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Resumo 

 
O SARS-CoV-2 (Síndrome Respiratório Agudo Grave Coronavírus-2) já infetou mais de 225 

milhões de pessoas e foi responsável por mais de 4,64 milhões de mortes em quase dois 

anos, tornando-se a última pandemia mundial. Ainda há muito que saber sobre este vírus e, 

tendo em conta a enorme quantidade de dados que surgiram desde a sua descoberta, 

pensámos numa abordagem que nos permitisse obter diferentes camadas de informação. 

Usámos text mining para obter informações de 179.984 artigos e obtivémos 10.325 genes 

humanos. Em seguida, usando o clusterprofiler, foi possível realizar uma análise de 

enriquecimento com as databases GO (Gene Ontology), KEGG (Kyoto Encyclopedia of Genes 

and Genomes) e MeSH (Medical Subject Headings). Os resultados de diferentes databases 

corresponderam, o que significa que vários termos enriquecidos estavam presentes nas 

diferentes análises. 

 

Keywords: SARS-CoV-2, Análise de Enriquecimento de Genes, GO, KEEG, MeSH 
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Abstract 

 

SARS-CoV-2 (Severe Acute Respiratory Syndrome Coronavirus-2) infected over 225 million 

people and was responsible for over 4.64 million deaths in almost two years, becoming the 

last worldwide pandemic. There is still a lot to know about this virus and, considering the huge 

amount of data that appeared since the virus was discovered, we needed un approach to 

obtain different layers of information. We used text mining techniques to gather information 

from 179.984 articles and we were able to retrieve 10.325 human genes. Then, we performed 

enrichment analysis with GO (Gene Ontology), KEGG (Kyoto Encyclopedia of Genes and 

Genomes) and MeSH (Medical Subject Headings) databases. The results from the different 

databases matched, meaning that various enriched terms were present in the different 

analysis. This research may be continued and taken to a deeper level. 

 

Keywords: SARS-CoV-2, Gene Enrichment Analysis, GO, KEEG, MeSH



 

 

 

 



 

 

 IX 

Abbreviations 

 

nm – nanometer 

RNA - Ribonucleic Acid 

DNA - Deoxyribonucleic Acid 

ICTV – International Committee on Taxonomy of Viruses 

SARS – Severe Acute Respiratory Syndrome  

SARS-CoV – Severe Acute Respiratory Syndrome-related Coronavirus  

MuCoV- Murine Coronavirus 

MHV – Mouse Hepatitis Virus 

kb – Kilobyte 

ORFs – Open Reading Frames 

nsp – Non-structural Proteins 

HE- Hemagglutinin Esterase 

S Protein – Spike Protein 

E Protein – Envelope Protein 

M Protein – Membrane Protein 

N Protein – Nucleocapsid Protein 

TRS – Transcriptional Regulatory Sequences 

MERS – Middle East Respiratory Syndrome 

pp - Polyproteins 

TMPRSS2 - Transmembrane protease, serine 2 

AC2 - Angiotensin-Converting enzyme 2 

COPD – Chronic Obstructive Pulmonary Disease 

DAD – Diffuse Alveolar Damage 

OP – Organizing Pneumonia 

ILD – Interstitial Lung Disease 



 

 

 X 

CLD – Chronic Liver Disease 

CKD – Chronic Kidney Disease 

NLP – Natural Language Processing 

COVID-19 – Coronavirus Disease 

TM – Text Mining 

IR – Information Retrieval 

NER – Named Entity Recognition 

NEN – Named Entity Normalization 

RE – Relation Extraction 

ML – Machine Learning 

NIH – National Institutes of Health 

NLM – National Library of Medicine 

EA – Enrichment Analyses 

PPI – Protein-Protein Interaction  

 

  

 

 

  



 

 

 XI 

List of Figures and Tables 

 

Figures 

Fig. 1 - Schematic structure of SARS-CoV-2. SARS-CoV-2’ structure is formed by the following 

structural proteins: spike (S), membrane (M), envelope (E), and nucleocapsid (N) proteins. The S, M, 

and E proteins are in the viral envelope and the N protein interacts with the viral RNA in the core of the 

virion. ........................................................................................................................................................ 6 

Fig. 2 - Illustration of SARS-CoV-2 life cycle. First SARS-CoV-2 (extracellular) binds to ACE2, followed 

by TMPRSS2 or FURIN priming. Then, the virus suffers a clathrin-mediated endocytosis and denotes 

endosomal compartments during exocytosis. The next steps involve uncoating, genomic RNA release 

and viral-protein synthesis in free and endoplasmic reticulum-attached ribosomes. Finally, a vesicle-

mediated exocytosis and the new replicated virus leaves the cell. ......................................................... 8 

Fig. 3 - Biomedical text mining workflow: A comprehensive text mining pipeline generally encompasses 

these 3 steps: named entity recognition (NER), named entity normalization (NEN) and Relation 

Extraction (RE). These steps can be interdependent and are hierarchical in this form. Still, each step 

can be dealt with separately in which case the input needed varies. .................................................... 15 

Fig. 4 - GO enrichment analysis dot plot with the three GO categories represented: Biological Process 

(BP), Cellular Components (CC) and Molecular Function (MF). Dot represents the number of genes in 

each GO term; p.adjust (adjusted p-value): Yellow < Green < Blue < Purple. GO, Gene Ontology. .... 27 

Fig. 5 - GO enrichment analysis dot plot with the one GO category represented: Biological Process 

(BP). Dot represents the number of genes in each GO term; p.adjust (adjusted p-value):   

Yellow < Green < Blue < Purple. GO, Gene Ontology........................................................................... 30 

Fig. 6 - KEGG pathway enrichment analysis. Dot size represents the number of genes in each KEGG 

pathway; p.adjust (adjusted P‑value): Yellow < Green < Blue < Purple.; KEGG, Kyoto Encyclopedia of 

Genes and Genomes ............................................................................................................................. 31 

Fig. 7 - MeSH enrichment analysis dot plot for the category “Diseases”.  Dot represents the number of 

genes in each GO term; p.adjust (adjusted p-value): Yellow < Green < Blue < Purple. MeSH, Medical 

Subject Haadings. .................................................................................................................................. 32 

Fig. 8 - GO enrichment analysis gene-concept network: yellow nodes – GO terms; grey dots: genes; 

GO: Gene Ontology................................................................................................................................ 38 

Fig. 9 - SARS-CoV-2 M protein monomer. a) M protein domains predicted by TMHMM20,21 membrane 

predictor. b) TMHMM20,21 M protein monomer structure prediction after equilibration in membrane with 

ER membrane composition. c) M protein structure with domains highlighted. ...................................... 42 

Fig 10 - SARS-CoV-2 M protein dimer HADDOCK prediction using TMHMM based monomers. A- 

Interaction representation between Monomer A (red) and Monomer B (blue) domains. B- M protein 

dimer within the membrane: Monomer A (red), Monomer B (blue). C- M protein dimer with interfacial 

residues highlighted in a stick representation: Monomer A (red), Monomer B (blue). .......................... 43 

 

file:///C:/Users/carol/OneDrive/Ambiente%20de%20Trabalho/Tese_Nádia4.docx%23_Toc86534587
file:///C:/Users/carol/OneDrive/Ambiente%20de%20Trabalho/Tese_Nádia4.docx%23_Toc86534587
file:///C:/Users/carol/OneDrive/Ambiente%20de%20Trabalho/Tese_Nádia4.docx%23_Toc86534587
file:///C:/Users/carol/OneDrive/Ambiente%20de%20Trabalho/Tese_Nádia4.docx%23_Toc86534587
file:///C:/Users/carol/OneDrive/Ambiente%20de%20Trabalho/Tese_Nádia4.docx%23_Toc86534589
file:///C:/Users/carol/OneDrive/Ambiente%20de%20Trabalho/Tese_Nádia4.docx%23_Toc86534589
file:///C:/Users/carol/OneDrive/Ambiente%20de%20Trabalho/Tese_Nádia4.docx%23_Toc86534589
file:///C:/Users/carol/OneDrive/Ambiente%20de%20Trabalho/Tese_Nádia4.docx%23_Toc86534589
file:///C:/Users/carol/OneDrive/Ambiente%20de%20Trabalho/Tese_Nádia4.docx%23_Toc86534594
file:///C:/Users/carol/OneDrive/Ambiente%20de%20Trabalho/Tese_Nádia4.docx%23_Toc86534594


 

 

 XII 

Tables 

Table 1 - Coronaviruses structural proteins, their functions and characteristics........................... 4 



 

 

 XIII 

Index 

Agradecimentos ........................................................................................................... III 

Resumo ..........................................................................................................................V 

Abstract ........................................................................................................................VII 

Abbreviations ............................................................................................................... IX 

List of Figures and Tables .......................................................................................... XI 

I. Introduction ................................................................................................................ 1 

1.1. Viruses ........................................................................................................................... 1 
1.1.1. General Definition ................................................................................................................... 1 
1.1.2. Viral Classification.................................................................................................................. 1 
1.1.3. Respiratory Viruses................................................................................................................ 1 

1.2. Coronaviruses (SARS-CoV-2) ...................................................................................... 2 
1.2.1. General Coronaviruses Information .................................................................................. 2 
1.2.2. Virology ..................................................................................................................................... 3 
1.2.2.1. Viral genome and proteins ................................................................................................... 3 
1.2.2.2. Variants of Concern ............................................................................................................... 5 
1.2.2.3. Life Cycle .................................................................................................................................. 7 
1.2.3. Epidemiology ........................................................................................................................... 8 
1.2.3.1. Geographic distribution and overall numbers ................................................................ 8 
1.2.3.2. Transmission ........................................................................................................................... 9 
1.2.3.3. Symptoms/Diseases ............................................................................................................ 10 
1.2.3.4. Risk Factors ........................................................................................................................... 10 
1.2.4. Vaccines .................................................................................................................................. 11 

1.3. Methodology Overview ............................................................................................... 12 
1.3.1. Text-Mining as a relevant approach: advantages and disadvantages ................... 12 
1.3.2.  TM Workflow ................................................................................................................................. 13 
1.3.3.  Biological Meaning: From genes to pathways..................................................................... 15 

1.4. Aims and Scope .......................................................................................................... 16 

II. Methods ................................................................................................................... 19 

2.1.    Information Retrieval ................................................................................................ 19 

2.2.    Gene list ..................................................................................................................... 19 

2.3. Statistical Enrichment Analysis ................................................................................ 20 

2.4. Threshold applied ....................................................................................................... 20 

2.5. Enriched Analysis .................................................................................................. 21 
2.5.1. GO enrichment analysis .............................................................................................................. 21 
2.5.2. KEGG enrichment analysis ........................................................................................................ 22 
2.5.3. MeSH enrichment analysis ................................................................................................. 22 

III. Results and Discussion .................................................................................. 25 

3.1. GO enrichment analysis: dot plot results and discussion ............................... 25 

3.2. KEGG enrichment analysis results ........................................................................... 31 



 

 

 XIV 

3.3. MeSH enrichment analysis results ........................................................................... 32 

3.4 KEGG and MeSH enrichment analysis discussion .................................................. 33 

3.5. GO enrichment analysis: gene-concept network results and discussion ........... 35 

IV. Supplementary bioinformatic approaches ................................................... 40 

4.1. M protein docking - Methods ..................................................................................... 40 

4.2. M protein docking - Results and Discussion........................................................... 41 

V. Conclusions ......................................................................................................... 45 

References ................................................................................................................... 48 
 

 

 

 

 



 

 

 

 

 

  



 

 

 



 

 

 1 

I. Introduction 

  

1.1. Viruses 

1.1.1. General Definition 

Viruses are known as the smallest infectious agents, with a diameter inferior to 300 nm, and 

they are able to infect several organisms, such as bacteria, plants, fungi and animals, including 

humans (Strauss & Strauss, 2008). These infectious agents are parasites on a genetic level, 

which implies that they need to infect and invade a host cell in order to replicate (Strauss & 

Strauss, 2008).  

Viruses can contain either a RNA (ribonucleic acid) or DNA (desoxyribonucleic acid) 

genome, however they can have double or single stranded nucleic acids and may contain the 

enzyme reverse transcriptase (Gelderblom, 2011). Viral genome has the information required 

for virus replication and it is enfolded in a nucleocapsid protein. However, some viruses 

possess a lipid envelope for genome protection when the virus is outside the cell. This 

envelope also facilitates the genome entry in a susceptible host cell. When the encapsulated 

virus is in an extracellular environment, it is called a virion (Kumar, 2012; Strauss & Strauss, 

2008).  

 

1.1.2. Viral Classification 

Viruses have their own universal classification system categorized in hierarchical levels from 

Order to Genus and Species, as stipulated by the International Committee on Taxonomy of 

Viruses (ICTV) (Fauquet, 1999). However, viruses can also be grouped according to different 

classifications regarding particular characteristics (Kuhn, 2021). Respiratory viruses, in 

specific, can be labeled both based on their transmission route and their pathogenicity (Leung, 

2021).  

 

1.1.3. Respiratory Viruses 

Respiratory viruses are transmitted from one host to another through the respiratory route. 

Hosts can be infected via direct contact, when the virus has host-to-host transmission, or 

indirect contact, when the virus is transmitted through an intermediated object named fomite 

(Boncristiani et al., 2009; Leung, 2021). Such viral infections that spread through air can 

happen via droplets (bigger globs of mucus, saliva, and water which fall faster and evaporate 

slower) or aerosols (similar to droplets, but smaller in size, increasing the necessary time to 
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fall and decreasing the evaporation time) (Leung, 2021). In both cases, virions shed from the 

respiratory system and as an infected host sneezes, coughs or talks, viral transmission 

efficiency increases, since it boosts the number of virions shed (Leung, 2021; Weston & 

Frieman, 2018). These airborne virions can proceed directly to infect an uninfected host or can 

contaminate a fomite through contact (Weston & Frieman, 2018). This type of transmission is 

usually very efficient for human transmission and usually leads to higher transmission 

pathways (Leung, 2021).  

 

1.2. Coronaviruses (SARS-CoV-2) 

1.2.1. General Coronaviruses Information 

Coronaviruses are a family of viruses that belong to the Nidovirus superfamily (Weiss & 

Leibowitz, 2011). The first virus of this family was discovered in 1930s but the interest in 

coronaviruses only increased after a first human pandemic caused by Severe Acute 

Respiratory Syndrome (SARS) (Belouzard et al., 2012). Coronaviruses are 125nm spherical 

viruses with a shape that resembles a solar corona, hence their name. This characteristic is 

related to the S Protein (Spike Protein) projected on coronavirus’ surface.  This family is 

divided into four genera: Alphacoronaviruses, Betacoronaviruses, Deltacoronaviruses and 

Gammacoronaviruses  (Taxonomy, n.d.). Viruses from both alphacoronaviruses and 

Betacoronaviruses genera are able to infect humans. Initially, Coronavirus were split into three 

groups, according to their antigenic reactivity, but later were regrouped according to their 

genome sequence, phylogenetic relationships and genomic structures  (Cui et al., 2018; Weiss 

& Leibowitz, 2011). 

Firstly, coronaviruses were mainly of veterinary interest, since they infect a wide variety of 

mammals and birds (Belouzard et al., 2012). They can cause mild to severe diseases, such 

as respiratory and enteric diseases, and more rarely, hepatitis and neurologic diseases 

(Belouzard et al., 2012). For a long time, the most studied Betacoronavirus was the Murine 

Coronavirus (MuCoV), also known as Mouse Hepatitis Virus (MHV) (Belouzard et al., 2012; 

Weiss & Leibowitz, 2011). This virus provided a model system that allowed the scientist to 

study some central nervous system diseases, such as acute hepatitis, encephalitis and 

multiple sclerosis in murines and mouses (Weiss & Leibowitz, 2011). However, coronaviruses 

with humans as possible hosts are primarily respiratory pathogens and it is believed that are 

responsible for 35% of upper respiratory infections in the peak of their viral activity (McIntosh 

& Perlman, 2015). Most coronavirus that infect humans cause the common cold, being 

responsible for 15% of these colds and four of these strains responsible for the common cold  
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circulate globally: HCoV-229E, HCoV-OC43, HCoV-NL63 and HCoV-HKU1 (Alan Sariol, 

2020). Nonetheless, coronaviruses can also cause intestinal infections in humans (Cui et al., 

2018). 

 

1.2.2. Virology 

 

1.2.2.1. Viral genome and proteins 
 

Coronavirus family contains large (30-32 kb) single-stranded positive-sense RNA viruses, 

having the largest known RNA viral genomes (Weiss & Leibowitz, 2011) (Alan Sariol, 2020). 

These genomes are translated into a Polyprotein (Pp) containing proteins involved in RNA 

replication (Alan Sariol, 2020). Betacoronaviruses' genomes are arranged similarly: the 

replicase lotus is encoded in the 5’ end while the structural proteins are encoded in the 3’ end 

of the genome (Weiss & Leibowitz, 2011).  These genomes have between six and ten Open 

Reading Frames (ORFs) (Belouzard et al., 2012; Weiss & Leibowitz, 2011).  Two-thirds of the 

genome is contained in the first ORF and encodes replicase proteins while structural protein 

genes are contained in the last third (Belouzard et al., 2012). These replicase proteins are 

cleaved into 16 nsp (non-structural proteins) and accessory proteins that may have enzymatic 

properties, such as proteases, RNA modification enzymes, polymerases and helicases 

(Belouzard et al., 2012; Weiss & Leibowitz, 2011).  Structural protein genes are arranged in 

the following order: HE protein (Hemagglutinin Esterase protein)(HE only exists in some 

Betacoronaviruses), S Protein,  E Protein (Envelope Protein), M Protein (Membrane Protein) 

and N Protein (Nucleocapsid Protein) (Alan Sariol, 2020; Belouzard et al., 2012; Weiss & 

Leibowitz, 2011).  These proteins’ function and some characteristics are briefly described in 

Table 1 and more detailed bellow. Accessory genes, that are believed to be involved in immune 

evasion, are encoded in a variable number of ORFs present between structural protein 

encoding genes (Alan Sariol, 2020; Belouzard et al., 2012; Rimanshee Arya , Mukesh Kumar, 

2021).  

 

 

 

 

 

 



 

 

 4 

Table 1. Coronaviruses structural proteins, their functions, and characteristics. 

Protein Function Characteristics 

Membrane Gives the virion its shape 
Dimer, N-terminal ectodomain and C-terminal 

endodomain 

Spike 
Facilitates the receptor 

attachment 
Trimer, two functional domains: S1 and S2 

Envelope 
Helps in the virus 

assembly and release 

Monomer and pentamer, N-terminal ectodomain 

and C-terminal endodomain 

Nucleocapsid 
Gives beads on a string 

structure 
Monomer, can be divided into 5 domains 

Hemagglutinin 

Esterase 

Binding to the sialic acids 

in virion surface 
Dimer, consisting of two monomers, each 

monomer is made of three domains 

 

 

HE protein, only found in some Betacoronaviruses, is responsible for binding to the sialic 

acids that are presented on the glycoproteins in virion surface (Cornelissen et al., 1997; 

Rabaan et al., 2020). This binding and the esterase activity facilitates viral entry in the host cell 

and HE protein also improves virus spread through the mucosa (Cornelissen et al., 1997; 

Klausegger et al., 1999).  

S protein is responsible for coronaviruses crown-like structure (Beniac et al., 2006; 

Cornelissen et al., 1997; Rabaan et al., 2020). This structural protein is a trimeric class I fusion 

protein, highly N-glycosylated, that helps in the Endoplasmatic Reticulum  access and host 

receptor attachment  (Collins et al., 1982; Rabaan et al., 2020). Normally, this protein is 

cleaved by a protease into two distinct domains: S1 domain, that helps binding with the 

receptor and S2 domain, that is responsible for S protein stalk’s structural support (de Groot 

et al., 1987; Rabaan et al., 2020). 
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E protein, barely found in the virion, is a transmembrane protein that has an N-terminal 

ectodomain and a C-terminal endodomain (Rabaan et al., 2020). This protein is vital for both 

viral assembly and release. Besides this, E protein has an ion channel activity essential to 

some coronaviruses pathogenesis, such as SARS-CoV and SARS-CoV-2, two 

Betacoronaviruses (Rabaan et al., 2020). 

M protein, the most abundant protein found in the virion, is responsible for viral shape. It is 

found in the virion as a dimer and has two main functions: membrane curvature maintenance 

and facilitating N protein binding (Rabaan et al., 2020). It also has three transmembrane 

domains, an N-terminal ectodomain and a C-terminal endodomain (Rabaan et al., 2020) 

Interactions between M protein and N protein and nsp3 (a non-structural protein, component 

of replicase complex) improves the encapsulated viral genome packing into the viral particles, 

since it facilitates the binding to the replicase-transcriptase complex (Rabaan et al., 2020).  

The N protein is part of the nucleocapsid. Its domains can bind directly with the RNA, since 

the high phosphorylation of this protein increases the affinity for the viral RNA.  

N protein is also responsible for giving beads on a string structure. This protein has two 

substrates: the genomic packaging signal, where the C-terminal domain of this protein binds 

to, and the TRSs. (Rabaan et al., 2020) 

 

1.2.2.2. Variants of Concern 

Two Betacoronaviruses were responsible for two major outbreaks in the last 20 years: the 

Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV) (2002) and the Middle East 

Respiratory Syndrome (MERS) (2012). In 2019, a novel respiratory virus, from the coronavirus 

family, SARS-CoV-2 (Figure 1), started to spread across the world provoking the current 

situation of the global pandemic, creating a new disease, COVID-19 (Coronavirus Disease). 

SARS-CoV-2 is 79% identical to SARS-CoV and 50% with MERS-CoV (R. Lu et al., 2020).  
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Even though the animal origin of this novel virus is still incomplete and not well understood, 

it is known that RaTG13 virus, a bat coronavirus, shares the biggest similarity with SARS-CoV-

2, with 96.2%  (B. Hu et al., 2020; Paraskevis, 2020). This high genetic similarity indicates that 

SARS-CoV-2 is derived from a bat virus. In addition to RaTG13, scientists also found that 

RmTG13, another bat coronavirus, and a pangolin coronaviruses group are similar  to SARS-

CoV and SARS-CoV-2 (Paraskevis, 2020). This denotes that there are other coronaviruses 

similar to SARS-CoV-2circulating in wildlife and that the reservoir host of SARS-CoV-2 is not 

clear and could have been transmitted through an animal as an intermediate host to humans 

(B. Hu et al., 2020). SARS-CoV-2 is also responsible for infecting other domesticated and 

laboratory animals, such as cats or ferrets (B. Hu et al., 2020).  

 

 

 

 

 

 

Spike Protein (S)

Membrane Protein (M)

Envelope Protein (E)

Nucleocapsid Protein (N)

RNA

Human ACE2 
Receptor

Host Cell
Virus Entry

Fig. 1 - Schematic structure of SARS-CoV-2. SARS-CoV-2’ structure is formed by the following 

structural proteins: spike (S), membrane (M), envelope (E), and nucleocapsid (N) proteins. The 

S, M, and E proteins are in the viral envelope and the N protein interacts with the viral RNA in 

the core of the virion. 
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1.2.2.3. Life Cycle 

 Although there is a high similarity between SARS-CoV and SARS-CoV-2, SARS-CoV-2 

spreads quicker compared to SARS-CoV. This can be explained by the structural differences 

in S proteins between them (Calabrese et al., 2020; Malik, 2020). 

The mechanism of viral entry into host cell (Figure 2) using S protein in different 

Betacoronaviruses is similar. Both viruses use the ACE2 receptor to bind to host cells surface 

[17,18]. After successful attachment to the host cell, SARS-CoV enters the cell cytosol using 

proteases such as cathepsin and TM-PRRS2. These proteases perform S protein cleavage 

which is followed by viral and host cell membrane fusion. This event occurs mainly on 

endosomes. The presence of this cleavage site is similar to virus that infect furin and facilitates 

the initial process, increasing the spreading efficiency of SARS-CoV-2 compared to other 

ORF1a and ORF1b into pps 1a and pp1b, respectively, that are subsequently cleaved into 16 

nsps  (Trougakos et al., 2021; V’kovski et al., 2021). Viral replicase synthesizes a negative 

antigenome from the viral RNA genome that serves as template for new viral RNAs genomes. 

It is known that several structural proteins are subjected to post translational modifications in 

order to regulate protein function (Trougakos et al., 2021; V’kovski et al., 2021). The newly 

replicated virus leaves the cell by vesicle-mediated exocytosis. 
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Fig. 2 - Illustration of SARS-CoV-2 life cycle. First SARS-CoV-2 (extracellular) binds to ACE2, followed 

by TMPRSS2 or FURIN priming. Then, the virus suffers a clathrin-mediated endocytosis and denotes 

endosomal compartments during exocytosis. The next steps involve uncoating, genomic RNA release 

and viral-protein synthesis in free and endoplasmic reticulum-attached ribosomes. Finally, a vesicle-

mediated exocytosis and the new replicated virus leaves the cell. 

 

 

1.2.3. Epidemiology  
 

1.2.3.1. Geographic distribution and overall numbers 

Recent data reports that on September 15th, 2021, SARS-CoV-2 infected over 225 million 

people and was responsible for over 4,64 million deaths (WHO Coronavirus (COVID-19) 

Dashboard, n.d.). According to WHO (World Health Organization), the most affected regions 

are America, with over 86 million confirmed cases, Europe, with over 67 million confirmed 

cases, and South East Asia, with over 42 million confirmed cases (WHO Coronavirus (COVID-

ACE2

Host Cell

Furin

TMPRSS2
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19) Dashboard, n.d.). However, according to the same organization, the country that has been 

more affected was the United States of America, with 41 million cases, followed by India, with 

more than 33 million cases (covid19, n.d.). As of 13 September 2021, a total 

of 5.534.977.637 vaccine doses have been administered (WHO Coronavirus (COVID-19) 

Dashboard, n.d.). 

 

1.2.3.2. Transmission 

SARS-CoV-2, as a respiratory virus, is transmitted through mucus or saliva expelled from 

the host respiratory tract. The mucus or saliva can be expelled in three different ways: small-

droplet aerosol, large-droplet aerosol, and fomites. Aerosols are more effective in the 

transmission of a respiratory infection at the peak of virus replication (Fa, 2017). Small-droplet 

aerosols are able to spread through a bigger distance and can quickly create an outbreak (Fa, 

2017). Large-droplet aerosols sink faster and, consequently, this type of transmission requires 

a closer contact (Fa, 2017). Lastly, the transmission through fomites  occurs when an object 

is contaminated with aerosol droplets or respiratory secretions (Fa, 2017). In experimental 

conditions, scientists discovered that droplets containing SARS-COV-2 could last 3 hours in 

the air (van Doremalen, Bushmaker, et al., 2020). 

Even though respiratory transmission is the most frequent mode of transmission, vertical 

transmission may also occur, since transplacental transmission (transmission to the newborn 

via placenta) has already been documented (Courtemanche et al., 2020; Dong et al., 2020; M. 

Hu et al., 2021; Patanè et al., 2020; Vivanti et al., 2020; Z. Yang & Liu, 2020). SARS-CoV-2 is 

not transmitted through bloodborne, sexual or fecal-oral routes but several studies have found 

live viruses from isolations of saliva, semen and blood donations (Chang et al., 2020; J. Gu et 

al., 2020; J.-M. Kim et al., 2020; D. Li et al., 2020; Parasa et al., 2020; Qiu et al., 2020).  

Some animals, like cats, ferrets and minks can be infected with SARS-CoV-2 but only minks 

can transmit the virus to each other and to humans (Halfmann et al., 2020; Richard et al., 2020; 

Shi et al., 2020). 

Most people showed signs of diseases after an incubation period of 1–14 days (most 

commonly around 5 days), and developed dyspnea and pneumonia within a median time of 8 

days from illness onset (B. Hu et al., 2020; Wu & McGoogan, 2020). 
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1.2.3.3. Symptoms/Diseases 

Humans infected with SARS-CoV-2 exhibit several symptoms, some more frequent like 

fever, dry cough, and some rarer ones such as fatigue, diarrhea, hemoptysis, sputum 

production, sore throat, anorexia, chest pain, vomiting, nausea and chills (Eastin & Eastin, 

2020; B. Hu et al., 2020).  

Besides this, SARS-CoV-2 virus is responsible for several neurological conditions and 

symptoms. Some patients present disorders of consciousness, delirium, olfactory taste 

disorders, headache and neuromuscular and cerebrovascular complications (B. Hu et al., 

2020; Mukerji SS, 2021). Besides these symptoms, there are other neurological issues 

provoked by SARS-CoV-2 such as myalgia, rhabdomyolysis, Guillain-Barre syndrome, 

encephalopathy, and myelopathy and rare occasions of encephalitis (Mukerji SS, 2021).  

Most histopathological complications occur in the lungs. Histopathology analysis showed 

bilateral diffuse alveolar damage, hyaline membrane formation, desquamation of pneumocytes 

and fibrin deposits in lungs of patients with severe COVID-19 (C. Huang et al., 2020). 

Exudative inflammation was also shown in some cases. Immunohistochemistry assays 

detected SARS-CoV-2 antigen in the upper airway, bronchiolar epithelium and submucosal 

gland epithelium, as well as in type I and type II pneumocytes, alveolar macrophages and 

hyaline membranes in the lungs (B. Hu et al., 2020; Mehta et al., 2020; Yao et al., 2020). These 

symptoms can be more severe in people with some risk factors like asthma, COPD, and 

allergies. It is related to Diffuse Alveolar Damage (DAD), Organizing Pneumonia (OP), reactive 

type II pneumocytes, and chronic interstitial pneumonia (Calabrese et al., 2020).  

 

1.2.3.4. Risk Factors 

These clinical manifestations can be more or less severe according to the patient's age (X. 

Lu et al., 2020). Overall, children and younger people only develop mild diseases, non-

pneumonia or mild pneumonia, or are asymptomatic (X. Lu et al., 2020). Older people, mainly 

men above 60 years old, with co-morbidities are more prone to severe respiratory diseases 

that require hospitalization and may even cause fatalities (B. Hu et al., 2020). Other health 

conditions such as diabetes, cardiovascular disease, or a suppressed immune system can 

also increase SARS-CoV-2 fatality rate (Coronavirus 2019, n.d.) .  

Other health conditions such as diabetes, cardiovascular disease, suppressed immune 

system, pregnancy, arterial hypertension, obesity, allergies, asthma, Chronic Obstructive 

Pulmonary Disease (COPD), Interstitial Lung Disease (ILD), Chronic Liver Disease (CLD), 
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Chronic Kidney Diseases (CKD), cancer and chemotherapy can also increase SARS-CoV-2 

fatality rate. (Coronavirus 2019, n.d.) (Esposito et al., 2020; Gao et al., 2021; Ng et al., 2020; 

Singh & Khan, 2020; Tian et al., 2020) (Du et al., 2021; S. Huang et al., 2020; Ou et al., 2020) 

 

1.2.4. Vaccines 

There are three types of SARS-CoV-2 vaccines available and approved worldwide (“COVID-

19 vaccines,” 2020). The first vaccine type approved was the messenger RNA (mRNA) 

vaccines, produced by Pfizer-BioNTech and Moderna in the United States of America (USA) 

and CureVac in Europe (“COVID-19 vaccines,” 2020). The second type of vaccines are made 

with human and primate adenovirus vectors, produced by Janssen-Johnson & Johnson, Astra-

Zeneca, Sputnik-V, and CanSino (“COVID-19 vaccines,” 2020). Lastly, vaccines are also 

made with an inactivated whole virus of SARS-CoV-2, this vaccine type is not available in the 

USA and it’s produced by Bharat Biotech, Sinopharm and Sinovac (“COVID-19 vaccines,” 

2020).   

The BNT162b2 vaccine, developed and produced by Pfizer-BioNTech was tested in 

individuals of 16 years or older (Frenck et al., 2021). BNT162b2 is a lipid nanoparticle-

formulated, nucleoside-modified RNA vaccine encoding a prefusion-stabilized, membrane-

anchored SARS-CoV-2 full-length S protein (Karikó et al., 2008; S. J. Thomas et al., 2021; 

Wrapp et al., 2020).  

Of the 21,720 participants with two doses 30-μg doses of BNT162b2, 8 of them were 

infected with Covid-19, showing an effectiveness of 95% (Frenck et al., 2021).   

The vaccine produced by Moderna, mRNA-1273 vaccine, is lipid nanoparticle–encapsulated 

mRNA-based and encodes the prefusion stabilized full-length SARS-CoV-2 S protein (Baden, 

2021; Jackson et al., 2020) . This vaccine was administered to 15,210 participants during the 

trial. After the two doses of 100 μg, only 11 participants had symptomatic SARS-CoV-2 illness, 

and none had severe symptoms. This shows that the Moderna Vaccine has an effectiveness 

of 94.1%. (Baden et al., 2021). 

The CureVac vaccine, CVnCoV, is a lipid nanoparticle-encapsulated mRNA vaccine that 

encodes full-length, pre-fusion stabilized SARS-CoV-2 S protein and its made exclusively with 

naturally occurring nucleotides (Rauch et al., 2021). A study was conducted were 19 783 

participants received two 12 μg doses of CVnCoV, this study revealed that this vaccine has a 

48.2% effectiveness (Kremsner et al., 2021).  
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Janssen-Johnson & Johnson vaccine, Ad26.COV2.S COVID vaccine, has a replication-

incompetent human adenovirus type 26 (Ad26) vector that expresses a pre-fusion stabilized 

SARS-CoV-2 S protein, was studied as a single-dose (Alter et al., 2021). This vaccine is a viral 

vector that express the SARS-CoV-2 S protein and was studied in almost 1.500 participants, 

over 18 years old, showing an efficacy of 69% (Polinski et al., 2021).  

AstraZeneca–University of Oxford vaccine, AZD1222 or ChAdOx1 nCoV-19, is an 

adenovirus-vectored vaccine encoding the S protein of SARS-CoV-2 (van Doremalen, Lambe, 

et al., 2020). The vaccine was studied in a diverse adult population of more than 32,000 

participants were the participants received two doses of AZD1222, 4 weeks apart. This study 

showed that the vaccine can prevent symptomatic illness 15 days or more after the second 

dose with an efficacy of 74% (Falsey et al., 2021). 

 

1.3. Methodology Overview  

1.3.1. Text-Mining as a relevant approach: advantages and disadvantages  

The amount of data available from scientific papers, patents, or other sources of information, 

particularly in the biomedical field, is continuously rising. Often, this data is unstructured, and 

as such it is not ready for computational interpretation. The use of Text Mining (TM) in the 

biomedical field has widely increased due to the emergent need to analyze and acquire 

knowledge from large data sources (Fleuren & Alkema, 2015).  

TM provides a set of automated methods that can distill text from heterogeneous sources 

into actionable data. TM applies NLP (Natural Language Programing) methods to extract and 

retrieve information from text just like a human reader would. A NLP model should understand 

the language, semantics and vocabulary to correctly predict token features (Shorten et al., 

2021). BioNLP, the application of NLP models in the biomedical field, adds the required 

knowledge of a specific biological context (Fleuren & Alkema, 2015; Gachloo et al., 2019).  

TM comes upon a first step of automated Information Retrieval (IR) to retrieve all the 

information relevant to a specific problem from dispersed data resources (Fleuren & Alkema, 

2015; Zheng et al., 2019). 

Biomedical TM, at its core, comprises three stages: Named Entity Recognition (NER), 

Named Entity Normalization (NEN) and Relation Extraction (RE) (W. Sun et al., 2018). 

Part of TM complexity lies in the fact that different sources compile data in different formats, 

which often requires specific techniques (Fleuren & Alkema, 2015; Gonzalez et al., 2016). 

These types of data frequently lack common structural frameworks and can have errors like 
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improper grammar, spelling errors or semantic ambiguities (Fleuren & Alkema, 2015). Text 

errors increase the complexity of data pre-processing and TM analysis (Fleuren & Alkema, 

2015) (Gonzalez et al., 2016) (W. Sun et al., 2018). The recognition and mapping of certain 

terms in the NER and NEN steps can also be troublesome (Fleuren & Alkema, 2015). In fact, 

biomedical NER is usually considered more challenging since there are numerous difficulties 

for biomedical terms automatic identification due to irregularities in how known entities are 

entitled (Gonzalez et al., 2016; Zhu et al., 2013). Common challenges arise when terms are 

not a part of the used ontology, as misspellings or ambiguity in the term’s designations can 

occur (Fleuren & Alkema, 2015). Hence, to deal with this issue, choosing the right corpus 

and/or ontology is crucial (Fleuren & Alkema, 2015). This is particularly true for genes and 

proteins where nomenclature is frequently messier since proteins and genes can share the 

same abbreviation and different ontologies may have different spellings (Fleuren & Alkema, 

2015; H. Li et al., 2017). However, this type of heterogeneity and ambiguity can also happen 

in key classes such as drugs or chemicals (H. Li et al., 2017; Zheng et al., 2019). Correctly 

choosing a corpus to train a TM model and then retrieve relations from text is a complicated 

task due to the complexity of grammatical construction hindering the machine retrieval of 

relations from text and, at the same time, incorporation of data from external sources can foster 

the advances of the RE step (Ghamami & Keyvanpour, n.d.). 

Lastly, biological knowledge is complex, and the lack of certain specific information can 

result in conflicting answers (Saffer & Burnett, 2014). For instance, the same species under 

different conditions (e.g. age, gender, treatments) may not have the same biological system 

and what happens in one species may not happen in another (Saffer & Burnett, 2014). These 

differences, if not noted, may lead to different answers upon TM application (H. Li et al., 2017; 

Saffer & Burnett, 2014; Zheng et al., 2019). 

 

 

 

1.3.2.  TM Workflow 

The text mining workflow is represented in Figure 3 (adapped from Rosário-Ferreira et al., 

2021a). NER, also known as ‘entity tagging’ or ‘concept extraction’, is fundamental for 

automatically extract information from text (Gonzalez et al., 2016). Biomedical NER aims to 

retrieve relevant biomedical entities such as genes, drugs, diseases, species, proteins, 

mutations and cell lines existing in natural language documents and tag each word´s location 

and class (Gonzalez et al., 2016; Zhu et al., 2013). Hence, this step identifies concepts and 

keywords, categorizing them in user-defined classes. NER tools implement the text 
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preprocessing stage, where all data is cleaned and tokenized, a step in which typically words 

are broken down into words or sub-words tokens to build the vocabulary of such text (Perera 

et al., 2020). Then, all remaining unique tokens are processed through different methods to 

extract features that represent biomedical classes to be transformed into a suitable 

representation (Perera et al., 2020).  

After accomplishing NER step, NEN algorithms are invoked to semantics and coherence for 

all the retrieved tokens, solving words that are disambiguous. As such, constitute an essential 

step in the automated construction of a biomedical database describing and relating concepts, 

which can be organized either as a hierarchy or as a set of relationships. Abbreviation 

recognition and synonym recognition are advantageous to unify and normalize biomedical 

terms (Zhu et al., 2013). Biomedical NEN intends to map entity terms in biomedical text to 

typical entities in a particular knowledge base, as an example, a database which compiles 

information about a topical domain in a hierarchical or relationship manner (H. Li et al., 2017). 

Furthermore, NEN models can exhibit additional steps such as abbreviation resolution, in 

which acronyms are reformed to the original long words by using the abbreviation dictionary 

(Cho et al., 2017; H. Li et al., 2017).  

Lastly, RE is a task that aims to automatically identify syntactic and semantic relations 

between the entities originated in  the previous TM tasks (Yadav et al., 2020; Y. Zhang & Lu, 

2019). Basic RE methods encompassed simple systems based on co-occurrence statistics 

that evolved to more intricate ones using syntactic analysis and ML/DL models (Muzaffar et 

al., 2015; Y. Zhang & Lu, 2019). The extracted relations are expressed in a machine 

understandable format ready for post-TM analysis (Xing et al., 2020). In the biomedical field, 

relations among entities are pivotal towards understanding complex biological mechanisms by 

being able to retrieve new relations from previously known ones. The extraction of 

homogeneous and heterogeneous interactions between chemicals, diseases, genes, proteins, 

and/or other classes is needed to decipher new knowledge mainly in the fields of regulatory 

pathways, metabolic processes or adverse drug relations (Yadav et al., 2020; Y. Zhang & Lu, 

2019). 
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1.3.3.  Biological Meaning: From genes to pathways 

The conventional approach that is normally used to study function has been centered in 

molecular interaction networks.  This type of approach have enhanced our understanding of 

disease, infection, drug pharmacodynamics, and evolution  (Barabási et al., 2011; Jiang et al., 

2015; Stuart et al., 2003; Suthram et al., 2010). 

There are several approaches for this type of study of biological processes using molecular 

interaction networks. For example, Protein–Protein Interaction (PPI) data is regularly used to 

create networks, where proteins are presented interacting with functionally related partners. 

Similar networks are also  created using co-expression data, genetic interaction data, and by 

combining data types (Ames et al., 2013; Costanzo et al., 2010; Stuart et al., 2003). A 

disadvantage of this method is that it can contain false positive and false negative interactions, 

which may distort our understanding of functional organization (Snider et al., 2015). 

When representing these networks as pathways, the functions of individual genes or gene 

products are not represented. However, pathway data is considered to be more reliable than 

molecular data since it is based on a consensus reached by scientists over prolonged time 

and repeated experimentation (Stoney et al., 2018). Between the most well-known pathways 

are the ones involved in metabolism, regulation of genes or transmission of signals (Y. V. Sun, 

2012). 

Input OutputNER NEN RE

Fig. 3 - Biomedical text mining workflow: A comprehensive text mining pipeline generally encompasses 

these 3 steps: named entity recognition (NER), named entity normalization (NEN) and Relation 

Extraction (RE). These steps can be interdependent and are hierarchical in this form. Still, each step 

can be dealt with separately in which case the input needed varies (adapped from Rosário-Ferreira et 

al., 2021a). 
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To develop a general framework for genes and pathway of complex diseases and novel 

statistics it is needed to test the association of a gene or pathway with the disease. To 

accomplish this, first it requires to formulate the null hypothesis for testing gene or pathway 

association with the disease. (J. H. Kim, 2012) Then, it is needed to combine a set of 

dependent P-values into an overall significance level for the genes. The validation of the null 

distribution and calculate type 1 error rates of the three developed statistics for testing 

association of the gene or pathway with the disease using extensive simulation studies (J. H. 

Kim, 2012). 

The hypothesis here is that a keyword or pattern can be regarded as the semantic 

interpretation of the gene group if that certain keyword is significantly over-represented or a 

meaningful pattern is found among the textual descriptors for a gene group (J. H. Kim, 2012). 

Considering that these tests are repeated thousands of times, a low p-value means a smaller 

possibility of false positives and more meaningful results. There are several GO (Gene 

Ontology) and biological pathway-based tools for gene expression analysis that have been 

developed and proven to be useful  (J. H. Kim, 2012). 

 

1.4. Aims and Scope 

Over the past year and a half, information regarding SARS-CoV-2 has been constantly 

growing with hundreds of publications released every day. However, more than 50% of these 

publications are reviews, letters, notes and editorials instead of research articles (Calabrese 

et al., 2020; Malik, 2020; Rabaan et al., 2020; Teixeira da Silva et al., 2020). This project aims 

to collect, extract and organize all the data available about this topic from public databases, in 

particular PubMed. (PubMed, n.d.)  We intended to gather, extract, and organize all the 

information from the public database to determine possible target drug interaction systems and 

enriched pathways. Then, using an open-source text mining tool (PubTator, via LitCovid), the 

unstructured information from natural text was organized into structured data with tokens and 

features well defined, such as genes, diseases, species, mutations, chemicals and cell lines. 

(Wei et al., 2013) At the end of this task, we had words organized in different classes and 

several relations between terms to proceed for further analysis. Functional annotation was 

necessary to restrict the amount of data acquired from a collection of genes through Over-

Representation Analysis to obtain Enrichment Analysis (EA), which was used to separate the 

pathways most likely to be affected due to the list of genes in the NLP protocol, compared to 

what would be expected in a reference list. This task was done with the resource to G:Profiller 

and R package Clusterprofiler and the relevant information was compared and studied with 

data from public databases, OpenTargets (Ochoa et al., 2021), Reactome (A et al., n.d.), 
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KEGG (Kanehisa & Goto, 2000), MeTeOR (Puppala et al., 2015), CheMBL (Mendez et al., 

2019), PubChem (S. Kim et al., 2021), DrugBank (Wishart et al., 2018) and STITCH 

(Szklarczyk et al., 2016), which allowed the construction and extrapolation of different layers 

of information. (Raudvere et al., 2019) 
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II. Methods 

 

2.1.    Information Retrieval 

All data regarding SARS-CoV-2 used in this project was gathered on 26th of May, 2021. The 

data was retrieved from the LitCovid website, a website designed by NIH (National Institutes 

of Health) NLM (National Library of Medicine)(LitCovid, n.d.). This is a curated literature hub 

which tracks all scientific information regarding SARS-CoV-2 available in PubMed. The 

information is updated daily and gives us access to 179.984 articles. These articles were not 

downloaded in their unstructured and natural form but with automatic annotations made 

previously by PubTator. (Wei et al., 2013) An R script was created using the pubtator() function 

to compare the results with the LitCovid, since both use PubTator’ text mining, and the LitCovid 

data was more accurate.  The data downloaded from LitCovid was in BioC format and a python 

script was developed to access the information. We were able to collect 21.995 different genes 

IDs from the annotations regarding the accessed articles. 

 

2.2.    Gene list  

Collected genes were not exclusively from humans and, as in this project we aimed to treat 

only data regarding the human species, gene list needed to be filtered. 

Data was analyzed with the help of g:profiler, public web server for characterizing and 

manipulating gene lists. (g:Profiler – a web server for functional enrichment analysis and 

conversions of gene lists, n.d.) This web server has four different types of analyses: g:GOSt, 

g:Convert, g:Orth and g:SNPense. (g:Profiler – a web server for functional enrichment analysis 

and conversions of gene lists, n.d.) In order to obtain only human genes, we used the 

g:Converter, the  service from g:profiler that translate identifiers (IDs) of genes, proteins and 

other types of namespaces. (Raudvere et al., 2019) The seamless translation process works 

on a mixed set of diverse identifiers and maps these through Ensembl gene identifiers as 

reference. In cases of multiple identifiers, all relevant combinations are highlighted. At least 13 

types of IDs are supported for all of the 213 species available in g:profiler, and at least 40 types 

of IDs for more than 50 species. (Raudvere et al., 2019) 

The input provided was a whitespace-separated list of 21.995 genes, retrieved from the 

previous step, and the output was a .txt list of 10.325 human genes. These genes were with 

Entrez Gene unique integer identifiers. 



 

 

 20 

2.3. Statistical Enrichment Analysis   

In this particular case, we used the g:GOSt, which is the core of the g:profiler, to perform 

statistical enrichment analysis to provide interpretation to user-provided gene lists. This 

analysis provides data from multiple sources of functional evidence, including GO terms, 

biological pathways, regulatory motifs of transcription factors and microRNAs, human disease 

annotations and protein-protein interactions. (Raudvere et al., 2019) 

The file with a list of human genes was used as input for g:GOST. As default, the g:profiler 

assumes that the list has no relevant order. (Raudvere et al., 2019) The organism selected 

was Homo sapiens (Human), the Statistical domain scope was the option ‘Only annotated 

genes’ and a 0.05 and 0.01 g:SCS threshold was chosen. Due to the data processing 

previously described, the numeric IDs were treated as ENTREZGENE_ACC.  

In the section ‘Gene Ontology’ section, options ‘GO molecular function’, ‘GO cellular 

component’ and ‘GO biological process’ were selected. In the section ‘Biological Pathways’, 

the options ‘KEGG’, ‘Reactome’ and ‘WikiPathways’ were selected. In the section ‘Regulatory 

Motifs in DNA’ we selected ‘TRANSFAC’ and ‘miRTarBase’ and in the ‘Protein Databases’ we 

selected ‘Human Protein Atlas’ and ‘CORUM’. 

 

 

2.4. Threshold applied 

g:profiler automatically applies multiple-testing correction to P values. g:SCS algorithm has 

a method for computing multiple testing correction for p-values gained from GO and pathway 

enrichment analysis (Raudvere et al., 2019). For example, an experiment-wide threshold of p-

value=0.05 means that at least 95% of matches above the threshold are statistically significant. 

(Raudvere et al., 2019)  Other standard multiple testing corrections, such as Bonferroni 

correction or Benjamini-Hochberg FDR were developed for multiple tests that are independent 

of each other. GO consists of hierarchically related general and specific terms, so these 

methods are not correct for the analysis performed in g:GOSt. The True Path Rule of GO affirm 

that genes associated to a given GO term are implicitly associated to all more general parents 

of this term. The g:SCS algorithm considers the set structure underlying gene sets annotated 

to terms of each organism. According to this, the threshold should be tighter to significant 

results. So, for this project, we tried a p-value=0.05 and a tighter value, p-value=0.01. 
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2.5. Enriched Analysis 

We used g:profiler to obtain a file containing only human genes and to obtain an csv file with 

all the data from the genes enrichment analysis. The csv was successfully retrieved, and 

another R script was being developed to visualize the results. At the same time, these results 

were manually analyzed. Due to some step backs in this development, another alternative was 

thought. 

The package clusterprofiler offered the exact type of analyses we were looking for, therefore 

was selected among other gene enrichment analysis packages and web servers. From the 

possible databases for enrichment analysis that the clusterprofiler offers we selected the ones 

that allowed a better and simpler analysis taking into account the previous results from the csv. 

A new script was developed to obtain results from the previous steps. In this script, the input 

was the file with human genes and the enriched analysis was performed in three ways: GO 

enrichment analysis, MeSH enrichment analysis and KEGG enrichment analysis.  

 

2.5.1. GO enrichment analysis 

Gene Ontology (GO) uses defined concepts/classes and the relationships between these 

concepts in order to describe the gene function. (Ashburner et al., 2000) 

GO can classify these functions along three aspects: Molecular Function (MF), molecular 

activities of gene products, Cellular Component (CC), where gene products are active and, 

Biological Process (BP), pathways and larger processes made up of the activities of multiple 

gene products (Ashburner et al., 2000). The R package clusterProfiler has a function, 

enrichGO(), for gene ontology over-representation test (Yu et al., 2012). For this function, the 

OrgDb chosen was org.Hs.eg.db and the keyType was ENSEMBL. 

 

Dot Plot 

 

The dotplot() function depicts the enrichment scores (p value), as the dot color, gene count, 

as the dot size, and gene ratio. This function was repeated in order to have two different 

graphics, one with all the ontologies (BP, CC and MF) and the other with only the BP ontology. 

With this plot we intend to observe which terms are the most enriched, their p-value and the 

number of genes involved in each term. 
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Gene-Concept Network 

 

The dotplot() function only displays most significant or selected enriched terms. To study the 

potentially biological complexities in which a gene may belong to multiple annotation 

categories, we used the category netplot function, cnetplot(), to extract these complex 

associations. The cnetplot() depicts the linkages of genes and biological concepts as a 

network. With this network we intend to visualize which terms appear more enriched, which 

genes are associated with those terms and which genes are associated with each other and 

with several terms. 

 

2.5.2. KEGG enrichment analysis 

KEGG (Kyoto Encyclopedia of Genes and Genomes) is a database resource that’s a 

computer representation of the biological system, consisting of molecular building blocks of 

genomic information and other information integrated with the knowledge on molecular wiring 

diagrams of interaction, reaction and relation networks (systems information). (Kanehisa & 

Goto, 2000) 

The clusterProfiler package has a function (enrichKEGG() function) for pathway over-

representation analysis. (Yu et al., 2012) 

 

Dot Plot 

 

The dotplot() function depicts the enrichment scores (p value), as the dot color, gene count, 

as the dot size, and gene ratio. With this plot we intend to observe which terms are the most 

enriched, their p-value and the number of genes involved in each term. 

 

2.5.3. MeSH enrichment analysis 

MeSH (Medical Subject Headings) is the NLM (National Library of Medicine) controlled 

vocabulary thesaurus used for indexing articles for PubMed. MeSH has 19 categories that 

contain Anatomy, organisms, diseases, drugs and chemicals, between others. (Medical 

subject headings - home page, 2020) 

In this study, we used the function enrichMeSH() and selected the gendoo database (Gene 

Disease Features Ontology-based Overview) and the category C (the category for diseases). 

https://rdrr.io/pkg/enrichplot/man/dotplot.html
https://rdrr.io/pkg/enrichplot/man/cnetplot.html
https://rdrr.io/pkg/enrichplot/man/cnetplot.html
http://bioconductor.org/packages/clusterProfiler


 

 

 23 

Dot Plot 

The dotplot() function depicts the enrichment scores (p value), as the dot color, gene count, 

as the dot size, and gene ratio. With this plot we intend to observe which terms are the most 

enriched, their p-value and the number of genes involved in each term. 
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III. Results and Discussion 

 

3.1. GO enrichment analysis: dot plot results and discussion 

In order to be able to analyze the results from the GO enrichment analysis, a dot plot was 

created. 

Figure 4 illustrates the dot plot with the three GO categories, BP, CC and MF. In this figure 

we can analyze the 30 most relevant results for each category. We can observe the gene ratio 

and gene count, in the x-axis and dot size, respectively. As we can see, as the values in the 

x-axis get closer to zero, the size of the dots get smaller, meaning that there are less genes 

found involved in that function, component or process.  

As we can observe in both BP and CC, for all processes and components represented, the 

genes found associated with them are in the same range of p-value (Figure 4). According to 

this, all sets of genes found to be connected to that specific process or component are 

biologically relevant since the p-values are the smaller visually possible by the color scale, less 

than 10-9. 

In the CC part of the dot plot, it is noticeable that the “cell-substrate junction” has a gene 

ratio bigger than 0.035 and around 300 genes (Figure 4). Closer to these results are “focal 

adhesion” and “neuronal cell body”, both around 0.035 gene ratio and  300 genes (Figure 4). 

The smaller, yet significant, result presented is “rough endoplasmic reticulum”. 

Cell-Substrate junction term means a cell junction that forms a connection between a cell 

and the extracellular matrix. The focal adhesion term means a cell-substrate junction that 

anchors the cell to the extracellular matrix and forms a point of termination of actin filaments. 

Other studies, using functional enrichment analysis of downregulated genes of SARS-CoV-2 

infected cells, have found that these genes were predominantly enriched in cell adhesion 

activities such as cell–substrate junction, focal adhesion assembly, between others (G. Li et 

al., 2020). It is known that some viruses, for example, oncogenic viruses (a virus that can 

cause cancer) can transform the host cells and trigger a cascade of cellular responses that 

end up leading to cytomorphological changes and differences in the cell growth characteristics 

(Morris et al., 2008; Volberg et al., 1991). It is possible that SARS-CoV-2 may affect the cell 

leading to its cytomorphological change during its entry or replication, disturbing the cell-

substrate junction or its focal adhesion. 

In the MF part of the dot plot, we can see that the enriched functions have a different p-

values range (Figure 4). The terms “endopeptidase activity”, “histone deacetylase binding” 

and “transmembrane receptor protein kinase activity” have a higher p-value than the remain 

https://www.linguee.pt/ingles-portugues/traducao/respectively.html
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ones, meaning that, although they are still biological meaningful, they are more likely to be a 

false positive or less significant (Figure 4). The “protein serine/threonine kinase activity” has 

a close to 300 genes and a gene ratio bigger that 0.03. The terms “endopeptidase activity” and 

“DNA-binding transcription factor binding” have similar characteristics. The smallest result 

presented is “chemokine binding” with less than 100 genes and a gene ratio lower than 0.005. 

Some studies have found that the SARS-CoV-2 M protein induces apoptosis when it 

interferes with PDK1-PKB/Akt signaling, since PKB/AKT its import for the cell metabolism, 

growth, proliferation and survival (Hemmings & Restuccia, 2012; Ren et al., 2021; Tsoi et al., 

2014). Both PDK1 and PKB/Akt are serine/threonine kinases (Ren et al., 2021; Tsoi et al., 

2014). SARS-CoV-2 also induces apoptosis when interferes with other signaling pathways 

involving serine/threonine kinases, such as  PI3K/Akt signaling pathway, Raf/MEK/ERK 

signaling pathway, between others (Ghasemnejad-Berenji & Pashapour, 2021; Lokhande & 

Devarajan, 2021). 

The term “endopeptidase activity” means the catalysis of the hydrolysis of internal, alpha-

peptide bonds in a polypeptide chain. Even though this term has a higher p-value (2x10-9 , 

when the majority of MF represented terms has a p-value under 1x10-9), SARS-CoV-2 has 

endopeptidases and SARS-CoV-2 main protease (Mpro), which is also known as C30 

Endopeptidase, and is one of the most potential drug targets (Bolcato et al., 2020a). There are 

several studies that found other endopeptidases associated with SARS-CoV-2 and many of 

them are potential new drug targets (Abdel-Aziz et al., 2021; Bolcato et al., 2020a, 2020b; 

Pišlar et al., 2020). 
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Fig. 4 - GO enrichment analysis dot plot with the three GO categories represented: Biological Process 

(BP), Cellular Components (CC) and Molecular Function (MF). Dot represents the number of genes in 

each GO term; p.adjust (adjusted p-value): Yellow < Green < Blue < Purple. GO, Gene Ontology. 
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The BP dot plot was repeated with a different scale in order to be able to have access to 

more detailed data. As we can see in Figure 5 the dots are no longer monochromatic, due to 

the differences in the p-value scale, that now only comprehends the lower values. The count 

and ratio of genes scales were also changed for higher values so as to be adequate for a 

better analysis. 

The highest term presented is “calcium ion homeostasis” with around 350 genes and a gene 

ratio of almost 0.04 (Figure 5). The terms “cellular calcium ion homeostasis” and “response to 

oxidative stress” have also around 350 genes and a ratio above 0.0375. As referred above, 

some terms now show their true p-value range, such as “cellular response to peptide” and 

“regulation binding”. The lowest term given is “response do alcohol” (Figure 5). 

The terms “calcium ion homeostasis”, “cellular calcium ion homeostasis”, “regulation of 

cytosolic calcium ion concentration” and “positive regulation of cytosolic calcium ion 

concentration” have a p-value under 1.18x10-45, which is overpoweringly smaller than what the 

dot plot of Figure 4 showed. This means that these terms are biologically meaningful and that 

there is a smallest chance of a false positive. The term “calcium ion homeostasis” means any 

process involved in the maintenance of an internal steady state of calcium ions within an 

organism or cell. Several studies have found that hypocalcemia, the reduced level of serum 

ionized calcium, is strongly associated with COVID-19 severity (Crespi & Alcock, 2021). 

Scientists speculate that this happens because SARS-CoV-2 uses calcium ions to orchestrate 

its entry into host cells, via a fusion peptide derived from the spike protein, similar to the entry 

mechanism of SARS-CoV and MERS-CoV (Millet & Whittaker, 2018; Straus et al., 2020). So 

they found that the use of calcium channel blockers (CCBs) can help to reduce the mortality 

of COVID-19 (Choksi et al., 2021; Crespi & Alcock, 2021; Danta, 2020; L.-K. Zhang et al., 

2020). CCBs are used as a drug for hypertension worldwide and are one of the most-

commonly prescribed drugs to reduce blood pressure (Wang et al., 2017). 

The term “response to oxidative stress” means any process that results in a change in state 

or activity of a cell or an organism as a result of oxidative stress, a state often resulting from 

exposure to high levels of reactive oxygen species, or extremely low levels of oxygen. This 

term has the lowest p-value we can observe with this range of p-values, which means that 

there is an impact of the response to oxidative stress in SARS-CoV-2 infected patients (Figure 

5). Similar to this, the term “response to decreased oxygen levels”, “response to oxygen 

levels”, “response to hypoxia” and “reactive oxygen species metabolic process” have the same 

range of p-value, so they all are biological relevant and connected (Figure 5). There are 

multiple studies regarding the impact of oxidative stress in patients infected with SARS-CoV-

2 (Cekerevac et al., 2021; Chernyak et al., 2020; Fernandes et al., 2020; Forcados et al., 

2021). Several new investigations have found elevated levels of oxidative stress markers 
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(Cecchini & Cecchini, 2020; Muhammad et al., 2021) and found the possibility that increased 

levels of oxidative stress in COVID-19 patients can be causing DNA oxidation and other 

downstream effects (Cecchini & Cecchini, 2020). This high levels of oxidative stress can be 

the cause of oxidation of proteins due to increased apoptosis, necrotic cell debris and 

pulmonary interstitial fibrosis observed during analysis of postmortem lung sections of fatal 

COVID-19 patients (Donia & Bokhari, 2021). Some natural antioxidants can counteract altered 

signaling pathways activated during COVID-19 pathogenesis (Forcados et al., 2021). 

 



 

 

 30 

 

Fig. 5 - GO enrichment analysis dot plot with the one GO category represented: Biological Process 

(BP). Dot represents the number of genes in each GO term; p.adjust (adjusted p-value):  

Yellow < Green < Blue < Purple. GO, Gene Ontology. 
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3.2. KEGG enrichment analysis results 

 

In Figure 6 the result from the KEGG enrichment analysis is presented. In this figure we 

can analyze the 30 most relevant results for KEGG pathways/terms. 

We can observe the gene ratio and gene count, in the x-axis and dot size, respectively. As 

we can see, as the values in the x-axis get closer to zero, the size of the dots get smaller, 

meaning that there are less genes found involved in that pathway/term (Figure 6). 

 

 

Fig. 6 - KEGG pathway enrichment analysis. Dot size represents the number of genes in each KEGG 

pathway; p.adjust (adjusted P‑value): Yellow < Green < Blue < Purple.; KEGG, Kyoto Encyclopedia of 

Genes and Genomes 
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3.3. MeSH enrichment analysis results 

 

In Figure 7, the result from the MeSH enrichment analysis is presented. In this figure we can 

analyze the 30 most relevant results for MeSH terms in the category “Diseases”. 

We can observe the gene ratio in the x-axis and gene count in the dot size. As we can 

see, as the values in the x-axis get closer to zero, the size of the dots get smaller, meaning 

that there are less genes found involved in that term (Figure 7). 

 

 

Fig. 7 - MeSH enrichment analysis dot plot for the category “Diseases”.  Dot represents the number of 

genes in each GO term; p.adjust (adjusted p-value): Yellow < Green < Blue < Purple. MeSH, Medical 

Subject Haadings
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3.4 KEGG and MeSH enrichment analysis discussion 

 

Both KEGG and MeSH enrichment analysis dot plots had the exact same results, the 

only visible difference in the plots is the heigh of the graph. Although the databases used 

for both plots are different, the results ended up the same (Figure 6 and 7). For KEGG 

results the only source of information was the gene list as input and the KEGG database. 

However, for the MeSH enrichment analysis, the input was the same gene list, but we 

used the MeSH “Diseases” category and the gendoo database. Gendoo is a web tool for 

visualizing disease feature profiles generated from the assignment of MeSH vocabulary 

for associated drugs, biological phenomena and anatomy to OMIM data. This approach 

assists in interpreting omic data for its molecular and clinical aspects. With this said, 

even though we used different databases, the most enriched terms/pathways are the 

same because the terms in the different databases overlap. 

The highest term in both plots is “PI3K/Akt signaling pathway” with 300 genes and a 

gene ratio of almost 0.06, followed by “Cytokine-cytokine receptor interaction” with 300 

genes and a gene ratio of around 0.053 (Figure 6 and 7). The next term is “Coronavirus 

disease - COVID-19” with 250 genes and a gene ratio a little higher than 0.04 (Figure 6 

and 7). The lowest term is “chronic myeloid leukemia” with less than 100 genes and a 

gene ration around 0.014 (Figure 6 and 7). The terms “Kaposi sarcoma-associated 

herpesvirus infection”, “Influenza A”, “Fluid shear stress and atherosclerosis”, “Hepatitis 

C”, “Th17 cell differentiation” and “Cellular senescence” show a bigger p-value (Figure 

6 and 7). The low scale values of both graphs give us certainty that all enriched terms 

are significant (Figure 6 and 7). 

“PI3K/Akt signaling pathway” is an intracellular signal transduction pathway that 

promotes metabolism, proliferation, cell survival, growth and angiogenesis in response 

to extracellular signals (A, Hemmings, 2012). This term has a p-value under 2.5x10-13. 

This pathway is  involved in various aspects of the virus entry into the cell and the 

development of immune responses (Khezri, 2021) There are evidences that SARS-CoV-

2 binding to ACE2 and posterior endocytosis occurs through a clathrin-mediated 

pathway which is regulated by the PI3K/AKT signaling (Lokhande & Devarajan, 2021). 

Akt is a serine/threonine kinase and as we found above, serine/threonine kinases are an 

enriched GO term in the Molecular Function category. Other authors have identified, 

through bioinformatic analysis, that PI3K/Akt is the top-ranked kinase among those who 

were potentially associated with SARS-CoV-2 (F. Sun et al., 2021). Several other 

scientist have targeted PI3K/Akt as a potential drug target for COVID-19 patients (Khezri, 

2021; Mizutani et al., 2005; Santamaria, 2021; Somanath, 2020). 
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Cytokines are soluble extracellular proteins or glycoproteins that act as intercellular 

regulators and mobilizers of cells engaged in innate. They are involved in inflammatory 

host defenses, cell growth, differentiation, cell death, angiogenesis, and development 

and repair processes aimed at the restoration of homeostasis as well. There are various 

cytokines hyperproduced in severe cases of COVID-19, such as IL-1, IL-6, IL-12, IFN-γ, 

and TNF-α (Turner et al., 2014; Vabret et al., 2020). Scientist are trying to figure how to 

stop the strong production of these immune mediators (J. S. Kim et al., 2021; Nazerian 

et al., 2021; L. Yang et al., 2021). Unregulated cytokines are also related to multiple 

types of cancer (Landskron et al., 2014). In our results, we can observe that some of the 

most enriched terms relate to cancer, such as “proteoglycans in cancer”, “prostate 

cancer” and “chronic myeloid leukemia”, and others are related to oncogenic viruses, 

such as “human T-cell leukemia virus infection” and “Kaposi sarcoma-associated 

herpesvirus infection” (Figure 6 and 7). 

There are various viruses refereed in this analysis, in the 30 most enriched terms, 9 

of them are diseases or infections caused by other viruses: human cytomegalovirus 

infection, human T-cell leukemia virus infection, human immunodeficiency virus 1 

infection, Kaposi sarcoma-associated herpesvirus infection, hepatitis B, influenza A, 

hepatitis C and measles (Figure 6 and 7). 

This can be attributed to the fact that SARS-CoV-2 share the same or similar pathways 

or processes with other viruses. Therefore, these results reinforce the connection 

between certain cell activity pathways and different viruses’ entry and replication in 

human cells. 
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3.5. GO enrichment analysis: gene-concept network results and 
discussion 

 

The cnetplot depicts the linkages of genes and GO terms as a network. This network 

is helpful to see which genes are involved in enriched terms and which genes may belong 

to multiple annotation categories. The results for this network are represented in Figure 

8. All enriched terms represented have around the same dot size, 300 genes involved in 

each.  

The term “regulation of lipid metabolic process” means any process that modulates 

the frequency, rate or extent of the chemical reactions and pathways involving lipids. In 

the dot plot regarding the BP category of the GO enrichment analysis we can see the 

same term with the same count of genes (Figure 8). The lipid composition of cell 

membranes can influence viral entry by mediating fusion or affecting receptor 

conformation. 

Cell membranes’ lipid composition influence the viral entry by mediating fusion and/or 

affecting the receptor conformation, therefor lipids play an essential role in the viral life 

cycle (Theken et al., 2021). Multiple studies have found that lipids have an impact in 

SARS-CoV-2 entry  in the host cell (Ebrahimi & McCullagh, 2021; Luchini et al., 2021; 

Theken et al., 2021).  

The term “response to oxygen levels” may be related with “response to oxidative 

stress”, and several other terms found relevant in the BP dot plot, since extremely low 

levels of oxygen can induce oxidative stress, has mentioned above (McGarry et al., 

2018). One of the most eminent symptoms of COVID-19 is histopathological 

complications in the lungs that lead to low oxygen levels and hypoxia in severe cases 

(Rahman et al., 2021; Shenoy et al., 2020; Tobin et al., 2020). 

The term “response to virus” means any process that results in a change in state or 

activity of a cell or an organism (in terms of movement, secretion, enzyme production, 

gene expression, etc.) because of a stimulus from a virus. In the KEGG and MeSH 

enrichment analysis we saw that out of the 30 most enriched terms, nine of them are 

diseases or infections caused by other viruses (Figure 6 and 7). This term also makes 

sense since we are analyzing the genes related to SARS-CoV-2, a virus. 

The terms “calcium ion homeostasis”, “positive regulation of cytosolic calcium ion 

concentration”, “calcium ion homeostasis” and “regulation of cytosolic calcium ion 

concentration” appear together due to the amount of genes they all share, having into 
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account that this terms all refer to the balance of the calcium ion (Figure 8). This balance 

and its importance have already refereed above, in the BP dot plot discussion. 

The terms “peptidyl-tyrosine modification” and “peptidyl-tyrosine phosphorylation” also 

appear together due to the amount of genes that both terms share (Figure 8). Scientist 

are looking into a way of making these a drug target (Mahoney et al., 2021; McBride & 

Machamer, 2010). 

Finally, the term “gland development” means the process whose specific outcome is 

the progression of a gland over time, from its formation to the mature structure. A gland 

is an organ specialized for secretion. Scientist have found that SARS-CoV-2 can infect 

and replicate in various glands, such as salivary glands, pituitary glands and sweat 

glands (W. T. Gu et al., 2021; Liu et al., 2020; SARS-CoV-2 infects and replicates in the 

salivary glands, study finds, 2021). 

Most of the genes in this network are only related with one set of interrelated terms 

(terms referred above as similar or related) but some genes are connected with two or 

more sets (Figure 8). Multiple genes are connected between themselves. 

For example, the gene Protein-tyrosine kinase 2-beta (PTK2B) is responsible for the 

cell polarization, cell migration, adhesion, spreading and bone remodeling (Protein-

tyrosine kinase 2-beta, n.d.). As we saw before, cell adhesion and its related terms 

appeared various times (Figure 4). This gene is also responsible for the osteoclastic 

bone resorption and when activated in response to stimuli, lead to increased intracellular 

calcium ion levels (Protein-tyrosine kinase 2-beta, n.d.).  This activation is not direct and 

may be mediated by calcium-mediated production of reactive oxygen species, leading to 

oxidative stress. In the network, this gene is linked to the set of interrelated terms that 

involve the calcium ion, which makes sense since PTK2B can increase intracellular 

levels of calcium. PTK2B is also connected with “response to oxygen levels” , which may 

be related to the production of reactive oxygen species and “peptidyl-tyrosine 

modification” and “peptidyl-tyrosine phosphorylation”, since the activation of some 

pathways lead to the phosphorylation of additional tyrosine residues (Lev et al., 1995; 

Ohya et al., 1999; Protein-tyrosine kinase 2-beta, n.d.). 

 

Protein kinase C epsilon type (PRKCE) is a serine/threonine-protein kinase that plays 

essential roles in cell adhesion, motility, migration and cell cycle, functions in neuron 

growth and ion channel regulation, and is involved in immune response, cancer cell 

invasion and regulation of apoptosis (Protein kinase C epsilon type, n.d.). PRKCE is 

connected to the set of terms related to calcium ion, which make sense since it can be 
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activated by calcium (PRKCE protein kinase C epsilon [Homo sapiens (human)] - Gene 

- NCBI, n.d.),  PRKCE has cardioprotective characteristics when one suffers from 

ischemia (PRKCE protein kinase C epsilon [Homo sapiens (human)] - Gene - NCBI, 

n.d.), that can explain the gene connection with the term “response to oxygen levels” 

(Figure 8). The gene is also connected to “regulation of lipid metabolic process” that can 

be explained by the new research that found that PKCE in adipose tissue affects liver 

gene transcription and lipid metabolism (Brandon et al., 2019). This gene is also involved 

in the regulation of peptidyl-tyrosine phosphorylation regulation of peptidyl-tyrosine 

phosphorylation (Protein kinase C epsilon type, n.d.). 

 

Hypoxia-inducible factor 1-alpha (HIF1A) is a master transcriptional regulator of the 

adaptive response to hypoxia, when subjected to hypoxia, activates the transcription of 

over 40 genes to increase oxygen delivery or facilitate metabolic adaptation to 

hypoxia (Hypoxia-inducible factor 1-alpha, n.d.). As predicted, HIF1A is connected to the 

term “response to oxygen levels” (Figure 8). When a human is infected by SARS-CoV-

2, HIF1A induces glycolysis in monocytes and a proinflammatory state (Codo et al., 

2020). This gene also promotes monocyte inflammatory response, the expression of 

cytokines and the replication of SARS-CoV-2 (Codo et al., 2020). This alone my explain 

the connection with the term “response to virus” (Figure 8). 
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Fig. 8 - GO enrichment analysis gene-concept network: yellow nodes – GO terms; grey dots: genes; GO: Gene Ontology. 
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IV. Supplementary bioinformatic approaches 

 

4.1. M protein docking - Methods 

There are numerous bioinformatic approaches that can be used to address the SARS-

CoV-2 issue. In a side project, we aimed to discover the SARS-CoV-2 M protein 

structure. With this project we developed an article entitled “SARS-CoV-2 membrane 

protein: from genomic data to structural new insights”. (Marques-Pereira et al., 2021) 

This work was split into three main steps: M protein monomer membrane orientation 

prediction, M protein dimer 3D structure prediction and mutation effect assessment 

in the homodimer interface. My main participation was in the docking, in the second 

step.  

We selected OPM, TMpred and TMHMM protein monomers from the system 

equilibration results and subjected to M protein dimer prediction. To guide the 

protein-protein docking we used known information on SARS-CoV M protein that 

has a 90.5% sequence identity and 90% homology with SARS-CoV-2 M protein. (S. 

Thomas, 2020) Two equilibrated M protein monomers from each membrane 

orientation were used for dimer prediction using the docking tool HADDOCK, version 

2.4, a protein quaternary structure predictor based on experimental data. (Zundert, 

2016) Since M protein is a membrane protein and most homodimers are symmetric, 

water docking results were not considered and docking results with TMH2 and TMH3 

non-crystallographic symmetry restraints were generated. (Blundell & Srinivasan, 

1996) To determine M protein monomer’s active residues, CPORT, a protein-protein 

residue interaction predictor at an atomic-level, was used and only transmembrane 

residues predicted by this tool were considered for downstream steps. (Vries & 

Bonvin, 2011) 

For each membrane predictor, 5000 dimer structures were generated in rigid body 

docking phase and 1000 structures for the semi-flexible refinement phase. Dimer 

results were examined, according to each monomer membrane orientation 

prediction through an in-house Python script. Upon the selection of the most 20 

promising HADDOCK dimers 3D structures, we extended our work towards interface 

interacting residues prediction. Protein Interfaces, Surfaces and Assemblies (PISA), 

a web-based tool that resorts to chemical-physical principles for analyzing and 

modeling of macromolecular interactions, was used as a first predictor for dimer 

interface residues on all twenty dimer structures. (Krissinel & Henrick, 2007) Two 
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dimers were chosen based on PISA results and their comparison with SARS-CoV’s 

M protein dimer experimental results, highlighted homologous SARS-CoV-2 

residues W20, W58, P59, W92, Y95, F96 and C159 as important residues for dimer 

stabilization. Selected structures were further subjected to PRODIGY. (Xue et al., 

2016) PRODIGY predicts dimer interacting residues and helps to determine if a 

protein interface is crystallographic or biological, the latter meaning that the 

predicted dimer is biologically relevant. 

 

 

4.2. M protein docking - Results and Discussion 

 

 

Regarding SARS-CoV-2 M protein structure study, OPM, TMpred and TMHMM M 

monomers were used to model dimer 3D structures using a well-established protein-

protein docking software: HADDOCK. From 3000 proposed docking decoys, 1000 for 

each membrane orientation, 20 dimer structures that respected the membrane 

orientation prediction were selected: 11 from OPM, 4 from TMpred and 5 from TMHMM. 

From these 20 dimers, two structures from the TMHMM membrane predictor were 

chosen based on their similarity with SARS-CoV experimental detected interactions, 

namely in TMH2 (P59) and TMH3 (W92, L93, F96) regions. From these two TMHMM M 

protein dimers, the final choice was based on PROtein binDIng enerGY (PRODIGY)’s 

metrics of biological probability and predicted binding affinity. Hence, the M protein dimer 

structure chosen for the proceeding studies showed 85.6% biological probability and a 

predicted binding affinity of -6.3 kcal/mol in comparison to 74.8% biological probability 

and -5.9 kcal/mol binding affinity results from the other available structure. Regarding 

the TMHMM monomer membrane prediction that served as template for the final chosen 

dimer, M protein monomer residues 11-19 were shown to stably belong to N-terminal 

domain, residues 100-203 to C-terminal domain, residues 20-38 to TMH1, residues 46-

70 to TMH2 and residues 76-100 to TMH3 (Figure 9). 
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Fig. 9 - SARS-CoV-2 M protein monomer. a) M protein domains predicted by TMHMM20,21 

membrane predictor. b) TMHMM20,21 M protein monomer structure prediction after equilibration 

in membrane with ER membrane composition. c) M protein structure with domains highlighted. 

  

 

The final dimer 3D structure (Figure 10) was subjected to three independent dimer 

system molecular dynamic replicas of 0.5 μs. After equilibration, polar contacts between 

M protein monomer and membrane lipids occurred in M monomer residues K14, Y39, 

R42, N43, R44, F45, Y71, R72, W75, S94, R101, R107, W110, S173, R174. 

Transmembrane regions were within membrane lipids throughout the entire equilibration 

and several M protein residues were able to establish polar contacts with membrane 

lipids, supporting our transmembrane prediction (Figure 10). 
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Fig 10 - SARS-CoV-2 M protein dimer HADDOCK prediction using TMHMM based monomers. 

A- Interaction representation between Monomer A (red) and Monomer B (blue) domains. B- M 

protein dimer within the membrane: Monomer A (red), Monomer B (blue). C- M protein dimer with 

interfacial residues highlighted in a stick representation: Monomer A (red), Monomer B (blue). 

 

For the first time, a reliable SARS-CoV2 M protein membrane orientation was 

proposed by this work that showed that residues 20-38 belong to TMH1, residues 46-70 

to TMH2 and residues 76-100 to TMH3, results in agreement to the above mentioned 

SARS-CoV experimental results.  
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V. Conclusions 

 

In this project we tried several TM and gene enrichment analysis approaches. First, 

we tried to compare the data retrieved from LitCovid to the one retrieved from the 

pubtator function and realized that the amount of that retrieved from LitCovid was far 

superior to the one from the script This confirms that the web tools available for specific 

biomedical analysis keep improving and that the impact of this pandemic has also been 

reflected in an explosion of new tools and new studies. 

From the joint analysis of the results from clusterprofiler, we have reached some 

conclusions. Some of the most enriched terms had hundreds of articles concerning 

COVID-19 or SARS-CoV-2, with data from in silico, in vitro and in vivo research. This 

bought that the amount of information released regarding this virus came quickly as the 

pandemic began in 2019. Doing a comprehensive study of so much gene information 

manually would be tricky. Thus, a bioinformatics analysis was the right choice. 

When we analyzed the data regarding KEGG and MeSH results we found out that 

various viruses share multiple genes with SARS-CoV-2, which was foreseeable since 

the virus often share characteristics. We also found out that some of these viruses are 

respiratory virus, such as Influenza A and Measles. 

From what we obtained, we can state than the concentration and homeostasis of 

calcium ion in SARS-CoV-2 patients is essential and being able to control this 

concentration through drugs would allow better control of the severity of COVID-19. 

There are some drugs already design to target those mechanisms, redesigning drugs 

can be the next solution for severe COVID-19.  

We can also affirm that the low levels of oxygen and high oxidative stress are getting 

more research and are a major problem in the development of the disease. Just like 

HIF1A, more genes can have a direct impact in the virus entry and replication. 

This project may lead to future research since we only analyzed a small part of the 

results and many of the enriched pathways or terms may lead possible drug targets to 

find out. 
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