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Resumo

O constante desenvolvimento de sistemas robóticos autónomos tem aumentando o interesse

em utilizar os robôs como alternativa ao ser humano no desempenho de tarefas repetitivas,

árduas e perigosas.

Face a uma alta densidade florestal existente em Portugal, mas também noutros países

da Europa e de outros continentes, a necessidade de diminuir a matéria inflamável existente

na floresta tornou-se um dos grandes objetivos da prevenção de grandes incêndios florestais.

Os desenvolvimentos na área da robótica permitem aos robôs mapear os ambientes flo-

restais de modo a obter informação útil que permita percecionar qual a matéria inflamável

existente.

A necessidade de perceber qual a vegetação que o robô deve ou não cortar, torna-se uma

tarefa muito importante para o desempenho do robô.

Esta dissertação está focada na perceção do ambiente que rodeia o robô, ou seja, perceber

quais os objetos que rodeiam o robô, quais são obstáculos, qual a vegetação a cortar e não

cortar.

São propostas soluções usando LiDAR ou usando uma câmara RGB. Em relação ao

LiDAR as soluções implementadas têm como base a altura dos objetos, a reflexão do “laser”

do LiDAR conforme a superfície do objeto e também o tamanho dos objetos. Enquanto

usando a câmara RGB a solução passa pelo uso de índices de vegetação e segmentação.

As soluções foram validadas usando data ‘sets’ e fotografias de ambiente real. No final

foi possível classificar os objetos como obstáculos, neste caso carros, paredes e troncos, mas

também vegetação cortada através de um trator equipado com uma capinadeira e vegetação

não cortada.

Palavras Chave: LiDAR, Point Cloud Objetos, Point Cloud Solo, Point Cloud Cluster-

ing,Point Cloud - Classificação de objectos, Índices de vegetação RGB e Segmentação de

Imagens, Classificação de Vegetação.
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Abstract

The constant development of autonomous robotic systems has open up the interest in using

robots as an alternative to humans in the performance of repetitive, arduous, and dangerous

tasks.

Given the high forest density in Portugal, but also in other countries in Europe and other

continents, the need to reduce the inflammable matter in the forest has become one of the

major goals in the prevention of large forest fires.

Developments in robotics allow robots to map forest environments in order to obtain

useful information to understand the existing inflammable matter.

The need to understand which vegetation the robot should or should not cut becomes a

very important task for the robot performance.

This dissertation is focused on the perception of the environment that surrounds the

robot, that is, to understand which objects surround the robot, which are obstacles, which

vegetation to cut and not to cut.

Solutions are proposed using LiDAR or using an RGB camera. Regarding LiDAR the

solutions implemented are based on the height of the objects, the reflection of the LiDAR

laser according to the surface of the object and also the size of the objects. While using the

RGB camera the solution goes through the use of vegetation indexs and segmentation.

The solutions were validated using data sets and real environment photographs. In the

end it was possible to classify the objects as obstacles, in this case cars, walls and trunks,

but also vegetation cut by a tractor equipped with a clearing machine and uncut vegetation.

Keywords: LiDAR, Point Cloud of Objects, Point Cloud of Ground, Point Cloud Cluster-

ing, Point Cloud - Objects Classification, RGB Vegetation Indexes and Image Segmentation,

Vegetation Classification.
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"Life is like riding a bicycle. In order to keep your balance, you must

keep moving."
— Albert Einstein
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1 Introduction

The constant depopulation of the Portuguese interior over the years has left a large area of

forest and agricultural land abandoned. This, together with the growing problem of global

warming, has made the abandonment of forests and agricultural land a huge problem not only

in Portugal, but also in countries such as the United States of America and Australia. The

average number of residents in central Portugal is 78.6 inhabitants per square kilometre, while

in the Lisbon Metropolitan Area it is 899.6 inhabitants per square kilometre, illustrating

well the shortage of population in the interior. In 2017, around half a million hectares were

burnt in Portugal, representing more than 50% of the total area burnt that year in southern

European countries [6].

The cleaning of vegetation near populations with the creation of fuel management bands

and clearing in forest corridors, particularly along high voltage power lines, is of critical

importance to minimise the risks of large forest fires. With an area of over three million

hectares of forest in Portugal, it makes the forest the main occupation of the Portuguese

territory, making fire prevention a crucial task.

Given the large extension of the forest and the human resources available in the most

affected areas, adequate forest cleaning is a very difficult task without the use of large

machines or forest cleaning robots. Thus, the creation of specialised robots that move

around in a forest environment, cleaning the forest, mapping their surroundings, and locating

vegetation to be cut down to reduce flammable fuel that could cause a large fire, are one

area of focus to prevent and devastating fires.

The robots can be the beginning of a solution because they can tackle dangerous and

repetitive problems in a more efficient way, and at the same time safeguard human lives.

Allowing better monitoring of the forest environment by mapping lesser-known locations,

can be crucial in helping firefighting organisations to fight fires more directly and effectively.

With this, many professional and civilian lives can be saved, and the forest can be cared

for and preserved. Following this thought, accurate mapping of the environment with the

1



help of a robotic system has been a much-investigated area and several methods have been

developed [7] [8]. However, the necessity of not only mapping but also understanding what

surrounds the robot is very important for a safe navigation.

For outdoor field robotics, there are many challenges that the indoors environments do

not have. Some of the challenges include, for example, uncertain and non-linear paths, non-

ideal environmental conditions, lack of geometric features and deep information, presence of

people, animals or even plant species that need to be preserved, i.e., not cut [58]. Forest

mapping presents most of the problems reported above giving even more importance to a

coherent set of data that can be easily interpreted by the robot.

Before creating the global map, it is necessary to have the perception of the environment

(figure 1.1), in other words, it is necessary to capture the environment through the sensors

that make up the console dedicated to perception. It is in this block called perception that

the information is extracted and interpreted.

Figure 1.1: The role of the perception module in the control scheme of mobile robots. [1]

Light Detection And Ranging (LiDAR) is one of the most popular technologies on the

perception block. The main factors are its usefulness and versatility. The highly accurate

point clouds captured by LiDAR, that are not easily affected by adverse conditions such

as rain or light, due to the laser wavelength used, provide a complement to technologies

such as 3D reconstruction, autonomous driving, 3D mapping, calibration, and registration.

Thus LiDAR is an essential device in any robotic system that wants to autonomously map

2



complex unstructured environments such as the forest.

The advantages of LiDARs result from the provision of very detailed 3D point clouds,

which can be manipulated and processed, providing also useful data, namely distances,

intensity of light reflections and the geometry of the environment that often allows the

distinction of object types.

Another sensor widely used in the perception block are cameras, allowing through colour

or features to distinguish between patterns and or obstacles.

This dissertation is focused on the perception module for a forest cleaning robot i.e. per-

ceiving the environment surrounding the robot. Through the use of sensors obtain, process

and understand the data obtained and have the perception of the type of vegetation present,

the state in which it is (green, dry, cut, not cut, etc.) and perceive the obstacles that are in

the environment.

This dissertation is part of the SafeForest project whose partners are the company Inge-

niarius, the Institute for Systems and Robotics (University of Coimbra), ADAI (Association

for the Development of Industrial Aerodynamics), the company SILVAPOR and Carnegie

Mellon University.

With the aim of developing field robotics, the SafeForest project aims to provide an

autonomous robot with the ability to operate in the forest to clear flammable vegetation.

Among others, the robot should be able to map and navigate within the forest environment

where it operates and detect flammable material (i.e. vegetation to be cut). SafeForest

implies cooperative perception between a Unmanned Ground Vehicle (UGV) and a team of

nmanned aerial vehicles (UAV’s), in which each member contributes to the overall knowl-

edge of the system by cooperatively sharing and processing data and perceiving each other,

combining the sensory capabilities, perspectives and processing power of multiple agents

to achieve better results. In this dissertation the sensors to be used are LiDAR and RGB

camera.

This Dissertation is organised into five main chapters. Chapter 2 covers the basic and

fundamental knowledge of Point Clouds, Filtering, Mapping, Segmentation and ROS, es-

sential for the understanding of the whole document. A summary of the most popular and

used approaches for mapping, segmentation as for point clouds registration is also made. In

Chapter 3 the methods and techniques used for perception of the environment surrounding

the robot using LiDAR and RGB cameras are presented. Then, in Chapter 4 the results

obtained using the developed methods are presented and discussed making a critical appre-

ciation of what should or should not be improved. Finally, in Chapter 5, a conclusion is

3



made presenting on the advantages and disadvantages of our methods, as well as possible

future work.
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2 Background and State of the Art

2.1 Point Cloud Library

The Point Cloud Library (PCL) is a large scale, open project [1] for point cloud processing.

PCL is cross-platform, being able to compile successfully on Linux, MacOS, Windows,

and Android. The programming language used is c++.

The PCL framework contains numerous state-of-the art algorithms including filtering,

feature estimation, surface reconstruction, registration, model fitting and segmentation. For

example, these algorithms are used to filter outliers from noisy data, stitch together 3D

point clouds, segment relevant parts of a scene, extract key points and calculate descriptors

to recognise objects in the world based on their geometric appearance and create surfaces

from point clouds and visualise them. In the following, several algorithms important to the

Dissertation are described.

2.1.1 Point Cloud

A point cloud is a data structure used to represent a set of multidimensional points and is

commonly used to represent three-dimensional data. In a 3D point cloud the points generally

represent the X, Y and Z geometric coordinates of an underlying sampled surface. When

colour information is present, the point cloud becomes 4D.

A point cloud can be captured using sensors such as RGB-D cameras, stereo cameras,

3D laser scanners, time-of-flight cameras. It is also possible to obtain point cloud by using

simulation software.

Basic Structures

The basic data type in PCL is a PointCloud. A PointCloud is a c++ class with the following

data fields:
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• width (int) - specifies the width of the point cloud dataset in number of points;

– the total number of points in the cloud (equal to the number of elements in points)

for unorganised data-sets;

– the width (total number of points in a row) of an organised point cloud data-set;

• height (int) - specifies the height of the point cloud data-set in number of points;

– set to 1 for unorganised point clouds;

– the height (total number of rows) of an organised point cloud data-set;

• points (std::vector <PointT> ) - vector that contains the data array where all the

points are stored;

• isdense (bool) - specifies if all the data in points is finite (true), or whether the XYZ

values of certain points might contain Inf/NaN values (false);

• sensororigin(Eigen::Vector4f) - specifies the sensor acquisition (origin/translation).

This member is usually optional, and not used by the majority of the algorithms in

PCL;

• sensororientation(Eigen::Quaternionf) - specifies the sensor acquisition pose (ori-

entation). The quaternion is zero if not used. This member is usually optional, and

not used by the majority of the algorithms in PCL;

Point types

• PointXYZ - float x, y, z;

• PointXYZI - float x, y, z, intensity;

• PointXYZRGB - float x, y, z, RGB;

• PointXYZRGBA - float x, y, z, uint32t rgba;

• Normal - float normal[3], curvature;

• PointNormal - float x, y, z, normal[3], curvature;

• Histogram - float histogram[N];

• it is possible to define new types to meet requirements.
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2.1.2 Filtering

The raw point cloud is often noisy and contains outliers. Thus, it is crucial to remove noise

and outliers from the point cloud while preserving its features, in particular, its fine details.

When working with 3D data, there are many reasons to filter data such as, restrict-

ing range (PassThrough), downsampling (VoxelGrid), outlier removal (Statistical Outlier

Removal / Radius Outlier Removal) or selecting indices.

PassThrough Filter

PassThrough uses the base Filter class methods to pass through all data that satisfies the

user given constraints. Once the user defines the constraint, this filter will remove all points

that do not satisfy the constraint. For example, reduce the point cloud to a range of z

between 0.2 and 0.3 meters.

Euclidean Cluster Extraction

A data clustering method needs to divide an unorganised point cloud model P into smaller

parts so that the total processing time of P is significantly reduced. A simple data clustering

approach in a Euclidean sense can be implemented by making use of a 3D grid subdivision

of space using fixed-width bins, or more generally, an octree data structure. This particular

representation is very fast to construct and is useful for situations where a volumetric rep-

resentation of the occupied space is required, or the data in each resulting 3D box can be

approximated with a different structure.

To find and segment the individual point clusters of objects in the plane, the system

first needs to understand what a point cluster of objects is and what differentiates it from

another point cluster.

Mathematically, a cluster is defined as follows. Given two distinct point clusters Oi =

{pi ∈ P} and Oj = {pj ∈ P} if:

min ‖pi − pj‖2 ≥ dth (2.1)

where dth is a maximum imposed distance threshold.The above equation states that if

the minimum distance between a set of points pi ∈ P and another set pj ∈ P is larger than

a given distance value, then the points in pi are set to belong to a point cluster Oi and the

ones in pj to another distinct point cluster Oj. From an implementation point of view, it is
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therefore important to have a notion on how this minimal distance between the two sets can

be estimated.

Assuming that we use a Kd-tree structure for finding the nearest neighbors, the algorith-

mic steps for that would be [9]:

1. create a Kd-tree representation for the input point cloud dataset P ;

2. set up an empty list of clusters C , and a queue of the points that need to be checked

Q;

3. then for every point pi ∈ P , perform the following steps:

• add pi to the current queue Q;

• for every point pi ∈ Q do:

– search for the set P k
i of point neighbors of pi in a sphere with radius r < dth;

– for every neighbor pki ∈ P k
i , check if the point has already been processed,

and if not add it to Q;

• when the list of all points in Q has been processed, add Q to the list of clusters

C, and reset Q to an empty list;

4. the algorithm terminates when all points pi ∈ P have been processed and are now part

of the list of point clusters C

2.1.3 Point Cloud Registration

Point cloud registration is a fundamental problem in 3D computer vision. Given several sets

of points in different coordinate systems, the goal of registration is to find the transformation

that best aligns all of them in a common coordinate system. According to the purpose,

current approaches can be divided into coarse registration and fine registration. Coarse

registration is mainly used to compute a rough estimate of the hard transformation between

two point clouds. The goal of fine registration is to make the transformation between two

clouds as accurate as possible [10].

The Iterative Corresponding Point (ICP) is the most common method. This method

minimizes the predefined error function by iteratively optimizing processes and at each it-

eration of the method it can be divided into two steps, the search for the match and the

calculation of the transformation [10].
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The ICP algorithm is of high accuracy and stability but low efficiency. It requires an

inclusion relation of the sets to ensure that each point in the target set has a corresponding

point in the reference set. This method looks for matching by geometric distances between

pairs of points so that it is easier to fall into the local optimum [10].

The Normal Distribution Transform (NDT) algorithm registers point clouds using statis-

tical information from the data instead of using the points. For this method, the probability

distribution is calculated by the normal distribution of the points and then the registration

results are optimised using standard optimisation techniques. The NDT algorithm is more

efficient than ICP [10].

2.1.4 Identifying Ground in Airborne LiDAR Measurements

Identifying points that belong to the ground in LiDAR datasets is a challenging task.

Kraus and Pfeifer [11] in aerial remote sensing used linear least squares iterative inter-

polation to removing tree measurements and generating a Digital Terrain Model (DTM)

in forested areas. This method was extended later to filter buildings and trees in urban

areas [12]. The iterative linear interpolation method extracts a low-degree polynomial trend

surface from the original elevation data to produce a set of small elevation values.

Vosselman [13] proposed a slope-based filter that identifies ground data by a comparison

of slopes among a LiDAR point and its neighbours. A point is classified as a ground mea-

surement if the maximum value of slopes between this point and any other point within a

given circle is lower than a predefined threshold. The lower the slope of the threshold, the

more objects will be removed. The threshold slope for a given area is either a constant or

a function of distance. A sensible threshold slope can be obtained using prior knowledge of

the terrain in the study area.

Morphology mathematics composes operations based on set theory to extract features

from an image. Haugerud and Harding [14] developed an algorithm to filter tree points in

forested areas by a comparison of local curvatures of point measurements. Ground mea-

surements were selected by removing tree vertices iteratively from an Triangulated Irregular

Network (TIN) constructed from LiDAR measurements. Alternatively, soil points can be

classified by iteratively selecting soil measurements from an original dataset.

Other commonly utilised algorithm to remove non-ground objects is a mathematical

morphology filter that is applied to a greyscale image [13], [15], [16]. The elevation of trees,

cars and buildings is generally higher than that of the surrounding ground points. If the
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LiDAR points are converted into a regular grayscale grid image in terms of elevation, then

the shapes of buildings, cars and trees can be identified by the change in grey tone. It is well

known that compositions of algebraic set of operations based on mathematical morphology

can be used to identify objects in a greyscale image. Therefore, mathematical morphology

can be used to filter LiDAR data [17].

The main objective of [17] is to develop a progressive morphological filter to enable the

automatic extraction of ground points from LiDAR measurements with minimal human

interaction.

Morphological Filters

Morphology mathematics composes operations based on set theory to extract features from

an image. Two key operations, dilation and erosion, are typically used for increasing (dilat-

ing) or reducing (eroding) the size of features in binary images. The dilation and erosion

operations can be combined to produce open and close operations [18]. The concept of

erosion and dilation has been extended to multilevel (greyscale) images and corresponds

to finding the minimum or maximum of the combinations of pixel values and the kernel

function, respectively, within a given neighbourhood of each raster.

These concepts can be also extended to the analysis of a continuous surface, such as a

digital surface model, as measured by LiDAR data. For a LiDAR measurement, the dilation

of the elevation z at x and y is defined as [17]:

dp = max
(xp,yp)∈w

(zp) (2.2)

where points (xp, yp, zp) represent p’s neighbors (coordinates) within a window, w. The

window can be a one-dimensional (1-D) line or two-dimensional (2-D) rectangle or other

shapes. The dilation output is the maximum elevation value in the neighborhood of p.

Erosion is a counterpart of dilation and is defined as:

ep = min
(xp,yp)∈w

(zp) (2.3)

´

The combining of erosion and dilation results in opening and closing operations that are

used for filtering the LiDAR data. The opening operation is obtained by performing an

erosion of the dataset followed by a dilation, while the closing operation is performed by first
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performing a dilation and then an erosion. The ability of an opening operation to preserve

features larger than the window size is very useful in some applications.

Kilian et al. [16] proposed a method to remove non-ground points using a morphological

filter. In their method, a point with the lowest elevation within a given window size is first

detected after an opening operation is performed on the dataset. Then, the points in this

window that lie within a band above the lowest elevation are selected as ground points. The

band range is determined by the accuracy of the LiDAR survey, which is typically 20-30 cm.

All ground points are identified by moving the filter window over the whole dataset.

Lohmann et al. [15] used a dual-rank morphological filter proposed by Eckstein and

Munkelt [19] to classify Airborne LiDAR point data. The dual-rank filter initially sorts the

neighborhood of a point p in terms of elevation, and then selects an elevation with a given

rank value i to perform a rank operation R (p, i), where i ranges from 1 to np, and np is

the total number of points of p’s neighbors (including p). The neighbors of a point are

delineated by a window that is usually a circle and can be any shape. The dual-rank filter

is then defined as:

DR (p, i) = R (p, i) ◦R (p, np − i+ 1) . (2.4)

The symbol ′′◦′′ indicates the succeeding operations: the points are processed by the

first-level operation, and then the second-level operation is performed on the results of the

first operation. The dual-rank filter becomes an opening operation when the rank value is

one (i.e., i = 1) and a closing operation when the rank value is np ( i = np ).

The above-mentioned morphological filters need to be improved because they suffer from

several problems, such as the requirement of a predefined filtering window size. In addition,

a highly automatic filtering tool that identifies the ground measurements is desired due to

the large volume of LiDAR data involved [17].

Progressive Morphological Filter

As seen above, morphological filters can remove measurements for buildings and trees from

LiDAR data, but it is difficult to detect all non-ground objects of various sizes using a fixed

filter window size. This problem can be solved by gradually increasing the window size of

the morphological filters as described below [17].

An initial filtered surface is derived by applying an opening operation with a window of

length l1 to the raw data. The large non-ground features such as buildings are preserved
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because their sizes are larger than l1, while individual trees of size smaller than l1 are removed.

For the terrain, features smaller than l1 are cut off and replaced by the minimum elevation

within l1.

In the next iteration, the window size is increased to l2, and another opening operation

is applied to the filtered surface, resulting in a further smoothed surface. The building mea-

surements are removed and replaced by the minimum elevation of previous filtered surface

within l2, since the size of the building is smaller than the current window size.

When performing an aperture operation for laser-scanned data with a line window that

increases gradually in size, the progressive morphological filter is capable of removing build-

ings and trees in various sizes from a LiDAR dataset. However, the filtering process has a

tendency to produce a surface that is below the terrain measurements, leading to incorrect

removal of measurements at the top of the high relief terrain. Even in areas of flat terrain,

the filtered surface is usually lower than the original measurements. Therefore, most of the

point measurements for the terrain are removed, and only a filtered surface is available if

the aperture operation is performed directly for the LiDAR data. This problem can be over-

come by introducing an elevation difference threshold based on the elevation variations of

the terrain, buildings, and trees.

The buildings have a certain size and height. There is abrupt change in elevation between

the roof and the base of a building, while the elevation changes of the terrain are gradual.

The difference in elevation changes of buildings and terrain can help the filter to separate

the building and terrain measurements.

Suppose that dhp,1 represents the height difference between an original LiDAR mea-

surement and the filtered surface in the initial iteration at any given point p, and dhT,1

represents the elevation difference threshold. Point p is classified as a ground measurement

if dhp,1 ≤ dhT,1 and as a non-ground measurement if dhp,1 > dhT,1. Let dhmax(t),1 stand for

the maximum height difference between the original terrain measurements and the filtered

surface. If a dhT,1 is selected such that the dhmax(t),1 is less than dhT,1, then the LiDAR

measurements for terrain will be preserved. In general, dhT,1 will be a function of window

size.

In the second iteration, suppose that the maximum height difference between the previous

and this filtered terrain surface is dhmax(t),2. The ground measurements within dhmax(t),2 will

be preserved as long as dhmax(t),2 is smaller than the elevation difference threshold dhT,2

for the current operation. Suppose that the minimum elevation difference for the building

between the previous and current filtering operation is represented by dhmin(b),2, which is
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approximately the height of the building. The building measurements will be removed on

the condition that dhmin(b),2 is larger than dhT,2.

Generally, the elevation difference threshold dhT,k is set to be the minimum height value

of the building objects in an analyzed area at iteration k. Taking dhT,2 as the threshold,

for any given point p at kth opening operation, we mark p as a ground measurement if

dhp,k ≤ dhT,k, and as a non-ground measurement otherwise. In this way, the measurements

for buildings with various sizes can be identified by gradually increasing the widow sizes and

applying an opening operation repeatedly until a window size is greater than the size of the

largest building. Since there is also an abrupt elevation change from trees to adjacent ground,

the above building filtering procedure can be applied to the removal of tree measurements as

well. Note that the filtered surfaces from the opening operation are not utilized to generate

the DTM, but used to help classify point measurements together with elevation difference

thresholds.

The step-by-step for utilizing the progressive morphological filter to construct the DTMs

are shown in figure 2.1 [17].

Figure 2.1: Steps of the progressive morphological filter.

Note that each minimum surface grid cell generated in Step 1 will contain an original

or interpolated LiDAR point with elevation representing the cell value. Filtering operation

performed to the grid is in fact applied to points in cells. The progressive morphological

filter therefore classifies LiDAR measurements at the point level.
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2.2 Mapping

Mapping consists of creating a representation of the environment from information obtained

from sensors. There are two main types of maps, metric maps and topological maps (figure

2.2) [20].

Metric maps represent the environment using evenly spaced cells that form a grid and

each cell represents a location in space. Occupancy grids are one of the most popular map

types because they are easily constructed for large-scale locations and the geometry of the

grid directly corresponds to the geometry of the environment, so that the position and

orientation of the robot can be easily determined. The disadvantage of grid-based maps is

that they take up a lot of memory space and have a high computational cost, as they need

to process all the cells that make up the environment under analysis [21].

(a) Metric Map.
(b) Topological Map

Figure 2.2: Comparison between the two most common types of maps.

Topological maps represent the map by using a graph based on landmarks and their

connectivity. In this method, the position of the robot is determined in relation to the

model by means of landmarks. Thus, each node corresponds to a specific location and

the existence of an edge connecting them indicates the possibility of navigation. However,

topological maps have difficulty distinguishing between very identical locations. For example,

if the robot passes two similar locations, it cannot quickly determine whether it is the same

or a different location [22].

A comparison of pros and cons of the various types of maps is given in the table 2.1 [5].

Maps can be in 2D or 3D. 2D maps represent objects in two dimensions, length and
1Small-scale → a few users → uses a few resources.
1Large-scale → a large number of users → uses a large number of resources.
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Table 2.1: Comparison of different map types.

Type of Map Description, Pros and Cons

1. Occupancy Grid Maps

Map is defined as a grid, each cell of the grid holds a probability for occupancy.

Pros: probabilistic, suitable for 2D mapping, suitable for dynamic environments.

Cons: expensive on fine resolution, expensive for 3D mapping.

2. Feature Maps

Map is represented by features.

Pros: efficient for localization, scales well1.

Cons: needs feature extraction, data association of features is difficult.

3. Topological Maps

Map is represented by abstract spatial information.

Pros: well suited for high-level planning.

Cons: needs map processing, limited in waypoint following.

4. Semantic Maps

Map is represented by semantic information.

Pros: well suited for high-level and goal-oriented reasoning.

Cons: needs training, object recognition and classification.

5. Appearance Maps

Map is represented by a weighted graph and multiple views.

Pros: very intuitive and useful for human and robot interaction.

Cons: requires high storage capacity to record all views.

6. Hybrid Maps

Combination of different mapping methods.

Pros: suitable for loop closure, can handle map inconsistency.

Cons: needs map processing, requires coordination between maps.

width. 3D maps represent length, width and height, allowing the perception of relief.

In order for the robot to create a map of the environment based on the information

acquired by the sensors, the robot must know where it is located . When a robot is placed

in an unfamiliar environment, it starts without a map or any idea where it is. In this

situation the robot must create a map while locating itself within that map. This is known

as the simultaneous localization and mapping problem, or Simultaneous localization and

Mapping (SLAM) (figure 2.3).
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Figure 2.3: General scheme for simultaneous localisation and map construction [1].

2.2.1 SLAM

The SLAM problem is defined as a simultaneous localisation and mapping problem, in which

a robot searches to acquire a map of the environment while simultaneously trying to locate

itself in the same map it is creating [1].

Unlike mapping and localisation systems that require a priori knowledge of the environ-

ment or modification of the environment, SLAM systems can operate in situations where

map information or the robot’s position is not initially known. This capability makes these

systems significantly more autonomous and ideal for a wide variety of applications.

SLAM is a method that aims to fuse different information such as odometry, measure-

ments and motion commands in an optimal (or near-optimal) way to generate a map of the

environment, while estimating the current position of the robot on the map [23].

There are two versions of the SLAM problem: online and global. The online problem

seeks to estimate the instantaneous pose of the robot, while the global problem seeks to

determine all poses.

Extended Kalman Filter (EKF) applied to the SLAM algorithm is one of the oldest

SLAM algorithms. This algorithm applies the extended Kalman filter to the online SLAM

problem. With known correspondences, the resulting algorithm is incremental. When the

correspondences are unknown, the EKF-SLAM algorithm applies an incremental maximum
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likelihood estimator to the correspondence problem [1].

EKF-SLAM has been applied quite successfully to a number of robotic mapping prob-

lems. Its main disadvantages are the need for sufficiently distinct reference points and the

computational complexity required to update the filter [1].

In recent years many types of SLAMs have been developed, and a division can be made

according to different criteria: such as state estimation techniques, map type, real-time per-

formance, sensors, among others. However, the classification of techniques is made according

to the type of problem that is solved in the following categories: feature-based SLAM, pose-

based SLAM, appearance-based SLAM and other SLAMs [24]. In the table 2.2 a comparison

is made between various types of SLAM, their maps and their pros and cons.

In [23] an analysis of the SLAM problem and also of probabilistic SLAM is given.
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SLAM Method Map Description

Filtering-based

EKF-SLAM

feature

view

appearance

polygon

Based on the extended Kalman filter.

Pros: works well if features are distinct.

Cons: adding a new feature to state space needs quadratic time,

requires feature extraction in feature-based SLAM, cannot identify absence of a feature.

EIF-SLAM
feature

view

Based on the extended information filter

Pros: measurement updates are performed in constant time,

effective for multiple-robot SLAM due to additivity of information.

Cons: information matrix needs to be sparsified. Recovering map and

the pose requires large matrix inversion.

PF-SLAM
feature

view

Based on particle filtering. FastSLAM is an efficient implementation of particle filtering.

Pros: effective for loop closure, performs full and online SLAM,

logarithmic complexity in number of features, no need for parametrization.

Cons: quality of the estimation is dependent on the number of particles.

DP-SLAM view

A fast implementation of particle filtering for SLAM.

Pros: effective for large scale maps, optimizes memory requirements.

Cons: requires processing to recover maps.

Set-based SLAM feature

Based on random finite set (RFS) and finite set statistics (FISST).

Pros: number of features and data association are estimated with the

Bayesian filter.

Cons: higher time complexity than vector-based solutions.

Smoothing-based

GraphSLAM

feature

view

polygon

Uses smoothing techniques to estimate the trajectory and the map.

Pros: the whole trajectory is updated.

Cons: computationally demanding, hard to recover covariances.

Sub-map Matching
view

feature

Matches small local maps to make a large global map.

Pros: the whole trajectory is updated, suitable for large scale environments.

Cons: size of local maps should be adjusted.

AI-based

AI SLAM
appearance

feature

Based on artificial intelligence.

Pros: efficient, usually no mathematical model is required.

Cons: error-prone, requires training or parameter tuning, training can be time-consuming.

Table 2.2: Comparison of some common SLAM techniques [5].

2.2.2 Octomap

An octree is a hierarchical data structure used to represent the 3D space as shown in figure

2.4 [8]. Each node in an octree represents a cubic volume of space usually called a voxel.

This volume, if not uniform, is recursively subdivided into eight sub-volumes until a certain

minimum voxel size is reached or until the voxel is uniform (totally free or totally occupied

space). The minimum voxel size thus determines the resolution of the octree.

Essentially, Octomap performs the probabilistic occupancy estimation at each observed
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voxel to maintain updatability and to deal with sensor noise. To represent not only the

occupied space, but also the free and unknown areas, an octomap explicitly models the free

volumes in the tree using ray casting in the sensor model for range measurements. Figure

2.5 illustrates how Octomap models the occupied and free voxels through ray-casting. An

example of a 3D map created with Octomap is shown in figure 2.6 [8].

Figure 2.4: Example of an octree storing free (shaded white) and occupied (black) cells.

The volumetric model is shown on the left and the corresponding tree representation on the

right.

Figure 2.5: Ray-casting from sensor origin to end point, the last voxel is marked as occupied,

all the other voxel along the ray are marked as free.

Occupancy Probability Estimation

Octomap integrates the sensor measurements using the occupancy grid mapping method

which adopts a Bayes filtering based approach [8]. The probability that a leaf node n is

occupied given the sensor data z1:t is estimated according to

P (n|z1:t) =
[
1 +

1− P (n|zt)
P (n|zt)

1− P (n|z1:t−1)
P (n|z1:t−1)

P (n)

1− P (n)

]−1
(2.5)

The occupancy probability update depends on the prior estimate P (n|z1:t−1), the current

measurement zt and a prior probability P (n). P (n|zt) denotes the probability of voxel n to

be occupied given the measurement zt. It represents the inverse sensor model and its value
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Figure 2.6: Example of a 3D map of an urban street scene created with Octomap.

depends on the sensor generating zt. With the assumption of a uniform prior probability

P (n) = 0.5 (unknown) and using log-odds notation, Eq. 2.5 becomes

L(n|z1:t) = L(n|z1:t−1) + L(n|zt) (2.6)

with

L(n) = log

[
P (n)

1− P (n)

]
(2.7)

Instead of using Eq. 2.6 directly, Octomap updates the occupancy estimate using a

clamping update policy [8]:

L(n|z1:t) = max(min(L(n|z1:t−1) + L(n|zt), lmax)lmin) (2.8)

where lmin and lmax denote the lower and upper limit on the value of log-odds. The

modified update rule limits the number of updates required to change the state of a voxel

[8].

2.2.3 Velodyne Height Map

The Velodyne height map is a Robot Operating System (ROS) package providing obstacle

detection for Velodyne 3D point clouds using a height map algorithm [25]. At the basis of

this algorithm is the difference between the highest and lowest z-coordinate in each xy-cell

with defined "cell_size". According to the height set as threshold the objects are considered

obstacles or not. For example, if the threshold is one meter, objects below one meter will be

considered non-obstacles for the robot while obstacles of one meter or more in height will be

considered obstacles for the robot. An example of potential obstacles is shown in figure 2.7
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(the red squares).

Next are presented the Subscribed Topics, Published Topics and the parameters of the

Velodyne height map package:

Subscribed Topics

→velodyne_points(sensor_msgs/PointCloud2)

3D data points.

Published Topics

→velodyne_obstacles(sensor_msgs/PointCloud2)

Points belonging to detected obstacles.

→velodyne_clear(sensor_msgs/PointCloud2)

Clear space: grid squares containing laser returns and no obstacle.

Parameters

→cell_size(double, default: 0.5)

Grid cell size (meters).

→full_clouds(bool, default: false)

Normally, height map only publishes one obstacle or clear point for each cell, significantly

reducing output bandwidth while providing the information needed for most 2D navigation.

When true, publish all obstacle and clear points.

→grid_dimensions(int, default: 320)

Number of grid cells in both the X and Y dimensions.

→height_threshold(double, default: 0.25)

Minimum height difference that counts as an obstacle (meters).
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Figure 2.7: LiDAR scanning and potential obstacles using Velodyne height map.

2.3 Camera Calibration

Camera calibration is a necessary process to be able to match the points in the three-

dimensional space with the pixels of the images [2].

Camera calibration, estimates the internal geometrical and optical parameters of the

camera (intrinsic parameters) and the position and orientation of the camera with respect to

a world coordinate system (extrinsic parameters). These parameters can be used to correct

lens distortion, measure the size of an object in a plane or determine the location of the

camera in the world (figure 2.8).

Figure 2.8: Camera calibration applications.[2]

The extrinsic parameters are represented by a rigid transformation from the 3D world co-

ordinate system to the 3D camera coordinate system [2]. The intrinsic parameters represent

a projective transformation from the 3D camera coordinates to the 2D image coordinates

(Figure 2.9 and Figure 2.10).
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Figure 2.9: Extrinsic and intrinsic camera parameters [2].

Figure 2.10: Extrinsic and intrinsic camera parameters, relationship between coordinates [2].

Extrinsic parameters

The extrinsic parameters represent the position and orientation of the camera’s coordinate

referential relative to another coordinate system. The origin of the camera’s coordinate

system is at the camera’s optical centre and its xy axis defines the image plane [2]. The

extrinsic parameters consist of a rotation, R, and a translation t (figure 2.11).

Figure 2.11: Extrinsic parameters of a camera [2].
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Intrinsic parameters

The intrinsic parameters allow a mapping between the camera coordinates and the pixel

coordinates in the image frame. The camera model in general is a mapping from the world

to the image coordinates. It is a 3D to 2D transformation. These parameters depend only

on the physical characteristics of the camera (sensor size, lens shift, and focal length) [2].

The intrinsic parameters include the focal length, the optical centre, and the slope coef-

ficient. The intrinsic camera matrix, K, is defined as:

K =


fx 0 cx

s fy cy

0 0 1

 (2.9)

where:

• [cx, cy] is the optical centre, in pixels.

• (fx, fy) is the focal length, in pixels.

• fx =
F
Px

• fy =
F
Py

• F is the focal length, usually expressed in millimetres.

• s is the coefficient of inclination, which is non-zero if the image axes are not perpen-

dicular.

• s = fxtanα

The pixel pitch is defined as (figure 2.12):

Figure 2.12: Pixel pitch.[2]

• (Px, Py) is the pixel size.
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Camera distortion

Camera lenses can create changes in the relationship between points in the world and points

in the image, i.e. distortion. Distortion can be radial or tangential.

Radial distortion happens when light rays bend closer to the edges of the lens than to

the optical centre. The distortion will be greater the smaller the lens is. There are three

types of radial distortion: the barrel type, the pincushion type and another more complex

type which is a junction of the two types as illustrated in figure 2.13 [26].

Figure 2.13: Types of radial distortion.

The new corrected coordinates are calculated by 2:

xdistorted = x(1 + k1r
2 + k2r

4 + k3r
6) (2.10)

ydistorted = y(1 + k1r
2 + k2r

4 + k3r
6) (2.11)

k1, k2, k3 are the lens radial distortion coefficients and:
2https://docs.opencv.org/master/dc/dbb/tutorial_py_calibration.html
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r2 = x2 + y2 (2.12)

Tangential distortion happens when the lens and the image plane are not parallel (figure

2.14). Tangential distortion coefficients model this type of distortion.

Figure 2.14: Tangential distortion. [2]

The new corrected coordinates are calculated by 3:

xdistorted = x+ [2p1xy + p2(r
2 + 2x2)] (2.13)

ydistorted = x+ [2p2xy + p1(r
2 + 2y2)] (2.14)

k1, k2, k3 are the lens tangential distortion coefficients and:

r2 = x2 + y2 (2.15)

2.4 Remote Sensing vegetation

A Vegetation Index (VI), (also called vegetative index), is a unique number that allows

quantification of plant biomass and/or plant vigour for each pixel in a remotely sensed

image.

Several vegetation indexes have been developed, the Normalised Difference Vegetation

Index (NDVI) being the most studied and commonly used. To generate an NDVI map, a

multispectral sensor of relatively high cost is required.
3https://docs.opencv.org/master/dc/dbb/tutorial_py_calibration.html
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Hunt et al. [27] studied multispectral UAV imagery for crop monitoring, and a good

correlation between leaf area and green NDVI was found [28]. A map of vine vigour was pro-

posed [29] using NDVI, calculated with a high-resolution multispectral camera. In addition

to the healthy state index, NDVI can provide, for each plant, specific characteristics that

can be used for plant detection [30]. NDVI has been used for many varied purposes such as

spatial referencing, crop and climate monitoring, attribute mapping and in various decision

support systems[31].

Today, conventional RGB cameras with high resolution are available from various man-

ufacturers and most UAVs are equipped with standard RGB cameras [32]. Thus, a number

of plant indexes have been created using only conventional RGB channels to make data col-

lection more affordable. RGB data have been developed to generate maps similar to NDVI

and minimise the cost of data acquisition, such as the Triangular Green Index (TGI) and

the Visible Atmospheric Resistance Index (VARI) [33].

Arai et al. [34] proposed a method to estimate Near Infrared (NIR) reflectance using

visible cameras, achieving a high correlation between green reflectance and NIR reflectance.

Using the concepts of Atmospherically Resistant Vegetation Index (ARVI) [35] to reduce

atmospheric effects in the vegetation index calculated using the visible spectrum, Gitelson

et al. [36] proposed the VARI, which should be used to estimate the fraction of vegetation in

a scene with low sensitivity to atmospheric effects. However, as pointed out by the authors,

the reflectance of vegetation green surfaces is not as high and the difference between the

reflectivity levels of the visible channels is not greater than between NIR and red, used to

obtain NDVI.

The TGI, presented by Hunt et al. [37], uses the area of a triangle defined by three

points: (480 nm, R480), (550 nm, R550), and (670 nm, R670), where R is the wavelength

reflectance in the spectral features of the chlorophyll region and was developed to facilitate

image acquisition using only RGB channels instead of multispectral channels to generate a

chlorophyll content index.

Vegetation Indexes: NDVI and VARI

NDVI (generated using multispectral images) and VARI (generated using RGB images) are

some of the most commonly used indexes for vegetation assessment. Considering that plants

have a high reflectance in the NIR bands and low reflectance in the red bands, the NDVI

formula evaluates this difference as it is presented in Eq. 2.16. In [38], Rouse et al. showed
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good correlation between NDVI and grassland vegetation data (dry biomass, green biomass,

and percent green estimates) was shown.

NDV I =
NIR−Red
NIR +Red

(2.16)

To monitor the plant fraction of wheat canopies, in [36] a VI based on red and green

wavelengths was proposed, as shown in Eq. 2.17:

V Igreen =
Rgreen −Rred

Rgreen +Rred

(2.17)

Then, using the concept of ARVI to reduce the atmospheric effects [35], assuming that

the effect in the blue wavelengths is two times bigger than in the green and red wavelengths,

the VARI was generated by the subtraction of the blue wavelength from the denominator of

Eq. 2.17. The VARI, shown in Eq. 2.18, is used for estimating the vegetation fraction in a

scene with low sensitivity to atmospheric effects.

VARI =
Rgreen −Rred

Rgreen +Rred +Rblue

(2.18)

The VARI is one of the most commonly used indexes for collecting data from vegetation

by utilizing only RGB cameras. It was not developed to predict NDVI values, but as an

RGB-based crop index [33].

2.5 Factorization-Based Texture Segmentation

Image segmentation is an important task for a large range of applications, including remote

sensing, medical imaging, and autonomous robots. Image segmentation divides an image

into different parts according to its characteristics and properties. Each pixel in an image

is assigned at least one of these properties. Each of the pixels within the same region is

analogous with regard to some computational feature or property, like colour, intensity,

texture or continuity.

The Texture segmentation literature addresses two main issues [3]:

• finding an image model that defines region homogeneity;

• devising a strategy for producing segments.

A segmentation methodology with positive results usually links a decent image model

with an efficient segmentation strategy.
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Much of texture segmentation strategies consist of extracting features from local image

patches and then feeding them to general clustering or segmentation algorithms . Several

features are assigned for the characterisation of texture appearance . The most widely used

are based on filtering which uses filter banks to decompose an image into a set of sub-bands,

and statistical modelling which characterises texture as resulting from some underlying prob-

ability distributions [3].

In [3] it is possible to find out that texture descriptors developed based on the local

distribution of filter responses show positive behaviour in texture discrimination [39], [40],

[41]. Descriptors of this type can also be combined with well-defined segmentation methods

to segment textured images [41], [42].

This procedure has two main problems. The first problem originates from the high

dimensionality of the multiple filter responses and their distribution representations. The

second problem results from texture descriptors that are generated from image windows

across boundaries [3].

As a solution to these problems already identified in [3], a factorization-based segmen-

tation method is porposed. This is a particular method of texture descriptors based on the

local distribution of filter responses, called local spectral histogram [43]. A singular value

decomposition and non-negative matrix factorization is used to factorize the feature matrix.

2.5.1 Factorization based Image Model

Local Spectral Histograms

For a window W in an input image, a set of filter responses is computed through convo-

lution with a chosen bank of filters {Fα, α = 1, 2, ..., K}. For a sub-band image W{α}, the

corresponding histogram is denoted as H(α)
W .Then, the spectral histogram with reference to

a filter bank is defined as [3]:

Hw =
1

|W|

(
H

(1)
W , H

(2)
W , ..., H

(K)
W

)
, (2.19)

where || denotes cardinality. A local spectral histogram centred on each pixel location is

calculated over the square window. In order to obtain meaningful features, the integration

scale has to be large enough.
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Image Model

Consider an image composed of homogeneous texture regions, figure 2.15(left). Assume that

spectral histograms within homogeneous regions are approximately constant. From windows

within each region local spectral histograms representative of each region can be calculated

[3]. Considering for now only the intensity filter, which gives the intensity value of each

pixel as the filter response. Then the local spectral is equivalent to the histogram of a local

window.

Figure 2.15: (left) A textured image. (right) Segmentation result using least squares esti-

mation [3].

The feature of each pixel can be considered as the linear combination of all representa-

tive features weighted by the corresponding area coverage. In the case where a window is

completely within a region, the weight of the representative feature for that region is close

to one, while the other weights are close to zero.

Given an image with N pixels and feature dimensionality of M , all the feature vectors can

be compiled into an M × N matrix, Y. Assuming that there are L representative features,

the image model can be expressed as:

Y = Zβ + ε, (2.20)

where Z is an M × L matrix whose columns are representative features, β is an L × N

matrix whose columns are weight vectors, and ε is model error.

The representative feature matrix Z can be computed from manually selected windows

within each homogeneous region, and β is then estimated by least squares estimation [3]:

β̂ =
(
ZTZ

)−1
ZTY. (2.21)
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Segmentation is obtained by examining β̂ – each pixel is assigned to the segment where

the corresponding representative feature has the largest weight.

2.5.2 Factorization based Segmentation

For fully automatic segmentation, both Z and β are unknowns,and the objective is to esti-

mate these two matrices by factoring Y. In this section, the factorisation algorithm, which

can produce segmentation with high accuracy and efficiency, is presented [3].

Low Rank Approximation

In order to exist a unique solution in 2.20, the Z must be full-level full rank, so that the

(ZTZ) in 2.21 is invertible.

A typical solution to low rank approximation is Singular Value Decomposition (SVD)

[44], where the feature matrix is decomposed into:

Y = UΣVT , (2.22)

hereU andV are orthogonal matrices of size M × M and N × N , respectively. The columns

of U are the eigenvectors of matrix YYT , and the columns of V are the eigenvectors of

matrix YTY. Σ is an M × N rectangular diagonal matrix, where the diagonal terms, called

singular values, are the square roots of the eigenvalues of the matrix YYT , or YTY. The

wellknown Eckart-Young theorem [21] states that the best rank-r approximation to Y, in

the least-squares sense, has the same form of SVD, except that Σ is replaced with a new

matrix that contains only the first r singular values (the other singular values are replaced

by zero).

It is necessary to determine the underlying rank of the feature matrix, which corresponds

to the number of representative features, or segments. Let Y’ be the approximated matrix

of rank-r. The approximation error can be obtained as follows:

‖Y −Y′‖ =

√√√√ M∑
i=r+1

σ2
i , (2.23)

where ‖‖ denotes the Frobenius norm, which is the square root of the sum of all squared

matrix entries. σ1, σ2, ..., σM are singular values in a nonincreasing order. The error then

corresponds to the singular values discarded in the approximation. It is thus possible to

31



determine the number of segments through the error threshold. That is, the segment number

n is estimated as

n = min

i : 1

N

√√√√ M∑
i+1

σ2
i < ω

 , (2.24)

where ω is a pre-specified threshold that depends on the noise level of images and specific

tasks.

SVD Based Solution

On the principle that the first r singular values are chosen using 2.24, 2.22 can be rewritten

as:

Y’ = U′Σ′V′
T
, (2.25)

where U’ and V’ consist of the first r columns of U and V in the SVD of matrix Y,

respectively. Σ′ is an r × r matrix with the largest r singular values on the diagonal. If

defined Z1 = U′ and β1 = Σ′V′T , the two matrices Z1 and β1 are of the same size as

the matrices Z and β in 2.20. Thus, Z1 and β1 can serve as a solution in the model in

2.20, which simultaneously ensures a minimum least square error due to the Eckart-Young

theorem. However, the decomposition is not unique due to the fact that

Y′ = Z1β1 = Z1QQ−1β1 (2.26)

where Q can be any invertible square matrix, suggesting that (Z1Q) and (Q−1β1) can also

be possible solutions. Z1 and β1 generally differ from the desired matrices that represent

underlying representative features and combination weights. Although the decomposition

cannot directly give a valid solution, it leads to a self-evident fact that the representative

features must be in the form of Z1Q, i.e., a linear transformation of Z1. Similarly, the

combined weights must be a linear transformation of β1.

For a segmentation result, it is necessary to estimate Q. On the principle that the

desired matrix of representative features is a linear transformation of Z1, it is known that

the representative features have to be located in an r-dimension subspace, delimited by the

columns of Z1. Since Z1 forms an orthonormal basis, each column of Q corresponds to the

Cartesian coordinate of each representative feature in the subspace.
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Influence of Integration Scale

Local spectral histograms involve multiple scale parameters, including filter scales and inte-

gration scales. For a structure tensor, one scale corresponds to the computational gradient

scale, and the other describes the extent of the local patches on which the structure tensor

is built. For local spectral histograms, with multiple filters, it is more complicated to couple

the filter scales with the integration scales.

The selection of the integration scales has a direct effect on the segmentation results.

More specifically, as the integration scale increases, the proposed method produces smoother

boundaries. To illustrate such an effect, an image containing clipped boundaries is shown

in figure 2.16(left), where a square window is used to calculate a local feature. According

to the coverage of the two regions within the window, the proposed method segments the

corresponding pixel (the point) into the darker region, as shown in figure 2.16(middle).

With the integration scale large enough, we obtain a segmentation result shown in figure

2.16(right), where the boundary is close to a straight line.

Figure 2.16: Illustration of the smoothing effect. (left) Synthetic image containing two

regions with different Gaussian noises. (middle) Segmentation result using the method por-

posed in [3]. (right) Segmentation result with a very large integration scale

.

2.6 Software and Hardware

In this section is made a presentation of the software and hardware used. A brief analysis is

made of the Robot Operating System (ROS), and of some software already implemented in

ROS and also a brief description of the robot and sensors that will be used.

33



2.6.1 ROS: Robot Operating System

The ROS4 is a collection of software frameworks for robot development. Most of this software

is open source, allowing other users to test, reuse or improve already implemented software.

The basic concepts5 of ROS are nodes, master, parameter server, messages, services,

threads and bags.

The advantages of using ROS in this dissertation are as follows:

• Availability of a large set of packages developed for robots.

• Provides a message exchange interface that allows communication between processes.

• Provides common robot-specific libraries and tools, such as mapping, navigation, lo-

calization, pose estimation, diagnostics, etc.

• Provides three-dimensional visualisation of many types of sensors using the rviz pack-

age, signals and graphical data using the rqt package.

One of the disadvantages of ROS is that it is not cross-platform, i.e. it is not fully

supported on platforms such as Windows or Android.

One of the disadvantages of ROS is that it is not cross-platform, i.e. it is not fully

supported on platforms such asWindows or Android. ROS is designed for Unix type systems.

One way to use ROS in a Windows environment is through Matlab’s ROS Toolbox.

2.6.2 Software available in ROS

LiDAR Odometry and Mappin (LOAM)

LOAM is a method for state estimation and mapping, using a 3D, real-time LiDAR [45].

Essentially, LOAM uses range measurements captured by a LiDAR to locate itself in an

environment and build a map of it. The program contains two major threads running in

parallel. An "odometry" thread computes motion of the LiDAR between two sweeps, at a

higher frame rate. It also removes distortion in the point cloud caused by motion of the

LiDAR. A "mapping" thread takes the undistorted point cloud and incrementally builds a

map, while simultaneously computes pose of the LiDAR on the map at a lower frame rate.

The LiDAR state estimation is combination of the outputs from the two threads [45].
4http://wiki.ros.org/Documentation
5http://library.isr.ist.utl.pt/docs/roswiki/ROS(2f)Concepts.html#ROS_Computation_Graph_Level
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Lightweight and Ground-Optimized LiDAR Odometry andMapping (LeGO-LOAM)

LeGO-LOAM [46] is computationally lightweight and can be used in an embedded system.

LeGO-LOAM is ground-optimised as it takes advantage of the presence of the ground plane

in its segmentation and optimisation steps. In [46], a comparison is made with the LOAM

method, where it is shown that the LeGO-LOAM method can achieve similar or better

results in accuracy.

RTAB-Map (Real-Time Appearance-Based Mapping)

RTAB-Map [47] is a graph-based SLAM approach that has been integrated into ROS as a

package6. RTAB-Map (Real-Time Appearance-Based Mapping) is an RGB-D Graph SLAM

approach based on a global Bayesian loop closure7 o detector. It is a graph-based SLAM

technique because it determines the probability of a new image coming from a previous loca-

tion or a new location through loop closure process . When a good assumption is accepted,

these new images are added and optimized by a graph optimizer. The approach in [48] con-

sists of four steps: extracting visual features from images and then matching these features

with others from previous images. After that, they obtain a set of 3D point correspondences

between any two frames and finally they can estimate the relative transformation that re-

lates the frames. One of the major strengths of these techniques is their compatibility with a

wide variety of devices, namely a handheld Kinect, a stereo camera or 3D LiDAR for 6DoF

mapping, or a laser rangefinder for 3DoF mapping. Figure 2.17 illustrates an example of a

map with the RTAB-Map [49].

Figure 2.17: 3D reconstruction of a fenced agricultural field using RTAB-Map.

6http://wiki.ros.org/rtabmapros
7Loop closure consists of detecting when the robot has returned to a known previous position and thus

determining the deviation between the actual and the calculated position. This allows errors in the estimated

trajectory to be drastically reduced.
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3D LiDAR-based Graph SLAM

The hdl_graph_slam is an open source ROS package for real-time 6DoF SLAM us-

ing a 3D LiDAR. It is based on 3D graphical SLAM with odometry estimation based on

NDT matching and loop detection. This package has been used with Velodyne (HDL32e,

VLP16) and RoboSense (16 channels) sensors in indoor and outdoor environments [50]. The

hdl_graph_slam has as input a point cloud obtained through LiDAR and has as output

a point cloud resulting from the registration of the various point clouds obtained during

navigation.

The input point cloud is first downsampled by the node prefiltering, and then passed

to the next nodelets as shown in figure 2.18. While the scan_matching_odometry

nodelet estimates the sensor pose by iteratively applying a scan match between consecutive

frames (i.e., odometry estimation), the floor_detection nodelet detects the floor planes by

RANdom SAmple Consensus (RANSAC). The estimated odometry and the detected floor

planes are sent to the hdl_graph_slam node. In order to compensate for the accumulated

error of scan matching, it performs loop detection and optimises a pose graph.

Figure 2.18: Nodelets of hdl_slam.

2.6.3 Ranger

The Ranger, the robot that will be used in the SafeForest project is based on a 4000 kg

Bobcat T190 (figure 2.19). This platform carries all equipment (cutting tool, sensor kit,

computer or processing system) necessary to complete the mission. Being a widely used

machine in a variety of fields, it allows for specialized maintenance to be readily available.

In figure 2.20 is possible to see the hardware distribution used in Ranger, which may

suffer future changes.
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Figure 2.19: Ranger, robot used in the project.[4]

The use of sensors such as cameras and LiDAR will make it possible to observe the tracks

of the machine, the tool and the areas immediately in front of and behind the robot, ensuring

the safety of personnel and animals in the vicinity of the machine during operation. The use

of thermal cameras enables the Ranger to detect temperature differences and thus to detect

people and animals, as well as ignition sources caused by the use of the cutting tool in dry

vegetation.

The use of a multispectral camera or an RGB camera on the Ranger allows the detection

of different wavelengths, such as visible light, infrared, ultraviolet or any other band of the

spectrum allowing to distinguish elements that can be identical in the visible light band, but

different in other bands allowing to verify various types of vegetation and also vegetation in

various states (cut, dry,etc).

Figure 2.20: Hardware distribution in Ranger.[4]
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2.6.4 LiDAR

The LiDAR that was used in this Dissertation is the RS-LiDAR-M1 of Real Sense [51]. RS-

LiDAR-M1 is an automotive grade solid-state LiDAR, that RoboSense specially designed for

massive production vehicles. Some of the main features of RS-LiDAR-M1 are:

• Wavelength: 905 nm.

• Compact and lightweight.

• Accuracy: up to +/- 5 cm.

• Measuring capacity up to 200 m distance.

• Vertical Field Of View (FoV): 25º (-12.5º -+ 12.5º).

• Vertical angular resolution: 0.2º.

• Horizontal FoV: 120º (-60.0º -+ 60.0º).

• Horizontal angular resolution: 0.2º.

• Ability to resist interference from other LiDAR and ambient light.

2.6.5 RGB camera

A RGB camera is an imager that collects visible light (400 700nm). RGB cameras utilize

wavelengths of light from 400 700nm, which is the same spectrum that the human eye per-

ceives. In some digital cameras the image sensor is a charge-coupled device (CCD), while

in others it’s a CMOS sensor. One of the features most exploited by digital camera manu-

facturers is the resolution of the camera sensor, measured in megapixels. Other important

factors for the quality of photos/videos are the quality of the lens and the algorithm (internal

camera software that processes captured data).

In this Dissertation, the camera used was a 13MP smartphone camera8.

8https://www.gsmarena.com/xiaomi_redmi_note_4-8531.php
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3 Developed Methodology

In this section the whole methodology developed in this Dissertation is described based on

the acquisition and processing of data acquired by LiDAR and also by RGB camera. The

objective of the developed methodology is to distinguish between vegetation that can be

cut, and vegetation that cannot be cut or other obstacles. Using LiDAR, the distinction is

made through the height of the objects, the reflectance intensity value of each point cloud

point and also through the size of each object, such as its diameter. Using the camera, the

classification is done by merging vegetation indexes with segmentation.

3.1 LiDAR

In this subsection the work developed using LiDAR is presented: separation of point clouds

on ground and objects, height maps, calculation of trees and their position, and finally

obstacle classification.

3.1.1 Separation of Objects from the Ground

When the point cloud is captured by LiDAR, the point cloud is in the raw state, i.e. all

points (x,y,z) and the reflection intensity of each point. For a better analysis, these points

have to be processed by filtering. In this case, a progressive morphological filter 3.1.1 which

is part of the Point-Cloud library1 is applied.

The application of this filter splits the original point cloud in two. One contains the

points considered ground while the other contains the points considered objects. In figure

3.1 can be seen the point cloud that corresponds to the scene in figure 3.2.
1https://pointclouds.org
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Figure 3.1: Original Point cloud represented by Intensity (Point cloud colour).

Note: in figure 3.1 the group of points marked in green with a circle and an arrow are

result of the LiDAR error since they are within a zone where LiDAR should not capture any

point.

Figure 3.2: Scene corresponding to the point cloud of the figure 3.1.

The filter implementation is run in c++ as demonstrated in the following code excerpts.

After reading the original point cloud, the filter is then created, in this case with the default

parameters. The output (the indices of ground returns) is computed and stored in ground.

1 // Create the f i l t e r i n g ob j e c t

2 pc l : : P rog r e s s i v eMorpho l og i c a lF i l t e r <pc l : : PointXYZ> pmf ;

3 pmf . setInputCloud ( c loud ) ;

4 pmf . setMaxWindowSize (20) ;

5 pmf . s e tS l ope ( 1 . 0 f ) ; // t e r r a i n s l ope [ −1.57 1 . 5 7 ] rad

6 pmf . s e t I n i t i a l D i s t a n c e ( 0 . 5 f ) ; // i n i t i a l e l e v a t i o n d i f f e r e n c e th r e sho ld [m]

7 pmf . setMaxDistance ( 3 . 0 f ) ; //maximum e l e v a t i o n d i f f e r e n c e [m]

8 pmf . ex t r a c t ( ground−>ind i c e s ) ;
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To extract the ground points, the ground index are passed into a pcl::ExtractIndices

filter.

1 // Create the f i l t e r i n g ob j e c t

2 pc l : : Ext rac t Ind i ce s<pc l : : PointXYZ> ext ra c t ;

3 ex t r a c t . setInputCloud ( c loud ) ;

4 ex t r a c t . s e t I n d i c e s ( ground ) ;

5 ex t r a c t . f i l t e r (∗ c l oud_ f i l t e r e d ) ;

To get the points corresponding to the objects the filter is called with the same parameters

but with the output negated.

1 // Extract non−ground re tu rn s

2 ex t r a c t . s e tNegat ive ( t rue ) ;

3 ex t r a c t . f i l t e r (∗ c l oud_ f i l t e r e d ) ;

The two output point clouds that result from the application of this filter can be seen in

figures 3.3 and 3.4. In figure 3.3 it is possible to observe the point cloud that corresponds to

the ground and in figure 3.4 is possible to observe the point cloud that corresponds to the

objects.

Figure 3.3: Point cloud corresponding to the ground after the application of the morpholog-

ical filter, using the default parameters.

Figure 3.4: Point cloud corresponding to the objects after the application of the morpholog-

ical filter, using the default parameters.

In figure 3.3 can be seen that most of the points are well filtered, however on the wall

on the left it can be seen that some points above the projection of the first car have been
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poorly separated. Also some points corresponding to the trees were incorrectly separated. It

is also possible to observe that the objects closest to the LiDAR have been cut by the filter

i.e. lower parts of the objects have been wrongly separated.

Through trial and error tests carried out altering the filter parameters (next code excerpt)

it is possible to observe in figure 3.5 and 3.6 that by altering the parameters, particularly

the maximum distance "pmf.setMaxDistance" it was possible to filter the point cloud more

effectively. The parameter "pmf.setSlope" is not changed since the terrain has no slope.

1 // Create the f i l t e r i n g ob j e c t

2 pc l : : P rog r e s s i v eMorpho l og i c a lF i l t e r <pc l : : PointXYZI> pmf ;

3 pmf . setInputCloud ( c loud ) ;

4 pmf . setMaxWindowSize (20) ;

5 pmf . s e tS l ope ( 0 . 2 f ) ;

6 pmf . s e t I n i t i a l D i s t a n c e ( 0 . 1 f ) ;

7 pmf . setMaxDistance ( 1 . 5 f ) ;

8 pmf . ex t r a c t ( ground−>ind i c e s ) ;

Figure 3.5: Point cloud corresponding to the ground after the application of the morpholog-

ical filter, using updated trial and error parameters.

Figure 3.6: Point cloud corresponding to the objects after the application of the morpholog-

ical filter, using updated trial and error parameters.

From figure 3.5 it is verified that all the points obtained by filtering correspond to points

on the ground, i.e., calculating the difference between z-max and z-min at a given area is
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zero. In figure 3.6 it can be seen that the left side-walk has been considered as an obstacle,

however this is an acceptable error as the side-walk is distant from the LiDAR and is one

plateau above the road.

Slope Parameter Calculation

The parameter slope needs to be updated along the robot’s path due to the variation of

inclination of the terrain in front of the robot. The parameter slope is the relative slope

that the terrain has in front of the robot, and is relative to the LiDAR horizontal plane. For

calculation of the parameter slope there are various options to take into account. One of

them is to provide a pre-defined value initially and then adjust the value of the slope using

one or more comparison elements. Since the Z-max and Z-min of point cloud of ground do

not change by modifying the value of the slope it is necessary to find another comparison

parameter.

The parameter chosen was "areas where the difference between z-min and z-max

is more than 20 centimetres". Areas with a height of more than 20 centimetres are taken

into account to increase or decrease the slope value.

By supplying the slope parameter with a value of 0.5f, it is then compared to the pa-

rameter "areas where the difference between z-min and z-max is more than 20

centimetres" which must converge to one or zero. Another parameter for comparison is

the number of points that are part of the ground. Since the original point cloud normally

has 78750 points, the ground will hardly have less than 10000 points so it will also be a

parameter for comparison (see figure 3.7).

Table 3.1: Comparison of results of the ground point cloud by changing the slope a param-

eter.

Parameter
Areas where the difference between z-min and

z-max is more than 20 centimetres
Number of ground points

Slope: 0.5f 2 24820

Slope: 0.0f 0 478

Slope: 0.1f 1 17391

Slope: 0.2f 1 24780

Slope: 0.3f 1 24796

Slope: 0.4f 2 24804

Slope: 0.6f 4 24840
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Figure 3.7: Flowchart of the algorithm described above. Slope Calculation.

Another way to obtain a value for the slope using the FoV of LiDAR is shown below (see

figure 3.8):

1. Using the point cloud of the ground obtained using a pre-defined initial slope value.

2. Knowing how high h the LiDAR was off the ground at the time the data was obtained;

3. If the LiDAR is placed h meter above the ground, and the ground is parallel to the

LiDAR’s axis, as the LIDAR has a vertical FoV of 12.5º, it will only hit the ground at

the distance d= h
tg12.5

of the Lidar;

4. By checking all points at distance d and averaging the z-min of each (x,y) at that

distance it is then possible to calculate the difference between the expected value h if

the ground was parallel and the value obtained by LiDAR;

5. With this difference it is possible to calculate an approximate value of the slope. The

angle of the slope will be calculated using the expression α = tg−1(difference
d

), were α

is the new slope.

Figure 3.8: Vertical FoV of the LiDAR.
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Another option is for the robot to be equipped with an inertial measurement unit (IMU),

or inclination measure. Using such a device would be useful if the changes in the slope of

the terrain were not too abrupt, i.e. in the forest for example, there may be times when it is

going downhill and then suddenly it is going uphill. However in this case, it is not applicable

as only LiDAR is being used.

3.1.2 Height map

By using the ROS package "Velodyne height map" it is possible to generate a height map

using the original point cloud (see figure 3.9) of the scene in figure 3.10. The package

"Velodyne height map" divides the point cloud into cells, in this case cells of size 0.4 x

0.4m and calculates the difference between z-min and z-max to calculate the "height". This

package will separate obstacles from non-obstacles by a height threshold, which in this case

is 1 metre.

By setting the height threshold desired by the robot user on the terrain, the package will

separate objects into obstacles and non-obstacles by the height of the objects. For example,

if the threshold considered is one meter, all objects taller than one meter will be considered

obstacles by the robot i.e. assuming that the navigation is done in a forest where the trees

are already big, it is possible to navigate with only trees as obstacles. Bushes lower than

one metre are considered non-obstacles and should be cut back.

Figure 3.9: Original point cloud, input for the height map.
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Figure 3.10: Partial photo of the scene corresponding to the point cloud in figure 3.9.

The application of this ROS package allows the creation of two point clouds from the

original point cloud. Each point cloud created has each point corresponding to the size of

the cell 0.4 x 0.4m and with z equal to the difference between z-min and z-max in that cell.

One point cloud contains the obstacles, i.e. objects that exceed the defined height threshold

are considered obstacles, and another point cloud contains the objects or the ground where

the objects are below the defined threshold and are considered non-obstacles. This can be

seen in figure 3.12, where red corresponds to the point cloud containing the obstacles and

green corresponds to the non-obstacles or the ground.

Figure 3.11: Overlapping point clouds, red for obstacles and green for the non-obstacles.

Using the difference between z-min and z-max calculated by the package "Velodyne height

map" it is possible to create a point cloud with the heights of all the objects present, as it is
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possible to observe in figure 3.12.The points are represented according to the present scale.

Figure 3.12: Point cloud containing the objects/ground represented (colour) by their height.

Depending on the type of navigation to be done, or in this case which obstacles to take

into account for the robot’s navigation, through this package it is possible to create a map

according to the defined height. For example, in the case of clearing forest land, the height

threshold of the package can be defined as a value that makes for example all trees present

as obstacles. Using the point cloud of the figure 3.12 it is also possible to divide the terrain

by heights.

3.1.3 Octomap and Z-coordinate cut

The Octomap library2 implements a 3D occupancy grid mapping approach, i.e. 3D map of

the scene. The Octomap library also allows the creation of a grid map from the 3D map,

both with the same resolution. In the following examples the minimum resolution used is

0.2 meters. The input of the Octomap package is a point cloud, and as output, a 3D map

and a grid map.

Using the progressive morphological filter described previously, the original cloud (see

figure 3.13) was split in two point clouds (ground and objects). Using the ROS package

pcd2octo, both point clouds were represented in an octomap. In figure 3.15 it can be seen

the representation of the terrain using the octomap that can give information of the terrain

and in figure 3.14 the representation of the obstacles giving information of their 3D shape.
2https://octomap.github.io
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Figure 3.13: Original point cloud.

Figure 3.14: OctoMap representation of the point cloud containing the ground points result-

ing from the application of the progressive morphological filter to the original cloud.

Figure 3.15: OctoMap representation of the point cloud containing the objects points result-

ing from the application of the progressive morphological filter to the original point cloud.

A PassThrough filter is applied to the point cloud objects, in this case in the z-

coordinate dimension, allows us to make a cut in the cloud in a range. In figure 3.16 it

is possible to see the original cloud, and also the octomap representation of the cut made

between 0.5 m and 0.8 m above the LiDAR origin (z-coordinate).

In the case of a tree, when a grid map is created that contains it, its representation will

be done by overlapping the crown with the trunk. Thus, using the points resulting from the

application of the filter, it can just create a grid map of the tree trunk (semicircle). This

method allows the perception of the objects’ limits.
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Figure 3.16: Octomap representation of the z-cut made between 0.5 m and 0.8 m above the

LiDAR origin in the point cloud.

Figure 3.17: Grid map resulting from the z-cut in the point cloud.

3.1.4 LiDAR Intensity

LiDAR intensity is a value captured for each point of the return intensity of the laser pulse

that generated the point. It depends, in part, on the reflectivity of the object hit by the

laser pulse. The strength of the returns varies with the composition of the surface object

reflecting the return. The LiDAR intensity values varies between 0 and 255.

Starting from LiDAR intensity the goal is to isolate vegetation that cannot be cut, such

as tree trunks above a pre-defined value, and also other obstacles that cannot be cut, such

as cars or walls.

In figure 3.18 it is possible to observe a new point cloud where the colour of the points

is according to their intensity. In figure 3.19 it is possible to observe the scene in which

the point cloud were captured. The region of interest of this point cloud was reduced to a

window x[0;6], y[-3;3].
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Figure 3.18: Point cloud represented by intensity.

Figure 3.19: Photos of the scene of the above point cloud.

As shown in figure 3.20 most of the points have intensity values between 0 and 45. Taking

only the points within the range between 0 and 45 and dividing them into 9 point clouds

with intensity ranges of only 5, it is possible to determine in which intervals are the points

that are important for the objective, i.e. the detection of trunks.
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Figure 3.20: Point cloud split by intensity - in intervals of 5 in steps of 5.

From figure 3.20 it can be determined that the tree trunks are mainly in the range [35-

40], allowing these points to be isolated. By dividing again this point cloud into others

by intensity, i.e. 35, 36, ..., 40, it is possible to check in more detail the intensity that

corresponds to the tree trunks. This permits to proceed to the next phase of the method,

the clustering.

Figure 3.21: Point cloud of intensity [35-40] slited represented in steps of 1.
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Clustering

Clustering or data mining is the set of data mining techniques that aim to automatically

group data according to their degree of similarity. Each set of data resulting from the process

is called a group or cluster. In this case a MATLAB algorithm based on Euclidean distance

is used.

By applying the Matlab clustering algorithm to the point cloud with intensity between

[37-39] with a Euclidean distance of 0.045 metres chosen through trial and error and taking

into account the resolution of the LiDAR in the region of interest chosen, it is possible to

obtain the following clusters represented in the figure 3.22 where each cluster is represented

by a different colour. With this distance of 0.045 metres results 695 clusters, where only

two have more than 500 points, i.e. many of the clusters are grasses, leaves, and other small

vegetation.

Figure 3.22: Representation of the point cloud corresponding to the interval [37-39]. The

colour of the points is according to the cluster they belong to.

By setting the threshold at 500 points, all small clusters with fewer points will be removed.

Having isolated the clusters of the trunks (clusters with more than 500 points), a cut is

applied to the point cloud in z-coordinate around a pre-defined z (z-cut), in this case between

0.3 and 0.35 metres, relative to the LiDAR coordinate system (figure 3.24).
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Figure 3.23: Representation of the point cloud corresponding to the tree trunk clusters after

the clusters below the 500 points threshold are removed.

Using the point cloud resulting from the z-cut, the same clustering algorithm is again

applied which separates the various trunks. In this clustering it is used a distance of 0.07

metres chosen taking into account the resolution of the LiDAR that at 6 metres is about

0.04m. After separating the trunks, an existing Matlab function circlefit3d is used. Given

three points, the function returns a circle containing all of them. The function has as input

3 points of each cluster, the point with the smallest x and smallest y, the point with the

largest x and largest y and the point with the smallest x and largest y.

Figure 3.24: Representation of the point cloud corresponding to z-cut between 0.3 and 0.35

metres and the circle corresponding to the diameter of each trunk.

This method permits each trunk to be isolated and its location and diameter to be known.
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Classifying other obstacles and Octomap

Using the return intensity of the laser pulse of LiDAR it was also possible to separate other

obstacles, which in this case are cars or a car part (metal). To separate the other obstacles,

the points with intensity in the range between [0-36] are used, i.e. those not used in the

trunk detection (figure 3.25).

Figure 3.25: Point cloud whit intensity between [0 36] - intensity below that used previously.

Applying again the same clustering algorithm with a Euclidean distance of 0.045 meters

chosen by trial and error and through LiDAR resolution the point cloud is divided into

different clusters. With this distance of 0.045 metres results 1032 clusters, where only two

have more than 500 points, i.e. as there are many clusters, most of them are grass and leaves

where some points had a lower reflection due to the position or surface of the object.

Applying the threshold of 500 again all small clusters (below the threshold) were elimi-

nated (see figure 3.26).

Figure 3.26: Point cloud corresponding to two parts of two cars, i.e. point cloud formed by

the two clusters with 500 or more points.
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Using again the Matlab function circlefit3d, an obstacle size can be obtained. It allows

the obstacle to be considered even if it is not its true size (figure 3.27).

Figure 3.27: Point cloud corresponding to two parts of two cars (metal), i.e. obstacles that

are not vegetation and the corresponding circles.

After the classification of the other obstacles, which in this case are cars or a car part

(metal), it is possible to have the point cloud with the main obstacles classified as vegetation

not to be cut i.e. trunks with a diameter above a pre-defined value according to the cleaning

machine capabilities and the non-vegetation obstacles (figure 3.28).

Figure 3.28: Point cloud with the main obstacles classified (red circles for non-vegetation

obstacles and yellow circles for trunks).

An octomap (3D representation) of the main obstacles can then be created, with the

position, size and classification as non-vegetation obstacles or vegetation that cannot be cut

(figure 3.29).
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In figure 3.29 it is possible to observe the original point cloud (green points) and the

obstacles represented in octomap. With this result, the robot will have information about

the environment to make the navigation, the size and positioning of each tree and also of

each obstacle.

Figure 3.29: Obstacles represented in octomap and their classification (red circles for non-

vegetation obstacles and yellow circles for trunks). Also represented the original point cloud

(green points) for a better perception of the obstacles.

3.1.5 Classifying Objects by Size

The application of this method aims to classify large objects, such as trees, poles, walls and

cars, with height well above the ground vegetation.

By making a z-coordinate cut around a pre-defined z above the ground vegetation in

a point cloud, results in a horizontal slice of the point cloud, allowing a calculation of the

contour of the objects. These contours will become separated from each other due to the

slicing performed. As they are separated, the same clustering algorithm is applied to the

point cloud after the z-cut, allowing the objects to be divided into clusters. On the resulting

clusters, taking into account only the x and y coordinates, the diagonal will be calculated,

i.e. the distance between the point with the smallest x (min(x)) and the point with the

largest x (max(x)) and the distance between the point with the smallest y (min(y)) and the

point with the largest y (max(y)). Using this diagonal length and a pre-defined threshold,

if the object has a smaller diagonal than the threshold it is considered a trunk or a pole, if
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the diagonal is larger than the threshold it is a car or a wall.

For a better understanding of the method implementation, it is used a point cloud ob-

tained by registration of several point clouds by applying the ROS package "hdl_graph_slam"

(figure 3.30, corresponding to the street of ISR-UC).

Figure 3.30: Point cloud resulting from the application of the ROS package

"hdl_graph_slam", and the trajectory of the LiDAR (small red balls).

Applying the cut around a pre-defined z [0.8; 1.1] (in meters) to the point cloud of figure

3.30, object contours can then be obtained, which corresponds to the point cloud in figure

3.31 (right). Then, applying the same clustering algorithm with a distance of 0.4 m all

groups of points will be separated, because the objects after the cut are distant from each

other.

Applying the calculation of diagonals of the clusters, the objects will then be classified.

If the cluster has a diagonal smaller than the threshold is considered a trunk or a pole (green

circles), if the distance is greater than the threshold is a car or a wall (red polygons). The

green circles are created using the function already used before circlefit3d. The three points

given to the function are: the closest point to the LiDAR origin (min(x)), the leftmost point

of the LiDAR origin (min(y)) and the rightmost point of the LiDAR origin (max(y)). The

red polygons are made using the Matlab function fill3 which is given four points from each

cluster: the point with the smallest y (min(y)), the point with the smallest x (min(x)), the

point with the largest y (max(y)) and the point with the largest x (max(x)).

The classification using a threshold of 1 meter can be seen in figure 3.31.
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Figure 3.31: On the left, original point cloud (in blue) and classified objects. The classifica-

tion is for trunks or poles (green circles) and larger objects like a car or a wall (red polygons).

On the right, z-cut between [0.8;1.1] of the point cloud and classified objects.

In figure 3.32 it can be seen the point cloud cut around z between [0.8;1.1] and object

classification, seen from another perspective for a better understanding.

Figure 3.32: Z-cut between [0.8;1.1] of the point cloud and classified objects. The classifica-

tion is trunks or poles (green circles) and objects like a car or a wall (red polygons).

3.2 RGB camera

In this section is presented the work developed using an RGB Camera, work related to

vegetation indexes and segmentation of RGB images. The aim is to classify the vegetation

present as vegetation cut by a clearing machine and vegetation yet to be cut.
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3.2.1 Vegetation indexes

As seen in section 2.4, a vegetation index (also called a vegetative index) is a single number

that quantifies vegetation biomass and/or plant vigor for each pixel in a remote sensing

image. The index is computed using several spectral bands that are sensitive to plant

biomass and vigor. One way to differentiate vegetation is through vegetation indexes using

only the visible spectrum:

Table 3.2: RGB vegetation indexes

Index Definition Reference

R red(0-255) [52]

G green(0-255) [52]

B blue(0-255) [52]

r R/(R+G+B) [52]

g G/(R+G+B) [52]

b B/(R+G+B) [52]

ExG 2g-r-b [53]

ExGR ExG-(1.4r-g) [53]

VEG g/(r0.667 × b0.333) [54]

CIVE 0.441r-0.881g+0.385b+18.78745 [53]

COM 0.25ExG+0.3ExGR+0.33CIVE+0.12VEG [54]

VARI (G-R)/(G+R-B) [53]

RGBVI (G2 −RB)/(G2 +RB) [55]

MGRVI (G2 −R2)/(G2 +R2) [55]

NGRDI (G - R)/(G + R - B) [54]

GLI (2G-R-B)/(2G+R+B) [54]

NDI (G-R)/(G+R) [54]

TGI (G-0.39R) - 0.61B [56]

In figures 3.33 and 3.34 a comparison between some RGB vegetation indexes was done.

This comparison allows an evaluation of which index is most beneficial to distinguish the

vegetation in the present scene. It also enables to verify that most of the indexes provide a

very similar result in the scenes in question.
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Figure 3.33: Comparison between different RGB vegetation indexes (scene 1).
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Figure 3.34: Comparison between different RGB vegetation indexes (scene 2).
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Through the tests performed (e.g. figures 3.33 and 3.34) for the purpose of classifying

vegetation as cut or uncut, the TGI index was the one that remained most congruent in

various scenes tested.

3.2.2 Segmentation

Segmentation is commonly used to locate objects and boundaries (lines, curves, etc.) in

images. Image segmentation is the process of assigning a label to each pixel in an image so

that pixels with certain characteristics share the same label.

Factorization-based Texture Segmentation

In this section the Factorization-based texture segmentation algorithm is applied,

which allows a segmentation of the RGB image by taking its textures.

As seen before, using local spectral histograms as features, a M × N feature matrix is

constructed using M-dimensional feature vectors on an N-pixel image. Based on the observa-

tion that each feature can be approximated by a linear combination of several representative

features, the factorisation of the feature matrix into two matrices is performed. One consists

in the representative features, and the other contains the weights of the representative fea-

tures at each pixel used for linear combination. The method uses local spectral histograms

to discriminate regional appearances in a computationally efficient manner while accurately

locating regional boundaries.

Parameters

The application of this algorithm has as input parameters ws and segn, namely, window

size for computing features, and the number of parts in that image that will be segmented.

Being the parameter segn the number of different segments desired, in the following example

it will be set to 3 because the aim is to separate cut vegetation from uncut vegetation, and

only the parameter ws will change in the experiment performed using the RGB image of

figure 3.35.

As it can be seen in figure 3.36, the increase of the parameter ws will increase the

size of the segments , which becomes more useful for the objective of separating the types

of vegetation, because the segmentation obtained is better defined, that is, the segmented

areas are larger and more continuous, eliminating noise.
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Figure 3.35: RGB image used as input to the segmentation algorithm.

(a) ws=20 and segn=2. (b) ws=100 and segn=2. (c) ws=200 and segn=2.

Figure 3.36: Comparison of different values of ws parameter used in the factorization-based

texture segmentation algorithm.

It can be seen that the resulting segmentation just by applying the segmentation algo-

rithm to the RGB image, will separate just a bit of vegetation that is uncut on the left, and

also not all the uncut vegetation on the right.

3.2.3 Fusion of RGB vegetation indexes with factorization-based

texture segmentation

Using the RGB vegetation indexes and the segmentation algorithm and combining them

together, it is possible to distinguish between vegetation that has been cut by a tractor using

a clearing machine and vegetation that was not cut yet. For that, the vegetation index TGI is

applied to the RGB image and then the factorization-based texture segmentation algorithm

is applied with the parameter ws=100 chosen after several tests in different scenes and the

parameter segn=2 it is intended to distinguish between cut and uncut vegetation. In the

segmentation obtained the pixels will have a colour between black and white chosen by the
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algorithm. The resulting segmentation will have two distinct parts, in black the already cut

areas, and in grey, the uncut areas (figure 3.37c).

(a) Original image (input

RGB indice).

(b) TGI, input for segmenta-

tion algorithm.

(c) Segmentation result

(ws=100 and segn=2) using

factorization-based texture

segmentation.

Figure 3.37: Various stages of the fusion of the RGB indexes with the segmentation algo-

rithm.

The fusion of the RGB vegetation indexes and the segmentation algorithm allows the

robot to get a perception of the vegetation that has already been cut.
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4 Presentation and Discussion of Other

Results

In this chapter a presentation and critical analysis of the results obtained using the methods

described in chapter 3 is done. First, the methods using the LiDAR presented in section 3.1,

and then, the methods using the RGB Camera presented in section 3.2.

4.1 Results

The work developed has two distinct starting points. In one of them, the input is a point

cloud and in the other the input is an RGB image.

In figure 4.3 it is possible to see the developed methods in which the work developed with

the LiDAR. In all methods, the original point cloud may not be filtered by the progressive

morphological filter described in section 3.1.1 that splits the original point cloud into two,

one containing the points corresponding to the ground and the other with the points corre-

sponding to the objects. In figure 4.1 it is possible to see the scene where the new example

data has been recorded. In figure 4.2 it can be seen the split of the original point cloud into

the point cloud of the objects and the ground point cloud, the parameter slope=0.5 was used

to obtain these results because the terrain is sloping.

Figure 4.1: Photos of the new scene where the new example data was recorded.

65



(a) Original point cloud.

(b) Point cloud of ground.

(c) Point cloud of objects.

Figure 4.2: Results of the application of the progressive morphological filter with parameter

slope=0.5.

Applying the Height Map method (presented in section 3.1.2) to the original point cloud

(represented in 4.2a) two point clouds are obtained: one containing the points considered

obstacles and the other containing the points considered non-obstacles. The Height Map

method was applied with a resolution of 0.4 x 0.4 m and a height threshold of one meter. In

figure 4.4a it is possible to see the two point clouds created. In green the objects considered

not obstacles (e.g. ground vegetation) and in red the objects considered obstacles (e.g. the

pole).

In figure 4.2 is marked with a circle and a green arrow a noise zone that LiDAR creates
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Figure 4.3: Framework of the methodology developed using LiDAR.

by default. Due to the noise, the points of the car present on the left of the figure are not

recorded by LiDAR. So when applying the Height Map method only a part of the car was

considered (see on the figure 4.4a the circle and the blue arrow).

(a) Overlapping point clouds, red for ob-

stacles and green for the non-obstacles (top

view).

(b) Height map of original point cloud (top

view).

Figure 4.4: Results of the application of the Height Map.

In figure 4.5 it is possible to observe an application of the LiDAR Intensity method (pre-
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sented in section 3.1.4) to a new point cloud (new scene), and the yellow circle corresponding

to the diameter of the trunk. The detection of the trunk (yellow circle) was obtained using

the same parameters used in the example described in section 3.1.4. The parameters were:

region of interest x[0;6], y[-3;3]; z-cut between [0.3;0.35]; Euclidean distances for clustering

were 0.045 and 0.07.

Figure 4.5: Original point cloud and the yellow circle corresponding to the diameter of the

trunk.

In figure 4.6a a new example of the application of the obstacle classification method by

the size of the diagonal of each cluster (presented in section 3.1.5) can be observed. The

parameters used were: a z-cut between 0 and 0.4 metres relative to the LiDAR origin (the

LiDAR position was one metre high), the Euclidean distance used was 0.4 and the diagonal

size threshold was one metre. The classification can be seen in the figure 4.6a and 4.6b (top

view) where the green circles correspond to trunks and poles and the red polygons to cars

or walls (size larger than the threshold).

In figure 4.7 it is possible to see the framework of the implemented methodology using

an RGB image as a starting point. The aim of the described methodology is to classify cut

and uncut vegetation.

In figure 4.8a a new scene can be observed where the method Fusion of RGB vegeta-

tion indexes with factorization-based texture segmentation (presented in section 3.2.3) was

applied. The chosen vegetation index was the TGI and the parameters used in the segmen-

tation were: segn=2 and ws=100. The segmentation result can be seen in figure 4.8b where

black represents uncut vegetation and grey represents cut vegetation.
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(a) Original point cloud, and classified objects. The classification is trunks or poles (green circles)

and objects like a car or a wall (red polygons).

(b) Z-cut between [0.0;0.4] of the point cloud and classi-

fied objects (top view). The classification is trunks or poles

(green circles) and objects like a car or a wall (red polygons).

Figure 4.6: Results of the application of the Classification of obstacles by diagonal size.
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Figure 4.7: Framework of the methodology developed using RGB Camera.

(a) RGB image. (b) Segmentation result.

Figure 4.8: Results of the application of the fusion of RGB vegetation indexes with

factorization-based texture segmentation.
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4.2 Discussion

In this section is done a critical analysis of the key points of each method implemented.

4.2.1 Applying the Progressive Morphological Filter

The application of the progressive morphological filter (presented in section 3.1.1) is depen-

dent on an adequate choice of filter parameters. After several tests made in different scenes

it was possible to adjust the parameters to values that allowed a acceptable separation of

the points that belong to the ground from the points that belong to the objects.

The parameter slope is the parameter that creates the most difficulties. In all environ-

ments where LiDAR data was acquired, the terrain slope was always nearly zero. However,

in the forest, the terrain brings other difficulties, such as many unevennesses and frequent

changes of slope. The two ways of calculating the slope presented in section 3.1.1 had some

weaknesses.

The first proposed algorithm use the comparison parameter "areas where the differ-

ence between z-min and z-max is more than 20 centimetres" to increase or decrease

the slope value. The algorithm will be applied until the desired parameter are achieved,

i.e., converge to one or zero. As the algorithm has to run until the comparison parameter

converges to one or zero the computational time may increase depending on the input point

cloud.

The second proposed algorithm to calculate the slope proposed in section 3.1.1 is based

on LiDAR position. Based on the FoV of LiDAR, it is possible to know the z-min at a

certain distance from LiDAR. Thus, knowing the height at which the LiDAR is from the

ground and the z-min at which the LiDAR intersects the ground, and averaging the z-min

at that distance, it is possible to obtain the terrain slope through the difference between the

expected and the obtained value. In the forest, the amount of soil slope and dense vegetation

makes it difficult to obtain a slope value.

4.2.2 Point Cloud - Z Coordinate Cut

When the terrain is parallel to the LiDAR XY plane, there is no problem with the cut,

however, the unevenness of the terrain in the forest makes it necessary to pay attention to

how the cut is made. If the cut is made in a region of interest close to the robot, the impact

of the slope of the terrain is smaller. That is, the impact of the slope on the point cloud cut
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increases as the point cloud increases.

4.2.3 LiDAR Intensity

Intensity is a value collected for each point of the return of the laser pulse that generated

the point. It is based, in part, on the reflectivity of the object that the laser pulse hit.

Thus, the reflectivity of the laser is dependent on the surface of each object present. In

section 3.1.4 two different surfaces were tested, tree trunks and cars (metal). As reflectivity

varies with surface, other tree species with different trunk bark may not be in the same

intensity range.

Once the trunks have been isolated, it is then possible to calculate the diameter of each

trunk. Since the diameter is calculated by performing a z-cut to the cluster of the trunk, a

deformation of the trunk which coincides with the cut can lead to an error in the calculated

diameter. If the trunk has a reduced real diameter the error in percentage becomes larger.

The diameter of a tree decreases with the height at which the measurement is made i.e. if

the measurement is taken close to the ground the diameter is larger than if the measurement

is taken one metre above the ground. For the error to be zero, the Z-cut and the actual

measurement would have to be taken in exactly the same place.

On the other hand, the data acquisition would have to be done in such a way that the

XY LiDAR plane is parallel to the XY plane of the tree.

In the table 4.1 it is possible to observe the comparison between the real value and the

calculated value of the diameter. It can be seen that when the trunk is smaller the error

becomes greater, as seen in the fourth row of the table.

The second row of table 4.1 corresponds to the left trunk of figure 3.24, which is a trunk

that contains many branches parallel to its trunk, i.e. the measurement taken with LiDAR

will catch the parallel branches. This justifies justify the disparity between the real value

and the calculated value.

The LiDAR Intensity method allows us to have a good perception of the size of the trunks

existing in the navigation environment where the robot is, thus being able to decide which

ones can be cut by the robot. This method can also be used to make inventories of tree

plantations, allowing to verify the growth of trees by measuring their diameter.

72



Table 4.1: Comparison of the real value with the calculated value of the diameter by the

LiDAR Intensity method.

Real Diameter (m) Calculated Diameter(m) Error

0.290 0.307 %error = |0.307−0.290|
0.289

∗ 100 = 6%

0.318 0.291 %error = |0.291−0.318|
0.318

∗ 100 = 8%

0.178 0.241 %error = |0.241−0.178|
0.178

∗ 100 = 35%

0.280 0.430 %error = |0.430−0.280|
0.280

∗ 100 = 53%

0.063 0.153 %error = |0.153−0.063|
0.063

∗ 100 = 62%

4.2.4 Object Classification by Diagonal Size

With application of the method classifying objects by size it is possible to verify the good

results obtained, however the algorithm again depends on the z-cut. For example, if a car is

behind a tree, the algorithm will classify the car as two cars.

Another key point of the algorithm is the distance used in the clustering algorithm

because it is necessary that the objects are well separated for the classification to be correct.

As the clustering algorithm is applied after the z-cut, the choice of the Euclidean distance

has to be made in such a way that all resulting clusters of points do not lose points and are

well clustered. A distance of for example 0.4 m ensures that all points are well grouped,

however if a tree is less than 0.4 m from a car or another tree the two groups of points will

be grouped together into one. However, the goal of classifying the obstacles that the robot

cannot cut through will not be affected, as the obstacles will not be considered anymore but

will be considered as a bigger obstacle.

Likewise, at the end, it is possible to obtain the size of the obstacles and their classifica-

tion, allowing the robot to navigate with information about size and type of obstacles.

4.2.5 Segmentation using RGB Vegetation Indexes

The need to understand if the vegetation has already been cut or not yet cut by the robot

is very important for the navigation of the robot.

The application of the vegetation indexes presented good results because after a clearing

machine cut the vegetation, what was left has a very reduced volume. It can be considered

ground, so the RGB image will contain two distinct areas, vegetation and ground.

The tests were based on the choice of the index that best represents the uncut areas.
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After several tests, the index that showed the best coherence was the TGI.

The method showed good results in all the scenes used, however the vegetation present

was always in its green state, as it was cut between winter and spring. It was not possible

to perform tests where the vegetation was already completely dry.

The fusion of this segmentation method with the object classification methods (LiDAR

intendity method or the method classifying objects by size) will allow the robot to have a

perception of the main characteristics of the environment. The robot will have information

about the objects it cannot cut like trees, poles, cars or walls and it will have information

about the state of the vegetation i.e. if the vegetation is cut or if the vegetation is not cut.
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5 Conclusion

In this dissertation we proposed to develop a perception system for Unmanned Ground

Vehicle (UGV) systems using LiDAR and also aa RGB camera.

As a starting point, we began by applying a progressive morphological filter so that the

point cloud could be separated in two, i.e., objects and ground. For this, algorithms were

proposed that allowed the parameter slope to be automatically calculated according to the

slope of the terrain.

Using the Height Map method, it is possible to separate the objects of the point cloud,

considering as obstacles those that are bigger than the height threshold pre-defined by the

robot user, according to the environment. For example, in the middle of a pine tree forest,

the definition of the threshold with 1.5 meters would consider all the adult pine trees as

obstacles, thus allowing the navigation without cutting the adult pine trees.

The Octomap and Z-coordinate cut method starts from a pre-defined variable that is the

height at which the z-cut range in the point cloud is made. This cut allows a grid map to

be created containing all object contours at the defined height. For example, in a forest if

z-cutting is done at a height of two metres only adult trees will be cut. It also allows the

representation in an octomap of the environment where the robot is.

Two methods were also developed for obstacle classification, one based on LiDAR Inten-

sity and the other on the diagonal size of each cluster. The first method, based on LiDAR

Intensity, classifies obstacles according to the reflectivity of their surface, which allowed clas-

sifying the obstacles present in the environment as cars (metal) or trunks. It also allows

calculating the diameter of the trunks. The results obtained had a percentage error around

10% for trees with diameters close to thirty centimetres, which is an acceptable error for the

objective of detecting trees not to be cut. When the trunk is small the percentage error is

high, but again for the purpose of detecting trees not to be cut, the tree was detected but

with a larger diameter.

The second method allows the classification of obstacles by their diagonal size, in the

75



case used two ranges of sizes were defined. The classification showed interesting results as

in the chosen region of interest all obstacles were well classified.

From an RGB image, a method was developed that classifies the vegetation as cut and

uncut. With RGB image is calculated the TGI Vegetation index and then the texture-based

segmentation algorithm is applied. This segmentation into two distinct areas allows to verify

the vegetation cut by the cleaning machine and the vegetation that was not cut.

5.1 Future Work

This section describes future work that may be done after this Dissertation.

5.1.1 Automatic cutting at the Point Cloud

In the implemented methods, the decision of which range (z-cut) to cut was manual, that

is, according to the scene or the obstacles present, a range to cut was chosen in a z range of

the point cloud. Since the main obstacles that cannot be cut by the robot in the forest are

trees, the height can be previously set. However, the terrain in front of the robot does not

always have the same slope.

The goal is to create an algorithm that knowing the slope of the terrain converts that

slope into a plane of the type ax+ by+ cz+ d = 0 that is parallel to the ground. The height

of the plane is pre-defined, i.e., if at the beginning the plane is pre-defined at a height of 1.5

meters, during the execution of the plane, the updated plane will have to be 1.5 meters from

the ground.

One possibility is to use an Inertial Measurement Unit (IMU) and make adjustments to

the plane defined for the cut according to the slope at which the robot is located.

5.1.2 LiDAR-Camera Fusion

Each sensor provides different data in order to complement each other.

For example, cameras provide rich colour and feature information that can be used by

algorithms to detect objects of interest (pedestrians, cars, trees, etc.). LiDARs can provide

rich structural information and if it can be matched with the camera, when a pedestrian is

detected in an image, its exact 3D location can be estimated and be used by an autonomous

car to avoid obstacles and prevent accidents.

76



Multiple sensors are used to provide redundant information, which reduces the possibility

of having erroneous measurements. In the above cases, it is essential to obtain data from

multiple sensors with a single reference frame so that the data can be merged and redundancy

can be exploited.

In [57] an accurate and repeatable method is proposed to estimate extrinsic calibration

parameters in the form of 6 degrees of freedom between a camera and a LiDAR. The algo-

rithm described uses tags that can be easily printed and stuck on planar surfaces such as

card boards or wooden planks. A point extraction pipeline is implemented to obtain corner

points of the card boards from the point cloud recorded using LiDAR. The two sets of point

correspondences are used to solve for the [R|t], extrinsic parameters.

The method described in [57] is based on a different LiDAR so it would have to be

converted to our LiDAR.

The ultimate goal is to produce and continuously update a map for robot navigation

during the clean-up mission.
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