
Master’s Degree in Informatics Engineering
Master’s Thesis

Uma plataforma para tratamento de
eventos de segurança

Author:

Daniel Alexandre Sobral Fernandes

Supervisor:

Prof. Paulo Simões

Co-Supervisor:
Prof. Tiago Cruz

September 2019

This page is intentionally left blank.

Acknowledgements

To the end of the biggest step of my life,

I thank my mom, for always supporting me, letting me live as I wished and letting
me make my own choices, and for all the effort, time, and dedication put in my
education.

I thank my friends, for all the support during this exhausting part of my life,
particularly my colleague Rui Silva, who helped me in many occasions, not only
during the thesis, but during the whole masters.

I thank my colleague Pedro Quitério, who always helped me in many develop-
ment endeavors and integrated me to the skeleton template used in the project.
Without his help, development would have taken considerably more time.

I thank my Co-Supervisor, Professor Tiago Cruz, for helping me integrating in
the project and clarifying me of any doubts and problems I had, always in a
lighthearted and cheerful way.

I thank Professor Vasco Pereira and colleague Jorge Proença, for their time,
effort, and energy they invested in me during this thesis. My work couldn’t be
done without their help and feedback.

I thank Professor Paulo Simões and Professor Maŕılia Curado, for all the help
integrating in the project and LCT.

I thank the people at OneSource who stood by me in the first meeting and
watched me be completely oblivious to what was going on, doing their best to
thoroughly explain to me what was going on and how things worked.

Finally, I thank my best friend, Jorge, who always helped me keep a good state
of mind, when my life was going through a rough patch.

To all of you,

from the bottom of my heart,

Thank you!

i

Chapter 0

This work is supported by the European Regional Development Fund (FEDER),
through the Regional Operational Programme of Lisbon (POR LISBOA 2020)
and the Competitiveness and Internationalization Operational Programme (COM-
PETE 2020) of the Portugal 2020 framework [Project 5G with Nr. 024539 (POCI-
01-0247-FEDER-024539)];

ii

This page is intentionally left blank.

Chapter 0

Abstract

In a world of constant technological growth, in which more and
more things are being virtualized, there are opportunities to
create ambitious and innovative projects that can open ways
for many new technologies and businesses to be created.

The 5G architecture is one of these advancements. By inte-
grating many aspects such as virtualization and software de-
fined networking, it can is designed to provide a substantial
leap regarding its ancestor technology, 4G. 5G makes use of
these paradigms to enable technologies such as, for example,
robotic surgery, autonomous driving and low latency Virtual
Reality (VR).

However, even though this architecture greatly benefited from
the software defined networking and virtualization paradigms,
the lack of intermediary software has become a problem, heav-
ily affecting the practical use of this type of networks. There
is a lack of monitoring software, management software, and
middlewares for the interaction of certain (usually important)
network components. This compels the developers and network
operators to create their own middlewares and applications that
allow the platform to work as intended.

This thesis has the goal of creating such software, in this case,
an event collector service, plus a dashboard which will aggre-
gate and display data about the other nodes and services in the
5G platform.

The tests done to the created software ensure the performance
levels obtained are up to par with the project’s demands, and
the components should allow for a performance scaling later
down the road, if necessary.

Keywords

Virtualization, Software Defined Networking, Middleware, Mon-
itoring

iv

This page is intentionally left blank.

Chapter 0

Resumo

Num mundo de constante crescimento tecnológico, em que cada
vez mais é virtualizado, surgem oportunidades de criar projec-
tos ambiciosos e inovativos, que abrem caminho para o cresci-
mento de novas tecnologias e negócios.

Tal como a arquitectura 5G, que, integrando aspectos da virtu-
alização e de Software Defined Networking, consegue ultrapas-
sar a sua tecnologia anterior, o 4G. O 5G toma partido destes
paradigmas para permitir o crescimento de tecnologias como a
medicina robótica, a condução autónoma, e realidade virtual
de baixa latência.

No entanto, mesmo que esta arquitectura seja fortemente ben-
eficiada dos paradigmas de Software Defined Networking e da
virtualização, há um problema geral de falta de software in-
termediário, que afecta directamente o uso prático deste tipo
de redes. Não existem softwares de monitorização, gestão, e
middlewares de comunicação entre componentes (por muitas
vezes cŕıticos) da rede. Isto obriga os programadores e oper-
adores de rede a tomar benif́ıcio da flexibilidade e program-
abilidade das Software Defined Networks, para criar as suas
próprias aplicações, a fim de satisfazer as necessidades da sua
rede em particular.

Este projecto tem o objectivo de criar um software desse tipo.
Neste caso, um colector de eventos, juntamente a um dash-
board, que irá agregar e exibir dados sobre outros nós e serviços
da plataforma 5G.

Os testes feitos aos componentes desenvolvidos garantem que os
ńıveis de performance obtidos estão a par com as necessidades
do projecto, e além disso, existe a possibilidade de escalar estes
ńıveis de performance dos componentes no futuro, dado a ne-
cessidade.

Palavras-Chave

Virtualização, Software Defined Networking, Middleware, Mon-
itorização

vi

This page is intentionally left blank.

Contents

1 Introduction 1
1.1 Context . 1
1.2 Motivation . 1
1.3 Goals . 2
1.4 Document Structure . 2

2 State of the Art 5
2.1 Concepts . 5

2.1.1 Monitoring . 5
2.1.2 Virtualization . 6
2.1.3 Microservices . 7

2.2 Technologies . 8
2.2.1 5G . 8
2.2.2 Event Collectors . 10
2.2.3 Containers . 12
2.2.4 Message Brokers . 18
2.2.5 Message Formats . 22
2.2.6 Summary . 23

3 Research Objectives and Approach 27
3.1 Objective . 27

3.1.1 Events . 27
3.1.2 Pre-processing . 27
3.1.3 Dashboard . 28
3.1.4 Architectural Considerations . 28

3.2 Requirements . 28
3.3 Reference Software . 31

4 Preliminary Work 33
4.1 Familiarization with the project and its scope 33
4.2 Creation of a Message Format Standard Draft 34
4.3 Synthetic Event Generator . 35
4.4 Middleware Integration . 35
4.5 Security mechanisms of Apache Kafka . 36

4.5.1 Context . 36
4.5.2 Components . 36
4.5.3 Encryption . 37
4.5.4 Authentication . 37
4.5.5 Authorization . 38

5 Architecture 41
5.1 Proposed Architecture . 41

viii

Contents

6 Solution 47
6.1 Architectural Decisions . 47
6.2 Kafka Streams App . 48
6.3 Message Encoding - JSON vs Avro . 49
6.4 Updated Data Model and Details . 49
6.5 Testbed Deployment . 52
6.6 Metrics Processing Decisions . 52

6.6.1 OneSource - NEF . 53
6.6.2 Ubiwhere - HoneyNet . 53

6.7 Dashboard Design and Component Decisions 54

7 Validation 63
7.1 Overview . 63
7.2 Setup for the validation tests . 64

7.2.1 Planning . 64
7.3 Test Scenarios - Introduction . 65

7.3.1 Considerations . 65
7.4 Test Scenarios . 66
7.5 Event Integrity Testing . 67
7.6 Results . 69

7.6.1 Blackbox Test Results . 69
7.6.2 General Test Results . 70
7.6.3 Capacity Tests . 71
7.6.4 Throughput Tests . 75
7.6.5 Observed Behaviour Mid-Test . 77

7.7 Partner integration meeting . 78
7.8 Validation Test Conclusions . 79

8 Work Plan 81

9 Conclusions 85

ix

Acronyms

ACL Access Control List. 36, 38

AMQP Advanced Message Queuing Protocol. 21, 22

API Application Programming Interface. 20, 48

ATENA Advanced Tools to assEss and mitigate the criticality of ICT compoNents and
their dependencies over Critical InfrAstructures. 36, 54

CLI Command-Line Interface. 15

DEI Department of Informatics Engineering. 64

DNS Domain Name System. 42

FCTUC Faculdade de Ciências e Tecnologia da Universidade de Coimbra. 52, 82

Gbps Gigabits per second. 9

GSSAPI Generic Security Services Application Program Interface. 38

HTTP HyperText Transfer Protocol. 22

IDPS Intrusion Detection and Prevention System. 78

IoT Internet of Things. 9

IP Internet Protocol. 35, 49

JMS Java Message Service. 21

JMX Java Management Extensions. 21

JSON JavaScript Object Notation. 30, 34, 35, 49, 68–70

JVM Java Virtual Machine. 21

MitM Man in the Middle. 36

MQTT Message Queuing Telemetry Transport. 21, 22

NAT Network Address Translation. 49

NEF Network Exposure Function. 42, 43, 53, 54, 56, 59, 60, 65, 66

NFV Network Functions Virtualization. 41

REGEX Regular Expression. 38

Rkt CoreOS Rocket. 14

x

Acronyms

SASL Simple Authentication and Security Layer. 36, 37

SHA-1 Secure Hash Algorithm - 1. 38

SIEM System Information and Event Management. 10

SMS Short Message Service. 10

SSD Solid State Drive. 64, 67

SSL Secure Socket Layer. 36–38

STOMP Simple (or Streaming) Text Oriented Message Protocol. 21, 22

TLS Transport Layer Security. 15, 36

UC University of Coimbra. 78

UI User Interface. 22, 44, 45, 85

VAS Vulnerability Assessment System. 42, 43

vCPU Virtual Central Processing Unit. 52

VM Virtual Machine. 7, 8, 11, 64, 67, 77

VNF Virtual Network Function. 49

xi

List of Figures

2.1 How virtualization acts before a host system [26] 7

2.2 5G architecture [24]. 9

2.3 Difference between Docker and LCX container architectures 14

2.4 Where the orchestration role sits in a containarized architecture [9] 16

2.5 The Kubernetes architecture broken down into its components [21] 17

2.6 Depiction of Mesos’ two level scheduler architecture [6] 18

2.7 Kafka Streams basic functional architecture [2] 20

2.8 Simplified RabbitMQ architecture [18] . 22

3.1 Hardware Requirements for the Event Collector System 30

4.1 A view on the proposed architecture . 34

4.2 A view on the proposed message format . 35

4.3 .jaas authentication file example . 37

5.1 A view on the different PPS2 layers and its components [12] 41

5.2 The external view of the Security Framework [12] 42

5.3 A view on the proposed architecture. 43

5.4 An idea of how the dashboard could be designed #1 44

5.5 An idea of how the dashboard could be designed #2 44

6.1 Details of the updated architecture. 48

6.2 Details of the updated Data Model. 50

6.3 Example of an event at the time of arrival at the middleware. 51

6.4 Main page of the dashboard. 55

6.5 Black Box log of the dashboard. 55

6.6 Dashboard event counters by severity. 56

6.7 Main event log of the dashboard. 56

6.8 In-depth viewing of an event’s details. 57

6.9 Prometheus Kafka topic monitoring. 57

6.10 Dashboard radar chart displaying severity statistics of the registered nodes. 58

6.11 Critical event log of the dashboard. 58

6.12 BlackBox log being used with color (severity) and agent filtering. 59

6.13 NEF Metrics Page - Total and per-route threat counters. 59

6.14 NEF Metrics Page - Chart displaying threat occurrences per route. 60

6.15 HoneyNet Metrics Page - Session details and activity throughout time. . . . 60

6.16 HoneyNet Metrics Page - Session activity chart, in detail. 61

6.17 HoneyNet Metrics Page - Attack listing, chronologically ordered. 61

7.1 Sequence of actions before an event is sent to the dashboard. 67

7.2 Capacity/Buffer Tests - Average event processing time, in milliseconds, per
set/variant combination. 71

xii

List of Figures

7.3 Processing time growth across the test, for the 10k set and both variants. . 73
7.4 Processing time growth across the test, for the 100k set and both variants. . 74
7.5 Processing time growth across the test, for the 500k set and both variants. . 74
7.6 Average event processing time of the different sets over periods of one

minute, in nanoseconds. 76
7.7 Average event processing time of the different sets over periods of one

minute, in nanoseconds. 77

8.1 Gantt chart displaying the activities done during the first semester. 81
8.2 Gantt chart displaying the activities done during the second semester. . . . 82

xiii

List of Tables

2.1 Feature comparison - Docker vs. LXC vs CoreOS Rkt 24
2.2 Feature comparison - Kafka vs. RabbitMQ vs ActiveMQ 25

4.1 Security Characteristics - Summary . 39

7.1 Black Box Test test cases for invalid JSON formats using the Equivalence
Class Partioning technique. 68

7.2 Black Box Test test cases for invalid JSON parameter validation using the
Equivalence Class Partioning technique. 69

7.3 Completion results for Capacity and Throughput tests done. 70
7.4 Middleware capacity (buffer) test results, in milliseconds. 72

xiv

This page is intentionally left blank.

Chapter 1

Introduction

This document consitutes the Master Thesis in Informatics Engineering of the student
Daniel Alexandre Sobral Fernandes, during the academic year of 2018/2019, in the De-
partment of Informatics Enginneering of the University of Coimbra.

1.1 Context

This thesis fits in the context of the Project Mobilizador 5G (POCI-01-0247-FEDER-
024539), more specifically in the scope of PPS2 - ”Products and services for the network
core” working group. PPS2 is devoted to the core functions that receive information from
other nodes in the 5G network, and displays them in a consolidated, simple manner, is
needed.

The 5G project itself is divided into multiple ”layers” of development, each one dedicated to
a certain component in the overall architecture. I was integrated in the PPS2 development
effort, which focuses on the development of products to be used in the network core. In
this scope, I was assigned with the task of developing a dashboard to be used in the core
of the architecture as a monitor station for all the remaining equipment, and as a security
tool, to help prevent or act towards network attacks

In this perspective, there is the need to develop a group of innovative mechanisms that
allow network operators to react quickly upon any interference or problem in the network.
This mechanism will involve many other technologies, working together to offer the plat-
form a seamless monitoring station with small overhead on the rest of the platform, while
providing valuable data to the network operators.

1.2 Motivation

The motivation behind this project comes from the need of 5G network operators to have
adequate tools to be used with the 5G platform. While most of the existing tools are
either bound to proprietary equipment or paid for, there’s the need of having a tool that’s
developed specifically for this project.

There are a lot of development tools, most of them even open-source, that enable this
highly programmable paradigm to shine, and enable developers and network operators to
create applications that use many of these tools simultaneously, or in a cooperative manner.

1

Chapter 1

The tools themselves have a very wide range of utility, and even modularity, sometimes.
This allows for the applications created using these tools to be highly optimized towards
the solution of a particular problem, rather than a bundle of tools put together that solve
many problems, but cause a significant overhead in the network.

For the 5G platform, there’s the need of a monitoring dashboard, that collects, sorts, and
filters information from multiple nodes belonging to the network, and displays them, in a
simplified manner, to the network operator(s).

1.3 Goals

For this thesis, I will integrate in the PPS2 working group, familiarizing myself with the
Mobilizador 5G project and its scope, objectives, technologies, as well as tools. It was also
important for me to learn about the mechanisms that will directly impact my project, as
well as the nature of the data that’s supposed to be directed to the dashboard.

The objective of the project is to create a software security tool that will allow the 5G
network administrators the aggregated view of the events happening in the network, in-
corporating specific functionalities for the monitoring of the platform, data visualization
and event transport/persistence.

This last aspect will involve research on data visualization tools, methods, and solutions
that can be relevant for the creation of the application, and are adequate to the nature of
the data flows that arrive to the dashboard, in real time.

The main objectives that are planned include:

• Learning about the 5G project and its state of the art, in relation to its tools and
components, as well as how a data visualization application would help the archi-
tecture in regards to its overall security and monitoring capabilities;

• Proposal for the front-end design to implement, based on the pre-established require-
ments for the platform;

• Analysis and selection of the adequate visualization sources catered to the necessities
of the platform;

• Implementation of the web front-end and data visualization solutions;

• Usability evaluation of the developed application.

1.4 Document Structure

The document comprises of several chapters that detail the entirety of the work done
during the thesis’ duration:

• State of the Art: where the most currently used technologies that are relevant to
the project will be discussed;

• Research Objectives: research done regarding the requisites for the application will
be discussed, as well as an introduction to the scope of the application itself, and
what options discussed on the state of the art fit the application to solve the problem

2

Introduction

at hand.It will then mention any reference software that might be used as a base for
any component of the application;

• Preliminary Work: experimentation, or specific research that has been done related
to a topic that’s important to the development of the application, will be detailed;

• Architecture: there will be some detailing regarding the proposed architecture of the
application, and how it fits in the overall project, as well as some prototypes that
were built to help imagining the design of the dashboard;

• Solution: this chapter will detail the steps to create the idealized architecture debated
in the previous chapter, as well as list any changes that were done to the proposed
architecture during development. It will also display the final work, including screen
shots of the platform, and how it was set up;

• Validation: here, the platform will be tested against performance levels who are sim-
ilar to a production environment, while its behaviour will be recorded and analyzed;

• Work Plan: this chapter details all the work that has been done during this thesis,
and how long each task took in the overall scope;

• Conclusion: concluding notes about the project and thoughts for future work.

3

This page is intentionally left blank.

Chapter 2

State of the Art

In this chapter the main topics covered by the thesis will be detailed upon. Firstly, with
some concepts about monitoring, since the objective of the work done in the thesis is to
apply what is going to be done into a real-life monitoring scenario involving equipment
and software from several different companies. Afterwards, there will be a description of
each of the candidate technologies that are going to be used and , directly or indirectly,
and a comparison between them and the best in their area of work.

2.1 Concepts

The following concepts detail the baseline knowledge required to understand the work
related directly to this project.

2.1.1 Monitoring

Considering that the thesis revolves around creating a monitoring system for the 5G
architecture, out of the several types of monitoring that exist, this work integrates in the
area of system monitoring.

System monitoring is the act of collecting information, statistics, state data, etc... from
one or more systems which who are usually involved in a mutual task or purpose. This
system data usually comes in the form of hardware or software-specific metrics that are
important to be notified to the network operator. In the 5G platform, examples of this
include container and/or service operation metrics, and specially security metrics that are
sent from another components.

However, even though monitoring in itself has expanded greatly in this past decade or so,
there is still a lack of solutions to monitor systems or networks that are not based on a
single brand’s equipment, and they’re usually very expensive, with very scarce open source
projects capable of dealing with carrier-like requirements.

5

Chapter 2

The main goals of a monitoring plaform are [13]:

• Provide information about the states and/or variables of equipment and/or software;

• Identify and categorize problems in the scope of the project and notify the adminis-
trator;

• Guarantee the accessibility of the data;

• Obtain vital statistics, such as efficiency indicators;

• Improve upon the design on the topology, the systems being monitored, or the
monitoring system itself;

• Integrate stakeholders in the project, since monitoring systems usually offer human-
perceivable data.

In this project’s case, the monitoring will follow a centralized architecture, in which all
the equipment that take part of the topology will send data containing metrics or another
relevant events to a centralized viewer of events - the Dashboard.

2.1.2 Virtualization

One of the biggest costs a company has to face is usually their IT infrastructure, and it is
important this budget is spent wisely and allows for future adapting due to organizational
changes, to support new business initiatives, and above of all, is used in a cost-effective
way [25].

The fact that the technological advances are happening so quickly allows the creation of
many types of solutions to nowadays’ problems, particularly solutions that are versatile
and don’t require dedicated hardware. This is a very interesting topic for the enterprise
level, since it causes the infrastructure to be much more flexible, while allowing future
growth without the possible impairment of being ”out-of-date” or ”not compatible” with
proprietary hardware or software.

There will still be constraints in using older equipment, of course, but a very small number
when in comparison to the use of virtualization techniques.

6

State of the Art

Here’s where virtualization comes in:

Figure 2.1: How virtualization acts before a host system [26]

By separating the logical resources and the underlying physical delivery of those resources
through simulated environments, we achieve a method to abstract the hardware from the
software running over it, while with the help of a Hypervisor, which is a software used
in virtualization that is directly connected to the hardware itself, we can create multiple
instances of simulated environments that use the same abstracted pooled hardware.

By doing this hardware abstraction as a Host, all the simulated environments that are
instanced as Virtual Machine (VM)s are called Guests. All the Guests see physical re-
sources, like memory, CPU, storage, and even Network as a shared pool of resources, which
can be allocated freely at their will, assuming they follow the restrictions imposed by the
Hypervisor, which were in turn imposed by the user.

Virtualization is also a very important game changer in relation to deployment, since is it
non-disruptive to either the Host system or the user experience, and the creation/deletion
of new VMs can be done easily via scripts or through the Hypervisor itself. Since the
resources are abstracted and pooled together, this also gives infrastructure managers the
advantage of being able to manage the pooled resources, for example, to add new resources
with no or little downtime, if needed.

2.1.3 Microservices

The idea behind the creation of microservices came from the thought that an application
would be easier to manage, build and maintain, if it was operating separately in its smaller,
broken-down state. These applications would then work together and the total system
would be the ”sum” of all the separate applications [8]. This contradicts the ”Monolithic”

7

Chapter 2

application architecture, in which there is a focus on building everything into a single
application.

This makes applications easier to deploy, debug, and allows an easier understanding of
the code for the developers who have just started to work on it. It can also be paired
with virtualization technologies, to truly make a dedicated environment for each specific
application - Containers, as will be discussed further on. Apart from this, there are other
benefits, for example [8]:

• Scalability, since the applications are smaller, and use fewer resources, they can be
increased according to demand;

• Resilience, since all the applications run independently from each other;

• Isolation,since in case of a crash or unexpected termination of the application, only
that instance of the application will be terminated;

• Monitoring, since microservices are usually associated to real-time monitoring of the
application;

• Availability, taking advantage of the low resource usage, multiple instances of the
same app may be running and providing better availability to the main service;

• Fault Tolerance, since applications should be created in a way that they can tolerate
the failure of services already running. Adding to this, microservices are most of the
times autonomous, and so, there is a lower chance they’ll cause system failures when
something wrong happens;

• Containerization, for example, using Docker, where services can be created and
deployed with lower overheads than using an entire guest VM containing an operating
system [25].

Microservices also allow for applications to be more modular, and in doing so, it is possible
to create standalone applications and components where previously there were only pro-
prietary solutions available. Many of these components are just tools, but they integrate
into projects that can do the same (or more) as proprietary solutions, are more versatile,
modular, and can play many of the different types of microservice architectures (perhaps
even simultaneously) such as: authentication, logging and monitoring, load balancing,
etc...

2.2 Technologies

In this section are presented the relevant technologies and tools to be mentioned for the
development of the project. These technologies will be strongly based on topics discussed
in the previous section. The main topics that will be discussed include containers, message
brokers and intrusion detection/intrusion prevention systems.

2.2.1 5G

5G is the fifth generation of mobile networks, still in ongoing development. It has the
objective of meeting the ever growing number of devices being connected to the internet

8

State of the Art

and the also growing number of services, industries and applications that require a highly
reliable, low-latency network connection.

By itself, 5G is not a new standalone technology, but rather it is an aggregation of new
and existing networks: mobile, fixed and wireless, to create a more flexible environment.
5G is being built with an approach favoring open access and multi-connectivity, so it may
create a base for many new services, solutions and applications. By having substantially
less latency than its predecessors, 5G provides a flexible platform to make significant
advances in several businesses and industries, such as automotive, manufacturing, energy,
health, entertainment and will pave the way for smart city architectures. Apart from that,
it also provides about ten times the throughput 4G offers, which bumps it up to about 10
Gigabits per second (Gbps), while providing ubiquitous coverage [24].

The areas of interest that 5G is going to propel forward are mainly areas that are very
latency-sensitive, in which a 100ms delay would be a very significant problem, such as
autonomous driving, robotic surgery and virtual/augmented reality. This is very useful
for paradigms such as Internet of Things (IoT), where the internet connection is extended
past the regular devices, such as home and city electronics. 5G also offers many new
features to IoT networks, mainly communication and coverage-wise, but also creating new
opportunities for new businesses and for the growth of society in general.

For this purpose, network slicing shows potential as a promising future-proof framework,
fulfilling the technological and business needs of a wide range of industries. There won’t be
the need of external systems and third party applications concerning security [24], since 5G
has its security architecture natively integrated into its overall architecture, granting the
security requisites of services and applications for which data integrity and confidentiality
is critical [14].

One of the currently proposed 5G architecture follows the outline in Figure 2.2:

Figure 2.2: 5G architecture [24].

9

Chapter 2

Network slicing, which is a virtualization technique and a core 5G capability that will
enable flexibility, provisioning and cost-efficiency of networks, allowing multiple logical
networks to be created and mapped on top of a physical infrastructure [14]. This technique
was created to fulfill the demand of vertical sectors that require dedicated networks, by
creating ”customer facing” end-to-end logical networks called slices [24].

Before 5G, slice managing tasks were usually manually performed and there were less
types of services that required the use of network slices, such as mobile broadband, voice
service, or Short Message Service (SMS). Given the foreseen increase of business branches
and customer requests with 5G, it is safe to say that a significant increase in automated
mechanisms to create and manage slices is needed.

2.2.2 Event Collectors

The objective of this thesis is to develop a monitoring tool that is adequate to the 5G
architecture under development, and is able to be scaled to the event processing needs
of said architecture. This tool falls into the category of System Information and Event
Management (SIEM) software, in which all the event and log data created by several
applications in a given network is centrally obtained, interpreted and correlated, therefore
creating a central point of access to all information about every device in the network.
This allows system managers to act more efficiently and identify the existing problems
more quickly.

However, there are already some tools that offer similar services, but are not adequate
to solving our problem, since most of them are proprietary, have low flexibility regarding
what type of systems they can monitor and what types of data can be sent, received and
interpreted as events. Also, regarding scalability, these systems usually offer low scalability
options, being usually necessary to buy additional probes, and their respective software
licenses.

Since the collector needs to be able to be highly configurable, highly flexible, easy to deploy,
and easy to scale, it was necessary to create a solution based on existing technologies and
software. For a better understanding of the available options for event collecting software
on the market, some of the most notorious ones will be detailed below.

IBM QRadar

IBM QRadar is a dedicate structure of appliances, being constituted by multiple pieces
of hardware, working to achieve network event log centralization. It is used to detect
anomalies and identify potential threats by analyzing the network flows, while keeping the
number of false positives low.

It correlates log data to find problems that need intervention, while cross referencing the
logs with lists containing potential malicious IP addresses.

Is is constituted by:

• QFlow Collector, which purpose is to gather network flows for statistical analysis;

• Event Collector, which gathers events from the network, sending them to the pro-
cessor;

10

State of the Art

• Event Processor, which receives events from the collector and processes them, by
correlating the event information from QRadar products;

• Console, which provides the end user with real-time information regarding events,
flows, and other relevant information for the system;

• Data Node, which enables extra storage and processing power to other appliances,
and are able to be added on demand, as necessary;

• Magistrate, which is the service that runs on the end-user console, that provides
analytic data, events, reports and security data about the network traffic.

QRadar seems to be a powerful solution, with dedicated hardware, and impressive statis-
tics regarding throughput (which is about fifteen thousand events per second), and its
capability to scale thanks to its Data Nodes, which can be added on demand for more
storage and processing power. However, its limitations are clear: its price, since it is a
very costly solution, and its deployment would be slow, arduous, and probably generate
problems with the rest of the topology. Also, there is already a predefined list of log
source types and protocols they use, so the introduction of a new event data type and
protocol would be hard. Ultimately, IBM QRadar doesn’t offer the flexibility this solution
requires, and scaling it to the desired proportions would be very costly, while also not
taking advantage of the existing infrastructure.

SolarWinds Event & Log Manager

This software allows for the collection of logs from multiple windows servers or workstations
(VM), in which the logs are organized, categorized, correlated and stored in a local server,
while generating informative reports and sending e-mail alerts.

It possesses a (very limited) free trial version, with the full license going for five thousand
dollars, but since it is only capable of gathering logs provided by machines or workstations
that are running Windows, it does not fit the problem at hands, since most nodes in the
projected system will most likely run a Unix distribution.

Windows Event Collector

This system allows system administrators to obtain event logs from remote machines and
keep them into a central one, through message subscription methods, which can be defined
based on:

• the source, without defining the event source computers, who set up their event
forwarding rules to the collector later on, or usually according to a group policy;

• the collector, if all machines that are pretended to send events to the collector are
previously known.

Just like the previous one, this system only gathers event information from Windows-based
systems, and is therefore of no use to the project at hand.

11

Chapter 2

2.2.3 Containers

The concept behind containers is to create a virtual environment that only contains the
target application and all its dependencies. This container can then be run in most
computing environments, mainly because they’re usually very small in size and can be
heavily optimized not to have unnecessary data in them. This is an optimized way of
running standalone applications, and are commonly used over virtual machines due to the
fact that a virtual machine usually runs an entire operating system over it, and containers
look to maximize performance while minimizing resource usage, hence why usually there
can be a larger number of containers running in an environment compared to virtual
machines.

Application deployment inside a container environment is typically expected to have sim-
ilar performance to a bare metal system, while comparing to the deployment inside of a
virtual machine, the performance is significantly higher, due to the containerized envi-
ronment being able to access the system’s resources in a more efficient way. This feature
also affects the start-up time of containers, which is typically much shorter than virtual
machine based solutions.

There are a few companies that design containers and software related to creating, deploy-
ing, managing and developing containers, and each of them has a slightly different take
on the paradigm and approach. Some of them will be discussed in the following sections.

Regarding development, containers also help the developers, since it is very helpful when
paired with microservices. These can be run in separate containers, which allows develop-
ers to break down applications in smaller parts, through multiple containers. This means
that development teams can work on different parts of the application simultaneously and
independently from one another, which causes development to be more efficient, and to
be done faster and with a lower rate of bugs.

Security-wise, the container attack surface will be smaller, as well as scattered, which
improves overall system security. Container environments also help in using less overall
data, given the usual small size of containers. Since they’re usually integrated into bigger
applications or systems, they can also perform other types of tasks, for example, redun-
dancy or load-balancing purposes, or even to isolate certain components of the application
to facilitate development, deployment and management. They can also run different ap-
plications with different functions, but acting towards one general vision or purpose of
a system. To manage containers, or these clusters, there are a few choices of software
created specifically for that purpose, some of which will be detailed upon further.

Container Creators - Docker

Docker is a containerization software used to create, run and deploy applications using
Linux containers. This allows developers to create a package with only the application
and all its dependencies, and easily deploy it.

Docker calls this ”package” an image, making it easier to share an application or a group
of services, bundled with all the necessary dependencies. These images can be built and
shared manually or through a Dockerfile. Dockerfiles are a script-like file which is in-
terpreted by Docker itself and allows the creation of a complete environment, bundled
with all its dependencies (assuming these exist in an online repository). Docker can also
automate the deployment of the application inside the container environment itself with
scripts or the help of Docker Compose, which manages containers and clusters.

12

State of the Art

Some of the advantages of Docker include [20]:

• Modularity, since Docker’s take on containerization grants the developer the abil-
ity to remove certain application components, either for repairing bugs or making
changes, without having to take down the entire application;

• Image Version Control, since every docker image is constituted by layers, and each
time the image changes, a new layer is created. The image is nothing more than the
combination of all layers. This allows for version control, since previous layers are
unaffected by new changes to the image. Furthermore, this layering system improves
image building speed, lowers its size, and overall increases its efficiency;

• Rollback, taking advantage of the layering system. The user can roll back the image
state to any layer he wants;

• Rapid deployment, since docker containers don’t have an operating system, deploy-
ments can be reduced to mere seconds, and the overhead is a very minimal issue,
unlike monolithic apps.

However, docker does not include management capabilities by itself, and since the number
of containers is greatly scalable, this can easily get out of control. Hence the need for a
management tool for containers and clusters of containers, which will be detailed upon
further in this document.

Container Creators - LXC

LXC, or Linux Containers, is a container solution to support virtualization of software
at the operating system level, inside a Unix Kernel host. LXC can be used to virtualize
either standalone applications or entire Unix-based operating systems [10].

Instead of creating a regular virtual machine to host content, LXC instead creates a virtual
environment that has its own process and network space, while sharing the resources of the
host machine. Its main advantage is the possibility of controlling its virtual environments
from the host, via userspace tools. This reduces the overhead significantly compared to
the use of a Hypervisor. LXC was the core foundation of future software such as Docker
and CoreOS Rocket, which eventually branched to their own paths and detached from the
use of LXC. Another one of its advantages is the fact that it allows multiple distributions
to be run simultaneously, in the same host.

Some of the advantages of using LXC for container creation and deployment are [23]:

• Good, well documented configuration capabilities, with a method for using straight-
forward templates for the creation and configuration of containers. These configura-
tions usually come from a configuration file rather than command line parameters;

• Optional external network container exposure: containers created with LXC are
effectively isolated from the outside networks until the user specifically specifies
otherwise, and to access or to allow exposure of services within a container, it requires
manual iptables forwarding to allow outside connections;

• Significant user base, community support and its indirect security benefits: Since
LXC possesses a large number of users and directly contributes to general container
advances and improvements as an Open Source project, there are more updates/bug
fixes to the tool, and allows quicker access to newer features.

13

Chapter 2

Figure 2.3: Difference between Docker and LCX container architectures

While LXC is more flexible, due to the existence of user tools, and the virtual environments
being created at the operating system level, Docker is undoubtedly the better choice be-
tween the two, with better options regarding portable deployment across different systems,
shared libraries and versioning.

Container Creators - CoreOS Rocket (Rkt)

CoreOS Rocket is another take in the virtualization of containers, it is a containerization
software engine created to run applications in an isolated way from the underlying infras-
tructure. CoreOS Rocket is the main competitor to Docker in the container market [19].
CoreOS Rocket (Rkt) is built upon an open container standard called ”App Container”
or ”appc”, which allows Rkt images to be compatible across other container systems. The
design objectives of Rkt include simplicity, speed and security. The latter is one of the
areas in which Rkt developers believe Docker is fundamentally flawed, and contains many
security problems (which are still slowly being corrected to this day), and therefore Rkt
was developed to be a more secure container technology, while fixing many of Docker’s
container model issues [23].

Some of the advantages of using Rkt are:

• Increase of security and reduction of attack surfaces: The simplicity of its design
will help keeping a better security and network visibility;

• Compatibility of image formats, meaning that in case a new and better container
technology appears, it will be compatible with all Rkt images, as long as it follows
the open source container format ”appc”;

• Hardware-level isolation to each container - provides security in the same level of a
true virtualization system, like VMWare;

• Composability - all the necessary tools for the creation and management of Rkt
containers should exist but need to be independent;

Docker was chosen over Rocket due to its popularity and general wider community support
and larger number of publicly available pre-built containers, that allow for an easier set up

14

State of the Art

of environments. There are some open-source tools that when used with Docker, effectively
increase its security, for example Docker Bench, Clair, Cilium, or Anchore [15].

Container Managers - Docker Compose

Compose is a Docker tool created to define multi-container Docker applications via .YAML
files; then, with a single command, it can start up all the services, control configurations
and set variables (both application’s and environment) as needed.

Through .YAML files, Compose can create multiple isolated environments on a single host,
while it can also create networks of environments running a service or application. All
the relevant configuration for the network and other application-specific settings must be
explicitly detailed in the .YAML file. Compose allows the preservation of volume data
when containers are created, to minimize build times and to reduce unnecessary resource
usage.

At the time of deploying, Compose will check if there were any changes made to the
.YAML that reflect in an alteration to the image. If so, it will recreate the image. If not,
it will use the same image as the last build, to avoid overhead and extra resource usage
on the host system.

Compose has the following functionalities:

• Start and stop services;

• (Re)Build images;

• View the status of running containers;

• View and dump the log output of running containers;

• Execute commands inside the container.

Container Managers - Docker Swarm

Docker swarm is a tool that allows native management of a cluster of Docker containers.
It also has the capability to create swarms, deploy application services to swarms, and
manage swarm behaviour [17]. The cluster management tools are integrated with the
main Docker engine, which allows the user to use the regular Docker Engine Command-
Line Interface (CLI) to create a swarm, where applications can then be deployed, without
the need of additional software to perform the orchestration of the swarms.

Swarm can also control the scale of running services. If another container running the
same service is needed, it can easily be adjusted, either automatically or manually, This
can be paired with other swarm functionalities such as load-balancing.

Regarding security, Transport Layer Security (TLS) is enforced in the swarm, to assure
authentication and encryption of any in-flight traffic between nodes. As for updates, given
the functionalities of Docker Engine discussed previously, it is possible to apply updates
to a node or groups of nodes. They can also be reversed to previous versions, or layers.

15

Chapter 2

Container Managers - Kubernetes

Kubernetes is an open-source, portable platform dedicated to the management and mon-
itoring of containerized services, that has an emphasis in automation and active configu-
ration. Google created this project, and later open-sourced it, back in 2014, with all the
experience gained in the last decade or so, from running it in production workloads at
scale [21].

Figure 2.4: Where the orchestration role sits in a containarized architecture [9]

Kubernetes provides a centralized management environment for container solutions. It
can orchestrate computing, networking, and storage infrastructure.

A container management such as this is needed to complement Docker, since it doesn’t
have any dedicated monitoring and cluster management tools, apart from Swarm, which
is very limited. It also tracks other useful information, like availability, deploying updates
in real time and failure management [9].

Some of the best advantages of using Kubernetes include:

• High speed when providing continuous deployment of new features without down-
time;

• Ease to deploy software updates at scale;

• Declarative configuration capabilities, provides the user alerts for erroneous states
in the system;

• Monitoring capabilities, that provide availability of the nodes of the cluster, while
doing self-checks and auto-replacement if needed.

16

State of the Art

Figure 2.5: The Kubernetes architecture broken down into its components [21]

Kubernetes provides a flexible mechanism for service discovery, where a master node is
elected to perform tasks such as exposing the API, scheduling deployments and managing
the cluster. As for the remaining nodes, each one runs its code, along with a node that
communicates with the master. This node also does logging and monitoring of the entire
cluster.

Container Managers - Apache Mesos

Mesos is a cluster manager that allows efficient resource sharing between distributed appli-
cations or frameworks. Mesos’ objectives are a bit different from the previous cluster man-
agers, since Mesos is oriented towards individually managing a wide array of workloads,
like real-time analytics, stateful distributed data services, stateless Docker microservices,
etc...

This wide coverage of workloads happens due to its architecture, which allows ”application-
aware” scheduling, which creates a own-purpose built application scheduler for each work-
load, that understands its specific operational requirements for deployment, scaling and
upgrading [5].

17

Chapter 2

Figure 2.6: Depiction of Mesos’ two level scheduler architecture [6]

Mesos’ ability to create a purpose-built application scheduler for each type of workload has
enticed many companies to use Mesos as a unified platform meant for running microservices
and data services together. The common name given to the architecture that runs data-
intensive applications is ”SMACK Stack” [11].

In the end, docker compose was the chosen tool, due to the containers not having to operate
in a managed way, since they’ll be deployed directly with all the configuration necessary,
and also a GUI will most likely be deployed to manage the cluster itself, so there won’t
be a need for an extra container manager and its consequent additional overhead to the
system.

2.2.4 Message Brokers

A message broker is a intermediary software that often acts as a middleware within a
system, that provides communication via data messages between distributed systems or
applications. Its flexibility in configuration, whether the brokers themselves or the message
parameters and format, have distinguished themselves in the networking and microservices
areas in the past few years.

It is a viable option for the communication between heterogeneous applications or systems,
as well as proprietary equipment or operating systems. It reduces the complexity of
communications in said systems, since the developer has the freedom and flexibility to
program many of the aspects of the message itself, and how it is going to be delivered, as
well as program scalability features, like routing patterns within the message broker node
mesh (cluster) and/or monitoring features.

Typically, these messaging systems allow two types of asynchronous messaging:

• The message queue style, also known as point-to-point, where there can be many
messages produced to the same queue, but only a maximum of one consumer will
retrieve each message;

18

State of the Art

• The publish-subscribe style, which uses topics to allow the submitted messages to
be received by more than one consumer. It acts as a 1-to-n queue, in which all
consumers subscribed to the topic will have access to the same produced messages;

The following subsections will describe the most relevant message brokers currently avail-
able, and detail some of their advantages.

Message Brokers - Apache Kafka

Apache Kafka is a distributed streaming platform which uses the publish-subscribe style
of messaging. This means its main functionalities are [1]:

• Act as a message broker, in which other applications may publish and subscribe to
streams of data;

• Process in-flight streams of data;

• Store streams of data for fault tolerance purposes, in categories called topics.

Kafka Consists of five main elements: the Broker(s), the Topic(s) The Zookeeper(s), the
Producer(s) and the Consumer(s):

• The Brokers (or simply, the nodes), are places where data will be received, processed,
then forwarded. Each broker can have multiple topics, which act as a separation
between ”conversations”, and can be used to filter unwanted entities from accessing
messages;

• The Topics are feed names in which messages are published by producers and then
retrieved by consumers. It contains messages, which are byte sequences that can
take any format desired by the programmer.

There is also the matter of partitions and replication: Each message in a partition
is assigned and identified by its unique offset. Partitions allow consumers to read
from topics in parallel from one or more brokers.

As for replication, it is implemented at the partition level. Each partition usually
has at least 2 replicas, meaning the messages that go through are replicated to other
nodes to assure data availability;

• The Producer is the application that sends messages into a broker’s topic;

• The Consumer is the application that consumes messages from a broker’s topic;

• The ZooKeeper, used for electing a controller. The controller is going to be elected
from one of the nodes and he’s responsible for maintaining the node hierarchy for
all partitions. The ZooKeeper also keeps track of which clusters (and nodes within
the clusters) are active, what topics exist, how many partitions it has and where are
its replicas located. Apart from that, the ZooKeeper also deals with establishing
quotas and enforcing authorization via Access Control Lists on the brokers.

The number of brokers can be scaled up, and they can even form clusters, where tasks
like load-balancing and redundancy can be configured, as well as scaling the maximum
throughput of the message processing and delivering to the needs of the application or
system.

19

Chapter 2

More Zookeepers can also be set up, to either help with the replication process by load-
balancing, if the processing gets too heavy for a single instance because of a very high
message throughput, for example. They can also be used for redundancy and availability,
since the zookeeper is often kept in a separate container than the brokers themselves,
and in the case of a zookeeper crash, the whole cluster will stop working, unless another
zookeeper takes its place.

Kafka also possesses an Application Programming Interface (API) written in Java called
Kafka Streams, which allows for the creation of Java applications or microservices that
directly interact with data from Kafka, and allows them to be highly scalable, flexible and
fault-tolerant. It combines the ease of programming and deploying of Java applications
with the benefits of the Kafka cluster functionalities, for example, data aggregation and
treatment at the broker level.

A stream is a undefined influx of data that occurs in real time. This data can then be
manipulated by the Streams API for many different purposes, for example processing and
windowing/aggregation.

Figure 2.7: Kafka Streams basic functional architecture [2]

It was originally developed to allow the stream processing to branch out of the Big Data
environments into the mainstream application development scenarios. Stream processing
is a paradigm that allows some applications a limited form of parallel processing. The
API also allows the developers to run one or more instances of the same application, and
they will automatically work with each other collaboratively, and provide fault tolerance
of the general application scope.

Some of its key aspects include [4]:

20

State of the Art

• Application scaling to small, medium and large environments;

• Fault Tolerance;

• Stateful and Stateless processing;

• Data aggregation;

• Low programming barrier to entry;

• Ease of deployment;

• No external dependencies besides Kafka;

• Runs on private/public clouds, containers, etc...;

• Possesses the low Kafka latency and its high throughput;

• Automatic handling of out-of-order data;

• Supports the security mechanisms found in Kafka (Encryption, authentication and
authorization).

These characteristics allow the developers to build powerful, yet simple applications and
microservices with Kafka as its messaging backbone, without requiring a dedicated cluster
to operate, all that while inheriting all the main Kafka benefits.

Message Brokers - ActiveMQ

Apache ActiveMQ is a open-source, general purpose message broker that supports a fair
number of messaging protocols such as Advanced Message Queuing Protocol (AMQP),
Message Queuing Telemetry Transport (MQTT) and Simple (or Streaming) Text Oriented
Message Protocol (STOMP). It allows communication from more than one client or server.
It supports more complex message routing patterns than other message broker software.
It is mainly used for integration in services that use Service Oriented Architectures. It
uses several strategies to allow high availability, achieving true replication using Apache
Zookeeper. It is widely regarded for its configuration flexibility in the enterprise world.

It seems to be favored by some developers, due to its straightforwardness, great compat-
ibility with Java Virtual Machine (JVM) related languages and its integration with Java
Message Service (JMS). It allows for the use of a Java Management Extensions (JMX)
console to visualize topics and queues in the broker, even create and send messages with-
out the need of a producer. More brokers can be added under load in a seamless way for
the users already using it, meaning that the queue name being used won’t change.

The use of persistent messages can be configured, allowing the brokers to keep message
data stored in their own database instance, which prevents data loss from possible system
(or broker-specific) failures.

Since there are many pre-built Dockerfiles to quickly create and deploy containerized
ActiveMQ environments, without the need of extensive or complicated configuration, it is
very used for Research and Development purposes at enterprise levels.

21

Chapter 2

Message Brokers - RabbitMQ

RabbitMQ is a distributed-messsage queue system, because it is normally run in a cluster
where the queues are distributed by the nodes, while keeping a single logic broker vis-
ible to the clients. It can also optionally replicate data to ensure fault tolerance, high
availability and reliability. RabbitMQ supports either asynchronous or synchronous com-
munication, as needed. Messages are sent from the producers to the exchanges, then to the
queues, where finally they’ll be consumed by the consumers [18]. Decoupling producers
from queues by using the exchanges ensures that producers aren’t overloaded with extra
hardcoded routing decisions, and therefore decreasing the overhead on the system itself.

Figure 2.8: Simplified RabbitMQ architecture [18]

It supports protocols such as AMQP, STOMP, MQTT and HyperText Transfer Protocol
(HTTP). The difference in RabbitMQ is the fact that it uses its distributed nature to
its advantage, via a complex routing capability, to employ a fast, scalable and reliable
messaging system [18].

The plugin system allows RabbitMQ to extend its capabilities in many different ways,
and allows developers to write their own plugins to fit their needs. Plugin use advantages
include, for example, enabling the system or application to access internal RabbitMQ func-
tionalities, which are not normally available by choosing any of the supported protocols.
These may also be used, for example, for system state monitoring and node federation,
which consists in the transmission of messages between un-clustered brokers. It includes
a management User Interface (UI) that allows control and monitoring over the brokers, as
well as tracing support, for debugging problems via logs.

The message broker chosen to be used in this project was Apache Kafka, given its high
throughput, ease of deployment and containerization, and dedicated API used to develop
applications that take direct advantage of its features.

2.2.5 Message Formats

There were two considered types of data interchange format that the events sent to the
dashboard would be created with, namely:

22

State of the Art

JSON

JSON, or JavaScript Object Notation is a lightweight data-interchange format used to
represent data structures in an universal way, easily interpreted by many of the program-
ming languages used, such as C, C++, C#, Java, JavaScript, Perl, Python, and others
[7].

It achieves this simplistic format by using name/value pairs and lists to describe array
structures. This means the message can then get interpreted as an object, which is vastly
used in the languages mentioned.

Given this, messages in JSON format are highly flexible and can be easily modified or
adapted to the programmer’s needs.

Avro

Avro is an open-source serialization system that employs communication compatibility
across different frameworks, systems and programming languages [22].

Avro is commonly used on Kafka-based systems since it allows the definition of schemas,
and is compatible with popular message formats, like JSON. Schemas are user-created
message format profiles that are compared to the messages at the time of arrival to the
Kafka broker. These are put against the defined schema(s), and if they pass its integrity
check, they’re then forwarded to its destination.

They allow for more robust stream processing systems, data clarity and compatibility.
They also protect downstream applications and consumers from erroneous and malformed
data, only allowing data that matches the schema to leave the broker.

In the end, JSON was chosen mainly due to its flexibility paired with the fact that the
dashboard would receive some data formats that were undefined, which will be explained
in further chapters.

2.2.6 Summary

Regarding solutions that are similar to the one being developed, there are a few available,
however they either require dedicated hardware or are limited to certain operating systems,
which would not be adequate to the problem this project intends to solve.

Tables 2.1 and 2.2 try to summarize the features of both container creators and message
brokers, so that all important characteristics can be easily compared between them.

23

C
h
ap

ter
2

Functionality
Tool

Allows image layering/
Version Control

Has good
container security

Open-Source
Containerization
Limitations

Scalable Lightweight?
Helpful

Documentation

Compatibility with the
image formats,
following the open source
container format ”APPC”

Docker Yes

No,
still gets

regular security
updates

Yes

Applications can run at scale,
in production, on VMs, bare metal,

OpenStack clusters,
public clouds and more [19]

Yes Yes

Yes,
even though it
seems to be out

of date sometimes

Some

LXC No

No,
but large user base
contributes to its

development

Yes

Allows virtualization of applicaitons
at the OS level, inside a Unix Kernel host.
It can be used to virtualize applications or

entire Unix-based operating systems.

Yes

Yes,
because of the

virtualization at
the operating
system level
technique

Yes,
the large user

base helps founding
a good set of

documentation

Some

CoreOS
Rocket

No

Yes,
was designed
with security

in mind

Yes

Created to run applications
in an isolated way from the
underlying infrastructure.

Its objectives include simplicity,
speed and security.

Yes

Yes,
but has additional
overhead due to

the container
security mechanisms

Yes Most

Table 2.1: Feature comparison - Docker vs. LXC vs CoreOS Rkt

24

S
tate

of
th
e
A
rt

Functionality
Tool

Easy to configure /
Set up

Requires other
applications?

Open-Source Supports JMS? Scalable
Messaging Types

Supported
Has management

GUI
Best used for:

Apache
Kafka

No Yes, Zookeeper Yes
No, uses own non-standard

protocol and clients
(3rd party clients exist)

Yes
(very good
horizontal
scaling)

Asynchronous
No

(with 3rd party
options available)

Real-time
data streaming

RabbitMQ Yes No Yes Yes, via plugin Yes
Asynchronous,
Synchronous

Yes

Integration between
applications/services
(especially in a
Service Oriented
Architecture)

Apache
ActiveMQ

Yes
No

(can use Zookeeper
to achieve replication)

Yes Yes Yes Asynchronous Yes

Backbone
for an architecture
of distributed
applications

Table 2.2: Feature comparison - Kafka vs. RabbitMQ vs ActiveMQ

25

This page is intentionally left blank.

Chapter 3

Research Objectives and Approach

This chapter details what the solution intends to solve, what is its place in the architecture,
as well as what are its requirements regarding software/hardware components, tactics or
strategies. After that, any reference architectures or software that will be adapted or used
to the benefit of this project.

3.1 Objective

The software will take the form of a dashboard, that will display, in real time, relevant
information about status or errors sent from all other equipment in the 5G platform, and
also the underlying system that will handle and feed the dashboard with the messages sent
by the other hardware in the network. This message data flow that feeds the dashboard
must be unidirectional, as it should only serve as a monitoring point with no control over
the other machines in the network.

The software will also act as a security mechanism to the overall architecture, allowing
the network administrators to get notified quickly of problems that may occur with the
platform’s hardware or software, or even prevent/stop network attacks.

First of all, we’ll need to define some concepts to thoroughly understand the main com-
ponents of the system and how they’ll function.

3.1.1 Events

An event consists of one or more (in case of aggregation) messages sent to the dashboard,
from other nodes in the 5G network, which contain information about an occurrence, or
diverse statistical metrics from that system that are to be displayed to the operator.

Statistical or numerical data can be altered or processed before it is sent to the dashboard,
with the objective to simplify the visualization process of this data, and to not overwhelm
the operation with raw, untreated information.

3.1.2 Pre-processing

The events that arrive from the Kafka brokers will suffer a form of pre-processing, which
will be done at the middleware level. The middleware will be taking care of unpacking

27

Chapter 3

the data, which follows a standardized JSON format, processing and even aggregating the
events at times, to allow simple, more intuitive visualization of the data at the dashboard
level.

The pre-processing could include, for example, averages, ratios, time-related statistics,
and other types of data transformation techniques that are relevant for a good monitoring
of the platform.

3.1.3 Dashboard

The dashboard’s role is purely to visualize data that is being sent from other 5G network
nodes and later on processed by the middleware. It has no control over any of the nodes
that it receives information from.

After the data has been processed, it will then be decided which is the best way to output
this information. So, by using a certain type of chart or types of visualization that are
specifically catered to the data that’s being shown, this will allow the operator to quickly
obtain the most information of what’s happening in the 5G network.

3.1.4 Architectural Considerations

Since the 5G architecture uses different types of equipment, even proprietary, it is necessary
for the communication method not to be impaired by the fact that most hardware/software
is of proprietary nature. This calls for a method of abstraction of the messages, and a
definition of a common message structure that every equipment will use when sending
data to the dashboard, otherwise it would be unfeasible for the dashboard to interpret
that many messages, due to the amount of different types of messages, and their specific
encoding.

The dashboard is intended to be a central point of the project, being connected to the
large part of the platform, assuming the role of security monitor.

All the components that will send information to the dashboard are directly out of my
control and are responsibility of many other project participants, however, the middleware
must be able to support the event flow throughput sent by all the other nodes that send
data to the dashboard.

3.2 Requirements

The 5G platform is expected to be used by a large mass of users simultaneously, and its
nature implies that some general, non-functional requirements must be met in order to
integrate the project in it, such as:

• Adjust to a high client volume - Given that many users will use this platform at the
same time, there must be dynamic scalability measures in place in the event that too
many messages are in queue. Otherwise, this could affect the monitoring system’s
accuracy and data reliability;

• Ignore proprietary hardware/software barriers & allow heterogeneous application
communication - The solution must be able to send data to the dashboard in a

28

Research Objectives and Approach

standardized way, this being agreed upon prior with all the related entities, so that
extra processing overhead can be reduced at the dashboard.

Therefore, the dashboard won’t have to be programmed with the logic to decipher
multiple types of messages, making it a lighter application, and increasing overall
throughput of data, and consequent data accuracy and reliability;

• Possess a high throughput capability - The middleware that will take care of message
pre-processing and forwarding to the dashboard must have a high message through-
put (which will be scalable if the first requirement in this list is met), to handle the
large number of events that will be created, and to make sure the messages won’t
be bottlenecked by raw message processing speed;

• The system should keep working in an independent way of the general platform,
and it should have recovery / redundancy mechanisms in case of general software or
hardware failure.

The dashboard system should have an equal or higher reliability / upkeep than the
rest of the 5G platform, since should it fail, the administrators’ reaction time to a
failing component would be much higher, decreasing overall up-time, diminishing
profit and overall quality of service / experience of the platform for its clients;

The dashboard should offer an interface that displays all relevant 5G platform information
regarding the network infrastructure and assets, its performance, security indicators and
events. Therefore, and for a more complete comprehension of what the system should
deliver, some functional requirements must also be listed:

• The dashboard must be connected, at all times, to the remainder of the platform,
preferentially by redundant links, so that the lost number of events and overall
downtime is greatly diminished;

• The dashboard must be able to retrieve and interpret event data from the middle-
ware, and then display it, in an intuitive, easy-to-read form to its users;

• The dashboard should be optimized to be able to handle a large influx of events per
unit of time, without affecting data integrity and avoiding out-of-date notifications;

• The implementation of the tool should be done with security in mind, not to com-
promise any sensible platform data to any attackers on unauthorized personnel. For
this reason, the incoming data will run through integrity checks and profiling, so
that only verified platform nodes are allowed to send messages to the dashboard.

29

Chapter 3

The more technical, numeric requirements are stated in the table below:

Figure 3.1: Hardware Requirements for the Event Collector System

Given the array of both software and hardware products depicted in the state of the art,
virtualization, more specifically, containerization will be a highly valuable tool in meeting
the performance demands of the 5G platform. Docker was chosen as the software to be
used for containerization, while Apache Kafka was chosen to be the message broker to
be used for communication. It was chosen for Kafka to have three dedicated VMs to not
limit the scalability options of the Kafka cluster, since the platform is expected to have a
high number of users, therefore increasing the general number of events that are sent to
the dashboard.

The use of containerization allows the infrastructure owners to re-utilize resources, rather
than having to buy brand new equipment, meaning that in some ways, the same equipment
used for the hosting of the 4G platform may be used in the hosting of the new 5G platform.
This reduces costs of implementation by a significant margin.

The Dashboard will be modified to the needs of this project to reflect the data that it will
receive from other nodes in the 5G platform. This dashboard will connect to a middleware
that will take care of forwarding the already processed data [3].

For testing purposes, it will also be necessary to develop a small application that will serve
as an event generator. This application will help test both the message channels, as well
as the data received by the Dashboard. The process of extracting data from the messages
will also be possible with this tool, which will be using a similar format to the proposed
one.

Finally, regarding the standard message format to allow communication between heteroge-
neous applications, a draft of a proposal will be made, which will be delivered to all entities
involved in the project, to be discussed. The structure should be based on a JavaScript
Object Notation (JSON) format, since it allows messages format to be very flexible, which
is something required due to the unknown nature of the metrics that will be sent to the
dashboard by its client nodes.

In the end, Docker was chosen to be the containerization software used in the project,
since it allows for massive horizontal scaling of the message brokers, which will be very
necessary to the architecture, given the amount of clients that will use it, as well as giving
developers the ability to version control docker images, due to its layering system.

Regarding message brokers, Apache Kafka was chosen, given that it has a significantly
higher throughput than the rest of the available choices, and is also able to scale hori-
zontally up to the needs of the architecture. The fact that the message structure itself
can be created from scratch or heavily customized is also a very important factor in this
architecture, since it will have to operate with data coming from machines with different

30

Research Objectives and Approach

operating systems and even proprietary hardware and software.

3.3 Reference Software

Aside from the rest of the platform, which will be monitored via incoming events sent
by the nodes, it is also important to get some data on the Kafka cluster and its status,
specifically data on the topics that are being used to feed the middleware data.

The dashboard receives data from Prometheus to obtain detailed statistics regarding the
Kafka topics and its usage over time.

Prometheus is a open-source monitoring system and toolkit, written in GO, that was
originally built at SoundCloud.

It is composed of [16]:

• Prometheus Server, which stores time series data;

• Client Libraries, to instrument application code;

• An Alert Manager, to notify and manage users of alerts and events;

• Graphical Exporters for services like StatsD, Graphite, HAProxy, etc...;

• Various other support tools.

While its main features include:

• Multi-dimensional data model with time series identified via key-value pairs, sup-
ported by PromQL, an adequate query language for this multidimensionality;

• Server node autonomy, removing the need of reliance in distributed storage;

• Time series collection over HTTP;

• Target discovery via specific service discovery or static configuration;

• Graphing and dashboard data exporting support.

31

This page is intentionally left blank.

Chapter 4

Preliminary Work

A number of experiments and scenarios had to be built in order to make sure the chosen
software worked together as a whole without problems.

4.1 Familiarization with the project and its scope

This included learning about the 5G project and its scope, studying and reading arti-
cles and other information sources on the web about all the relevant existing technolo-
gies, as well those that the project was going to use, such as containerization, message
brokers, microservices, container management, heterogeneous application communication,
the dashboard itself, and how to link all three together to create the solution required.

As previously stated in the first chapter, the 5G project is subdivided in multiple layers
of development, in which I was assigned a position in the second layer, or PPS2, more
precisely, building a dashboard system that allows monitoring data to be centralized for
security purposes.

To get a better comprehension of the scope of the project, and its architecture, I par-
ticipated in a meeting with nearly all the companies involved in the 5G project. In this
meeting it was presented the current state of the project, what was being developed and
how was it being done. Here I got a superficial idea of how the architecture proposal was
being molded to the requirements of the technology and what were the problems being
faced by different parts of the team.

After this meeting, it was then decided that the solution to develop was intended to be run
in containers, therefore using Docker, and to use Apache Kafka for the message forwarding
part, since it offered a higher throughput than its competition. I then began tinkering
with some virtual machines, setting up some virtual environments for testing purposes.

Create a test environment to containerize a Kafka solution, so it would be according to
the following architecture:

The test environment was made using Dockerfiles of solutions made public by other users,
specifically solutions that would integrate both the Kafka and Zookeeper, since they are
two separate pieces of software, however, Kafka won’t run without an associated zookeeper
instance.

The Dockerfile that contains the environment I used, which is currently hosted at https:
//github.com/confluentinc/cp-docker-images, allows for the deployment of a single

33

https://github.com/confluentinc/cp-docker-images
https://github.com/confluentinc/cp-docker-images

Chapter 4

Middleware
Dashboard

Network
Component #1

Network
Component #2

Network
Component #n

Figure 4.1: A view on the proposed architecture

Kafka instance and a zookeeper, each in a Docker container. These can then be scaled
up, by creating new brokers, one per container directly from the original broker, that
associate themselves to the cluster. It also allows to perform partitions and message
replication between them.

Regarding its configuration, the environment is highly flexible, and some parameters can
be configured directly in the dockerfile, as well as environment variables.

In this test environment, a Kafka cluster was deployed, together with an instance of
Zookeeper, since it is a mandatory part of the Kafka architecture. It was then attempted
to send messages from a Kafka producer to a topic using the Synthetic Event Generator,
and consume them using a Kafka consumer in the middleware.

4.2 Creation of a Message Format Standard Draft

Since the whole point of my work is to create a mechanism to allow multiple different
applications to send information, following a standard, to the dashboard, it was vital to
define a message format that would be used by every machine when sending data to the
dashboard.

This way, a lot of overhead could be avoided as well as other potential problems of incom-
patibility, while still taking advantage of all the Kafka functionalities.

The proposed message format was written in JSON. While JSON is considered to be
slightly slower at message creation and decryption, it allows for a highly flexible package
where many types of information can be put in. Pairing this with the high throughput of
Kafka allows for the extra compression/decompression overhead to be less noticeable.

34

Preliminary Work

Figure 4.2: A view on the proposed message format

The following list details each field:

• id: Unique event Identifier;

• timestamp: Temporal Identifier of the Event, according to the ISO8601 norm;

• sourceip: The source Internet Protocol (IP) of the event;

• type: Type of Event (INFO, EVENT, ERROR, etc...);

• priority: How important the event is (LOW, HIGH, CRITICAL);

• name: Name of the event. Assigned by the administrator;

• context: Info detailing the context of the event;

• metadata: Object containing metrics that are sent for processing.

4.3 Synthetic Event Generator

Since it was not only needed to test the message flow within Kafka itself, but also its
throughput and scalability, considering that the messages would all be coming from an
outside source, an application that would generate events and feed the Kafka topics was
created.

This application was written in Python, since it allowed me to create it quickly, given it
already has Kafka libraries available online that allow the direct connection of a Python-
based Kafka producer/consumer to a Kafka broker.

4.4 Middleware Integration

The middleware that feeds raw data to the dashboard will need to be integrated so that it
consumes the messages from the Kafka topic, and read the JSON formatted message onto
data objects it can use to feed the dashboard. Since this is code developed by someone else,
it implies that I will have to spend time studying it and figure out a way to adapt it into
the project’s needs. This application is written in NodeJS which, like Python, has the tools

35

Chapter 4

to allow Kafka communication. This middleware is inspired from the Advanced Tools to
assEss and mitigate the criticality of ICT compoNents and their dependencies over Critical
InfrAstructures (ATENA) project middleware, which is also feeding its dashboard.

4.5 Security mechanisms of Apache Kafka

After a test environment was created and working properly, I studied what security mech-
anisms Kafka offered, which are detailed below:

4.5.1 Context

Apache Kafka is a middle layer message broker, allowing systems to share real-time data
with each other through queues called topics. By default, Kafka has no security configured,
which means any user can read and write from and to any topic and get the messages
within, even if they’re not the messages’ destination. This compromises basic security
standards in modern networks. Kafka however, does allow for security mechanisms within
its cluster, mainly encryption, authentication and authorization. This sub-chapter aims
to explain the different security mechanisms available to Kafka, as well as the advantages
they bring to an enterprise-level network.

4.5.2 Components

Apache Kafka security revolves around the following three main components [1]:

• Encryption of in-flight data using Secure Socket Layer (SSL)/TLS: Since the default
Kafka communication between consumers and producers uses no form of encryption
(plain text), it is a good idea to use encryption methods to avoid being target of
common network Man in the Middle (MitM) attacks such as spoofing or sniffing;

• Authentication using SSL or Simple Authentication and Security Layer (SASL): This
allows both producers and consumers to authenticate themselves onto the Kafka
cluster, which verifies their identity. This prevents unwanted access from unknown
third parties to either the producer or the consumer;

• Authorization using Access Control List (ACL): Typically placed after the authenti-
cation, authorization via Access Lists manages which users can access which topics,
be it to write, read, or both. Without these, even if the user is authenticated, he
can just access whatever topics he wishes with no kind of control;

36

Preliminary Work

4.5.3 Encryption

Any Kafka-transmitted data, by default, will not be encrypted. Therefore, there’s the
need of encrypting the data between consumer and producer. This can be done with SSL
certificates, when only consumer and producer can verify the content of the encrypted
packets with their certificates, signed by a verified authority. This method can put a
halt to most man-in-the-middle attacks, because they don’t have access to any of the
certificates used to encrypt the packets.

However, encryption has a cost, and that comes in the form of CPU usage overhead, which
can in turn slow the overall Kafka throughput, since it has to leverage the CPU for the
clients’ messages’ and for the broker itself to take care of the encryption and decryption
process. Still, using for example Java 9 over Java 8 for this endeavor, performance cost is
decreased by a substantial amount [1]. There is a way around the increased CPU usage
in the cluster, however. By delegating the responsibility of encrypting and decrypting
messages to the producers or consumers - this performance overhead is only applied once,
and does not affect the overall performance of the Kafka cluster.

4.5.4 Authentication

There are two ways to authenticate Kafka users, SSL and SASL.

SSL Authentication is done using a feature from SSL called two-way authentication, by
supplying the client endpoints with SSL signed certificates by a trusted certificate author-
ity. These will be checked at connection time to match against a SSL certificate stored in
the server.

SASL (Simple Authorization Service Layer) is the service which separates authentication
from the Kafka protocol, being most popular with Big Data Systems.

Along the many types of SASL available, the following are supported by Kafka:

• PLAINTEXT: Classic username/password combination. These are stored inside
a file, typically with the .jaas extension, which are kept in the Kafka brokers in
advance. The downside is, each change to the file requires a restart to the Kafka
Cluster to take effect. It should be paired together with SSL in-flight encryption to
avoid credentials being sent in plain text over the network.

The following figure shows an example of a .jaas file, where ”username” and ”pass-
word” are the credentials used for inter-broker communication, and inside that bro-
ker, two users are defined: ”alice” and ”admin”, each with his own password;

Figure 4.3: .jaas authentication file example

37

Chapter 4

• SCRAM: Classic username/password combination with a challenge, hence the name,
Salted Challenge Response Authentication Mechanism. Like PLAINTEXT, the ac-
count data ins stored inside a .jaas file in the broker. However, for the challenge to
work, all clients and servers need to support the Secure Hash Algorithm - 1 (SHA-1)
hashing algorithm. SCRAM, unlike CRAM-MD5 or DIGEST-MD5, is independent
from the underlying hash function. The P8KDF2 mechanism used by SCRAM also
increases its resistance against brute force attacks;

• Generic Security Services Application Program Interface (GSSAPI) (Kerberos): This
uses a Kerberos ticket mechanism, which is a very secure way of providing authenti-
cation. It is a great choice for big enterprises as it allows the companies to manage
security from within their Kerebros Server. Additionally, all communications are au-
tomatically encrypted with SSL. The only drawback of this approach is the difficulty
of configuration and implementation presented;

• OAUTHBREAKER (KIP 255 - Kafka Improvement Proposals): This will allow
the cluster to leverage OAUTH2 tokens for authentication of users. OAUTH2 is a
flexible framework with pluggable implementations and flexibility in its configuration
to provide clients with a secure way of authentication. This proposal has currently
been accepted.

4.5.5 Authorization

As per regular user interaction in a system, there are times in which users cannot interact
with certain elements, due to the lack of permission to do so. Access lists aid the Kafka
Cluster security in a way that it will let the administrators filter who can read and/or
write at a given topic.

Currently with the packaged SimpleACLAuthorizer included with Kafka, ACLs are not
implemented to have Group rules or Regular Expression (REGEX)-based rules. Therefore,
each and every security rule must be written in full, except for the cases in which all are
affected. These ACLs are stored in the zookeeper, so it becomes a liability in the network,
since it becomes much more susceptible to attacks. By storing the ACLs externally, we’re
effectively increasing the attack surface, therefore increasing security.

To add ACLs, consider using the ”kafka-acls” command, since it is oriented to managing
Access Lists regarding the Kafka consumers and producers.

An example of adding permissions so that the user ”alice” can produce messages to the
topic named ”test”:

$ kafka−a c l −−t o p i c test −−producer −−author i z e r−p r o p e r t i e s
zookeeper . connect={IP } : 2181 −−add −−al low−p r i n c i p a l User : a l i c e

Since this method is pretty inconvenient and hard to use in the long run or for creating a
larger rule set, there is a small utility called the Kafka Security Manager, which runs in
a separate docker container. This allows the user to provide the ACLs from an external
source, while synchronizing them continuously with zookeeper.

38

P
relim

in
ary

W
ork

Feature Type Pros Cons

Encryption
Plain Text No extra performance impact on the CPU

In-flight data is not encrypted,
and is vulnerable to attacks such as
MitM and sniffing

SSL Certificates
Provide encryption of the in-flight data by
the use of certificates signed by a certified
authority.

Extra taxing on the CPU
(This can be lessened by using Java version
9 over 8)

Authentication

Plain Text

Easier to set up and to deploy.
Can be used simultaneously
with SSL for encryption of
in-flight data

User data is unencrypted in a raw text file.

Any changes done to this file require
a cluster restart to take effect.

SCRAM

Easier to deploy and set up.
Supports a Salt Challenge using SHA-1,
which must be supported by clients and
servers alike.
PSKDF2 mechanism increases the
resistance against bruteforce attacks.

User data is unencrypted in a raw text file.

Any changes done to this file require
a cluster restart to take effect.

GSSAPI (Kerberos)

Most secure of all the options.
Advised for enterprise use.
All communications automatically
encrypted with SSL

Requires an Active Directory (Kerberos Server)
Hard to configure and set up.

OAUTHBREAKER

Allows the leverage of OAUTH2 tokens
for authentication.
Flexibility of configuration in the OAUTH2
framework.

Still in proposal phase, but has been accepted.
No existing implementations yet.

Authorization
SimpleACLAuthorizer

Comes bundled with kafka.
Allows the creation of authorization
rules.

Each rule must be written in full.
Doesn’t allow the import of external ACLs.
The ACLs are stored in the Zookeeper, which
may become a liability in the network.

kafka-acls
Specifically oriented to managing ACLs of kafka
consumers and producers.

Each rule must be written in full.
Doesn’t allow the import of external ACLs.
The ACLs are stored in the zookeeper, which
may become a liability in the network.

Table 4.1: Security Characteristics - Summary

39

This page is intentionally left blank.

Chapter 5

Architecture

5.1 Proposed Architecture

The 5G architecture requires some high-profile changes in the way the network is man-
aged and monitored, given its flexibility, as well as the introduction of technologies such
as Network Function Virtualization Network Functions Virtualization (NFV) The gen-
eral architecture for the PPS2 components and tasks is divided in three categories, the
Management Plane, the Service Plane, and the 5G Core.

Figure 5.1: A view on the different PPS2 layers and its components [12]

Each layer is assigned with a specific role within the PPS2 task structure, namely:

• The Management Plane contains all operation and support systems that provide the
necessary functionalities to network operators to manage the platform;

• The Service Plane hosts the applications that allow network operators to enable
other layers’ services, such as security related functions or name resolution;

41

Chapter 5

• The 5G Core is, as the name implies, the layer that contains the core functionalities
of the 5G platform, such as policy control and network exposure functions.

The work hereby described fits in the Service Plane, where a dashboard will be developed
to receive data in the form of events from various other platform nodes, and display them
in real time, helping network operators to debug and act quicker upon any anomaly. Its
place in the architecture will be in the Service Plane, alongside other components such as
the HoneyNet, which is a security functionality used to get information on intruder attacks;
the Domain Name System (DNS), the Network Exposure Function (NEF), which takes
care of exposing some network functions to outer networks/services, and the Vulnerability
Assessment System (VAS), which provides information about potential security threats
[12] .

Figure 5.2: The external view of the Security Framework [12]

The proposed architecture (see Figure 5.3) merges the capabilities of a high throughput
message forwarding system provided by Kafka, with the scalability and deployment fea-
tures allowed by containerization using Docker. The messages are then consumed by the
middleware, which takes care of the processing and makes this data available to the dash-
board, where the data is going to be presented to the user. This data may contain events,
notifications or statistical data from the rest of the 5G platform components.

42

Architecture

DNS

NEF

HoneyNet

VAS

APP IDPS

Event Collection

Kafka Broker Cluster

Zookeeper Instances

Middleware

Message Data Flow

Message Delivery

Dashboard

Figure 5.3: A view on the proposed architecture.

This architecture, as shown in Figure 5.3 was considered the optimal way of solving the
problem, taking into account the rest of the platform and the nature of its data, which
can be easily collected in the dashboard with little overhead to the remainder of the
components.

By separating the message brokers and the data processing, we can achieve higher through-
put numbers without compromising data integrity or causing bottlenecks at the dashboard,
keeping all its data relevant and up-to-date.

The expected 5G components to use the platform are the VAS, NEF and HoneyNet, since
they’re the main sources of security-related data in the platform, and the nature of their
data is the most adequate to be displayed in the dashboard.

Given the different types of data we’re dealing with, there will be different kinds of visu-
alization techniques employed, such as:

• Temporal series, with grouped indicators, i.e.: number of events per type, per time
slice, or both;

• Visualization of the events and its attributes;

• Visualization of the grouped quantitative indicators per event type, i.e.: number of
events per level of severity;

• Event distribution per category;

• Other relevant techniques that are relevant to the type of data dealt with but are
yet to be found.

43

Chapter 5

The chosen visualization method will depend on which data it is trying to be visualized,
for example, a simple XY line graph with real-time update will suffice to deal with the
event visualization, however, for its attributes and metrics, tables will be needed.

As part of the UI planning and design effort, a series of mockups were drawn, in order to
test some of the ideas for the layout of the dashboard. These mockups are shown in the
next figures.

Figure 5.4: An idea of how the dashboard could be designed #1

Figure 5.5: An idea of how the dashboard could be designed #2

44

Architecture

These mockups were created based on existing monitoring software and their respective
UI components. Some elements that were also relevant for this project were also debated
and inserted in the mockups. These would then be debated upon in the following months,
refining the UI and the components needed, which would then take the form of the final
dashboard design.

45

This page is intentionally left blank.

Chapter 6

Solution

In this chapter we’ll discuss the decisions that were taken to create the final version of the
project, given the project’s requirements and scope, as well as any changes that had to be
done from the proposed architecture.

6.1 Architectural Decisions

After a series of refinement and testing steps, the final architecture layout for the proposed
solution was reached. In its stable form, the event processing, transport and visualization
subsystem includes 4 main components, namely:

• The Kafka Cluster, which would take care of making the events available to the
middleware, and posteriorly, the dashboard;

• The Middleware, which reads data directly from the Kafka topics and transforms it
into a state which is ready to be accessed and mapped by the dashboard. It is also
tasked with processing some of the metrics;

• The Kafka Streams App, which will take care of the event windowing and some
metrics processing, while dumping the results in a separate, easy-to-access Kafka
topic;

• The Dashboard, which will consume the data fed by the middleware, and display it
to the user in appropriate and intuitive ways.

47

Chapter 6

This resulted in the architecture being slightly changed from the one represented in Figure
6.1, changing to the architecture represented in the following figure:

DNS

NEF

HoneyNet

VAS

APP IDPS

Event Collection

Kafka Broker Cluster

Zookeeper Instances

Streams App

Middleware

Message Data Flow

Message Delivery

Dashboard

Event Aggregation

Figure 6.1: Details of the updated architecture.

This implied that one extra component was added to the system:

6.2 Kafka Streams App

It is a Java application that takes advantages of the Kafka Streams API, which, as de-
scribed previously in the State of the Art chapter, manipulates the data flowing through
the Kafka topics in real time, and in this case is used for two distinct functions:

• Windowing - Kafka Streams has the tools to make message aggregation possible, and
given that the nodes might send a large influx of events, it is important to aggregate
these in order to keep the dashboard as ”clean” as possible, with only the most
relevant information;

• Metrics Processing - The Streams App will also be in charge of processing the incom-
ing data into temporal statistics and make them available to the dashboard. This
function however, will only be used when metrics require processing within a defined
time interval.

Both these processing features will require the Streams App to dump the processed data
onto another dedicated topic, which will then be consumed by the middleware with all the
data it needs.

48

Solution

Regarding the aggregation, this will be done according to the needs of the application, but
for now it will aggregate the events which are categorized as ”Low” priority, to prevent
low priority messages (which are assumed to be the most common) from flooding the
dashboard.

6.3 Message Encoding - JSON vs Avro

Two possible message encodings were considered to be used with the platform: JSON and
Avro.

In the end, it was decided to use JSON, since it allows for more flexibility of the message
format and doesn’t require additional formatting or variable types to be declared. This
would help down the road, since we don’t have direct control over what type of variables
we’ll receive as metrics for processing.

This would turn to be a loss in other departments however, since using JSON over Avro
would mean that the Kafka broker now couldn’t run schema checks, and therefore the
JSON message integrity/parameter checking needed to be done at the middleware rather
than at the broker, which is an extra step of data flow, not to mention additional coding.

6.4 Updated Data Model and Details

The data model was reviewed multiple times, mainly trying to fix the problem of dealing
with unknown formatted data being sent to the dashboard for metrics processing. This
lead to a few debates between myself and the Coordinators, in which we discovered some
problems:

• There is the need to hard-code the base message format, so both the Streams App
and the Middleware can interpret it and de-serialize it accordingly.

However, this is out of our control, because we do not know which type and how
many metrics each node will send, and the dashboard has the need of interpreting
the metrics according to the node it is sending;

• Selecting the node via IP is not also a viable solution, since the nodes might be
hidden behind forwarding mechanisms (Network Address Translation (NAT), VMs,
Virtual Network Function (VNF), Port Forwarding, etc...);

• Since the events are to be sent by other partners, we cannot hardcode the metrics
in the components, therefore there is the need to do profiling.

Profiling was the solution that we concluded was the most fitting to the problem,
and it is based on using a dedicated parameter in the message format - ”agent” to
dictate which profile will be used to de-serialize the message. This will, of course,
mean that there will be two significant drawbacks:

– The increase in processing time, due to both the middleware and the Streams
App now have the need to check which profile is being used by the event sent;

– The fact that each profile will have to be manually created and added to the
collection, on demand.

49

Chapter 6

Given this, the data model document has since been updated, with more detailed expla-
nations about each field: its intended uses and limitations, which will be detailed below:

Figure 6.2: Details of the updated Data Model.

Regarding the global structure of the data model, there will be two new fields - ”agent type”
and ”agent id”:

• The ”agent type” field will be used to allow the user to see which 5G network
component the event came from, as for the dashboard, this will allow it to know
which calculations should be done with the metrics received along with this event,
without the need of a specific data model for each type of node;

• The ”agent id” field will allow the dashboard user to see which instance of the service
the event came from, in the case of a service being hosted by multiple instances/-
containers/VNFs.

As for the other fields:

• The ”count” field was added in the previous Data Model iteration, and was intro-
duced mainly because of the need of aggregating data, this way, the events can
be aggregated seamlessly to the dashboard, without having the need of creating a
different data model specifically for aggregated events;

• The ”type” field will dictate the type of the event, and its value will be selectable
from a static list of pre-programmed values, that follow the criticality values used in
the Syslog Protocol, according to RFC 5424;

Its possible values are:

– Emergency: The system is inaccessible;

50

Solution

– Alert: Immediate action should be taken;

– Critical: Critical condition;

– Error: Occurrence of an error;

– Warning: Warning about possible problems;

– Notice: Information about an event of possible significance;

– Information: Informational messages;

– Debug: Debug Messages.

• The fields ”name” and ”context” will contain detailed information about the event.
These will be filled by the producer, and while ”name” is a short description, with
a 25 character limit, ”context” allows for a more detailed description, up to 250
characters;

• The ”metadata” field is where all the metrics would be stored. As it was concluded
earlier, the different nodes will use different metrics, and different operations will be
performed upon them. The dashboard needs to know how to identify which node is
sending these metrics and do the calculations accordingly.

This is where the ”agent type” fields come in, which allows both the middleware
and Streams App to differentiate the incoming event based on this value, effectively
creating a profiling mechanism to be used for each kind of node.

The following image is an example of a filled event, at the time of arrival at middleware:

Figure 6.3: Example of an event at the time of arrival at the middleware.

These changes, field descriptions and requirements were all compiled and sent to the
partners, so that they could start producing actual data to be used at the dashboard.
Clients were also asked to fill a form containing the agent identification and all the relevant
metrics that they would send. This would then, in turn, allow me to create profiling
mechanisms for the middleware to separate which metrics to use which operations on, and
which display methods to use.

51

Chapter 6

6.5 Testbed Deployment

A demo is planned, to showcase the integration between the components implemented by
Faculdade de Ciências e Tecnologia da Universidade de Coimbra (FCTUC), Ubiwhere and
OneSource, which are the other partners involved in the project. This was scheduled for
early October, and I was asked to deploy the dashboard and its components into a testbed
owned by the project, hosted in Aveiro. The objective of this deployment was to test the
compatibility of the software with the other partners’ tools.

This deployment was made in OpenStack, using two separate instances: one for the Kafka
cluster, and another for the middleware, dashboard and Streams App. There were some
problems in the logistics part of the deployment, mainly with the lack of resources that
were allowed to the quota given to the FCTUC group, which delayed the total operation
by about two weeks.

The objective after the deployment was completed was for the dashboard to interact with
real data, provided by OneSource, instead of data generated by the event generator that
was created. This meant that it was requested to OneSource to specify which metrics it
would send to the dashboard, as well as which types of data processing would be useful.
This processing would then be programmed in the Streams App.

Of the two OpenStack instances that were created:

• One contained the dashboard, middleware, and Streams App, and was given:

– 8GB RAM

– 4 Virtual Central Processing Unit (vCPU)

– 50GB SSD

• The other exclusively contained the Kafka cluster, and was given:

– 16GB RAM

– 4 vCPU

– 50GB SSD

It was decided to have the Kafka cluster separated from the rest of the dashboard
elements in case of a higher Kafka throughput necessity, since it could be easily
scaled to demand on the same machine.

After the deployment was made, the Data Model document was updated to include some
information that was necessary for the partner to successfully connect to the Kafka broker
that was missing in older versions, as well as some troubleshooting solutions for future
partners from smaller problems that happened during the deployment with OneSource.

6.6 Metrics Processing Decisions

For now, the platform is programmed to do processing for two partner entities: OneSource
and Ubiwhere, where they would then be contacted to provide them the Data Model, which
was necessary to understand the data format and its characteristics.

After each partner filed the requirement with the metric-specific parameters and their use
in their specific platform, a method of allowing the end user to get the most information

52

Solution

while minimizing clutter in the GUI would be devised. For this effort, charts and tables
were mostly used, as well as some global indicators.

Most information sent by these partners is going to be somewhat session-based, however,
since there wasn’t a specific time-slice required for the processing, most of the processing
is going to be done in the middleware rather than in the Streams App, since the latter
requires a specific time to be set for aggregation purposes.

Some time was also spent talking individually to the partners to mostly learn more about
the nature of the data that was going to be sent to the dashboard, to ensure that both the
design and data processing was according to their liking and in context of the monitoring
of each of the partner’s platforms, and finally to debate which visualization methods would
be the best to demonstrate the processed data in an easy to understand way. By having
this personal interaction with the partners, a lot of development by trial and error was
avoided, and allowed the reuse of some code and paradigms that were created for the data
processing and session-grouping.

Below, the details of each of the partners’ proposes and how I handled their requests will
be detailed.

6.6.1 OneSource - NEF

For the NEF, the following parameters would be sent by OneSource:

• api route: this parameter indicates the API route which is under attack;

• attack count: The number of attacks made to the paired API route, which serves as
a blocking threshold.

After some analysis of this data and the ways it could be represented, I chose a graph to
represent the attacks across the time, including time-slice filters for easier visualization,
as well as a table that listed all the routes, and kept track of the cumulative number
of attacks made to each one. All of this was complemented by a general counter, that
displayed the sum of all threats from all routes.

By categorizing and storing the events based on which route they occur, I can create
datasets which then can be used to populate either the graphs or the tables. These show
more details about each route in specific, for example: all the time stamps of each event
and the corespondent number of attacks.

6.6.2 Ubiwhere - HoneyNet

For the HoneyNet, the following parameters would be sent by Ubiwhere:

• session id: this identifies an open attacking session, and will be used to uniquely
separate datasets;

• intrusion type: identifier of the type of intrusion made;

• source ip: source IP address of the intrusion;

• dest ip: destination IP address of the intrusion;

• service: what services are being attacked;

53

Chapter 6

• action: what command the attacker performed.

Each event that is received from the HoneyNet will represent either an ongoing attacking
session or a new attacking session, with the finality of storing the commands performed
by the attacker in the entirety of a session. Like the NEF case, since there’s a session
paradigm happening, we can use the session identifier to categorize and separate each
session’s info and actions performed, which can then be used to either populate charts or
tables.

Here it is slightly harder to do a session based chart, since the Y axis isn’t quantifiable,
however that allows us to use it as the session identifier, solving a few problems. The
visualization methods here would comprise of three methods: the session listing table,
where all the sessions and its main characteristics would be listed, followed by a session-
actions graph, which highlights the periods of activity during an attack session.

Finally the actions table, which displays commands done by the attackers in all sessions,
ordered chronologically, which can then be filtered per unique session, to show each ses-
sion’s attacks and respective time stamps.

6.7 Dashboard Design and Component Decisions

As previously mentioned, a skeleton template of the ATENA project dashboard was used
as a base to create this project’s dashboard. It was decided to go for a simplistic approach,
having as much relevant information displayed in a accessible manner, in a way that the
user could get the most of some general system statistics, as well as some of the latest
happenings in relation to event arrivals.

For navigation purposes, the dashboard also has a sidebar menu for easy access of its
different parts, currently having three tabs, with the metrics tab containing all the pages
related to metrics processing.

The following pages detail the contents of each page, as well as the features that were
added to allow the user to have a more efficient navigation across the dashboard:

54

Solution

• Main Page: here’s where all the most relevant information about the events and
Kafka broker is located, and is used as a general page to collect statistical data on
all the nodes sending events to the dashboard, as well as Kafka topic usage;

Figure 6.4: Main page of the dashboard.

• BlackBox Log: this page contains a more extensive log used to search up patterns
or old events;

Figure 6.5: Black Box log of the dashboard.

55

Chapter 6

• Metrics: here’s where the metric processing pages are located. For now, this menu
is composed of the two entities that worked with us so far - NEF (OneSource) and
HoneyNet (Ubiwhere);

The following pages try to describe each page and its functionalities, starting with the
main page. The main page contains the following components:

• General Event Counters: there are a total of three counters on the top part of the
dashboard, each indicating how many events per priority type are currently stored
in the dashboard;

Figure 6.6: Dashboard event counters by severity.

• Main Event Arrival Log: this log contains the latest 500 events arriving at the
dashboard, categorized by colour according to their priority (Low - Green, Medium
- Yellow, Critical - Red), with a dedicated search bar and color filter checkboxes, for
an in-depth search. The main parameters of each content are listed in this table,
while the full contents of each event can be seen by clicking each event on the log,
which displays a window with all the event information in a raw format;

Figure 6.7: Main event log of the dashboard.

56

Solution

Figure 6.8: In-depth viewing of an event’s details.

• Prometheus Topic Monitoring: this chart displays the activity of each Kafka topic
being used over the last two minutes. The main goal of this tool is to be able to
analyze and react to discrepancies of topic usage and sudden increases in overall
Kafka usage and consequent event arrival.

Figure 6.9: Prometheus Kafka topic monitoring.

To set up the Prometheus monitoring tool, it was also necessary to add a Prometheus
agent to the Kafka brokers, which was configured in the Docker-Compose file. Then,
the monitoring can be set up by directly accessing the data that is collected by that
agent in the dashboard itself;

57

Chapter 6

• Event Statistics Radar: this radar displays, in a simple manner, the amount of events
currently on the dashboard. These are categorized by arriving agent and per priority
(colour) in percentage form. It is also possible to hide and show layers of the radar
to avoid confusion, in this case a layer being a type of severity;

Figure 6.10: Dashboard radar chart displaying severity statistics of the registered nodes.

• Critical Event Log: This tool is used as a separate log that only displays the critical
events, for a more simple and condensed view of these more important type of
events, which usually require immediate action. Any event on this log can then be
acknowledged, which removes it from the log, however, it will still remain on the
other logs (Main Events Log & Black Box Log).

Figure 6.11: Critical event log of the dashboard.

58

Solution

Next up is the BlackBox Log page. This page contains only one element, the black box
log. This is a log that keeps records to a larger extent, in case the user needs to look up
older data for either event pattern purposes, or just for debugging problems. Since its size
is considerably larger than the Main Event Log located on the main page, it was decided
that it should have its own page, to not affect overall page performance.

Figure 6.12: BlackBox log being used with color (severity) and agent filtering.

Finally, the metrics processing pages, where we can look up some of the received metrics,
as well as some statistics calculated by the middleware:

• NEF (OneSource): As previously mentioned, the metrics that originated in the NEF
would consist of two variables, ”api route” and ”attack count”. This meant that with
each event received, a total number of ”attack count” attacks had occurred to the
API route located at ”api route”. So, it was important to keep track of how many
attacks had occurred, per route, as well as the total of attacks so far,

Figure 6.13: NEF Metrics Page - Total and per-route threat counters.

59

Chapter 6

For this purpose, the NEF processing page contains a total attack tracker, located at
the top of the page, which displays the number of total attacks done to date, as well
as a table detailing how many attacks per route have occurred so far. For an easy
temporal identification of each event arrival, the page also possesses a chart that
displays a timeline for each API route, in which the user can check how many and
at what times did attacks for each route happen. This chart can then be filtered to
display only events from the last 1/5/24 hours (configurable), to reduce the amount
of irrelevant data shown to the user;

Figure 6.14: NEF Metrics Page - Chart displaying threat occurrences per route.

• HoneyNet (Ubiwhere): Regarding HoneyNet, the dashboard will be receiving data
regarding attack sessions (”session id”), in which it is important to keep track of
every command performed by the attacker during the session (”action”). Therefore,
the same paradigm as the one used in NEF also applies, in which we have a session-
based system, and we need to aggregate data from incoming events to their respective
sessions, to then perform some calculations to obtain relevant data to the end-user.

Figure 6.15: HoneyNet Metrics Page - Session details and activity throughout time.

60

Solution

For this purpose, this page possesses a general counter displaying the number of
ongoing sessions, a table that displays session information in a more detailed way,
such as type of intrusion and source/destination IPs. Like the previous page, it also
features a chart that displays each session’s activity on a timeline, with each action
associated with its timestamp. This chart’s usage was thought to be more towards
gauging each session’s activity across time, which can be helpful debugging problems
or identifying attacker behaviour/patterns or even detecting system backdoors and
faults.

Figure 6.16: HoneyNet Metrics Page - Session activity chart, in detail.

Finally, we have a chronologically ordered table that displays each action, and core-
spondent timestamp and session. This can be then filtered to display only attacks
from a certain session.

Figure 6.17: HoneyNet Metrics Page - Attack listing, chronologically ordered.

61

Chapter 6

The dashboard was created with expansion in mind, so that more metrics page can be
freely added and the data structures used for both HoneyNet and NEF could be re-utilized
or reprogrammed to fulfill very different objectives.

62

Chapter 7

Validation

7.1 Overview

This dashboard was designed with the goal of supporting a heavy event flow, and that
was made clear by the choice of using Kafka, which supports a heavy message throughput.
However, the remaining components that take part in the architecture must be tested,
to ensure that the performance level provided by Kafka is not wasted with upstream
bottlenecks.

Regarding Kafka itself, there are plenty of comparison tests available in the literature,
and has been proven to perform consistently with performance levels much higher than
needed for this case in particular, Reason why there is no need to perform further tests to
its performance in the scope of this project.

There are two components which must be tested to ensure that the whole architecture
provides an acceptable degree of performance. These two components will of course be
the middleware and the Streams App.

Given that the middleware doesn’t store data in a static database or file, instead using a
buffer to store all the events and the data it processes, there will be direct performance
limits imposed. Still, for the intended task, the expected performance of both middleware
and Streams App should suffice.

63

Chapter 7

7.2 Setup for the validation tests

During the development and testing of the application, all the components were hosted
in a server running bare metal VMware ESXI 6.7 located at Department of Informatics
Engineering (DEI), with the following characteristics:

• Manufacturer: Dell Inc.;

• Model: PowerEdge R430;

• CPU: 8 CPUs x Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz;

• Memory: 63.78 GB DDR5;

• Storage: 900GB Solid State Drive (SSD).

To make sure that the test results weren’t being compromised by hardware limitations,
the Kafka cluster was set up in a VMWare ESXI 6.7 Virtual Machine, with the following
specs:

• 16GB RAM

• 4 vCPUs

• 35GB SSD

All of the packages installed were to the usage of project’s components, to prevent clutter
and resource misusage.

As for the rest of the components, namely dashboard, middleware and Streams App,
they’ll be running on a separate VM, with the following specs:

• 32GB RAM (16 of which added after VM ran out of memory running certain sets)

• 4 vCPUs

• 35GB SSD

It is important to mention that during the tests, the server resources were solely allocated
for that purpose, meaning no other resource-heavy tasks were running on another VM in
the same hardware.

7.2.1 Planning

The decision to have the Kafka cluster separate from the rest of the components was
made due to the fact that the middleware uses the buffer system, rather than a database.
This implies that for large volumes of events, the impact that the middleware can have
on the system resources may hamper the Kafka cluster performance, which could affect
or even invalidate the performed tests. Also, this allows the replication of a production
environment, which will increase the quality of the results.

64

Validation

As previously mentioned, there is nothing new to gain in testing Kafka itself, as it has
already been tested numerous times by other papers, and is, in its whole, a ”battle-tested”
application.

The same does not apply for the remaining of the components, mainly the two possible
data bottlenecks, the Streams App and the middleware. These will have different testing
scenarios best suited to the operations they perform: for instance, the Streams App will
deal with scenarios in which only events with Low priority are created, since these are the
only ones it processes at the moment. Meanwhile the middleware, which will normally
handle a larger amount of data, will deal with scenarios with heavy event flows.

The following subsections detail the tests that will be made, as well as the metrics that
are to be collected, to then be reflected upon.

7.3 Test Scenarios - Introduction

All scenarios described in this subsection will use the event generator created for the pur-
pose of testing the platform, since it has more availability than data created by partners,
and is flexible enough to be changed at my will, for any testing purposes that might occur.

This generator creates data that mimics those of the partners’, staying loyal to the defined
formats. At this point, it can even generate random metric datasets based on the two
partner profiles that were implemented in the dashboard: NEF and HoneyNet. These are
sent to the dashboard, processed by the middleware, and shown to the end user according
to the visual representation method chosen that I thought was best suited, given the data’s
nature.

Given the previous statement, it is fair to say that the event generator can be used for stress
testing of the platform without any issues, provided it can keep up with the production
throughput that is required. After testing the generator in an isolated environment, it was
concluded that it is suitable to be used in the testing, given it can create the quantity of
messages specified in the test scenarios.

7.3.1 Considerations

Since the platform does not use a database system to store the events, it will fall to me
to decide in which manner to handle the buffer, a topic that will be debated later in this
chapter.

Regarding the tests, the buffer size will be a major factor, due to the sheer amount of
events it can handle at a given time (which will also be dictated by system RAM, mostly),
so it will be taken in consideration when modifying the non-static variables of the tests.

For performance sake, the visual debugging on the console was kept to a bare minimum,
to prevent visual bottlenecking caused by console stdout throughput, which would affect
overall application cycle speed.

For a better testing flow, the following method will be applied to the test datasets:

Producing X (varied by testing set) events, it is important to know:

1. Arriving time of the event (middleware)

65

Chapter 7

2. Time after processing has been done to the event (middleware)

3. Time between 1 and 2 - total effective processing time

As for the Streams App, the same rules will apply, but since it currently only processes
the traffic categorized as Low Priority, constituting about 33% of the data, the generator
will have to be tweaked for flows consisting of only data from that type.

The minimum time between events will follow a specific events per minute ratio, which
will then be increased to test the actual middleware throughput. If the middleware cannot
handle event arrival at the proposed speeds, this be will also be documented and analyzed,
to see whether the middleware and Streams App can keep up with full production speed
of the Kafka producers.

Regarding the Kafka cluster and its usage by both middleware and Streams App, there
will be two topics, one that contains the raw data sent from the generator, simulating
data coming from all the partners, called ”main”, and another topic, which will be used
to store the Streams App processed data, ”streams”.

The middleware will then read from both these topics simultaneously, getting all the data
it needs for its computational purposes.

7.4 Test Scenarios

A few test scenarios were thought of, namely:

Total Capacity - These will test the buffer’s capacity, and how its size affects overall
platform’s performance:

• Set 1: 10000 events;

• Set 2: 100000 events;

• Set 3: 500000 events.

Events per Minute - These will test raw throughput of the platform, and how its perfor-
mance will behave with different arrival times between events:

• Set 1: 1000 events per minute;

• Set 2: 10000 events per minute;

• Set 3: 100000 events per minute.

There will also be two categories/variants of the scenarios proposed above:

• Variant 1: The test will comprise of data that mimics the nature of the data that
will be sent to the dashboard, with each events’ content randomized, as is normally
done by the generator;

• Variant 2: The test will comprise exclusively of data that suffers extra processing
(simulated data that originates from NEF and HoneyNet - OneSource and ubiWhere,
respectively).

66

Validation

These two variants are separated into the stated due to the fact that it allows the tests to
stay loyal to the data’s nature, achieving a high degree of fidelity and a good representation
of how it will perform under a real production environment (Variant 1), but also how it
will perform under the highest load it can possibly have at a given time (Variant 2).

Regarding repetitions, each combination of test (Set + Variant) will be done 10 times,
and the final result will comprise of its average and standard deviation, as well as analysis
to other factors, such as the buffer in case of the middleware.

As for the Streams Apps, the same scenario sizes will be used, however, the production will
be changed to have only low priority events, since they’re the only ones (at the moment)
being processed by this application.

Regarding the capacity tests, on larger sets, there might be an issue regarding the buffer
size, in which it may be needed to expand on resources of the machine. If that does
happen, it will be mentioned, as well as what new resources are introduced.

To get the effective processing time of each event done by the component in question, be
it the Middleware or Streams App, there’s no need to take in account the time frame since
the event is produced up to the moment he reaches the middleware, to avoid introducing
extra variables to the testing, such as network speed, SSD read/write speed, and inter-VM
communication processes. Therefore, the testing method used will be:

Scenario
Timeframe

Messages
produced by the

Generator

Event arrives at middleware Relevant
Data

Event finishes processing

Figure 7.1: Sequence of actions before an event is sent to the dashboard.

7.5 Event Integrity Testing

Two types of tests other than performance tests can be performed to assure the quality
of the software, these being:

67

Chapter 7

• Invalid JSON: Events produced by the generator will be intentionally erroneous
and contain fatal structure errors to the point that are ”unparseable” by the JSON
parsing function;

To allow for a better understanding of the middleware’s behaviour during this in-
tegrity check, a Black Box test using the Equivalence Class Partitioning technique
was done, of which the test cases are detailed below:

Input Valid Equivalence Classes Invalid Equivalence Classes

JSON message

Input 01:
Message with all mandatory fields
and 3 metadata variables;

Input 02:
Message with all mandatory fields
and 16 metadata variables;

Input 03:
Message with all mandatory fields
but no metadata variables.

Input 04:
Message lacking one or more
mandatory fields.

Table 7.1: Black Box Test test cases for invalid JSON formats using the Equivalence
Class Partioning technique.

• Invalid Data format: Events that will not follow the parameters or variable limita-
tions defined in the Data Model document, which the middleware will check before
doing any kind of processing.

For this purpose, the same test was done, but this time the parameters tested were
the mandatory variables and their type. The following table describes the test cases
of this test:

68

Validation

Input Valid Equivalence Classes Invalid Equivalence Classes

JSON
message

Input05: event id = “1”
Input06: event id = “2147483647”
Input10: agent type = “NEF”
Input14: agent id = “5”
Input18: timestamp = “2019-05-30”
Input22: sourceip = “95.133.240.54”
Input26: count = “0”
Input30: type = “Alert”
Input33: priority = “Low”
Input37: name = “Sample Event”
Input41: context = “Sample Context”

Input07: event id = 1
Input08: event id = “!”
Input09: event id = “a”
Input11: agent type = 1
Input12: agent type = “245”
Input13: agent type = “#%”
Input15: agent id = 2
Input16: agent id = “hello”
Input17: agent id = “&/(“
Input19: timestamp = 2
Input20: timestamp = “May”
Input21: timestamp = “=)(“
Input23: sourceip = 1
Input24: sourceip = “jah”
Input25: sourceip = “&oˆ”
Input27: count = 0
Input28: count = “zero”
Input29: count= “?!?”
Input31: type = 7
Input32: type = “**?”
Input34: priority = 0
Input35: priority = “7”
Input36: priority = “:;:;:”
Input38: name = 9
Input39: name = “8”
Input40: name = “><><”
Input42: context = 8
Input43: context = “1”
Input44: context = “/&%$#”

Table 7.2: Black Box Test test cases for invalid JSON parameter validation using
the Equivalence Class Partioning technique.

7.6 Results

The test results were taken as an output to a text file, and then exported to an Excel
spreadsheet, where they would be used to calculate several useful metrics and create charts
to illustrate some of the key points of this experience. However, there were a couple points
that could be taken right after the tests had ended, without even looking at the reported
values. We’ll discuss these further in this section, but let’s first take a look at the global
test results.

7.6.1 Blackbox Test Results

Regarding the JSON message format tests, all tests concluded with a success rate of 100%,
guaranteeing that an erroneous event containing fatal data structure errors are discarded
by the middleware, and do not undergo any type of processing.

69

Chapter 7

The same applies to the JSON parameter validation tests, which also concluded with a
success rate of 100%, guaranteeing that events that contain data that does not match the
specified limitations and standards defined in the Data Model document are not processed.

7.6.2 General Test Results

The first question that needed answers was: ”Can the software perform under the pro-
posed test sets?”, meaning, could the software complete all the proposed tests? Table 7.3
illustrates whether the tests could be completed or not for the major test sets:

Test / Application Middleware Streams App

Buffer Capacity
10k

V1: Yes
V2: Yes

No buffer.

100k
V1: Yes
V2: Yes

500k
V1: Yes
V2: No

Event Throughput
1k per minute

V1: Yes
V2: Yes

V1: Yes
V2: Yes

10k per minute
V1: Yes
V2: Yes

V1: Yes
V2: Yes

100k per minute
V1: No
V2: No

V1: Yes
V2: Yes

Table 7.3: Completion results for Capacity and Throughput tests done.

70

Validation

7.6.3 Capacity Tests

As previously mentioned, these tests aim to test the capacity of the buffer used by the
middleware, as well as the effect that a high number of events have on its overall per-
formance. Chart 7.2 and table 7.4 illustrate the values obtained for the capacity tests
done:

0.693
2.970

16.415

1.846

18.434

54.539

Pr
oc

es
si

ng
 T

im
e

(m
s)

0

20

40

60

10k 100k 500k

V1 V2

Event Processing Time Averages

Figure 7.2: Capacity/Buffer Tests - Average event processing time, in milliseconds, per
set/variant combination.

71

C
h
ap

ter
7

Set Variation Minimum Quartile 1 Median Quartile 3 Maximum Range Average Std. Deviation

10k
V1 0.0102 0.0708 0.1224 1.1662 6.5794 6.5692 0.6926 0.9539

V2 0.0741 0.9153 1.7543 2.6013 7.3469 7.2728 1.8457 1.1060

100k
V1 0.0089 0.0465 0.1437 5.1858 83.5888 83.5799 2.9701 4.6042

V2 0.0723 8.6799 17.4786 26.8181 137.6163 137.5440 18.4342 11.8192

500k
V1 0.0086 0.1272 0.6090 27.4776 449.7409 449.7323 16.4145 26.0342

V2
(300k out of 500k
sample size)

0.0749 24.7074 51.8328 79.1531 2971.9506 2971.8856 54.5388 36.1368

Table 7.4: Middleware capacity (buffer) test results, in milliseconds.

72

Validation

As mentioned in chart 7.3, the 500k set for Variant 2 wasn’t completed due to hardware
limitations. Therefore, the data shown in the table 7.4 that refers to that test has a sample
size of 300k, however, this sample is still large enough that allows the observation of the
middleware behaviour to large data sets.

As we can see, there’s an exponential increase in the average event processing time as the
buffer grows, more so if the event has extra metrics to be processed (Variant 2). This
behaviour happens because the middleware keeps track of all the metrics collected and
uses them to populate the respective tables/charts. After a couple hundred thousand
occurrences, this causes the cycle speed of the middleware to drop substantially because
it uses mostly arrays of objects to store the events, iterating through these arrays with
lengths in the hundreds of thousands every other cycle.

Since the events contain metrics that are created in a session-based paradigm, there’s an
importance to keep track of previous events, either for debugging purposes or to facilitate
general problem-solving. Even though Variant 2 consists of cases of the highest middleware
usage possible, and by no means should occur in a production environment, the values
obtained by these tests are useful to estimate a ”ceiling” or limit to the buffer, as well as
discuss in which way to overcome these limitations.

The buffer limits may be implemented in a few different ways which will be discussed later
on in this chapter, but for now, let’s analyze the processing time growth in-between the
sets, to try to estimate a limit number to the events the buffer should support, in a way
that preserves performance, but also allows storage for a sufficient number of records and
metrics.

The following charts illustrate and compare the growth of the processing time in quartile
1 (25th percentile), 2 (50th percentile / Median), and 3 (75th percentile), for all test sets
and its variants:

0.07 0.12

1.17

0.92

1.75

2.60

Pr
oc

es
si

ng
 T

im
e

(m
s)

0.00

1.00

2.00

3.00

Q1 Median Q3

V1 V2

Processing Time Growth (10k)

Figure 7.3: Processing time growth across the test, for the 10k set and both variants.

73

Chapter 7

0.05 0.14

5.19
8.68

17.48

26.82

Pr
oc

es
si

ng
 T

im
e

(m
s)

0.00

10.00

20.00

30.00

Q1 Median Q3

V1 V2

Processing Time Growth (100k)

Figure 7.4: Processing time growth across the test, for the 100k set and both variants.

0.01 0.61

27.48

24.71

51.83

79.15

Pr
oc

es
si

ng
 T

im
e

(m
s)

0.00

20.00

40.00

60.00

80.00

Q1 Median Q3

V1 V2

Processing Time Growth (500k)

Figure 7.5: Processing time growth across the test, for the 500k set and both variants.

With these charts, we can conclude that the increases in processing time happen the most
during the third quartile for Variant 1, while increasing at a steady rate since quartile 1
for for Variant 2. However, for the 500k set, these increases in performance time are much
more harsher. Therefore, for a stable middleware performance, I estimate that no more

74

Validation

than 100k events should be kept in the middleware at a given time: this guarantees that
incoming events have a good processing time while keeping the middleware resource usage
at an acceptable level.

In relation to the buffer limits that should be imposed to guarantee a high level of mid-
dleware performance, the buffer limiting, or ”event purging” can be done in a couple
ways:

• Session-based purging: It is agreed with a producer to send an event with a special
flag to signal the middleware to purge all the events from that session from the buffer.
This requires additional programming and coordination from both the middleware
and the partners, so it should be agreed upon before event production from that
producer even starts, to confirm that event production is within the defined structure
(according to the data model document);

• Timeframe-based purging: Events will be deleted after a certain period of time,
cyclically. This timeframe could eventually be agreed with the partner, and in
practice, each partner could set his event ”purging cycle”, depending on whether
they needed their data to remain longer on the dashboard. However, this could
result in critical data loss in cases of a shorter purging cycle, and reversely, could
contribute to starvation of some partners: in cases where one or more partners would
choose a rather long ”purging cycle”, which meant the partners with low cycles had
overall less buffer capacity to work with;

• Buffer-Size-based purging: When new events reached the middleware and the buffer
was full, or near its capacity, the middleware would automatically purge the oldest
data in store, in order to make space for the new data. This could also result in
critical data loss since now the data wouldn’t be prioritized, but would however solve
the problem of buffer starvation.

The implemented method as to now is the Buffer-Size-based purging, since there’s no data
on how long the partner’s data should be kept in the dashboard. In the future, the other
possibilities can be explored and programmed accordingly to the partner’s needs.

7.6.4 Throughput Tests

Middleware

These tests objectively test both Middleware and Streams App event throughput, with
the finality of getting an estimate of how many events per minute these platforms can
support, and if these values are suitable to the project’s demands.

Referring to table 7.3, we can check that test sets for 1k and 10k per minute concluded
successfully, while the 100k per minute concluded non-successfully. The first variant tested
in each set was always variant 2, because this implied that if the test was successful for
that variant, which is the one with the heaviest data flow, by proxy, it would also be
successful for variant 1. Since the 100k per minute test wasn’t successful for variant 2,
variant 1 was also experimented with, without any success, however.

Figure 7.6 represents the results obtained during the tests:

75

Chapter 7

0.317

1.832

3.040

Number of Events per Minute

Av
er

ag
e

Pr
oc

es
si

ng
 T

im
e

(m
s)

0.000

1.000

2.000

3.000

4.000

1k 10k 100k (16k sample)

Middleware Throughput

Figure 7.6: Average event processing time of the different sets over periods of one minute,
in nanoseconds.

From figure 7.6 we can see that the increase in processing time aligns with the data from
the previous capacity-related charts, as it gets progressively higher as the buffer gets filled
with events.

For the 100k events per minute case, as it was previously stated, the middleware couldn’t
handle an influx of events of that dimension, and from the 100k events, only managed to
process approximately 16 thousand, making it the sample size for the 100k per minute
test.

This means that the Middleware could eventually be optimized to allow for a bigger flow
of events, but for the project’s demands, it’s safe to say that the performance levels are
sufficient.

Streams App

In relation to the Streams App, all tests concluded successfully, and it was specially im-
portant to test this to make sure the generator could actually create all the ratios stated
(1/10/100k per minute), this would erase any uncertainties in relation to the 100k per
minute case Middleware test.

Since it was created with the dedicated Kafka Streams API, the performance expected is
to be quite superior to the Middleware’s. Figure 7.7 represents the results obtained during
the tests.

76

Validation

68.814 75.725 72.955

Number of events per minute

Av
er

ag
e

Pr
oc

es
sin

g
Ti

m
e

(n
s)

0

20

40

60

80

1k 10k 100k

Streams App Throughput

Figure 7.7: Average event processing time of the different sets over periods of one minute,
in nanoseconds.

The Streams App completely overthrew the performance levels of the Middleware, getting
substantially lower processing times, and eliminating any problem of throughput, allowing
for rates of at least 180k events per minute, almost double the amount of the highest set
tested. With these results, it is safe to say the Streams App won’t need any optimizations
to work at the project’s demands of performance, and should suffice even if the dashboard
was expanded upon.

7.6.5 Observed Behaviour Mid-Test

Middleware

The middleware was visibly impacted by a large buffer size, which was shown during the
500k event sets: while the Variant 1 sets could be completed, it took a massive amount of
both time and system memory to hold all that data in a buffer, and the event processing
time got severely affected the bigger the buffer got. As to the Variant 2, since it included
only events that would suffer extra processing, the system would run out of memory much
sooner (not even 300k events in), which would force me to kill the process all-together.

To even be able to complete the Variant 1 of the 500k set, the allocated 16 GB of RAM of
the VM were not enough to hold all the data. Therefore, to guarantee that the test could
be concluded, 16 additional GB of RAM were allocated (to a total of 32).

As for the throughput impacts in the middleware, the 100k per minute tests could not
be concluded successfully, as the middleware could process a maximum of 39k events in a
minute for Variant 1, and about half that value for Variant 2, implying that events used
for metrics processing take about double the processing time than a regular event.

77

Chapter 7

Streams App

Regarding the Streams App, the throughput test results were the expected, and the ap-
plication aced all the performance tests, also guaranteeing that the producer used could
indeed provide production rates of more than 100k events per minute. Since the Kafka
Streams API was built to work directly at the broker level, the App had no problem push-
ing 100k events per minute, and in fact, could push almost double that value if the event
production ratio was left uncontrolled.

There were no buffer tests done to the Streams App because it uses only one event as
a tuple to aggregate incoming data. This tuple is then sent to a topic after the defined
timeslice has expired, and therefore would make no sense in testing its storing capacity.
For the intended purposes of metrics processing, as previously said, the Streams App isn’t
being used to process extra metrics, due to the fact that these require a session-based
paradigm rather than a timeslice-based, which is the one used by the Kafka Streams API.
So, for now, the Streams App is purely aggregating incoming low priority events and
sending them to the dashboard in intervals of 5 minutes (configurable).

7.7 Partner integration meeting

There was a meeting scheduled for integration purposes with OneSource, to make sure
both components were up and running, and could be used in the upcoming App-Intrusion
Detection and Prevention System (IDPS) Demo in October. This meeting consisted of
partners from OneSource, UbiWhere, our group from University of Coimbra (UC) and
several other entities, and served as a discussion ground for development status and what
steps to take next.

This meeting happened in the University of Aveiro, in the Institute of Telecommunications,
and for my part of development, it consisted of two parts:

• Meeting with our partners from ubiWhere, to talk about the metrics that they would
send to us, and what processing needed to be done.

• Meeting with our partners from OneSource, to integrate and test our tools, as well as
the version of the dashboard that was deployed in Aveiro’s Testbed. This instance of
the dashboard would then be used for demonstration purposes in the implementation
demo in October.

The partners at OneSource were generally pleased with the integration efforts that were
placed creating the platform, and managed to send events to the dashboard with minimum
issues. Regarding the metrics processing part, there was also a green light after the partner
from OneSource said the processed information was displayed in a simplified and intuitive
manner.

When debating what kind of information display to use with the ubiWhere partners, a
demonstration was done to OneSource regarding the metrics processing component, which
was already implemented at the time. They did then use this demo to try and come up
with some ideas of how to display the processed information. We would then discuss issues
about the nature of the data they would send for the remainder of the time.

78

Validation

7.8 Validation Test Conclusions

The tests performed helped to gauge the performance level of both Middleware and
Streams App, and helped conclude that for the predicted project’s load, the developed
components should suffice.

However, for larger event flows, it is important to set up a good event ”purging” system,
in a way that doesn’t harm the important data kept in the dashboard, while also removing
as much irrelevant data as possible.

With this said, the results estimated that for a good performance level of the dashboard,
a limit of one hundred thousand events should be established at the buffer. The tests have
proven that higher buffer capacity does affect the event throughput time significantly, and
consequently, the increase in system resource usage.

In the future, the buffering mechanism may be expanded upon, or it may change to a
different type of data storage method, but for the intended purpose, the performance
levels are far better than acceptable. To reduce cluttering and misusage of the buffer
space, further aggregation techniques can be employed at the Streams App level to lower
the number of events arriving at the dashboard.

79

This page is intentionally left blank.

Chapter 8

Work Plan

This chapter displays, via Gantt charts, the activities done during each semester and
respective duration.

19 24 1 8 15 22 29 5 12 19 26 3 10 17 24 31 7 14 21
9/18 10/18 11/18 12/18 1/19

start end

20/09/18 05/11/18
20/09 10/10
20/09 05/10
08/10 05/11
29/10 05/11

05/11/18 30/11/18
05/11 30/11

04/12/18 14/12/18
04/12 12/12
04/12 14/12

13/12/18 31/12/18
13/12 31/12

01/01/19 21/01/19
01/01 21/01

State of the Art and Project Integration
Familiarization with the project's scope

Integration on the 5G research team of FCTUC
Study of technologies related to the project
Research on existant enterprise solutions that could be used

Requirement Analysis
Specification of the requirements of the project

Prototyping
Creation of Mockups of the Dashboard

Creation of the Synthetic Event Generator

Implementation
Kafka Cluster set-up and customization

Intermediate Report
Intermediate Report Creation

Powered by TCPDF (www.tcpdf.org)

Figure 8.1: Gantt chart displaying the activities done during the first semester.

The first semester consisted of the research part, where a study of the different relevant
technologies was done, and debated on which set of options to use. Some tools that
would be fundamental to develop and test the platform later on were also created, like the
Synthetic Event Generator. Other than that, the time was spent learning to operate with
the Kafka cluster, and setting it up to be usable with the remaining future components.

81

Chapter 8

1014 21 28 4 11 18 25 4 11 18 25 1 8 15 22 29 6 13 20 27 3 10 17 24 1 8 15 22 29 5 12 19 26 2
1/19 2/19 3/19 4/19 5/19 6/19 7/19 8/19 9/19

start end

11/01/19 31/07/19
11/01 11/02
04/02 18/02
19/02 18/03
14/03 18/03
19/03 31/05
14/05 15/05
16/05 31/07

01/08/19 12/08/19
01/08 12/08
09/08 12/08

06/06/19 28/06/19
06/06 28/06

22/07/19 04/09/19
22/07 04/09

Creation of the dashboard
Familiarization with the skeleton code provided by the ATENA project

Integration of the middleware and dashboard with the Kafka Cluster
Streams App creation
Integration of the rest of the components with the Streams App

Creation of the Overview page
Creation of the BlackBox Log page

Creation of the metrics pages

Validation
Performance tests to Middleware and Streams App

Black Box testing performed to the Middleware

Aveiro Testbed Deployment
Creation of the instances containing the dashboard components

Thesis Completion
Writing the remainder parts of the Thesis

Powered by TCPDF (www.tcpdf.org)

Figure 8.2: Gantt chart displaying the activities done during the second semester.

As for the second semester, after a colleague introduced me to the dashboard skeleton code,
a time of adapting and familiarization to both the code and the programming languages
occurred, given that I had no prior experience of most of the programming languages used
throughout the project.

Then, a simplified middleware and dashboard were built to integrate with the other com-
ponents of the architecture, namely the Event Generator and the Kafka cluster. After the
event flow was tested and working properly, it was time to begin improving the middleware
and dashboard.

For aggregation purposes, the Streams App was created, but given that the programming
language and the Streams API was unknown to me, some time was spent setting up the
programming environment and learning about the language itself and the API, as well
as learning how to integrate the API into the code and adapt it for the project’s needs.
Also, at the time it was unknown to me what processing should be applied to the metrics
received (mainly because the data types and context of such metrics were unknown to
the FCTUC group at the time), so the processing part was to be developed later once we
received more information regarding this topic from the partners.

This took about a month, which was more than expected, and caused some delay on some
other parts of the dashboard’s development.

After this was done, it was then integrated onto the remaining components, and then the
work turned towards deciding what visual elements to put on the main dashboard page.
This implied that it was necessary to study to some extent other dashboards, to try and
take some relevant elements and implement them in our project.

Meanwhile, the metrics pages were also being separately developed, as we got more infor-
mation about the metrics that would eventually arrive at the dashboard. These pages got
a development green light from the partners at the Aveiro meeting, as they were pleased
to see some statistical information about the metrics they sent. Some weeks prior, the
testbed deployment was also done, to test the integration with other partners, which was
done at this same meeting.

After the metrics pages were finished, a Prometheus agent integration was done with the
dashboard’s main page, allowing the monitoring of the topics used by the platform.

82

Work Plan

After the main development of the dashboard was completed, the validation process was
done, to ensure that the performance was up to par with the project’s needs.

Finally, the remaining time was used to the writing of the final document.

83

This page is intentionally left blank.

Chapter 9

Conclusions

The final product of this work included all the intended features that were planned, al-
lowing users to easily and efficiently obtain details about the platform’s status, as well as
access to relevant data used to diagnose and solve problems in the 5G network.

The choice of each component that was created for the dashboard was made with the help
of the study of the many technologies available in the market, to create a flexible and
modular, yet scalable solution.

The testing conducted to the main dashboard components gave us some indicators of how
it would perform in a production environment, and it was concluded that the performance
levels do indeed meet the expected processing load of the project.

Some work for the future may include more metric processing profiles, a better buffer-
ing system, with the implementation of one or more of the purging methods that were
discussed. The UI can also be refined, as well as some quality of life improvements added.

Concluding, during the duration of my part in the project, I came in contact with many
new technologies, people and experiences. All of these helped nourish my knowledge and
perception of the project’s scope and the individual pieces that together form the 5G
architecture.

Notably, I personally enjoyed learning about Kafka and its applications, since it is an
emerging technology and will very likely impact the microservices world a lot more than
we currently think. The soft skills I acquired during my work in the project will surely
help me in the future.

85

This page is intentionally left blank.

References

[1] Apache kafka documentation. https://kafka.apache.org/documentation/

#introduction. Accessed: 2018-12-16.

[2] Apache kafka streams- a closer look. https://docs.confluent.io/current/

streams/introduction.html#the-kafka-streams-api-in-a-nutshell. Ac-
cessed: 2018-12-16.

[3] Atena (advanced tools to assess and mitigate the criticality of ict components
and their dependencies over critical infrastructures) h2020 project (h2020-ds-2015-
1 project 700581). https://www.atena-h2020.eu. Accessed: 2019-01-14.

[4] Big data dummy - kafka streams. https://bigdatadummy.com/2018/10/15/

kafka-streams/. Accessed: 2019-01-14.

[5] Docker vs kubernetes vs apache mesos. https://mesosphere.com/blog/

docker-vs-kubernetes-vs-apache-mesos/. Accessed: 2018-12-16.

[6] Docker vs. lxc vs. rkt. https://stackshare.io/stackups/docker-vs-lxc-vs-rkt.
Accessed: 2019-01-03.

[7] Introducing json. https://www.json.org/. Accessed: 2019-08-20.

[8] An introduction to microservices. https://opensource.com/resources/

what-are-microservices. Accessed: 2018-12-14.

[9] Kubernetes: An overview. https://thenewstack.io/kubernetes-an-overview/.
Accessed: 2018-12-16.

[10] Lxc and lxd: Explaining linux containers. https://www.sumologic.com/blog/code/
lxc-lxd-explaining-linux-containers/. Accessed: 2018-12-16.

[11] Mesosphere dc/os: The operating system of the distributed
cloud. https://softwareengineeringdaily.com/2018/11/30/

mesosphere-dc-os-the-operating-system-of-the-distributed-cloud/. Ac-
cessed: 2018-12-16.

[12] Mobilizador 5g - deliverable 2.2. https://5go.pt/resultados. Accessed: 2019-01-
14.

[13] Monitoring and evaluation. http://web.mit.edu/urbanupgrading/upgrading/

issues-tools/tools/monitoring-eval.html. Accessed: 2018-12-14.

[14] Network slicing. https://www.ericsson.com/en/digital-services/trending/

network-slicing. Accessed: 2018-12-15.

[15] Open source tools for docker security. https://techbeacon.com/security/

10-top-open-source-tools-docker-security. Accessed: 2019-08-25.

87

https://kafka.apache.org/documentation/#introduction
https://kafka.apache.org/documentation/#introduction
https://docs.confluent.io/current/streams/introduction.html#the-kafka-streams-api-in-a-nutshell
https://docs.confluent.io/current/streams/introduction.html#the-kafka-streams-api-in-a-nutshell
https://www.atena-h2020.eu
https://bigdatadummy.com/2018/10/15/kafka-streams/
https://bigdatadummy.com/2018/10/15/kafka-streams/
https://mesosphere.com/blog/docker-vs-kubernetes-vs-apache-mesos/
https://mesosphere.com/blog/docker-vs-kubernetes-vs-apache-mesos/
https://stackshare.io/stackups/docker-vs-lxc-vs-rkt
https://www.json.org/
https://opensource.com/resources/what-are-microservices
https://opensource.com/resources/what-are-microservices
https://thenewstack.io/kubernetes-an-overview/
https://www.sumologic.com/blog/code/lxc-lxd-explaining-linux-containers/
https://www.sumologic.com/blog/code/lxc-lxd-explaining-linux-containers/
https://softwareengineeringdaily.com/2018/11/30/mesosphere-dc-os-the-operating-system-of-the-distributed-cloud/
https://softwareengineeringdaily.com/2018/11/30/mesosphere-dc-os-the-operating-system-of-the-distributed-cloud/
https://5go.pt/resultados
http://web.mit.edu/urbanupgrading/upgrading/issues-tools/tools/monitoring-eval.html
http://web.mit.edu/urbanupgrading/upgrading/issues-tools/tools/monitoring-eval.html
https://www.ericsson.com/en/digital-services/trending/network-slicing
https://www.ericsson.com/en/digital-services/trending/network-slicing
https://techbeacon.com/security/10-top-open-source-tools-docker-security
https://techbeacon.com/security/10-top-open-source-tools-docker-security

Chapter 9

[16] Overview — prometheus. https://prometheus.io/docs/introduction/

overview/. Accessed: 2019-01-06.

[17] Swarm mode overview. https://docs.docker.com/engine/swarm/. Accessed:
2018-12-16.

[18] Understanding when to use rabbitmq or apache kafka. https://content.pivotal.

io/blog/understanding-when-to-use-rabbitmq-or-apache-kafka. Accessed:
2018-12-16.

[19] What is a rkt container technique? should you use it? https://bobcares.com/

blog/rkt-rocket-container-technology-use/. Accessed: 2018-12-16.

[20] What is docker? https://www.redhat.com/en/topics/containers/

what-is-docker. Accessed: 2018-12-15.

[21] What is kubernetes? https://kubernetes.io/docs/concepts/overview/

what-is-kubernetes/. Accessed: 2018-12-16.

[22] Why avro for kafka data? https://www.confluent.io/blog/avro-kafka-data/.
Accessed: 2019-08-20.

[23] Understanding and hardening linux containers. In Understanding and Hardening
Linux Containers, page 123. NCC Group, 2016.

[24] 5GPPP Architecture Working Group. View on 5g architecture. In View on 5G
Architecture (Version 2.0), page 113. 5GPPP, 2017.

[25] Wilhelm Hasselbring and Guido Steinacker. Microservice architectures for scalability,
agility and reliability in e-commerce. In 2017 IEEE International Conference on
Software Architecture Workshops (ICSAW), pages 243–246. IEEE, 2017.

[26] VMWare. Virtualization Overview. Technical report, VMWare, 2018.

88

https://prometheus.io/docs/introduction/overview/
https://prometheus.io/docs/introduction/overview/
https://docs.docker.com/engine/swarm/
https://content.pivotal.io/blog/understanding-when-to-use-rabbitmq-or-apache-kafka
https://content.pivotal.io/blog/understanding-when-to-use-rabbitmq-or-apache-kafka
https://bobcares.com/blog/rkt-rocket-container-technology-use/
https://bobcares.com/blog/rkt-rocket-container-technology-use/
https://www.redhat.com/en/topics/containers/what-is-docker
https://www.redhat.com/en/topics/containers/what-is-docker
https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/
https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/
https://www.confluent.io/blog/avro-kafka-data/

	Introduction
	Context
	Motivation
	Goals
	Document Structure

	State of the Art
	Concepts
	Monitoring
	Virtualization
	Microservices

	Technologies
	5G
	Event Collectors
	Containers
	Message Brokers
	Message Formats
	Summary

	Research Objectives and Approach
	Objective
	Events
	Pre-processing
	Dashboard
	Architectural Considerations

	Requirements
	Reference Software

	Preliminary Work
	Familiarization with the project and its scope
	Creation of a Message Format Standard Draft
	Synthetic Event Generator
	Middleware Integration
	Security mechanisms of Apache Kafka
	Context
	Components
	Encryption
	Authentication
	Authorization

	Architecture
	Proposed Architecture

	Solution
	Architectural Decisions
	Kafka Streams App
	Message Encoding - JSON vs Avro
	Updated Data Model and Details
	Testbed Deployment
	Metrics Processing Decisions
	OneSource - NEF
	Ubiwhere - HoneyNet

	Dashboard Design and Component Decisions

	Validation
	Overview
	Setup for the validation tests
	Planning

	Test Scenarios - Introduction
	Considerations

	Test Scenarios
	Event Integrity Testing
	Results
	Blackbox Test Results
	General Test Results
	Capacity Tests
	Throughput Tests
	Observed Behaviour Mid-Test

	Partner integration meeting
	Validation Test Conclusions

	Work Plan
	Conclusions

