 18.22 and 18.45 mm, respectively for the Swift/Hill48, Swift/Barlat91 

and Swift+Voce/Barlat91 models, for the biaxial condition. 

The numerical models consider the existence of all tools from the beginning. The 

tools of the Marciniak test are active during the first two phases and afterwards are defined 

as inactive. The opposite happens for the Mini-Nakazima tools. Nevertheless, this implies 

that the initial position Mini-Nakajima tools must be defined taking into account the 

deformation of the blank in the previous phases. An example of the assembly model is shown 

in the Figure 4.5, highlighting the necessary correction to the initial position of the Mini-
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Nakazima tools. It should be mentioned that when the tools from the Marciniak test are 

deactivated, the blank has no contact with the other tools (or the contact occurs with very 

low forces). This means that in the first increments of this phase the sheet springbacks. 

However, the boundary condition associated to the draw bead remains active during the 

simulation. The results do not seem to be affected by this condition due to the restraining 

force imposed by the blank-holder of the Mini-Marciniak. 

  

Figure 4.5: Assembly used for the model with the specimen with 5.5 inches, using the Marciniak tool (dark-
blue: Blank-holder; grey: Die and pink: Punch) followed by Mini-Nakazima tool (light-blue: Blank-holder; 
brown: Die and green: Punch). The mesh shown in this figure is constructed in GID only for visualization 

purposes. 
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5. RESULTS AND DISCUSSIONS 

In this section, the numerical results are analyzed and compared with the 

experimental ones, in order to access the ability of the constitutive models to describe the 

material plastic behavior. The numerical simulations were always performed considering the 

two yield criteria previously presented in section 3.2: Hill 1948, which will be labelled 

Hill48 and the Barlat 1991, designated as Yld91. Both are tested combined with the Swift 

hardening law. For the Yld91, the combined Swift plus Voce hardening law is also 

considered and will be labelled S_V. All simulations were run on hardware computer 

equipped with an intel i5-7300HQ processor, with four 2.50GHz cores, 16GB of RAM 

memory and a 64-bit operating system. 

The results reported by the Benchmark committee correspond to the strain 

measured at the specimen’s center. Therefore, the data for the integration point (Gauss point) 

closer to this location was collected in all numerical simulations performed. This data 

includes the stress and strain paths as well as the evolution of the stress triaxiality and Lode 

parameter, which are commonly used to define the stress state in uncoupled ductile fracture 

models. The stress triaxiality and Lode parameter are defined in APPENDIX A, as well as 

their values for tests performed under plane stress conditions. Besides these results, the 

evolution of the punch force with its displacement is also presented to help undertaking the 

differences between the constitutive models. 

As mentioned in the previous chapter, both the Marciniak and the Nakazima tests 

are performing using a drawbead to restrain the material flow. Thus, the influence of the 

geometrical drawbead was assessed for the 1 inch width specimen in the Marciniak test. The 

same geometry was also used to evaluate the impact of the friction coefficient. This specimen 

was selected because it is the one reported has being closer to the uniaxial tension stress 

state, for which both yield criteria are expected to lead to similar strain paths (see Figure 

3.7). 

5.1. Monotonic strain paths simulations 

5.1.1. Marciniak tests 

5.1.1.1. Specimen with 1 inch width (uniaxial tension) 
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5.1.1.1.1. Influence of the drawbead 

The specimen with 1 inch width was used to assess the influence of the drawbead 

on the numerical results. Accordingly, the two sets of forming tools are adopted, namely the 

upper/lower die with and without drawbead. In both cases, a friction coefficient equal to 0.15 

was used. Figure 5.1 displays the strain paths obtained numerically and experimentally. For 

both hardening laws and yield criteria analyzed, the effect of the drawbead on the predicted 

strain path is negligible, for an equivalent plastic strain value lower than 0.016, for which 

the predicted strain paths are almost overlapping. This corresponds to a punch displacement 

of approximately 5.75 mm. 

 

Figure 5.1. Evolution of the major strain-minor strain in the Marciniak test using the specimen with 1 inch 
width, comparing numerical predictions with experimental results. Simulations with drawbead (w.d.) and 

without drawbead (n.d.), both using a friction coefficient of 0.15. 

Figure 5.2 shows the punch force as a function of punch displacement, 

comparing the different constitutive models and the effect of drawbead. The deformation 

generated by the geometrical drawbead makes the specimen center lifting upwards. Thus, 

when the punch starts its displacement from the reference position it has no contact with the 

blank. The results shown in Figure 5.2 are corrected in order to guarantee that the null 

displacement corresponds to the instant previous to the first increment of punch force. The 

closing of the geometrical drawbead generates a plastic strain in the major strain axis of 
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0.013 and an equivalent plastic strain of 0.08. Nevertheless, as shown in Figure 5.1 its 

impact on the strain path during the forming step seems negligible.  

 

Figure 5.2. Evolution of the predicted punch force in the Marciniak test specimen with 1 inch width, 
comparing the situations with drawbead (w.d.) and without drawbead (n.d.) (friction coefficient of 0.15).     

Figure 5.2 shows that the onset of necking occurs for lower punch displacements 

when using the forming tools with the geometrical drawbead. In fact, the maximum punch 

force obtained is smaller when the tools have a geometrical drawbead. The maximum punch 

forces found without the geometrical drawbead were 43.3, 41.3 and 39.15 kN, respectively 

for the Swift/Hill48, Swift/Yld91 and S_V/Yld91, a difference of 6.46%, 6.92% and 7.66% 

in relation to results with the geometrical drawbead. It should be mentioned that the 

oscillations on the punch force at the of the simulations performed without drawbead are 

caused by the reduction of the increment size to reach convergence. 

Figure 5.3 presents the evolution of both stress triaxiality and Lode parameter 

without punch displacement correction, evaluated in the center of the specimen. Before the 

onset of necking, all models have similar values for both parameters, close to the ones 

expected for the uniaxial tension stress state (reference values presented in Table A.1 of 

Appendix A), i.e. around 0.33(1/3) for triaxiality and 1.0 for the Lode parameter. As 

previously mentioned, all models with the geometrical drawbead enter the plastic regime 

during the drawbead closure. This does not correspond to a null punch displacement only 

because of the lifting induced to the blank, which delays the contact between the punch and 
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the blank. After the onset of necking, the triaxiality increases and the Lode parameter 

decreases, i.e. the stress state change to one closer to plane strain, as also highlighted in 

Figure 5.1. The differences between the models with and without the geometrical drawbead 

are higher when the Yld91 yield criteria is used, which seems to be correlated with its shape 

being more sensitive to small changes of the stress state, for a loading angle of 90º (see 

Figure 3.7). This figure indicates that for a small variation in the loading direction, the Yld91 

will predict larger differences in the thickness strain than the Hill48 yield criterion.  

Figure 5.4 shows the distribution of the equivalent plastic strain in the specimen 

for 15 mm of punch displacement. Globally, the equivalent plastic strain predicted by the 

model using the geometrical drawbead is larger than the one predicted with the boundary 

condition, which is a consequence of the pre-strain generated during the geometrical 

drawbead closing. Considering the geometrical drawbead, the maximum equivalent plastic 

strain is 1.44, 1.66 and 2.09 for the models Swift/Hill48, Swift/Yld91 and S_V/Yld91, 

respectively. This is a consequence of the onset of necking occurring for lower punch 

displacements when the Yld91 criterion is adopted, particularly when using the combined 

hardening law. This result is coherent with the analysis made for the uniaxial tensile test, in 

section 3.1. Therefore, the same trend is observed for the results without the physical 

drawbead. In brief, both models seem to impose a similar constrain to the material flow, 

leading to similar strain paths, enabling the prediction of the strain localization, without 

taking into account any damage model. However, neglecting the pre-strain induced by the 

geometrical drawbead leads to an overestimation of the equivalent plastic strain attained with 

a linear strain path. In fact, it leads to an underestimation of the plastic work, as also 

highlighted in the punch force evolution in the beginning of its displacement (see Figure 

5.2). 

The CPU and Wall times of each simulation are displayed in the Table 5.1. The 

simplification performed by removing the geometrical drawbead resulted in a reduction in 

the CPU time of 86.7%, 81% and 77.5% respectively for the model Swift/Hill48, 

Swift/Yld91 and S_V/Yld91. For the present work, the substantial reduction in the 

computational time, with an almost negligible difference in the predicted strain paths, 

justifies the use of simplification, a conclusion similar to that found in the work by Alves et 

al [39]. Therefore, all other numerical simulations were performed without considering the 

geometrical drawbead. 
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Figure 5.3. Evolution of triaxiality (a, c and e) and Lode parameter (b, d and f) with the punch displacement 
in the Marciniak test specimen with 1 inch width from simulations with drawbead (w.d.) and without 

drawbead (n.d.) (all with friction coefficient of 0.15).   
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Figure 5.4. Equivalent plastic strain distribution in the Marciniak test specimen with 1 inch width: With 
drawbead (a) Swift/Hill48, (b) Swift/Yld91, (c) S_V/Yld91; without drawbead (d) Swift/Hill48, (e) Swift/Yld91, 

(f) S_V/Yld91.  
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Table 5.1. Computational times of the Marciniak test with and without drawbead. 

 

5.1.1.1.2. Influence of the friction coefficient 

The influence of the friction coefficient on the numerical solution is evaluated 

using the same specimen (1 inch width). Adopting the model without drawbeads, the 

frictionless condition is compared with the constant value for the friction coefficient of 0.15. 

Figure 5.5 shows both numerical and experimental results of major strain-minor strain 

evolution. The effect of the friction coefficient on the strain measured in the center of the 

specimen is negligible, i.e. the curves are almost overlapped with a slight difference after the 

onset of necking. 

 

Figure 5.5. Evolution of the major strain-minor strain in the Marciniak test using the specimen with 1 inch 
width and the friction coefficient of 0.15 (fr=0.15) or null friction coefficient (fr=0) in the numerical 

predictions. 

Figure 5.6 shows the influence of the friction coefficient on the predicted punch 

force evolution. The influence of the friction coefficient becomes apparent for a punch 

displacement higher that 6 mm. The maximum punch force is slightly higher in the 

simulations performed with the friction coefficient of 0.15. This increase of the punch 
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force with the increase of the friction coefficient was already expected, due to the friction 

force arising in the contact surfaces. The maximum difference is about 5.3% in relation to 

results with a null friction coefficient. The increase of the friction coefficient does not 

affect the trend between the different constitutive models. 

 

Figure 5.6. Evolution of the predicted punch force in the Marciniak test specimen with 1 inch width, for 
friction coefficient of 0.15 (fr=0.15) and null friction coefficient (fr=0), using the model without drawbeads. 

Figure 5.7 presents the evolution of both stress triaxiality and Lode parameter 

in function of the punch displacement, evaluated in the center of the specimen. Before the 

onset of necking, all models have values close to the ones related with the uniaxial tension 

stress state, as previously observed in Figure 5.3. The evolution of the stress triaxiality and 

the Lode parameter is similar for all models, both under frictionless and friction situations, 

which is in agreement with the results shown in Figure 5.5. Although it is almost 

imperceptible, the plastic strain starts for lower values of punch displacement in the models 

with the higher friction coefficient, due to the additional frictional forces arising in the 

model. However, the impact in the strain path observed in the center of the specimen is 

negligible. Thus, although the models with the higher friction coefficient present higher 

values for the maximum force, the displacement for which the onset of necking occurs is not 

affected by the friction coefficient value. 
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Figure 5.7. Evolution of triaxiality (a, c and e) and Lode parameter (b, d and f) with the punch displacement 
in the Marciniak test specimen with 1 inch width from simulations (without drawbeads) with friction 

coefficient of 0.15 (fr=0.15) and with null friction coefficient (fr=0).  
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Figure 5.8. Equivalent plastic strain distribution in the Marciniak test specimen with 1 inch width: with 
friction coefficient of 0.15 (a) Swift/Hill48, (b) Swift/Yld91, (c) S_V/Yld91; with null friction coefficient (d) 

Swift/Hill48, (e) Swift/Yld91, (f) S_V/Yld91. 

Figure 5.8 shows the distribution of the equivalent plastic strain in the specimens 

for 15 mm of punch displacement. The maximum value of equivalent plastic strain in the 

models with null friction coefficient is 0.90, 1.11 and 1.56, for Swift/Hill48, Swift/Yld91 

and S_V/Yld91, respectively. Although the values of equivalent plastic strain are higher in 

models with 0.15 of friction coefficient, the difference is almost negligible.  

Table 5.2 presents the computational times for each simulation. Although there 

was a reduction of the computational cost under frictionless conditions, the difference is 

lower than 8.5% for Swift/Hill48 and Swift/Yld91, being a little more significant for the 
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model S_V/Yld91, with a difference of 10.9%. Since the strain paths predicted are almost 

overlapped in both models, this simplification (frictionless and without drawbeads) is 

adopted for all the other simulations performed in this work. 

 

Table 5.2. Computational times of the Marciniak test specimen with 1 inch width using different values of 
friction coefficient. 

 

 

The yield criteria were calibrated considering a Lankford coefficient from the 

uniaxial tensile test, performed at TD, of 1.1731 (as seen in the Figure 3.5 (b)). As shown 

in Figure 3.7 (a), both yield criteria lead to slightly lower values, of 1.1725 for Hill48 and 

1.1719 for Yld91. In terms of the ratio between the in-plane strains, Figure 3.7 (b) shows 

that 휀TD 휀RD⁄  is equal to -1.9061 for Hill48, while for Yld91 it is -1.8533. Note that 휀TD =

휀1 and 휀RD = 휀2 and that for an isotropic material 휀1 = −2휀2. The analysis of Figure 5.1 

and Figure 5.5 shows that the 휀TD 휀RD⁄  are closer to these values in the numerical models. 

However, the experimental results show higher negative values for the 휀TD 휀RD⁄ , indicating 

that this geometry for the specimen does not reproduce exactly the same stress conditions as 

the uniaxial tensile test. Despite the dispersion observed in the experimental results (3 tests 

under identical conditions), the numerical predictions using the Barlat yield criterion leads 

to a strain path closer to the experimental one. 

5.1.1.2. Specimen with 5.5 inch width  

According with the experimental results, the increase of the specimen width 

from 1 inch to 5.5 inch leads to a change in the strain path from close to uniaxial tension to 

approximately plane strain. Therefore, this specimen configuration is used to assess the 

accuracy of the numerical model. In this context, it should be mentioned that both yield 

criteria were calibrated without using any information concerning plane strain conditions. 
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Figure 5.9. Evolution in the Marciniak test specimen with 5.5 inch width of the predicted: (a) punch force 
and (b) major versus minor strain, including the experimental results.   

Figure 5.9 (a) shows the punch force evolution, comparing the three constitutive 

models previously described. The maximum punch force predicted by the constitutive 

models Swift/Hill48, Swift/Yld91 and S_V/Yld91 is 253.3, 225.4 and 213.8 kN, 

respectively. Besides, the displacements for which the maximum force is attained are 

different, namely 22.7, 21.0 and 19.89 mm, respectively. Figure 5.9 (b) shows the 

comparison between numerical and experimental results of major strain-minor strain 

evolution. The predicted maximum values for the major strain were 0.14, 0.094 and 0.11, 

using the constitutive models Swift/Hill48, Swift/Yld91 and S_Voce/Yld91, respectively. 

However, the minor strains also present clearly positive values, while the experimental 

results show slightly negative ones. The ratio between the major and minor strain (휀TD 휀RD⁄ ) 

were of 4.36 for Swift/48 and 8.53 for the Swift/Yld91 and S_V/YLd91 models. These ratio 

values are compatible with those predicted analytically in Figure 3.7 (b), which show that 

there are big differences between the two yield criteria for loading directions close to plane 

strain. 

Figure 5.10 shows the distribution of the equivalent plastic strain in the 

specimen with 5.5 inch width. The maximum values of equivalent plastic strain for 21 mm 

of punch displacement are 0.33, 0.44 and 0.71 for the model’s combinations Swift/Hill48, 

Swift/Yld91 and S_V/Yld91, respectively. Nevertheless, it is important to mention that the 

strain localization occurs on the outer edge of the punch, as shown in Figure 5.10 (d), 

whatever the constitutive model adopted. As in the simulation with the 1 inch specimen, the 
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S_V/Yld91 model was the first to localize, followed by SwiftYld91 and finally the 

Swift/Hill48. This trend is similar because the strain localization occurs associated to a 

tensile stress state induced by the punch shoulder radius. This also explains why the 

specimen center stops deforming, as shown in Figure 5.9 (b). Thus, for this stress path no 

strain localization in the specimen center is predicted, without taking into account any 

damage model.  

 

Figure 5.10. Equivalent plastic strain on the specimen with 5.5 inch width predicted by the models: (a) 
Swift/Hill48, (b) Swift/Yld91, (c) S_V/ Yld91; (d) Strain localization in the location corresponding to the outer 

edge of the punch shoulder radius.    

 The evolution of the stress triaxiality in the specimen is presented in Figure 

5.11 (a), comparing the three different constitutive models. The mean values of stress 

triaxiality are close 0.61 for all models, which is higher than to the reference value of 0.577 

(√3/3) for plane strain, as presented in the Table A.1. Figure 5.11 (b) shows the evolution 

of the Lode parameter. The average value for Lode parameter was -0.33 for all constitutive 

models, which is quite different from 0.0, which is the reference value for plane strain (see 

Table A.1). This confirms that both yield criteria do not enable to reproduce the stress state 
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of the plane strain using the 5.5 inch specimen. According to Figure 5.9 (b) the stress state 

is between plane strain and equibiaxial tension. It is also worth mentioning that since the 

strain localization occurs in the punch shoulder radius, the center of the specimens stops to 

deform, for punch displacements of 22.6, 20.63 and 19.2 mm, for the Swift/Hill48, 

Swift/Yld91 and S_V/Yld91 models, respectively. This explains the changes of the trend 

observed in Figure 5.11 as well as in Figure 5.9 (b), since there is some elastic recovery 

after the necking around the punch shoulder radius. 

 

 

Figure 5.11. Evolution of triaxiality (a) and Lode parameter (b) with the punch displacement in the 
Marciniak test specimen with 5.5 inch width comparing different constitutive models.     

5.1.1.3. Specimen with 6.5 inch width 

The main objective of using the specimen with a width of 6.5 inch in the 

experimental procedure is to obtain a strain path between plane strain and equibiaxial. 

Figure 5.12 (a) presents the comparison between numerical and experimental evolutions of 

the major strain- minor strain. The maximum values for the major strain were 0.22, 0.12 and 

0.11, for the Swift/Hill48, Swift/Yld91 and S_V/Yld91 constitutive models, respectively. 

The ratio between the major and minor strain were of 1.31 for Swift/Hill48 and 1.85 for both 

the Swift/Yld91 and S_V/Yld91 models. These values are considerably lower than the 

experimental ones. Moreover, they are considerably lower than the ones obtained with the 

5.5 inch specimen, which confirms the ability of the numerical models to predict the strain 

path change associated with the specimen width. However, both yield criteria do not allow 

a proper estimate of the linear strain path for both specimens. 
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Figure 5.12.  Evolution in the Marciniak test specimen with 6.5 inch width of the predicted: (a) major versus 
minor strain, including the experimental results and (b) punch force. 

 

Figure 5.13. Equivalent plastic strain on the specimen with 6.5-inch width predicted by the models: (a) 
Swift/Hill48, (b) Swift/Yld91, (c) S_V/Yld91; (d) Strain localization in the location corresponding to the outer 

edge of the punch shoulder radius.    

Figure 5.12 (b) shows the punch force evolution. The predicted maximum punch 

force values were 288.57, 262.4 and 250.19 kN, for displacements of 29.8, 23.3 and 21.61 
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mm, for Swift/Hill48, Swift/Yld91 and S_Voce/Yld91 constitutive models, respectively. 

Such as for the specimen with a width of 5.5 inch, the decrease of the force occurs associated 

with the strain localization on the outer edge of the punch shoulder radius, as highlighted in 

the Figure 5.13 (d). Figure 5.13 shows the distribution of the equivalent plastic strain in the 

specimen, comparing the three constitutive models. The maximum equivalent plastic strain, 

evaluated for 23 mm of punch displacement is 0.50, 0.68 and 0.75 for the Swift/Hill48, 

Swift/Yld91 and S_V/Yld91, respectively. The analysis of the evolution of the Lode 

parameter and the stress triaxiality for this test confirms that also this specimen leads to a 

stress state between plane strain an equibiaxial tension, but closer to the equibiaxial tension. 

5.1.1.4. Specimen with 8 inch width (equibiaxial) 

The last specimen used to perform the Marciniak test presents 8 inch width, 

which provides an equibiaxial stress state. Figure 5.14 (a) presents the comparison between 

numerical and experimental evolutions of the major and minor strains. Using the 

Swift/Hill48, Swift/Yld91 and S_V/Yld91 models, the maximum values for the major strain 

were 0.19, 0.13 and 0.11, respectively. The ratio between major and minor strains was 1.02 

for all the constitutive models. According with the analytical results shown in Figure 3.7 

(b), the 휀TD 휀RD⁄  ratio for a loading direction of 45º is 0.7585 and 0.7589, for the Hill48 and 

the Yld91 criteria. Thus, the ratio between major and minor strain should be the inverse, i.e. 

1.3184 and 1.3176. The value reported in the experimental results is 1.16. Thus, the 

numerical model leads to a smaller ratio, which can be related to the fact that the stress state 

is not exactly equibiaxial, due to the constrains imposed by the tools geometry. This result 

seems to be corroborated by the fact that the strain path is identical for both yield criteria. 

The maximum values of strains attained in each test are different as a consequence of the 

occurrence of strain localization, once again in the punch shoulder radius. The strain 

localization occurs for different values of punch displacement, as shown in Figure 5.14 (b). 

Considering the Swift/48, Swift/Yld91 and S_V/Yld91 models, the maximum values for the 

punch force were 283.13, 268.72 and 259.1 kN, respectively, which occurs for 28.8, 24.9 

and 23.1 mm of punch displacement. Figure 5.15 shows the distribution of the equivalent 

plastic strain in the specimen. For a punch displacement of 28 mm, the maximum equivalent 

plastic strain is 0.48, 1.06 and 1.20 using the Swift/Hill48, Swift/Yld91 and S_Voce/Yld91 
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models, respectively. As for the other specimens submitted to expansion, the strain 

localization occurs in the punch shoulder radius, as shown in Figure 5.15 (d). 

 

Figure 5.14. Evolution in the Marciniak test specimen with 8 inch width of the predicted: (a) major versus 
minor strain, including the experimental results and (b) punch force. 

The evolution of the predicted stress triaxiality in the specimen is presented in 

Figure 5.16 (a) for the three constitutive models. The predicted value for the stress triaxiality 

was 0.66 for all models. Figure 5.16 (b) shows the evolution of the Lode Parameter, 

highlighting a mean value of -0.99 for all models. The reference values for stress triaxiality 

and Lode parameter for the equibiaxial stress state (see Table A.1) are 0.66 (2/3) and -1.0, 

which are both very close to the average numerical values. Thus, the circular specimen 

enables to reproduce a stress state close to the equibiaxial. Nevertheless, the strain path is 

closer to equibiaxial strain (see also Figure 3.7 (b)). For this specimen, the effect of the 

unloading of the center, once the strain localization occurs in the punch radius, is not so 

evident in the stress triaxiality and the Lode parameter. In fact, only for the Swift/Yld91 and 

S_V/Yld91 models, it is possible to observe the unloading, which occurs for 25.2 and 23.1 

mm of punch displacement. Moreover, as for the other cases, it is not possible to predict the 

fracture in the center, as normally reported in the literature [22], [42], without taking into 

account a damage model. Note that all simulations were performed with similar element 

sizes in the critical regions and curvature regions of the Marciniak tools. Thus, the blank 

discretization is not limiting the analysis, since it was possible to reproduce the strain 

localization in the specimen center for the 1 inch Marciniak specimen.  
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Figure 5.15. Equivalent plastic strain on the specimen with 8-inch width predicted by the models: (a) 
Swift/Hill48, (b) Swift/Barlat91, (c) Swift+Voce/Barlat91; (d) Necking effect in the location corresponding to 

the outer edge of the punch.  

 

Figure 5.16. Evolution of triaxiality (a) and Lode parameter (b) with the punch displacement in the 
Marciniak test specimen with 8 inch width comparing different constitutive models.   

5.1.2. Nakazima tests 

The simulations with the Nakazima tool set have the same objective as the 

Marciniak tests with the 8 inch specimen, i.e. both are representative of the equibiaxial stress 
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state. As previously mentioned, simulations were performed with the punch radius of 50.8 

mm and 5 mm. The smaller punch dimension makes it easier to perform tests with a 

specimen submitted to a pre-strain. In this section, both Nakazima tests are performed 

without any pre-strain to evaluate if the reduction of the punch size induces any changes in 

the stress and strain paths. 

5.1.2.1. Punch with 50.8 mm radius  

Figure 5.17 (a) shows the comparison between numerical and experimental 

evolution of the major and minor strains, during the Nakazima test using the punch with 50.8 

mm of radius. Using the constitutive models Swift/Hill48, Swift/Yld91 and S_V/Yld91, the 

maximum values of major strain were 0.42, 0.51 and 0.55, respectively. The ratio between 

the major and minor strain were identical (1.04) for all constitutive models. In fact, the 

evolution of the major strain-minor strain curve is similar to the one reported for the 

Marciniak test (see Figure 5.14 (a)), with their overlapping until the end of the simulation. 

However, when comparing the experimental with the numerical strain paths, they are now 

closer, at least in the initial part. Nevertheless, the experimental results show an evolution of 

the strain path, which tends to the plane strain condition, which is not observed in the 

numerical results.  

 

Figure 5.17. Evolution in the Nakazima test specimen (with 50.8 mm punch) of the predicted: (a) major 
versus minor strain, including the experimental results and (b) punch force. 

Figure 5.17 (b) shows the punch force evolution predicted by each constitutive 

model. In this case, all simulations were performed until the same punch displacement, 

without the occurrence of a clear drop in the punch force.  
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Figure 5.18. Equivalent plastic strain in the Nakazima test specimen using 50.8 mm punch predicted by the 
models: (a) Swift/Hill48, (b) Swift/Yld91, (c) S_V/Yld91; (d) Strain distribution in the center of the specimen, 

as predicted with the S_V/Yld91 model.         

Figure 5.18 shows the distribution of the equivalent plastic strain in the 

specimen, predicted by the three different constitutive models. The specimen presents a clear 

thinning in its center, as shown in Figure 5.18 (d), which is responsible for the reduction in 

the increase of the punch force. However, the thickness reduction is quite uniform around 

the center, presenting a clear localization. This explains why the strain path remains 

unaltered, although high values of thinning have already been attained. This suggests that in 

order to predict the strain localization it is necessary to include softening effects, related with 

damage evolution. For 35 mm of punch displacement, the maximum equivalent plastic strain 

is 0.85, 1.02 and 1.10 using the Swift/Hill48, Swift/Yld91 and S_V/Yld91 models, 

respectively. As shown in Figure 4.4, the blank discretization adopted in the specimen center 

is regular. It is interesting to note that for the Hill48 criterion, the distribution of the 

equivalent plastic strain is quite axisymmetric. However, the Yld91 leads to a more irregular 
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distribution of the equivalent plastic strain. This more irregular distribution does not seem 

to result from mesh size effects, since the elements used in this region were very small. In 

fact, the element size is similar to the one used in the simulations of the Marciniak tests, 

which did not show this effect. Moreover, the contact forces are well distributed, showing 

no visible peaks.  

 

Figure 5.19. Evolution of triaxiality (a) and Lode parameter (b) with the punch displacement in the 
Nakazima test specimen with 50.8 mm punch.   

Figure 5.19 (a) presents the evolution of the predicted stress triaxiality, which 

presents a mean value of about 0.65 for all constitutive models. Figure 5.19 (b) shows the 

evolution of the predicted Lode parameter, which presents a value of -0.99 for all constitutive 

models. Both are very close to the ones reported for the Marciniak test (see Figure 5.16) and 

in Table A.1, for the equibiaxial stress state. 

5.1.2.2. Punch with 5 mm radius  

Figure 5.20 (a) shows the numerical and experimental results of major strain-

minor strain evolutions in the Nakazima test, performed with the 5.0 mm punch radius. Using 

the Swift/Hill48, Swift/Yld91 and S_V/Yld91 models, the maximum major strain values 

were 0.6, 0.64 and 0.66, respectively. The ratio between major and minor strain is 

approximately 1.05 in all models, which is in good agreement with the experimental results, 

and very close to those found in the previous equibiaxial tests. Figure 5.20 (b) shows the 

predicted punch force evolution. The maximum punch force predicted by the constitutive 

models Swift/Hill48, Swift/Yld91 and S_V/Yld91 was 18.16, 17.72 and 17.19 kN, 

respectively, for a punch displacement of approximately 11.5 mm. 
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Figure 5.20. Evolution in the Nakazima test specimen (with 5 mm punch) of the predicted: (a) major versus 
minor strain, including the experimental results and (b) punch force.  

Figure 5.21 shows the predicted distribution of the equivalent plastic strain in 

the specimen. For 12 mm of punch displacement, the maximum value is 1.28, 1.34 and 1.44 

for the model’s Swift/Hill48, Swift/Yld91 and S_V/Yld91, respectively. The thinning of the 

center of the specimen (see Figure 5.21 (d)) is clearly visible, as in the Nakazima test with 

the 50.8 mm punch. 

 

Figure 5.21. Equivalent plastic strain in the Nakazima test specimen using 5 mm punch predicted by the 
models: (a) Swift/Hill48, (b) Swift/Yld91, (c) S_V/ Yld91; (d) Strain distribution in the center of the specimen, 

as predicted with the S_V/Yld91 model.       

Figure 5.22 (a) presents the predicted evolution for the stress triaxiality, which 

ranges between 0.55 and 0.65 for all the constitutive models. Figure 5.22 (b) shows the 
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evolution of the predicted Lode parameter, which is approximately -0.99 for all the 

constitutive models. In this case, although both values remain close to the reference ones for 

the equibiaxial stress state (see Table A.1), there are more oscillations, particularly in the 

stress triaxiality. This may be related to the element size being not ideal for such a small 

punch.  

 

Figure 5.22. Evolution of triaxiality (a) and Lode parameter (b) with the punch displacement in the 
Nakazima test specimen with 5 mm punch.   

5.1.3. Comparisons of monotonic strain path results and discussion 

The shape of the specimen used in the Marciniak tests allows to obtain 

monotonic strain paths ranging from uniaxial stress (1 inch width) to equibiaxial strain (8-

inch width). Globally, the numerical perditions are in good agreement with the experimental 

results, particularly under uniaxial tension and equibiaxial stress. In fact, for these strain 

paths the influence of the yield criterion seems negligible. On the other hand, for the 

specimen with 5.5 inch of width, for which the experimental results lead to an approximately 

plane strain path, the differences are significant. First, both yield criteria lead to a strain path 

between plane strain and equibiaxial stress. Moreover, the yield criteria lead to different 

strain paths. 

According to Figure 3.7, both yield criteria predict a plane strain path for a 

similar loading direction. However, for loading directions slightly deviated, the in-plane 

strain ratio predicted by both yield criteria is quite different. In this context, it is important 

to mention that the yield criteria were calibrated using uniaxial tensile and bulge test results. 

Thus, no data concerning the plane strain state was used, which seems to have a direct impact 

in the model’s prediction accuracy. This can also have an influence of the results for other 
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tests, for which the experimental strain paths show an evolution towards the plane strain, 

after the onset of necking, as seen in the work of Ha et al [43]. The only example for which 

this behavior was predicted was the 1 inch Marciniak specimen. 

 

Figure 5.23. Normalized stresses in the transverse and rolling directions from analytical predictions and 
numerical solutions from Marciniak tests. Diamond marker: Uniaxial stress; Triangle marker: Plane strain 

(5.5 inch specimen); Square marker: Equibiaxial stress.    

Globally, the results show that the hardening law influences the onset of necking 

while the yield criterion has a strong impact in the strain path predicted. Figure 5.23 shows 

the normalized stresses, obtained from the Marciniak test using different configurations of 

the specimen, plotted in the transverse and rolling directions. The reference stress states are 

also marked on the analytical surfaces. The numerical results show the slight evolution of 

the loading direction, during the test. Moreover, this figure highlights that for a specimen 

with 5.5 inch, there is a relevant difference between analytical and numerical results, 

justifying the differences observed in Figure 5.9 (b).  
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Regarding the equibiaxial stress state, the experimental strain paths are quite 

linear, except for the Nakazima with a 50.8 mm punch radius, which show the tendency to 

change to a plane strain state. Nevertheless, in the linear part they present a ratio closer to 

equibiaxial strain. The same trend is observed in the numerical results, which is explained 

by the slight deviation from the equibiaxial stress state, shown in Figure 5.23. This is enough 

to change the strain ratio to a value closer to 1.0, as shown in Figure 3.7 (b). Thus, despite 

the material's anisotropy, all equibiaxial tests had 휀TD 휀RD⁄  values close to 1, i.e. the material 

tries to reach a balance between equibiaxial stress state and equibiaxial strain state, due to 

the geometrical constraints. This fact was also reported for the Hydraulic Bulge tests in the 

work of Reis et al. [44]. 

5.2. Nonlinear strain paths 

Two different combinations of bilinear strain paths were performed, namely 

uniaxial tension followed by mini-Nakazima (punch with 5 mm radius) and Marciniak test 

followed by the mini-Nakazima. Two different values of specimen width were adopted in 

the Marciniak test, to obtain two different strain paths for the first loading stage. 

5.2.1. Uniaxial followed by Mini-Nakazima (equibiaxial) 

Figure 5.24 presents the comparison between the predicted bilinear strain paths 

for the three models, as well as the experimental results. The imposed uniaxial tension yields 

6% of major pre-strain. The elastic recovery of the metallic sheet between the first and 

second loading phases is not visible in the experimental data. This creates a small divergence 

of results at the beginning of the second phase. However, it is possible to see that the strain 

paths are approximately parallel. In fact, the ratio between the major and minor strain in the 

experimental results is 1.027 and in the numerical is 1.019. 

Figure 5.25 shows the punch force evolution in each stage of the bilinear strain 

path. The uniaxial tensile force shows a similar trend for the three models, corroborating the 

calibration results of section 3.1.3. As shown in Figure 5.25 (b), the punch force evolution 

attains the maximum value for a punch displacement of approximately 8.2 mm, which is 

smaller than the one observed for the monotonic equibiaxial strain path (see Figure 5.20 

(b)). This corroborates the influence of the pre-strain in the strains distribution. The trend 

between the models remains similar with the S_V/Yld91 model reaching the strain 

localization earlier, as highlighted in the Figure 5.25 (b). 
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Figure 5.24. Major strain-minor strain evolution comparison between experimental and numerical results of 
the nonlinear test (Uniaxial tension + mini-Nakazima).   

 

Figure 5.25. Evolution of the predicted force applied to the specimen in the nonlinear test (Uniaxial tension 
+ mini-Nakazima): (a) First phase; (b) Second phase.   

Figure 5.26 shows the distribution of the equivalent plastic strain in the 

specimen after the second strain path. For 10 mm of punch displacement, the maximum 

equivalent plastic strain predicted by the model’s combinations Swift/Hill48, Swift/Yld91 

and S_V/Yld91 provide is 2.02, 2.25 and 2.40, respectively. Since the second step uses the 

5 mm Nakazima punch, the strain localization occurs in the center of the specimen, as 

highlighted in Figure 5.26 (d). It should be mentioned that the thickness reduction is less 
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uniform than the one observed in Figure 5.21 (d), since a higher equivalent plastic strain 

was attained, due to pre-strain applied in the first phase. 

 

Figure 5.26. Equivalent plastic strain in the specimen of the nonlinear test (Uniaxial tension + mini-
Nakazima): (a) Swift/Hill48, (b) Swift/Yld91, (c) S_V/Yld91; (d) Strain distribution in the center of the 

specimen, as predicted with the S_V/Yld91 model.       

 

Figure 5.27. Evolution of triaxiality (a) and Lode parameter (b) in the nonlinear test (Uniaxial tension + mini-
Nakazima). Continuous line: phase one; Dashed line: phase two.  

Figure 5.27 (a) and (b) present the evolution of the stress triaxiality and Lode 

parameter in each phase. The values attained in each phase are identical to the ones found in 

the monotonic strain patch simulations (see Figure 5.7 for the first phase and Figure 5.22 

for the second). The stress triaxiality changes after the onset of necking, which is connected 
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with the strong thinning predicted. Considering the results from the monotonic strain paths, 

the weak influence of the constitutive models on the numerical solution was expected for 

uniaxial tensile stress and equibiaxial stress conditions. 

5.2.2. Marciniak followed by Mini-Nakazima (equibiaxial) 

5.2.2.1. Specimen with 5.5 inch (Marciniak) 

In this test, the Marciniak tools were selected to deform the 5.5 inch specimen, 

followed by the mini-Nakazima tools. Figure 5.28 shows the comparison between the 

predicted strain path for the three models, as well as the experimental results. In this case, a 

pre-strain of 3% was imposed. As for the previous case, the experimental data does not show 

the elastic recover between loading stages. However, for this bilinear path the impact seems 

smaller, due to the different trajectory predicted in the experimental and numerical results, 

during the first stage. In the second stage, the ratio between the major and minor strain in 

the experimental results is 1.024 and in the numerical is 1.095. Taking into account the 

results for the monotonic strain paths, the difference between experimental and numerical 

results shown in the Figure 5.28 was expected. The differences seem more negligible due 

to the small pre-strain value. 

 

Figure 5.28. Comparison of the major strain-minor strain evolution between experimental and numerical 
results of the nonlinear test (5.5 inch Marciniak + mini-Nakazima).   
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Figure 5.29. Evolution of the predicted force applied to the specimen in the nonlinear test (5.5 inch 
Marciniak + mini-Nakazima): (a) First phase; (b) Second phase.   

 

Figure 5.30. Equivalent plastic strain in the specimen of the nonlinear test (5.5 inch Marciniak + mini-
Nakazima): (a) Swift/Hill48, (b) Swift/Yld91, (c) S_V/Yld91; (d) Strain distribution in the center of the 

specimen, as predicted with the S_V/Yld91 model.       

Figure 5.29 presents the punch force evolution in each loading stage, 

highlighting the similarities with the ones reported for the monotonic strain paths, in Figure 

5.9 (a) and in Figure 5.20 (b). In this case, the maximum punch force under equibiaxial 

stress conditions is attained for a punch displacement of approximately 8.1mm. This value 

is slightly smaller than the one reported for the previous bilinear strain path. Thus, the pre-
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strain for a path closer to plane strain seems to have a higher influence on the strains 

distributions than the uniaxial tensile one.  

Figure 5.30 shows the distribution of the equivalent plastic strain in the 

specimen. For a punch displacement of 11.5 mm the maximum equivalent plastic strains is 

2.30, 2.58 and 2.7 for the model Swift/Hill48, Swift/Yld91 and S_V/Yld91, respectively. 

The localization also occurs in the center of the specimen, as highlighted in Figure 5.30 (d), 

which confirms that the application of pre-strains in different conditions did not change the 

ability of the model to reproduce the equibiaxial stress state in the center of the specimen. 

Figure 5.31 (a) and (b) presents the evolution of the stress triaxiality and the Lode parameter, 

respectively, in each phase of loading. It is evident that, as in the monotonic strain path (see 

Figure 5.11 (b)), it was not possible to perfectly reproduce the plane strain state in the first 

loading stage. As in the previous bilinear strain path case, the stress triaxiality changes after 

the onset of necking, which is connected with the strong thinning predicted (see Figure 5.30 

(d)). 

 

Figure 5.31. Evolution of triaxiality (a) and Lode parameter (b) in the nonlinear test (5.5 inch Marciniak + 
mini-Nakazima). Continuous line: phase one; Dashed line: phase two.  

5.2.2.2. Specimen with 6.5-inch (Marciniak) 

The last simulation considers the 6.5 inch specimen for the first stage, using the 

Marciniak tools. Thus, the first stage is biaxial and the second equibiaxial. Figure 5.32 

displays the major-minor strain evolution for the experimental and numerical results. This is 

the test with the most subtle change in strain trajectory, which makes the elastic recovery of 

the material almost imperceptible in the numerical models. In this case, a pre-strain of 12% 

was imposed. As for the monotonic strain path, the impact of the yield criteria selected is 

evident, in the first phase. The differences in the first phase are more evident than the 
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previous one, because higher strain values are attained. In the second stage, the ratio between 

the major and minor strain in the experimental results is 1.004 and in the numerical is 0.965 

and 0.996, for the Hill48 and the Yld91 models, respectively. Thus, the comparison with the 

results for the monotonic strain path indicate that this pre-strain seems to induce a slight 

change in the strain path under equibiaxial stress (see Figure 5.20 (a)).  

 

Figure 5.32. Comparison of the major strain-minor strain evolution between experimental and numerical 
results of the nonlinear test (6.5 inch Marciniak + mini-Nakazima).   

 

Figure 5.33. Evolution of the predicted force applied to the specimen in the nonlinear test (6.5 inch 
Marciniak + mini-Nakazima): (a) First phase; (b) Second phase.   

Figure 5.33 shows the punch force evolution in each stage of the bilinear strain 

path. As in the previous nonlinear tests, the evolution of the punch force is very similar to 
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those presented for the monotonic results (Figure 5.12 (b) and Figure 5.20 (b)). Figure 5.33 

(a) highlights that in this case different punch displacements had to be imposed to assure the 

same pre-strain. As for the other bilinear strain paths, the maximum punch force of the mini-

Nakazima punch is attained for a punch displacement of approximately 7.6 mm. The trend 

between the three constitutive models is unaltered. 

 

Figure 5.34. Equivalent plastic strain in the specimen of the nonlinear test (6.5 inch Marciniak + mini-
Nakazima): (a) Swift/Hill48, (b) Swift/Yld91, (c) S_V/Yld91; (d) Strain distribution in the center of the 

specimen, as predicted with the S_V/Yld91 model.       

Figure 5.34 shows the distribution of the equivalent plastic strain in the 

specimen at the end of the second phase. For 7 mm of displacement of the 5 mm radius 

punch, the maximum equivalent plastic strain predicted by the Swift/Hill48, Swift/Yld91 

and S_V/Yld91 models is 0.95, 0.96 and 0.98, respectively. The strain localization occurs in 

the center of the specimen, as in all other simulations that used the mini-Nakazima tools, as 

highlighted in the Figure 5.34 (d).  

5.2.3. Comparisons of bilinear strain path results and discussion 

All constitutive models enable a fairly accurate reproduction of the bilinear strain 

paths. Nevertheless, the models that use the Yld91 yield criterion lead to results closer to the 

experimental ones. The exception is in uniaxial tension and equibiaxial stress tests, for which 

the results of both yield criteria were very close. It is noteworthy that the plasticity model 
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enables the prediction of the strain localization, but the fracture prediction would require the 

use of a damage model. In this context, many of the uncoupled fracture models are based on 

the equivalent strain at fracture, as discussed in chapter 2.  

 

Figure 5.35. Evolution of the strain along the thickness direction, at the center of the specimen, in function 
of the punch displacement (Swift/Yld91 model).  

Figure 5.35 shows the evolution of the strain in the thickness direction, at the 

center of the specimen, in function of the mini-Nakazima punch displacement. The results 

are shown only for the Swift/Yld91 model, since the other present a similar trend. The 

evolution obtained with the monotonic test is compared with the bilinear strain paths. The 

trend is similar in all tests, with an inflection point that can be related with the changes in 

the contact conditions between the blank and the punch. In fact, in the beginning of the test 

the contact changes from the center point to the periphery. Afterwards, with the increase of 

the thickness strain, the contact in the center is established again. The figure highlights that 

the through-thickness pre-strains induced by uniaxial tension and close to the plane strain 

conditions are quite similar. However, the conditions imposed in the first path are enough to 

change the evolution in the second one. The biaxial through-thickness pre-strain is quite 

higher, which justifies the smallest displacement for which the localization occurs. Figure 

5.35 shows that the drop of the punch force is being predicted for a thickness strain ln (휀𝑡) 

close to -1, which corresponds to a thickness of 0.33 mm.  
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6. CONCLUSION 

The main scope of this work was to access the ability of constitutive models to 

predict nonlinear strain paths in sheet metal forming. The numerical strain paths solutions 

are compared to the experimental ones, provided by the benchmark committee, in order to 

assess the accuracy of each constitutive model. Furthermore, the analysis of the strain fields 

was performed to access the ability of the plasticity model to predict the strain localization. 

The tests were performed for conditions close to uniaxial tension, plane strain and different 

biaxial stress ratios. In the numerical models adopted, the drawbeads were replaced by a null 

displacement in the outer radius of the specimen. It was possible to conclude that the use of 

this simplification leads to substantial computational gains, in comparison to the physical 

drawbeads.  

In all tests performed, it was possible to predict the strain localization and the 

consequent drop in the forming force. For the conditions close to uniaxial tension, necking 

occurs leading to the change of the strain path. However, for the plane strain and biaxial 

conditions the necking occurs in the punch shoulder area and not in the center of the 

specimen. Moreover, in the equibiaxial tests the strain localization occurs in a wide region, 

around the specimen center, never presenting a strong gradient.  

The results from the monotonic strain paths tests highlight the importance of the 

yield criterion, which has a greater influence on the strain path predicted than the hardening 

law. This is more evident under conditions close to plane strain, which is the region where 

the yield criteria present higher differences in terms of the normal to the yield loci. In this 

context, it should be mentioned that no experimental data for plane strain was available to 

calibrate the yield criteria. Another conclusion that can be drawn from the monotonic tests 

is that the Barlat91 leads to strain paths closer to the experimental ones, when compared with 

the ones predicted by Hill48. Regarding the hardening law, the combined Swift and Voce 

always leads to a lower maximum punch force, which is attained also for a lower 

displacement. This can be related with the fact that it also predicts a lower value for the 

equivalent plastic strain that leads to the onset of necking, under the uniaxial stress state. The 

same effects are valid for the bilinear strain paths.  
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6.1. Remarks for future work 

The simplification adopted to reproduce the intermediate blank in the Marciniak 

test should be evaluated, by performing the tests considering the two deformable bodies. 

Although, it is not expected to have a great influence on the results, small changes on the 

strain paths can occur as consequence of some sliding between the two blanks. Moreover, it 

was assumed that the differences between the physical drawbead and the boundary 

conditions adopted would be higher for the specimen with the smaller width. Nevertheless, 

it would be interesting to evaluate the differences between both models for other stress state 

conditions. 

In addition to the bilinear strain paths analyzed in this work, it will be interesting 

to carry out simulations for other ones, which require resorting to other numerical tools to 

enable the trimming of small specimens for the pre-strained ones. 

The results presented in this work highlight that if the goal is to predict ductile 

fracture the constitutive model must include a yield criterion that enables a proper 

description of the strain field but also a damage model. The results provided by the 

benchmark committee only allow to identify non-coupled fracture models, since there is no 

information regarding the punch force evolution. Some of these models can be calibrated 

based on the information extracted on this work regarding the evolution of the stress 

triaxiality and the Lode parameter. 
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APPENDIX A: TRIAXIALITY AND LODE PARAMETER 

 

The Cauchy stress tensor 𝛔 presents three invariants, which can be defined in 

function of its components as follows: 

 𝐼1 = Tra(𝜎𝑖𝑗) = 𝜎11 + 𝜎22 + 𝜎33, 
(17) 

 𝐼2 = 𝜎11𝜎22 + 𝜎22𝜎33 + 𝜎11𝜎33 − 𝜎12
2 − 𝜎23

2 − 𝜎13
2, (18) 

 𝐼3 = 𝜎11𝜎22𝜎33 + 2𝜎12𝜎23𝜎13 + 𝜎11𝜎33 − 𝜎11𝜎23
2 − 𝜎22𝜎13

2 − 𝜎33𝜎12
2, (19) 

where Tra represents the trace of a second order tensor. The Cauchy stress tensor 𝛔 can also 

be decomposed into two parts, the hydrostatic and the deviatoric one 𝐬, as follows:  

 𝜎𝑖𝑗 = 𝜎𝑚𝛿𝑖𝑗 + 𝑠𝑖𝑗 , (20) 

 𝜎𝑚 =
1

3
𝐼1, 

(21) 

where 𝜎𝑚 is the mean stress and 𝛿𝑖𝑗 is the Kronecker symbol, i.e. 𝛿𝑖𝑗 = 0, if 𝑖 ≠ 𝑗 and 𝛿𝑖𝑗 =

1 if 𝑖 = 𝑗 [45]. The hydrostatic component is responsible for volumetric (elastic) changes, 

while the deviatoric one is related with the plastic deformation. Also for the deviatoric stress 

tensor 𝐬 it is possible to define its invariants, in function of its components, as follows [45]: 

 𝐽1 = 𝑠𝑘𝑘 = 0, (22) 

 𝐽2 =
1

3
𝐼1

2 − 𝐼2, 
(23) 

 𝐽3 = det(𝐬) = 𝜎11𝜎22𝜎33 + 2𝜎12𝜎23𝜎13 − 𝑠12
2𝑠33 + 𝑠23

2𝑠11 + 𝑠13
2𝑠22. (24) 

Notice that, according with the definition given in equation (22), 𝐽1 = 0, which is the main 

characteristic of any deviatoric quantity. Thus, any stress state that leads to plastic 

deformation can be characterized in function of its stress invariants. This approach is 

commonly adopted in literature, for defining ductile fracture criteria. 

The principle is that any stress state can be defined in function of only two 

parameters: the stress triaxiality and the Lode parameter. The stress triaxiality 𝜂 is defined 

as [45][46]: 

 𝜂 =
𝜎𝑚

𝜎
, (25) 
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where 𝜎 = √3𝐽2, is the equivalent stress, defined according to the von Mises yield criterion. 

The normalized third stress invariant 𝜉 is defined as:  

 
𝜉 =

(3√3 𝐽3)

(2𝐽2
3
2)

= cos(3𝜃𝐿), (26) 

such that 𝜉 varies in the range of [-1, 1]. In equation (26), the Lode angle 𝜃𝐿 is also 

introduced, with a range of [0, 𝜋 3⁄ ]. Based on this definition, it is also possible to determine 

the normalized Lode angle, as follows: 

 �̅� = 1 −
6𝜃𝐿

𝜋
= 1 −

2

𝜋
cos−1(𝜉), (27) 

with a range of [-1, 1] [45][46], which is also called the Lode parameter. 

Whatever the variable selected along with the stress triaxiality, it is possible to 

associate specific values to corresponding stress states, as highlighted in Figure A. 1 and 

Figure A. 2, considering the normalized third stress invariant and the normalized Lode 

angle, respectively. The values associated with uniaxial tension, equibiaxial tension and 

plane strain tension conditions are also displayed in the Table A.1. 

 

Figure A. 1. Usual values for stress states in the space of (𝜼, 𝝃) [45]. 
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Figure A. 2. Usual values for stress states in the space of (𝜼, �̅�) [46]. 

 

Table A.1. Usual values for 𝜼, 𝝃 and �̅� for each stress state condition [45][46]. 

 𝜼 𝝃 �̅� 

Uniaxial tension 1/3 1 1 

Equibiaxial tension 2/3 -1 -1 

Plane strain tension √3/3 0 0 
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