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Abstract

The last few years have brought a growth in the usage of technologies like Deep
Learning and Convolution Neural Networks. This is possible due to advances in
hardware and related areas. In reality, the technology that exists today allows any-
one to work with neural networks with low ranked Graphics Processing Unit (GPU).

In this work, the Convolutional Neural Network (CNN) composition and meth-
ods utilised to tackle the overfitting problems in the Neural Network (NN) will be
introduced. To give an understanding of the results obtained, the Multiple Object
Tracking (MOT) metrics used in this work were also presented.

Two different networks were exploited, more specifically Tracking by detection
and End-to-end Network. Both were used to get speed estimation of vehicles. Con-
cerning NN, the main objective was to detect objects in an image to feed a tracker.
The calibration parameters were obtained through an automatic calibration method
developed in ISR. On this system, the mean error achieved for the speed estimation
was 3.64km/h.

In the End-to-End network, the Deep learning component is even more notori-
ous. This network estimates the average speed of vehicles around a selected region
of interest with few frames in a video without requiring camera calibration and ve-
hicle tracking from previous methods. This network has achieved a mean speed
estimation error between 3km/h and 5km/h.

This project was in the interest of Brisa, a toll collection service, aiming at
the use of surveillance cameras capable of monitoring traffic. At the same time
detecting speed through neural networks was achieved without the need to give pre-
calculated information to the network.

Keywords
Deep Learning, Convolutional Neural Networks, Computer Vision, Vehicle

Recognition, End-to-end Network



Resumo

Nos últimos anos, observou-se um aumento no uso de tecnologias tais como,
Deep Learning e as CNN. Isto foi possivel devido ao avanço no hardware necessário
ao uso destas tecnologias e nas áreas relacionadas. Hoje em dia, a tecnologia exis-
tente permite que qualquer pessoa possa utilizar as redes neuronais com um GPU
médio.

Neste trabalho é apresentada uma introdução ás CNN, assim como, a sua
composição e métodos utilizados para abordar o problema de overfitting. De forma
a facilitar a compreensão dos resultados obtidos as MOT métricas utilizadas neste
trabalho foram também apresentadas.

Exploraram-se duas redes diferentes, mais concretamente, racking by detection

e End-to-end Network. Ambas foram treinadas de forma a estimar a velocidade
de veı́culos. Relativamente à RCNN, o objetivo foi detetar objetos numa imagem,
de forma a alimentar um tracker. Os parâmetros de calibração necessários para a
estimação de velocidade são obtidos através de um método de calibração automático
desenvolvido no ISR. Neste sistema, o erro médio da estimação de velocidade foi
de 3,64 km/h.

Na rede End-to-end, a componente de Deep learning é notória, pois, consegue
estimar a velocidade sem necessidade de sitemas auxiliares como a calibração
e tracking. É possivel observar que esta rede tem grandes potencialidades na
estimação de velocidades com o mı́nimo de intervenção. Com a utilização desta
rede foi alcançado um erro entre 3 km/h a 5km/h.

Este projeto foi do interesse da Brisa, um serviço de cobrança de porta-
gens, tendo como objectivo utilizar câmaras de vigilância com capacidade de
monitorização do transito e ao mesmo tempo detetar velocidades através de redes
neuronais, sem a necessidade de fornecer informação calculada a priori à rede.

Palavras Chave
Deep Learning, Convolutional Neural Networks, visão por computador, recon-

hecimento de veı́culos, End-to-end Network
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1. Introduction

Speed estimation has an important role in road safety, specifically on highways,

as it provides information that can be used to enforce speed limits and prevent

car accidents. Accidents on highways due to speeding can have disastrous con-

sequences for the drivers because of the high speeds involved. Highway cameras

are already installed in order to get traffic information in the road for tooling pur-

poses and those same cameras can be used for estimating the speed of passing cars

and other traffic analytic tasks. Estimating Speed with already installed cameras is

more efficient since there is no need for new infrastructures or new equipment like

radars.

Real-time traffic monitoring has been a challenging task over the past decades.

The solution for this problem ranges from piezoelectric sensors [3], smartphone

GPS, [4], and also the use of video camera, [5], [6], [7], [8], [9], providing a low-

cost, non-intrusive monitoring system with good information. Nowadays, with the

increase of faster and cheaper hardware, as well as better quality video cameras,

Intelligent Traffic Monitoring Systems (ITMS) are a must have solution.

Vehicle speed estimation through a video camera in real-time is currently the

subject of an active research (Figure 1.1). In recent years, several methods have

been proposed for vehicle speed estimation. Some methods, such as speed esti-

mation through piezoelectric sensors [3] and loop sensors installed on the road,

are very accurate but also very intrusive, expensive and not so efficient since the

highway already has pre-installed cameras. The same applies to radar, smartphone,

Global Positioning System (GPS) [4], infrared systems, etc. These systems are not

so intrusive, nonetheless are more expensive and less efficient due to the use of extra

sensors besides the cameras that are already installed in the infrastructure.

Figure 1.1: Speed estimation with single camera.
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Traffic surveillance that makes use of speed estimation can be accomplished

through the use of video cameras. Video cameras output data that provides a great

quantity of information useful for a multitude of tasks: car classification [10], li-

cense plate recognition [11], occupancy detection [12], abnormal events in the road

[13] and speed estimation. Therefore, a high quantity of information is being col-

lected nowadays, however it requires a high computational power to be processed.

For real-time speed estimation new solutions have been implemented through the

use of Deep Affinity Networks [14], Convolutional Neural Network (CNN) on de-

tection phase [15], neural decision tree [8], neural networks and deep learning [16].

Deep Convolution Neural Network (DCNN) achieved incredible success in ve-

hicle detection as well as in the detection of other objects [16]. Recent studies

suggest that the use of deep learning to compute feature descriptors and vehicle

tracking contribute to better results along with low computational power needed.

Our goal is to implement a system that can give us a real-time solution to vehicle

speed estimation. In order for this system to be installed on different camera con-

figurations, the system must adapt to different points of view and different intrinsic

camera setups. To accomplish this goal, we will rely on deep learning solutions,

through CNN based architecture to implement a real-time speed estimation system

where we input video and the system outputs the speed estimation, resulting in an

end-to-end system.
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1. Introduction

1.1 Motivation and Challenges

Speeding is heavily correlated with serious accidents. One way to solve this

problem is to understand where high speed is practiced and use methods to reduce it.

For this reason, we will need to estimate the cars velocity. The process of estimating

velocity in this document will only use video acquired from a single-camera.

Estimating the velocity of vehicles through video can be a challenging task in

which some of the problems are: the object occlusion, which can make the tracker

loose the object tracking; poor light in the image, gives low contrast and conse-

quently low vehicle detection due to the lost of corners and lines features; low res-

olution cameras that could not evidence features in the object; camera jitter, which

can occur with camera vibration from wind condition e.g.; bad calibration parame-

ters giving wrong spatial object position, etc.

Existing systems shall keep up the evolution of the technology. In that way,

Brisa could use their infrastructure to implement the system proposed in this doc-

ument. This system should be capable of operating independently and run in real-

time without loosing performance.

1.2 Objectives

In this dissertation, we are going to use cameras that are already installed in the

infrastructure to monitor traffic on highways. The system will output a real-time

speed estimation without requiring the incorporation of new equipment, which can

be useful to improve the highway monitoring system.

In this work we will use two major detecting and tracking approaches to achieve

real-time speed estimation. The initial method computes the speed estimation based

tracking by detection method. This initial system has more variables (calibration,

detection and tracker) and higher computational requirement.

The second method consists of a deep learning network based on convolution

network with low computational requirements. For this second method, to achieve

high accuracy it needs to be trained on a very high amount of data. To deal with

this high amount of data we plan to use labeled datasets available to the scientific

community.
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1.3 Contributions

1.3 Contributions
Brisa is the largest private operator of transport infrastructures in Portugal and

is nationally and internationally recognized. Brisa operates the key highway con-

cessions in Portugal and is the main shareholder of ”Via Verde”, the most used toll

method of payment in Portugal.

To monitor traffic and identify vehicle license plates, Brisa uses appliances that

are installed on vehicles and video cameras on highways [17]. This work is within

the scope of a R&D project funded by A-to-be, a company owned by Brisa Innova-

tion and Technology (BIT), serving as the group´s international brand responsible

for developing and delivering solutions to mobility services.

On this work, the tracking by detection and End-to-end solution for speed esti-

mation are employed and evaluated. The results obtained by this two systems could

be of interest to other students and researchers working on similar speed estimation

problems.

1.4 Document Overview
This dissertation is organized as follows: firstly, Chapter 2 presents a introduc-

tion of the basic information related with this project, as well as relevant approaches

used on the project.

In Chapter 3, is presented an explanation of the Multiple Object Tracking (MOT)

metrics used to validate results of the the proposed work.

In Chapter 4 presents a discussion of the most important works related with this

project, as well as relevant approaches, and a comparison between them.

In Chapter 5 the proposed system is presented, an explanation of each part of

the work in detail, clarifying what has been developed, and introducing the main

tools used.

In Chapter 6, a simulation study is presented to test different system parameters

and initially analyse and discuss system performance under different configurations

and at the end tests and the acquired results are discussed in detail.

Finally, in Chapter 7, we make an overview of the developed work and present

possible future lines of work.
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2.1 Introduction

2.1 Introduction
Recent approaches for object detection use essentially machine learning algo-

rithms. Machine learning performance can increase by collecting more data, use

more powerful models and use different techniques to prevent overfitting. Initially

datasets were relatively small but with the increase of the use of machine learn-

ing, datasets are getting bigger with more general data, increasing the accuracy of

systems developed.

Today’s Graphics Processing Unit (GPU), combined with a highly opti-

mized convolution implementation, are powerful enough to facilitate training of

interestingly-large CNN. knowing this, we will try to implement a solution to a real

problem, with an almost infinite number of environments. The amount of dataset

used may not be general enough, decreasing precision. That is why it is necessary

to have a large amount of data, but also general and balanced data.

To tackle the problem of speed estimation through video from a camera we will

use a CNN that is a part of Neural Networks mostly used for image recognition.

Images in a CNN will pass through a series of convolution layers with Kernels,

Pooling, fully connected layers and apply an activation function. In the next sub-

sections each part of a CNN will be discussed in more detail.

2.1.1 Convolution layer

A convolution layer passes a kernel in the image, creating a new image with

enhanced features. Enhancing the image to give defined features is a way to let the

network achieve the important features.

On a convolution layer, different types of filters can be used, and those could

be adequate depending on the problem. The right use of filters allows the network

to successfully capture the spatial dependencies in an image. A convolution layer

acquires important features through convolution operations that pass a kernel on the

image in a series of convolutions and make calculations between parts of the image

and the kernel.

The objective of the kernel is to extract the high-level features such as edges,

from the input image. A filter is composed with one or more kernels that slide

through the input image.

This sliding of the filter through the input image is defined with 4 hyper-
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2. Convolution Neural Network Concept

Figure 2.1: Convolution of a 3×3×1 kernel with a 4×4×1, padding of null values,
size equals to integer part of kernels half size and stride of 1

parameters:

• Channels, that correspond to the depth of the filter normally 3 for an Red

Green Blue (RGB) image;

• Filter size, dimensions of the filter that can change with the interest of ex-

tracting features from objects that are closer or distant from the camera;

• Stride, which is the amount of shifting unit from the filter through the input;

• Padding, surrounds the input image with pixels symmetrically allowing it to

maintain the same amount of input after convolution.

2.1.2 Pooling Layer
The pooling layer makes a downsampling operation, usually applied after a con-

volution layer, which does some spatial invariance. The Average pooling gives the
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2.1 Introduction

average value over a part of the image covered by the kernel, reducing dimensional-

ity. The max-pooling gives the higher number in part of the image where the kernel

is applied. The application of Max pooling acts as noise suppression along with

dimensional reduction. For this reason, Max pooling is normally used.

Figure 2.2: Example of max pooling and Average pooling

2.1.3 Activation function

The purpose of an activation function is to add non-linearity to the neural net-

work also decides whether a node should be activated or not(non-linear activation

functions). Activation function are normally used between a convolution layer and a

pooling layer. After the sums of each node are weighted, the sum is passed through

a non-linear function known as an activation function.

The most used function in convolution networks is the ReLU activation function

given by Equation (2.1), this function is one of the most used because is computa-

tional efficient allowing to train the neural network several times faster without a

significant penalty to generalization accuracy. This function will basically output

as zero the negative numbers and the positives as their number. It introduces non-

linearities to the decision function and in the overall network without affecting the

receptive fields of the convolution layers.

g(z) = max(0,z) (2.1)

9



2. Convolution Neural Network Concept

Figure 2.3: An example of a classification CNN.

Other functions can be used like the hyperbolic tangent (2.2) or the sigmoid

function (2.3). This last two make the gradient value approaches to zero, which will

get the network ceases to learn and suffer from the Vanishing gradient problem in

which values away from main range of the function will not have a bigger impact

compared to the ones on the main range limit.

Activation function with higher complexity are normally used at the end of the

network and just used once. One of the most used activation function at the end of a

convolution network is the softmax function (2.4) this function will give a number

between 0 and 1 were the higher numbers have an exponential contribution.

f (x) = tanh(x) (2.2)

σ(x) = (1+ e−x)−1 (2.3)

σ(z) j =
ez j

∑
k
k=1 ezk

(2.4)

2.1.4 Fully connected layer

The Fully connected layers or feed forward neural network are normally at the

end of the network and it is composed by different layers and different connections

between each of them. As the name suggests, all neurons in a fully connected

layer connect to all the neurons in the previous layer. Each layer is composed with

neurons that have different weights. This weights are calculated when the network

is training.

10



2.2 Overfitting solutions

The fully connected layer is normally used for classification of the data, after the

feature extractions. The use of a fully connected layer is a very powerful tool that

have a high training capacity. In contrast, needs a lot of data to train it properly and

use an high amount of computational power. With the increase of fully connected

layers the density of the network is increased. For this reasons it is used at the end of

the network after all the data has been properly transformed reducing it complexity.

Figure 2.4: Fully Connected Layer representation.

The fully connected layer get as input the last flatten matrix or vector of the

neural network and then applies a calculation to the vector g(Wx + b) in which

x[p,1] is the input vector, w[p,n] is the weight matrix, b[p,1] is the bias, g is an

activation function usually a ReLu, p is number of neurons on the previous layer

and n is the number of neurons in the next layer

2.2 Overfitting solutions
Overfitting happens when the model fits too well to the training set. It then

becomes difficult for the model to generalize to new examples that were not in the

training set.

2.2.1 Dropout
Dropout is a regularization technique that zeros out the activation values of ran-

domly chosen neurons during training. This constraint forces the network to learn

11



2. Convolution Neural Network Concept

more robust features rather than relying on the predictive capability of a small sub-

set of neurons in the network. This significantly reduces overfitting and gives major

improvements over other regularization methods. This technique improved the per-

formance of in a wide variety of application including object classification, digit

recognition, speech recognition, document classification and analysis of computa-

tional biology data as shown in [18].

Figure 2.5: Dropout example on a Neural Network.

2.2.2 Transfer Learning
Transfer Learning works by training a network on a big dataset and then using

those weights as the initial weights in a new classification task. Typically, just the

weights in convolutional layers are copied, rather than the entire network including

fully-connected layers. This is very effective since many image datasets share low-

level spatial characteristics that are better learned with big data.

2.2.3 Fine-Tuning
Fine-Tuning is conceptually very similar to transfer learning. In Fine-Tuning,

the network architecture is defined and then trained on a big dataset. This differs

from Transfer Learning because in Transfer Learning, the network architecture must

be transferred as well as the weights.
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3. Multi-object tracking performance metrics

3.1 Introduction
To proper evaluate the MOT system presented in this work, different perfor-

mance metrics were used. In the tracking by detection system, for the detection

phase the Mean Average Precision (MAP) metric was utilised. With the joining

of the detection and the tracking the MOT metrics were used. For the End-to-End

network the MAP metric was used to understand the network performance. In the

training phase instead of giving an Mean Absolute Error (MAE) to the End-to-end,

a Mean Square Error (MSE) was used. The different metrics used to validate the

results on both systems will be discussed in the next section.

3.2 Accuracy
Accuracy is normally used in CNN to validate results. Usually if the network

has more than one class, the samples of each class must be in equal number. For

example if we have a cluster of class A and B and for the class A we have 97% of

the samples and for class B we have 3% of sample, if the network has high accuracy

on class A it can achieve 97% accuracy but if the samples change to be 60% class

A and 40% class B the accuracy drops to 60%.

Accuracy =
CorrectPrediction

TotalInputs
(3.1)

3.3 Confusion Matrix
Confusion Matrix, shown in Table 3.1, is a performance measurement used in

machine learning classification problem in which output can be two or more classes.

It is extremely useful for measuring Recall, Precision, Specificity, Accuracy and

most importantly AUC-ROC Curve.

Table 3.1 Confusion Matrix
Pred. class
P N

Actual class
P TP FN
N FP TN

where, P-positives N-Negatives FN-False Negatives FP-False Positives TN-

True Positives TP-True Positives
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With the information of the table we can then calculate:

Speci f icity =
T N

T N +FP
(3.2)

Specificity gives the proportion of actual negatives that are identified as nega-

tive.

Recall =
T P

T P+FN
(3.3)

Recall gives the proportion of actual positives that are identified as correct.

Precision =
T P

T P+FP
(3.4)

Precision gives the proportion of positive identification that are correct.

3.4 Mean Absolute Error
MAE is the average of the difference between the Original Values (y j) and the

Predicted Values (ŷ j). For interpretation reasons its better, however it doesn’t con-

sider error directions.

MAE =
1
N

N

∑
j=1
| y j− ŷ j | (3.5)

3.5 Mean Square Error
MSE is quite similar to MAE, the only difference being that takes the average

of the square of the difference between the original values (y j) and the predicted

values (ŷ j). As, we take square of the error, the effect of larger errors become more

pronounced then smaller errors, hence the model can now focus more on the larger

errors.

MSE =
1
N

N

∑
j=1

(y j− ŷ j)
2 (3.6)

3.6 Multiple Object Track Precision/Accuracy
Is common to find tracking approaches presented without quantitative evalua-

tion, while many others are evaluated using varying sets of more or less custom
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measures. With the need of generally applicable metric, the Multiple Object Track

metrics proceed to detect the basic types of errors produced by multiple object

trackers and introduces two novel metrics, the Multiple Object Tracking Preci-

sion (MOTP), and the Multiple Object Tracking Accuracy (MOTA), that intuitively

express a tracker’s overall strengths and are suitable for use in general performance

evaluations.

MOTP is the total error in estimated position for matched object-hypothesis

pairs over all frames, averaged by the total number of matches made [19]. It shows

the ability of the tracker to estimate precise object positions, independent of its

skill at recognizing object configurations, keeping consistent trajectories, and so

forth. Where ct denotes the number of matches in frame t and di,t is the bounding

box overlap distance of target i with its assigned ground truth object. MOTP gives

the average overlap between all correctly matched hypotheses and their respective

objects and ranges between td := 50% and 100%

MOT P =
∑i,t di,t

∑t ct
(3.7)

MOTA is the overall accuracy of how well the system has performed in which

mt , f pt , and mmet are the number of misses,of false positives, and of mismatches,

respectively, for time t and gt the number of objects present at time t

MOTA =
∑t(mt + f pt +mmet)

∑t gt
(3.8)

In MOTA exists three different ratios:

Ratio of misses in the sequence, computed over the total number of objects

present in all frames:

m =
∑t mt

∑t gt
(3.9)

Ratio of false positives:

f p =
∑t f pt

∑t gt
(3.10)

Ratio of mismatches:
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3.6 Multiple Object Track Precision/Accuracy

Figure 3.1: Overall of error measures. a) If the object detection exceeds a cer-
tain threshold T, σ1 is considered missed and h1 becomes a false positive. b) Mis-
matched tracks. c) For both cases the the mapping would pair h2 and σ1 giving
different errors, for each case. In case 1 we have 2 errors and in case 2 we have 4
errors, however both cases have only 1 error of the same kind. d) Correct reinitial-
ization of a track. The correspondence is made with h1 although h2 is closer to σ1,
based on the knowledge of previous mappings up to time t + 1

mme =
∑t mmet

∑t gt
(3.11)

To understand the measure performance not by how often mismatches occur, but

by how long the tracker correctly identifies targets it was measured the Identification

F1 score (IDF1) score. This score are built on top of this truth-to-result match.

These scores then measure the number of mismatched or unmatched detection-

frames, regardless of where the discrepancies start or end or which cameras are

involved.

To address these issues ground-truth identities are first matched to computed

ones, more specifically each computed trajectory is associate which exactly one

ground-truth trajectory. This score than measure the number of mismatched or un-

matched detections-frmaes regardless of where the discrepancies start or end or

which cameras are involved.
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Let τ(t) be the sequence of detection for true trajectory τ , one detection for each

frame t in the set Tτ over which τ extends, and define γ(t) for t ∈ Tγ similarly for

computed trajectories. The two simultaneous detection τ(t) and γ(t) are a miss if

they do not overlap in space, specifically,

m(τ,γ, t,∆) = 1 (3.12)

When the area of the intersection of two detection box is less than ∆ (0 <∆ <1)

times the area of the union of the two boxes is declared as a miss. If there is no miss

equation (2.4) is equal to zero. If either τ or γ is an irregular node the detection in

other trajectories are misses. If both γ and τ are irregular m is undefined.

Was used the Identification False Negatives (IDFN), Identification False Posi-

tives (IDFP), Identification True Positives (IDTP) counts to compute Identification

Precision (IDP), Identification False Recall (IDR), and the corresponding IDF1.

Where F1 score is the ratio of correctly identified detections over the average num-

ber of ground-truth and computed detections. More specifically,

IDFN = ∑
τεAT

∑
tεTτ

m(τ,γm(τ), t,∆) (3.13)

IDFP = ∑
γεAC

∑
tεTγ

m(τm(γ),γ, t,∆) (3.14)

IDT P = ∑
τεAT

len(τ)− IDFN = ∑
γεAC

len(γ)− IDFP (3.15)

Where AT and AC are all true and computed identities in matched ground-truth

trajectories and matched computed trajectories, respectively.

IDP =
IDT P

IDT P+ IDFP
(3.16)

IDR =
IDT P

IDT P+ IDFN
(3.17)

IDF1 =
2IDT P

2IDT P+ IDFP+ IDFN
(3.18)
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4. State-of-the-art

4.1 Tracking by Detection System
Tracking-by-detection is as the name indicates a tracking system from the de-

tected data. Basically, objects are detected in a frame through features that can be

edges, blobs, corners or combination of both. In the detection phase, the system

will acquire detected boxes position in the image. After the detection, the tracker

will match each object throughout feature identification, overlapping or the weight

of booths.

The concepts of speed estimation will be introduced and a brief overview of

some of state-of-the-art detectors, trackers and camera calibration approach’s stud-

ied will be present in this Chapter.

4.1.1 Camera calibration
The camera calibration aims to determine the geometric parameters of the image

formation process, a crucial process when metric information is required. New

approaches to provide it with less human intervention as possible. These approaches

can be divided into two categories, automatically and supervised.

The usual approach to calibrating traffic cameras is normally achieved by ac-

quiring road information like measures of the road and measures of the white lines

in the road. This approach is called supervised since it needs some human interven-

tion.

In the automatic approach, the camera can be calibrated trough the movement of

vehicles. This approach is normally less accurate but has the advantage of having no

human intervention. Each approach will be better explained with examples above.

4.1.1.A Automatic

Dubska [20], presented a method in which they calibrate a camera fully au-

tomatically. This method automatically determine 3 orthogonal vanishing points.

Then constructs vehicle bounding boxes and automatically determines the camera

scale by knowing the statistics of vehicle dimensions.

The 1st Vanishing point direction is parallel to the vehicle motion, marked red

in Figure 4.1. It is recovered from detected feature points on the vehicles us-

ing Hough transform based on the parallel coordinates and Kanade-Lucas-Tomasi

(KLT) tracker. The Hough transform method maps the entire 2D projective plane

into a finite space called diamond space 4.1, by a piecewise linear mapping of

20



4.1 Tracking by Detection System

straight lines in parts.

The 2nd vanishing point direction is perpendicular to the 1st vanishing point

direction and parallel to the road. Edges on the vehicles vote in the accumulation

space to estimate the direction of the 2nd vanishing point. An edge background

model is used in order to select only edges on moving objects. Also the edges with

approximately vertical direction are omitted from voting, based on the assumption

of scene horizon being approximately horizontal.

The 3rd vanishing point, the camera’s intrinsic and extrinsic parameters can be

retrieved by assuming the Principal point in the centre of the image.

Figure 4.1: (Left) Tracked points using KLT to determine 1st vanishing point.
(Right) Calculations for the 2nd vanishing point take strong horizontal edges from
vehicles and the vertical edges are discarded.

4.1.1.B Supervised

A method presented in [21] defined vanishing lines in the image through an

operator and then calculate the homographic matrix. With this information, the

authors can transform image coordinates to the real world.

The most used methods takes measures on the road (white lines, the width of

the lane or vehicles measures) to achieve the camera calibration and obtain real-

world measures. In studies such as [1], [11], [22] and [23], landmarks are used in

the road to calibrate the camera and obtain speed estimations, assuming that the

road is on a plane. Others methods already calibrated the camera to collect speed

estimation measures and used the time difference between frames, as demonstrated

in [24], [25] and [26].

4.1.2 Detection
In this section the detection phase will be discussed, an algorithm that is used

to search for the vehicles in video frames, afterwards, that algorithm will identify
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features of vehicles. Detecting objects can be achieved from multiple ways, either

by the older ones, where Harris corner detector was used, identifying interest points

in the image, either by Convolution neural networks that consist of several layers

with small neuron groups, each of them perceiving small parts of an image. The

results from all the neuron groups in a layer partially overlap in a way to create the

entire image representation.

4.1.2.A Background subtraction

Some solutions use background subtraction [8] in which the detector acquires

blobs in the image through frame differences and uses pre-processing filtering op-

erations to detect objects in the image.

Figure 4.2: Vehicle classification process. (a) Vehicle Detection. (b) Feature Ex-
traction. (c) Vehicle Classification via neural decision tree.

For this method, the authors found some problems with occlusion and camera

jitters that were over passed using filters, resulting in low accuracy rates but with a

almost real-time image processing. Figure 4.2 shows the method proposed. Con-

cerning background subtraction [27] [24], some authors presented a similar method

in which they included sparse representation and low-rank background modelling.

In the algorithm the authors had to overcome problems such as noise, illumination

changes, shadow moving, waving leaves and branches, resulting in a not so high

accurate system and also with delay in real-time applications.

4.1.2.B Single Shot Detector

Other methods Presented in [28], in which a Single Shot Detector (SSD) and an

appearance embedding integrated were used.
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4.1 Tracking by Detection System

Figure 4.3: Comparison between: (a) SDE model; (b) two-stage model; (c) the
proposed Joint Detection and Embedding (JDE).

This method reduced significantly the run time of a MOT system. In that

study the authors encountered problems regarding overlapping objects. However,

an almost real-time tracking by detection system was achieved (22 frames per sec-

ond (fps)). On Chapter 5 will be better described, since it was the method used for

the detection phase on the tracking by detection network.

4.1.2.C Faster Regional Convolutional Neural Network

CNN methods for detecting objects has presented better performance, as de-

scribed in [1]. They used three different Faster Regional Convolution Neural Net-

work (RCNN) to identify different parts of the vehicle (front and back; side of

vehicle; tiny vehicles far from the camera). Figure 4.4. With that configuration, a

detection rate of 88% was obtained. There are others related papers that used CNN

on detection phase such as [23], [15], [21], [9], [5] and [25].

Figure 4.4: Vehicle detection with three different F-RCNN proposed in [1]
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4.1.2.D YOLO

Referring to convolution networks, another method of achieving detection of

objects is using YOLO, a popular network who achieved very fast detection rates.

YOLO has been widely used for vehicle detection [29], [30], [2] and [31]. In [31]

the authors implemented YOLO-tiny, using a single convolution layer and a modi-

fied version of YOLO. With this implementation, a real-time system was obtained

using a budget graphic card (GTX 950M). The study presented in [32] has used

YOLOv3-live through YOLOv3-tiny in which the authors passed a Taylor filter

through a network layer structure and quantified the network parameters, resulting

in a reduction of computational complexity in embedded devices.

4.1.3 Tracking

After the detection phase, some methods use tracking algorithms to follow the

identified object in order to obtain the average speed estimation of the vehicles. The

methods used for tracking mainly use two different types of tracking, Overlapping

and Feature association, which will be discussed above.

4.1.3.A Overlapping

The most used tracking algorithms overlaps a previous detected box with the

new detected box (Figure: 4.5). The study presented in [1] tracks vehicles by over-

lapping the detected boxes, in which the boxes with the larger overlapped area are

the right one.

Others studies such as [31], [32], [27] and [29] after detecting objects, they

predict on where it supposed to be in the next frame and do an Intersection Over

Union (IoU) with the bounding boxes, the boxes with the larger overlapped area is

the identified vehicle.

24



4.1 Tracking by Detection System

Figure 4.5: Tracking by detection example.

4.1.3.B Feature Association

Instead of tracking boxes, in the studies presented by [24] and [26] it has

been tracked the centroid of each object. Another way of tracking objects used

by [8], [23], [11], [22], [2], [25] and [30] is to track vehicles using features: after

or during the detection phase the authors saved the features of the objects and then

they compared them with the new features in the new frames (tracking by detection

using different descriptors).

Figure 4.6: Features descriptors utilized by [2]. RGB, HSV, Lab, LBP and gradient
feature (first row, from left to right). Second row shows an original color histogram.
Third shows the Gaussian spatially weighted histograms where the contribution of
background area is suppressed.

Similar to this methods, some studies used deep learning algorithms to obtain

the features of the objects and with it better features with lower computational needs

were achieved as the results presented in the study [14].
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4.1.3.C Feature and Overlapping

The study presented in [7], attached two methods for tracking vehicles that con-

sist of optical flow with IoU of bounding boxes. A study that attached features

extracted through deep learning and IoU on bounding boxes with Kalman filter to

track vehicles was presented by [21]. The study presented in [33] shown a MOT

based on a re-identification task, the authors combined appearance and temporal

features. Each object had a tracklet that was generated by appearance similarity

with CNN features and IoU.

4.2 End-to-end Network

Figure 4.7: Training the neural network.

End-to-end networks have been known in the deep-learning community since

the beginning, however it needs much more computational power and data quan-

tity. Currently, with the increase of computational power, deep neural networks can

be more like end-to-end networks which can resolve complex problems. For that

reason, the state-of-the-art of speed estimation with end-to-end networks is lim-

ited, with few works using it. In this dissertation, we will study an implementation

that uses an end-to-end Network in order to understand what can be expected and

improved with this complex method in Chapter 5.

One of the most known examples is autonomous driving, where all information

from cameras, handles, radars, etc. are processed into neural networks to filter out

important data and then use it as input to a complex neural network that will predict

the next action [34].
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The authors of [34] present an end-to-end system for controlling an autonomous

car, the system was able to learn useful road features with the use of a convolution

neural network in which this method is known to be a very powerful in image recog-

nition task.

The system architecture consists of 9 layers, 5 convolution layers, 3 fully con-

nected layers and 1 normalization layer. With approximately 72 hours of driving

data. The network was able to learn how to drive the car on different types of roads

and weather conditions.

An end-to-end network has fewer parts in the composition of the system, which

can lead to fewer cumulative errors, providing better system accuracy.
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5.1 Velocity Estimation by Object Detection and Tracking

5.1 Velocity Estimation by Object Detection and
Tracking

The Velocity Estimation by Object Detection and Tracking method proposed by

this work is divided in three different phases:

• The first phase, uses a calibration algorithm to calculate camera extrinsic and

intrinsic parameters by detecting the three orthogonal vanishing points from

vehicles motion direction.

• The second phase, detects vehicles with a Regional Proposal Network (RPN),

this network is previously trained to identify vehicles in each frame and output

the detection box of each vehicle with the respective embedding.

• The third phase, outputs from the RPN are fed on the tracker that will identify

each object on each frame with the respective ID.

With the identification of each object in each frame, the speed estimation its

calculated knowing the mean length dimensions of vehicles. Each phase will be

further explained in more detail in the next sections.

5.1.1 Calibration

The camera calibration method used was already implemented in Instituto de

Sistemas e Robótica (ISR). This method of Vanishing Point (VP) estimation was

based on [20]. It uses a convenient parameterization of lines for the Hough trans-

form, using an accumulation scheme denoted as diamond space, Figure 5.2. This

method is fully automatic, which means that there is no need of camera parameters.

The scale inference is previously input into the algorithm construction, in this case,

the median length measure of a vehicle.

The Calibration started by calculating two VP, the first VP with direction paral-

lel to the vehicle motion, marked as red in Figure 5.1. The incoming video stream

was processed frame by frame. On each frame, feature points were collected using

Shi and Tomasi’s Good Features to Track [35], using the minimum eigenvalue al-

gorithm. Hence, after the corner features were detected, a KLT feature tracker [36]

tracked those corners in the subsequent frame.
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Figure 5.1: Vanishing vectors grid representation

As the observation and accumulation period increases, the first VP is considered

very stable and accurate. The first VP it is the most voted point backprojected to the

image plane.

Figure 5.2: Diamond spaces for the Figure 5.1 first (a) and second (b) vanishing
points. The red circle signalizes the most voted point in each accumulation space.

For the second VP direction detection, marked as green on Figure 5.1, another

diamond space was used. Starting with the assumption that many vehicle edges

coincide with the second VP direction. This edge lines were filtered by excluding

the ones with high vertical component, then the ones that pass the filtering operation

vote in the accumulation space. In order to detect edges on moving vehicles a

background edge model was used. In each frame, the model was updated to deal
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with shadows and other slow lightning changes. For each pixel, the confidence

level/degree of an oriented edge occurrence is stored by the edge background model.

The points had to meet the following conditions:

• It had to be detected by a Canny edge detector.

• The confidence that the point belongs to the background has to be lower than

a predefined threshold, meaning it belongs to moving vehicles.

• The magnitude of the gradient has to be higher than a predefined threshold.

• The line must not be directed towards the first VP.

• The line must not be vertical.

The remaining edges were then extended to infinite lines, those closer to the

first VP are excluded from further processing. The line which contains the principal

point(assumed in the centre of the image) and is perpendicular to the line defined

by the principal point and the first VP has to separate the second VP from the first

one.

Assuming the Principal point is in the center of the image, being the first VP

denoted as U = (ux,uy), the second VP as V = (vx,vy) and the principal point as

PP = (px, py). The focal length f can computed accordingly to Equation (5.1). The

third point W can be calculated by equation (5.2).

f =
√
−(U−PP).(V −PP) (5.1)

W = (U−PP)× (V −PP) (5.2)

5.1.2 Regional Proposal Network with Embedding
For the detection, a JDE presented by [28] was used for extracting vehicles

detection and features from an image. This method employs a single network to

simultaneously output detection results and the corresponding appearance embed-

ding of the detected boxes. Chosen over Separate Detection and Embedding (SDE)

because this methods, separate the detection and the embedding in two different

networks, increasing its processing time. Figure 5.3.
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An input video frame first undergoes a forward pass, through a backbone net-

work to obtain feature maps at three scales. Then, the feature map with the smallest

size was up-sampled and fused with the feature map from the second smallest scale

and the same was done for the other scales.

Finally, Prediction heads consisting of several stacked convolution layers were

added onto the fused feature maps for all scales. The learning objective of each

prediction head in JDE can be modeled as a multi-task learning problem.

The JDE method in [28], was implemented for detecting pedestrians. To toggle

the problem of detecting vehicles, anchors that fitted vehicles were calculated. The

anchors for the vehicle detector were generated through the dataset of UA detrac

training. These anchors were calculated through the most common shapes/sizes

from the training ground truth using k-means clustering. The number of anchors is

set to 12 such that for each scale exists 4 anchors. The network was validated by

testing MAP with the change of the IoU, confidence and Non-Maximum Suppres-

sion (NMS) values.

The Feature Pyramid Network (FPN) architecture with multiple prediction head

estimate predictions from multiple scales, increasing detection accuracy of targets

in different distances of the camera, Figure 5.4.

Figure 5.3: Comparison between (a) SDE model, (b) JDE.

JDE method had two objectives: Detect objects accurately and simultaneously

output object descriptors. This last objective was achieved by getting a feature

that increased distance between objects of different identities and smaller distance

between same objects on consecutive frames. This distance can be the Euclidean

distance or the cosine distance.

The training of the network was modeled as a multi-task learning problem with

anchor classification, box regression and embedding learning. The learning objec-

tive of detection had two loss functions, namely the foreground/background classi-

fication loss Lα , and the bounding box regression loss Lβ . Lα were formulated as a
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5.1 Velocity Estimation by Object Detection and Tracking

binary cross-entropy loss (5.3) and Lβ (5.4) as a smooth-L1 loss .

Lα =
−1
M ∑[yi

jlog(pi
j)+(1− yi

j)log(1− pi
j)] (5.3)

in which pi
j was the predicted probability value of the pixel at location j of

example i, yi
j was a discrete variable indicating the true class of the raw pixel at

location j of example i and M was the number of pixels in the example.

Lβ =

{
0.5x2, if |x|< 1
|x|−0.5, otherwise.

(5.4)

where ti is the ground-truth and pi the probability for the ith class.

Figure 5.4: (a) The network architecture and (b) the prediction head. Prediction
heads were added upon multiple FPN scales. In each prediction head the learning
of JDE was modeled as a multi-task learning problem.

The second objective of this network was to learn an embedding feature With

attention to the distance between objects i.e., in different frames the same objects

were closer between them and other objects were far apart.

The appearance embedding learn was achieved by solving the problem in which

the objects with the same identity were closer to each other than the objects of

different identity, that were far apart. The training of the network needed as input

the identity of each object and bounding box. To achieve this, the (5.5) function

was applied.

LCE(Lγ) =− log
exp( f T f+)

exp( f T g+)+∑i exp( f T g−i )
, (5.5)

where we denote the class-wise weight of the positive class (to which the an-

chor instance belongs) as g+ and weights of negative classes as g−. f T represents

an instance on a mini-batch, f− represents a negative sample and f+ represents a

positive sample.
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To achieve the multi-task learning problem, a weighted linear sum of losses

(5.6) from every scale and every component was applied.

Ltotal =
M

∑
i

∑
j=α,β ,γ

1
2

(
1

esi
j
Li

j + si
j

)
(5.6)

where, M is the number of prediction heads and si
j is the task-dependent uncer-

tainty for each individual loss that balance the importance of each individual task,

j=α,β ,γ are loss weights for each task.

5.1.3 DeepSORT
The DeepSORT tracker was an improvement of the Simple Online and Realtime

Tracking (SORT) tracker, the main difference is the addition of a deep network that

can get features from object detection and use them to getting a better performance

on tracked objects. SORT performs Kalman filtering in image space and frame-by-

frame data association using the Hungarian algorithm with an association metric

that measures bounding box overlap.

In our method, to achieve the tracking of vehicles in the image, the state-of-the-

art DeepSORT tracker was applied. Instead of using the embedding calculated with

DeepSORT network, the embedding used for the DeepSORT was the one generated

with the JDE. This embedding was joined with the vehicle detector as explained

above.

To limit data accumulation, each track had a limited number without a success-

ful measurement association. This counter was incremented during Kalman filter

prediction and reset to 0 when the track was associated with a measurement. The

number of frames without a successful measurement were counted, and if the num-

ber exceed a maximum age Amax, the tracks were deleted from the track set. To

start a new track, each detection that was not included in the existing tracks was

taken as a candidate. If more than three detections were successfully associated in

consecutive frames, a new track would start.

To solve the association between the predicted Kalman states and newly suc-

cessful measurements, an Hungarian algorithm was used. To incorporate motion,

the (squared) Mahalanobis distance given by Equation (5.7), between Kalman states

predictions and newly arrived measurements were used. The Mahalanobis distance

took the state estimation uncertainty into account by measuring how many standard
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5.1 Velocity Estimation by Object Detection and Tracking

deviations the detection was away from the mean track location [37].

d(1)(i, j) = (d j− yi)
T S−1

i (d j− yi) (5.7)

where, the projection of the i-th track distribution into measurement space is

given by (yi,Si) and the j-th bounding box detection by d j.

For tracking through occlusions, a second metric, that measure the smallest co-

sine distance given by Equation (5.8), was integrated into the assignment problem.

This way, when the object reappears the system will be able to identify it using the

association with appearance descriptor provided by the detector.

d(2)(i, j) = min
{

1− rT
j r(i)k | r

(i)
k ∈ Ri

}
(5.8)

where, r j is an appearance descriptor that is previously saved in Rk between i-th

track and j-th detection in appearance space.

An binary variable is introduced to indicate if an association is admissible ac-

cording to the Equation (5.9)

b(2)i, j = 1
[
d(2)(i, j)≤ t(2)

]
(5.9)

In summary, Mahalanobis distance provided information, based on motion,

about possible object locations that were particularly useful for short-term pre-

dictions. This Mahalanobis distance has a threshold of 95% computed from the

inverse χ2 given by Equation (5.10). The cosine distance considered appearance

information that were particularly useful to recover identities after long term oc-

clusions [37]. These two metrics (Mahalanobis distance and cosine distance) were

associated with a weighted sum.

b(1)i, j = 1
[
d(1)(i, j)≤ t(1)

]
(5.10)

The solving of this problem was applied through a cascade matching method.

As input, a maximum age (Amax), existing tracks indices (T ) and detection indices

(D) were given, then the association cost matrix (C), given by Equation (5.11) and

the matrix of admissible associations (B) were computed, given by Equation (5.12).

Next, over track n was iterated by increasing age to solve the assignment problem.
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After, we associated the tracks that had not been associated with a detection in

the last frame. Then, the linear assignment problem between tracks that had not

been associated and unmatched detection was solved. After, the set of matches and

unmatched detection were updated. This sequence method gave priority to tracks

that had been seen more recently. To sum up, the unconfirmed and unmatched

tracks in the second last frame were associated with IoU and this helped to account

for sudden appearance changes. The matching can be seen in Table 5.1.

ci, j = λd(1)(i, j)+(1−λ )d(2)(i, j) (5.11)

where, λ defines the combined association cost.

bi, j =
2

∏
m=1

b(m)
i, j (5.12)

Table 5.1 Matching Cascade
Input: Track indices T = {1,...,N}, Detection indices D = {1,...,M}, Maximum age Amax
1: Compute cost matrix C
2: Compute gate matrix B
3: Initialize set of matches M← /0
4: Initialize set of unmatched detection U ← D
5: for n ∈ 1, ...,Amax do
6: Select tracks by age Tn← i ∈ T |αi = n
7: [xi, j]← mincostmatching(C,Tn,U)
8: M←M∪ (i, j)|bi, j · xi, j > 0
9: U ←Un j|∑i bi, j · xi, j > 0
10: end
11: return M,U

5.1.4 Speed Estimation

To estimate speeds from cars we pick the lower middle point from the bounding

box and calculate the distance passed of that point on consecutive frames. With

focal length and VP’s described in the camera calibration Subsection: 5.1.1, we can

project points in the image to the ground plane (φ ).

Being W ′ the 3rd VP with world coordinates and the camera coordinates

O(px, py,0), the ground plane vector (nφ ) can be obtained with Equation: 5.13. The

last parameter (d) for (φ ) is an arbitrary value. The projection of point A′(x,y, f )
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5.1 Velocity Estimation by Object Detection and Tracking

in ground plane can be obtained with Equation: 5.14. The relative distance (dr)

between points A′ and B′ is obtained with Equation: 5.15

nφ =W ′−PP (5.13)

φ(A′) = φ ∩
←→
OA′ (5.14)

dr = |φ(B′)−φ(A′)| (5.15)

To estimate speed, the scale factor must be calculated so that the actual metric

dimensions can be defined. The method for transforming dimensions on the image

to the world dimensions was achieved by fitting statistics of known dimensions

and the measured data from the traffic. These statistics information is given in [38].

Instead of using the minimum of the three scales (height, length, width) as presented

in [38], the box length of vehicles acquired from the camera calibration method was

used.

The scale was then calculated with equation (5.16) being the time pass for each

point, obtained from the camera fps. The speed (v) for a point Xi in the ground

plane, is obtained with Equation: 5.17 being the value 3.6 the transformation from

m/s to km/h.

λ =
lc
l

(5.16)

where λ is the scale, lc is the statistics estimated dimension length and l is the

relative length of vehicles in the camera.

v =
dr(Xi,Xi−1)λ

1
fps

∗3.6 (5.17)
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Figure 5.5: Speed estimation using tracking by detection method

5.2 Velocity Estimation Through an End-to-End Net-
work

The End-to-End Network proposed in this work is based on 3-dimensional con-

volutions networks, that is a modified 3DResnet50 model. This network estimate

the average vehicle speed from video samples. The method had 4 different fea-

tures. Firstly, instead of using a 3D convolution that would be hard to train and time

consuming, it used an inflated(2+1)D convolution.

Secondly, non-local blocks were utilized for better capture spatial capture and

temporal dependency.

Thirdly, a multi-scale convolutions network was constructed in order to extract

information on the various scales differences of vehicles in the image.

Finally, an optical flow was added to the video, thus giving extra information

about speed and direction of pixel motion in the image. In the next sections, each

part of the network will be explained.

5.2.1 Inflated (2+1)D Convolution

The inflated (2+1)D Convolution consists of 1D temporal operation and a 2D

spatial convolution. It has less parameters in comparison to 3D convolution, thus

its is easier and faster to train. The 3D convolution kernel was initialized as a 2D

convolution kernel, which was pre-trained on ImageNet.
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5.2 Velocity Estimation Through an End-to-End Network

(a) 3D Convolution (b) (2+1)D Convolution

Figure 5.6: Difference between a 3D Convolution and (2+1)D Convolution

In 3D convolution, the time dimension cannot be reduced neither too fast or too

slow, because the time dimension relies on image dimension and frame rates. If it

is not reduced carefully there is the possibility that the network would confuse the

edges of different objects, or it might not capture effectively the scene dynamics.

5.2.2 Non-Local Blocks

The non-local blocks expand the receptive field of the model to capture long-

range dependency and more vehicle spatial-temporal features from the video. A

non-local operation defined in equation (5.18) computes the response in one posi-

tion as a weighted sum of the features in all positions. The operation on non-local

blocks can be defined as:

yi =
1

C(x)∑
∀ j

f (xi,x j)g(x j) (5.18)

in which i is the index of an output position whose response is to be computed, j

is the index that enumerates all possible positions, x is the input signal, which could

be in the form of images, sequences, and video features, while yi is the output signal

of position i. A pairwise function named as f computes the correlation between xi

and all x j. The function g a representation of the input signal at the position j.

The summation of f and g is normalized by a factor C(x). The output behaviour

considers all positions (∀ j) in the operation.

The pairwise function f 5.19 can be the dot product, the Gaussian, or the Em-

bedded Gaussian. Since the non-locals models are not sensitive to choice of f ac-

cording to experiments, it has been randomly chosen the Embedded Gaussian. [39]
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f (xi,x j) = eθ(xi)
T φ(x j) (5.19)

in which x is the input signal, i is the index of an output position, j is the index

that enumerates all possible positions, θ(xi) and φ(x j) are two embedding and the

normalization factor (5.20).

C(x) = ∑
∀ j

f (xi,x j) (5.20)

5.2.3 Multi-Scale Convolution
Multi-Scale Convolution was used to overcome the problem where a vehicle

closer to the camera appears larger than it really or the other way around. To solve

this issue, kernels of different sizes where added to the first layers separately from

the network. The outputs are concatenated to feed the input of the next layer, after-

wards.

The information with different scales was considered in multiple convolution

kernels, making the network more adaptive. This different convolution kernels are

shown on Figure 5.7. The output of the different kernels are then concatenated to

feed the next as input to the next layer.

Figure 5.7: Multi-Scale CNN

5.2.4 Optical Flow
The addiction of Optical Flow to the network gives the network the motion

patterns of the objects, surfaces and edges. Optical flow can be defined as apparent

velocity of brightness patterns in image. Since it reflects the velocity of pixel points,
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5.2 Velocity Estimation Through an End-to-End Network

there is a relation between the vehicle’s velocity and for that reason optical flow

was used, concatenating it with the image as the input. Experiments made by [16]

showed a decrease in velocity estimation error by adding this feature.

In this work, the optical flow used in [40], extracts perpixel features from both

input images, along with a context encoder that extracts features from only one of

the images. A correlation layer that builds multi-scale 4D correlation volumes for

all pairs of pixels by taking the inner product of all pairs of feature vectors. The last

2-dimensions of the 4D volume are pooled at multiple scales to construct a set of

multi-scale volumes. Finally, an update operator which recurrently updates a flow

field through a recurrent unit that performs lookups on the correlation volumes.

Figure 5.8: RAFT main components: feature encoder, correlation layer and an up-
date operator.

The Network process starts with a pair of consecutive RGB images, I1, I2. Then,

a dense displacement field was estimated, which maps each pixel in I2 to its cor-

responding coordinates in I1. The method can be distilled down to three stages:

feature extraction, computing visual similarity, and iterative updates. All stages are

differentiable and composed into an end-to-end architecture.
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Figure 5.9: End-to-end model architecture
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6. Experimental validation and results analysis

Experimental validation and analysis of results are the final proof of each sys-

tem. Systems need validation before being applied in real-world situations. Val-

idation methods must go beyond the intended purpose of the system to address

unanticipated problems and noise during the project development phase. Therefore,

the results must be carefully analyzed and discussed for future improvement.

6.1 Datasets setup
In order to train the CNN, the dataset needed to have a ground truth that is

related to the specifications of the network that is going to be trained. Since we had

two different systems(Tracking by Detection and End-to-end network), the datasets

used for each system were different.

The dataset for the Velocity Estimation with Tracking by Detection had a bound-

ing box ground truth, where each bounding box is characterized with nine values

(Frame, Number, Left, Right, height, width, score, type, colour). For the end-to-end

Network, the dataset used the median speed between a defined distance.

6.1.1 UA Detrac
UA Detrac dataset is normally used to train networks for detecting and tracking

objects in an image for MOTA results.

The dataset consists of 10 hours of videos captured with a Canon EOS 550D

camera at 24 different locations in Beijing and Tianjin, China. The videos were

recorded at 25 fps, with a resolution of 960×540 pixels. There were more than 140

thousand frames and 8250 vehicles that were manually annotated, leading to a total

of 1.21 million labelled bounding boxes of objects.

It has also been performed benchmark tests of state-of-the-art methods in object

detection and multi-object tracking together with evaluation metrics.
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6.1 Datasets setup

(a) Vehicle Type (b) Illumination

This dataset was labeled with several categories:

Vehicle category , classified into four categories 6.1a: car, bus, van, and others.

Weather with four categories 6.1b: cloudy, night, sunny, and rainy.

(a) Scale (b) Occlusion Rate

Scale, defined the scales of the annotated vehicles as the square root of their

area in pixels. It has three groups of scales 6.2a: small (0-50 pixels), medium (50-

150 pixels), and large (more than 150 pixels). Occlusion ratio, the fraction of the

vehicle bounding box being occluded that defines the degree of occlusion. The

degree of occlusion had three categories 6.2b: no occlusion, partial occlusion, and

heavy occlusion. Where partial occlusion is the occlusion ratio of a vehicle between
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1%-50%, and the heavy occlusion is an occlusion ratio larger than 50%. Truncation

ratio: the truncation ratio refers to the degree of the vehicle parts outside of the

frame.

6.1.2 BrnoCompSpeed
BrnoCompSpeed dataset is a high-quality dataset that has the velocity and time

of cars between 2 points. The dataset consisted of 18 full-HD (1920x1080) videos

(6 sessions on different locations, 3 videos from different angles for each location)

and there was a total of 20865 vehicles with known ground truth speed.

The dataset provided high-quality videos with various traffic conditions (low

traffic in Session 3, high traffic in Sessions 5 and 6). However, it was quite limited

in lighting and weather conditions. Almost all videos were taken in cloudy weather

(except for some parts of Session 3) with no distracting phenomenons (fog, rain,

etc.).

6.2 Assessing Baseline Performance
In this section, it will be presented how both CNN’s were tested before training

on a dataset with more data, consequently with more training time.

6.2.1 BrnoCompSpeed
6.2.1.A Velocity Estimation by Object Detection and Tracking

Preliminary tests of the tracking by detection network were performed by using

the BrnoCompSpeed dataset. First, we transformed the data in a way that the CNN

had all the data organized to be trained. The video was separated in frames in order

to accelerate the training. Each frame was associated with a text document that

contains the information of the box and index of each car in that frame. As the

index and the boxes of the car were on different files, it was necessary to join both.

The tests were performed on a single video, and the results were satisfactory.

The detection times were noteworthy (12 fps) and the network could detect and

track the majority of the vehicles.

6.2.1.B End-to-end Network

The end-to-end needs a great quantity of data in order to have a good perfor-

mance. Networks like this one had a greater training time than others, and for that
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reason, the main work of this network was to understand its behaviour when applied

in different views and locations.

The tests performed on the network involved different optical flows in order to

analyse any differences between them. The optical tests were made with the RAFT

optical flow and Farneback optical flow. Since both had similar results we chose the

RAFT optical flow, being this with slightly better MSE (71.59 vs 85.11).

After choosing an optical flow algorithm, the network training and validation

started. Firstly, it was trained for one view and the results were validated. The re-

sults for mean absolute error were satisfactory(4.53 km/h) although there were some

peak values and for that reason the mean square error were not satisfactory(73.59).

Nevertheless, the network training continued and it will be discussed on the next

chapter.

6.2.2 UA Detrac
The UA Detrac dataset was used to confirm the tests made on BrnoCompSpeed.

On the UA Detrac, the ground truth was more complete and consequently more

accurate to test CNN for vehicle detection which output boxes on the identified

objects.

The tests applied were not successful like those of the BrnoCompSpeed dataset.

In the UA Detrac tests, the MAP was lower. An observed fact was that the test

dataset from the vehicle side view was not trained. With this knowledge, the test

dataset videos that had different orientations in relation to the training and that were

not interesting to our work were consequently removed. Those videos were the ones

in which the orientation was a 90-degree angle from the cars and in which existed

road crossing.

6.3 Assessing validation and results
Different validation methods were used for each type of system component,

so we could access the validation results of the overall system. For each type of

validation, we need to acquire data from tests and analyse it to understand if some

problems or errors could be suppressed, for this it will be presented the way that

data was used to check for errors or problems.
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Table 6.1 Anchors calculated with UA Dataset used for the RPN 576×320.
Anchors Width(px) Height(px)
1 17 13
2 22 18
3 30 22
4 43 23
5 38 32
6 59 29
7 51 45
8 79 37
9 67 61
10 104 52
11 94 84
12 152 80

6.3.1 Velocity Estimation by Object Detection and Tracking
The Velocity Estimation by Object Detection and Tracking can be divided in

three parts. For that reason each part of the network was validated differently.

The detection part that used the machine learning network was mainly validated

with the training of the network and by observing its performance.

The multiple object tracking depends on the detection accuracy and for that

reason the validation included both parts of the network.

The speed estimation of vehicles included the last two parts, giving the overall

performance of the network.

6.3.1.A Detection

The Detection phase was validated using the UA Detrac dataset by applying the

detection MAP, giving how successful the network was trained by calculating the

true positives prediction over the total predicted detection. The anchors calculated

for the RPN are shown on 6.1.

The results on 6.2 show the results obtained by training the network on the UA

Detrac dataset. This network traine has in account the MAP and the Embedding.

The results that had a different image resolution showed that higher resolution,

in our case, did not improve object detection. In this case, it should have improved

even for a small change, which led us to think that the anchors on the smallest

resolution were giving a more general detection of the object in comparison to the

higher resolution ones.
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Table 6.2 Results of training with different image resolutions in which the res-
olution of 576×320 could achieve 12 frames per second and the resolution of
1088×608 could achieve 10 frames per second.

Epoch
576x320 1088x608

MAP Emb MAP Emb
0 0.6624 0.2446 0.2071 0.2383
5 0.7372 0.3156 0.6597 0.2832
10 0.6953 0.3419 0.6913 0.3144
15 0.6840 0.3687 0.6782 0.3518
20 0.7437 0.3591 0.7120 0.3997
25 0.6566 0.3441 0.6998 0.4378
30 0.6765 0.3670 0.6778 0.5434
35 0.6662 0.3779 0.7558 0.5639
40 0.6851 0.3810 0.6710 0.4430
45 0.7068 0.3512 0.6588 0.4925

The smallest resolution was better in object detection but was also faster in

processing each image as expected in the neural network of object classification be-

cause of the lower complexity. For that reason, the resolution chosen was 576x320,

where the best results were observed.

6.3.1.B Tracking

For the tracking phase, the dataset used was the UA Detrac dataset. On the

results was applied the MOTA metrics used in the UA Detrac repository in order to

quantify its performance. The test results weather conditions have 4 different types,

the results of each type for the sequences tested in UA-Detrac are shown in Tables

6.3(Cloudy) 6.4(Rainy) 6.5(Night) 6.6(Sunny).

Table 6.3 Results obtained with detection and tracking on Cloudy conditions se-
quences. It was composed with 520 vehicles in 11 255 frames.

MOTA (%) IDF1(%) IDP(%) IDR(%) Rcll(%) Prcn(%) MOTP(%)
55.8 80.7 69.4 96.4 97.4 70.1 87
15.8 62.9 55.4 72.8 73.7 56.0 80.6
36.2 64.6 55.9 76.4 86.7 63.5 81.6
43.6 67.8 58.6 80.3 90.5 66.0 78.9
54.9 77.5 69.3 88.0 91.1 71.7 78.2
62.3 73.0 66.4 80.9 92.3 75.7 80.2
12.1 60.7 48.4 81.3 90.2 53.7 73.6
81.4 87.5 89.1 86.0 89.0 92.2 79.6
44.3 61.4 55.2 69.2 84.9 67.8 75.5

49



6. Experimental validation and results analysis

Table 6.4 Results obtained with detection and tracking on Rainy conditions se-
quences. It was composed with 728 vehicles in 11 630 frames.
MOTA(%) IDF1(%) IDP (%) IDR(%) Rcll(%) Prcn(%) MOTP(%)
73.3 81.6 81.4 81.8 87 86.6 79.1
21.6 68.3 56.0 87.3 88.9 57.0 68.8
49.3 66.0 69.0 63.3 70.6 77.0 73
41.3 55.5 74.0 44.4 50.8 84.7 82.9
30.7 50.8 70.6 39.7 43.6 77.5 80.2
52.4 67.5 71.5 63.8 71.0 79.5 76.9
54.4 56.2 64.9 49.5 65.7 86.1 73
46.0 56.1 72.0 46.0 55.1 86.4 77.1

Table 6.5 Results obtained with detection and tracking on Night conditions se-
quences. It was composed with 506 vehicles in 18 469 frames.
MOTA(%) IDF1(%) IDP(%) IDR(%) Rcll(%) Prcn(%) MOTP(%)
46.4 72.5 63 85.4 91.1 67.1 82.9
58.8 79.1 73.3 85.9 88.1 75.1 81.6
71.3 75.7 73.8 77.7 88.4 83.9 80.3
46.7 62.7 74.5 54.1 59.8 82.3 82.9
52.6 75.9 70.6 82 84.5 72.8 79.3
57.5 58.1 61.3 55.3 74.2 82.4 81.3
64.0 77.7 71.0 85.8 92.5 76.5 79.5
69.7 77.5 73.1 82.4 91.3 81.0 85.1
54.6 61.2 74.9 51.7 62.2 90.0 68.6
50.4 54.9 74.1 43.7 54.8 93.0 69.1
36.6 36.7 59.5 26.5 41.0 91.8 67

Table 6.6 Results obtained with detection and tracking on Sunny conditions se-
quences. It was composed with 237 vehicles in 7 055 frames.
MOTA(%) IDF1 (%) IDP(%) IDR(%) Rcll(%) Prcn(%) MOTP(%)
68.0 83.1 80.2 86.1 88.0 82.1 76,6
44.3 68.7 66.7 70.7 75.5 71.3 78.5
43.4 67.1 60.2 75.7 84.9 67.4 75.7
67.2 75.8 78.0 73.6 80.9 85.7 80.1
48.8 60.1 66.5 54.9 65.9 79.9 79.4
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Table 6.7 Overall results obtained with detection and tracking.
MOTA(%) IDF1(%) IDP(%) IDR(%) Rcll(%) Prcn(%) MOTP(%)

Cloudy 44.3 67.8 58.6 80.9 90.2 67.8 79.6
Rainy 47.7 61.1 71.1 56.4 68.2 82.1 77.0
Night 54.6 72.5 73.1 77.7 84.5 82.3 80.3
Sunny 48.8 68.7 66.7 73.6 80.9 79.9 78.5
Total 48,3 68,3 68,9 75,7 82,7 81 79,1

The results of the tracking by detection on the UA-Detrac dataset were in line

with the best methods tested in the UA-Detrac site. The main problem occurs with

miss detection were it was observed, that in some frames the network failed to

detect vehicles in the image. This problem makes the tracker lose car tracklets,

compromising the accuracy of the tracker. To track it with a higher accuracy a

better detector should have been used, but doing so would reduce the frame per

second performance of the network(10 fps).

6.3.1.C Speed estimation

The speed estimation has been validated with the BrnoCompspeed dataset. The

Brnocompspeed dataset had the data of vehicles organized as follows: each car had

a time in which it passed the first laser sensor, a time in which it passed in front

of the second laser sensor, a flag that was true or false if the speed measures were

correct or not, and identified lane of where the car passed and the speed measured.

Figure 6.3: Ground-truth join with detection.
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In the Figure 6.3, three cars can be seen and two of them pass in front of a

motion sensor mounted on the road. The vertical purple lines divide the road into

two lanes. The zone limited by the horizontal lines identifies the reading zone of the

motion sensor. Each car has an intersection time, given by the motion sensor and a

specific velocity. The intersection time was converted to a specific frame.

If a detected box exists in the zone limited by the horizontal lines and in the

frame exists a velocity, both will match. This way we can compare the ground-truth

speed with the speed estimation.

Figure 6.4: Identification of each vehicle from the tracker with the ground-truth

The Figure 6.4 shows the moment in which the vehicle detected (614) was iden-

tified. The absolute mean speed estimation error is the difference between the esti-

mation and the ground truth.

The difference between the speed estimation and the ground truth, showed in

the image, can be explained by the fact that as the velocity of the ground truth was

the median velocity between the two sensors, in this case, it is the instant velocity

that was calculated. That is one of the reasons for the difference observed between

ground-truth and estimation. Another error that can occur is the increase in the

speed estimation error as the objects are further away from the camera. This is

related to the camera pixel resolution, the higher the pixel resolution the smaller is

the error.

The Results of the speed estimation were obtained by estimating the velocity of
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the cars in which the detector had a detection between the start and the end of the

sensors, which is also used to calculate the speed error. In session 1 and centre view

the mean error was 3.64km/h and the max error was 11km/h. This means that for a

median velocity of 90km/h in the ground truth the mean error was about 4% and a

max error of 12%.

6.3.2 End-to-End Network
For the test of this CNN, the speed estimation accuracy was the main concern.

The dataset used to test the CNN was BrnoCompSped with a single video without

flow and with 16 frames in 10 sec proposed by 5.9. On this first test, the CNN was

not so accurate, consequently. What was observed was that the network was almost

giving a general mean speed. To specify the mean speed for fewer cars the network

was tested to estimate in two seconds video sequences.

The applied method results in higher accuracy than the previous one. Following

the better results with lower time for each video, the training of the network was

made with that improvement. This improvement suits better for our case because it

gives a speed estimation closer to the mean speed for each car.

Figure 6.5: RGB Image (3D) with RAFT Optical Flow (2D).

The tests were mainly applied in order to understand the behaviour of the net-

work with training and tests in the same view and with training and tests in different

views. In doing so we aim to understand if the network can handle accurately new

views without being trained for these cases.

In the left view of session 1 (6.8), five tests with the same data were made

with different data parts. The data was divided into five equal parts and one part
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Table 6.8 Results from each fold on Session 1 left view.
Fold MSE MAE
1 73.5 4.05
2 37.35 4.01
3 110.5 5.92
4 47.2 4.41
5 102.68 4.45

Table 6.9 Results obtained from different views and different optical flow for the
Session 1 on left view.

Optical
Flow

Session 1
MAE MSE

Left Center Right

Raft
X 4.53 71.59
X X 3.82 78.68
X X X 4.20 75.82

Farneback X 3.62 85.11

of the five was used for testing and the others for network training. Each training

corresponds to a fold, we can see that the dataset for session 1 is not homogeneous,

this can happen when different parts of the video have more or fewer cars passing.

If there were fewer cars passing the network would not have the needed information

to make a good train, consequently, the test results would be worst.

Figure 6.6: Flow chart example of the end-to-end network.

The next tests were made with just one fold for each view combination because

the training of the network was too heavy, each view took about 72 hours. We tested

different validations with different views and optical flows, the results are shown in

Table 6.9.

The errors in the table with the reduced dataset training gave interesting infor-

mation about what we could accomplish by using the complete dataset. In doing so

it would increase the accuracy and at the same time a more general network could

get speed estimations on any view.
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7. Conclusions

The purpose of this project was to present optimized solutions for speed estima-

tion to Brisa, this solutions are based in deep learning and CNN technologies. The

main issue was solve a problem where a single camera can estimate speed of cars

passing in a road without the need of human intervention.

Two methods were addressed in this dissertation, tracking by detection and an

end to end network. The first was studied and tested in order to present the best

results in real-time, leading to a system able to estimate the vehicles speed in real

time accurately. The second approach aims to acquire information on the use of 3d

convolution networks in speed estimation.

For the speed estimation with object detection and tracking we discussed the

different steps required to tackle this problem. On the subject of the calibration,

2 different calibrations were used. One of the calibration parameters was taken

from the ground truth dataset and it was used to validate the detection and tracking

systems. To accomplish the main objective - automatically estimate vehicle velocity

- it was used an already implemented calibration system from ISR.

In the tracking by detection system, the main problem was to create a convo-

lution neural network that would be able to detect vehicles on a video in real-time

(>15 fps). After testing the existing state-of-the-art methods we ended up using the

RPN with embedding. This method gives more information to the network while

the network is detecting objects. It can have higher errors when objects are out of

the proposal region, reducing its accuracy. Nevertheless it can work with high accu-

racy without loss of performance when trained for each type of circumstance. The

DeepSort algorithm showed lower false-positive objects and was able to do this in

real-time, thus maintaining a real-time system.

This system is prone to errors since it is composed of 3 different components,

each one developed to give a solution for the 3 problems calibration, detection and

tracking. Nevertheless, by increasing the number of components in a system were

also increasing its errors. To solve this problem, an end-to-end method was pro-

posed in order to understand if it can be used to estimate speed with an overall sys-

tem created to tackle all the problems at once relying on Artificial Intelligence (AI).

The end-to-end network is a 3D network that instead of differentiating each

problem in speed estimation, it uses a cluster of images, 16 frames each, that outputs

the mean speed estimation of the objects in the video. This approach reduced the
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variability of the system since it had less separate components. The trained network

showed good results with 1/6 of the supposed training. As known, the more data

the training has, the better results a network can have. With the results shown and

with less training the network could estimate speed with lower error. This makes

the training of the network with more results reliable. The results obtained are a

step forward on the use of this type of networks to make speed estimations through

computer vision.

7.1 Future Work
Although some interesting results were achieved with both systems, there where

high peek errors that should be mitigate. On the tracking by detection network it

could have been implemented a detector with better detection precision (reducing

miss detection) or with higher embedding features (increasing tracking association),

nonetheless it would reduce its performance not allowing to run it in real-time. The

End-to-end network could be trained with higher amount of data to reduce its errors.

Another interesting suggestion for future work, would be to implement the end-to-

end network with reduced time sequences, this could increase specific car features,

reducing it speed estimation error.
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