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Resumo 
 
A imagem por ressonância magnética (MRI, do inglês Magnetic Resonance Imaging) é a 
técnica mais utilizada no diagnóstico e monitorização da esclerose múltipla (MS, do inglês 
Multiple Sclerosis). O uso da imagem por ressonância magnética funcional (fMRI, do inglês 
functional MRI) tem sido cada vez mais comum na identificação de padrões de conetividade 
funcional (FC, do inglês functional connectivity) na MS, principalmente com o cérebro em 
repouso. Padrões de ativação anormais na MS também foram encontrados durante a 
realização de tarefas, mas não há consenso sobre as mudanças da FC neste contexto. 
Esta tese tem como objetivo recolher dados fMRI e explorar as mudanças da FC no cérebro 
de doentes com MS em relação a controlos saudáveis, durante tarefas de perceção de 
movimento visual passivo e de movimento biológico, bem como descrever quantitativamente 
essas alterações. Para cada participante, o sinal fMRI médio de dezasseis regiões do 
cérebro (oito em cada hemisfério) envolvidas nas tarefas foi calculado, e a FC foi 
determinada através da Causalidade de Granger (valores F). As matrizes de conetividade 
foram comparadas entre grupos para identificar quais as ligações alteradas na MS. Além 
disso, medidas quantitativas de conetividade foram extraídas com base na teoria de grafos. 
A correlação entre a FC e dados neuropsicológicos dos doentes também foi analisada. 
Durante ambas as tarefas, foi observado um aumento geral dos valores F na MS, bem como 
alterações nas ligações recrutadas pelas tarefas, com mais envolvimento de regiões de alto 
nível na tarefa de movimento biológico. A disparidade dos valores F entre os grupos indica 
que uma sobrecompensação pode ocorrer na MS durante o desempenho de tarefas 
envolvendo regiões críticas. Além disso, a análise com teoria dos grafos revelou que as 
propriedades topológicas da rede estavam alteradas na MS e que, ao contrário de estudos 
anteriores, doentes com MS apresentavam valores de eficiência mais elevados. Mudanças 
significativas na FC foram também encontradas na correlação dos valores F com os dados 
neuropsicológicos, o que contribui para a compreensão dos mecanismos subjacentes às 
alterações cognitivas na MS. 
Conseguimos reforçar a ideia de que a MS é uma doença de desconexão que afeta a função 
cerebral e provar que a análise multivariada de dados fMRI pode contribuir para o estudo 
dos mecanismos anormais e adaptativos da MS. 
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Abstract 
 
Magnetic resonance imaging (MRI) is the gold standard for diagnosing and monitoring 
Multiple Sclerosis (MS). More recently, functional MRI (fMRI) has been used to identify 
functional connectivity (FC) patterns in MS, mostly during resting-state. Abnormal fMRI 
activation patterns have also been found during task performance, but there is no consensus 
regarding these FC changes in MS.  
This thesis aims to collect fMRI data and explore changes of brain directed FC in MS patients 
relative to healthy controls during visual passive motion and biological motion perception 
tasks and quantitively describe these alterations. For each participant, the average fMRI 
signal within sixteen brain regions (8 in each hemisphere) elicited by the task was computed, 
and the pairwise FC was calculated using Granger Causality (F-values). The connectivity 
matrices were compared between groups to identify which connections were altered in MS. 
Furthermore, quantitative connectivity measures were extracted using concepts from graph 
theory. The correlation between F-values and neuropsychological data of the patients was 
also analysed. 
During both tasks, a general increase of the F-values was observed in MS, as well as 
alterations in the connections employed in the tasks, with high-order regions being more 
involved in the biological motion task. The disparity of F-values between groups indicates 
that overcompensation may occur in MS during task performance involving critical brain 
regions. Moreover, graph theory analysis revealed that the network’s topological properties 
were altered in MS and that, contrary to previous research, MS presented higher efficiency 
values. Significant alterations between groups in FC were found when correlating F-values 
with neuropsychological data, which further contributes to the understanding of the 
underlying mechanisms of cognitive impairment in MS. 
We were able to reinforce that MS is a disconnection disease that affects brain function and 
prove that multivariate analysis of fMRI data might contribute to the study of the abnormal 
and adaptive mechanisms of MS. 
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PTh Proportional threshold 

RF Radio frequency 

RME Reading the mind with the eyes 

ROI Region of interest 

RRMS Relapsing-remitting multiple sclerosis 

rs-fMRI Resting-state functional magnetic resonance imaging 
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RUNS BM Biological motion run 

SDMT Symbol digit modalities test 
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1.1 Motivation  
Multiple sclerosis (MS) is the most common chronic neurological pathology among young 
adults between 20 and 40 years old (Oh, Vidal-Jordana and Montalban, 2018) (Dobson and 
Giovannoni, 2019). It primarily affects the central nervous system (CNS), particularly the 
myelin sheaths around nerve cells, which have a critical role in the transmission of the 
nervous signal and, thus, in the efficiency of the information exchange between brain regions 
that will eventually translate into body movements, actions, and thoughts. MS symptoms, 
depending on where MS lesions develop on the brain and spinal cord, can manifest 
themselves in several different ways, such as decreased motor coordination, bladder issues, 
chronic pain, muscle spasms, extreme fatigue, and changes in speech. Overall, cognitive 
problems and reduced mobility characterize this pathology, which will gradually but inevitably 
result in the loss of the patient’s independence (Rodriguez-Rincon et al., 2019). 
  
The disease is chronic, irreversible, and usually progressive, and there are still no concrete 
explanations about what causes it. Additionally, the existing treatments do not offer a 
resolution, focusing mainly on controlling the progression of the disease and diminishing the 
discomfort of those affected. This uncertainty and incomplete understanding of MS, but also 
the prospect of a potential severe disability, dramatically affects the patients and everyone 
who cares for them, not only when considering the socio-economic aspects that it 
encompasses, but also the psychological and mental-wellness ones, even leading to anxiety 
and depression (Sousa et al., 2018). 
  
MS also has an extensive impact on society, especially in its economy. Costs of MS involve 
the healthcare system’s support, the loss of productivity at work, informal care time, or 
medication. According to reports from the United Kingdom, the costs of progressive MS reach 
about £3 billion per year (Doshi and Chataway, 2017) (Rodriguez-Rincon et al., 2019). 
  
A worrisome aspect of this condition is that its prevalence is rapidly increasing. According to 
a recent report (Walton et al., 2020), MS diagnosis has increased 30% since 2013, and 
currently, 2.8 million people suffer from this disease, making its global prevalence an average 
of 35.9 per 100,000 people worldwide. MS affects females twice as much as males, a 
difference that is becoming more noticeable with time, and that can be detrimental in the 
building of careers and planning of families, with the likelihood of women having children 
being drastically decreased (Walton et al., 2020). 
  
Thus, the need for a better understanding of the aetiology, mechanisms of progression, and 
possible cures of MS is fundamental. While there is still a long way to go in the search for 
answers, studies have already shown that a prompt treatment upon diagnosis slows down 
the progression of the disease, reduces disability, extends lifetime expectancy, which is 
decreased by approximately ten years in MS (Oh, Vidal-Jordana and Montalban, 2018), and 
overall provides a better quality of life. Hence, the focus in more recent investigations, in 
addition to provide an accurate and rapid diagnosis, is to search for biomarkers that provide 
information about whether a particular characteristic is indicative of disease progression and 
how it relates to existing treatments. Finding such biomarkers is crucial to reliably assess 
disease progression to better adjust interventions. This process is progressively facilitated 
through imaging techniques, such as Magnetic Resonance Imaging (MRI), that allow a better 
comprehension of the human brain and, even more recently, its functions and connectivity 
(Walton et al., 2020). 
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1.2 Proposed Approach  

This Master’s Thesis aims primarily at understanding multiple sclerosis’ hallmarks and 
discriminative features by implementing models of the brain’s functional connectivity during 
task performance. The proposed approach is to extract quantitative connectivity measures 
in patients in early phases of MS, particularly Relapsing-Remitting Multiple Sclerosis 
(RRMS), and compare them to those extracted from a demographically matched healthy 
control group.  
  
Data is obtained through functional Magnetic Resonance Imaging (fMRI) while the subject 
performs a visual task. Realistic brain networks are then constructed, and measures of 
neuronal functional connectivity are obtained through Granger Causality Analysis (GCA) and 
graph theory analysis. Finally, neuropsychological data collected from the MS patients is 
correlated with previously attained functional connectivity values. In addition to allowing an 
overview of the pathophysiology of the disease, these results, by providing an objective 
observation of the impact of MS on the communication between different regions of the brain, 
will further help achieve a posterior main goal, the identification of MS progression 
biomarkers. Hopefully, by investigating new biomarkers of brain connectivity in MS, this is a 
step forward in providing a more reliable diagnosis as well as tools to quantitatively follow 
disease progression and clinical improvement during treatment, which might improve the 
management of this condition. 
 
   

1.3 Objectives, Hypotheses and Original Contributions  

Several neuroimaging studies in multiple sclerosis focus on patterns of brain activation. 
However, there is still a lack of knowledge regarding quantitative connectivity measures that 
aim to describe brain function and information processing in MS. In addition, while the 
literature on brain connectivity is growing, almost all the existing projects in MS examine 
undirected functional connectivity (simple correlation between pairs of signals) of the brain 
in its resting state, i.e., when there is no explicit task-related activity. As task performance 
can provide new types of reliable information, since our brain is constantly performing tasks 
that allow us to move and think, this thesis intends to investigate brain directed functional 
connectivity in MS during a visual task with the help of functional imaging techniques.  
  
The specific objectives of this master’s thesis are the following: 

• Construction of the participant’s brain networks, represented by directed functional 
connectivity matrices, through collected fMRI data and the use of GCA. This data is 
acquired while the participants are executing two visual perception tasks, as this 
information can further clarify the importance of the connections between distant 
brain regions (and its impairment in MS) and may provide new biomarkers for the 
disease. The visual tasks were chosen as they are very simple and involve an already 
known network of regions that can be thoroughly studied. 

• Analysis of the significantly different connections between healthy controls and 
patients with multiple sclerosis. 

• Extraction of global and local quantitative connectivity measures that describe brain 
function and efficiency in the information exchange between regions. 

• Exploration of the correlation between functional connectivity data, obtained with 
GCA, and the neuropsychological evaluation of MS patients, to investigate the 
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relationship between brain connectivity and characteristic clinical symptoms and 
cognitive difficulties.  

 
Some hypotheses were outlined a priori, based on previous research done in this context. 
First and foremost, an increase of connectivity in the MS patient’s group, as a result of 
compensatory neuroplasticity, was expected, as well as alterations in the connection patterns 
in MS patients when performing the tasks. Additionally, alterations in the connectivity 
measures were also anticipated, with a tendency for a decrease in network efficiency. 
  
 

1.4 Thesis Outline   

This chapter presents the motivation underlying the development of this master’s thesis, 
stating the proposed approach and its main objectives, the outline, and the outputs beyond 
the thesis. The thesis comprises six main chapters, including Chapter 1 with the Introduction 
to the topic and the thesis document. Chapter 2 begins by exploring and explaining the 
fundamentals of multiple sclerosis and concepts regarding fMRI and brain connectivity. The 
importance of task-related fMRI studies will also be addressed. Chapter 3 discusses the state 
of the art concerning fMRI and brain connectivity in the context of MS through a 
comprehensive literature review and provides guidance for the future obtained results. 
Chapter 4 will present the approach and methodology of the study: the type of data, the 
experimental setup, the methods for construction of brain networks, and the software used 
to extract the connectivity measures. Chapter 5 summarizes the results and discusses them 
extensively. Finally, Chapter 6 will present the take-home messages and conclude with the 
study’s limitations and possible future work. 
 
   

1.5 Thesis Outputs 

The work described in this thesis resulted in one abstract submitted and accepted for poster 
presentation in the peer-reviewed international conference European Committee for 
Treatment and Research in Multiple Sclerosis (ECTRIMS), and was “awarded an abstract 
grant based on the scientific quality of the abstract”: 
 
Duarte JV, Santos J, Abreu R, Soares JF, Batista S, Lima AC, Sousa L, Castelo-Branco M 
(2021). Probing brain effective connectivity in early MS patients with Granger causality 
analysis of task-fMRI (abstract). 37th Congress of European Committee for Treatment and 
Research in Multiple Sclerosis - ECTRIMS 2021. 
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2.1 Multiple Sclerosis 
Multiple sclerosis is a neurodegenerative disease that targets the CNS, causing irreversible 
damage to the brain and spinal cord and leading to an array of debilitating symptoms. 
  
The condition’s aetiology is still poorly understood, which is an obstacle in its prevention and 
prompt treatment. However, studies have shown that its onset may be multifactorial due to a 
combination of genetic factors, infections by viruses (particularly the Epstein-Barr virus), 
obesity, smoking, or even influenced by environmental factors, such as lack of vitamin D and 
exposure to ultraviolet-B light (Goldenberg, 2012) (Doshi and Chataway, 2017) (Dobson and 
Giovannoni, 2019). 
  
Ultimately, MS is considered an autoimmune disease arising from the response of the 
adaptive immune system against antigens coming from the CNS: when lymphocytes migrate 
through the blood-brain barrier, that separates the circulatory and the nervous system in the 
brain, they will trigger several sources of inflammation, from T- and B-cell clonal expansion 
to mitochondrial damages that lead to energy failure and oxidative damage (Doshi and 
Chataway, 2017). This response will damage the myelin sheaths of neurons, a process called 
demyelination. Demyelination, together with infiltrates of inflammatory cells, forms the well-
known lesions, also known as scars or plaques, generally in white matter (WM) regions but 
also in grey matter (GM) (Goldenberg, 2012). As the disease progresses, axonal 
damage/loss is also observed (Filippi and Rocca, 2009) (Dobson and Giovannoni, 2019). 
 

 
Figure 2.1 - Brain lesions in MS and demyelination of the neuron’s axon sheaths (created with BioRender.com). 

 
As myelin surrounds and insulates axons, it has an essential role in the rate at which action 
potentials (electric impulses) and the nervous signals are propagated and, thus, has a crucial 
role in the information propagation from one brain region to another. When inflammation and 
demyelination occur, this process is compromised, and there is an interruption of the nervous 
stimulus and information flow, i.e., there are connectivity damages. This situation occurs in 
various degrees and directly affects motor and sensitive functions (Peixoto and Abreu, 2016). 
 

 
 

Figure 2.2 - Connectivity damages and loss of information flow (GAEM, 2017, available at: 
https://fundaciongaem.org/en/what-is-multiple-sclerosis/).  
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Initial symptoms of MS involve sensory disturbances such as paresthesias (which includes 
numbness and tingling), dysesthesias (burning and “pins and needles” sensations), bladder 
disturbances and others. These usually resolve but can eventually develop into chronic 
neuropathic pain. Moreover, MS patients suffer from severe mobility impairment, visual 
problems, impaired memory, and disconcerting fatigue (Goldenberg, 2012). 
 
 
 
2.1.1 Phenotypes and Clinical Features  
  
In approximately 80% of reported cases, MS is suspected for the first time when a patient 
presents a set of characteristics known as a clinically isolated syndrome (CIS), which is an 
acute clinical episode/attack of focal neurological changes that suggest demyelination in the 
CNS and lasts for longer than twenty-four hours, with no signs of infection (Doshi and 
Chataway, 2017). CIS is always isolated in time, and usually, it is isolated in space, with 
common lesions in the optical nerve (sometimes originating optical neuritis), spinal cord, 
brainstem, cerebellum or, in rare cases, in a cerebral hemisphere  (Peixoto and Abreu, 2016) 
(Dobson and Giovannoni, 2019). CIS is not considered a type of MS because it does not fulfil 
dissemination in time criteria (section 2.1.2); however, it can eventually convert to an early 
phase of MS (relapsing-remitting MS) (Lublin et al., 2014) (Doshi and Chataway, 2017). 
   
MS is divided into three major types based on the patient’s clinical characteristics (Table 2.1). 
However, there is no characteristic histological distinction between the types. Thus, because 
MS evolution is usually progressive, it is often assumed that the pathological changes form 
a continuous spectrum, ranging from relapsing (or ‘inflammatory dominant’), in which the 
patients experience improvement in their symptoms after an attack, to progressive (or 
‘neurodegenerative dominant’), happening when delayed neurodegeneration ultimately 
leads to non-relapsing progression (Goldenberg, 2012) (Oh, Vidal-Jordana and Montalban, 
2018) (Dobson and Giovannoni, 2019). 
 
Table 2.1 - Types of MS and respective main characteristics. In the graphs describing the progression of MS (left column), 
the x-axis represents time, and the y-axis represents the level of disability (Goldenberg, 2012) (National Multiple Sclerosis 
Society, 2013) (Lublin et al., 2014) (Doshi and Chataway, 2017) (Oh, Vidal-Jordana and Montalban, 2018) (Thompson et 
al., 2018) (Dobson and Giovannoni, 2019) (Rodriguez-Rincon et al., 2019).  

Type of MS Main Characteristics 

 
Relapsing–remitting MS 

(RRMS) 

  

RRMS is the most common disease course, affecting nearly 85% of MS 
patients. It is characterized by intercalation of flare-ups (or relapses), 
which involve worsening of the symptoms, with periods of clinical 
recovery (or remission) when symptoms disappear, and the progression 
of the disease is apparently stagnated. Relapses happen due to the 
demyelination of brain areas and evolve over twenty-four hours, 
persisting for some time before improving. Even though it is not 
noticeable, there is an accumulation of disability, including brain 
atrophy, with every relapse since there is an excess of ongoing 
inflammation  

 
Secondary progressive MS  

(SPMS) 

  

 
Generally, when RRMS patients are not treated, up to 80% of the cases 
evolve into secondary progressive MS, 10 to 15 years after the initial 
diagnosis. Relapses cease to exist, and, as the name indicates, there is 
a progressive worsening of the disease and its symptoms and, thus, an 
irreversible accumulation of disability and loss of neurologic functions. 
There may be periods of remission and plateaus of symptom severity. 
Hallmarks of this type of MS are axonal injury and increased atrophy in 
white and grey matter, but less inflammation. 
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Primary progressive MS  
(PPMS) 

  

 
PPMS is the only type of MS characterized by progressive disability from 
the outset, generally due to a disease in the spinal cord. It affects 15% 
of people with MS, and most of them are only diagnosed after 40 years 
old. There are no relapses and remissions, and their symptoms will 
gradually worsen from the moment of diagnosis. Nonetheless, there 
may be plateaus in disease evolution  

 
 
The progression of different features of MS and the decrease in the quantity of the relapses 
(but more difficulty in recovering from them), is described in figure 2.3. 
 
 

 

Figure 2.3 - Disability progression and frequency of relapses during MS evolution. The x-axis represents time in years, 
the top part of the y-axis represents the level of disability and the bottom part of the y-axis represents the quantity of 
relapses. Accumulation of disability in RRMS eventually leads to severe neurodegeneration and a progressive disease 
course after 10–15 years of the initial diagnosis. There is less focal inflammation, as seen through the reduction in 
relapses. (Adapted from (Doshi and Chataway, 2017)) (created with BioRender.com). 

  
 
 

2.1.2 Multiple Sclerosis Diagnosis  
 
The diagnosis of MS is mainly made through clinical findings and evidence provided by MRI 
or the analysis of cerebrospinal fluid (CSF). These techniques can estimate the risk of CIS 
converting into MS and propel treatment prescription in the earliest stages, hence diminishing 
morbidity (Goldenberg, 2012) (Peixoto and Abreu, 2016). 
  
Several clinical indicators can predict the conversion of CIS to MS as well as the disease 
course, such as age, sex, frequency of relapses and accumulation of disability after disease 
onset, but lesions observed in MRI (both in the brain and spinal cord) and the presence of 
CSF-specific oligoclonal bands, which are immunoglobulins that suggest inflammation of the 
CNS, are the primary biomarkers of this pathology (Oh, Vidal-Jordana and Montalban, 2018). 
Symptoms and examinations are relevant but do not represent the actual number of brain 
lesions: most of these lesions that can be detected with MRI are clinically silent (Traboulsee 
et al., 2005). Therefore, MRI is considered the most reliable technique for diagnosing MS, 
given its higher predictive value (Peixoto and Abreu, 2016). 
  
In a T2-weighted MRI protocol, the hallmarks of MS, determinant in the long-term disease 
outcome, are the focal lesions in WM, particularly affecting the periventricular regions of the 
brain, but also in GM regions (Tahedl et al., 2018) (Fleischer et al., 2019). 
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Figure 2.4 - Brain axial MRI scan of an RRMS patient. (Left) T1-weighted image (taken after lesion enhancing through 
gadolinium administration); (Right) T2-weighted image. The MS lesions are shown in white in both images, mainly in the 
brain’s periventricular regions. In the T1-weighted image the lesions appear as white thanks to gadolinium administration. 
Adapted from (Trip and Miller, 2005). In MS, myelin, which contains fat tissue, is stripped away from nerve cells, which 
causes the area to hold more water. This difference between tissues is shown in the MRI scan with either brighter or 
darker areas depending on the type of scan (Schild and Berlex Laboratories, 1999). T1 and T2 refer to the time between 
tissue excitation and image capture in MRI (Kashou, 2014). Each method (T1 and T2) can detect different structures or 
chemicals in the CNS. For example, in a T1-weighted image, fluids and inflamed areas are dark, whereas fat tissues and 
WM are bright, and this method provides information about disease activity, highlighting actively inflamed areas. In turn, 
in a T2-weighted image, fluids and inflamed areas are bright, and the disease burden or lesion load (that is, the total 
amount of lesioned areas) is better analysed (Filippi and Rocca, 2011). 

 

At least one of the following criteria must be met to form a diagnostic with MRI (Goldenberg, 
2012): 

• Space Dissemination Criterion - evidence of at least two lesions in the WM of CNS. 
• Time Dissemination Criterion - evidence of at least two episodes (relapses) during 

the course of MS. This criterion must be confirmed by clinical signs on MRI images, 
at least three months after the previous clinical episode. 

• Inflammatory Criterion - analysis of CSF is able to prove chronic CNS inflammation. 
 

The McDonald criteria were created to facilitate proving these criteria, particularly 
dissemination in space and time. The most recent revisions were made in 2017 to anticipate 
the diagnosis and prevent the progression of the disease. Table 2.2 shows the data needed 
for a diagnosis, based on the number of relapses that have occurred and the number of 
lesions (Peixoto and Abreu, 2016) (Thompson et al., 2018). 
 
Table 2.2 - McDonald Criteria, revisions from 2017 (Thompson et al., 2018). These criteria help in the diagnosis of MS.  

Number of 
Relapses 

Number of Lesions (with 
objective clinical evidence) Additional data needed for a diagnosis 

≥ 2 ≥ 2 None, since the clinical evidence is sufficient. 

 
≥ 2 

1 (and evidence of a previous 
relapse involving damage in a 

different location) 

 
None, since the clinical evidence is sufficient. 

≥ 2 1 

Dissemination in space proven with: 
• MRI (one or more lesions) OR 
• Additional relapse (which implicates damage 

at a different CNS site) 

1 ≥ 2 

Dissemination in time proven with: 
• MRI (new lesion since previous scan) OR 
• Additional relapse OR 
• CSF-specific oligoclonal bands 
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1 

(Clinically isolated 
syndrome) 

1 

Dissemination in space proven with: 
• MRI (one or more lesions) OR 
• Additional relapse OR 

AND dissemination in time proven with: 
• MRI (new lesion since previous scan) 
• Additional relapse 
• CSF-specific oligoclonal bands 

0 
(Primary 

progressive 
multiple sclerosis) 

— 

≥1 year of disability progression (symptoms + ongoing 
observation) determined with either two of the following: 

• One or more brain lesions (MRI) 
• Two or more spinal cord lesions (MRI) 
• CSF-specific oligoclonal bands  

 
 
  
There is no definitive cure for MS. Its treatment mainly consists of disease-modifying 
therapies (DMTs) that try to suppress inflammation and disease activity, shortening the 
duration of relapses and decreasing their frequency, and symptomatic therapies that are not 
MS-specific but instead target each symptom provoked by the disease (such as bladder 
dysfunction and neuropathic pain) and intend to diminish the patient's discomfort and 
maintain function, temporarily (Goldenberg, 2012) (Dobson and Giovannoni, 2019). 
 
 
 
2.1.3 Expanded Disability Status Scale  
 
Every person suffering from MS has a different disease progression. Therefore, it is relevant 
to find a quantitative measure or scale to describe it, particularly in terms of physical disability. 
The Expanded Disability Status Scale (EDSS), represented in figure 2.5, primarily measures 
how much patients are physically affected by the disease. It is an ordinal rating system 
ranging from 0, where physical symptoms are practically null, and everything is considered 
"normal", and 10, which is death due to MS, in 0.5 increments (when EDSS reaches 1). This 
scale may change during disease progression, given that the higher the EDSS score, the 
more physically disabled the patient is. Lower EDSS values (less than 4) account for 
impairments based on neurological examinations, EDSS values between 4 and 6 depend on 
aspects of walking ability, and EDSS over 6 assesses handicaps of MS patients (JF, 1983) 
(Meyer-Moock et al., 2014). 

 
 

Figure 2.5 - Expanded Disability Status Scale. Adapted from: (Another MS Warrior, 2019, available at: 
https://anothermswarrior.com/tag/dmt/). 
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This scale is based on aspects such as (JF, 1983): 
• Balance and coordination. 
• Numbness (or other abnormal physical sensations). 
• Bladder issues. 
• Eye movement and eyesight. 
• Speech and swallowing. 
• Way of thinking and memory. 

 
Nonetheless, the EDSS is far from perfect since it does not consider ‘invisible’ symptoms, 
including pain, fatigue, or depression. Furthermore, it does not take into account how MS 
affects the arms, hands and fingers' movements (JF, 1983). 
 
EDSS is also used to evaluate the therapeutic interventions' effectiveness and helps decide 
which patients may be able to participate in clinical trials of many MS drugs. For example, 
people with EDSS scores above 6.5 cannot participate in DMTs trials since it is believed that 
these drugs do not have benefits once this level of disability is surpassed (JF, 1983) (Meyer-
Moock et al., 2014). 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Background and Literature Review 

 13 

2.2 Functional MRI  

Assessing brain activity and function in a non-invasive, cost-effective manner has been a 
challenge throughout the history of neuroscience. Therefore, the creation of new, innovative 
techniques was necessary given the progressive increase of cases related to 
neurodegenerative diseases (Logothetis, 2003) (Logothetis, 2008). 
  
In the late 1890s, neurophysiologists Roy and Sherrington discovered the relation between 
cerebral blood flow and neuronal activity (Siero, Bhogal and Jansma, 2013). When John 
Belliveau showed that cerebral activation could be imaged using high-resolution MRI (and 
gadolinium administration), functional brain maps' construction was possible. Later, in 1992, 
Seiji Ogawa developed a technique based on BOLD (Blood Oxygen Level Dependent) 
imaging that leverages different magnetic properties of oxygenated and deoxygenated blood 
to detect changes in blood flow elicited by neuronal activation, propelling the beginning of 
functional Magnetic Resonance Imaging (fMRI) (Ogawa et al., 1992) (Logothetis, 2008).  
  
fMRI measures hemodynamic changes and metabolic demands after enhanced neural 
activity to evaluate the mechanisms involved in cognitive capacities. These conclusions are 
possible because fMRI activations in the brain reflect alterations of neural activity. These 
activations can be detected with MRI via measurements of tissue perfusion, blood 
oxygenation or blood volume. However, the alterations are best described by analysing the 
BOLD signal detected when there is neuronal activity in brain areas activated by motor, 
sensitive or cognitive tasks. This signal mainly depends on the underlying physiological and 
metabolic brain mechanisms modulating blood flow during functional stimuli, showing 
imaging differences in blood oxygenation (Logothetis and Wandell, 2004) (Logothetis, 2008) 
(Filippi and Rocca, 2009). 
 
 
 
2.2.1 The Physics Behind Magnetic Resonance Imaging  
 
Magnetic Resonance Imaging is the gold standard for neuroimaging given its non-invasive 
and non-ionizing nature that allows for the safe acquisition of detailed anatomic information 
as three-dimensional (3D) datasets that can be easily interpreted and thoroughly studied 
(Schild and Berlex Laboratories, 1999). 
  
MRI benefits from the high prevalence of the hydrogen atoms in biological tissues, randomly 
orientated, and each inducing a small magnetic field due to the spin of the atoms’ protons. 
When subjected to an external uniform magnetic field (applied through a magnet in the MRI 
scanner), the hydrogen protons become aligned to this magnetic field and start to precess 
around its axis. Posteriorly, a radio frequency (RF) pulse, i.e., a short burst of an 
electromagnetic wave, is sent to the patient through an RF coil, disturbing the protons and 
exciting them into a higher energy state. Protons then align to a certain angle with the 
magnetic field (depending on the RF pulse) and precess in phase with it. This excitation is 
only achieved if the RF pulse frequency is the same as the proton’s precessing frequency, a 
phenomenon called resonance. When the RF pulse is switched off, the protons then return 
to their previous alignment through relaxation processes, emitting RF energy that is then 
measured by a receiver coil. This time-varying precession of protons causes variations in the 
surrounding magnetic field, and induces an electric current in the receiver coil, which in turn 
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translates into the MRI signal that is later rendered into 3D images of the body (Schild and 
Berlex Laboratories, 1999) (Logothetis and Wandell, 2004) (Kashou, 2014). 
 

 
Figure 2.6 - Fundamental principles of MRI.  Usually, the hydrogen protons are facing random directions 
(top left), until the magnetic field created by the MR scanner aligns them in the same direction (top right). A 
RF pulse is emitted and, consequently, the protons are excited to a higher state (bottom left). Finally, when 
the protons relax, they emit RF energy which is captured by the receiver coil and is transformed into the MRI 
signal (bottom right). Adapted from: (Farnsworth, 2019, available at: https://imotions.com/blog/eeg-vs-mri-vs-fmri-
differences) (created with BioRender.com). 

 
Image contrasts are determined by tissue properties, namely the different relaxation 
characteristics of different types of tissue and respective relaxation times (T1 and T2). T1, or 
longitudinal relaxation time, corresponds to the time taken by the excited protons to realign 
with the applied magnetic field, while T2, or transverse relaxation time, corresponds to the 
time taken by the protons to de-phase, i.e., lose precessing phase coherence. Different 
tissues have different T1 and T2 values. The contrast can also be controlled through changes 
in the pulse sequence. The most relevant parameters are the Time of Repetition (TR), the 
time taken between successive pulse sequences, and the Time of Echo (TE), the time taken 
between sending the RF and receiving an echo signal (Schild and Berlex Laboratories, 1999) 
(Kashou, 2014). 
  
The three main components in the MRI scanner for acquiring an image are the magnet, the 
RF transmitter/receiver coil, which generates the RF pulse, and three spatial encoding 
gradient coils. The gradient coils (with x, y, and z directions) generate gradient fields that are 
secondary time-varying magnetic fields (meaning that they change their strength according 
to their position) superimposed on the applied external magnetic field to modify the strength 
of the original magnetic field in different locations. When these gradients are turned on and 
off, “slices” of the brain can be taken, i.e., two-dimensional (2D) images that are put together 
to define the 3D brain. Therefore, images of the slices are generated one pixel at a time, 
according to the location and signal strength received by the corresponding voxel. Finally, 
through Fourier transformation, the frequency information present in each location’s signal is 
converted into intensity levels, which are then translated into different shades of grey in a 
matrix of pixels (Schild and Berlex Laboratories, 1999) (Kashou, 2014). 
 

e.g.,  
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2.2.2 Emergence of Functional MRI  
 
Structural MRI (sMRI) is commonly used to diagnose MS, primarily because of its high 
sensitivity to detect WM lesions and ease of obtaining the images. The methods applied in 
the analysis of sMRI are often focused on quantifying lesion load and mainly include lesion 
counting or volume measurements. Nonetheless, these techniques cannot detect lesions in 
the normal-appearing WM and GM, since these are structures only diffusely affected in MS 
(Fleischer et al., 2019), and do not account for damages in the interaction and communication 
between brain regions, which are also impaired because of WM and GM lesions. These 
damages in the information exchange processes are particularly worrisome as they lead to 
altered connectivity and ultimately to physical and cognitive problems. For example, sMRI 
cannot depict remyelination and repair in some brain regions, as well as structural and 
functional brain reorganisation that plays an essential role in the progression of disability. 
Thus a holistic characterisation of all lesions and a detailed topological mapping of the brain 
is fundamental (Audoin et al., 2003) (Droby et al., 2016) (Fleischer et al., 2019). 
 
Studies have recently focused on the relationship between brain structure and function, and 
network-based approaches are increasingly used to quantitatively characterise brain 
organisation and further visualise functional connectivity patterns. The analysis of functional 
networks is made possible through the BOLD signal obtained from fMRI  (Faivre et al., 2016) 
(Fleischer et al., 2019). 
 
 
 
2.2.3 Neural Activity and BOLD Signal 
 
Oxygen (O2) is transported in the blood via the hemoglobin molecule. When hemoglobin is 
paired with oxygen molecules, it becomes oxyhemoglobin (HbO2), and when it is devoid of 
oxygen, it is called deoxyhemoglobin (dHb). Oxy and deoxyhemoglobin have different 
magnetic properties, and therefore different effects in the MRI signal: oxyhemoglobin is 
diamagnetic, minimally affecting or distorting the magnetic field because the molecule has 
no unpaired electrons. On the other hand, because four of its six outer electrons are 
unpaired, deoxyhemoglobin is paramagnetic, leading to a measurable, additive magnetic 
field, which causes magnetic field distortions in and around the blood vessels and MRI signal 
loss (figure 2.7). fMRI takes advantage of these molecules’ characteristics and bases its 
technique on detecting perturbations and alterations in the deoxyhemoglobin concentration 
in areas where there is neuronal activity. Thus, by analysing and comparing the amplitude 
and time courses of the BOLD signal, fMRI can indirectly measure brain function activity 
(Logothetis, 2008) (Siero, Bhogal and Jansma, 2013) (Kashou, 2014) (Duarte, 2016). 
 
 

                         
 

Figure 2.7 - Magnetic effect of oxyhemoglobin (left) and deoxyhemoglobin (right) in the blood vessels. dHb causes more 
distortions, leading to a measurable magnetic field. Adapted from (Birn, available at: 
http://www.humanbrainmapping.org/files/2015/Ed%20Materials/OHBM15_AdvancedFMRI_Birn_Rasmus.pdf). 
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Neuronal activity yields oxygen consumption and, consequently, causes the increase of 
cerebral blood volume (CBV) and cerebral blood flow (CBF) in the activated brain areas. The 
active process that relates neuronal activity to an increase in blood flow is called 
neurovascular coupling, which can be described as a linear transform model, meaning that 
for an increase in neuronal activity, there is a proportional increase in blood flow, irrespective 
of the pathological state, brain development and brain region. As this increase in CBV and 
CBF consumes energy, the delivery and supply of oxygen and glucose in these brain areas 
is necessary, so there will be an increase in the cerebral metabolic rate of oxygen (CMRO2) 
extraction/consumption, which means there will be less oxygen in the blood. Thus, as the 
magnetic susceptibility effect associated with the paramagnetic dHb causes distortions of the 
magnetic field, one would expect a decrease in the fMRI signal. However, the increase in 
CBF overcompensates for the decrease in O2, and although there is an increase of both CBF 
and CMRO2, the increase of the latter is not commensurately elevated and not as noticeable 
as the increase in CBF, causing less O2 to be removed. Therefore, there is an oversupply of 
oxygenated blood, i.e., the total delivery of oxygen exceeds consumption demands. Because 
the increase of the CBF is more significant than the O2 consumption, the ratio of HbO2 
(diamagnetic) to dHb (paramagnetic) is also increased in the activation site. This drop in the 
dHb concentration increases the signal strength and originates the BOLD contrast 
mechanism  (Logothetis and Wandell, 2004) (Logothetis, 2008) (Filippi and Rocca, 2009)  
(Siero, Bhogal and Jansma, 2013) (Filippi and Rocca, 2013) (Hillman, 2014) (Duarte, 2016).  
  
 

 
Figure 2.8 - Processes that convert the activation of an area of the brain during a task to an electric signal. 

 
Although these variations in the strength of the signal during neuronal activation are not 
absolute, they can be compared relative to the signal strength in different conditions. This 
comparison between conditions creates a contrast. Usually, the BOLD signal is contrasted 
between one condition that is “active”, during which neural activity is elicited by a stimulus, 
and a “passive” or baseline condition, during which the stimulus-related neural activity is not 
present (Logothetis and Wandell, 2004) (Siero, Bhogal and Jansma, 2013) (Duarte, 2016). 
  
 
 
2.2.4 Hemodynamic Response Function  
 
The vascular response to an increased energy demand is called the hemodynamic response. 
If an isolated brief stimulus (an ‘impulse stimulus’) is applied in the MRI scanner and the 
BOLD response is measured, we can estimate the BOLD hemodynamic response function 
(HRF), which describes the time course of the coupling between neuronal and vascular 
activity and is represented in figure 2.9. The HRF is helpful because it varies significantly 
across subjects, experimental conditions, tasks, and brain regions (Logothetis and Wandell, 
2004) (Siero, Bhogal and Jansma, 2013) (Duarte, 2016). 
 
 

h  
h  
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Figure 2.9 - Hemodynamic response function. Adapted from (Siero, Bhogal and Jansma, 2013). 

 
The BOLD time course starts delayed to the start of neuronal activity, and the slight initial dip 
observed post-stimulus occurs due to the increase of CMRO2 in the capillaries, which leads 
to an increase in the concentration of dHb and, consequently, to a decrease in signal 
intensity. This dip is followed by an abrupt increase, culminating in a peak, considered the 
bulk of the BOLD response. This increase is called "overshoot" due to the increase in the 
CBF, which overcompensates for the extracted oxygen, the consequent increase in HbO2 to 
dHb ratio, and the increase in the MRI signal. Finally, the response returns to the baseline 
and creates a post-stimulus undershoot, also very variable and caused by an accumulation 
of dHb in the blood vessels (Logothetis and Wandell, 2004) (Siero, Bhogal and Jansma, 
2013) (Duarte, 2016). 
 
 
 
2.2.5 Experimental Design - Resting-State and Task-Based fMRI  
 
Resting-state fMRI (rs-fMRI) is commonly used to discover and explore brain connections 
and their organization. The participant in the MRI scanner does not perform a goal-oriented 
task, since rs-fMRI only measures changes in brain activity and spontaneous fluctuations in 
the BOLD signal, which ultimately lead to a better understanding of correlations between 
brain regions. Nevertheless, there are some limiting factors concerning rs-fMRI, such as 
influences of other non-neuronal effects (e.g., underlying BOLD fluctuations) and measures 
that are recorded without any controlled cognitive activity (e.g., physiological noise such as 
respiration and heartbeat) (Siero, Bhogal and Jansma, 2013). 
  
Contrarily, task-based fMRI aims to understand brain function by observing changes in the 
BOLD signal caused by the performance of goal-oriented tasks (figure 2.10). This is 
particularly interesting because the execution of a specific task could better highlight 
particular brain’s characteristics, such as efficiency in information exchange between distant 
brain areas, which could be impaired by structural and functional damage caused by 
neurodegenerative pathologies. This is possible because as long-range communication 
generally brings more costs to the network (in energy, for example), brain regions only 
establish a connection upon task-specific activities and demands (Di et al., 2013).  
Because in task-based fMRI an external input (the task) is introduced, a starting point can 
be set in the signal acquisition, and thus information flow can be traced back to its origin, i.e., 
the region from where information was sent in the first place can be determined. This is ideal 
for the study of functional connectivity (FC) and effective connectivity (EC). Studying FC and 
EC is more difficult in rs-fMRI because the origin of the neurophysiological signal is 
ambiguous and thus difficult to interpret. (Deshpande and Hu, 2012). Nonetheless, rs-fMRI 
results are shown to be correlated to task-based fMRI results, i.e., if there is a higher 

* start of neuronal activity 
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registered FC in rs-fMRI, the FC in task-based fMRI will most likely be higher as well (Di et 
al., 2013).  
 
However, it is essential to mention that task-based measurements are not absolute, just an 
implication that there is either an increase or a decrease in brain activity (Siero, Bhogal and 
Jansma, 2013). 
 

 
Figure 2.10 - Comparison of the BOLD signal in regions that are activated by a task (top right graph) and regions that are 
not activated by a task (bottom right graph). An increase in the signal is observed in the regions involved in the task 
(orange areas). In the y-axis, the back line represents the BOLD signal and its variations, the x-axis represents time, the 
grey blocks refer to periods of task performance, and the white blocks, periods of rest (or baseline). Adapted from: (Birn, 
available at: http://www.humanbrainmapping.org/files/2015/Ed%20Materials/OHBM15_AdvancedFMRI_Birn_Rasmus.pdf). 

 
 
Two experimental designs are commonly used within task-based paradigms: blocked design 
and event-related design (represented in figure 2.11). In a blocked design, tasks are 
presented in long and fixed periods of about 15-60 seconds, the ‘blocks’. These task blocks 
are intercalated with periods of a baseline task (that does not concern the function of interest) 
or resting-state. The blocked design leverages the fact that the BOLD signal in task-activated 
regions shows a relatively constant amplitude and accumulates over the period during which 
the task is performed. The most significant advantage of this type of design is the statistical 
power to detect brain activations. In an event-related design, short events (of a few hundred 
milliseconds) of one or more conditions or tasks are presented to the subject in single trials, 
usually separated by 12-14 seconds (Siero, Bhogal and Jansma, 2013). This type of design 
is better suited to investigate the HRF at the cost of lower statistical power. 
 

 
Figure 2.11 - Experimental designs within task-based fMRI paradigms: (top) blocked design and (bottom) event-related 
design. Adapted from: (Arco et al., 2018).  
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2.2.6 Processing of the fMRI Data 
 
Typically, one MRI dataset is acquired in one or more sessions. Each session collects one 
or more anatomical images and one or more functional runs (task or resting-state), each 
consisting of a timeseries of 3D functional volumes of data, which means one functional run 
is a four-dimensional volume (4D, space and time dimensions). Each functional volume is 
composed of 2D slices acquired at different points in time within the TR. All slices stacked 
together form a 3D image of the brain, i.e., a volume, composed of voxels (Duarte, 2016). 
 
Processing of fMRI data consists of two phases: pre-processing and statistical analysis.  
 
2.2.6.1 Pre-processing 
 

Differences in brain activity between experimental conditions can be due to factors unrelated 
to the task, such as the parallel functioning of the brain and noise produced through the 
course of the imaging process. In pre-processing, these effects and outlier data are 
recognized and corrected, including variations in the average signal intensity that may result 
from physiological sources (patient motion, respiration, cardiac pulsations, anxiety) or from 
the scanner itself (field inhomogeneities, electronics). Thus, the typical pre-processing steps 
include (Chen and Glover, 2015):  
 

• Slice timing correction: fMRI sequences acquire slices one at a time, meaning that 
the brain volume will not be covered simultaneously. This situation may lead to the 
signal from one slice being offset in time one or two seconds compared to another, 
which can be a problem in statistical analysis. Slice timing correction corrects this 
limitation and compensates for the time differences by time-shifting a slice to the 
same point where a reference slice is scanned. This will mathematically resemble 
the total brain volume measured at the same moment (Chen and Glover, 2015). 
  

• Realignment and motion correction: head motion is the primary source of error in 
fMRI acquisition, which causes significant changes in the signal over time and 
decreases data quality. Usually, this correction method describes head motion 
through six parameters: three translation and three rotation parameters. A volume is 
chosen as a reference and an iterative process is used to align each volume with the 
reference volume (Chen and Glover, 2015). 

 
• Geometric distortions correction: the echo planar imaging (EPI) acquisition pulse 

sequence is often used to obtain fMRI images. However, static field inhomogeneities 
may cause geometric distortions, leading to the obtained EPI functional data not 
being spatially aligned with the structural MRI scans, a necessary process to locate 
the functional images to their underlying anatomical structure (Jezzard, 2012). This 
correction fixes the problem by, for example, mapping the static magnetic field 
through phase difference measurements between two images with different TE 
(Chen and Glover, 2015) (Schallmo et al., 2021). 
 

• Bias field correction: fMRI images sometimes present intensity non-uniformities 
resulting from magnetic field variations. These variations will provoke changes in the 
signal and confuse tissue classifiers since they will assume that each tissue has a 
uniform intensity. Bias field correction methods estimate this bias field and make the 
signal intensities homogeneous (BrainSuite, n.d.). 
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• Coregistration: alignment of the functional images with the reference anatomical 
images (Chen and Glover, 2015). 
 

• Segmentation of structural image: process that divides the structural images of the 
brain into images of different tissues classes (usually GM, WM, and CSF), to better 
measure and visualise the brain’s structures. 

 
• Physiological noise correction: respiration and cardiac pulsations possibly induce 

artefacts in the fMRI images, and sometimes they generate time-varying signals that, 
if uncorrected, can be associated with neuronal activity, creating confounds in the 
data and obscuring signals of interest. Thus, to minimize the influence of the 
physiological noise (or provide information that allows for a correction) techniques 
that are based on cardiac and respiratory cycles are used (Brooks et al., 2013) (Chen 
and Glover, 2015). 

 
• Smoothing: the application of low-pass filters averages signals from adjacent voxels 

and “blurs” the image. This improves the signal-to-noise ratio (SNR) but decreases 
spatial resolution and smears activated areas into adjacent voxels. This can be used 
mainly because neighbouring brain voxels are usually inherently correlated in their 
function and blood supply (Chen and Glover, 2015). 

 
• High-pass filtering: fMRI images have noise related to low temporal frequencies (e.g., 

scanner temporal drift). High-pass filtering can detect these frequencies and remove 
them, only allowing high-frequency signals in the images (Chen and Glover, 2015). 

 
 
 
2.2.6.2 Statistical Analysis - General Linear Model  
 
The statistical analysis of fMRI data identifies regions in the brain that show significant 
increased or decreased responses linked to the task, highlighting them. This analysis is 
achieved through the General Linear Model (GLM), which is a matrix algebra approach that, 
in this case, aims to explain the variation of the observed fMRI time course of a voxel, yi, in 
terms of a linear combination of predictors, xi. The predictors are a group of reference 
functions that include experimental design variables, such as stimulus information and the 
expected shape of the HRF, and possible confounding variables (e.g., motion parameters). 
The GLM estimates a beta weight, βi, associated with each predictor xi, which quantifies how 
much each predictor influences the data yi (i.e., the voxel’s time course), plus an error term, 
εi, that accounts for the data that is not fitted in the model (Monti, 2011) (Poline and Brett, 
2012) (Kashou, 2014) (Duarte, 2016). 
 

 !! = #!. %! + 	(!	 (1) 

This equation can be translated into matrix form: 
 
 
 
 
 
 

Figure 2.12 - Matrix form of the GLM model. 
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The predictor variables constitute the design matrix, X (figure 2.13). The GLM intends to 
estimate the β values to minimize the error term and generate contrasts between conditions. 
If this β weight is statistically different from zero, it is considered that the voxel shows a strong 
activation or deactivation, depending on whether it is positive or negative, during the time 
period in which the corresponding predictor was “active”. The application of GLM to fMRI 
data ultimately results in the construction of a 3D map that represents brain regions or voxels 
that have “statistically significant” values of neuronal (de)activation, given that a contrast 
between conditions of interest (for example, task and baseline) is established (figure 2.14) 
(Monti, 2011) (Poline and Brett, 2012) (Kashou, 2014) (Duarte, 2016). 
 
 

 
Figure 2.13 - Design matrix. Obtained using the SPM software, during the performance of a visual task. 

  
 

 
 

Figure 2.14 - Statistical map obtained with GLM. It shows brain activation during the performance of a visual task (group 
analysis, 29 participants), using the SPM software. 
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2.3 Brain Connectivity 

Neuroimaging, exceptionally fMRI, has become the gold standard for comprehending and 
disclosing the brain’s architecture, how it processes information, and how a given task can 
modulate its activity, and to better comprehend concepts that regulate cognition, behaviour, 
and perception. However, to further understand its principles, it is fundamental to first 
distinguish between functional segregation and integration (figure 2.15) (Friston, 2011). 
  
Functional segregation concerns the brain’s ability to cluster into connected areas where 
there is specialized information processing. Functional integration characterizes the brain’s 
performance by evaluating how quickly specialized information from different brain areas is 
combined and how the “segregated clusters” coordinate and couple. Functional segregation 
is an already established principle of human brain organization and it is typically investigated 
in fMRI activation studies. However, integration of these segregated brain areas is more 
challenging to assess. To better characterize the functional integration principle and, thus, 
interactions between activated brain areas, research often turns to connectivity analysis 
(Roebroeck, Formisano and Goebel, 2005) (Friston, 2011) (Friston, Moran and Seth, 2013). 
 

  
 

Figure 2.15 – Brain’s functional segregation and integration. Brain segregation divides the brain into specialized sections, 
or ‘clusters’, and brain integration connects these clusters. Adapted from (Sporns, 2013a). 

 
 
2.3.1 Types of Brain Connectivity 
 
Structural connectivity models and characterizes the brain as a group of distributed cortical 
regions connected by WM tracts and evaluates these pathways’ integrity. It is usually 
measured with diffusion-weighted MRI using tractography (Uddin, 2013) (Pagani et al., 
2020). 
 
Functional connectivity (FC) represents the statistical dependencies between timeseries of 
neurophysiological events without knowing their exact causes. This type of connectivity 
subdivides into undirected and directed FC, depending on whether one considers the 
dependencies as spontaneous or as reflecting dynamical processes with causes and 
consequences, respectively. Techniques that assess undirected functional connectivity are, 
for example, correlation-based approaches (e.g., independent components analysis (ICA) 
and Pearson Correlation), which only determine the pairwise relationship of the variables (in 
this case, brain regions) without taking into consideration directional and multivariate 
information prevalent in brain networks (Abidin et al., 2017) (Miri Ashtiani et al., 2019). 
Directed FC can solve this problem and is primarily assessed through Granger Causality 
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Analysis (GCA), explained in detail in the next section (Roebroeck, Formisano and Goebel, 
2005) (Friston, Moran and Seth, 2013). 
 
On the other hand, effective connectivity (EC) refers to how one neuronal system can 
influence another. In this case, causation is assessed, i.e., if the activation in one brain area 
is known to cause the activation of another area. EC is always directed because causality is 
inherent in the model (Friston, 2011). The primary technique that assesses EC is Dynamic 
Causal Modelling (DCM). 
 

 
Figure 2.16 - Types of brain connectivity and methods with which they are analysed. 

 
There is still controversy in the scientific community regarding if GCA is a method that studies 
functional or effective connectivity. GCA and DCM are both fMRI-based connectivity methods 
that are gaining popularity in the study of brain connectivity. They have some characteristics 
in common as they both assess directed influences between activated brain regions through 
the BOLD signal. Nevertheless, the two methods answer fundamentally different questions, 
so choosing one of them depends on whether there is interest in describing the data in terms 
of information flow (GCA) or rather in understanding the underlying brain mechanisms 
(DCM).  
 
Unlike DCM, GCA is a more exploratory approach that does not consider the underlying 
causality between brain interactions but rather the temporal correlations between the time 
courses of the regions to predict certain behaviours (like the activation of brain regions 
involved in the task). It makes minimal assumptions about the data, namely, what are the 
connections between brain regions, before applying the model. DCM, on the contrary, 
models the hemodynamic processes and neuronal dynamics; thus, it can be known whether 
brain activity of a region (a cause) induces the activation of another region (a consequence). 
This method is more prone to suffer from model misspecifications and inaccurate 
results (Roebroeck, Formisano and Goebel, 2011) (Friston, Moran and Seth, 2013) (Seth, 
Barrett and Barnett, 2015). 
 
The distinction between effective and functional connectivity supports the assertion that GCA 
and DCM are complementary rather than competitive methods as their assumptions are 
different, thus permitting different interpretations of brain function (Friston, Moran and Seth, 
2013) (Seth, Barrett and Barnett, 2015). 
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2.3.2 Granger Causality Analysis  
 
Granger Causality (GC) was first described in the Economy field in 1969 by Clive Granger 
(Granger, 1969). However, it has been commonly applied in neuroscience due to its 
versatility, easiness, and simplicity to apply to neurophysiological models, albeit with some 
restrictions (Seth, Barrett and Barnett, 2015).  
 
GC is a framework for multivariate timeseries analysis based on autoregressive models. With 
this method, a BOLD signal timeseries can be predicted from another BOLD signal timeseries 
based on the time lag between the two (figure 2.17), thus identifying brain regions that are 
functionally connected and that possibly exchange information (Roebroeck, Formisano and 
Goebel, 2005) (Seth, Barrett and Barnett, 2015). In this thesis, Granger causality analysis 
was applied to the fMRI BOLD signal to assess the directed functional connections between 
brain regions during task performance, based on the assumption that the ‘cause’ (the 
activation of a region) precedes and helps predict the ‘consequence’ (the activation of 
another region) (Azarmi et al., 2019). 
 

 
Figure 2.17 - Temporal precedence of timeseries Y in relation to X.  

 
The basic principle of GC is that variable (or timeseries) Y is said to “Granger-cause” another 
variable X if its past information can help predict the future of X over and above the 
information provided by X’s own past (Seth, Barrett and Barnett, 2015). 
 
The workflow of GCA is simple since it is based on vector autoregressive (VAR) modelling, 
which is a multivariate timeseries modelling that finds the relation between a variable’s 
current observations with its own past observations as well as with the past observations of 
other variables. Therefore, the primary goal of GCA is to fit a VAR model to the data to find 
optimal weights and minimise estimation errors (Roebroeck, Formisano and Goebel, 2005) 
(Barnett and Seth, 2014). 
 
Firstly, the timeseries X is predicted from the autoregression of its past, omitting the potential 
influence of other variables (Seth, Barrett and Barnett, 2015). This is called the ‘restricted 
model’ because only information related to X is considered, described by equation 2. 
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If the timeseries Y is available, this new information, thought to help predict the timeseries X, 
is added and an unrestricted model is also formulated (equation 3). 
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In equations 2 and 3, Xt and Yt are the averages of the BOLD time courses of each brain 
region, the parameter p is the model order, Ai and Bj are the coefficients of the model, i and 
j represent the lags (i.e., the past time points that are included in the model) and (1 and (2 
represent the prediction errors for the restricted and unrestricted model, respectively.  In 
conclusion, it all comes down to the prediction errors: if ε1 > ε2, then the new information from 
timeseries Y helps in the prediction of X, i.e., timeseries X’s values are improved in the 
unrestricted model, and it is assumed that Y “Granger-causes” X (Azarmi et al., 2019). 
 
GCA can also provide information about the direction of the interaction between timeseries. 
Geweke, based on the observed temporal precedence between variables, formulated 
equation 4 that represents the directed Granger Causality between X and Y (Geweke, 1982) 
(Roebroeck, Formisano and Goebel, 2005). 
 
 !!,#	 	= 	!	!→# +	!#→! 	+ 	!!.#  (4) 

 
In this equation, Fx,y represents the temporal dependence between the two timeseries. If 
there is no dependence between them, Fx,y = 0. Fy→x represents the linear dependence from 
Y to X. If the past values of Y improve the prediction of the value of X, then Fy→x > 0. Fx→y 
represents the linear dependence from X to Y. Fx.y denotes indirect instantaneous influences 
that direct causal influences cannot explain (Roebroeck, Formisano and Goebel, 2005). 
 
In turn, Fy→x can be described by equation 5 (Geweke, 1982). 
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This equation considers the linear dependence from Y to X to be the logarithm of the ratio 
between the variance of the prediction error of the restricted model (which only uses past 
time points of X) and the variance of the prediction error of the unrestricted model, where 
information from both variables is used to predict X. If the past of Y can improve the prediction 
of X, then the variance of the error ()	is smaller, meaning that the coefficients are reliably 
estimated and that this prediction is reasonable. This also implies that the ratio of the error 
variances is higher than 1, and the overall value of the logarithm is higher than 0. If it does 
not improve the prediction of X, then the logarithm and, consequently, Fy→x is 0 (Seth, Barrett 
and Barnett, 2015) (Abidin et al., 2017). 
 
When a GC relationship between variables is found, it is assumed that there is “information 
flow” from Y to X. This general assumption can be made because GC is considered to be an 
approximation of transfer entropy (the statistics are equivalent for Gaussian variables), which 
characterizes directed statistical dependencies and shared information between variables  
(Friston, Moran and Seth, 2013) (Seth, Barrett and Barnett, 2015). 
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2.3.2.1 GCA’s Limitations 
 
The application of GCA to fMRI data remains controversial primarily because the BOLD 
signal derived from fMRI is an indirect measure of neural activity  (Friston, Moran and Seth, 
2013) (Seth, Barrett and Barnett, 2015) (Seth, Chorley and Barnett, 2013). 
 
One of the most problematic characteristics of fMRI when applying GCA is the sampling rate 
(or TR), generally in the order of seconds. This is a complication because neuronal 
responses are in the order of milliseconds, and such a discrepancy in the timescales can 
originate inexact results and inaccuracies in the analysis. Other limitations involve 
assumptions that need to be fulfilled in GCA. To apply GCA  (Deshpande and Hu, 2012) 
(Friston, Moran and Seth, 2013) (Seth, Barrett and Barnett, 2015): 

• The modelled variables are stochastic. 
• The data are stationary.  
• The interaction between variables is linear. This is not the case in the human brain; 

however, the equivalence with transfer entropy allows linear VAR modelling and GC 
to be sensitive to the linear parts of the data. 
 

Thus, thorough treatment and interpretation of the data are required when using GCA. 
  
 
 

2.3.3 Graph Theory 
 
Focal but also diffuse lesions in the brain and spinal cord are a hallmark of MS (Fleischer et 
al., 2019). Thus, to evaluate connectivity disruption, a holistic model that describes this 
distributed nature of the damage is appropriate (Welton et al., 2020). How does the network 
structure affect how the brain functions, and how can a pathological state disturb network 
organization? These questions can only be answered through network analysis, made 
possible by the mathematical concept of graph theory.  
 
Because the brain has many elements interacting functionally to exchange information, it can 
be viewed as a complex network and hence, represented as a connectivity graph. A graph 
can be defined by a set of nodes (vertices) and edges (links) between pairs of nodes. Nodes 
in brain networks usually represent brain regions, and edges represent connections between 
nodes: the edges are anatomical if they have a direct physical connection, functional if they 
have a correlation in their activity pattern (BOLD signal) or effective if a node’s activity 
modulates another node’s activity and there is a causal interaction between them (Rubinov 
and Sporns, 2010) (Kaiser, 2011). The nature of nodes and edges can be determined by 
brain mapping methods, such as anatomical parcellation schemes (or atlases), as well as 
measures of connectivity (Rubinov and Sporns, 2010). The functional association between 
the nodes can be determined through previously mentioned connectivity methods, such as 
Granger Causality. 

 
Figure 2.18 - Brain parcellation and connectivity analysis. Usually, parcellation schemes are applied to fMRI data, which 
help define nodes (brain regions). Then, the time course of each node is extracted, and connectivity matrices are 
constructed bases on the relationship between the nodes’ time courses. From these matrices, graph theory analysis can 
be performed, and connectivity measures extracted. Adapted from (Tahedl et al., 2018). 
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fMRI and other neuroimaging techniques can be used to assess if and which nodes are 
connected and if there is information exchange between them. All this information can be 
represented by connectivity matrices, where rows and columns denote nodes (or brain 
regions), and each matrix entry (aij) represents an edge (or connection between brain 
regions). In an unweighted graph, all edges weigh the same, i.e., aij = 1. In a weighted graph, 
each element aij reflects the strength of the connection (Rubinov and Sporns, 2010). 
 
Graphs can also be classified as directed and undirected. In undirected graphs, all the edges 
are bidirectional (for example, an edge between nodes i and j means that aij = 1 and aji = 1). 
If the graph is directed, then the element aij represents a connection from node i to node j, 
and the element aji represents the information flow in the opposite way, from node i to node 
j, and these connections can have different strengths (Rubinov and Sporns, 2010). 
  

 
 

Figure 2.19 - Example of an unweighted directed graph and corresponding connectivity matrix. Each matrix’s element 
represents a connection between nodes in the graph on the left (Nykamp, available at https://mathinsight.org/network_introduction). 
 
 
 
2.3.4 Graph Measures of Connectivity 
 
Given the brain networks’ inherent complexity, the comparison of properties between 
individuals and groups is difficult. A method that can capture the graph’s topology and 
architecture is, therefore, necessary. Using graph theory and ensuing network construction, 
a set of metrics can be calculated to quantify its specific organizational properties that focus 
on, for example, degree of segregation, degree of integration and efficiency of information 
transfer, the centrality of the nodes within the network and general resilience. Significant 
diverging values of these neuro-biologically meaningful measures between the two groups 
are indicative of differences between control and MS patients' brain networks (Abidin et al., 
2017). 
 
Segregation measures are assessed to find and quantify clusters/modules (groups of brain 
regions that are densely interconnected and specialized). Integration measures evaluate how 
the regions communicate and how efficient is this communication, depending mainly on the 
paths (sequence of nodes) within the network; the shorter the path, the stronger the potential 
for integration is. An established principle of healthy human brain organization is small-
worldness, which combines and balances functionally specialized clusters with many robust 
connections that allow for efficient communication (Rubinov and Sporns, 2010). 
Measures of centrality find the importance of specific brain regions within the network. It is 
assumed that the more central a node is, the more it participates in short paths and, 
consequently, the more it influences the information flow and node communication in the 
network. These brain regions are usually referred to as hubs of the network. They actively 
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interact with many brain regions, facilitating functional integration and contributing to the 
network’s resilience (Bullmore and Sporns, 2009) (Rubinov and Sporns, 2010). Finally, 
quantifying resilience assesses the network’s vulnerability to insults, and in this case, can 
evaluate the influence of neuropathological lesions in brain activity. 
A summary of the graph theory connectivity measures that can be calculated from fMRI (and 
other neuroimaging modalities) data is presented in Table 2.3. 

 

 

Table 2.3 - Definition of the connectivity metrics. 

Se
gr

eg
at

io
n Mean clustering 

coefficient 

All the nodes that are connected to another node are denominated neighbours of that node 
(Kaiser, 2011). The mean clustering coefficient represents the node's neighbours that are also 
neighbours of each other. A high mean clustering coefficient between nodes indicates that 
these nodes form a cluster (Bullmore and Sporns, 2009) (Rubinov and Sporns, 2010).  

Modularity Degree to which the network can be divided into delineated and nonoverlapping groups of 
nodes. (Rubinov and Sporns, 2010) 

In
te

gr
at

io
n 

Characteristic 
path length 

Average shortest path length (i.e., minimum number of edges) between all network’s nodes 
(Bullmore and Sporns, 2009) (Rubinov and Sporns, 2010). It measures the ease with which 
the information traverses the entire graph (Welton et al., 2015). 

Global 
efficiency 

Inverse of the characteristic path length (Rubinov and Sporns, 2010). It measures how the 
network nodes are connected and how efficient is the information exchanged between them 
(Kaiser, 2011). 

Local efficiency 
Global efficiency calculated on a given node's neighbourhood. It assesses the efficiency of 
information exchange of a subnetwork constituted by a node and its neighbours if the node is 
extracted from the network  (Stanley et al., 2015) (J. Liu et al., 2017). 

 
Small-worldness 

index 
Quantifies the network’s balance between functional integration and segregation (Rubinov and 
Sporns, 2010). 

C
en

tr
al

ity
 

Degree 

Number of links connected to a node. It measures the significance of a node within the network 
because a high degree node means that the node interacts with many others (Bullmore and 
Sporns, 2009) (Rubinov and Sporns, 2010). 

• mean degree - measures the network density and total wiring cost. 
• in-degree - number of inward links of a node.  
• out-degree - number of outward links of a node. 

Strength 
Total sum of the links' weights connected to a given node. In-strength represents the sum of 
the inward links’ weights and out-strength the sum of the outward links’ weights (Rubinov and 
Sporns, 2010). 

Eccentricity 

Longest shortest path between a given node and all other nodes in the network. Measures the 
easiness of a node to be functionally reached by all of the other nodes, reflecting the efficiency 
of information exchange (Su et al., 2017) (Weisstein, n.d.). 

• radius - minimum eccentricity.  
• diameter - maximum eccentricity, i.e., the largest distance between any two nodes. 

Within-module 
degree 

Determines the nodes that establish many connections but only within the module in which 
they are included (Rubinov and Sporns, 2010). 

Participation 
coefficient 

Measure of the distribution and diversity of a node’s links in the modules of a graph (Rubinov 
and Sporns, 2010). For exemple, if a node has the same number of edges with all of the 
network’s modules, then the participation coefficient = 1. If all the node’s edges are only within 
its own module, then the participation coefficient = 0. 

Betweenness 
centrality 

Number of paths with the shortest length that go through a given node. A high value means 
that the node connects disparate parts of the network and therefore carries more information. 
It measures both the network's compactness and the efficiency of communication between 
nodes (Rubinov and Sporns, 2010). 

Subgraph 
centrality 

Sum of the closed walks in the network starting and ending at a particular node, hence 
characterizing its participation in the network’s subgraphs. A smaller value means that the 
length of the closed walk is shorter and, thus, the node has more influence on centrality 
(Rubinov and Sporns, 2010). 

K-coreness 
centrality 

A k-core is the largest subgraph within the network that contains nodes with at least a k degree. 
The k-coreness centrality identifies these subgraphs that are densely connected (Rubinov and 
Sporns, 2010). 
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Eigenvector 
centrality 

Measures a node's level of influence within a network through a scoring system based on the 
number of connections that the node establishes. A high eigenvector centrality means that 
nodes are linked to nodes that also have high degree values. So, the higher the score, the 
more influence the node exerts over the network (Shaw, 2019). 

Pagerank 
centrality 

Directed variant of eigenvector centrality. Each node has a score based on the number of 
incoming links (in-degree). Thus, generally nodes with high in-degree (and the nodes they are 
connected to) are influential in the network (Shaw, 2019). 

Local flow 
coefficient 

Number of paths of length two that link the neighbours of a node and that pass through that 
node, divided by the number of possible paths that can be established between the node’s 
neighbours. It represents the node’s ability to conduct information flow (Sacchet et al., 2015). 

Global flow 
coefficient Average of the network’s local flow coefficients over the network (Sacchet et al., 2015). 

R
es
ili
en
ce

 

Assortativity 
coefficient 

Correlation coefficient between all the node's degrees on opposite ends of an edge. Positive 
assortativity means that high-degree nodes connect with other high-degree nodes, creating a 
resilient core. A negative value means that the nodes are widely distributed and are, thus, 
vulnerable hubs (Bullmore and Sporns, 2009) (Rubinov and Sporns, 2010). 
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3.1 Functional Connectivity Alterations in Multiple Sclerosis 

There is evidence of pathological-provoked changes in function, communication, and 
organization of the brain in patients with multiple sclerosis  (Reddy et al., 2002) (Audoin et 
al., 2003) (Filippi and Rocca, 2009) (Faivre et al., 2012) (Shu et al., 2016) (Basile et al., 2014) 
(Fleischer et al., 2019) (Azarmi et al., 2019). The analysis of these changes is of utmost 
importance and aims to turn the resultant functional connectivity measures into biomarkers 
of this condition. However, a question that remains unsolved is how FC changes occur in 
multiple sclerosis. Some argue that the overall brain connectivity is decreased because of 
structural modifications and the presence of demyelinating lesions that consequently cause 
breaks in communication and information exchange. Others argue that compensatory 
mechanisms that lead to an increase in FC are involved in maintaining and restore 
functionalities in the early phases of MS, and may even become maladaptive and contribute 
to clinical impairment during the progression of the disease (Rocca and Filippi, 2017) 
(Schoonheim, 2017) (Tahedl et al., 2018) (Fleischer et al., 2019). 
 
In fact, many studies observed a compensatory mechanism in patients with MS, particularly 
in the early phases of the condition, when the disability is minimal (Reddy et al., 2002) (Basile 
et al., 2014). This phenomenon, also called neuroplasticity, consists of a general increase in 
the brain’s FC and it represents the brain’s capacity to preserve function and adapt its 
behaviour and connections in response to insults or dysfunction that causes impairment in 
brain activation, ultimately limiting cognitive impairment expression. It’s mainly mediated by 
alterations in synaptic efficiency and emergence of new connections and pathways of 
information (Parry et al., 2003). Although it is a popular concept and recent research focused 
on proving it in various disconnection diseases, its definition remains ambiguous and 
controversial since the underlying neural mechanisms are still relatively unknown and 
defining its characteristics is complex (Behfar et al., 2020). 
  
Various studies reported evidence of this compensation using local activation measures. For 
example, Audoin and colleagues (Audoin et al., 2003) noticed significant differences between 
the formation of lesions and the clinical expression of MS that could be explained by 
neuroplasticity. The participants, which included MS patients in an early phase of the 
disease, performed a Paced Auditory Serial Addition Test (PASAT) task to evaluate 
information processing speed. They concluded that a compensatory mechanism led to higher 
activation in regions involved in executive processing and that fMRI was a great tool to 
evidence neuroplasticity. Staffen and colleagues (Staffen et al., 2002) also observed this 
overcompensation during a similar cognitive task (Paced Visual Serial Addition Test, PVSAT) 
in RRMS patients, where there was more recruitment of brain regions that participated in 
these attentional processes.  
  
Regarding compensation effects in functional connectivity, this phenomenon is proven again, 
in resting-state condition, by Droby and colleagues (Droby et al., 2016), who observed that, 
in patients with RRMS, the levels of FC did not change drastically, which indicated 
preservation of the brain function in an early phase of MS. Furthermore, they observed that 
FC increased substantially during a relapse, which usually indicates the development of a 
new lesion, and concluded that this could denote the recruitment of intact brain regions to 
compensate for the ones damaged by the lesions, thus limiting clinical consequences.  
 
Finally, Faivre and colleagues (Faivre et al., 2016) argue that there are indeed compensatory 
adaptive phenomena in MS which translate into an increased recruitment of areas, to 
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compensate for brain injuries. However, these mechanisms are also saturable, i.e., they 
function during the disease course, but they may reach a maximal level, after which there is 
only disability progression. 
 
 

3.2 Graph Theory in Multiple Sclerosis 

There is a lack of studies that explore functional or effective connectivity using graph theory 
in multiple sclerosis. Besides, the use of graph theory in the neuroscience context has only 
gained attention in 2009, after the launch of the Human Connectome Project (Farahani, 
Karwowski and Lighthall, 2019), so its application is still relatively recent. Most of the 
research on MS focuses mainly on studying structural MRI connectivity or resting-state fMRI 
connectivity, which is not the objective of this thesis. Another common aspect between most 
studies is that they apply graph theory connectivity measures to the whole brain, contrary to 
what was done in this project (section 4. Methodology). Nonetheless, a comprehensive 
review of the existing work in this area will be given.  
  
Structural connectivity was the first approach used to study connectivity in MS in combination 
with graph theory (Solana et al., 2019) (Fleischer et al., 2019) (Pagani et al., 2020). Research 
on this topic has shown that network metrics in MS patients were indeed significantly altered 
and that, generally, the efficiency of the information transfer between regions was the most 
affected aspect. Overall, graph measures of segregation were increased, while measures of 
integration were decreased (Welton et al., 2020). However, researchers noticed that 
structural connectivity was insufficient to explain cognitive alterations in MS patients since it 
was shown that there is not a direct mapping between structural and functional connectivity. 
Furthermore, sometimes brain regions may be activated in a task even when they are not 
structurally connected, which could reflect the brain’s ability to coordinate pathways involving 
different nodes to perform a given task. The conclusion was that brain function and 
connections should be analysed from a dynamic perspective, so functional connectivity 
approaches started being utilised (Ford and Kensinger, 2014) (Shu et al., 2016). 
  
Rocca and colleagues (Rocca et al., 2016) developed an rs-fMRI-focused study that aimed 
to prove that disruption of functional connectivity in MS plays a significant role in the disease’s 
clinical manifestations by analysing the topological organisation of functional brain networks. 
Their main conclusions were that changes in the global network properties do indeed 
distinguish healthy controls from MS patients, although they did not find significant 
differences between MS clinical phenotypes. They also showed that changes happen in the 
network hubs (either formation, loss, or different lateralisation), which could indicate a 
decrease of the FC of certain strategic regions that define the correct functioning of the 
network. Moreover, they verified a decrease in global integration, which demonstrated a less 
competent information exchange between distant brain regions and is strongly associated 
with cognitive impairment, and a preservation of segregation, which infers that transfer and 
processing of information are only efficient when executed locally. All these modifications 
ultimately lead to physical disability, cognitive impairment, and phenotypic variability in MS. 
  
In (Shu et al., 2016), the topological aspects and changes of both structural and functional 
connectivity were investigated in CIS and MS patients, with rs-fMRI. They proved that 
functional changes were only observed in the MS stage and that they were only correlated 
with disability (physical and cognitive) in MS patients, not CIS patients, which suggests that 
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these alterations were not as evident in a (possible) very early stage of MS, which could be 
due to the balance between neuroplasticity and disconnection. 
  
Abidin and colleagues (Abidin et al., 2017) also focused on CIS patients and the conversion 
of CIS to MS to analyse the probability of long-term disability. They used rs-fMRI data and a 
multivariate analysis using large-scale Granger Causality. Differences at a global and 
regional level were detected, mainly an increase of clustering and modularity, which could 
imply that there is an efficient exchange of information within specific networks and 
processes of reorganization as a compensatory response to the tissue damage. 
  
Welton and colleagues (Welton et al., 2020) also used rs-fMRI to conclude about brain 
network organisation in MS patients with cognitive impairment. Their results were that there 
were longer average path lengths, increased modularity, increased clustering, reduced 
global efficiency, and lower small-worldness in MS patients’ brains. These results again 
demonstrate more network segregation and a decrease in efficiency. 
  
Overall, in rs-fMRI, the primary differences in network organisation in MS seem to be longer 
characteristic path lengths, increased modularity, and decreased global efficiency (Rocca et 
al., 2016) (Shu et al., 2016). This implies that the network is more clustered, which could be 
the brain’s response to the damages in WM tracts provoked by focal lesions, i.e., long-range 
connections become impaired, so, as a result, networks become even more connected to 
their neighbours (figure 3.1). Another aspect that seems recurrent in MS is that the network’s 
nodes have fewer connections, thus fewer hubs (Welton et al., 2020) (Rocca et al., 2016). 
 
 

 
Figure 3.1 - Evolution of cognitive decline. The x-axis represents time and the y-axis represents the evolution of network 
efficiency, structural damage and cognitive dysfunction. As the structural damage increases and the network’s efficiency 
decreases, the cognitive dysfunction also increases. This becomes more noticeable when the structural damage 
surpasses the network’s efficiency (Benedict et al., 2016). 

 
Task-related fMRI studies are not as common as structural MRI or rs-fMRI studies. This is 
due mainly to the difficulties these task processes bring, such as the increase in signal noise 
which could be detrimental to data analysis. 
 
Nonetheless, Ashtiani and colleagues (Miri Ashtiani et al., 2018) used correlation analysis to 
examine whole-brain connectivity changes between healthy controls and RRMS patients 
during a PASAT task that required some level of attention, working memory and processing 
information speed. They employed graph theory analysis to determine the quantitative 
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topological characteristics of the brain networks that could explain the cognitive damage 
seen in the patients. They analysed the global measures mean clustering coefficient, 
modularity, transitivity, characteristic path length, global efficiency, assortativity and small-
worldness index, and the local measures, degree, participation coefficient, diversity 
centrality, betweenness centrality, subgraph centrality, k-coreness centrality, pagerank 
centrality and eigenvector centrality. There were no statistically significant differences 
between healthy controls and MS patients in the global measures, except for the mean 
clustering coefficient, which showed a decrease in MS, and modularity, which also 
decreased. Both groups showed a small-world characteristic (balance between functional 
segregation and integration); however, this value decreased with the wiring costs and 
structural damage. They proposed that these changes could be explained by the increase of 
the WM lesion load. Most local measures also revealed significant differences between 
groups in several regions, particularly those involved in the PASAT task. 
 
More recently, Azarmi and colleagues (Azarmi et al., 2019) employed the same approach as 
(Miri Ashtiani et al., 2018) but used Granger Causality instead of Pearson’s Correlation to 
determine the directed network measures.  They analysed global measures, such as mean 
clustering coefficient, modularity, transitivity, characteristic path length, global efficiency, 
global flow coefficient, and assortativity, and local measures such as degree (total, in- and 
out-degree), participation coefficient, betweenness centrality, subgraph centrality, k-
coreness centrality, pagerank centrality, and local flow coefficient. On one hand, only the 
global flow coefficient showed significant differences between controls and MS patients 
among global measures. On the other hand, regarding local measures, only subgraph 
centrality was not significantly different between groups. These results suggest that an 
approach focusing on smaller task-related networks might have higher sensitivity than whole-
brain resting-state paradigms to detect functional connectivity changes in MS, particularly in 
early phases. This study also validated GC as a method capable of determining changes in 
brain networks in MS. 
  
Despite the limitations in analysing data provided by task-based fMRI, the performance of 
goal-oriented tasks, as mentioned in section 2.2.5, could emphasize the brain’s 
characteristics involved in information exchange between brain regions that otherwise might 
not be connected, given that executing tasks in MS has a higher cost (in energy, for example) 
in brain networks. 
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Table 3.1 - Summary with the main results obtained in graph theory studies applied to MS. 

 

Study Participants Parcellation fMRI Network 
Construction  Threshold Global Metrics Local Metrics Results 

Shu et al., 
2016 

35 Controls 
41 CIS 
32 MS 

90 ROIs, 
AAL, whole 

brain 
Resting-

state 
Pairwise Pearson 

Correlation 
Significance 
Threshold:  

p<0.05, Bonferroni 
correction 

Clustering coefficient, characteristic 
path length, global efficiency, mean 
local efficiency, small-worldness index, 
mean strength 

Nodal efficiency 

No significant changes between groups in global 
measures. 
Lower values of mean strength, global efficiency, mean 
local efficiency, clustering coefficient in MS patients. 
Higher values of characteristic path length in MS patients 
21 regions showed differences between groups. 
Overall, there was a reduction in nodal efficiency in MS 
patients. 

Rocca et al., 
2016 

55 Controls 
246 MS 

116 ROIs, 
AAL, whole 

brain 
Resting-

state 
Bivariate Correlation 

Analysis 
Absolute Threshold:  
0 - 0.2; increments of 

0.01 
Clustering coefficient, characteristic 
path length, global efficiency, 
assortativity, mean degree, hierarchy Nodal degree, betweenness centrality 

Higher values of characteristic path length and 
assortativity in MS patients. 
Lower values of global efficiency and hierarchy in MS 
patients. 
Lower degree in the bilateral caudate nucleus and right 
cerebellum. 

Abidin et al., 
2017 

9 Controls 
9 CIS  

90 ROIs, 
AAL, whole 

brain 
Resting-

state Large-Scale Granger 
Causality Analysis Proportional 

Threshold: 0.45 
Clustering coefficient, modularity, global 
efficiency, assortativity, mean degree 
(in- and out-degree) 

Strength, degree, local efficiency, nodal 
clustering coefficient 

Higher values of clustering coefficient and modularity in 
MS patients. 
Several metrics changed in precentral, frontal gyrus and 
some portions of parietal lobe. 

Miri Ashtiani et 
al., 2018 

12 Controls 
8 RRMS 

116 ROIs, 
AAL, whole 

brain 
Task-
based, 
PASAT 

Pairwise Pearson 
Correlation 

Proportional 
Threshold: 0.01 - 0.5; 

increments of 0.01 
Clustering coefficient, modularity, 
transitivity, characteristic path length, 
global efficiency, assortativity, mean 
local efficiency, small-worldness index 

Degree, participation coefficient, 
centralities: diversity; betweenness; 
subgraph; k-coreness; pagerank; 
eigenvector 

Clustering coefficient and modularity had lower values in 
MS patients. 
Almost all the local measures were different between 
groups in several regions.  

Azarmi et al., 
2019 

12 Controls  
8 RRMS 

116 ROIs, 
AAL, whole 

brain 
Task-
based, 
PASAT 

Granger Causality 
Analysis 

Proportional 
Threshold: 0.06 - 0.3; 

increments of 0.01 
Clustering coefficient, modularity, 
transitivity, characteristic path length, 
global efficiency, assortativity, global 
flow coefficient 

Total, in- and out-degree, participation 
coefficient, local flow coefficient, 
centralities: betweenness; subgraph; k-
coreness; pagerank 

Only the global flow coefficient was significantly different 
between groups. 
Only subgraph centrality didn't have significantly 
different regions between groups. 

Miri Ashtiani et 
al., 2019 

12 Controls 
8 RRMS  

116 ROIs, 
AAL, whole 

brain 
Task-
based, 
PASAT 

Modular Structures 
Sparse Weights  

Proportional 
Threshold: 0.1 - 0.5; 
increments of 0.01 

Clustering coefficient, modularity, 
transitivity, characteristic path length, 
global efficiency, mean local efficiency 

Nodal clustering coefficient, local efficiency, 
eccentricity, node strength, within-module 
degree, participation coefficient, 
centralities: betweenness; diversity; 
eigenvector  

Lower values of modularity in MS patients. 
Eccentricity, strength, within-module degree, 
eigenvector centrality identified the greatest number of 
significantly different regions (between groups). 
In participation coefficient only the right putamen was 
significant between groups. 
No significant regions between groups in diversity 
centrality. 

Welton et al., 
2020 

23 Controls 
37 MS 

164 ROIs, 
Destrieux 

Atlas, whole 
brain 

Resting-
state Pairwise Pearson 

Correlation 
Proportional 

Threshold: 0.2 - 0.5; 
increments of 0.02 

Clustering coefficient, modularity, 
characteristic path length, global 
efficiency, small-worldness index — 

Higher values of characteristic path length, clustering 
coefficient and modularity in MS patients. 
Lower values of global efficiency in MS patients. 
No changes in small-worldness index. 
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The data analysed in this thesis were collected in the context of the funded scientific project 
BIOMUSCLE (PTDC/MEC-NEU/31973/2017). Patients were recruited and clinically 
evaluated by the members of the project at the Neurology Department of the University 
Hospital of Coimbra and met the criteria for MS diagnosis according to McDonald Criteria 
(Thompson et al., 2018). 
All the participants filled out written informed consent forms before the experiment. 
 
 

4.1 Experimental Setup 

4.1.1 Participants 
 
Twenty-nine participants were recruited for this fMRI study: fifteen patients recently 
diagnosed with RRMS and fourteen demographically matched healthy controls. The 
demographic characteristics of the participants are detailed in Table 4.1. 
The time from diagnosis of the MS patients ranged from 8 to 68 months (median = 18 
months), and the EDSS score was less or equal to 3.0 (the controls did not perform this 
clinical evaluation). All the participants had a normal or corrected-to-normal vision and no 
known cognitive impairments. 
 

Table 4.1 - Demographic characteristics of the participants. 

 
Mean Age No. of 

Females 
No. of 
Males Handedness Mean EDSS 

Healthy Controls 32.93 ± 8.64 8 6 All right-handed — 

Multiple Sclerosis Patients 32.33 ± 8.59 8 7 All right-handed 2.05 ± 0.5* 

* - EDSS data only available for 11 of the 15 MS patients 
 
 
 
 
4.1.2 Neuropsychological Evaluation 
 
Patients with MS, even in the early phases of the disease, might show signs of cognitive 
impairment in aspects such as memory, attention, verbal fluency, visual perception, and a 
slowed processing of information (Sousa et al., 2018) (Miri Ashtiani et al., 2018). In this study, 
eleven of the fifteen patients performed a neuropsychological evaluation, which consisted of 
diverse tests that allowed for an in-depth assessment of their brain function and cognitive 
status.  
 
Six assessments were included in this evaluation. The first two are scales that measure 
physical disability and fatigue, four assessments are cognitive tests, namely those 
composing the Brief Cognitive Assessment for MS (BICAMS) (Langdon et al., 2011), which 
study brain performance during processing speed, auditory, visuospatial, and verbal memory 
tasks, and the last assessment is a social cognition test. A brief description of each test is 
presented below. 
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• Expanded Disability Status Scale (EDSS) is a scale ranging from 0 (normal 
neurological status) to 10 (death due to MS) that may change throughout the 
progression of the disease according to the patient’s physical impairment evolution 
(JF, 1983) (Meyer-Moock et al., 2014). 
 

• Modified Fatigue Impact Scale (MFIS) is a self-reported questionnaire that 
assesses the impact and severity of fatigue on the daily lives of patients with MS 
(Gomes, 2011) (Fisk et al., 1994). The MS patients had scores between 3 and 54 
(mean score: 30.55 ± 15.51). 
 

• Symbol Digit Modalities Test (SDMT) is a written/oral task that measures cognitive 
processing speed (Sousa et al., 2018).The MS patients had scores between 35 and 
71 (mean score: 53.18 ± 11.33). 

 
• California Verbal Learning Test (CVLT) is an oral task that assesses auditory and 

verbal memory (Sousa et al., 2018). The MS patients had scores between 45 and 73 
(mean score: 52.27 ± 8.95). 

 
• Brief Visuospatial Memory Test (BVMT) is a visual and written task that measures 

visuospatial learning and memory abilities (Sousa et al., 2018). The MS patients had 
scores between 16 and 36 (mean score: 26.91 ± 6.83).  
 

• Reading the Mind in the Eyes (RME) assesses subtle cognitive dysfunction through 
identification of the mental state of other people through photographs of their eyes 
(Baron-Cohen et al., 2001). The MS patients had scores between 18 and 29 (mean 
score: 24.18 ± 3.52). 

 
Spearman correlation analysis was then performed between the values of FC of every 
connection in the network and the results in the neuropsychological tests, obtained for the 
eleven MS patients.  
 
 
4.1.3 MRI Acquisition 
 
MRI acquisition was done in a 3T Siemens MRI system, at the Institute of Nuclear Sciences 
Applied to Health (ICNAS), in Coimbra, Portugal.  
Each participant’s scanning session consisted of an anatomical scan, with a T1-weighted 
magnetization-prepared 2 rapid acquisition gradient echoes (MP2RAGE) sequence, a 
functional run of a localiser task (of visual regions V1 and hMT+) and two functional runs of 
a biological motion (BM) perception task, collected using a 2D-EPI sequence with TR/TE = 
1000/37 ms, voxel size = 2 mm isotropic. 
 

Table 4.2 - Main characteristics and parameters of the fMRI acquisition. 

Type of Run Name of Sequence TR (seconds) No. runs Duration 
(minutes) 

Anatomical MP2RAGE — 1 10.00 

Localiser 
2D-EPI 

1 1 3.20 

BM task 1 2 8.37 each 
total = 16.74 
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4.1.4 fMRI Experimental Design 
 
One of the first symptoms of MS is optic neuritis, which affects the patient’s visual abilities. 
Detecting functional changes in the visual system in the context of MS through specifically 
designed tasks is thus fundamental, and it enables a more feasible comprehension of the 
compensatory mechanisms that may be happening in this disconnection disease (Martínez-
Lapiscina et al., 2014) (Kale, 2016). In this study, two tasks were employed, one passive task 
of visual motion of kinetic dot patterns and one visual biological motion perception task, which 
can provide new insights into the brain pathways involved in movement perception.  
 
Passive visual motion task 
 

This task is a passive visualisation of dots in motion, which is commonly used by the 
neuroimaging community to localise brain regions V1 and hMT+, which are involved in visual 
motion processing. Hereafter this task will be referred to as V1MT. 
This functional localiser consists of ten blocks of 18 seconds each. Each block comprises 
three periods. The first period is a ‘fixation period’ lasting for 6 seconds, in which the 
participant looks at a red cross that is located at the centre of the screen. The second period, 
lasting 6 seconds, involves a pattern of stationary dots. Finally, in the third period, dots that 
are moving at a constant speed (5 deg/sec), radially, inward and outward from fixation, are 
shown for 6 seconds (Huk and Heeger, 2002) (Chang et al., 2018). These stimuli are 
represented schematically in figure 4.1. 
 

 
Figure 4.1 - Representation of the stimuli presented during the localiser V1MT task. (Left) Moving dots. (Right) Stationary 
dots. This task allows the localisation of area hMT+, which is identified based on the responses that are registered to 
different stimuli: moving dot patterns and stationary dot patterns. These stimuli are presented while the subject fixates a 
red cross in the centre of the figure. (adapted from (Huk and Heeger, 2002)) 

 
Biological Motion perception task 
 

This task was designed to be a more cognitively demanding task than V1MT, by recruiting 
not only the same V1 and hMT+ regions, but also a network of regions involved in perception 
of specific patterns of biological motion of humans. Hereafter this task will be referred to as 
BM. Biological motion stimuli are based on human motion. In this task, 12 point-lights are 
placed at the main joints of a human walker. Each biological motion run has twelve blocks of 
40 seconds each. These are divided into 4 or 5 blocks (‘body blocks’) with the walker facing 
left or right, 4 or 5 blocks (‘foot blocks’) with the point-light only in the right ankle (moving to 
left or to the right), and 3 blocks (‘random blocks’) of the 12 point-lights positioned in random 
locations across the y-axis, at the same time maintaining their trajectory across the x-axis. In 
this acquisition, two biological motion runs are performed which will result in nine body, nine 
foot and six random blocks being collected. Also, after the stimuli, the participants were asked 
to report the direction of the dot motion (i.e., if they were moving to the left or to the right), by 
pressing one of the two available buttons (Soares et al., 2021). These stimuli are represented 
schematically in figure 4.2. 
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Figure 4.2 - Representation of the stimuli presented during the biological motion task (Soares et al., 2021). 

 

 

 

4.1.5 Pre-processing of fMRI Data 
 
Pre-processing fMRI data allows for the identification and correction of artefacts and noise 
in the BOLD signal (section 2.2.6.1). This process is done with software that can analyse 
sequences of brain images acquired with fMRI, namely MATLAB®, SPM12, the PhysIO 
toolbox (Kasper et al., 2017), but also FMRIB Software Library (FSL) that is used for image 
distortion correction. 
 
In this thesis, the pre-processing pipeline of the fMRI data includes the following steps in the 
first part: (1) slice timing correction, (2) realignment and motion correction (relative to the first 
volume), (3) geometric distortions correction and (4) bias field correction (Soares et al., 
2021). 
The second part of pre-processing consists of the regression of the non-neuronal 
fluctuations, namely, WM and ventricular CSF BOLD fluctuations, cardiac signals, respiratory 
signals, and head motion: (1) coregistration (anatomical to functional), (2) segmentation of 
structural image and extraction of the WM and ventricular CSF masks, (3) computation of 
the physiological noise fluctuations, including 6 motion parameters, with PhysIO toolbox, 
which were then regressed out of the BOLD signal, (4) with framewise displacement the 
volumes with motion outliers were identified and interpolated, (5) the “clean images'' obtained 
from the 4 previous steps were brain masked, (6) spatial smoothing (3 mm full-width-at-half-
maximum (FWHM) isotropic Gaussian kernel), (7) high-pass temporal filtering (cut-off period 
of 12 seconds for the localiser run and 80 seconds for the biological motion runs) (Soares et 
al., 2021). 
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4.2 Network Construction  

4.2.1 ROI Selection 
 
The connectivity metrics were calculated in a restricted network of brain regions of interest 
(ROIs) known to be involved in the processing of visual biological motion stimuli based on 
existing literature. Early-level visual regions V3A and hMT+ and four additional extrastriate 
regions that have been previously implicated for biological motion perception were included 
(Chang et al., 2018). The ROIs were calculated using MarsBaR toolbox (Brett et al., 2002) 
and each was defined as a sphere (5 mm radius) centered on [x y z] MNI coordinates of: 
[±26, -91, 6] for V3A and [±44, -73, 5] for hMT+ (Tootell et al., 1997) (Castelo-Branco et al., 
2002) (Aspell, Tanskanen and Hurlbert, 2005) (Koyama et al., 2005) (Duarte et al., 2017), 
[±58, -46, 6] for the posterior superior temporal sulcus (pSTS) (Sunaert et al., 1999), [±37, 
10, 28] for the inferior frontal gyrus (IFG) (Saygin et al., 2004) (Saygin, 2007) [left -46, -75, -
4; right 47, -71, -4] for the extrastriate body area (EBA) (Peelen, Wiggett and Downing, 2006) 
(Jastorff and Orban, 2009), as well as [left -38, -38, -27; right 43, -43, -28] for the fusiform 
body area (FBA) (Peelen, Wiggett and Downing, 2006) (Jastorff and Orban, 2009). Two 
additional ROIs recently found to be functionally synchronized during different stages of 
biological motion processing were considered (Pavlova et al., 2017) (Sokolov et al., 2018) 
these were located at [±42, -56, -14] for the fusiform gyrus (FFG) (Grossman et al., 2000) 
(Vaina et al., 2001) (Grossman, Blake and Kim, 2004) (Peelen, Wiggett and Downing, 2006) 
and [±36, 24, 2] for the anterior insula (Saygin et al., 2004) (Freitag et al., 2008). 
 
 
In summary, the ROIs involved in this BM task and defining our network are: 

• Anterior Insula (aINS) 
• Extrastriate Body Area (EBA) 
• Fusiform Body Area (FBA) 
• Fusiform Gyrus (FFG) 
• Inferior Frontal Gyrus (IFG) 
• Posterior Superior Temporal Sulcus (pSTS) 
• Visual Area 3 (V3)  
• Middle Temporal Visual Area (V5/hMT+) 

 
 
More information about these (functional) regions, including location and function, is listed in 
Table 4.3.  
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Table 4.3 - Location and main functions of the regions involved in the BM task. 

 
Region of 
Interest 

 
Location in the Brain Main functions 

aINS 

Part of the insular cortex that is situated 
within the lateral sulcus and separates 
the temporal lobe from the parietal and 
frontal lobes (Uddin et al., 2017). 

 
Controls emotional responses and empathic 
processes. Takes part in the high-level cognitive 
control and attentional processes during social 
decision making, as well as in risk evaluation and 
memory processing (Uddin et al., 2017). 
 

EBA 

Extrastriate visual cortex, which is 
located at the posterior inferior temporal 
sulcus/middle temporal gyrus, in the 
temporal lobe (Amoruso, Couto and 
Ibáñez, 2011). 

Responsible for visual perception of static and 
moving images of the human body and its parts 
(Amoruso, Couto and Ibáñez, 2011). 

FBA 

Found ventrally in the fusiform gyrus in 
the temporal lobe (Amoruso, Couto and 
Ibáñez, 2011). 
 

 
Responsible for visual processing of human bodies 
in contrast to body parts (more holistic image of the 
human body). Distinguishes human bodies from 
other objects, such as human-like stick 
figures (Amoruso, Couto and Ibáñez, 2011). 
 

FFG 

Temporal and occipital lobe between the 
lingual gyrus and parahippocampal 
gyrus (above), and the inferior temporal 
gyrus (below) (Palejwala et al., 2020). 

 
Related to face and body recognition, 
communicating with the visual pathway. The left 
FFG recognizes "face-like" features in objects that 
may or may not be actual faces, whereas the right 
FFG determines if that recognized face-like feature 
is, in fact, a face (Palejwala et al., 2020). 
 

IFG 

Frontal gyri, in the frontal lobe, being a 
part of the prefrontal cortex (Ishkhanyan 
et al., 2020). 

Contains the Broca’s area, involved in language 
processing, comprehension and production, and 
speech production (Ishkhanyan et al., 2020). 
Entertains connectivity with the right STS and exerts 
substantial BM-specific top-down influences on the 
early visual cortex (Sokolov et al., 2018). 

pSTS 

Between the superior temporal gyrus 
and the middle temporal gyrus in the 
temporal lobe (Beauchamp, 2015). 

Involved in social perception and cognition, including 
the perception of faces and biological motion, as 
well as understanding others’ actions, mental states, 
and language (Beauchamp, 2015). 

V3 Visual cortex (Tootell et al., 1997). 

 
Visual processing of global motion. (Tootell et al., 
1997). 
 

hMT+ Extrastriate visual cortex, in the temporal 
lobe (Born and Bradley, 2005). 

 
Visual perception of motion (speed and direction of 
moving stimuli) and eye movement (Born and 
Bradley, 2005). 
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In total, sixteen brain regions, eight in each brain hemisphere, were chosen to construct the 
network, represented in a 3D brain in figure 4.3. The corresponding ROIs were saved as 
whole-brain masks. The mask will have zeros where the location of the voxel does not 
correspond to the ROI and ones when it does. These masks were then transformed into the 
same space as the functional images of each participant and used to compute the FC 
between each pair of regions. Hence, this resulted in 16x16 ROI-to-ROI connectivity 
matrices. 

 

 
Figure 4.3 - Network with the location of the brain regions involved in the biological motion task. Visualised with the 
BrainNet Viewer (Xia, Wang and He, 2013), http://www.nitrc.org/projects/bnv/ 
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4.2.2 Average Time Course Export 
 
For each functional run and participant, the BOLD signal (time course) within each of these 
ROIs was averaged and considered as the region’s representing time series for the following 
sections of the study.  
 
The function will first reshape the 4D fMRI file into a 2D matrix, in which each column is a 
brain volume, and the rows represent all the voxels that exist in that volume. Then, it 
reshapes the 3D ROI mask into a vector, in which each row represents the voxels in the 
mask, only keeping the voxels equal to 1 (true), which indicates that the voxel location 
corresponds to the ROI. The ‘timecourse’ variable stores the average of the time courses of 
all voxels within the ROI. This is done for all the 16 ROIs in the network. 
 
 
 
 
4.2.3 Granger Causality  
 
GCA was implemented in Matlab through the Multivariate Granger Causality (MVGC) toolbox 
(Barnett and Seth, 2014). This choice was based on how this toolbox implements GCA 
through several Matlab routines with optimised computational efficiency and accuracy. It 
provides a simple way to estimate several important aspects, such as the model order, the 
model parameters, and statistical inferences, with constant error checking throughout 
(Barnett and Seth, 2014). 
 
It is based on VAR modelling, which makes it a perfect fit for the temporal predictive 
behaviour of Granger Causality between multiple variables.  
 
The toolbox provides a mvgc_demo script that implements a function that determines 
pairwise GC, serving as a basis for constructing the connectivity matrices. This function was 
adapted to receive a set of parameters as input, which intend to define and optimize the 
model's performance, and all the previously calculated average BOLD time courses of the 
sixteen ROIs, obtained from the fMRI data.  
 
 
 
 
4.2.3.1 Pipeline of the MVGC Toolbox 
 
After some testing, the following input algorithmic parameters were set regarding the design 
of the experimental task: 
 

• Number of trials - Number of task blocks. Each run in which a task is performed is 
evaluated individually, hence this parameter is always equal to 1. 
 

• Number of observations per trial - Number of volumes per run. For the localiser 
run, the total number of brain volumes is 192 (equivalent to the seconds that the run 
lasts for since the TR is equal to 1 second), while for the BM run, the total number of 
volumes is 502. The two BM runs were concatenated so that the number of 
observations was higher (the number of observations will then be equal to 1004). 
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This increase will allow a more precise calculation of the matrices since a small 
number of points can be detrimental to the calculations although it will make the 
process more computationally intensive. This is only possible because the two BM 
tasks are identical. 

 
• Model order estimation method - Model order estimation is necessary to choose 

the number of parameters used to obtain the best model fit and moderate the 
complexity, while simultaneously avoiding overfitting (Barnett and Seth, 2014). A low 
model order decreases the model’s accuracy, while a high model order causes 
overfitting and thus makes the process computationally long and intensive (Azarmi 
et al., 2019). Two criteria were available in the toolbox to estimate the optimal model 
order: Akaike information criterion (AIC) and Bayesian information criterion (BIC). 
The BIC was chosen because it is the most accurate when the number of data points 
is not very large, which is the case in this fMRI study (Azarmi et al., 2019). The model 
order estimation is defined by the data, so a low sampling rate in fMRI (for example, 
TR = 1 second), and thus a low number of observations, is usually associated with 
low model orders (Seth, Barrett and Barnett, 2015).  
 

• Maximum model order for model order estimation - Twenty was chosen as a 
random number to be the highest possible model order (default).  
 

• VAR model estimation regression model – Model to calculate the VAR parameters 
(regression coefficients, Ai, and residuals covariance matrix, cov("!). The Levinson-
Wiggins-Robinson (LWR) algorithm was chosen. The other available choice is the 
ordinary least squares (OLS) algorithm. However, the LWR algorithm is considered to 
be the most stable in this context. Also, in the OLS algorithm, the parameters Ai and 
cov("!) need to be recomputed separately for each model order, while in the LWR 
algorithm this is done recursively, which makes this algorithm highly efficient in model 
selection criteria (Barnett and Seth, 2014). 
 

• Information criteria regression mode - Calculation of the model order with AIC and 
BIC for VAR models. The LWR algorithm is also used. 

 
• Maximum autocovariance lags – Lags for the autocovariance sequence. This 

parameter is empty for automatic calculation (default). 
 

• Statistical test for MVGC - The F-test was chosen for statistical analysis of the 
connectivity matrices. The null hypothesis in this test is that past values of timeseries 
Y do not explain the variation in timeseries X, i.e., Y does not Granger-cause X. The 
toolbox alternative for this statistical test is the chi-square test, but this test is usually 
used only when there is a large number of variables and lags, which is not the case 
in this study. The F-test has higher statistical power when dealing with small samples, 
and it is also easier to run (Barnett and Seth, 2014). 

 
• Multiple hypothesis test correction – If a given test is repeated many times, it will 

probably give some false positives (the null hypothesis is incorrectly rejected). In 
order to control the proportion of these erroneous results and increase the statistical 
power, a multiple hypothesis test correction is applied. Between all of the offered 
corrections in the MVGC toolbox (Bonferroni, Sidak, Holm), the False Discovery Rate 
(FDR) approach was chosen because it is not as strict as the others, thus decreasing 
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the risk of missing exciting findings. Instead, it controls for a low proportion of false 
positives (Colquhoun, 2014). 
 

 
After defining the input parameters mentioned above, the VAR data is also defined, which 
will correspond to the average BOLD signals (time courses) within each of the 16 ROIs. 
Then, the model order, i.e, the number of past observations that are going to be included in 
the VAR model, will be estimated with both methods (AIC and BIC), through the 
tsdata_to_infocrit function, but only the model order provided by the BIC is chosen as the 
best model order for the reasons explained previously. After this estimation, a VAR model is 
fitted to the timeseries, through the tsdata_to_var function, and the restricted and unrestricted 
model parameters (regression coefficients, Ai, and residuals covariance matrix, cov("!)) will 
be determined to be used in the subsequent calculations. Next, the autocovariance 
sequence, G, is calculated, as it drives many GC calculations, through the var_to_autocov 
function. Finally, the pairwise GC is determined in the time domain through the 
autocov_to_pwcgc function (Barnett and Seth, 2014) (Seth, Barrett and Barnett, 2015). This 
function will thus return time-domain pairwise causalities in a square matrix, in this case ROIs 
x ROIs, of Granger F-values. It also performs a significance test using a theoretical null 
distribution, which identifies which causalities are statistically significantly different from zero 
on a matrix with zeros, for non-significant connectivity, and ones, for significant connectivity 
(figure 4.4).  
 

 
Figure 4.4 - Matrices obtained with the MVGC toolbox. (Left) Matrix with pairwise GC and respective F-values. (Middle) 
Matrix with the calculated p-values after statistical analysis with the F-test. (Right) Matrix with the statistically significantly 
connections different from zero (p-value < 0.05). 

 
It is relevant to clarify that the magnitude of the F-values is essentially meaningless since it 
is only a hypothesis-test statistic. However, it may have an interpretation because Granger 
Causality can be seen as an approximation to transfer entropy when analysing Gaussian 
data, and thus the F-values, as measures of directed information flow, can be compared 
within experimental conditions (Barnett and Seth, 2014) (Seth, Barrett and Barnett, 2015). 
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4.2.4 Influence of ROI Size  
 
After a remodelling of the methodology, an experiment regarding ROI size was done to 
possibly draw conclusions about this parameter’s influence on the network’s connectivity and 
on the statistically significant differences between groups. 
 
Two radiuses with 5 mm and 10 mm were explored to define the ROIs in 20 participants: 11 
MS patients and 9 healthy controls. The regions’ definition and the process used to obtain 
the connectivity matrices is the same for both ROI sizes. 
 
 
 
4.2.5 Connectivity Measures 
 
The connectivity measures were calculated with the Brain Connectivity Toolbox (BCT). This 
toolbox is implemented in Matlab and can perform network analysis of functional connectivity 
datasets, based on graph theory (Rubinov and Sporns, 2010). 
 
In section 2.3.4, twenty connectivity measures were described. These measures are 
primarily used in whole-brain analyses and rs-fMRI studies, such as those reviewed in the 
state of the art. Because we have a more restricted network of 16 regions (8 per hemisphere) 
that are involved specifically in connections when a visual task is performed, it is not 
intuitively reasonable to compute some of these measures. Thus, the following rationale 
(described below) was used to decide on which measures to use in our context, also 
considering their reliability (Welton et al., 2020) and frequency with which they are used in 
the literature. 
 
Segregation measures (mean clustering coefficient, transitivity, modularity) were excluded 
since it is assumed that the restricted network with 16 regions is already segregated, as it is 
specifically recruited when the participants are presented with the task. Segregation means 
the separation of the brain regions into functionally specialized groups, but this network is 
already specialized in this particular visual BM task. Similarly, the small-worldness index (i.e., 
the balance between functional segregation and integration) was excluded. Also, all 
measures that include calculations involving creation of groups/modules/subgraphs are 
excluded because of the reasons mentioned above (within-module degree, participation 
coefficient, subgraph centrality and k-coreness centrality). Finally, eigenvector centrality was 
excluded because its calculation only applies to undirected networks, which is not the case 
in these matrices obtained with GC. However, there is a directed variant - pagerank centrality 
- which was used instead. 
 
Therefore, the connectivity measures calculated in this study were the characteristic path 
length, global efficiency, local efficiency, global flow coefficient, local flow coefficient, total 
flow, assortativity, eccentricity, radius, diameter, total degree, in-degree, out-degree, mean 
network strength, total strength, in-strength, out-strength, betweenness centrality and 
pagerank centrality. Some of these measures are represented in figure 4.5. 
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Figure 4.5 - Schematic representation of some of the used connectivity measures. In red is represented the characteristic 
path length from node A to node B (shortest path length, or minimum number of edges, between the nodes). In dark blue 
is node D with the highest betweenness centrality (number of times that the node lies on the shortest paths between every 
node). In yellow are the edges that connect node C to the neighbour nodes – total degree; the incoming connections to 
node C represent the in-degree and the outgoing represent the out-degree. In light blue is the weight of each of these 
edges: their sum represents the total strength of the node; the sum of the incoming connections represents the in-strength, 
and the sum of the outgoing connections represents the out-strength. In green is the eccentricity of node A: first, all of the 
shortest paths between node A and every other node are calculated (green numbers represent the number of nodes in 
these paths), and then the longest one of all of these node’s paths is chosen (in this case, the path reaching node B) 
(Rubinov and Sporns, 2010). 

 

 

4.2.5.1 Matrix Thresholding 
 
Thresholding is often applied after network construction to remove spurious connections that 
do not contain relevant information and to, consequently, obtain sparsely connected 
matrices, which are essential for the calculation of the connectivity metrics. Despite this, 
some studies argue that this process could potentially ignore valuable information within the 
matrix (Fornito et al., 2016) (Hallquist and Hillary, 2019). 
  
There are several methods for network thresholding, but the most commonly used (and the 
ones available in the BCT) are the absolute thresholding, which is a weight-based approach, 
and the proportional thresholding, a density-based approach. The choice between the two 
methods depends on whether or not a difference in connection density is viewed as a 
confound (Kaiser, 2011) (Fornito et al., 2016). 
  
The absolute thresholding is the most straightforward approach because it thresholds by 
absolute weight of the connections, i.e., it applies a single threshold value to the whole matrix. 
Therefore, all elements above that threshold are maintained, and the rest below the threshold 
are set to zero. Several criteria may be adopted to choose a threshold such as using a 
significance level, thus omitting values that can be expected by chance; using an arbitrary 
value that can keep a certain average degree of the network; or using a large value so that 
it is guaranteed that all of the network’s nodes are connected. The main limitation of this 
absolute thresholding approach is that topological properties generally vary as a function of 
the number of edges in a network, and usually, the obtained thresholded matrices have a 
different number of edges, which can be problematic in the analysis of differences between 
groups (Fornito et al., 2016) (Hallquist and Hillary, 2019). 
The proportional thresholding approach aims to keep a fixed network density, i.e., the number 
of connections (or edges) is the same across all individuals. This solves the problem of the 
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network density’s influence in the metrics’ calculation and their comparison between groups 
since the threshold can vary from person to person. This approach consists of choosing a 
proportion (PTh) between 0 and 1, thus preserving only the strongest weights (Fornito et al., 
2016) (Hallquist and Hillary, 2019). Proportional thresholding is commonly applied in disease 
connectome studies because removing the bias in the number of edges results in more stable 
and reliable connectivity measures. However, if the proportion is elevated and a high density 
is chosen, spurious connections may have a negative impact on the calculations, as they 
add noise to the signal (Hallquist and Hillary, 2019). 
  
In this thesis, we opted for proportional thresholding, as it is the most used in research, 
particularly related to MS, and generates the most reliable results compared to the absolute 
threshold. 
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4.2.6 Methodology - Summary 
 

 
 

Figure 4.6 - Schematic representation of the steps followed in this study. (1) Pre-processing of the fMRI data; (2) ROIs 
definition; (3) Extraction of the average BOLD signal for each ROI; (4) Calculation of the F-matrices with GC; (5) 
Proportional thresholding of the F-matrices; (6) Extraction of the local and global connectivity measures; (7) Between-
groups statistical analysis with the Wilcoxon rank sum test (significantly different metrics between groups when p<0.05); 
(8) Analysis of the discriminative regions and measures between healthy controls and MS patients. Adapted from  (Sporns, 
2013b) (Miri Ashtiani et al., 2018) (Azarmi et al., 2019) 
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5.1 Individual MVGC Matrices  

With the MVGC toolbox, the ROI x ROI matrices with the pairwise Granger causalities are 
calculated. Each element aij of the matrix represents the F-value between every two regions 
involved in the visual tasks, which will be our measure of functional connectivity (FC) between 
ROIs (sections 2.3.2 and 4.2.3.1), even though it does not have yet a known biological 
meaning (regarding the underlying mechanism). The statistical testing is performed with the 
F-test, and its results are also presented in matrix form in which each coloured square 
represents a statistically significant connection (with p-value < 0.05, FDR corrected) between 
two regions. The null hypothesis of the F-test, in this case, is that the activation of a region 
Y does not Granger-cause the activation of a region X, i.e., Fy→x of the connections is 
significantly different from zero (section 2.3.2). If the null hypothesis if rejected (at p-value < 
0.05) then Y Granger-causes X. 
 
The matrices from figures 5.1 and 5.2 are a sample of the obtained individual matrices, taken 
for two age-matched participants (control 9 and patient 14). All fifty-eight calculated matrices 
(twenty-nine for each task: V1MT and BM) for each participant are in Appendix I.  
 
Henceforth, in graphics and tables, the experimental run with task V1MT run will be 
designated by RUN V1MT, and the two concatenated experimental runs with the biological 
motion perception task will be named RUNS BM. The group of healthy controls will be named 
CNT, and the group of MS patients will be named MSC. 
 
 
 

 

 
 

Figure 5.1 - Individual ROI x ROI matrices for two age-matched participants: healthy control 9 and MS patient 4, in the 
V1MT run. (Top left) Matrix with the pairwise Granger F-values for each connection between every two regions involved 
in the task, for CNT09. (Top right) Statistically significant connections, after performing the F-test (p<0.05) for CNT09. 
(Bottom left) Matrix with the Granger F-values for each connection for MSC04. (Bottom right) Statistically significant 
connections, after performing the F-test (p<0.05) for MSC04. The colorbars in the left matrices represent the F-values. 
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Figure 5.2 - Individual ROI x ROI matrices for two age-matched participants: healthy control 9 and MS patient 4, in the 
BM runs. (Top left) Matrix with the pairwise Granger F-values for each connection between every two regions involved in 
the task, for CNT09. (Top right) Statistically significant connections, after performing the F-test (p<0.05) for CNT09. 
(Bottom left) Matrix with the Granger F-values for each connection for MSC04. (Bottom right) Statistically significant 
connections, after performing the F-test (p<0.05) for MSC04. The colorbars in the left matrices represent the F-values. 

 

 

The major distinction between the two runs, observed through the individual matrices, is that 
in the V1MT run, there are considerably less statistically significant connections than in the 
BM runs, both in controls and MS patients. This is expected because it is easier to find 
significant differences with a larger sample size (BM runs are much longer) as small 
differences become more detectable. Furthermore, we should also consider that the BM task 
is more demanding and recruits more heavily the connections of the restricted network than 
the passive task performed during the V1MT run. This might originate as well that more 
significant connections emerge in the BM runs. 
  
Interestingly, the observation that MS patients and age-matched healthy controls display 
different significant connections between the brain regions involved in either task (V1MT and 
BM) and different F-values of connectivity implies different brain organization, despite similar 
task performance.  
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After the calculation of the individual matrices, each matrix’s total mean connectivity value 
was determined. The mean values for CNT and MSC are presented in Table 5.1. 
 
 

Table 5.1 - Mean values of the individual F-matrices of runs V1MT and BM, for CNT and MSC. 

 Participant Mean F-Value 
Run V1MT Runs BM 

C
N

T
 

1 0.0063 0.0048 

2 0.0066 0.0020 

3 0.0071 0.0035 

4 0.0075 0.0033 

5 0.0075 0.0018 

6 0.0061 0.0017 

7 0.0075 0.0033 
8 0.0062 0.0033 
9 0.0079 0.0038 

10 0.0069 0.0019 
11 0.0060 0.0037 
12 0.0063 0.0036 
13 0.0062 0.0020 
14 0.0059 0.0031 

 

   

M
S

C
 

1 0.0072 0.0041 
2 0.0070 0.0032 
3 0.0071 0.0032 
4 0.0082 0.0024 
5 0.0071 0.0041 
6 0.0080 0.0045 
7 0.0074 0.0022 
8 0.0072 0.0029 
9 0.0075 0.0032 

10 0.0080 0.0036 
11 0.0058 0.0016 
12 0.0069 0.0025 
13 0.0068 0.0040 
14 0.0069 0.0030 
15 0.0073 0.0027 

 
 
The F-values are higher in the V1MT localiser run than in the BM runs. However, because 
the F-value has no known direct biological meaning (section 4.2.3.1), we should only 
compare values obtained in the same experimental condition (i.e., within the same run).  
 
Moreover, although the F-values seem slightly more elevated in the MS patients (in each 
run), it is difficult to compare the groups relying only on individual connectivity matrices or 
their mean F-values. Hence, to better analyse differences between MS patients and healthy 
controls, the mean connectivity matrices for each group were calculated. 
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5.2 Mean Matrices 

The mean matrices for both runs (V1MT and BM) and both groups of participants (CNT and 
MSC) were determined and are represented in figure 5.3. In each run, the F-values of the 
two groups were normalized to the maximum value. The total mean F-value of each of these 
matrices was also calculated and is displayed in the figure. 
 

 CNT MSC 

RUN V1MT 
 

 

 

Mean F-value: 0.0067 Mean F-value: 0.0072 

RUNS BM 

   

Mean F-value: 0.0030 Mean F-value: 0.0032 

 
Figure 5.3 - Mean matrices for both groups (CNT and MSC) and both runs (V1MT and BM) and respective mean total F-
value. The F-values in each matrix’s element represent the mean F-value of that specific connection for all of the 
participants in the group. The colorbars represent the F-values. 

 
From these data, it can be observed that there is an increase (of 0.0005 units) in the mean 
F-value, in patients with MS, in the V1MT localiser run. This aspect can also be observed in 
the BM runs, where there is an increase in the mean F-value in the patients’ group, although 
not as noticeable as the one seen in the V1MT run (increase of 0.0002). 
 
To further validate this finding of the increase in the F-values in MS patients, in both runs, 
histograms with the distribution of the F-values for each of the groups of participants were 
constructed separately for each run and represented in figure 5.4. 
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Figure 5.4 - Histogram with the distribution of the F-values for both groups and runs. (Top) Histogram with the distribution 
of the F-values for both groups (MSC in red and CNT in blue) in the V1MT run. (Bottom) Histogram with the distribution 
of the F-values for both groups (MSC in red and CNT in blue) in the BM runs. 

 
 

The distributions of both groups, in the two runs, are skewed right, and generally, most of the 
F-values are very low. However, there is a slight increase of the F-values in the MSC group, 
also for both runs, as shown by the increased height of the red bars in higher F-values.  
  
These results suggest that the F-values, and consequently FC, generally increase in MS 
patients in both visual tasks. This may be due to brain neuroplasticity, the compensatory 
response described in disconnection conditions, often characterised by an increase in 
connectivity (more information in Chapter 3)  (Audoin et al., 2003) (Droby et al., 2016) (Faivre 
et al., 2016). The rise in connectivity in both the localiser and biological motion runs also 
implies that this could be a generalized mechanism of the brain of MS patients that does not 
depend on the complexity of the task. 
  
Nonetheless, although the nature of F-values does not allow us to compare them between 
different experimental conditions directly, we can, theoretically, compare the number of 
significant connections between conditions and/or groups. We observe that there are more 
connections with elevated values of FC during the biological motion task, which could be 
explained due to the slightly heightened complexity of the task, that also includes decision-
making and will inherently involve more brain regions in information exchange and 
processing.  
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5.3 Within-Group Statistical Analysis 

Within-group statistical analysis can reveal the significant connections between regions in 
each group (CNT and MSC) in both tasks. The analysis was performed with the F-test, 
available in the MVGC Toolbox. If the null hypothesis is rejected (p < 0.05), it means that the 
F-values of the connection are significantly different from zero. The results of this analysis 
are shown in figure 5.5, in which the F-values of only the statistically significant connections 
are represented. 
 
 

 CNT MSC 

RUN V1MT 

 

 

RUNS BM 

  
 

 

Figure 5.5 - Matrices with the F-values of the statistically significant connections for both groups (CNT and MSC) and both 
runs (V1MT and BM). Significant connections in run V1MT: p < 0.05, no correction for multiple comparisons (because 
there would be no connections left). Significant connections in runs BM: p < 0.05, FDR correction. The colorbars represent 
the F-values. 
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With the BrainNet Viewer toolbox, a 3D representation of the matrices from figure 5.5 is 
obtained.  
 
 

           
          
    

            
 
 

Figure 5.6 - 3D representation of the significant connections within the mean matrices of figure 5.5. (Top left) 3D 
representation of the significant connections within the mean matrix for the CNT group, in the V1MT run. (Top right) 3D 
representation of the significant connections within the mean matrix for the MSC group, in the V1MT run. (Bottom left) 3D 
representation of the significant connections within the mean matrix for the CNT group, in the BM runs. (Bottom right) 3D 
representation of the significant connections within the mean matrix for the MSC group, in the BM runs. The colorbars 
represent the F-values of the significant connections in the brain. The 3D representations were created with the BrainNet 
Viewer (67) (Xia, Wang and He, 2013), http://www.nitrc.org/projects/bnv/. 

 

 

RUN V1MT - CNT RUN V1MT - MSC 

RUNS BM - CNT RUNS BM - MSC 
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The within-group analysis shows more connections with high F-values in the BM runs (mainly 
corresponding to red, orange, and yellow elements in the mean matrices) than in the V1MT 
run. In the localiser run, the significant FC connections are mainly between visually related 
regions (V3 and hMT+) as this task primarily requires the visual cortex’s activation (Huk and 
Heeger, 2002) (Chang et al., 2018), whereas in the biological motion runs, there are more 
significant FC connections between regions specifically involved in biological motion (aINS, 
FBA, EBA, hMT+) (Chang et al., 2018). This is in line with (Cardin, Friston and Zeki, 2011) 
that demonstrated that recognizable stimuli (BM runs) result in larger activations in anterior 
visual and frontal regions and that random stimuli, such as in the localiser run, activate more 
posterior visual areas. 
  
Noteworthy, hMT+ seems to have a determinant role in both runs, which fits in with the idea 
that this region appears as an intermediate between the primary visual cortex and higher-
order regions (Born and Bradley, 2005) (Sokolov et al., 2018). Surprisingly, pSTS is not 
involved in the significant connections in the BM runs, although it is assumed in the literature 
to be the region with the most relevance in the performance of this kind of task since it has a 
major role in the perception of biological motion (Sokolov et al., 2018) (Chang et al., 2018). 
  
Regarding the significant connections in each group during each task, the MS patients 
exhibited connectivity pattern alterations of four types: decreased and increased shared 
connections with CNT, a gain of new connections that CNT did not show, and loss of 
connections that were observed in CNT.  
 

• In the V1MT run, the only shared connection between CNT and MSC was V3L → 
V3R, which showed a decreased FC in MSC compared to CNT. 
MSC attained three extra connections, mainly between visual areas: V3L → V5L, V3R 
→ V3L (which is an inversion of the shared connection V3L → V3R) and V5R → EBAR. 
MS patients also lost the V5L → EBAL connection seen in CNT: it appears that the 
patients did not lose this connection in the left hemisphere, but instead, it was shifted 
to the right (opposite) hemisphere. This could be yet another form of validation of the 
brain's adaptive response when facing an insult (a change of a function or connection 
to the other brain hemisphere). They also lost the pSTSL → FFGL and V5L → V5R 
connections. 

 
• In the BM runs, there are several different significant connections between groups 

and new connectivity patterns. Most of the shared connections have lower FC values, 
and are thus weaker, in MSC: aINSL → aINSR, EBAL → V5L and its inverted form V5L 
→ EBAL and FBAR → FBAL. It seems that the connections with a higher FC in MSC 
also shifted hemispheres: the aINSL → aINSR connection that had higher FC in CNT 
now starts in the right hemisphere (aINSR → aINSL), and the V5L → EBAL in CNT 
now appears with higher FC values in MSC in the right hemisphere (V5R → EBAR). 
MSC lost the connection IFGR → aINSL and attained the connections V5L → V5R, 
EBAR → V5R and EBAR → FBAL. In general, MSC has more significant connections, 
which could imply the recruitment of additional brain regions during task performance 
and suggest that this is an adaptive response to disease-associated brain injury 
(Parry et al., 2003). 
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Summarizing, Table 5.2 shows the connections with statistically significant connectivity 
values in the V1MT localiser run and Table 5.3 shows the connections with statistically 
significant connectivity values, in the BM runs. 
 

Table 5.2 - Statistically significant connections in the V1MT run (within-group analysis with F-test). They are divided into 
shared connections between CNT and MSC (and subdivided in higher or lower values of FC in MSC) and connections 
only existent in CNT and MSC. 

SHARED CONNECTIONS ONLY CNT 
CONNECTIONS 

ONLY MSC 
CONNECTIONS Lower values in MSC Higher values in MSC 

V3L → V3R — 

V5L → EBAL  V3L → V5L 

pSTSL → FFGL  V5R → EBAR 

V5L→ V5R  V3R → V3L 

 
 

Table 5.3 - Statistically significant connections in the BM runs (within-group analysis with F-test). They are divided into 
shared connections between CNT and MSC (and subdivided in higher or lower values of FC in MSC) and connections 
only existent in CNT and MSC. 

SHARED CONNECTIONS ONLY CNT 
CONNECTIONS 

ONLY MSC 
CONNECTIONS Lower values in MSC Higher values in MSC 

aINSL → aINSR aINSR → aINSL 

IFGR → aINSL 

 V5L → V5R 

EBAL → V5L 

V5R → EBAR 

EBAR → V5R 

V5L → EBAL 
EBAR → FBAL 

FBAR → FBAL 

 
 
A noteworthy aspect is that in the BM runs, the connection from IFGR (IFGR → aINSL) in the 
frontal lobe disappears in MSC. Instead, connections from EBAR (EBAR→ V5R, EBAR→ 
FBAL) in the temporal lobe emerge. This is in concordance with research in Alzheimer’s 
Disease (AD) that showed that one of the hallmarks of neuroplasticity is the over-recruitment 
of extrastriate areas (EBA, for example) (Rytsar et al., 2011). 
  
Another interesting result to consider is that the connections between homologous 
interhemispheric regions, i.e., same regions but in opposite hemispheres (L → R, R → L), 
are prevalent in MSC. This may be a result of homologous area adaptation, in which if a 
given region (or module) becomes damaged, its function is shifted to a homologous region 
that is unimpaired (Grafman, 2000) (Stephan et al., 2007). When the neural resources of the 
hemisphere that is receiving the stimulus are insufficient for optimal processing, there is a 
distribution of the established connections across both hemispheres, which implies a task-
dependent increase in interhemispheric connectivity (Stephan et al., 2007). This is further 
supported by the consistent observation in the two runs that, in run V1MT, V5L → EBAL is 
only present in CNT, and V5R → EBAR is only present in MSC, and in runs BM, although they 
are shared connections in controls and MS patients, V5L → EBAL has a higher FC in CNT, 
and V5R → EBAR has higher FC in MSC. It is not difficult to believe that this might result from 
interhemispheric homologous “connection” adaptation. 
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5.4 Between-Groups Statistical Analysis 

The within-group statistical analysis of the previous section intended to find the significant 
differences within each group (CNT and MSC) for each run. The resulting connections were, 
thus, statistically different from zero and allowed a qualitative comparison between groups 
and the more active connections elicited by the two tasks. In this between-groups analysis, 
only connections that are statistically different between the two groups are assessed. 
  
The data (F-values for each group and run) were tested for normality using the Kolmogorov-
Smirnov (KS) test and through visual inspection of the histograms. As the data are not 
normal, a statistical group analysis using a two-tail, two-sample Wilcoxon rank sum test was 
performed to determine the differences in the directed FC between CNT and MSC. In this 
statistical test, the null hypothesis is that the two independent group samples have an equal 
median. The alternative hypothesis is that they do not. The result (the test decision), h, is 
equal to 1 if the null hypothesis is rejected at a 5% significance level, and 0 otherwise. The 
results are not corrected for multiple hypothesis testing, a decision made to decrease the 
probability of missing potentially interesting effects and justified with the reasonably low 
number of connections considered in this restricted network (compared to typical whole-brain 
analysis). 
  
In figures 5.7 and 5.8, there are two matrices. The first matrix in each figure, in the left, has 
the p-values of the connections that are statistically significantly different between groups (p 
< 0.05), and the second matrix, in the right, shows the difference between the medians of 
the F-values of the two groups for each significantly different connection (since the data is 
not normally distributed, the median was calculated instead of the mean). This value of the 
difference in medians between the groups gives information about which group’s median is 
higher. If the value is positive, the median of the MS patients’ group is higher (represented 
in red colours in the second matrix), meaning that F-values are generally greater in MS 
patients. If the value is negative, the median of the controls’ group is higher (represented in 
blue colours), and the F-values are generally greater in healthy controls. 
 
 
RUN V1MT 
 

 
 

Figure 5.7 - Results of the between-groups statistical analysis, for run V1MT. (Left) p-values obtained with between-
groups statistical analysis performed with the Wilcoxon rank sum test (only statistically significantly different connections 
between groups are shown, p < 0.05). The colorbar represents the p-values, ranging from 0 (blue) to 0.05 (red). (Right) 
Difference in the medians of F-values in the same significantly different connections between the two groups (CNT and 
MSC). Red colours represent a higher median in the MS patients’ group and blue colours represent a higher median in 
the healthy control group.  
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Table 5.4 - Statistically significantly different connections between groups in the V1MT run. They are divided into 
connections with higher F-values in MSC (red connections in the matrices) and connections with higher F-values in CNT 
(blue connections in the matrices). 

HIGHER F-VALUES IN 
MSC 

HIGHER F-VALUES IN 
CNT 

aINSL → V5R FBAL → V3R 

EBAL → aINSR FBAL → aINSL 

IFGL → FFGL FFGL → IFGL 

V3L → FFGR FFGL → V3L 

aINSR → V5R FFGL → aINSR 

aINSR → pSTSR FBAR → FBAL 

EBAR → FFGR IFGR → FBAL 

EBAR → V5L    

FBAR → FFGL    

IFGR → V5L    

IFGR → FBAR    

V3R → V3L    

 

In run V1MT, the number of connections with higher F-values in the MS patients group (red 
connections) is larger than the inverse case of higher F-values in healthy controls (blue 
connections).  
 
 
 
RUNS BM 
 

 
 

Figure 5.8 - Results of the between-groups statistical analysis, for runs BM. (Left) p-values obtained with between-groups 
statistical analysis performed with the Wilcoxon rank sum test (only statistically significantly different connections between 
groups are shown, p < 0.05). The colorbar represents the p-values, ranging from 0 (blue) to 0.05 (red). (Right) Difference 
in the medians of F-values in the same significantly different connections between the two groups (CNT and MSC). Red 
colours represent a higher median in the MS patients’ group and blue colours represent a higher median in the healthy 
control group. 
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Table 5.5 - Statistically significantly different connections between groups in the BM runs. They are divided into 
connections with higher F-values in MSC (red connections in the matrices) and connections with higher F-values in CNT 
(blue connections in the matrices). 

HIGHER F-VALUES IN 
MSC 

HIGHER F-VALUES IN 
CNT 

IFGL → V3R FBAL → EBAL 

V3R → EBAL FFGL → FBAR 

IFGR → EBAR V3L → pSTSR 

V3R → IFGR    

 
There are fewer connections that are significantly different between groups in the BM runs 
in comparison to the V1MT run. However, the number of connections with higher F-values in 
the MS patients’ group is again larger than the number of connections with increased F-
values in the CNT group. 
 
 
 
 
The 3D representation of the connections that are significantly different between groups and 
the direction of the difference (red: higher F-values in MSC; blue: higher F-values in CNT) is 
shown below for each run (V1MT and BM). 
 

         
Figure 5.9 - 3D representation of the difference in medians of F-values between groups for the V1MT run (on the left 
image (corresponding to the matrix from figure 5.7)) and for the BM runs (on the right image (corresponding to the matrix 
from figure 5.8)). Red connections represent higher F-values in MSC, and blue connections represent higher F-values in 
CNT. The 3D representations were created with the BrainNet Viewer (Xia, Wang and He, 2013), 
http://www.nitrc.org/projects/bnv/. 
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The between-group statistical analysis once more supports the suggestion that there is 
neuroplasticity in the early phases of MS. This is observed through the larger number of 
significantly different (between groups) connections with higher F-values in MSC than in 
CNT, which may represent new connections between ROIs that in CNT were not activated 
by the task, as a compensation effect. In turn, the connections with higher F-values in CNT 
can reflect a deficit in their connectivity strength in MS patients. 
  
Regarding the connections, in the localiser run, the involvement of several regions is altered 
in MSC: 

• FBA and FFG do not send as much information as in the CNT group.  
• aINS, IFG (frontal regions), EBA and V3 send more information than in CNT.  
• FFG and V5 receive more information than in CNT.  

  
In CNT, in the run V1MT, the number of significantly stronger (relative to MSC) forward and 
backward connections is balanced, whereas the stronger connections in MSC (relative to 
CNT) are mostly backwards connections, specifically from the frontal to temporal regions.  
Studies in schizophrenia (Fogelson et al., 2014) (Rolls et al., 2020), which is also considered 
a disconnection disease that shows a neural compensatory response, have demonstrated 
that the connectivity of backward connections is greater in patients than in healthy controls 
during target detection, particularly from inferotemporal regions (FFG and FBA, for example) 
to the temporoparietal region hMT+, and from hMT+ to V1, an early visual region. This is 
further verified by Cardin and colleagues (Cardin, Friston and Zeki, 2011) which argue that 
high-order visual form (with recognizable stimulus, for example) recruits more high-order 
visual areas, which specialize in processing specific attributes (such as collinearity and 
meaning), that will, in turn, generate top-down signals to lower-level regions, in order to 
encode visual information more efficiently. 
  
This tendency for backward connectivity is not observed in the BM runs, but there are still 
more connections with higher F-values in MSC than in CNT. There is a reduction in 
connections which involve FBA in MSC, as well as an increase in the participation of IFG, V3 
and EBA and the disappearance of the V3L → pSTSR connection. Despite the disappearance 
of this connection in MSC, four of the seven statistically different connections in this run (V3L 
→ pSTSR in CNT and IFGL → V3R, V3L → EBAL, IFGR → EBAR in MSC) are characteristically 
involved in biological motion, which further verifies their involvement in this movement 
perception task. This is proven by Sokolov and colleagues (Sokolov et al., 2018), which 
employed DCM to observe the behaviour of the regions and their connections involved in 
BM. According to them, pSTS does not have a gatekeeper role in the functional integration 
of the occipitotemporal and frontal regions, i.e., it is not the only region with communication 
with higher-order regions, but that FFG and the middle temporal cortex (MTC), which 
contains hMT+ and EBA, are also able to communicate with these regions. Moreover, the 
authors claim that the most sensitive connections in the perception of biological motion are 
IFG → early visual cortex (OCC), insula → OCC, insula → MTC, pSTS → OCC, FFG → 
pSTS and insula → FFG, most of them being top-down connections (connections from 
higher-level regions to, in case, OCC). 
  
Deficits in cortical function, evaluated through cerebral perfusion techniques (Vitorino et al., 
2016), in cognitively impaired RRMS patients, were found in the inferior frontal gyrus, inferior 
parietal lobule, fusiform gyrus, and lingual gyrus. Although the participants in our study are 
not cognitively impaired, we observed altered connections involving IFG and FFG, 
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suggesting that these regions could be the first to be affected by MS and have a major impact 
on cognitive decline. 
 
Furthermore, these results, both in the V1MT run and in the BM runs, are in concordance 
with previous research which argues that MS patients have higher levels of connectivity and 
more recruited areas in the frontal lobe of the brain (in this case, aINS and IFG), in 
comparison to CNT, in order to maintain an adequate task performance (Leavitt et al., 2011) 
(Rocca et al., 2016). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Results and Discussion 

 66 

5.5 Shift in Brain Lateralisation 

When a task is performed, information transfer should flow from the non-specialized to the 
specialised hemisphere, which entails that connections towards the dominant hemisphere 
are stronger than those away from it. In this case, as all of the participants are right-handed, 
connections should be stronger and thus have higher values of connectivity in the left 
hemisphere, which is considered the dominant one (Stephan et al., 2007). 
 
However, there is evidence of a shift in functional hemispheric lateralisation and a 
subsequent decrease in FC of the left hemisphere in the brain of MS patients (Tahedl et al., 
2018). In fact, this could be a result of GM and WM atrophy in the left hemisphere, supported 
by (Preziosa et al., 2017), which further concludes that the two brain hemispheres have 
different vulnerabilities to structural damages induced by MS. Filippi and colleagues (Filippi 
et al., 1995) also associated hand dominance and interhemispheric lesion distribution by 
proving that there was a higher lesion burden in the dominant hemisphere. As the dominant 
hemisphere (for handedness and language), for right-handed people, is the left, this 
hemisphere may be more susceptible to damage and accumulation of lesions. 
 
In the context of neuroplasticity and its relationship with brain lateralisation, Agcaoglu and 
colleagues (Agcaoglu et al., 2018) studied aging in the brain and concluded that there was a 
decreased lateralisation in some networks, namely the frontal and the attentional, in the left 
hemisphere, but a preservation of the right, which could reflect compensatory mechanisms 
when the brain starts to lose function. 
 
In our study, we hypothesized that, as a result of this adaptive shift in hemispheric 
lateralisation, there could be an increased presence of intra-hemispheric connections in the 
right hemisphere (R → R) and interhemispheric connections to the right hemisphere (L → R) 
and from the right hemisphere (R → L), as well as heightened connectivity values of these 
connections. In fact, the results showed that both in the within-group and between-groups 
analyses, and in both runs, there was a considerable increase in the connections seen in the 
right hemisphere and a decrease in the MSC’s connections in the left hemisphere, which is 
in agreement with previous research in AD, which is also characterized by neuroplasticity 
mechanisms (Rytsar et al., 2011). 
 
Specifically, in the between-groups analysis, in the run V1MT, there is an increase in the 
number of R → L, L → R and R → R connections with higher F-values in MSC, being that 
the right hemisphere sends most of them (8 out of the 12 connections). In the BM runs, there 
is an increase in the R → R intra-hemispheric connections in MSC, and the right hemisphere 
now receives more connections.  
 
Moreover, a decrease in the FC of intra-hemispheric connections in the left hemisphere, L 
→ L, and an increase of the FC in intra-hemispheric connections in the right hemisphere, R 
→ R, and interhemispheric connections, L → R and R → L, in MS patients is expected. These 
values can be evaluated through the mean F-values for each quadrant of the mean F-
matrices, shown in Table 5.6. 
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Table 5.6 - Matrices with the F-values of each quadrant of the mean F-matrices of figure 5.3 for both groups 

(CNT and MSC) and both runs (V1MT and BM). 

 CNT MSC 

RUN V1MT 

 

 

RUNS BM 

 

 

 
 
These results demonstrate that there is indeed an increase in the FC of the connections that 
involve the right hemisphere. Although the values are not statistically significantly different (p 
> 0.05), this tendency further corroborates the hypothesis of compensatory processes in MS 
and a change in brain lateralisation. 
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5.6 Influence of ROI Size 

In an initial phase of the study, we used a radius of 10 mm to define the ROIs for just 20 of 
the 29 participants. Then, after a revision in the methodology, we understood it would be 
reasonable (and consistent with the literature) to use a smaller radius of 5 mm. Therefore, 
when extracting the average BOLD time course of the regions, two ROI radiuses were tested 
in 20 participants: 5 mm and 10 mm. The resulting connectivity matrices after between-
groups statistical analysis with Wilcoxon rank sum test for both ROI sizes and runs are 
presented in figures 5.10 and 5.11, for run V1MT, and figures 5.12 and 5.13, for runs BM. 
 
 

RUN V1MT  
 
Radius of ROIs = 10 mm  
 

 
 

Figure 5.10 - Results of the between-group statistical analysis, for run V1MT, for a radius of 10 mm. (Left) p-values 
obtained with between-groups statistical analysis performed with the Wilcoxon rank sum test (only statistically significantly 
different connections between groups are shown, p < 0.05). The colorbar represents the p-values, ranging from 0 (blue) 
to 0.05 (red). (Right) Difference in the medians of F-values in the same significantly different connections between the 
two groups (CNT and MSC). Red colours represent a higher median in the MS patients’ group and blue colours represent 
a higher median in the healthy control group. 

 
 

Radius of ROIs = 5 mm  
 

 
 

Figure 5.11 - Results of the between-group statistical analysis, for run V1MT, for a radius of 5 mm. (Left) p-values obtained 
with between-groups statistical analysis performed with the Wilcoxon rank sum test (only statistically significantly different 
connections between groups are shown, p < 0.05). The colorbar represents the p-values, ranging from 0 (blue) to 0.05 
(red). (Right) Difference in the medians of F-values in the same significantly different connections between the two groups 
(CNT and MSC). Red colours represent a higher median in the MS patients’ group and blue colours represent a higher 
median in the healthy control group. 
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The main conclusion taken from this exploration, in the localiser run, was that with the smaller 
radius' ROIs (5 mm), more connections that are significantly different between groups show 
higher F-values in MS patients, in contrast to using a bigger radius with 10 mm. This can be 
supported by observing that there are more red coloured connections in the matrix for the 5 
mm ROIs. There are also more specific connections, i.e., the p-values were lower with 5 mm 
ROIs (more blue coloured connections in the left matrix). 
 
 

RUNS BM 

Radius of ROIs = 10 mm  
 

 
 

Figure 5.12 - Results of the between-group statistical analysis, for runs BM, for a radius of 10 mm. (Left) p-values obtained 
with between-groups statistical analysis performed with the Wilcoxon rank sum test (only statistically significantly different 
connections between groups are shown, p < 0.05). The colorbar represents the p-values, ranging from 0 (blue) to 0.05 
(red). (Right) Difference in the medians of F-values in the same significantly different connections between the two groups 
(CNT and MSC). Red colours represent a higher median in the MS patients’ group and blue colours represent a higher 
median in the healthy control group. 

 
Radius of ROIs = 5 mm  
 

 
 

Figure 5.13 - Results of the between-group statistical analysis, for runs BM, for a radius of 5 mm. (Left) p-values obtained 
with between-groups statistical analysis performed with the Wilcoxon rank sum test (only statistically significantly different 
connections between groups are shown, p < 0.05). The colorbar represents the p-values, ranging from 0 (blue) to 0.05 
(red). (Right) Difference in the medians of F-values in the same significantly different connections between the two groups 
(CNT and MSC). Red colours represent a higher median in the MS patients’ group and blue colours represent a higher 
median in the healthy control group. 
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In the biological motion concatenated runs, the 5 mm ROIs led to an increase in the number 
of blue coloured connections (higher F-value connections in the healthy controls) in 
comparison to the 10 mm ROIs, but also to an increase in the number of red coloured 
connections (higher F-value connections in the MS patients). The proportion of red coloured 
connections is approximately the same in both matrices with both ROI sizes (6/10 in the 
10mm radius and 8/14 in the 5mm radius), which means that are no significant changes in 
the proportion of significantly different connections with higher/lower F-values in each group 
with the alteration of the ROI’s size. Despite this, in the 5 mm ROIs, there are more specific 
different connections since p-values were generally lower.  
  
In conclusion, it was observed that the ROI radius chosen to extract the average time course 
of each ROI’s BOLD signal influenced the results. The primary observation is that a 5 mm 
radius can define a more specific space for the region, ultimately leading to better and more 
accurate results when extracting the time courses and performing statistical analysis. This 
occurs partly because bigger sized ROIs comprise the intended brain region and some 
surrounding voxels, which may lead to the inclusion of noise in the calculations that inevitably 
contributes to this difference in results. Using a 5 mm radius may be a better choice because 
the included noise is significantly less than when using 10 mm ROIs, and thus the signal-to-
noise ratio increases. Therefore, we opted to re-run the analyses with the complete dataset 
using the ROIs with a radius of 5mm. The results presented in this thesis so far are indeed 
those obtained using 5 mm ROIs, we just presented this ROI size exploration here to allow 
the reader to be already familiar with the connectivity matrices at this point and focus easily 
on the comparison between ROI sizes in this section. The definition of the ROIs proves to be 
an important factor in the study of functional connectivity, and we suggest that a more exact 
definition of the regions leads to more accurate results. 
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5.7 Optimal Threshold 

The connectivity measures are calculated from the F-value matrices, with BCT (Rubinov and 
Sporns, 2010). Proportional thresholding, which maintains a fixed density between the 
participants’ networks, and thus the same number of edges, is advised in order to obtain 
more sparsely connected matrices and, therefore, more stable network metrics. However, 
the choice of a specific threshold remains unclear, and the literature often shows studies that 
investigate connectivity measures for a large range of thresholds, generally from 5% to 50% 
network density. This means that only 5 to 50% of the original edges are maintained. For 
example, (Miri Ashtiani et al., 2019) argues that selecting a range between 10% and 50% for 
proportional thresholding prevents matrices from being too sparse (less than 10% density 
can lead to the elimination of important connections within the network) and too dense (more 
than 50% density may include noise and insignificant information). (Welton et al., 2020) 
concludes that a threshold between 20% and 50% produces reliable results, and (Abidin et 
al., 2017) chooses a density of 45% as the threshold for their research. 
  
In this study, an exploration of different threshold values and their impact in connectivity 
measures was performed, and one specific threshold for each run was chosen to calculate 
the connectivity measures and to analyse which regions could be more involved in each task 
and those which could have a particularly important role within the defined network. 
Nonetheless, we emphasise that this is a merely exploratory approach, as calculating the 
measures with several thresholds may bring new and relevant information. 
  
In order to choose an ‘optimal’ threshold, the procedure described below was followed for 
each run (figure 5.14).  
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Figure 5.14 - Schematic representation of the steps followed to choose the ‘optimal’ threshold for calculation and 
representation of the global and local connectivity measures. (1) A range of thresholds was chosen: 0.05 < PTh < 0.5, 
with steps of 0.05. (2) Calculation of the local metrics for each threshold. (3) Statistical analysis with Wilcoxon Rank Sum 
test to find significantly different nodes between groups in each local measure (p < 0.05). (4) Construction of the bar plot, 
with the ten thresholds in the x-axis and significantly different nodes in the y-axis. (5) The two closest thresholds which 
had the largest number of significantly different connectivity measures and nodes (between groups) were chosen to repeat 
the above procedure, but with steps of 0.01. (6) The threshold with the largest number of significantly different nodes local 
measures is chosen as the ‘optimal threshold’. 
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RUN V1MT 
 
Firstly, a range of thresholds was chosen. In this case, we used densities from 5% to 50% 
(or a proportion of 0.05 and 0.5, respectively) as they are the most common thresholds used 
in the literature. All connectivity measures mentioned in section 4.2.5 were calculated for that 
range of thresholds with a 5% (or 0.05) step, i.e, the values of PTh are equal to 0.05, 0.1, 
0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45 and 0.5. The weights of the connections below these 
thresholds were set to 0. 
  
After calculating the metrics for each threshold, statistical analysis with the Wilcoxon Rank 
Sum test was performed to find significant differences between groups in global measures 
and significantly different nodes in each local measure (p < 0.05). The significantly different 
nodes in the local measures will be used as guidance for choosing the threshold, as they 
convey more information concerning the importance of the regions within the network. This 
statistical analysis is represented in matrix form with all local measures in the x-axis and 
respective significantly different nodes between groups in the y-axis. Figure 5.15 is an 
example of these matrices with PTh = 0.1, and in Appendix II, all of the matrices, for all of 
the thresholds, are represented. 
 
 

 

  
Figure 5.15 - Matrix with the nodes and corresponding local measures that are statistically significantly different between 
groups, with PTh = 0.1, in the V1MT run. Wilcoxon rank sum test was performed and the nodes with a p-value < 0.05 are 
represented in light blue. The nodes in dark blue have a p-value < 0.1 (tendency for statistical significance). 

 

 
The data was analysed to conclude which thresholds could yield the greatest number of 
significantly different connectivity metrics between groups for at least one node and the 
largest number of statistically significantly different nodes involved in general (for all metrics). 
Thus, a bar plot was constructed (figure 5.16), in which the ten thresholds are represented 
in the x-axis and the number of nodes presenting significantly different metrics in the y-axis. 
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Figure 5.16 - Bar plot of the number of nodes and corresponding local measures that are statistically significantly different 
between groups (PTh = 0.05 to 0.5, with steps of 0.05), for the V1MT run. Each bar is divided into colours, each one 
representing a local connectivity metric that is significantly different between groups in each threshold. 

 

In this run (V1MT), the two closest thresholds which yielded the largest number of 
significantly different connectivity measures and nodes were PTh = 0.1 (8 metrics and 9 
nodes) and PTh = 0.15 (8 metrics and 10 nodes). These thresholds were chosen to repeat 
the above procedure, but now with smaller steps of 0.01. This subdivision will make the 
threshold more specific, thus allowing for a more selective choice. 
The new thresholds to be investigated are PTh = 0.1, 0.11, 0.12, 0.13, 0.14 and 0.15. 
 
 
 

 
Figure 5.17 - Matrix with the nodes and corresponding local measures that are statistically significantly different between 
groups, PTh = 0.1 (left) and PTh= 0.15 (right), in the V1MT run. Wilcoxon rank sum test was performed and the nodes 
with a p-value < 0.05 are represented in light blue. The nodes in dark blue have a p-value < 0.1 (tendency for statistical 
significance). 

 
A new bar plot with the new significantly different local metrics between groups for each 
threshold was constructed. 
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Figure 5.18 - Bar plot of the number of nodes and corresponding local measures that are statistically significantly different 
between groups (PTh = 0.1 to 0.15, with steps of 0.01), for the V1MT run. Each bar is divided into colours, each one 
representing a local connectivity metric that is significantly different between groups in each threshold. 

 

We observed that PTh = 0.11 is the threshold which yielded the highest number of 
significantly different nodes and local measures between groups, so it was considered the 
‘optimal threshold’ for the localiser run. The matrix of the significantly different nodes and 
local measures for this threshold is represented in figure 5.19. 
 

 
Figure 5.19 - Matrix with the nodes and corresponding local measures that are statistically significantly different between 
groups, with PTh = 0.11, in the V1MT run. Wilcoxon rank sum test was performed and the nodes with a p-value < 0.05 
are represented in light blue. The nodes in dark blue have a p-value < 0.1 (tendency for statistical significance). 
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RUNS BM 
 
For the BM runs, the same procedure was followed. 
The significantly different metrics between groups for each threshold were represented in a 
bar plot (figure 5.20).  
 

 
 

Figure 5.20 – Bar plot of the number of nodes and corresponding local measures that are statistically significantly different 
between groups (PTh = 0.05 to 0.5, with steps of 0.05), for the BM runs. Each bar is divided into colours, each one 
representing a local connectivity metric that is significantly different between groups in each threshold. 

 

In the BM runs, the range of thresholds with the largest number of significantly different 
connectivity measures and nodes was between PTh = 0.35 (which has the highest number 
of significantly different metrics: 11 metrics, 27 nodes) and PTh = 0.4 (which has the highest 
number of significantly different nodes: 10 metrics, 28 nodes). 
These thresholds were chosen to repeat the above procedure, but now with smaller steps of 
0.01. Hence, the new thresholds to be studied are 0.35, 0.36, 0.37, 0.38, 0.39 and 0.4. 
 

 
Figure 5.21 – Matrix with the nodes and corresponding local measures that are statistically significantly different between 
groups, PTh = 0.35 (left) and PTh= 0.4 (right), in the BM runs run. Wilcoxon rank sum test was performed and the nodes 
with a p-value < 0.05 are represented in light blue. The nodes in dark blue have a p-value < 0.1 (tendency for statistical 
significance). 
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A new bar plot with the new significantly different metrics between groups for each new 
threshold was constructed (figure 5.22). 
 

 
Figure 5.22 – Bar plot of the number of nodes and corresponding local measures that are statistically significantly different 
between groups (PTh = 0.35 to 0.4, with steps of 0.01), for the BM runs. Each bar is divided into colours, each one 
representing a local connectivity metric that is significantly different between groups in each threshold. 

 

PTh = 0.39 was the threshold which yielded the highest number of significantly different 
nodes and local measures, so it is considered the ‘optimal threshold’ for the biological motion 
runs. The matrix of the significantly different nodes and local measures for this threshold is 
represented in figure 5.23. 
 

 
Figure 5.23 – Matrix with the nodes and corresponding local measures that are statistically significantly different between 
groups, with PTh = 0.39, in the BM runs. Wilcoxon rank sum test was performed and the nodes with a p-value < 0.05 are 
represented in light blue. The nodes in dark blue have a p-value < 0.1 (tendency for statistical significance). 
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5.8 Connectivity Measures 

After choosing an ‘optimal’ threshold, the connectivity measures were calculated: 
characteristic path length, global efficiency, local efficiency, global flow coefficient, local flow 
coefficient, total flow, assortativity, eccentricity, radius, diameter, total degree, in-degree, out-
degree, mean network strength, total strength, in-strength, out-strength, betweenness 
centrality and pagerank centrality. 
 
As we are using a multivariate approach in a restricted network, composed of only 16 nodes 
(regions) and two different visual tasks, which have not been yet studied in the context of 
MS, we expected different outcomes about the connectivity metrics in relation to what is 
reported in previous research.  
 
 
5.8.1 Global Measures 
  
The global connectivity measures characterize and describe global graph properties of the 
network, such as efficiency and resilience, that can be used to analyse the global topology, 
looking beyond the local changes of each region. Global network metrics have been insightful 
regarding brain organization and function, describing network segregation (dense, within-
subnetwork connectivity) and integration (communication across distinct subnetworks 
(Rubinov and Sporns, 2010) (Welton et al., 2020). 
 
The calculated global connectivity measures were the characteristic path length, global 
efficiency, diameter, radius, global flow coefficient, assortativity and average strength. The 
representation of the global measures individually in each group for each run is shown below. 
 
  
 
RUN V1MT 
 

 
 
Figure 5.24 - Box plots with the distribution of the values of the characteristic path length in both groups, for the run V1MT. 
The values of the measures for CNT are in blue, and for MSC are in red. The mean and standard deviation are also 
indicated. 
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Figure 5.25 - Box plots with the distribution of the values of the global efficiency in both groups, for the run V1MT. The 
values of the measures for CNT are in blue, and for MSC are in red. The mean and standard deviation are also indicated. 

 

Figure 5.26 - Box plots with the distribution of the values of the diameter in both groups, for the run V1MT. The values of 
the measures for CNT are in blue, and for MSC are in red. The mean and standard deviation are also indicated. 

 

Figure 5.27 - Box plots with the distribution of the values of the global flow coefficient in both groups, for the run V1MT. 
The values of the measures for CNT are in blue, and for MSC are in red. The mean and standard deviation are also 
indicated. 
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Figure 5.28 - Box plots with the distribution of the values of the assortativity in both groups, for the run V1MT. The values 
of the measures for CNT are in blue, and for MSC are in red. The mean and standard deviation are also indicated. 

 
Figure 5.29 - Box plots with the distribution of the values of the average strength in both groups, for the run V1MT. The 
values of the measures for CNT are in blue, and for MSC are in red. The mean and standard deviation are also indicated. 

 
 
 
 
In the V1MT run, the median values of the characteristic path length and diameter are 
decreased in MS patients, whereas the median values of global efficiency, global flow 
coefficient, assortativity and average strength are increased in MS patients. 
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RUNS BM 

 
Figure 5.30 - Box plots with the distribution of the values of the characteristic path length in both groups, for the runs BM. 
The values of the measures for CNT are in blue, and for MSC are in red. The mean and standard deviation are also 
indicated. 

 
Figure 5.31 - Box plots with the distribution of the values of the global efficiency in both groups, for the runs BM. The 
values of the measures for CNT are in blue, and for MSC are in red. The mean and standard deviation are also indicated. 

 

 
Figure 5.32 - Box plots with the distribution of the values of the diameter in both groups, for the runs BM. The values of 
the measures for CNT are in blue, and for MSC are in red. The mean and standard deviation are also indicated. 
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Figure 5.33 - Box plots with the distribution of the values of the radius in both groups, for the runs BM. The values of the 
measures for CNT are in blue, and for MSC are in red. The mean and standard deviation are also indicated. 

 

 
Figure 5.34 - Box plots with the distribution of the values of the global flow coefficient in both groups, for the runs BM. The 
values of the measures for CNT are in blue, and for MSC are in red. The mean and standard deviation are also indicated. 

 
Figure 5.35 - Box plots with the distribution of the values of the assortativity in both groups, for the runs BM. The values 
of the measures for CNT are in blue, and for MSC are in red. The mean and standard deviation are also indicated. 
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Figure 5.36 - Box plots with the distribution of the values of the average strength in both groups, for the runs BM. The 
values of the measures for CNT are in blue, and for MSC are in red. The mean and standard deviation are also indicated. 

 

 
In BM runs, the characteristic path length, radius, diameter, and global flow coefficient 
decreased in MS patients, whereas global efficiency, assortativity, and average strength 
increased in MS patients. 
 
The values of the global connectivity measures for both runs in each group are summarized 
in Table 5.7, which contains the median values of each connectivity measure (the median is 
chosen instead of the mean because the data are not normal, verified with the KS test). 
 

 

Table 5.7 - Median values of each global connectivity measure, for each group (CNT and MSC) and each run (V1MT and 
BM). The blue values are those which are increased in comparison to the other group (within the same run). * indicates 
statistically significant differences between-groups. 

 MEDIAN VALUES 

 RUN V1MT RUNS BM 

 CNT MSC CNT MSC 

Characteristic Path Length 1.845 1.835 9.50 6.68 

Global Efficiency 0.086 0.0903 0.089* 0.13* 

Diameter 22.26 21.83 42.44 30.37 

Radius — — 20.57* 13.67* 

Assortativity - 0.0072 0.051 - 0.033 - 0.022 

Mean Network Strength 1.35 1.39 1.48 2.19 

Global Flow Coefficient 0.1875 0.1896 0.23 0.22 
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A statistical Wilcoxon rank sum test was performed to evaluate which measures were 
significantly different between the two groups (significance at p < 0.05). In the V1MT run, 
none of the global measures was statistically significantly different (all p-values > 0.05). In 
the BM runs, two global measures (global efficiency and radius) were statistically significantly 
different between groups (p-value of global efficiency = 0.0382; p-value of radius = 0.0471). 
It is then important to analyse the behaviour of the measures in MSC, particularly if they 
increase or decrease in the network in comparison with the CNT group.  
  
The characteristic path length calculates the average shortest distance between every pair 
of nodes in the graph, hence relating to efficiency in information transfer since a shorter path 
length implies more speed in information exchange and processing. These values were 
decreased in MS patients in both runs. Accordingly, the global efficiency, which is considered 
to be the inverse of the characteristic path length and measures the general efficiency of the 
information transfer between the network’s nodes, is increased in MSC in both runs. The 
results of these two metrics indicate that there is an overall increase in efficiency within the 
network. 
  
The radius and diameter are derived from eccentricity, a local connectivity measure that first 
calculates all shortest paths between a node and every other node in the network and then 
chooses the longest one of all of these node’s paths. The radius represents the minimum 
eccentricity, i.e., the smaller value of all nodes’ eccentricities, and the diameter represents 
the maximum eccentricity. These measures describe the ease with which a node can be 
reached by other nodes, reflecting the network’s efficiency (Su et al., 2017). In the V1MT run, 
the radius is 0 for all participants, except for MSC07. This might be the result of incidentally 
using a threshold that is too restrictive in this situation (only 11% of the connections are 
retained and the others are set to 0), and the minimum values of the longest shortest path 
between the nodes tend to be 0 because most of the connections involved in these paths 
are eliminated. In the BM runs, the radius decreases in MSC. The diameter is also decreased 
in MSC in both runs. Since the radius and the diameter are related to the efficiency in global 
brain network organisation, i.e., the lower the radius and diameter, the more efficient is 
information processing between remote brain regions, this decrease may support the idea of 
a more efficient network (Su et al., 2017). 
 
The average network strength is the total average of each node's strength (local connectivity 
measure), and it is increased in MSC in both runs. It assesses the overall strength of the 
relationship between the nodes, so an increase in this measure implies stronger connectivity 
between regions, and thus there is a more facilitated information exchange and functional 
integration (Joseph et al., 2012). 
  
Assortativity measures the network’s resilience when facing disruptions, that in the case of 
MS, can be WM and GM lesions. It assesses the likelihood of a node to be connected to 
another node with a similar degree; therefore, a positive assortativity value suggests that 
high-degree nodes connect and build a resilient and robust core (Rubinov and Sporns, 2010). 
The majority of biological networks are disassortative, i.e., the nodes are distributed and 
vulnerable, but sometimes this can change as networks display assortative hubs when faced 
with targeted attacks as a defence (Thedchanamoorthy et al., 2014). Assortativity increases 
in MSC in both runs, which could be another indication of an adaptive response to lesions 
caused by MS, which was also shown by Rocca and colleagues (Rocca et al., 2016). 
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The only global measure that is contradictory between runs is the global flow coefficient, the 
overall nodes’ ability to conduct information flow, which increases in V1MT run and 
decreases in the BM runs in MSC. However, this measure it is not statistically significantly 
different between groups, and the changes are relatively small between the groups.  
  
Most of the studies in MS, using task-based or resting-state paradigms, argue that, generally, 
there is a decrease in the efficiency of information transfer and in the strength and resilience 
of the network, even in the early phases of MS. However, what we found is conflicting with 
the literature: we see an increase in the quality and efficiency of information flow as well as 
an increase in the strength of the network. However, a study in the context of Gilles de la 
Tourette syndrome, studying structural connectivity, also found higher values of global 
efficiency and concluded that this increase of structural integration was associated with the 
syndrome’s severity and could reflect potential adaptive plasticity (Schlemm et al., 2017). If 
we analyse the obtained results from that point of view, all the results are in agreement: 
efficiency, resilience and strength increases could be yet another proof of the compensatory 
mechanism in MS in the early phases of the disease. These results may be possible in our 
study because we are analysing a very task-specific network, associated with visual 
perception, and ignoring the whole-brain connectivity during its performance, i.e., we can 
observe an increase in efficiency in this task in a small network, but that does not mean that 
overall brain efficiency is also increased. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Results and Discussion 

 86 

5.8.2 Local Measures 
 
The local connectivity metrics reflect the importance of a node (or a brain region) within the 
network and allow us to understand its role and what might happen if it is compromised. 
Moreover, an alteration of these local measures between groups might imply an altered 
network topology in the patient’s group (Schlemm et al., 2017). 
 
The local measures that were studied are eccentricity, local efficiency, local flow coefficient, 
total flow, total degree, in-degree, out-degree, total strength, in-strength, out-strength, 
betweenness centrality and pagerank centrality. These are shown below for each participant, 
along with the median value for each node in each group, in the V1MT run. 
 
    
RUN V1MT 
 

 
Figure 5.37 - Matrix representing the values of the eccentricity for each node (y-axis) and for each participant (x-axis), in 
the V1MT run. The two first columns of the matrix represent the median of the eccentricity values of the two groups (CNT 
and MSC) for each node. The first colorbar (on the left) represents the metric’s median values and the second colorbar 
(on the right) represents the metric’s individual values for each node. 

 

 
Figure 5.38 - Matrix representing the values of the local efficiency for each node (y-axis) and for each participant (x-axis), 
in the V1MT run. The two first columns of the matrix represent the median of the local efficiency values of the two groups 
(CNT and MSC) for each node. The first colorbar (on the left) represents the metric’s median values and the second 
colorbar (on the right) represents the metric’s individual values for each node. 
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Figure 5.39 - Matrix representing the values of the local flow coefficient for each node (y-axis) and for each participant (x-
axis), in the V1MT run. The two first columns of the matrix represent the median of the local flow coefficient values of the 
two groups (CNT and MSC) for each node. The first colorbar (on the left) represents the metric’s median values and the 
second colorbar (on the right) represents the metric’s individual values for each node. 

 
Figure 5.40 - Matrix representing the values of the total flow for each node (y-axis) and for each participant (x-axis), in the 
V1MT run. The two first columns of the matrix represent the median of the total flow values of the two groups (CNT and 
MSC) for each node. The first colorbar (on the left) represents the metric’s median values and the second colorbar (on 
the right) represents the metric’s individual values for each node. 

 

Figure 5.41 - Matrix representing the values of the total degree for each node (y-axis) and for each participant (x-axis), in 
the V1MT run. The two first columns of the matrix represent the median of the total degree values of the two groups (CNT 
and MSC) for each node. The first colorbar (on the left) represents the metric’s median values and the second colorbar 
(on the right) represents the metric’s individual values for each node. 
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Figure 5.42  - Matrix representing the values of the in-degree for each node (y-axis) and for each participant (x-axis), in 
the V1MT run. The two first columns of the matrix represent the median of the in-degree values of the two groups (CNT 
and MSC) for each node. The first colorbar (on the left) represents the metric’s median values and the second colorbar 
(on the right) represents the metric’s individual values for each node. 

 

 
Figure 5.43 - Matrix representing the values of the out-degree for each node (y-axis) and for each participant (x-axis), in 
the V1MT run. The two first columns of the matrix represent the median of the out-degree values of the two groups (CNT 
and MSC) for each node. The first colorbar (on the left) represents the metric’s median values and the second colorbar 
(on the right) represents the metric’s individual values for each node. 

 

 
Figure 5.44 - Matrix representing the values of the total strength for each node (y-axis) and for each participant (x-axis), 
in the V1MT run. The two first columns of the matrix represent the median of the total strength values of the two groups 
(CNT and MSC) for each node. The first colorbar (on the left) represents the metric’s median values and the second 
colorbar (on the right) represents the metric’s individual values for each node. 
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Figure 5.45  - Matrix representing the values of the in-strength for each node (y-axis) and for each participant (x-axis), in 
the V1MT run. The two first columns of the matrix represent the median of the in-strength values of the two groups (CNT 
and MSC) for each node. The first colorbar (on the left) represents the metric’s median values and the second colorbar 
(on the right) represents the metric’s individual values for each node. 

 

 
Figure 5.46 - Matrix representing the values of the out-strength for each node (y-axis) and for each participant (x-axis), in 
the V1MT run. The two first columns of the matrix represent the median of the out-strength values of the two groups (CNT 
and MSC) for each node The first colorbar (on the left) represents the metric’s median values and the second colorbar 
(on the right) represents the metric’s individual values for each node. 

 

 
Figure 5.47 - Matrix representing the values of the betweenness centrality for each node (y-axis) and for each participant 
(x-axis), in the V1MT run. The two first columns of the matrix represent the median of the betweenness centrality values 
of the two groups (CNT and MSC) for each node. The first colorbar (on the left) represents the metric’s median values 
and the second colorbar (on the right) represents the metric’s individual values for each node. 
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Figure 5.48 - Matrix representing the values of the pagerank centrality for each node (y-axis) and for each participant (x-
axis), in the V1MT run. The two first columns of the matrix represent the median of the pagerank centrality values of the 
two groups (CNT and MSC) for each node. The first colorbar (on the left) represents the metric’s median values and the 
second colorbar (on the right) represents the metric’s individual values for each node. 

 
 
A statistical Wilcoxon rank sum test was performed to evaluate which nodes and which 
connectivity metrics were significantly different between groups (p < 0.05). This statistical 
analysis is represented in matrix form with all significantly different local measures (x-axis) 
and respective significantly different nodes between groups (y-axis). 
 
 

 
Figure 5.49 - Matrix with the nodes and corresponding local measures that are statistically significantly different between 
groups, with PTh = 0.11, in the V1MT run. Wilcoxon rank sum test was performed and the nodes with a p-value < 0.05 
are represented in light blue. The nodes in dark blue have a p-value < 0.1 (tendency for statistical significance). 
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RUNS BM 
 

 
Figure 5.50 - Matrix representing the values of the eccentricity for each node (y-axis) and for each participant (x-axis), in 
the BM runs. The two first columns of the matrix represent the median of the eccentricity values of the two groups (CNT 
and MSC) for each node. The first colorbar (on the left) represents the metric’s median values and the second colorbar 
(on the right) represents the metric’s individual values for each node. 

 

 
Figure 5.51 - Matrix representing the values of the local efficiency for each node (y-axis) and for each participant (x-axis), 
in the BM runs. The two first columns of the matrix represent the median of the local efficiency values of the two groups 
(CNT and MSC) for each node. The first colorbar (on the left) represents the metric’s median values and the second 
colorbar (on the right) represents the metric’s individual values for each node. 

 
Figure 5.52 - Matrix representing the values of the local flow coefficient for each node (y-axis) and for each participant (x-
axis), in the BM runs. The two first columns of the matrix represent the median of the local flow coefficient values of the 
two groups (CNT and MSC) for each node. The first colorbar (on the left) represents the metric’s median values and the 
second colorbar (on the right) represents the metric’s individual values for each node. 
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Figure 5.53 - Matrix representing the values of the total flow for each node (y-axis) and for each participant (x-axis), in the 
BM runs. The two first columns of the matrix represent the median of the total flow values of the two groups (CNT and 
MSC) for each node. The first colorbar (on the left) represents the metric’s median values and the second colorbar (on 
the right) represents the metric’s individual values for each node. 

 
Figure 5.54 - Matrix representing the values of the total degree for each node (y-axis) and for each participant (x-axis), in 
the BM runs. The two first columns of the matrix represent the median of the total degree values of the two groups (CNT 
and MSC) for each node. The first colorbar (on the left) represents the metric’s median values and the second colorbar 
(on the right) represents the metric’s individual values for each node. 

 

 
Figure 5.55 - Matrix representing the values of the in-degree for each node (y-axis) and for each participant (x-axis), in 
the BM runs. The two first columns of the matrix represent the median of the in-degree values of the two groups (CNT 
and MSC) for each node. The first colorbar (on the left) represents the metric’s median values and the second colorbar 
(on the right) represents the metric’s individual values for each node. 
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Figure 5.56 - Matrix representing the values of the out-degree for each node (y-axis) and for each participant (x-axis), in 
the BM runs. The two first columns of the matrix represent the median of the out-degree values of the two groups (CNT 
and MSC) for each node. The first colorbar (on the left) represents the metric’s median values and the second colorbar 
(on the right) represents the metric’s individual values for each node. 

 

 
Figure 5.57 - Matrix representing the values of the total strength for each node (y-axis) and for each participant (x-axis), 
in the BM runs. The two first columns of the matrix represent the median of the total strength values of the two groups 
(CNT and MSC) for each node. The first colorbar (on the left) represents the metric’s median values and the second 
colorbar (on the right) represents the metric’s individual values for each node. 

 

Figure 5.58 - Matrix representing the values of the in-strength for each node (y-axis) and for each participant (x-axis), in 
the BM runs. The two first columns of the matrix represent the median of the in-strength values of the two groups (CNT 
and MSC) for each node. The first colorbar (on the left) represents the metric’s median values and the second colorbar 
(on the right) represents the metric’s individual values for each node. 
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Figure 5.59 - Matrix representing the values of the out-strength for each node (y-axis) and for each participant (x-axis), in 
the BM runs. The two first columns of the matrix represent the median of the out-strength values of the two groups (CNT 
and MSC) for each node. The first colorbar (on the left) represents the metric’s median values and the second colorbar 
(on the right) represents the metric’s individual values for each node. 

 

 
Figure 5.60 - Matrix representing the values of the betweenness centrality for each node (y-axis) and for each participant 
(x-axis), in the BM runs. The two first columns of the matrix represent the median of the betweenness centrality values of 
the two groups (CNT and MSC) for each node. The first colorbar (on the left) represents the metric’s median values and 
the second colorbar (on the right) represents the metric’s individual values for each node. 

 

 
Figure 5.61 - Matrix representing the values of the pagerank centrality for each node (y-axis) and for each participant (x-
axis), in the BM runs. The two first columns of the matrix represent the median of the pagerank centrality values of the 
two groups (CNT and MSC) for each node. The first colorbar (on the left) represents the metric’s median values and the 
second colorbar (on the right) represents the metric’s individual values for each node. 

 
 



Chapter 5 

 

 95 

A new statistical Wilcoxon rank sum test was performed to evaluate which nodes and which 
connectivity metrics were significantly different between groups (p < 0.05), in the BM runs. 
This statistical analysis is represented in matrix form with all significantly different local 
measures (x-axis) and respective significantly different nodes between groups (y-axis). 
 

 
Figure 5.62 - Matrix with the nodes and corresponding local measures that are statistically significantly different between 
groups, with PTh = 0.39, in the BM runs. Wilcoxon rank sum test was performed and the nodes with a p-value < 0.05 are 
represented in light blue. The nodes in dark blue have a p-value < 0.1 (tendency for statistical significance). 

 
 
Eccentricity is the "longest" shortest path that the information from a node ‘travels’ to reach 
any other node and is interpreted as the ease of a region to be functionally reached by all of 
the other regions in the network, which also reflects how efficient is the information exchange 
(Su et al., 2017). The smaller the eccentricity, the more central the node is located in the 
network because the paths to reach other nodes are inherently smaller as well. Hence, a 
node with low values of eccentricity will influence and/or be more influenced by the activity 
of other nodes. In turn, a node with high values of eccentricity could have a marginal 
functional role in the network. (Tewarie et al., 2014) and (Miri Ashtiani et al., 2019) argue that 
the eccentricity can significantly change in early MS. 
In the V1MT localiser run, pSTSL’s eccentricity value is significantly different between groups 
and increased in MSC, indicating that this node could have a marginal role in the network 
and therefore be damaged in MSC. In the BM runs, the pSTSR’s eccentricity value is different 
between groups and increased in CNT, which could mean that in MSC it becomes more 
influent in the network, as a compensation. 
These results could also reflect damages in the left hemisphere and compensation in the 
right hemisphere, which further supports the hypothesis of a shift in brain lateralization. 
 
Local efficiency measures the efficiency of information exchange within the direct 
neighbourhood of a node (J. Liu et al., 2017), which means that nodes with high values of 
local efficiency effectively share information with their immediate local neighbours (Stanley 
et al., 2015).  
In the V1MT localiser run, there are two nodes that are significantly different between groups: 
FBAL, with a higher local efficiency in CNT, and EBAR with a higher local efficiency in MSC. 
In the BM runs, several nodes are significantly different between groups: V5R, pSTSR, FFGR, 
FBAR, EBAR, pSTSL and FBAL. All of them have higher local efficiency values in MSC. These 
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nodes may have important roles in their respective sub-networks and their removal from the 
network may have harmful consequences in information processing. These results further 
reinforce the idea that the right hemisphere is more recruited in MS, as a consequence of 
adaptive phenomena. 
 
Local (or node) flow coefficient represents the ability of the node to conduct information flow 
(Sacchet et al., 2015). Therefore, the higher is the local flow coefficient of a node, the more 
is the node’s ability to conduct information.  
In the V1MT localiser run, only FFGL is significantly different between groups, having higher 
values in CNT. In the BM runs, the values of pSTSR’s local flow coefficient are different 
between groups with higher values in CNT. 
This could indicate that these nodes might have lost the ability to conduct information flow in 
an efficient manner in the MSC group (at least as efficiently as in the control group), and thus 
their function might be compromised due to the effect of the disease. 
 
Total flow measures the number of information paths that flow across the node (Sacchet et 
al., 2015). A higher total flow of a node could mean that more information flow passes through 
that node. 
In the V1MT localiser run, FFGL and V3R are significantly different between groups, and they 
have higher values in CNT. FFGL has also a higher local flow coefficient in CNT, which adds 
up to the idea that its functions in transmitting information become damaged in MS. 
In the BM runs, aINSL is the only node significantly different between groups, having higher 
values in CNT. aINSL’s role in managing information flow may also be compromised in MS. 
 
Total degree represents the number of links connected to a given node and provides 
information about each ROI’s significance: the higher the degree of a node, the more it 
interacts with others and creates pathways for information flow. Nodes with high degree can 
be considered hubs, which are known to have a critical role in the network, integrating and 
distributing information (Khazaee, Ebrahimzadeh and Babajani-Feremi, 2017). 
In the V1MT localiser run, the two nodes that are significantly different between groups are 
FBAL, with a higher degree in CNT, and EBAR with a higher degree in MSC.  
In the BM runs, aINSL has a higher degree in CNT. Its role and influence in the network may 
be compromised in MSC, as seen previously with the total flow measure. 
 
The in- and out-degree measures are related to the degree, but they only account for the 
node’s number of inward and outward connections, respectively, in a directed network 
(Rubinov and Sporns, 2010). These measures might seem redundant at first glance since 
the degree already describes the total number of neighbours of the node; however, the 
correlation between in- and out-degree can bring new information about the network and its 
nodes. Nodes with higher in-degree are seen as integrators within the networks, i.e, more 
information converges to them. Nodes with higher out-degree are seen as distributors, i.e, 
they send more information to the rest of the network. If one of these measures is altered, 
this might mean that the function of the node is also altered. For example, the node might 
have the same total degree in CNT and MSC, but the node’s in-degree in MSC is lower, and 
the out-degree is higher. This can mean that the node’s functions in MS, particularly when 
receiving information, are damaged.  
 
In in-degree, in the V1MT localiser run, and similarly to the total degree, the two nodes that 
are different between groups are FBAL, with a higher in-degree in CNT, and EBAR with a 
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higher in-degree in MSC. In the BM runs, the two nodes different between-groups are V3R, 
which has a higher in-degree in MSC, and FFGR, which has a higher in-degree in CNT. 
  
In out-degree, there are no nodes that are significantly different between groups in the V1MT 
localiser run. In the BM runs, aINSL is the only node that is significantly different between 
groups with increased out-degree values in CNT, again reinforcing that this node’s function 
is damaged in MS. 
 
Total strength is a metric related to degree, but, in weighted networks, it instead considers 
the sum of weights of links connected to the node (Rubinov and Sporns, 2010). Therefore, 
the outcomes of degree and strength are different: while degree focuses on the number of 
connections of the node, strength considers the relationship between the node and its 
neighbours. Moreover, strength only considers the general involvement of the node within 
the network, failing to account for the number of links. This might be problematic when 
analysing the centrality of the node, since it is usually measured by the number of 
connections it has, not by the strength of the connections. Thus, having a higher strength 
doesn’t mean that the node has influence over many other nodes in the network, it only 
means that more information passes through it (Opsahl, Agneessens and Skvoretz, 2010). 
 

 
Figure 5.63 - Representation of the difference between the strength and degree of a node. Node A has more neighbours, 
thus, a higher degree; Node C has less neighbours but the strength of the connections is higher than in node A; Node B 
is an intermediate between nodes A and C, in terms of strength and degree (Opsahl, Agneessens and Skvoretz, 2010). 
 

Despite this, strength is usually preferred when analysing weighted graphs (Opsahl, 
Agneessens and Skvoretz, 2010).  
In the V1MT localiser run, the strength of EBAR is significantly different between groups and 
has higher values in MSC. In the BM runs, several nodes are significantly different between 
groups: V5R, V3R, pSTSR, FBAR, EBAR and pSTSL. All of them have higher values of strength 
in MSC, again highlighting the importance of the right hemisphere in MS networks. 
 
In-strength is related to the total strength, but it represents the sum of the weights of the 
incoming connections of a node (Rubinov and Sporns, 2010). 
In the V1MT localiser run, FBAL is significantly different between groups and has higher in-
strength values in CNT. In the BM runs, EBAR is significantly different between groups and 
has higher in-strength values in MSC, meaning that the incoming flux of information to this 
node is higher in MS. 
  
Out-strength is the sum of the weights of the outcoming connections of a node (Rubinov and 
Sporns, 2010). 
There are no nodes that are significantly different between groups in the V1MT localiser run. 
In the BM runs, several nodes are significantly different between groups: V5R, FFGR, pSTSR, 
FBAR and pSTSL. All of them have higher values of strength in MSC, meaning that the 
outcoming flux of information from these nodes in MS is high. 
 
Betweenness centrality measures the number of paths with the shortest length that go 
through a given node. A high value of betweenness centrality means that the node connects 
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disparate parts of the networks and plays an important role in information exchange (Rubinov 
and Sporns, 2010). 
There are no nodes that are significantly different between groups in the V1MT localiser run. 
In the BM runs, FFGL is significantly different between groups and has higher values in MSC, 
which could mean that this node participates in a large number of shortest paths and 
intercedes in the information flow of the network, carrying more information. 
  
Pagerank centrality measures the importance and level of influence of a node within a 
network, considering the quality of the connections. Ashtiani and colleagues (Miri Ashtiani et 
al., 2019) described eigenvector centrality, the undirected version of pagerank centrality, as 
effective in the detection of main brain hubs, which are usually altered in MSC.  
There are no nodes that are significantly different between groups in the V1MT localiser run. 
In the BM runs, V5R is significantly different between groups and has higher values in MSC. 
This could imply that V5R has a major impact in the network, in these runs, and it 
communicates with many other nodes (more connections). Also, as pagerank centrality can 
detect brain hubs, V5R could potentially represent one, given its significance in other metrics 
such as local efficiency, strength, and out-strength, always having higher values in MSC, 
which again supports the hypothesis that it is a hub in the network, and could emerge in MS. 
 
The significantly different nodes between groups are summarized in Table 5.8. 
 

Table 5.8 - Significantly different nodes between groups within each connectivity measure for runs V1MT and BM. The 
red nodes represent the nodes with the median values of the metrics increased in the MS patients’ group. 

Local connectivity 
measure 

Significantly different node(s) 
between groups 

RUN V1MT RUNS BM 

Eccentricity pSTSL pSTSR 

Local Efficiency 

EBAR 

V5R 

pSTSR 

FFGR 

FBAR 

FBAL 

EBAR 

pSTSL 

FBAL 

Node Flow 
Coefficient FFGL pSTSR 

Total Flow 
V3R 

aINSL 
FFGL 

Total Degree 
EBAR 

aINSL 
FBAL 

In-Degree 
EBAR V3R 

FBAL FFGR 

Out-Degree --- aINSL 

Strength EBAR 

V5R 

V3R 

pSTSR 

FBAR 

EBAR 

pSTSL 
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In-Strength FBAL EBAR 

Out-Strength --- 

V5R 

pSTSR 

FFGR 

FBAR 

pSTSL 

Betweenness 
Centrality --- FFGL 

Pagerank Centrality --- V5R 

 
 
The four local graph metrics that presented the largest number of between-group differences 
in run V1MT, highlighting the ROIs’ importance and role, are local efficiency, total flow, 
degree, and in-degree, which had two significantly different nodes each. There are no 
statistically significant nodes in out-degree, out-strength, betweenness centrality and 
pagerank centrality (at p < 0.05) in this run. 
  
The three local graph metrics that presented the greatest number of between-group 
differences in the BM runs are local efficiency, strength, and out-strength, which had seven, 
six and five significantly different nodes, respectively.  
  
The general conclusion from this analysis is that the number of the significantly different 
nodes and the values of the local connectivity metrics generally increase in the MS patient’s 
group. This again supports the hypothesis of neuroplasticity in early phases of MS as 
compensation for damages in some specific brain regions during the performance of tasks. 
  
Noteworthy, there is a difference in the significantly different nodes in the tasks. In the run 
V1MT, only five different nodes are significant, primarily involved in lower-level visual 
perception. In the BM runs, which involve a more complex task, more regions are significantly 
different between groups, namely pSTS and aINS, which are higher-level regions associated 
with the perception of biological motion and decision making. It is also worth mentioning that 
aINS in the left hemisphere always has higher values of the metrics in CNT, indicating that 
its function and influence over the MS network is compromised. Nonetheless, we observe 
cases in which the same node appears to have decreased efficiency during the V1MT run 
and increased efficiency during the BM runs. This might seem counter-intuitive, but it 
highlights the importance of using appropriate tasks when investigating these kinds of 
measures. There might be subtle differences that are relevant from the clinical point of view 
but only revealed if the network(s) involving these regions are sufficiently recruited. 
  
In run V1MT, two particular ROIs (nodes) stand out in the statistical analysis given their active 
presence in several metrics: FBAL, which has increased values in CNT, and EBAR that has 
increased values in MSC. These observations regarding the involvement of EBA in the right 
hemisphere in MSC, while the involvement of FBA on the left hemisphere seems to be 
diminished or lost (relative to the CNT group), might further relate and support the hypothesis 
of a shift in brain lateralization described earlier (section 5.5). Overall, these results of the 
significantly different nodes in the calculation of local connectivity metrics seem to back up 
this idea of lateralization: we observe more involvement of the right hemisphere in the MSC 
group (as they have higher values of the metrics) and a decrease in the activity of the left 
hemisphere (they have higher values of the metrics in the CNT group). 
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It is important to note that the interpretation and discussion of the involvement of nodes and 
connectivity metrics is based on differences between groups. This means that a particular 
node that appears to have an increase/decrease in a specific connectivity metric in the group 
of patients with MS (relative to healthy controls) is not necessarily participating in the 
processing of the task(s) at hand or is not necessarily completely replacing the function or 
role of another node in the network. It shows that its participation in the network is somehow 
different in the context of MS due to, e.g., deterioration of its function, deterioration of its 
connectivity, or neuroplasticity. Furthermore, we recall that the whole analysis is done with a 
very restricted and specific network (in contrast to many studies of rs-fMRI and whole-brain 
connectivity analysis). The nature of the analysis reveals alterations in the functioning of the 
network at the level of communication between brain regions while participants maintained 
task performance. Thus, between-groups differences probably reflect a reorganization of the 
same system (the restricted network of interest) to fight against the effect of the disease and 
maintain efficiency in brain function and communication. 
  
Finally, an important note to make is that, even if we cannot find a homogeneous pattern of 
differences between groups (e.g., all metrics are decreased in MS patients), this does not 
mean the information is not relevant. A pattern of altered connectivity measures in a group 
of patients might reveal connections that are preserved (these would be connections or 
nodes with no differences), connections that are somehow physiologically adapting and 
compensating effects of the disease connections/nodes (these would be those with 
increased connectivity measures), and connections/nodes that are damaged and not able to 
compensate (those are the ones showing decreased connectivity). The last in particular are 
candidates for further exploration and early intervention, if possible. 
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5.9 Neuropsychological Evaluation 

Cognitive dysfunction is also a hallmark in MS, even in the early phases of the disease: some 
studies estimate that 43 to 70% of RRMS patients have signs of cognitive deficits (Parry et 
al., 2003) (Du et al., 2019). These damages involve several domains such as memory, 
attention, decision making and processing speed (section 4.1.2) (Miri Ashtiani et al., 2019). 
However, most RRMS patients do not show noticeable signs of cognitive impairment, and 
these evaluations tend not to have significant correlations with MRI measures such as lesion 
burden. A possible explanation for this is neuroplasticity, which allows the brain to adapt and 
reorganize, compensating for impairments in the brain network’s function (Parry et al., 2003). 
Thus, investigating early cognitive alterations and their relationship with brain connectivity 
may be helpful in the prevention of irreversible damages in the cognition of MS patients. 
  
Functional connectivity and its correlation with neuropsychological evaluations has been 
studied previously, but this thesis’ approach considers a more specific (visual) network and 
the directed functional connectivity between the brain regions involved in the tasks. Hence, 
these results could shed light on the alteration of cognitive functions in an early stage of MS. 
  
The data were tested for normality using the KS test. Therefore, Spearman correlation 
analysis was performed between the F-values of every connection in the network and the 
results in the six neuropsychological tests: Expanded Disability Status Scale (EDSS), 
Modified Fatigue Impact Scale (MFIS), Symbol Digit Modalities Test (SDMT), California 
Verbal Learning Test (CVLT), Brief Visuospatial Memory Test (BVMT) and Reading the Mind 
with the Eyes (RME), whose results were obtained from eleven MS patients.  
  
The results of the analysis for each test are presented in the subsections below, and in each 
of them, three matrices are shown with: (1) the p-values of the statistically significant (p < 
0.05) correlations between connectivity F-values in each pairwise connection and the test 
score (i.e., the correlation is significantly different from 0), (2) the Spearman r-values ranging 
from -1 to 1, representing the correlation between the F-values and the test scores, for those 
connections that were statistically significant (shown in the first matrix), and (3) the pairwise 
connections that were different between groups (section 5.4) and had at the same time a 
significant correlation with the clinical/neuropsychological test. The last matrix thus shows a 
conjunction analysis that reveals the connections that are simultaneously significantly 
different between groups and correlated with the test in MS patients. 
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5.9.1 Expanded Disability Status Scale 
 
The Expanded Disability Status Scale is an ordinal scale ranging from 0 to 10 that describes 
disease progression in MS patients, mainly focusing on physical impairment (section 2.1.4) 
(JF, 1983) (Meyer-Moock et al., 2014). 
 
 
RUN V1MT 

 
Figure 5.64 - Results of the Spearman correlation for EDSS data, in the V1MT run. (Left) Matrix with the p-values of the 
significant correlations (p < 0.05) between pairwise connectivity and test scores. The colorbar represents p-values. 
(Middle) Matrix with the r-values of the correlation of F-values and EDSS scores for the connections with significant 
correlations (p < 0.05) (the same as on the matrix on the left). Red/orange/yellow represents a positive correlation, blue 
represents negative correlations. The colorbar represents the Spearman r-values. (Right) Connections with a significant 
correlation between F-values and the test score, among those previously found to be significantly different between 
groups. 

 
There are eleven connections with significant correlation between the F-values and the 
results for EDSS, with a predominance for positive correlations. The most robust connections 
(p < 0.01) are V3L → V5R, V3L → EBAR, FFGR → V3R, pSTSR → FFGL, which have positive 
correlations with EDSS, and FBAL → FBAR and FFGR → FFGL, which have negative 
correlations with EDSS. 
  
The only connection correlated with EDSS that is significantly different between groups is 
FFGL → V3L, with a correlation p-value of 0.0193 and a Spearman r-value of 0.688, having 
higher F-values in CNT. The scatter plot of F-values of this connection and the EDSS scores 
is represented in figure 5.65. 
 

 
Figure 5.65 - Graphic representation of the correlation between the F-values of the connection FFGL → V3L (in the run 
V1MT) and the EDSS results. 
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RUNS BM 
 

 
 
Figure 5.66 - Results of the Spearman correlation for EDSS data, in the BM runs. (Left) Matrix with the p-values of the 
significant correlations (p < 0.05) between pairwise connectivity and test scores. The colorbar represents p-values. 
(Middle) Matrix with the r-values of the correlation of F-values and EDSS scores for the connections with significant 
correlations (p < 0.05) (the same as on the matrix on the left). Red/orange/yellow represents a positive correlation, blue 
represents negative correlations. The colorbar represents the Spearman r-values. (Right) Connections with a significant 
correlation between F-values and the test score, among those previously found to be significantly different between 
groups. 

 
In the BM runs, there are three connections with significant correlation between the F-values 
and the results for EDSS, although they are not very specific (p-values are higher than 0.01). 
Moreover, all connections have positive correlations with the EDSS values and none of them 
have been found to be statistically significantly different between groups. 
 
 
Discussion of the EDSS results 
 
The ROIs used in this study might be non-optimal to investigate the correlation of functional 
connectivity with physical disability evaluated with EDSS because they are mainly involved 
in visual performance and body and social perception. This may explain why this is the test 
with less statistically significant correlations with the F-values of connectivity.  
Nevertheless, most of the significant connections seem to have a positive correlation with 
the EDSS data, i.e., increases in the FC of these connections may lead to a higher EDSS 
and, thus, to a higher disability. Connections to and from V3 seem to be very correlated with 
EDSS in both runs, suggesting that visual tests (almost every one of them involves V3 since 
this region is activated in the majority of visual tasks) can be an early detector for physical 
and cognitive impairment. FFG (and particularly FFGL) and FBA (which is a part of the FFG) 
also seem to stand out in the more specific connections, generally having positive 
correlations with EDSS. This can be explained because these are regions that communicate 
with the visual pathway. FFG is also part of the only discriminative connection between 
groups in the V1MT run. Further studies with more data are needed to confirm the 
relationship of these metrics during visual tasks with EDSS scores and disability. If such a 
correlation were found to be robust, it would place this visual network as a candidate for the 
investigation of novel biomarkers for predicting EDSS scores and disease progression in 
patients with RRMS. 
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5.9.2 Modified Fatigue Impact Scale 
 
Fatigue, a feeling of lack of energy and physical tiredness, is experienced by approximately 
90% of the MS patients, and two-thirds of these patients report that it is one of the most 
disabling symptoms of the disease (DeLuca et al., 2008). Its impact on their daily lives is 
evaluated through the self-administered MFIS questionnaire, consisting of questions related 
to fatigue’s influence on physical, cognitive, and psychosocial aspects of the patient’s life. A 
higher score represents a higher level of fatigue (Fisk et al., 1994) (Gomes, 2011). 
 
RUN V1MT 
 

 
Figure 5.67 - Results of the Spearman correlation for MFIS data, in the V1MT run. (Left) Matrix with the p-values of the 
significant correlations (p < 0.05) between pairwise connectivity and test scores. The colorbar represents p-values. 
(Middle) Matrix with the r-values of the correlation of F-values and MFIS scores for the connections with significant 
correlations (p < 0.05) (the same as on the matrix on the left). Red/orange/yellow represents a positive correlation, blue 
represents negative correlations. The colorbar represents the Spearman r-values. (Right) Connections with a significant 
correlation between F-values and the test score, among those previously found to be significantly different between 
groups. 

 
There are thirteen connections with significant correlation between the F-values and the 
results for MFIS, with a predominance for negative correlations. However, it is worth noting 
that the most robust connections (p < 0.015) are IFGL → FFGR and IFGR → FBAR, which 
have positive correlations with the MFIS values, followed by aINSL → FBAR, aINSR → V3R, 
FFGL → FBAR, and FFGR → IFGL, which have negative correlations with the MFIS values.  
  
The only connection significantly different between groups is IFGR → FBAR, with a p-value 
of 0.0133 and a Spearman r-value of 0.715, having higher F-values in MSC. The scatter plot 
of F-values of this connection and MFIS scores is represented in figure 5.68. 
 

 
Figure 5.68 - Graphic representation of the correlation between the F-values of the connection IFGR → FBAR (in the run 
V1MT) and the MFIS results. 
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This suggests an intuitive correlation of higher functional connectivity (more brain activity) 
with more fatigue, probably as a result of higher energetic demands during task performance. 
 
 

RUNS BM 
 

 
Figure 5.69 – Results of the Spearman correlation for MFIS data, in the BM runs. (Left) Matrix with the p-values of the 
significant correlations (p < 0.05) between pairwise connectivity and test scores. The colorbar represents p-values. 
(Middle) Matrix with the r-values of the correlation of F-values and MFIS scores for the connections with significant 
correlations (p < 0.05) (the same as on the matrix on the left). Red/orange/yellow represents a positive correlation, blue 
represents negative correlations. The colorbar represents the Spearman r-values. (Right) Connections with a significant 
correlation between F-values and the test score, among those previously found to be significantly different between 
groups. 

 
There are eight connections with significant correlation between the F-values and the results 
for MFIS, with an equal number of positive and negative correlations. The most robust 
connection is FBAR → V5L, which has a negative correlation with the MFIS results.  
None of the connections that have a correlation with the test’s scores are significantly 
different between groups.  
 
 
 
Discussion of the MFIS results 
 
The processes that induce fatigue in MS are still poorly understood. It is argued that it is 
caused by WM structural damage and demyelination that impair the propagation of 
information flow between regions and consequently disrupt brain function and restrict 
activities such as motor planning and execution. Neuroplasticity is also pointed to as a 
possible cause for fatigue since maladaptive compensatory recruitment of additional brain 
regions during the execution of a task may excessively activate the brain beyond its capacity 
to properly function (DeLuca et al., 2008) (Manjaly et al., 2019). Because there is no certainty 
about these mechanisms, this study can be of particular help. 
 
In our study, the insula (particularly aINSL) participates in some connections related to MFIS. 
Stefancin and colleagues (Stefancin et al., 2019) also reported that a connection between 
the left insula and posterior cingulate significantly correlated with the MFIS scores, showing 
reduced connectivity. 
  
FBAR also has an important role in these results, being the only connection that is significantly 
different between groups in the run V1MT and the most specific connection in the BM runs. 
Hence, it could be an informative region when exploring predictors of fatigue in MS patients. 
This connection with higher levels of connectivity in MS patients in the V1MT run, which also 
has a positive correlation with the MFIS values (the higher is the FC of the connection, the 
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higher are the levels of fatigue), could argue in favour of the maladaptive effect that 
neuroplasticity has on fatigue (DeLuca et al., 2008) (Manjaly et al., 2019). 
  
However, as there are more connections with a negative correlation with the MFIS data, it 
can also be argued that their lowered FC value contributes to an increase in the MS patients’ 
fatigue. This may be in disagreement with the hypothesis that a higher activation of some 
brain regions or augmented recruitment of certain (or new) connections, as a compensatory 
response in MS, contributes to higher levels of fatigue. However, it must be noted that this is 
a study with cognitively preserved patients in an early stage of the disease that might not 
experience high levels of fatigue. On the other hand, these negative correlations might as 
well be a result of an efficient adaptive neuroplasticity phenomenon, i.e., the brain 
reorganization leads to increased FC, which in turn originates lower levels of fatigue.  
Therefore, although these results suggest that connectivity measures during simple visual 
tasks might be a proxy for fatigue levels, further investigation is needed to completely 
understand the underlying mechanisms. In the future, this knowledge might guide 
intervention strategies to prevent cognitive decline and disease progression in MS. 
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5.9.3 Symbol Digit Modalities Test  
 
The SDMT measures the cognitive processing speed, which is believed to be slowed in MS 
patients. This test involves writing or orally reporting (in 90 seconds) a ‘key’ that associates 
nine symbols with single digits from 1 to 9. It is assumed that the higher the score in SDMT, 
the less cognitively impaired the MS patient is in this domain (Sousa et al., 2018). 
 

RUN V1MT 
 

 
Figure 5.70 – Results of the Spearman correlation for SDMT data, in the V1MT run. (Left) Matrix with the p-values of the 
significant correlations (p < 0.05) between pairwise connectivity and test scores. The colorbar represents p-values. 
(Middle) Matrix with the r-values of the correlation of F-values and SDMT scores for the connections with significant 
correlations (p < 0.05) (the same as on the matrix on the left). Red/orange/yellow represents a positive correlation, blue 
represents negative correlations. The colorbar represents the Spearman r-values. (Right) Connections with a significant 
correlation between F-values and the test score, among those previously found to be significantly different between 
groups. 

 
 

There are seventeen connections with significant correlation between the F-values and the 
results for SDMT, with nine negative correlations and eight positive correlations. The most 
robust connections (p < 0.015) are IFGL → FBAR, FFGR → IFGL, which have a positive 
correlation with the SDMT scores, and EBAR → IFGL, which has a negative correlation with 
the SDMT values.  
None of the connections that have a correlation with the test’s results are significantly 
different between groups.  
 

 

RUNS BM 
 

 

Figure 5.71 – Results of the Spearman correlation for SDMT data, in the BM runs. (Left) Matrix with the p-values of the 
significant correlations (p < 0.05) between pairwise connectivity and test scores. The colorbar represents p-values. 
(Middle) Matrix with the r-values of the correlation of F-values and SDMT scores for the connections with significant 
correlations (p < 0.05) (the same as on the matrix on the left). Red/orange/yellow represents a positive correlation, blue 
represents negative correlations. The colorbar represents the Spearman r-values. (Right) Connections with a significant 
correlation between F-values and the test score, among those previously found to be significantly different between 
groups. 
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There are ten connections with significant correlation between the F-values and the results 
for SDMT, with a predominance for negative correlations, in the BM runs. The most robust 
connection is aINSR → V5L, which has a negative correlation with the SDMT scores. None 
of the connections that have a correlation with the test’s results are significantly different 
between groups.  
 
 
 
Discussion of the SDMT results 
 
aINS, IFG, FBA, V5 and V3, seem to be regions (especially IFG and V5) significantly involved 
in this neuropsychological test. This is expected as IFG and aINS are regions involved in 
high-level cognitive control, attentional processes, and working memory, thus influencing 
information processing speed (Tops and Boksem, 2011). In turn, FBA, V5 and V3 have visual 
perception and processing functions, which are also fundamental in this test. 
  
Like with the MFIS, in the SDMT, there are more connections with a negative correlation with 
the data in both runs, meaning that higher FC values in these connections are accompanied 
by lower scores in SDMT. This is in line with the neuroplasticity hypothesis that argues that 
an increase in FC in the brain may be maladaptive and eventually lead to cognitive 
impairment and, consequently, to lower scores in information processing speed tests (Rocca 
and Filippi, 2017). However, we should recall that the recruited MS patients are cognitively 
preserved. Thus, it is not very likely that the observation of this negative correlation is already 
a manifestation of this maladaptation. Further investigation is needed to determine if damage 
in the FC between these significant connections may be an informative factor for monitoring 
impairment in cognitive functions. 
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5.9.4 California Verbal Learning Test 
 
CVLT is a test that consists of memorising words (given orally) grouped into different 
semantic categories, and later reciting as many as possible. It involves auditory and verbal 
memory, which are also impaired in MS. It is assumed that the higher the score in CVLT, the 
less cognitively impaired the MS patient is in this domain (Sousa et al., 2018). 
 
 

RUN V1MT 
 

 
Figure 5.72 - Results of the Spearman correlation for CVLT data, in the V1MT run. (Left) Matrix with the p-values of the 
significant correlations (p < 0.05) between pairwise connectivity and test scores. The colorbar represents p-values. 
(Middle) Matrix with the r-values of the correlation of F-values and CVLT scores for the connections with significant 
correlations (p < 0.05) (the same as on the matrix on the left). Red/orange/yellow represents a positive correlation, blue 
represents negative correlations. The colorbar represents the Spearman r-values. (Right) Connections with a significant 
correlation between F-values and the test score, among those previously found to be significantly different between 
groups. 
 

There are thirteen connections with significant correlation between the F-values and the 
results for CVLT, with seven negative correlations and six positive correlations. The most 
robust connections (p < 0.01) are FFGR → V5R, which has a positive correlation with the 
CVLT values, V3R → pSTSR, FBAR → V5L and pSTSR → FBAL, which have a negative 
correlation with the CVLT scores.  
 
There are two statistically significant connections between groups: FFGL → IFGL, with a p-
value of 0.033 and a Spearman r-value of 0.64, having higher values in CNT (figure 5.73), 
and aINSR → pSTSR, with a p-value of 0.027 and a Spearman r-value of -0.66, with higher 
values in MSC (figure 5.74). 
 

 

Figure 5.73 - Graphic representation of the correlation between the F-values of the connection FFGL → IFGL (in the run 
V1MT) and the CVLT results. 
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Figure 5.74 - Graphic representation of the correlation between the F-values of the connection aINSR → pSTSR (in the 
run V1MT) and the CVLT results. 

 
 
RUNS BM 
 

 
Figure 5.75 - Results of the Spearman correlation for CVLT data, in the BM runs. (Left) Matrix with the p-values of the 
significant correlations (p < 0.05) between pairwise connectivity and test scores. The colorbar represents p-values. 
(Middle) Matrix with the r-values of the correlation of F-values and CVLT scores for the connections with significant 
correlations (p < 0.05) (the same as on the matrix on the left). Red/orange/yellow represents a positive correlation, blue 
represents negative correlations. The colorbar represents the Spearman r-values. (Right) Connections with a significant 
correlation between F-values and the test score, among those previously found to be significantly different between 
groups. 
 

There are eight connections with significant correlation between the F-values and the results 
for CVLT, with a predominance for positive correlations. The most robust connections (p < 
0.01) are FBAR → aINSR and pSTSR → FFGL, both with negative correlations with the CVLT 
scores. There are no significantly different connections between groups. 
 
 
 

Discussion of the CVLT results 
 
The main regions that are involved in the connections with significant correlation with the 
CVLT test, in both runs, are aINS, IFG, FFG and especially pSTS. aINS and IFG are high-
order regions involved in high-level cognitive control, attentional processes and working 
memory, and IFG, in particular, is involved in language comprehension and production, which 
are expected to be activated in this particular test. FFG and pSTS are involved in visual 
perception. However, the correlation between connections involving pSTS with this test’s 
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scores, in the V1MT run, is surprising because this specific task does not include visual 
biological motion perception. 
 
In run V1MT, the connection FFGL → IFGL is significantly different between groups, with 
higher connectivity values in the CNT and a positive correlation with the CVLT scores, i.e, 
the higher the FC is in this connection in MSC, the higher are the scores in CVLT. Contrarily, 
the connection aINSR → pSTSR has higher connectivity values in MSC and a negative 
correlation with CVLT scores, which means that higher connectivity in this connection leads 
to lower scores in CVLT. 
 
This divergence of results, one connection leads to better CVLT results, and the other leads 
to worse results, makes it impossible not to question whether increases in functional 
connectivity in MS, which are often associated with neuroplasticity, are adaptive and 
contribute to the patient’s recovery, or maladaptive and lead to clinical or cognitive 
impairment. This is still an open debate in the scientific community, since increases in FC 
have been related to both improvements and declines in task performance (Rocca and 
Filippi, 2017) (Schoonheim, 2017). Tahedl and colleagues (Tahedl et al., 2018) discuss that 
FC changes may actually result from both adaptive and maladaptive processes: there is an 
adaptive change in the domains and regions that are directly related to the task (in this case 
FFGL → IFGL), and a maladaptive change when the region/connection does not relate 
directly to the task (aINSR → pSTSR), which could imply that a higher connectivity in this 
connection can be harmful to the correct performance of task. This is compatible with these 
specific regions’ functions (for example pSTS is more involved in perception of biological 
motion than in the performance of auditory/verbal memory and processing tasks). 
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5.9.5 Brief Visuospatial Memory Test 
 
Brief Visuospatial Memory Test measures visuospatial learning as well as memory abilities. 
In this test, six figures are shown to the patients, and they have to recreate the design as 
accurately as possible two times, separated by 25 minutes, with other distractor tasks in 
between. It is assumed that the higher the score in BVMT, the less cognitively impaired the 
MS patient is in this domain (Sousa et al., 2018). 
 
 
RUN V1MT 
 

 
Figure 5.76 - Results of the Spearman correlation for BVMT data, in the V1MT run. (Left) Matrix with the p-values of the 
significant correlations (p < 0.05) between pairwise connectivity and test scores. The colorbar represents p-values. 
(Middle) Matrix with the r-values of the correlation of F-values and BVMT scores for the connections with significant 
correlations (p < 0.05) (the same as on the matrix on the left). Red/orange/yellow represents a positive correlation, blue 
represents negative correlations. The colorbar represents the Spearman r-values. (Right) Connections with a significant 
correlation between F-values and the test score, among those previously found to be significantly different between 
groups. 

 
There are sixteen connections with significant correlation between the F-values and the 
results for BVMT, with a predominance for positive correlations. The most robust connections 
(p < 0.01) are aINSL → V5L, aINSL → EBAL, IFGL → FBAR, FFGR → EBAR, which have 
positive correlations with the BVMT values, and IFGR → V5R, which has a negative 
correlation with BVMT scores.  
 
The connection that is statistically significant between groups is FFGL → IFGL, with a p-value 
of 0.026, and a Spearman r-value of 0.66 (figure 5.77), having higher F-values in CNT. 
 

 
Figure 5.77 - Graphic representation of the correlation between the F-values of the connection FFGL → IFGL (in the run 
V1MT) and the BVMT results. 
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RUNS BM 
 

 
Figure 5.78 - Results of the Spearman correlation for BVMT data, in the BM runs. (Left) Matrix with the p-values of the 
significant correlations (p < 0.05) between pairwise connectivity and test scores. The colorbar represents p-values. 
(Middle) Matrix with the r-values of the correlation of F-values and BVMT scores for the connections with significant 
correlations (p < 0.05) (the same as on the matrix on the left). Red/orange/yellow represents a positive correlation, blue 
represents negative correlations. The colorbar represents the Spearman r-values. (Right) Connections with a significant 
correlation between F-values and the test score, among those previously found to be significantly different between 
groups. 

 

 

There are fourteen connections with significant correlation between the F-values and the 
results for BVMT, with a predominance for negative correlations. The most robust 
connections (p < 0.01) are V5R → FFGR, FBAL → V3R, FFGL → V5R, which have a positive 
correlation with the BVMT values, and aINSR → FBAR, aINSR → V5L, aINSR → V3L, pSTSR 
→ pSTSL, which have a negative correlation with the BVMT values. 

There are two connections that are significant between groups: IFGL → V3R, with a p-value 
of 0.031 and a Spearman r-value of 0.65 (figure 5.79) and V3L → EBAL, with a p-value of 
0.050 and a Spearman r-value of -0.603 (figure 5.80). Both connections have higher F-values 
in MSC. 
 

 

Figure 5.79 - Graphic representation of the correlation between the F-values of the connection IFGL → V3R (in the runs 
BM) and the BVMT results. 
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Figure 5.80 - Graphic representation of the correlation between the F-values of the connection V3L → EBAL (in the runs 
BM) and the BVMT results. 

 

 
Discussion of the BVMT results 
 
aINS, IFG, pSTS and FBA are the regions involved in the visual tasks (performed during 
fMRI measurement) which are more correlated with the performance of the BVMT test. While 
aINS is the region sending more connections, IFG is the region receiving more connections. 
It makes sense that connections involving these regions are correlated with this test, as these 
are high-order ROIs that engage in many cognitive processes, namely attention and memory, 
which are required to complete this test. In turn, pSTS and FBA are linked to visual functions 
which are also necessary, although they are usually more related with biological motion 
perception. 
  
In the V1MT localiser run, a connection involving IFG (FFGL → IFGL) is different between 
groups, having higher values of functional connectivity in controls and a positive correlation 
with the BVMT data in MS patients, i.e, a higher connectivity in this connection in MSC leads 
to a higher score in BVMT and thus to a preservation of the cognitive functions in this domain.  
 
In the BM runs, IFGL → V3R and V3L → EBAL are also discriminative connections between 
groups, both having higher FC values in MSC. But while IFGL → V3R has a positive correlation 
with the data (higher values of connectivity lead to higher BVMT scores), V3L → EBAL has a 
negative correlation (higher values of connectivity lead to lower BVMT scores). These 
connections may be another proof of the existence of both adaptive and maladaptive 
neuroplasticity in MS, as seen before with the CVLT results. In the case of the BVMT, IFGL 

→ V3R increase in FC could be adaptive, as it leads to a better performance, and V3L → 
EBAL could be maladaptive, leading to a worse performance. In fact, IFG and V3 are regions 
associated with functions that are recruited in this test, and for that reason they need a higher 
FC to maintain function, while EBA might not be as related since its functions are mainly 
associated with body movement perception. 
 
These connections in the two runs may be good candidates to further explore neuroplasticity, 
namely, to confirm that changes in connectivity can affect brain communication and 
information processing already in early stages of MS. 
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5.9.6 Reading the Mind with the Eyes 
 
RME is a neuropsychological test that evaluates subtle cognitive dysfunction, in the domain 
of social cognition. The patient must choose two words that describe the mental state and 
feelings of 25 photographs of the eye-region of different people. It is assumed that the higher 
the score in RME, the less cognitively impaired the MS patient is in this domain (Baron-
Cohen et al., 2001). 
 

 
RUN V1MT 
 

 
Figure 5.81 - Results of the Spearman correlation for RME data, in the V1MT run. (Left) Matrix with the p-values of the 
significant correlations (p < 0.05) between pairwise connectivity and test scores. The colorbar represents p-values. 
(Middle) Matrix with the r-values of the correlation of F-values and RME scores for the connections with significant 
correlations (p < 0.05) (the same as on the matrix on the left). Red/orange/yellow represents a positive correlation, blue 
represents negative correlations. The colorbar represents the Spearman r-values. (Right) Connections with a significant 
correlation between F-values and the test score, among those previously found to be significantly different between 
groups. 

 

There are ten connections with significant correlation between the F-values and the results 
for RME, with the same number of positive and negative correlations. The most robust 
connections (p < 0.01) are IFGR → FBAL, FBAL → pSTSR and IFGL → IFGR, which have a 
positive correlation with RME scores, and aINSL → aINSR, FFGL → pSTSL, V5L→EBAR, which 
have a negative correlation with RME results.  
 
The only connection that is statistically significant between groups is IFGR → FBAL, with a p-
value of 0.013 and a Spearman r-value of 0.72 (figure 5.82), having higher F-values in CNT. 
 

 
 

Figure 5.82 - Graphic representation of the correlation between the F-values of the connection IFGR → FBAL (in the run 
V1MT) and the RME results. 
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RUNS BM 
 

 
Figure 5.83 - Results of the Spearman correlation for RME data, in the BM runs. (Left) Matrix with the p-values of the 
significant correlations (p < 0.05) between pairwise connectivity and test scores. The colorbar represents p-values. 
(Middle) Matrix with the r-values of the correlation of F-values and RME scores for the connections with significant 
correlations (p < 0.05) (the same as on the matrix on the left). Red/orange/yellow represents a positive correlation, blue 
represents negative correlations. The colorbar represents the Spearman r-values. (Right) Connections with a significant 
correlation between F-values and the test score, among those previously found to be significantly different between 
groups. 

 
There are eighteen connections with significant correlation between the F-values and the 
results for RME, with a predominance for negative correlations. The most robust connections 
(p < 0.01) are V3L → EBAL, pSTSR → EBAR, which have a positive correlation with RME 
scores, and FBAL → pSTSL and V3L → pSTSL, which have a negative correlation with RME 
results.  
 
There are two connections that are significant between groups: V3L → EBAL, with a p-value 
of 0.012 and a Spearman r-value of -0.72 (figure 5.84), and IFGR → EBAR, with a p-value of 
0.042 and a Spearman r-value of -0.62 (figure 5.85). Both have higher F-values in MSC. 
 

 
Figure 5.84 - Graphic representation of the correlation between the F-values of the connection V3L → EBAL (in the runs 
BM) and the RME results. 
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Figure 5.85 - Graphic representation of the correlation between the F-values of the connection IFGR → EBAR (in the runs 
BM) and the RME results. 

 
 
Discussion of the RME results 
 
It is surprising that there are so many significant connections with correlations with RME 
scores, because this test better evaluates patients with a higher and more severe degree of 
cognitive disability that already involves and impairs social perception. Because the patients 
that participate in this study are cognitively preserved, these results are unexpected. 
 
IFG, EBA, FBA and pSTS are, expectably, the regions that are more involved in the tasks 
performed in the MR scanner and also recruited with the performance of this test. IFG is also 
involved in some statistically different between-group connections, thus potentially serving 
as a region predictive of the RME test score. FBA and EBA are part of the network subserving 
visual perception of the human body and its parts. pSTS is also involved in many connections 
with significant correlation with RME scores (it appears as sender and receiver in three 
connections in the BM runs), which might be expected since it is associated with social 
perception and cognition, including perception of faces. On the other hand, aINS’s presence, 
however, is not as noticeable, which is surprising given its importance in emotional 
processing and social perception. 
 
Regarding the connections that are significantly different between groups, in run V1MT, IFGR 
→ FBAL has a positive correlation with the RME data and has higher FC values in the 
controls’ group. The significant connection in run V1MT suggests that an increase in 
connectivity in these regions may lead to a preservation of social cognition and perception 
of faces and mental states, providing further support for the compensatory mechanism in 
MS.  
 
In the BM runs, IFGR → EBAR and V3L → EBAL have a negative correlation with the RME 
data and higher FC values in the MS patients’ group. An increase in FC in these connections 
can lead to worse results and might be indicative of the development of social cognitive 
impairment. This could also be a proof of maladaptive neuroplasticity, where a higher FC can 
lead to worse cognitive performance. 
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5.9.7 General Discussion of the Correlation Between Connectivity and 
Neuropsychology 
 
When analysing the correlation of functional connectivity values with the scores of clinical 
and neuropsychological tests, we must bear in mind that not only different tests provide 
information about different domains, but also that the test’s outcomes might be in two 
directions: the higher scores, the better, or the other way around. 
  
Thus, determining if positive or negative correlations are supportive of adaptive or 
maladaptive neuroplasticity depends on the output of each specific test being “the higher the 
score, the better” or “the lower the score, the better”. As an example, a positive correlation 
of functional connectivity with MFIS (the higher the score, the worse are the levels of fatigue) 
probably reflects a maladaptive compensatory phenomenon that leads to worse symptoms. 
Particularly if MS patients show increased connectivity relative to healthy controls, this 
positive correlation means that abnormally higher connectivity results in undesired higher 
levels of fatigue. Conversely, a positive correlation of connectivity with (e.g.) the BVMT, in 
which the higher the score, the more cognitively preserved the patient is in the domain, 
probably reflects an efficient and adaptive compensation effect (the higher the connectivity 
the higher the score in the test, which is the desired output). 
We observed cases of tests for which there is a divergence in the results (increased 
connectivity in one connection correlates with better test results, whereas increased 
connectivity in another correlates with worse test results). This could support the idea that 
neuroplasticity can be adaptive and contribute to the patient’s recovery, or maladaptive and 
lead to clinical or cognitive impairment. Tahedl and colleagues (Tahedl et al., 2018) further 
argue that FC changes may actually result from both adaptive and maladaptive processes 
and that they may be related to the specific recruited connections/regions in the task.  
 
Either way, in the future we should look in detail at every significant correlation to evaluate if 
increasing/decreasing FC is associated with higher or lower scores in each test, and then 
better assess the relationship between both, regarding an underlying efficient or maladaptive 
compensatory mechanism. Furthermore, we must have caution when interpreting these 
correlations, because we do not have support of causality between altered FC and 
neuropsychological scores. 
  
It is also worth noting that this is a study with patients who are clinically and cognitively 
preserved, in an early stage of the disease. It is not unlikely that correlations of connectivity 
with neuropsychological tests that are significant might change during the progression of the 
disease, either because the connectivity patterns change or because the neuropsychological 
characterization changes. Therefore, although these results suggest that connectivity 
measures during simple visual tasks might be a proxy for clinical and neuropsychological 
assessment, further investigation is needed to completely understand the underlying 
mechanisms and to determine its ability to track disease progression and guide intervention 
strategies to prevent cognitive decline and disease progression in MS. 
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Neuroplasticity has been the focus of many investigations in the context of MS. It reflects the 
brain’s ability to reorganize and adapt to structural damage and there are several theories 
about it being adaptive, and contributing to a better physical and cognitive performance, or 
maladaptive, leading to a worse condition (Rocca and Filippi, 2017) (Schoonheim, 2017) 
(Tahedl et al., 2018). Nevertheless, a consensus has never been reached about the 
existence of functional plasticity in MS. Therefore, a holistic model encompassing both the 
analysis of the brain’s connectivity and the extraction of quantitative measures that describe 
the brain’s functioning in MS was needed. The ability of fMRI to provide non-invasive 
measures of brain function and the development of methods to compute connectivity 
measures bring encouraging opportunities. However, these approaches, especially graph-
based studies in MS are currently scarce, and most of them use resting-state fMRI, which 
doesn’t consider the connections the brain elicits when performing a task. Moreover, the few 
that used task-based designs did not aim for visual networks like the one we used.  
 
The main purpose of this thesis was to obtain models that could describe and compare the 
(directed) functional connectivity between early multiple sclerosis patients and healthy 
controls and to construct brain networks that reflected patterns of connectivity underlying 
brain activation during two types of visual task performance, one more complex than the 
other. We adopted an exploratory approach for network construction with Granger Causality 
and graph theory and performed analyses on a restricted number of brain regions specifically 
involved in the tasks, in order to improve the power in the detection of significant effects.  
  
The main a priori hypotheses were that (i) the connectivity (represented by the F-values) 
increases in the MS patient’s group, as a result of compensatory neuroplasticity, which has 
been described in studies using fMRI (ii) the neuronal connection patterns differed between 
groups and unique connections in the MS group were revealed, another reflection of adaptive 
changes, and (iii) that the quantitative measures of connectivity obtained with graph theory, 
global and local, were altered in the MS patient’s group, with a tendency for the decrease in 
network efficiency.  
   
Through the analysis of between-group differences in pairwise connectivity strengths and of 
graph-theoretical topological properties derived from the functional networks, we were able 
to prove that there are indeed connections which can differentiate CNT from MSC and that 
these connections could be a demonstration of the brain’s neuroplasticity in the early phases 
of MS. This is observed in the two visual tasks (V1MT localiser and BM), which could indicate 
that this mechanism exists independently of the complexity of the performed task, although 
different brain regions with different functions are recruited in each task. A different brain 
lateralisation was also observed, supported by the increased connectivity in the connections 
in which the right hemisphere (non-dominant) is involved.  
  
However, the efficiency in the MS networks was elevated which contradicts previous 
research that argues that even in the early stages of MS the integrity and efficiency of the 
networks is impaired. These results could be due to differences in methodology, for example, 
number of participants or differences in the size of the network. Moreover, we observed that 
the involvement of certain nodes in the network was changed in MS, as proven by differences 
in local connectivity metrics. Overall, a general assumption that can be made is that MS is a 
disconnection disease that affects the communication of the brain regions and leads to 
changes, and sometimes impairments, in functional connectivity. 
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We also studied the correlation between the functional connectivity values of the MS patients 
and the results derived from neuropsychological tests. The main conclusions were that 
different connections were involved in different tests since distinct cognitive domains are 
involved and recruited. These results also supported the possibility that functional 
neuroplasticity can be both adaptive and maladaptive and that these phenomena may 
depend on which connections are recruited in the task that is performed. 
  
We successfully constructed a functional connectivity model that is able to identify 
differences in the network topological organization between MS patients and controls and 
allows for the detection of compensatory effects in early phases of the disease. This altered 
functional connectivity and over-recruitment of cortical areas are among the features of early 
MS and it is possible they may constitute exploitable candidate biomarkers of developing 
MS. Besides, the development of metrics capable of providing measures of brain’s 
neuroplasticity might be used to guide the creation of new methods to monitor MS 
progression and to possibly identify new options of treatment. With this study, we also 
obtained discriminative quantitative features and regions that could help improve the 
understanding of deficits in early stages of brain disorders and improve the diagnosis and 
early treatment of MS patients. 
  
 
Limitations and Future Work 
  
This study is not without limitations. Firstly, the number of participants is relatively small, 
which could give rise to some inaccurate results and interpretations, eventually due to lack 
of statistical power. The recruitment of new participants is therefore advised for validation of 
the results. The application of Granger Causality in neuroscience (and particularly in fMRI 
studies) remains a controversial topic, due to the limitations it imposes on the data, such as 
linearity which is hardly verified in the human brain. The approximation to transfer entropy to 
characterize information flow also has to be carefully interpreted, under the assumption that 
the data and the time courses of the regions extracted from the BOLD signal are normal. 
However, because we only adopted this study as an exploratory approach that needs more 
methods and data in order to be validated, we employed a less conservative consideration 
of these assumptions and adopted the principles used by the MVGC toolbox, which is reliably 
implemented and used by many other researchers. Moreover, the existent studies generally 
adopt whole brain networks and rs-fMRI acquisition, which is very different from what we did. 
To the best of our knowledge, our approach has never been adopted before, especially the 
use of these specific functional brain regions in visual tasks, thus the results are not validated 
through other studies. Future research may be helpful in testing the reliability of our findings. 
Regarding the neuropsychological tests’ results and their correlation with the F-values of 
connectivity, the interpretation needs to be careful as well. The interpretation was based on 
each region’s known primary functions, which are believed to be recruited (at least in part) 
during the performance of the tests, but we did not measure their activity or connectivity 
actually during the tests. Furthermore, our results in a non-cognitively impaired population 
may be less comparable to existing literature, since most studies analyse more severe 
cognitive impairment in more advanced phases of MS (Welton et al., 2020). It is also 
important to consider that the obtained functional connectivity patterns are largely shaped by 
structural pathways, as argued by previous research (Y. Liu et al., 2017). Therefore, 
functional compensation needs to be validated with a decline of the brain’s integrity and with 
changes in cognitive performance. Further in-depth investigations, perhaps involving 
structural connectivity and the association of structural damages with functional connectivity 
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are warranted. Finally, our study is cross sectional and although we were able to provide 
strong evidence of compensatory brain responses, we didn’t demonstrate how functional 
brain networks reorganize as they dynamically change with MS progression (Y. Liu et al., 
2017). Future longitudinal studies are thus needed as well.  
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Appendix I 
Individual F-matrices 
 
The following matrices represent the individual ROI x ROI matrices for each participant from 
both groups (healthy controls and MS patients), in the V1MT run and in the BM runs.  
The matrix on the left represents the pairwise Granger F-values for each connection between 
every two regions involved in the task, with the colorbar representing these F-values, and 
the matrix on the right represents the statistically significant connections, after performing 
the F-test (p<0.05). 
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Appendix II 
Significantly different nodes (between groups) – local connectivity 
measures 
 
The following matrices represent the nodes and corresponding metrics that are statistically 
significantly different between groups, for the local measures, in the V1MT run and in the BM 
runs. Wilcoxon rank sum test was performed and the nodes with a p-value < 0.05 are 
represented in light blue. The nodes in dark blue have a p-value < 0.1 (tendency for statistical 
significance). 
The first range of thresholds that was evaluated was 0.05 < PTh < 0.5, with steps of 0.05. 
Then, according to the metrics with the largest number of significantly different metrics and 
nodes, a new range of thresholds is chosen, with steps of 0.01. 
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The two closest thresholds which yielded the largest number of significantly different 
connectivity measures and nodes were PTh = 0.1 (8 metrics and 9 nodes) and PTh = 0.15 
(8 metrics and 10 nodes). These thresholds were chosen to repeat the above procedure, but 
now with smaller steps of 0.01.  
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PTh = 0.45 

 
 

 
 
The range of thresholds with the largest number of significantly different connectivity 
measures and nodes was between PTh = 0.35 (which has the highest number of metrics: 11 
metrics, 27 nodes) and PTh = 0.4 (which has the highest number of nodes: 10 metrics, 28 
nodes). These thresholds were chosen to repeat the above procedure, but now with smaller 
steps of 0.01. 
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Appendix III 
Code 
 
All of the code developed to obtain the results can be found in the following link: 
https://github.com/joanasantos13/Code-Thesis-MIEB.git 
 
More specifically: 
 

• extracttimecourse.m – function that extracts the average BOLD time course of the 16 
regions elicited by the task. 
 

• mvgc.m – function adapted from the mvgc_demo script provided by the MVGC 
toolbox that applies the Granger causality principles and functions.  

 
• F_matrices.m – applies the mvgc function to the fMRI time courses extracted 

previously and obtains the matrices with F-values that represent directed functional 
connectivity. 

 
• withingroup_analysis.m – calculates the mean matrices and performs within-group 

analysis with the F-test. 
 

• betweengroup_analysis.m – performs between-group analysis with the Wilcoxon 
rank sum test. 

 
• connectivitymeasures_run1.m 
• connectivitymeasures_run2_3.m – calculates the global and local connectivity 

measures with BCT and performs statistical analysis of the results. 
 

• barplots_metrics.m – constructs the barplots of section 5.7 in which the thresholds 
are represented in the x-axis, and the number of nodes presenting significantly 
different metrics between groups are in the y-axis. 

 
• neuropsychology_run1.m  
• neuropsychology_run2_3.m – performs Spearman correlation in order to find 

whether the F-values of connectivity are correlated with the neuropsychological tests’ 
results of the MS patients. 

 
 
 
 
 
 


