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Resumo

Modelos matemáticos de transferência de massa são úteis para estudar a libertação de um in-
grediente ativo (IA) e otimizar a formulação dos produtos que contêm esse IA, como acontece
no caso de produtos cosméticos, farmacêuticos e inseticidas. O uso de tais modelos ajuda a
compreender a relação entre a composição do produto e a velocidade de libertação do IA, e
pode ainda ajudar no planeamento das experiências a realizar e assim reduzir o número de
experiências necessárias. O principal objetivo da presente tese de mestrado é desenvolver mod-
elos matemáticos que consigam prever a libertação e transporte no ar de um IA contido num
produto formulado. O produto em causa está a ser desenvolvido para controlar o inseto ve-
tor da doença da murchidão do pinheiro, usando para tal um IA que atrai o inseto para uma
armadilha. A forma do produto estudada é um pequeno cilindro poroso, constituído por uma
matriz polimérica sólida na qual o IA se encontra homogeneamente distribuído. O produto é
fabricado usando a técnica de foaming/mixing com CO2 supercrítico.

Foram desenvolvidos três modelos com solução analítica: um para a libertação do IA a partir do
produto colocado em ar em repouso, outro para o transporte do IA num túnel de vento, e um ter-
ceiro modelo obtido pela combinação dos dois anteriores (libertação do IA seguida de transporte
no túnel). Em relação ao primeiro modelo, o coeficiente de difusão efetivo do IA no interior do
produto foi estimado ajustando-se o modelo a dados experimentais. Relativamente ao modelo
de transporte do IA no túnel de vento, alguns dos parâmetros foram estimados usando equações
conhecidas, nomeadamente os coeficientes de dispersão axial e radial do IA no túnel, em regime
turbulento completamente estabelecido, e o coeficiente de partição do IA entre o produto e o
ar, usando neste último caso a teoria de Flory-Huggins. Estes valores estimados serviram de
ponto de partida para o ajuste ótimo do modelo a dados experimentais, minimizando-se o erro
quadrático médio entre a previsão do modelo e os resultados experimentais. A solução ótima
foi obtida usando o algoritmo particle swarm.

Relativamente à libertação do IA em ar em repouso, o modelo proposto descreve bem os dados
experimentais, sendo nalguns casos necessário o pressuposto de que uma fração do IA não é
libertada em tempo útil. Quanto ao transporte no túnel, o modelo de convecção e dispersão
apresenta um erro sistemático, que é contudo de grandeza comparável à do erro experimental.

Palavras-chaves: modelação matemática da transferência de massa; solução analítica de equações
de convecção dispersão; libertação de um ingrediente ativo; produtos inseticidas usando fito-
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Abstract

Mathematical models of mass transfer are useful to study the release of an active ingredient
(AI) and to optimize the formulation of products that contain that AI, as is the case of cosmet-
ics, pharmaceuticals, and insecticides. Such models may help to understand the relationship
between the composition of the product and the release rate of the AI, and also may be useful in
planning experiments and reducing the number of experiments needed. The main objective of
this master’s thesis is to develop mathematical models that can predict the release and air trans-
port of an AI contained in a formulated product. The product in question is being developed to
control the insect vector of the pine wilt disease, using an AI that attracts the insect to a trap.
The shape of the studied product is a small porous cylinder, consisting of a solid polymeric
matrix in which the AI is homogeneously distributed. The product is manufactured using the
supercritical CO2 foaming/mixing method.

Three models were developed with an analytical solution: one for the release of the AI from
the product placed in quiescent air, a second one for the transport of the AI in a wind tunnel,
and a third model obtained by combining the two previous ones (release of the AI followed
by transport in the tunnel). Concerning the first model, the AI effective diffusion coefficient
inside the product was estimated by fitting the model to experimental data. Regarding the
AI transport model in the wind tunnel, some of the parameters were estimated using known
equations, namely the longitudinal and radial dispersion coefficients of the AI in the tunnel,
in a fully developed turbulent regime, and the AI partition coefficient between the product
and air, using in this latter case the Flory-Huggins theory. These estimated values served as
a starting point for the optimal adjustment of the model to experimental data, minimizing the
mean squared error between model predictions and experimental results. The optimal solution
was obtained using the particle swarm algorithm.

Regarding the release of the AI in the air at rest, the proposed model describes the experimental
data well, being in some cases required the assumption that a fraction of the AI is not in fact
released during the time of the release test. As for the transport in the tunnel, the convection
and dispersion model has a systematic error, which is however comparable in magnitude to the
experimental error.

Keywords: mass transfer mathematical modeling; analytical solution of the convection-dispersion
equation; release of an active ingredient; insecticide products using phytochemicals.
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Chapter 1

Introduction

The release of an active ingredient (AI) is a pivotal function in a wide range of products, includ-
ing pharmaceuticals, foods, personal care products, home fragrance products, and insecticides
(Chen et al., 2019; Lian et al., 2004; Siepmann and Siepmann, 2012; Vergnaud, 1993) . In the
present thesis, the solid-gas release of an insecticide is modeled mathematically. This work has
been conducted inside a larger project called Ecovector.

The Ecovector project (Braga, 2020) aims to control pine wilt disease (PWD). Pinus is the main
host for the pinewood nematode (PWN) (Bursaphelenchus xylophilus), which is the causal agent
for PWD, and transmission from one tree to another requires an insect vector. In Portugal, the
only vector present is the Monochamus galloprovincialis. The principal objective is to develop
a formulated product to control the transmission of PWN using volatile phytochemicals as AIs
that attract insects to a trap (or in some cases AIs that have a repellent effect). Other materi-
als are used to formulate the product and those should be biodegradable (polymeric supports,
coating, and eventually other auxiliary ingredients) (Braga, 2020). This product needs to have
a prolonged effect (several days or even weeks) and be active up to a certain distance (1 meter
or more). Activity here means that the product provides an AI concentration in the surrounding
air sufficiently high to attract insects.

In order to study the release rate of the AI, two main experimental trials were done: release
of the AI from the product under quiescent air, and a second experience (named wind tunnel)
where the product is placed in a tunnel and air is forced to pass through it dragging the released
AI. The concentration of the AI in the gas phase is measured along the tunnel (Braga, 2020;
Bernardo et al., 2019).

Notably, modeling the release of the AI as a mass transfer process is a valuable tool to formu-
late the product, since its composition affects the release profile. A model could be used to
predict the experimental result, helping to reduce the number of experiences needed and also to
plan the most informative ones. A reliable model could, in theory, be used to determine what
product composition and what production process conditions are required to attain a specific

1



performance.

The principal goal of the present thesis is to create models that can reliably describe the experi-
ences made in the Ecovector project. Those models need to be validated, first adjusting the main
model parameters to a set of tests, and then using the models in a predictive way, comparing
predictions without parameters adjustment with a different set of experimental data.

To achieve the principal goal, two phenomena were studied, and in both cases using analytical
solutions of the transport equations: AI diffusion out of the product and transport in the tunnel
(convection and dispersion). The wind tunnel experience was modeled using a new approach
that combines the two analytical solutions, being thus proposed an overall analytical model able
to describe the release of the AI followed by the transport in the tunnel.

The thesis is divided into 8 chapters.

Chapter 2 reviews the existent solution to diffusion and convection + dispersion problems, and
also, model fitting solutions approaches based on optimization.

Chapter 3 summarizes the experimental part done in the Ecovector project, not done in this
work, but necessarily important to construct suitable models.

Chapter 4 presents the developed models and their analytical solutions.

Chapter 5 presents the equations used to estimate some of the model parameters (e.g., partition
and dispersion coefficients).

Chapter 6 exhibits the computational strategy adopted.

Chapter 7 shows the results of both model fitting and model prediction, and also discusses some
model limitations.

Last but not least, Chapter 8 presents the conclusions of this thesis and also possible future
work.
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Chapter 2

State of art

2.1 Modeling transport phenomena

In this chapter, the modeling of two different phenomena will be reviewed: the release of an
active ingredient (AI) from a solid product by diffusion, and convection-dispersion of an AI in
cylindrical geometry.

2.1.1 Active ingredient diffusion out of a solid product

Different types of mass transport processes can be involved in the release of an AI from a
solid product containing it. Often, diffusion is the rate-controlling phenomenon. To quantify
it, Equation 2.1 (Siepmann and Siepmann, 2012)) can be applied, if the product geometry is
defined in Cartesian coordinates. The initial and boundary conditions differ from case to case
and thus the solution of Equation 2.1 will also change.

𝜕𝐶

𝜕𝑡
= 𝐷

(
𝜕2𝐶

𝜕𝑥2
+ 𝜕

2𝐶

𝜕𝑦2
+ 𝜕

2𝐶

𝜕𝑧2

)
(2.1)

where:

𝐶 (𝑥,𝑦, 𝑧, 𝑡) is the AI concentration in the product;

𝐷 is the diffusion coefficient;

𝑡 is the time;

𝑥 , 𝑧 and 𝑦 are the Cartesian coordinates.

2.1.2 Active ingredient convection-dispersion in cylindrical geometry

The convection-dispersion equation (CDE) has been widely used to describe the transport of a
tracer or a solute in a given flow system. The CDE can be used in a variety of areas such as in
hydrological (Chen et al., 2011b) and environmental (Chen et al., 2011a) sciences. The CDE
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Figure 2.1: Sketch of the flow system in cylindrical coordinates.

can be in one (1D), two (2D), or three (3D) dimensions, and is subject to various initial and
boundary conditions. The CDE in cylindrical coordinates (Figure 2.1), and in a fluid flowing in
the longitudinal direction with mean velocity 𝑢, is given by Equation 2.2.

𝜕𝐶

𝜕𝑡
+ 𝑢 𝜕𝐶

𝜕𝑧
= 𝐷𝑧

𝜕2𝐶

𝜕𝑧2
+ 𝐷𝑟

(
𝜕2𝐶

𝜕𝑟2
+ 1

𝑟

𝜕𝐶

𝜕𝑟

)
(2.2)

for:

0 < 𝑧 < 𝐿 (2.3a)

0 < 𝑟 < 𝑅2 (2.3b)

𝑡 > 0. (2.3c)

Here:

𝑧 and 𝑟 are the longitudinal and the radial coordinate;

𝐿 and 𝑅2 are the length and radius of the tunnel;

𝐶 (𝑧, 𝑟, 𝑡) represents the solute concentration;

𝑢 is the fluid velocity in the tunnel;

𝐷𝑧 and 𝐷𝑟 is the longitudinal and radial dispersion coefficients, respectively;

Usually, the initial condition is:
𝐶 (𝑧, 𝑟, 0) = 0. (2.4)

The inlet boundary condition (for 𝑧 = 0) differs from case to case, but the commonly used are
the first-type condition (concentration equals to a known 𝐶0 [Equation 2.5 ]) or the third-type
condition (transfer rate per unit are equals to a known value 𝑞0 [Equation 2.6 ] ) (Leij et al.,
1991). When these conditions only apply to a subdomain of 𝑟 , one has the following equations:

𝐶 (0, 𝑟 , 𝑡) =

𝐶0, 0 ≤ 𝑟 ≤ 𝛿𝑅2.

0, 𝛿𝑅2 < 𝑟 ≤ 𝑅2.
(2.5)
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𝑢 𝐶 (0, 𝑟 , 𝑡) − 𝐷𝑧
𝜕𝐶

𝜕𝑧
=


𝑢 𝑞0 0 ≤ 𝑟 ≤ 𝛿𝑅2.

0, 𝛿𝑅2 < 𝑟 ≤ 𝑅2.
(2.6)

Usually, the others boundary conditions are:

𝜕𝐶

𝜕𝑧

����
𝑧=𝐿

= 0 (2.7a)

𝜕𝐶

𝜕𝑟

����
𝑟=0

= 0 (2.7b)

𝜕𝐶

𝜕𝑧

����
𝑟=𝑅2

= 0. (2.7c)

2.2 Analytical versus numerical solution

Only very few Partial Differential Equations (PDEs) have the analytical or exact solution. Most
of the time, anyone who wants to develop and use models based on such equations and their
associated conditions must be able to obtain numerical solutions efficiently and accurately
(Hutomo et al., 2019).

To obtain an analytical solution, the PDE should be linear (relatively to independent variables,
dependent variable, and all derivatives), and have constant parameters (i.g., diffusion/dispersion
coefficients) (Hutomo et al., 2019; Siepmann and Siepmann, 2012). If these criteria are not met,
even in the case of only one non-linear term or only one non-constant parameter (Hutomo et al.,
2019; Siepmann and Siepmann, 2012).

2.2.1 Analytical solution

Diffusion equation

The release of an AI from polymeric support can be modeled according to how the AI is dis-
solved in that support.

Siepmann and Siepmann (2012) review the analytical solution for the cases where the AI is
homogeneously dispersed throughout the support (called monolith), and for the case where the
AI and the support are “completely” physically separated (the AI is located at the center of the
product, whereas the polymer forms a membrane surrounding the reservoir of AI). The solutions
present are only for the infinite slab, sphere, and cylinder geometries. Also, Vergnaud (1993)
compiled several solutions for a wide range of boundary and initial conditions, including for the
case where the external resistance is not negligible when compared with the internal one.
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Convection-dispersion equation

Several analytical solutions for the CDE in Cartesian coordinates have been derived in the lit-
erature. For instance, Van Genuchten (1982) compiled several analytical solutions to the 1D
CDEs with various initial and boundary conditions. Batu (1989, 1993) presents analytical so-
lutions for the 2D CDE. Batu (1996),Leij et al. (1991), and Park and Zhan (2001) derived 3D
solutions.

Leij et al. (1991) derived an analytical solution for 2D CDE in cylindrical coordinates subject
to first-type (Equation 2.5) and third-type (Equation 2.6) inlet conditions using Laplace and
Hankel transform techniques. Hwang (2021) also develop an exact solution to the previous case
using the Fokas method (also known as unified transformations).

The method of separation of variables combined with the principle of superposition is widely
used to solve initial and boundary conditions problems. Usually, the dependent variable (𝑢) is
expressed in the separable form 𝑢 (𝑥,𝑦) = 𝑋 (𝑥)𝑌 (𝑦), where X and Y are functions of only x
and only y, respectively. In many cases, the PDE reduces to two ordinary differential equations
(ODEs) for X and Y (Myint-U and Debnath, 2007).

However, the question of the separability of a partial differential equation into two or more
ODEs is by no means an easy one. Despite this, the method of separation of variables is ex-
tensively used in finding solutions to a large class of initial and boundary conditions problems
(Myint-U and Debnath, 2007).

2.2.2 Numerical solution

The oldest and most method used for obtaining the numerical solution of a PDE is the finite dif-
ference method (Finlayson, 1980). Also, there are methods based on finite elements (Finlayson,
1980) or boundary elements (Katsikadelis, 2002).

There are numerous numerical solutions to 2D or 3D CDE with the uniform flow and constant
coefficients ( for example Dehghan (2007), Thongmoon and McKibbin (2006), and Thongmoon
et al. (2012)). In Hutomo et al. (2019) the 2D CDE was developed with variable coefficients by
using the Du-Fort Frankel method (a development of the finite difference method).

2.3 Model fitting

If one or several of the parameters needed for obtaining the solution are unknown, the model
equations can be “fitted” to sets of experimental data. This means that the unknown parameters
are optimized to minimize the differences between experimental and theoretical data points.
This could be achieved using the criterion of Root Mean Squared Error (RMSE) (Equation 2.8).

6



𝑅𝑀𝑆𝐸 =

√︄∑𝑁
𝑖=1(𝑦𝑒𝑥𝑝𝑖 − 𝑦𝑚𝑜𝑑𝑖)2

𝑁
(2.8)

here:

𝑦𝑒𝑥𝑝𝑖 is the experimental value;

𝑦𝑚𝑜𝑑𝑖 is the value predicted by the model;

𝑁 is the number of experimental points.

To find the optimum of a given function, several approaches are possible. Despite a wide range
of optimization algorithms, there is not a method that could be considered the best for any
case. To solve this problem, one must understand different optimization methods. In general,
optimization methods are divided into heuristic and derivative-based methods (Edgar et al.,
2001).

There are also a growing number of publications regarding a hybrid formulation of optimization
algorithms, using a combination of heuristic and derivative-based methods (Dominković et al.,
2015; Nery and Rolnik, 2007b; Zadeh et al., 2015).

2.3.1 Derivative-based method

Derivative-based methods aim to establish an iterative optimization algorithm that uses infor-
mation on the first derivative (and sometimes also of the second derivative) of the objective
function. Three examples of derivative-based methods are: conjugated gradient, Newton, and
Quasi-Newton methods (Edgar et al., 2001).

2.3.2 Heuristic methods

Unlike the previous methods, heuristic methods does not use information about the objective
function gradient and are not very sensitive to initial parameter guesses. Further, they can be
more easily used for global optimization, through extensive calculation of the objective function
in the space of the optimization variables (Edgar et al., 2001).

Many works have already reported the uses of heuristic methods to perform parameter model
estimation and data reconciliation such as Genetic Algorithm ((Marseguerra et al., 2003; Park
and Froment, 1998; Schwaab and Chalbaud, 2008)), Simulated Annealing ((Eftaxias et al.,
2002)), and Particle Swarm Optimization (PSO) (Kennedy and Eberhart, 1995).

Sarkar et al. (2013) show that PSO allows for improved parameter estimation with less compu-
tational effort when compared with the others.
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Particle Swarm Optimization

The PSO technique was originally proposed by Kennedy and Eberhart (1995), based on the
social behavior of a collection of animals. Each individual of the swarm, called a particle,
remembers the best solution found by itself and by the whole swarm along the search trajectory.
Particles move along the search space and exchange information with other particles.

2.3.3 Hybrid Method

Hybrid methods represent a combination of derivative-based and heuristic methods to exploit
the advantage of both classes of methods.

Typically, hybrid methods first use a heuristic method to locate the region where the global
minimum likely is. Once this region is determined, the hybrid formulation algorithm switches
to a derivative-based method to get closer and faster to the minimum point (Almeida and
Coppo Leite, 2019; Edgar et al., 2001).

Dominković et al. (2015), Mohammad Zadeh et al. (2015), and Nery and Rolnik (2007a)
showed the efficiency and effectiveness of hybrid models.
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Chapter 3

Experimental methods

This chapter summarizes the experimental part performed inside the Ecovector project, not done
in this work, but necessarily important to construct suitable models.

3.1 Product form

The basic product form studied is a small porous cylinder, composed of a polymer and the
active ingredient (AI). This one is homogeneously dispersed in the polymeric matrix and for
that reason, this product form is called a monolith. Two variants of this product form were
studied: (i) only the monolith; (ii) the monolith covered with a membrane.

(a) Front view (b) Top view

Figure 3.1: Example of an experimentally obtained monolith.

The Ecovector project aims to use natural products to attract or repel the insect vector. In
nature, 𝛼-pinene is known to attract the vector and eucalyptol to repel it. These compounds
were chosen as AIs. Mixtures of AIs are also under study, but that case is not here reported
(de Matos et al., 2015; Goimil et al., 2017). Currently, only were used pure AI. However, a
mixture of different AIs is being studied. For the present thesis poly(𝜖-caprolactone) (PCL) was
chosen as the polymeric support. The membrane is regenerated cellulose and has a thickness of
0.1mm.
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The monoliths (present in Figure 3.1) are manufactured by supercritical carbon dioxide (CO2)
foaming/mixing method. Pure PCL powder is mixed with liquid AI and the mixture is intro-
duced into cylinder molds and then processed by supercritical carbon dioxide foaming/mixing
method under different temperature and pressure conditions, corresponding to different super-
critical CO2 densities (see Table 3.1) (de Matos et al., 2015; Goimil et al., 2017).

Table 3.1: List of experiments (Bernardo et al., 2019).

Experiment AI Temperature (◦𝐶) Pressure (𝑏𝑎𝑟 ) membrane

Exp1 𝛼-pinene 45 189 no
Exp2 𝛼-pinene 35 139 no
Exp3 𝛼-pinene 40 133 no
Exp4 𝛼-pinene 40 164 no
Exp5 𝛼-pinene 40 212 no
Exp6 𝛼-pinene 40 133 yes

Exp7 eucalyptol 40 133 no
Exp8 eucalyptol 40 164 no
Exp9 eucalyptol 40 212 no
Exp10 eucalyptol 40 133 yes

AI release tests are made at least in duplicate and for each experiment, a new monolith needs
to be produced. This leads to some disparity in the cylinder dimensions (radius (𝑅), height (𝐻 ),
porosity (𝜖), and initial AI concentrations (𝐶0)). Table 3.2 shows the average values of these
parameters (in the cases of 𝐶0, mean value ± standard deviation).

Table 3.2: Monolith dimensions, porosity, and initial AI concentration for several experiments
(Bernardo et al., 2019).

AI release wind tunnel
Experiment 𝑅 (cm) 𝐻 (cm) 𝑅 (cm) 𝐻 (cm) 𝜖 (-) 𝐶0 (kg ·m−3)

Exp1 - - 0.81 3.20 0.841 127±8
Exp2 - - 0.81 2.20 0.797 175±9
Exp3 0.80 2.20 0.80 2.25 0.776 194±14
Exp4 0.80 2.00 0.80 2.20 0.762 190±28
Exp5 0.80 2.30 0.80 2.10 0.792 173±12
Exp6 0.80 2.25 - - - -

Exp7 0.75 2.50 0.75 2.75 0.788 176±5
Exp8 0.75 2.40 0.75 2.55 0.789 187±12
Exp9 0.75 2.65 0.75 2.50 0.801 149±47
Exp10 0.75 2.60 - - - -
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3.2 Active ingredient passive release

The monolith is placed on a scale, as shown in Figure 3.2, and under quiescent air conditions,
the mass lost is measured by gravimetric assays. This test is also used to determine the initial
load (𝐶0) and the porosity (𝜖).

Figure 3.2: Sketch of active ingredient release from a cylinder.

For example, for experience Exp3-replica1, the mass loss over time is present in Figure 3.3,
with the y axis being:

𝑀

𝑀∞
=

𝑌𝑖𝑛𝑖𝑡𝑖𝑎𝑙 − 𝑌𝑖
𝑌𝑖𝑛𝑖𝑡𝑖𝑎𝑙 − 𝑌𝑙𝑎𝑠𝑡

where:

𝑌𝑖𝑛𝑖𝑡𝑖𝑎𝑙 is the mass of the monolith at the beginning of the experience;

𝑌𝑖 is the mass in a given time;

𝑌𝑙𝑎𝑠𝑡 is the last mass measure.

Figure 3.3: Experimental data for Exp3 (Bernardo et al., 2019).

As Figure 3.3 shows, in the first couple of hours (approximately 70 h), the release rate is must
faster than the rest. Only the first 70 h were used in the parameter fitting and are present in
Figure 3.3.
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Figure 3.4: Experimental data to Exp3, zoom for the first 70 h (Bernardo et al., 2019).

Given that the mass lost is measured by gravimetry, this experience can only give information
about the total mix of the AIs as one and can not differentiate between them. Contrary to this,
the experience below (explained 3.3), can differentiate between AIs.

3.3 Active ingredient release and dispersion in a wind tunnel

Figure 3.5 shows a sketch of the cylindrical wind tunnel. The product (monolith) is placed on the
tunnel axis, 1 meter away from the entrance, where the air fan is located. The concentration of
AI is measured through adsorption fibers that are first exposed to the flowing air until saturation
(a few seconds) and then analyzed by SPME-GC-MS (Bernardo et al., 2019) (that can detect
different species).

Figure 3.5: Schematic representation of the wind tunnel.

The four selected positions, in cylindrical coordinates (z,r), are: 𝑃1(0.25,0.035), 𝑃
′

1(0.25,0.085),
𝑃2(0.50,0.035) and 𝑃3(0.75,0.035) (values in m; the product is placed at the origin (0,0), as seen
in Figure 3.5). The concentration in these four points is measured at different times after the
beginning of the assay. Different experiences used different positions, and that information can
be consulted in Table 3.3.

For example, to experience Exp1, experimental data to the fours point are present in Figure 3.6.
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Table 3.3: Experimental tunnel points.

Experiment 𝑃
′

1 𝑃1 𝑃2 𝑃3

Exp1 yes yes yes yes
Exp2 yes yes yes yes
Exp3 no no no yes
Exp4 no no no yes
Exp5 no no no yes
Exp6 no no no yes

Exp7 no no yes yes
Exp8 no no yes yes
Exp9 no no yes yes

(a) Point 𝑃1 (b) Point 𝑃
′
1

(c) Point 𝑃2 (d) Point 𝑃3

Figure 3.6: Experimental data for Exp1 at different points in the tunnel (Bernardo et al., 2019).

Wind velocity (𝑢) is measured using an anemometer placed 0.5 m or 0.75 m from the position
of the monolith at the center of the tunnel. The velocity wasn’t experimentally measured in
the present thesis. However, this parameter was measured in experiments performed afterward.
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The mean velocity of those experiences is 𝑢 = 0.685 m · s−1. This value is considered the value
of all experiences.

14



Chapter 4

Models

4.1 Model description

In this chapter are developed models for three different cases:

• Active ingredient (AI) release from a monolith, under quiescent condition (model I);

• AI dispersion in a wind tunnel in a stationary state (model II);

• AI release from a monolith followed by dispersion in a wind tunnel (model I + II).

The monolith is modeled, as a finite cylinder (Figure 3.2), without having into consideration the
microstructure (this means a pseudo-homogeneous mixture).

The release has the following mass transport mechanisms in series (presented in Figure 4.1):

• diffusion inside the cylinder;

• diffusion into the membrane;

• diffusion into the air.

Firstly, a model with the three mechanisms (or transfer-resistant) was built (Section 4.3.1) and
then simplified. Three simplified models were all made:

• without membrane resistance (Section 4.3.2);

• without membrane and air resistances (Section 4.3.3);

• without air resistance (Section 4.3.4).

As explained in Chapter 3, the release is faster in the initial hours. Then, a modification of the
previous model is built where only a fraction of the AI is released (Section 4.3.5).

For model II, all the AI is introduced in the center of the tunnel at a point where there are no
entrance effects, and the profile is fully developed (present in Figure 3.5).

The third model (model I + II) is the combination of the previous two models, the monolith
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Figure 4.1: Active ingredient concentrations in the monolith, membrane, and air.

is placed at the center of the tunnel and approximated to a flat disc of which radius is a small
fraction of the tunnel radius (𝛿).

4.2 Analytical solution

Models with the analytical solution were chosen, due to having some advantages, such as the
accuracy is high and can be easily controlled when infinite series are present (develop in the fol-
lowing sections), also, the equations are linear meaning that, parameters such as the membrane
diffusivity, diffusion coefficient, coefficient of dispersion in the tunnel, and the velocity of the
air are constant values.

Since those equations are linear, the optimization process is much effortless given that the solu-
tion does not need past information to get the value for a given time and spatial point and thus,
has less computational effort.

When infinite series are present, it is possible to determine the exact number of digits correct in
the approximation of the series.

A method to find the roots used in the infinite series should have good accuracy to not miss any
root, but if the time needed is too high, this may become a disadvantage when compared with
the numerical solution. So, the method used needs to be accurate but at the same time quick.

4.3 Model I: Active ingredient release from a monolith

4.3.1 Monolith with membrane and transfer to air

he mass balance to the AI inside the cylindrical product and corresponding initial condition and
four boundary conditions are (see Figure 4.2):

𝜕𝐶

𝜕𝑡
= 𝐷

𝜕2𝐶

𝜕𝑥2
+ 𝐷

(
𝜕2𝐶

𝜕𝑟2
+ 1

𝑟

𝜕𝐶

𝜕𝑟

)
(4.1a)
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𝐶 (0, 𝑥, 𝑟 ) = 𝐶0 (4.1b)

𝜕𝐶

𝜕𝑟

����
𝑟=0

= 0 (4.1c)

𝜕𝐶

𝜕𝑥

����
𝑥=0

= 0 (4.1d)

−𝐷 𝜕𝐶

𝜕𝑥

����
𝑥=𝐻

= 𝑘𝑥 (𝐾1𝐶 (𝑡, 𝐻, 𝑟 ) − 𝐾2𝐶∞) (4.1e)

−𝐷 𝜕𝐶

𝜕𝑟

����
𝑟=𝑅1

= 𝑘𝑟 (𝐾1𝐶 (𝑡, 𝑥, 𝑅1) − 𝐾2𝐶∞) (4.1f)

where:

𝐶 is the concentration of AI in the monolith ( 𝑘𝑔𝐼𝐴 𝑚−3
𝑚𝑜𝑛𝑜𝑙𝑖𝑡ℎ

) and the others C are portrayed in
Figure 4.1;

𝐷 is effective diffusion coefficient (m2 · s−1);

𝑘𝑥 is the global transfer mass coefficient for the AI from monolith to air for the x-direction with
unites of concentration of the AI in the membrane (m · s−1);

𝑘𝑟 is the global transfer mass coefficient for the AI from monolith to air for the r-direction with
unites of concentration of the AI in the membrane (m · s−1);

𝐾1 is the partition coefficient between the monolith and the membrane (-) (Equation 4.2a );

𝐾2 is the partition coefficient between the membrane and the air (-) (Equation 4.2b).

Figure 4.2: Sketch of the monolith.
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𝐾1 =
𝐶𝑚1

𝐶1
(4.2a)

𝐾2 =
𝐶𝑚2

𝐶2
. (4.2b)

The values of 𝑘𝑟 and 𝑘𝑥 will be now deducted.

In the x-direction, the transfer rate, considering a linear profile, through the membrane (𝐽𝑥 ) is:

𝐽𝑥 =
𝐷𝑀𝐴𝑥

𝐿𝑀
(𝐶𝑚1 −𝐶𝑚2) (4.3)

where:

𝐴𝑥 is the transfer area (m2);

𝐷𝑀 is membrane diffusivity (m2 · s−1);

𝐿𝑀 is membrane thickness (m).

In the air, the transfer rate, considering a linear profile (𝐽𝑥 ) is:

𝐽𝑥 = 𝑘𝑚𝑥
𝐴𝑥 (𝐶2 −𝐶∞) (4.4)

where 𝑘𝑚𝑥
is the mass transfer coefficient for the AI from in the air for the x-direction (m · s−1).

Considering the definitions of 𝐾1 and 𝐾2, and that the transfer rate in the air and through the
membrane are equal (Çengel and Ghajar, 2015):

𝐽𝑥 = 𝑘𝑥𝐴𝑥 (𝐾1𝐶 (𝑡, 𝐻, 𝑟 ) − 𝐾2𝐶∞) . (4.5)

For the r-direction, the same conclusion can be reached (Çengel and Ghajar, 2015):

𝐽𝑟 = 𝑘𝑟𝐴𝑟 (𝛼1𝐶 (𝑡, 𝑥, 𝑅1) − 𝛼2𝐶∞) (4.6)

with:

𝑘𝑥 =
1

𝐿𝑀
𝐷𝑀

+ 𝐾2
𝑘𝑚𝑥

(4.7a)

𝑘𝑟 =
1

𝐿𝑀
𝐷𝑀

+ 𝐾2
𝑘𝑚𝑟

(4.7b)
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𝐴𝑥 = 𝜋𝑅
2
1 (4.7c)

𝐴𝑥 = 4𝜋𝑅1𝐻 (4.7d)

where 𝑘𝑚𝑟
is the mass transfer coefficient for the AI from in the air for the r direction (m · s−1).

The analytical solution is obtained as the product of two one-dimensional solutions: (slab of
thickness 2H) × (infinite cylinder of radius 𝑅1):

𝐶𝑛 =
𝐾1𝐶 (𝑡, 𝑥, 𝑟 ) − 𝐾2𝐶∞

𝐾1𝐶0 − 𝐾2𝐶∞
= 𝐶𝑛𝑆𝐶𝑛𝐼𝐶 . (4.8)

Where (Incropera et al., 2017):

𝐶𝑛𝐼𝐶 (𝑡𝑛𝑟 , 𝑟𝑛, 𝐵𝑖𝑟 ) =
∞∑︁
𝑖=1

𝑎𝑟𝑖 exp(−𝑏2𝑟𝑖𝑡𝑛𝑟 ) 𝐽0(𝑏𝑟𝑖𝑟𝑛) (4.9a)

𝐶𝑛𝑆 (𝑡𝑛𝑥 , 𝑥𝑛, 𝐵𝑖𝑥 ) =
∞∑︁
𝑖=1

𝑎𝑥𝑖 exp(−𝑏2𝑥𝑖𝑡𝑛𝑥 ) cos(𝑏𝑥𝑖𝑥𝑛) (4.9b)

with:

𝑎𝑟𝑖 =
2𝐵𝑖𝑟(

𝑏2
𝑟𝑖
+ 𝐵𝑖2𝑟

)
𝐽0(𝑏𝑟𝑖)

(4.10a)

𝑎𝑥𝑖 =
2𝐵𝑖𝑥(

𝑏2
𝑥𝑖
+ 𝐵𝑖2𝑥 + 𝐵𝑖𝑥

)
cos (𝑏𝑥𝑖)

. (4.10b)

Where 𝑏𝑥𝑖 and 𝑏𝑟𝑖 are the roots of Equations 4.11a, 4.11b, respectively (Incropera et al., 2017):

𝑏𝑥𝑖 sin𝑏𝑥𝑖 = 𝐵𝑖𝑥 cos𝑏𝑥𝑖 (4.11a)

𝑏𝑟𝑖 𝐽1 (𝑏𝑟𝑖) = 𝐵𝑖𝑟 𝐽0 (𝑏𝑟𝑖) . (4.11b)

where 𝐽0 and 𝐽1 are the Bessel function of order 0 and 1, respectively, of the first kind.

With the following normalized variables:

𝑡𝑛𝑥 =
𝐷𝑡

𝐻2
(4.12a)

𝑡𝑛𝑟 =
𝐷𝑡

𝑅21

(4.12b)

𝑥𝑛 =
𝑥

𝐻
(4.12c)

𝑟𝑛 =
𝑟

𝑅1
. (4.12d)
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The normalized boundary conditions are now:

𝜕𝐶𝑛

𝜕𝑟𝑛

����
𝑟𝑛=0

= 0 (4.13a)

𝜕𝐶𝑛

𝜕𝑥𝑛

����
𝑥𝑛=0

= 0 (4.13b)

𝜕𝐶𝑛

𝜕𝑟𝑛

����
𝑟𝑛=1

= −Bi𝑟𝐶𝑛 (𝑡𝑛, 𝑥𝑛, 1) (4.13c)

𝜕𝐶𝑛

𝜕𝑥𝑛

����
𝑥𝑛=1

= −𝐵𝑖𝑥𝐶𝑛 (𝑡𝑛, 1, 𝑟𝑛) . (4.13d)

With Biot number in the x-direction (𝐵𝑖𝑥 ) and Biot number in the r-direction (𝐵𝑖𝑟 ):

𝐵𝑖𝑥 =
𝑘𝑥𝐻𝐾1

𝐷
(4.14a)

𝐵𝑖𝑟 =
𝑘𝑟𝑅1𝐾1

𝐷
(4.14b)

The amount released (𝑄(kg · s−1)) is equal to the sum of AI that disperses either in a radial or
axial direction 𝑄 (𝑡) = 𝑄𝑥 +𝑄𝑟 .

𝑄 = 2

∫ 𝑅1

0
𝐷𝑥2𝜋𝑟

𝜕𝐶

𝜕𝑥

����
𝑥=𝐻

𝑑𝑟 + 2

∫ 𝐻

0
𝐷𝑟2𝜋𝑅1

𝜕𝐶

𝜕𝑟

����
𝑟=𝑅1

𝑑𝑥 . (4.15)

Combining Equations 4.13d, 4.13c and 4.8 one obtains:

𝜕𝐶𝑛

𝜕𝑥𝑛

����
𝑥𝑛=1

= −𝐵𝑖𝑥𝐶𝑛𝑆 (𝑡𝑛, 1)𝐶𝑛𝐼𝐶 (𝑡𝑛, 𝑟𝑛) (4.16a)

𝜕𝐶𝑛

𝜕𝑟𝑛

����
𝑟𝑛=1

= −𝐵𝑖𝑥𝐶𝑛𝑆 (𝑡𝑛, 𝑥𝑛)𝐶𝑛𝐼𝐶 (𝑡𝑛, ). (4.16b)

Solving Equation 4.15 with Equations 4.16b 4.16a:

𝑄 (𝑡𝑛) = (𝑘𝑟 𝑓𝑟𝐴𝑟𝐾1 + 𝑘𝑥 𝑓𝑟𝐴𝑥𝐾1 ) (𝐾1𝐶0 − 𝐾2𝐶∞) (4.17)

where:
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𝑓𝑥 = 2𝐶𝑛𝑆 (𝑡𝑛, 1)
∫ 1

0
𝐶𝑛𝐼𝐶 (𝑡𝑛, 𝑟𝑛) 𝑟𝑛𝑑𝑟𝑛 (4.18a)

𝑓𝑟 = 𝐶𝑛𝐼𝐶 (𝑡𝑛, 1)
∫ 1

0
𝐶𝑛𝑆 (𝑡𝑛, 𝑥𝑛) 𝑑𝑥𝑛 (4.18b)

with:

∫ 1

0
𝐶𝑛𝐼𝐶 (𝑡𝑛, 𝑟𝑛) 𝑟𝑛𝑑𝑟𝑛 =

∞∑︁
𝑖=1

𝑎𝑟𝑖 exp(−𝑏2𝑟𝑖𝑡𝑛𝑟 ) 𝐽1(𝑏𝑟𝑖)
𝑏𝑟𝑖

(4.19a)∫ 1

0
𝐶𝑛𝑆 (𝑡𝑛, 𝑥𝑛) 𝑑𝑥𝑛 =

∞∑︁
𝑖=1

𝑎𝑥𝑖 exp(−𝑏2𝑥𝑖𝑡𝑛𝑥 ) sin(𝑏𝑥𝑖)
𝑏𝑥𝑖

. (4.19b)

With:

𝑎𝑥𝑖 and 𝑎𝑟𝑖 are defined in Equations 4.10b and 4.10a;

𝑏𝑥𝑖 and 𝑏𝑟𝑖 are the roots of Equations 4.11b and 4.11a.

The amount released (𝑀) from time 0 to time t is given by:

𝑀 =

∫ 𝑡

0
𝑄 (𝑡) 𝑑𝑡 . (4.20)

For a slab is possible to find an analytic equation for the ratio between the mass for a given t
and the total mass (Vergnaud, 1993):(

𝑀

𝑀∞

)
𝑆

= 1 −
∞∑︁
𝑖=1

2𝐵𝑖2𝑥 exp
(
−𝑏2𝑥𝑖𝑡𝑛𝑥

)
𝑏2
𝑥𝑖

(
𝑏2
𝑥𝑖
+ 𝐵𝑖2𝑥 + 𝐵𝑖𝑥

) = 1 − 𝑆𝑆 . (4.21)

The same can be also true about the infinite cylinder (Vergnaud, 1993):(
𝑀

𝑀∞

)
𝐼𝐶

= 1 −
∞∑︁
𝑖=1

4𝐵𝑖2𝑟 exp
(
−𝑏2𝑟𝑖𝑡𝑛𝑟

)
𝑏2
𝑟𝑖

(
𝑏2
𝑟𝑖
+ 𝐵𝑖2𝑟

) = 1 − 𝑆𝐼𝐶 . (4.22)

Product solution for a finite cylinder is (Incropera et al., 2017):(
𝑀

𝑀∞

)
=

(
𝑀

𝑀∞

)
𝑆

+
(
𝑀

𝑀∞

)
𝐼𝐶

[
1 −

(
𝑀

𝑀∞

)
𝑆

]
= 1 − 𝑆𝑆𝑆𝐼𝐶 . (4.23)

Combining Equations 4.22, 4.21, and 4.23:
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(
𝑀

𝑀∞

)
= 1 −

∞∑︁
𝑖=1

4𝐵𝑖2𝑟 exp(−𝑏2𝑟𝑖𝑡𝑛𝑟 )
𝑏2
𝑟𝑖
(𝑏2
𝑟𝑖
+ 𝐵𝑖2𝑟 )

∞∑︁
𝑗=1

2𝐵𝑖2𝑥 exp
(
−𝑏2𝑥 𝑗𝑡𝑛𝑥

)
𝑏2
𝑥 𝑗

(
𝑏2
𝑥 𝑗
+ 𝐵𝑖2𝑥 + 𝐵𝑖𝑥

) . (4.24)

This equation can be used to fit the parameter obtained in the AI passive release.

4.3.2 Monolith without membrane

In this case, the new partition coefficient (𝐾) is between the monolith and the air (Figure 4.1):

𝐾 =
𝐶1

𝐶2
. (4.25)

This means that:
𝐾 =

𝐾2

𝐾1
. (4.26)

Where transfer rate is only Equation 4.4 and using Equation 4.25 the following equations can
be written for the x,r, and 𝐶𝑛:

𝐽𝑥 =
𝑘𝑚𝑥

𝐴𝑥

𝐾
(𝐶 (𝑡, 𝐻, 𝑟 ) − 𝐾 𝐶∞) (4.27a)

𝐽𝑟 =
𝑘𝑚𝑟

𝐴𝑥

𝐾
(𝐶 (𝑡, 𝑥, 𝑅1) − 𝐾 𝐶∞) (4.27b)

𝐶𝑛 =
𝐶 (𝑡, 𝑥, 𝑟 ) − 𝐾 𝐶∞

𝐶0 − 𝐾 𝐶∞
= 𝐶𝑛𝑆𝐶𝑛𝐼𝐶 . (4.27c)

They are also solved with the same boundary conditions 4.13a to 4.13d but the 𝐵𝑖𝑟 and 𝐵𝑖𝑥 are:

𝐵𝑖𝑥 =
𝑘𝑚𝑥

𝐻

𝐾 𝐷
(4.28a)

𝐵𝑖𝑟 =
𝑘𝑚𝑟

𝑅1

𝐾 𝐷
. (4.28b)

Equation 4.24 is still used but the Biot numbers are given by Equations 4.28a and 4.28b.

4.3.3 Limit solution for negligible external resistant

If the Biot number is big enough (𝐵𝑖 >100 (Çengel and Ghajar, 2015)) then can be used the
solution for Biot →∞. Thus, Equation 4.24 is now (Siepmann and Siepmann, 2012):

(
𝑀

𝑀∞

)
= 1 − 32

𝜋2

∞∑︁
𝑖=1

exp
(
−𝜋2 (2𝑖 − 1)2 𝑡𝑛𝑥/4

)
(2𝑖 − 1)2

∞∑︁
𝑗=1

exp
(
−𝑏2𝑟 𝑗𝑡𝑛𝑟

)
𝑏2
𝑟 𝑗

(4.29)
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where 𝑏𝑟 𝑗 are the roots of Equation 4.30:

𝐽0
(
𝑏𝑟 𝑗

)
= 0. (4.30)

4.3.4 Monolith with membrane and negligible air resistance

If the air resistance is negligible when compared with the membrane resistance, then 𝐿𝑀
𝐷𝑀

>>
𝐾2
𝑘𝑚𝑟

and Biot number (𝐵𝑖) is now written as:

𝐵𝑖𝑥 =
𝑃𝑚𝑒𝑚𝐻

𝐷
(4.31a)

𝐵𝑖𝑟 =
𝑃𝑚𝑒𝑚𝑅1

𝐷
(4.31b)

with membrane permeability (𝑃𝑚𝑒𝑚) (m · s−1)

𝑃𝑚𝑒𝑚 =
𝐷𝑀𝛼1

𝐿𝑀
. (4.32)

Equation 4.24 is still used but the Biot numbers are given by Equations 4.31b and 4.31a.

4.3.5 Regimes

Considering the release caused by two regimes, one fraction of volatile (𝛼𝑟 ) that can be released
easily and a second fraction (1 − 𝛼𝑟 ) where the release rate is very hard (Figure 3.3 ), thus can
be considered as unreleased in a useful time and negligible.(

𝑀

𝛼𝑟𝑀∞

)
= 1 − 𝑆𝑆𝑆𝐼𝐶 . (4.33)

Where 𝑆𝑆𝑆𝐼𝐶 are given by Equations 4.21 and 4.22, respectively.

4.4 Model II: Active ingredient dispersion in a wind tunnel

The present section will develop a mathematical model for the dispersion of an AI in a tunnel
with cylindrical coordinates. The AI is released from a disc placed in the middle of the tunnel
with a radius equal to 𝛿𝑅2, as shown in Figure 4.3.

Considering a mass balance, to the AI in the wind tunnel and with its initial and boundary
conditions (Hwang, 2021):

𝜕𝐶

𝜕𝑡
+ 𝑢 𝜕𝐶

𝜕𝑧
= 𝐷𝑧

𝜕2𝐶

𝜕𝑧2
+ 𝐷𝑟

(
𝜕2𝐶

𝜕𝑟2
+ 1

𝑟

𝜕𝐶

𝜕𝑟

)
(4.34a)
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𝐶 (0, 𝑧, 𝑟 ) = 0 (4.34b)

𝜕𝐶

𝜕𝑧

����
𝑧=𝐿

= 0 (4.34c)

𝜕𝐶

𝜕𝑟

����
𝑟=0

= 0 (4.34d)

𝜕𝐶

𝜕𝑧

����
𝑟=𝑅2

= 0 (4.34e)

where:

𝐶 (𝑡, 𝑧, 𝑟 ) is the IA concentration in a given position (kg ·m−3);

𝐷𝑟 is radial dispersion coefficient (m · s−1);

𝐷𝑧 is longitudinal dispersion coefficient (m · s−1).

The fourth condition for 𝑧 = 0 will be now deducted, considering a macroscopic mass balance,
of AI:

Accumulation= in - out

−𝑄 = 0 + 𝐷𝑧
𝑑𝐶

𝑑𝑧
𝐴𝑖 − 𝑢𝑖 𝐴𝑖𝑐 (4.35a)

𝑄

𝜋 (𝑅2)2
= 𝑢 𝐶 (𝑡, 0, 𝑟 ) − 𝐷𝑧

𝜕𝐶

𝜕𝑧

����
𝑧=0

. (4.35b)

Since the AI is only released in a small fraction of the 𝑅2 (𝛿) [Equation 4.3] Equation 4.35b is
more correctly written as:

𝑄H (𝛿𝑅2 − 𝑟 )
𝜋 (𝑅2𝛿)2

= 𝑢 𝐶 (𝑡, 0, 𝑟 ) − 𝐷𝑧
𝜕𝐶

𝜕𝑧

����
𝑧=0

(4.36)

where H is the Heaviside step function.

Figure 4.3: Sketch of the wind tunnel in cylindrical coordinates.
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With the following normalized variable:

𝑡𝑛 =
𝑢𝑡

𝐿
(4.37a)

𝐶𝑛 =
𝐶

𝑐𝑧0
(4.37b)

𝑧𝑛 =
𝑧

𝐿
(4.37c)

𝑟𝑛 =
𝑟

𝑅2
(4.37d)

𝛼 =
𝐷𝑧

𝐿𝑢
(4.37e)

𝛽 =
𝐷𝑟𝐿

𝑅22𝑢
(4.37f)

where:

𝛼 is scaled longitudinal dispersion coefficient;

𝛽 is a scaled radial dispersion coefficient.

With:
𝑐𝑧0 =

𝑄

𝜋 (𝑅2)2
. (4.38)

Equation 4.34a and its boundary condition now become:

𝜕𝐶𝑛

𝜕𝑡𝑛
+ 𝜕𝐶𝑛
𝜕𝑧𝑛

= 𝛼
𝜕2𝐶𝑛

𝜕𝑧2𝑛
+ 𝛽

(
𝜕2𝐶𝑛

𝜕𝑟2𝑛
+ 1

𝑟𝑛

𝜕𝐶𝑛

𝜕𝑟𝑛

)
(4.39a)

𝐶𝑛 (0, 𝑧𝑛, 𝑟𝑛) = 0 (4.39b)

𝜕𝐶𝑛

𝜕𝑧𝑛

����
𝑧𝑛=1

= 0 (4.39c)

𝜕𝐶𝑛

𝜕𝑟𝑛

����
𝑟𝑛=0

= 0 (4.39d)

𝜕𝐶𝑛

𝜕𝑧𝑛

����
𝑟𝑛=1

= 0 (4.39e)

H (𝛿 − 𝑟𝑛)
𝛿2

= 𝐶𝑛 (𝑡𝑛, 0, 𝑟𝑛) − 𝛼
𝜕𝐶𝑛

𝜕𝑧𝑛

����
𝑧𝑛=0

. (4.39f)

To use the method of separation of variables, the following simplification was done to avoid the
term 𝜕𝐶𝑛

𝜕𝑧𝑛
.
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𝜙 = 𝐶𝑛 exp
(
− 𝑧𝑛
2𝛼

)
. (4.40)

Equation 4.39a becomes:

𝜕𝜙

𝜕𝑡𝑛
+ 𝜙

4𝛼
= 𝛼

𝜕2𝜙

𝜕𝑧2𝑛
+ 𝛽

(
𝜕2𝜙

𝜕𝑟2𝑛
+ 1

𝑟𝑛

𝜕𝜙

𝜕𝑟𝑛

)
(4.41)

Considering 𝜙1 (𝑧𝑛, 𝑟𝑛) the steady-state solution to Equation 4.41, with its boundary conditions,
can be now written as:

𝜙1

4𝛼
= 𝛼

𝜕2𝜙1

𝜕𝑧2𝑛
+ 𝛽

(
𝜕2𝜙1

𝜕𝑟2𝑛
+ 1

𝑟𝑛

𝜕𝜙1

𝜕𝑟𝑛

)
(4.42a)

𝜕𝜙1

𝜕𝑧𝑛

����
𝑧=1

+ 𝜙1 (1, 𝑟𝑛)
2𝛼

= 0 (4.42b)

𝜕𝜙1

𝜕𝑟𝑛

����
𝑟𝑛=0

= 0 (4.42c)

𝜕𝜙1

𝜕𝑧𝑛

����
𝑟𝑛=1

= 0 (4.42d)

H (𝛿 − 𝑟𝑛)
𝛿2

= 𝜙1 (0, 𝑟𝑛) − 𝛼
𝜕𝜙1

𝜕𝑧𝑛

����
𝑧𝑛=0

. (4.42e)

The method of Separation Variable (Myint-U and Debnath, 2007) presuppose that 𝜙1 can be
described as a function of 𝑧𝑛 (F) and function of 𝑟𝑛 (G).

If:

𝜙1 = 𝐴𝐵; (4.43)

then Equation 4.42a can be rewritten as:

𝐴𝐵

4𝛼
= 𝛼𝐵

𝜕2𝐴

𝜕𝑧2𝑛
+ 𝛽𝐴

(
𝜕2𝐵

𝜕𝑟2𝑛
+ 1

𝑟𝑛

𝜕𝐵

𝜕𝑟𝑛

)
(4.44a)

1

4𝛼𝛽
− 𝛼

𝛽𝐴

𝜕2𝐴

𝜕𝑧2𝑛
=

1

𝐵

(
𝜕2𝐵

𝜕𝑟2𝑛
+ 1

𝑟𝑛

𝜕𝐵

𝜕𝑟𝑛

)
(4.44b)

𝐻 (𝑧𝑛) = 𝐺 (𝑟𝑛) (4.44c)
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Since 𝑧𝑛 and 𝑟𝑛 are independent variables, functions H and G must both be equal to a constant.
Many constants may exist satisfying the equation H=G. Further, the constant must be negative
since the boundary conditions in the 𝑟𝑛 direction are homogeneous (Jiji, 2009). Thus, one
writes:

𝐻𝑖 (𝑧𝑛) = 𝐺𝑖 (𝑟𝑛) = −𝑐21𝑖 ,∀ 𝑖 ∈ N. (4.45)

Which represent two sets of Ordinary Differential Equations (ODEs). The case of a constant
equal to zero must also be considered. The constants 𝑐1𝑖 are designated as eigenvalues or char-
acteristic values (Jiji, 2009).

The first ODE is:

𝐻 (𝑧𝑛) = −𝑐21𝑖 (4.46a)

1

4𝛼𝛽
− 𝛼

𝛽𝐴𝑖

𝜕2𝐴𝑖

𝜕𝑧2𝑛
= −𝑐21𝑖 (4.46b)

1

𝐴𝑖

𝜕2𝐴𝑖

𝜕𝑧2𝑛
= −𝑐22𝑖 (4.46c)

𝑐22𝑖 =

(
𝑐21𝑖 +

1

4𝛼𝛽

)
𝛽

𝛼
. (4.46d)

Of which solution is (Jiji, 2009):

𝐴𝑖 (𝑧𝑛) = 𝑐3𝑖 exp (𝑐2𝑖𝑧𝑛) + 𝑐4𝑖 exp (−𝑐2𝑖𝑧𝑛) ,∀ 𝑖 ∈ N. (4.47)

For the special case of 𝑐1𝑖 = 0, one has:

𝑐220 =
1

4𝛼2
. (4.48)

Equation 4.46b is now
1

𝐴𝑖

𝜕2𝐴𝑖

𝜕𝑧2𝑛
= −𝑐220. (4.49)

Of which solution is (Jiji, 2009):

𝐴0 (𝑧𝑛) = 𝑐30 exp (𝑐20𝑧𝑛) + 𝑐40 exp (−𝑐20𝑧𝑛) . (4.50)
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The second set of ODEs is:

1

𝐵𝑖

(
𝜕2𝐵𝑖

𝜕𝑟2𝑛
+ 1

𝑟𝑛

𝜕𝐵𝑖

𝜕𝑟𝑛

)
= −𝑐21𝑖,∀ 𝑖 ∈ N. (4.51)

Of which solution is (Jiji, 2009):

𝐵𝑖 (𝑟𝑛) = 𝑐5𝑖 𝐽0(𝑐1𝑖𝑟𝑛) + 𝑐6𝑖𝑌0(𝑐1𝑖𝑟𝑛),∀ 𝑖 ∈ N0. (4.52)

For the special case of 𝑐1𝑖 = 0, one has, Equation 4.52 changes to:

𝐵′′0 +
𝐵′0
𝑟𝑛

= 0. (4.53)

Of which solution is (Jiji, 2009):

𝐵0 (𝑟𝑛) = 𝑐7 + 𝑐8 ln (𝑟𝑛). (4.54)

Since the original PDE in 𝜙1 (Equation 4.42a) is linear, the sum of all solutions for different
values of 𝑐1𝑖 are also a solution and the complete solution is thus (Jiji, 2009):

𝜙1 (𝑧𝑛, 𝑟𝑛) = 𝐴0 (𝑧𝑛) 𝐵0 (𝑟𝑛) +
∞∑︁
𝑖=1

𝐴𝑖 (𝑧𝑛)𝐵𝑖 (𝑟𝑛) . (4.55)

The constants 𝑐3 to 𝑐8 are now calculated from the boundary conditions.

𝜙1 (𝑧𝑛, 0) is finite, since (Jiji, 2009):

ln (0) = −∞ (4.56a)

𝑌0(0) = −∞ (4.56b)

then:

𝑐6𝑖 = 0 (4.57a)

𝑐8 = 0. (4.57b)

Boundary condition 4.42c can be solved into:

𝐽1(𝑐1𝑖) = 0,∀ 𝑖 ∈ N. (4.58)

Eigenvalues 𝑐1𝑖 are then the zeros of the Bessel function 𝐽1(𝑥) (except for 𝑐1𝑖 = 0). Boundary
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condition 4.42d can be solved into:

𝑐3𝑖 = 𝑐4𝑖
𝑐2𝑖 − 𝑐20
𝑐2𝑖 + 𝑐20

exp (−2𝑐2𝑖),∀ 𝑖 ∈ N0. (4.59)

Therefore:

𝐴𝑖 (𝑧𝑛) = 𝑐4𝑖 exp (−𝑐2𝑖𝑧𝑛) +
𝑐2𝑖 − 𝑐20
𝑐2𝑖 + 𝑐20

exp (−𝑐2𝑖 (2 − 𝑧𝑛)) = 𝑐4𝑖𝐸 (𝑐2𝑖, 𝑧𝑛),∀ 𝑖 ∈ N0 (4.60)

𝐸 (𝑐2𝑖, 𝑧𝑛) = exp (−𝑐2𝑖𝑧𝑛) +
𝑐2𝑖 − 𝑐20
𝑐2𝑖 + 𝑐20

exp (−𝑐2𝑖 (2 − 𝑧𝑛)). (4.61)

In this case, the complete solution is thus:

𝜙1 (𝑧𝑛, 𝑟𝑛) = 𝑐9𝐸 (𝑐20, 𝑧𝑛) +
∞∑︁
𝑖=1

𝑐10𝑖𝐸 (𝑐2𝑖, 𝑧𝑛) 𝐽0(𝑐1𝑖𝑟𝑛). (4.62)

Boundary 4.42e and using Equation 4.63 can be written as Equation 4.64:

𝐹 (𝑐2𝑖, 0) =
𝐸 (𝑐2𝑖, 0)

2
− 𝛼 𝜕𝐸

𝜕𝑧𝑛

����
𝑧𝑛=0

(4.63)

𝑐9𝐹 (𝑐20, 0) +
∞∑︁
𝑖=1

𝑐10𝑖 𝐽0(𝑐1𝑖𝑟𝑛)𝐹 (𝑐2𝑖, 0) =
H (𝛿 − 𝑟𝑛)

𝛿2
. (4.64)

Multiplying both sides by 𝐽0(𝑐1𝑖𝑟𝑛)𝑟𝑛 into Equation 4.64 and integrating
∫ 1

0
(.) 𝑑𝑟𝑛, one obtains

(Jiji, 2009):∫ 1

0
𝑐9𝐹 (𝑐20, 0) 𝐽0(𝑐1𝑖𝑟𝑛)𝑟𝑛𝑑𝑟𝑛+

∫ 1

0
𝑐10𝑖 (𝐽0(𝑐1𝑖𝑟𝑛))2𝐹 (𝑐2𝑖, 0) 𝑟𝑛𝑑𝑟𝑛 =

∫ 1

0

H (𝛿 − 𝑟𝑛)
𝛿2

𝐽0(𝑐1𝑖𝑟𝑛)𝑟𝑛𝑑𝑟𝑛
(4.65)

since (Jiji, 2009): ∫ 1

0
𝐽0(𝑐1𝑖𝑟𝑛)𝑟𝑛𝑑𝑟𝑛 = 𝐽1(𝑐1𝑖). (4.66)

Because of Equation 4.58, this is equal to zero.

∫ 1

0
𝑐10𝑖 (𝐽0(𝑐1𝑖𝑟𝑛))2𝐹 (𝑐2𝑖, 0) 𝑑𝑟𝑛 =

(𝑐1𝑖1)2 − 02

2 𝑐1𝑖2
(𝐽0(𝑐1𝑖1))2 (4.67)

∫ 1

0

H (𝛿 − 𝑟𝑛)
𝛿2

𝐽0(𝑐1𝑖𝑟𝑛)𝑟𝑛𝑑𝑟𝑛 =
1

𝛿2

∫ 𝛿

0
𝐽0(𝑐1𝑖𝑟𝑛)𝑟𝑛𝑑𝑟𝑛 . (4.68)
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So, Equation 4.65 can be written as:

𝑐10𝑖

2
𝐽 20 (𝑐1𝑖)𝐹 (𝑐2𝑖, 0) =

𝐽1(𝑐1𝑖𝛿)
𝑐1𝑖𝛿

. (4.69)

Therefore:
𝑐10𝑖 =

2𝐽1(𝑐1𝑖𝛿)
𝐹 (𝑐2𝑖, 0) 𝐽 20 (𝑐1𝑖) 𝑐1𝑖𝛿

. (4.70)

Multiplying both sides by 𝑟𝑛 into Equation 4.64 and integrating
∫ 1

0
(.) 𝑑𝑟𝑛, one obtains (Jiji,

2009):∫ 1

0
𝑐9𝐹 (𝑐20, 0) 𝑟𝑛𝑑𝑟𝑛 +

∫ 1

0
𝑐10𝑖 𝐽0(𝑐1𝑖𝑟𝑛)𝐹 (𝑐2𝑖, 0) 𝑟𝑛𝑑𝑟𝑛 =

∫ 1

0

H (𝛿 − 𝑟𝑛)
𝛿2

𝑟𝑛𝑑𝑟𝑛 (4.71)

Due to Equation 4.66:

∫ 1

0
𝑐10𝑖 𝐽0(𝑐1𝑖𝑟𝑛)𝐹 (𝑐2𝑖, 0) 𝑟𝑛𝑑𝑟𝑛 = 0 (4.72)

For this case, Equation 4.71 is written as:

𝑐9 =
1

𝐹 (𝑐20, 0)
. (4.73)

Then Equation 4.62 can be written as:

𝜙1 (𝑧𝑛, 𝑟𝑛) =
𝐸 (𝑐20, 𝑧𝑛)
𝐹 (𝑐20, 0)

+
∞∑︁
𝑖=1

2𝐸 (𝑐2𝑖, 𝑧𝑛) 𝐽0(𝑐1𝑖𝑟𝑛) 𝐽1(𝑐1𝑖𝛿)
𝐹 (𝑐2𝑖, 0) 𝐽 20 (𝑐1𝑖) 𝑐1𝑖𝛿

(4.74)

where E, F, 𝛼 , 𝛽, 𝑐20, and 𝑐2𝑖 are functions present in Equations 4.61, 4.63, 4.37e, 4.37f, 4.48,
and 4.46d, respectively.

𝑐𝑐1𝑖 are the roots of Equation 4.58.

𝐶𝑛 (𝑧𝑛, 𝑟𝑛) = 𝜙1 (𝑧𝑛, 𝑟𝑛) exp
( 𝑧𝑛
2𝛼

)
. (4.75)

Numerical problems may arise in Equation 4.75 because the value of 𝜙1 may tend towards zero,
and the value of the exponential may tend towards infinite. To avoid this, Equation 4.76 should
be applied instead.

𝐶𝑛 (𝑧𝑛, 𝑟𝑛) = 1 +
∞∑︁
𝑖=1

2𝐸 (𝑐2𝑖, 𝑧𝑛) 𝐽0(𝑐1𝑖𝑟𝑛) 𝐽1(𝑐1𝑖𝛿)
𝐹 (𝑐2𝑖, 0) 𝐽 20 (𝑐1𝑖) 𝑐1𝑖𝛿

(4.76)
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where:

𝐸 (𝑐2𝑖, 𝑧𝑛) = exp(𝑧𝑛 (𝑐20 − 𝑐2𝑖)) +
𝑐2𝑖 − 𝑐20
𝑐20 + 𝑐2𝑖

exp(𝑧𝑛 (𝑐20 − 𝑐2𝑖) − 2𝑐2𝑖) (4.77a)

𝐹 (𝑐2𝑖, 0) =
1

2
+ 𝛼𝑐2𝑖 +

𝑐2𝑖 − 𝑐20
𝑐20 + 𝑐2𝑖

exp(2𝑐2𝑖) (
1

2
− 𝛼𝑐2𝑖) (4.77b)

where 𝛼 , 𝛽, 𝑐20, and 𝑐2𝑖 are present in Equations 4.37e, 4.37f, 4.48, and 4.46d, respectively.

𝑐𝑐1𝑖 are the roots of Equation 4.58.

Combining with Equations 4.76, 4.38, in steady-state and with a Q constant in the middle of the
tunnel (𝑟 = 0), the concentration in (kg ·m−3) can be given by:

𝐶2(𝑧, 𝑟 ) =
𝑄 𝐶𝑛 (𝑧𝑛, 𝑟𝑛)

𝑢𝜋𝑅22

(4.78)

4.5 Model I + II: Active ingredient release from the monolith
followed by dispersion in a wind tunnel

The release from the cylindrical monolith takes several days, and the time to reach steady-state
in the wind tunnel transport is only a few minutes then is a good approximation to consider a
pseudo-steady-state for the transport along the tunnel.

4.5.1 Internal diffusion

Figure 4.4 presents a sketch of the monolith.

Figure 4.4: Sketch of the monolith.
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The boundary conditions of the Equation 4.1a are now:

𝐶 (0, 𝑥, 𝑟 ) = 𝐶0 (4.79a)

𝜕𝐶

𝜕𝑟

����
𝑟=0

= 0 (4.79b)

𝜕𝐶

𝜕𝑥

����
𝑥=0

= 0 (4.79c)

−𝐷 𝜕𝐶

𝜕𝑥

����
𝑥=𝐻

2

= 𝑘𝑥 (𝐾1𝐶 (𝑡,
𝐻

2
, 𝑟 ) − 𝐾2𝐶∞) (4.79d)

−𝐷 𝜕𝐶

𝜕𝑟

����
𝑟=𝑅1

= 𝑘𝑟 (𝐾1𝐶 (𝑡, 𝑥, 𝑅1) − 𝐾2𝐶∞) (4.79e)

Comparing the boundary conditions (4.1c) to (4.1f) with the previews conditions it is possible
to see that the boundary condition are the same only that in section 4.3 it is considered the total
height(𝐻 ) of the monolith and in this section only half of the height(𝐻2 ). In conclusion, the
equations developed in Section 4.3 are used in this section, the only thing that changes is that
𝐻 in the previous section is now 𝐻

2 .

4.5.2 Dispersion in the tunnel

Figure 4.5: Sketch of the wind tunnel in cylindrical coordinates and with a monolith in it.

Comparing Figures 4.3 and 4.5 is possible to see that in this section the source of AI is a mono-
lith, but in Section 4.4 is a disc, which is an approximation for the problem to be axisymmetric.

There is a small problem because the disc and the monolith do not have the same dimension,
however, it was considered a disc with the same area as the surface area of the cylinder projected
in a plane perpendicular to the z-direction.

𝜋 (𝛿𝑅2)2 = 2 𝑅1𝐻 (4.80)

meaning:
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𝛿 =

√︄
2 𝑅1𝐻

𝜋 𝑅22

. (4.81)

4.5.3 Transition between models

The overall transport model is then the transient equations for the release from the cylinder
(Equation 4.17), coupled with the steady-state solution in the wind tunnel for each time t (Equa-
tion 4.78).

The boundary condition linking the two models must relate 𝐶∞ with 𝐶.

Analysing Figure 4.3, the transition must occur in the following conditions:

0 < 𝑟𝑖 < 𝛿𝑅2 ∧ 𝑧 = 0 (4.82)

For this case, one has:

𝐶∞ (𝑡) = 𝐶2 (0, 𝑟𝑖, 𝑡)
𝑄 (𝑡)𝜙1 (0, 𝑟𝑖)

𝑢𝜋𝑅22

(4.83)

If the value chosen for 𝑟𝑖 is in the middle of the interval (Equation 4.85) then Equation 4.83 can
be rewritten as:

𝐶∞ (𝑡) = 𝐶2 (0, 𝛿𝑅2/2, 𝑡) =
𝑄 (𝑡)𝜙1 (0, 𝛿/2)

𝑢𝜋𝑅22

. (4.84)

𝑟𝑖 =
𝛿𝑅2

2
(4.85)

Solving this equation with Equation 4.17 (for a monolith with a membrane in a wind tunnel),
one obtains:

𝑄 (𝑡) = 𝐶0𝐾1

1
𝑘 (𝑡) +

𝛼2𝜙1 (0,𝛿/2)
𝑢𝜋𝑅22

(4.86)

with:
𝑘 (𝑡) = (𝑘𝑟 𝑓𝑟𝐴𝑟𝐾1 + 𝑘𝑥 𝑓𝑟𝐴𝑥𝐾1) (4.87)

where 𝜙1, 𝑓𝑟 , and 𝑓𝑥 are given by Equation 4.74 4.18b and 4.18a.

The model inputs are 𝐶0;𝐿𝑀 ;𝑅1;𝐻 ;𝐷;𝑘𝑚𝑥
;𝑘𝑚𝑟

;𝑅2;𝐿;𝑢;𝐷𝑧;𝐷𝑟 ; 𝐾1 and 𝐾2.

In the case without membrane Equation 4.86 is now:

𝑄 (𝑡) = 𝐶0/𝐾
1
𝑘 (𝑡) +

𝜙1 (0,𝛿/2)
𝑢𝜋𝑅22

. (4.88)
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with:
𝑘 (𝑡) =

(
𝑘𝑚𝑟

𝑓𝑟𝐴𝑟𝐾1 + 𝑘𝑚𝑥
𝑓𝑟𝐴𝑥𝐾1

)
(4.89)

The model inputs are 𝐶0;𝑅1;𝐻 ;𝐷;𝑘𝑚𝑥
;𝑘𝑚𝑟

;𝑅2;𝐿;𝑢;𝐷𝑧;𝐷𝑟 and 𝐾 .
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Chapter 5

Parameters estimation

5.1 Active ingredient dispersion coefficients

Active ingredient dispersion coefficients can be obtained using the theory present in Taylor
(1954).

The velocity near the monolith (𝑢𝑠𝑡𝑎𝑟 ) (m · s−1) (Taylor, 1954):

𝑢𝑠𝑡𝑎𝑟 =

√︂
𝜏

𝜌
(5.1)

where 𝜏 is the shear stress.

Considering the definition of friction coefficient (𝑐 𝑓 ):

𝑐 𝑓 =
2𝜏

𝜌𝑢2
(5.2)

so 𝑢𝑠𝑡𝑎𝑟 are now (Taylor, 1954):

𝑢𝑠𝑡𝑎𝑟 = 𝑢

√︂
𝑐 𝑓

2
. (5.3)

Considering a turbulent regime with speed profiles, of temperature and concentrations com-
pletely established, and smooth tubes and 3 × 103 < 𝑅𝑒 < 105.

𝑐 𝑓 can be obtained (Incropera et al., 2017):

𝑐 𝑓 = 0.079𝑅𝑒−0.25. (5.4)

Reynolds number (𝑅𝑒) in the tunnel can be obtained using Equation 5.5 (where 𝜌 and ` are
density and dynamic viscosity of the fluid (air), respectively).

𝑅𝑒 =
2𝑢𝜌𝑅2
`

. (5.5)
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For longitudinal dispersion considering effect due to longitudinal components of turbulent ve-
locity and dispersion give (Taylor, 1954):

𝐷𝑧 = 10.1𝑅2𝑢𝑠𝑡𝑎𝑟 (5.6a)

𝐷𝑟 = 0.064𝑅2𝑢𝑠𝑡𝑎𝑟 . (5.6b)

5.2 Gas-Phase Diffusivity

According to Fuller’s method, the diffusivity of a trace gas B in a bath gas A can be calculated
by the following equation (Welty et al., 2007):

𝐷𝐴𝐵 =

10−3𝑇 1.75
√︃

1
𝑀𝐴

+ 1
𝑀𝐵

𝑃 ( 3
√
𝑉𝐴 + 3

√
𝑉𝐵)

2
(5.7)

where:

𝐷𝐴𝐵 is the gas phase diffusivity of B in A (cm2 · s−1);

𝑇 is the temperature (K);

𝑃 is the pressure (atm);

𝑉𝐴 and 𝑉𝐵 are the dimensionless diffusion volumes of A and B, respectively.

The diffusion volume of a molecule (𝑉 ) can be derived from the atomic diffusion volumes of
atoms it contains present in reference (Welty et al., 2007), and is given by Equation 5.8:

𝑉 =

𝑛𝑖∑︁
𝑖

𝑉𝑖 (5.8)

where 𝑛𝑖 is the number of the atom with a diffusion volume 𝑉𝑖 .

To determine the values of 𝑘𝑚𝑥
and 𝑘𝑚𝑟

have used the definitions of the following dimensionless
numbers: Reynolds (𝑅𝑒), Schmidt (𝑆𝑐) and Sherwood (𝑆ℎ) given by Equations 5.9, 5.10, 5.13,
and 5.11 (Incropera et al., 2017).

𝑅𝑒𝑥 =
2𝑢𝜌𝑅1
`

(5.9)

𝑆𝑐 =
`

𝜌𝐷𝐴𝐵
(5.10)

𝑆ℎ𝑥 = 0.664𝑅𝑒
1
2
𝑥 𝑆

1
3
𝑐 (5.11)

𝑘𝑚𝑥
= 1.11284

𝑆ℎ𝑥𝐷𝐴𝐵

2𝑅1
(5.12)

𝑆ℎ𝑟 = 0.683𝑅𝑒0.466𝑥 𝑆
1
3
𝑐 (5.13)
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𝑘𝑚𝑟
=
𝑆ℎ𝑟𝐷𝐴𝐵

2𝑅1
. (5.14)

5.3 Partition Coefficient

Strong negative deviations from Raoult´s law are observed in liquid mixtures where one compo-
nent consists of very large molecules (polymers) and the other consists of molecules of normal
size (Poling et al., 2001).

The Flory–Huggins theory has long been the most prominent method for understanding the
thermodynamics and phase behavior of polymer mixtures. The theory centers on the expression
for free energy of mixing derived from a lattice model. The theory is constituted by combina-
torial entropy terms associated with polymer chain configurations on the lattice, as well as an
enthalpic contribution owing to interactions between the different species. The enthalpic term
depends crucially on the Flory–Huggins interaction parameter (Young and Balsara, 2021).

For the present thesis, the monolith is considered a "solid solution", in which the polymer is the
solvent and the small molecule is the solvent. The partition coefficient is going to be estimated
using a modified Flory-Huggins.

ln𝑎 = lnΦ1 + (1 − 1

𝑛
)Φ2 + 𝜒Φ2

2 (5.15a)

Φ1 =

𝑤1
𝜌1

𝑤1
𝜌1

+ 𝑤2
𝜌2

(5.15b)

Φ2 =

𝑤2
𝜌2

𝑤1
𝜌1

+ 𝑤2
𝜌2

(5.15c)

𝑛 =
𝑉 𝑙1

𝑉 𝑙2

(5.15d)

where:

𝑎 is the activity (-);

𝜒 is the Flory interaction parameter (-);

𝑤𝑖 is the weight fraction of component i (-);

Φ𝑖 is the mass density (-);

𝑀𝑖 is the molar mass (g ·mol−1) of component i;

𝑉 𝑙1 and 𝑉 𝑙2 is the molar volume of polymer (1) and solvent (2).
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In typical polymer solutions 1
𝑛
<< 1(Poling et al., 2001) so Equation 5.15a can be written as:

𝑎 = Φ1 exp
(
Φ2 + 𝜒Φ2

2

)
(5.16)

If 𝐾 is the partition coefficient of an AI between a monolith (polymer) and air.

𝐾 =
𝐶1

𝐶2
(5.17a)

With 𝐶1 and 𝐶2 being the concentration of the AI in the monolith and the air, as portrayed in
Figure 4.1.

𝐶1 = Φ1𝜌𝑖 (5.17b)

𝐶2 =
𝑦1𝑀1𝑃

𝑅𝑇
=
𝑎1𝑃

𝜎
1𝑀1

𝑅𝑇
. (5.17c)

In conclusion,
𝐾𝑡𝑒𝑜 =

𝜌𝑖𝑅𝑇

𝑃𝜎1𝑀1exp(Φ2 + 𝜒Φ2
2)

(5.18)

𝐾𝑒 𝑓 𝑓 = (1 − 𝜖)𝐾𝑡𝑒𝑜 (5.19)

where:

𝐾𝑡𝑒𝑜 is the partition coefficient in the case of a non-porous monolith (-);

𝐾𝑒 𝑓 𝑓 is the partition coefficient in the case of a porous monolith (-);

𝑅 is the gas constant (J · K−1 ·mol−1);

𝑃𝜎1 is the vapor pressure of liquid AI (Pa);

𝜖 is the porosity of the monolith (-).

If the value of the partition coefficient (𝐾𝐴) for a given compound (A) is known, then it is
possible to determine the value of the partition coefficient (𝐾𝐵) for another compound (B),
provided that the assumption that the mass density of the polymer (Φ2) is approximately equal
in both cases.

𝐾𝐵 = 𝐾𝐴
𝜌𝐵𝑃

𝜎
𝐴
𝑀𝐴

𝜌𝐴𝑃
𝜎
𝐵
𝑀𝐵

exp(Φ2
2(𝜒𝐴 − 𝜒𝐵)) . (5.20)
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Flory interaction parameter

The interaction parameter (𝜒1/2) can be estimated by using Hildebrand and Scott method (Equa-
tion 5.21) (Bansal et al., 2016).

𝜒1/2 =
𝑉𝑀1 (𝛿𝑇1 − 𝛿𝑇2)2

𝑅𝑇
(5.21)

with:
𝛿2𝑇1 = 𝛿

2
𝐷1 + 𝛿

2
𝑃1 + 𝛿

2
𝐻1 (5.22)

where:

𝑉𝑀1 is the molar volume of the solvent (m3 ·mol−1);

𝛿𝐷1 and 𝛿𝐷2 is the Hansen solubility parameter for dispersion interactions of the solvent (1) and
polymer (2) ( MPa1/2);

𝛿𝑃1 and 𝛿𝑃2 is the Hansen solubility parameter for polar interactions of the solvent (1) and
polymer (2) ( MPa1/2);

𝛿𝐻1 and 𝛿𝐻2 is the Hansen solubility parameter for hydrogen bonding interactions of the solvent
(1) and polymer (2) ( MPa1/2);

𝛿𝑇1 and 𝛿𝑇2 is the Hildebrand solubility parameter for interactions of the solvent (1) and polymer
(2) ( MPa1/2).

If the value of the Flory interaction (𝜒𝐴/2) for a given compound (A) is known, then it is possible
to determine the value of the Flory interaction (𝜒𝐵/2) for another compound (B):

𝜒𝐵/2 = 𝜒𝐴/2
𝑉𝑀𝐵 (𝛿𝑇𝐵 − 𝛿𝑇2)2

𝑉𝑀𝐴 (𝛿𝑇𝐴 − 𝛿𝑇2)2
. (5.23)
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Chapter 6

Modeling simulation and parameter fitting

In cases where there are infinite sums (Equations 4.9a; 4.9b; 4.19a; 4.19b; 4.76; 4.29 and 4.24)
values were evaluated to 4 digits which is good enough compared with the experimental errors
(Figure 3.6).

The optimization objective is to reduce the Root Mean Squared Error (RMSE) (Equation 2.8).

In the wind tunnel experience given that, for the first time (that should be for 1 minute), there
is an experimental error (Figure 3.6) and the objective of the product is to be useful for a long
period, so it was used a weight of 0.1 this means:

𝑅𝑀𝑆𝐸 =

√︄
0.1(𝑦𝑒𝑥𝑝1 − 𝑦𝑚𝑜𝑑1)2 +

∑𝑁
𝑖=2(𝑦𝑒𝑥𝑝 − 𝑦𝑚𝑜𝑑)2

𝑁
(6.1)

here:

𝑦𝑒𝑥𝑝 is the experiential value (without first time);

𝑦𝑚𝑜𝑑 is the value predicted with the model (without first time);

𝑦𝑒𝑥𝑝1 is the experiential value for the first time;

𝑦𝑚𝑜𝑑1 is the value predicted with the model for the first time;

𝑁 is the number of experiential points.

In both experiments was used the Particle Swarm Optimization (PSO) method and was used
a pre-built MATLAB R2021a function particleswarm present in "Global Optimization Toolbox
version 4.5" with the following options: use parallel computing ("Parallel Computing Toolbox
version 7.4") in the way to use more than one core; a Function tolerance of 10−7 (The algorithm
only stops when the value of the objective function between 2 consequent iterations is less than
10−7) and a hybrid model (this means that after achieving the optimal point with the particle
swarm can "refine" the result using a local solver). The parameters used in the PSO method are
decided internally by the algorithm.
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To avoid numerical problems, in the optimization process, all the variables were normalized
(𝑥 = 𝑥0 × 𝑥𝑖) here 𝑥0 is the initial guess, 𝑥𝑖 is the optimization variable.

To find the roots (Equations 4.58, 4.30, 4.11a, and 4.11b) was used a pre-built-function Find-

Roots present in "CharFunTool The Characteristic Functions Toolbox version 1.4.1." which
estimates the real roots of an oscillatory function on the interval, by using an adaptive n-order
Chebyshev polynomial approximation of the function (Witkovsky, 2021).

As mentioned in Section 4.2, the method used to determine the roots should be fast and accurate.
To test the FindRoots method, the roots of Equation 4.58 were calculated using this approach.
The results obtained were compared with the "(real values) or real plot". This comparison is
represented in Figure 6.1, The FindRoots method was capable of finding 53 roots in just 0.05 s.

Figure 6.1: Roots of Equation 4.58 found by using the Chebyshev approximation.
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Chapter 7

Results

7.1 Parameter estimation

Flory Huggins’s theory was used to find the partition coefficient to a non-porous monolith
(𝐾𝑡𝑒𝑜

𝛼−𝑝𝑖𝑛𝑒𝑛𝑒/𝑃𝐿𝐶). Firstly the theoretical Flory interaction for 𝛼-pinene (𝜒𝛼−𝑝𝑖𝑛𝑒𝑛𝑒/𝑃𝐿𝐶) was de-
termined using Equation 5.21 and the value of 𝐾𝑡𝑒𝑜

𝛼−𝑝𝑖𝑛𝑒𝑛𝑒/𝑃𝐿𝐶 was then obtained using Equation
5.18.

To find the mass transfer coefficient of the active ingredient (AI) in the air for r and x-direction
(𝑘𝑚𝑟

and 𝑘𝑚𝑥
) is necessary to determine the gas diffusivity of 𝛼-pinene in the air (𝐷𝑎𝑖𝑟/𝛼−𝑝𝑖𝑛𝑒𝑛𝑒)

or eucalyptol in the air (𝐷𝑎𝑖𝑟/𝑒𝑢𝑐𝑎𝑙𝑦𝑝𝑡𝑜𝑙 ) using Fuller’s method present in Equation 5.7. Radial
(𝐷𝑟0) and longitudinal (𝐷𝑧0) dispersion coefficients can be obtained using the theory present in
Taylor (1954) and using Equations 5.6b and 5.6a.

Table 7.1 presents the values mentioned above, the physical and chemical properties of 𝛼-
pinene, eucalyptol, and PLC are present in Appendix A. The values are for a mass density
of 0.5 and a temperature of 20 ◦C.

Table 7.1: Parameters estimates.

Proprieties Value

𝜒𝛼−𝑝𝑖𝑛𝑒𝑛𝑒/𝑃𝐿𝐶 (-) 0.550

𝐾𝑡𝑒𝑜
𝛼−𝑝𝑖𝑛𝑒𝑛𝑒/𝑃𝐿𝐶(-) 12856

𝐷𝑎𝑖𝑟/𝛼−𝑝𝑖𝑛𝑒𝑛𝑒 × 106 (m2 · s−1) 5.95

𝐷𝑎𝑖𝑟/𝑒𝑢𝑐𝑎𝑙𝑦𝑝𝑡𝑜𝑙 × 106 (m2 · s−1) 5.76

𝐷𝑧0 × 102 (m2 · s−1) 4.4

𝐷𝑟0 × 104 (m2 · s−1) 2.79

The theoretical value for the partition coefficient to a porous (𝐾) monolith is distinct to the
different experiences and is determined using Equation 5.19. Also, for each experience, the
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value of 𝑘𝑚𝑥
and 𝑘𝑚𝑟

are calculated. The data are present in Table 7.2.

Table 7.2: Parameters estimates that depend on the conditions of each experiment.

Experiment 𝑘𝑚𝑥
× 102 (m · s−1) 𝑘𝑚𝑟

× 103 (m · s−1) 𝐾 (-)

Exp1 1.19 8.4 2044
Exp2 1.19 8.4 2609
Exp3 1.14 8.4 2880
Exp4 1.14 8.4 3060
Exp5 1.19 8.4 2674

Exp7 1.15 8.5 -
Exp8 1.15 8.5 -
Exp9 1.15 8.5 -

7.2 Preliminary testing

Using Exp1 condition (manufacture conditions present in Table 3.1) as an example, and the
above estimate of 𝐷𝑧0, Figure 7.1 shows that the value of 𝐷𝑧 that minamizes the Root Mean
Squared Error (RMSE) tends to be zero. The monolith creates a whirlwind around it, causing the
profile of wind velocity more pug flow likely than expected. It will lead to a smaller longitudinal
dispersion than predicted.

Figure 7.1: Effect of longitudinal dispersion (𝐷𝑧) on 𝑅𝑀𝑆𝐸.𝐷𝑧𝑖 is a normalized value equals to
𝐷𝑧/𝐷𝑧0, with 𝐷𝑧0 being the value in Table 7.1.

Analyzing Figure 7.1 it is possible to see that for values smaller than -4, the RSME does not
vary much so, a virtual restriction for 𝐷𝑧𝑖 > 10−2 (log ≈ −4.60) is chosen.

To test the assumption of Section 4.3.5, Figure 7.2 with 𝛼𝑟 = 1 and compared with Figure 7.8a
(present in Section 7.4) where 𝛼𝑟 can be adjusted.
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Figure 7.2: 𝛼-pinene release experimental fitting to Exp3 with 𝛼𝑟 = 1.

It is possible to see that the equation with 𝛼𝑟 is a good approach.

Figure 7.3 evaluates the normalized concentration (𝜙1) to the boundary condition for 𝑧𝑛 = 0 to
different values of 𝑟𝑖 . It is possible to see that the value of 𝜙1(Equation 4.74) appears to have
two regimes, one for 0 < 𝑟𝑖 < 𝛿𝑅2 (Equation 4.82), and the other to 𝛿𝑅2 < 𝑟𝑖 < 𝑅2. Figure
7.4 evaluates the concentration of the AI in the wind tunnel for the regime to position P1 of the
tunnel. Exp1 was chosen to test this. The value 𝛿 (Equation 4.81) is 0.1281.

Figure 7.3: Value of 𝜙1(0, 𝑟𝑖) to different 𝑟𝑖 .

In conclusion, for any value between 0 and 𝛿 , the error in the concentration is less than 1% and,
thus negligible.

7.3 Illustrative example

The model that describes the diffusion internal followed by dispersion on the tunnel can predict
the concentration for different spatial positions and time.
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Figure 7.4: Concentration in a wind tunnel for different values of 𝑟𝑖 .

As describe in Section 4.5, the tunnel is a pseudo-steady-state system, where the tunnel is in a
steady state and the dynamic is given by the release from the monolith.

Using as an example the Exp1 and the parameter determined in Section 7.1, the value of the
internal coefficient is the value present in Table 7.3. It is difficult to represent data in a 4D.
Firstly, is considered a pseudo-steady-state after 1 h. The concentration of the AI (𝐶) in that
state for the tunnel for every radius position (𝑟 ) and tunnel lengths (𝑧), in Figure 7.5, is present
a 3D chart for the entire tunnel.

Figure 7.5: 3 D representation of the concentration along the tunnel in a pseudo-steady-state.

Figure 7.6 presents the predicted concentration of the AI along the tunnel length for different
values of 𝑟 between 0 and 0.1 m.

Considering 𝑟2 = 0 m as built a 2D plot with the concentration as a function of time and 𝑧, and
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Figure 7.6: AI concentration along the tunnel in a pseudo-steady-state for different radial posi-
tions.

are present in Figure 7.7. In appendix B is present the 3D Figure for this case.

Figure 7.7: AI concentration in the centre of the tunnel for various times between 10 min and
8h.

7.4 Fitting results

The experiences used in this section (Exp1 to Exp10) have different manufacturing conditions
(present in Table 3.1).

For the first experience (AI passive release), the model used is model I (develop in Chapter 4),
and all the experiences were used to adjust the model parameters.

For the second experience (AI release and dispersion in a wind tunnel), the model used is model
I + II (develop in Chapter 4), and the experiences Exp1 to Exp5 (with 𝛼-pinene) were used to
adjust the parameters and the Exp7 to Exp9 (with eucalyptol) were used in a predictive way and
compared with the experimental data to test the predictive capacity.
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7.4.1 Active ingredient passive release

Absence of membrane

Bernardo et al. (2019) show that Biot number tends towards ∞, so the first approach is the
start with this consideration thus using Equation 4.29 it is possible to adjust the data to find
the effective internal diffusion coefficient (𝐷), the fraction of volatile that can be released in a
useful time (𝛼𝑟 ) and, the RMSE, and are present in Table 7.3. The model fitting to Exp1 and
Exp2 was previously conducted in Bernardo et al. (2019).

Table 7.3: Model fitting results: active ingredient release without membrane.

Experiment D ×1010 (m2 · s−1) 𝛼𝑟 (-) RMSE (-)

Exp1 7.15±2.00 1.00±0.00 0.015–0.016
Exp2 1.06±0.02 1.00±0.00 0.012–0.025
Exp3 1.59±0.79 0.86±0.02 0.0112–0.0147
Exp4 1.80±0.18 0.80±0.08 0.0069–0.0103
Exp5 1.08±0.35 0.87±0.04 0.0026–0.0069

Exp7 0.89±0.10 0.93±0.01 0.0088–0.0096
Exp8 1.21±0.26 0.91±0.03 0.0093–0.0159
Exp9 1.05±0.54 0.92±0.01 0.0068–0.0109

Figure 7.8 presents the model fitting to each of the replicas of experience Exp3. The results for
the other experiences (Exp4, Exp5, and Exp7 to Exp9) are shown in Appendix C.

(a) Replica I (b) Replica II

Figure 7.8: 𝛼-pinene release model fitting to Exp3.

The release profile varies widely between the 2 replicas as can be seen in Figure 7.8 justifying
the high value of the standard deviation when compared with the mean in the value of 𝐷 (Table
7.3).

Biot number (Bi) represents the ratio between internal and external mass transfer resistances.
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Bernardo et al. (2019) concluded that for Exp1 the Biot number tends to be ∞. In all the other
experiences, the value of 𝐷 is smaller than the value for Exp1. which means that the internal
resistance is even bigger and thus, the value of Bi continues to tend to ∞.

With membrane

The production condition of Exp6 is the same as Exp1 (as can be seen in Table 3.1), then the
internal values (𝐷 and 𝛼) are the same for both, the same conclusion can be said about Exp7
and Exp10.

As said before, the air resistance is negligible, using Equations 4.31a, 4.31b, and 4.24, and the
information present in Table 7.3 it is possible to determine the membrane permeability (𝑃𝑚𝑒𝑚),
and the values are present in Table 7.4

Table 7.4: Model fitting results: active ingredient release with membrane.

Experiment 𝑃𝑚𝑒𝑚 × 1012 (m · s−1) RMSE (-)

Exp6 2.57±0.26 0.0142–0.0156
Exp10 0.96±0.31 0.0234–0.0425

Figures 7.9 and 7.10 present the model fitting to each of the replicas of experiences Exp6 and
Exp10, respectively.

(a) Replica I (b) Replica II

Figure 7.9: Model fitting to Exp6 (𝛼-pinene, membrane).

7.4.2 Active ingredient release and dispersion in a wind tunnel

Considering the average of wind velocity, effective internal coefficient (Table 7.3), and initial
concentration of AI (Table 3.2) corrected with the value of 𝛼𝑟 determined above (Table 7.3), and
adjusting the experimental data can find the optimal parameter to each experience and present
in Table 7.5.

49



(a) Replica I (b) Replica II

Figure 7.10: Model fitting to Exp10 (Eucalyptol, membrane).

Table 7.5: Model fitting results: active ingredient transport in the wind tunnel.

Experiment 𝐷𝑧 × 104 (m2 · s−1) 𝐷𝑟 × 104 (m2 · s−1) 𝐾 (-) RMSE(mg ·m−3)

Exp1 4.41 10.9 2772 2.6406
Exp2 4.41 7.30 134 3.3905
Exp3 4.41 2.66 1049 5.2246
Exp4 4.41 2.67 831 8.8871
Exp5 4.41 2.67 358 2.3542

The values of Table 7.5 are for the average of wind velocity (𝑢), internal coefficient (𝐷), and
initial concentration (𝐶0), however, those parameters have a considerable effect on the concen-
tration at each time. After a quick analysis, it is concluded that for a small velocity (𝑢), great
𝐷 and 𝐶0 lead to larger values to the first instants. So Figures 7.11 to 7.15 are built with the
experimental data, adjustment curve, curve with 𝑢 equal to mean (𝑥) plus standard deviation
(𝜎), 𝐷 and 𝐶0 equal to 𝑥 − 𝜎 and another opposite.

As said before in Section 7.4.1, Exp3 and Exp6 are related. Using the values of 𝐷 , 𝛼 , 𝐷𝑧 , 𝐷𝑟 ,
from Exp3, and 𝑃 from experience Exp6. in that case there is only one variable optimizable the
partition coefficient air-membrane (𝐾2). However, the number of experiences is too low to have
a statistical value, and therefore not used.

7.5 Prediction

Eucalyptol and 𝛼-pinene are similar in structure. and considering that the wind velocity is the
same, therefore 𝐷𝑧 and 𝐷𝑟 are equal for 𝛼-pinene and eucalyptol.

Analysing Figures 7.11b and 7.12b, the AI concentration in the tunnel is greater than zero at
point 𝑃

′

1. The model predicts a value of AI concentration at point 𝑃
′

1 of almost 0 mg · m−3 for
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(a) Point 𝑃1 (b) Point 𝑃
′
1

(c) Point 𝑃2 (d) Point 𝑃3

Figure 7.11: Model fitting to experience Exp1 at different points in the tunnel.

the parameter fitted in experiences Exp3 to Exp5.

So in conclusion, the values of 𝐷𝑟 for experiences Exp3 to Exp5 was not the correct one, and
thus, 𝐷𝑟 used is the values of Exp1 and Exp2.

The mean value of the experimental partition coefficient to a non-porous monolith PCL and
𝛼-pinene (𝐾𝑒𝑥𝑝

𝛼−𝑝𝑖𝑛𝑒𝑛𝑒/𝑃𝐶𝐿) with Equation 5.18 the value of Flory iteration (𝜒𝑒𝑥𝑝
𝛼−𝑝𝑖𝑛𝑒𝑛𝑒/𝑃𝐶𝐿) for the

experimental data for the 𝛼-pinene (𝜒𝑒𝑥𝑝
𝛼−𝑝𝑖𝑛𝑒𝑛𝑒/𝑃𝐶𝐿 ), and the expected value of Flory iteration for

eucalyptol (𝜒𝑒𝑥𝑝
𝑒𝑢𝑐𝑎𝑙𝑦𝑝𝑡𝑜𝑙/𝑃𝐶𝐿) with Equation 5.23 and the expected value of the partition coefficient

for the eucalyptol for the non-porous PCL (𝐾𝑡𝑒𝑜
𝑒𝑢𝑐𝑎𝑙𝑦𝑝𝑡𝑜𝑙/𝑃𝐶𝐿) with Equation 5.20. Data are present

in Table 7.6.

With Equation 5.19 it is possible to determine the coefficient to a porous cylinder (𝐾) and the
value of RSME for this perdition.As said in Section 7.4.2, the values of 𝑢, 𝐷 and 𝐶0 vary and
were considering the same values, then Figures 7.16 to 7.18 were built.

51



(a) Point 𝑃1 (b) Point 𝑃
′
1

(c) Point 𝑃2 (d) Point 𝑃3

Figure 7.12: Model fitting to experience Exp2 at different points in the tunnel.

Figure 7.13: Model fitting to experience Exp3 at point 𝑃3.
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Figure 7.14: Model fitting to experience Exp4 at point 𝑃3.

Figure 7.15: Model fitting to experience Exp5 at point 𝑃3.

7.6 Subsequent analysis

The model for the wind tunnel describes the reality with a systematic error, causing the expected
concentration (most of the time) to be lower than the real one. One possible explanation is that

Table 7.6: Dispersion coefficients and Flory Huggins parameters predicted values.

Proprieties Value

𝐷𝑧 × 104 (m2 · s−1) 4.41
𝐷𝑟 × 104 (m2 · s−1) 9.1

𝐾
𝑒𝑥𝑝

𝛼𝑝𝑖𝑛𝑒𝑛𝑒/𝑃𝐶𝐿 (-) 5598

𝜒
𝑒𝑥𝑝

𝛼−𝑝𝑖𝑛𝑒𝑛𝑒/𝑃𝐶𝐿 (-) 3.94

𝜒
𝑒𝑥𝑝

𝑒𝑢𝑐𝑎𝑙𝑦𝑝𝑡𝑜𝑙/𝑃𝐶𝐿 (-) 2.44

𝐾𝑡𝑒𝑜
𝑒𝑢𝑐𝑎𝑙𝑦𝑝𝑡𝑜𝑙/𝑃𝐶𝐿 (-) 19385
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Table 7.7: Predicted partition coefficient.

Experiment 𝐾 (-) RMSE (-)

Exp7 4109 5.6247
Exp8 4090 5.6845
Exp9 3858 7.3964

(a) (b)

Figure 7.16: Model prediction versus Exp7 results at different points in the tunnel.

(a) Point 𝑃2 (b) Point 𝑃3

Figure 7.17: Model prediction versus Exp8 results at different points in the tunnel.

because the product is placed in a windy position (contrary to the AI release experience) the
internal diffusion may not be passive release anymore, and thus value may be greater than the
AI release test may suggest.

To test the effect of 𝐷 on the results, two simulations are done, one with the "normal" value of
"D" and a second one with a value of 𝐷 ten times bigger than the normal. Figures 7.19 shows
the results for the conditions of Exp2.
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(a) Point 𝑃2 (b) Point 𝑃3

Figure 7.18: Model prediction versus Exp9 results at different points in the tunnel.

A higher value of 𝐷 will lead to a higher concentration for the initial instant, but it leads to
early exhaustion and hence lower concentration for later times. This means that the value of 𝐷
is influential in the result but isn´t enough to explain the difference.

The partition coefficient between the PCL and the 𝛼-pinene is comprised between 134 and 2772,
as seen in Table 7.5. To test the effect of the partition coefficient on AI concentration Figure
7.21 was built, with these two extreme values of 𝐾 .

As can be seen in Figure 7.21, the two values of the partition coefficient do not have a visible
impact on the concentration. One possible explanation for these results is that for these two
cases the internal mass resistance is much greater than the external resistance.

As can be seen in Equations 4.14b and 4.14a for a bigger value of 𝐾 can cause the increase of
the external mass resistance. Figure 7.21 was built into the Exp2 with the partition coefficient
of 124 (the "normal" value) and 5 × 104.

As could be seen in Figure 7.21, the value of the partition coefficient, after all, affects the
result. Having into account Equation 5.18, the volatility of the AI and the interaction with
the polymer is related to the partition coefficient. Therefore, the partition coefficient does not
have a significant impact for compounds having volatility similar to the one of the 𝛼-pinene (or
higher) and a similar affinity to the polymer. On the other hand, it has a significant impact, for
compounds having lower volatility to the 𝛼-pinene and a similar affinity to the polymer.
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(a) point 𝑃1 (b) Point 𝑃
′
1

(c) Point 𝑃2 (d) Point 𝑃3

Figure 7.19: Effect of diffusion on AI concentration to Exp2 conditions.
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(a) Point 𝑃1. (b) Point 𝑃
′
1

(c) Point 𝑃2 (d) Point 𝑃3

Figure 7.20: Effect of the partition coefficient on AI concentration to Exp2 conditions.
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(a) Point 𝑃1 (b) Point 𝑃
′
1

(c) Point 𝑃2 (d) Point 𝑃3

Figure 7.21: Effect of the partition coefficient with the fitting value versus a higher value on AI
concentration to Exp2 conditions.
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Chapter 8

Conclusions and future work

For the active ingredient (AI) passive release test, the model developed predicts almost per-
fectly the results. However, the experimental repeatability is low (probably due to uncontrolled
manufacturing factors).

In the AI release and dispersion in a wind tunnel test, the longitudinal dispersion coefficient is
smaller than the theoretical due to the effect of the cylinder in the flow system. The partition
coefficient does not have a significant impact on the concentration of the AI in the tunnel. Flory
Huggins’s theory is a good approximation to determine the partition coefficient.

The model has a systematic error. Nevertheless, this data seems to have a considerable experi-
mental error. The model uncertainties are in the same order of magnitude as the experimental
error. An experimental point to a different radius position (e.g., point 𝑃

′

1) should be used to
determine the radial dispersion.

Despite this systematic error, analytical solutions are still useful because they can give a quicker
answer, are helpful for the parameter fitting (it has less computational effort), also sensitivity
analysis is easier compared with the numerical solution, also this model can be used in a way
to improve the product function.

Some experiences were unexplored in the present thesis, such as with a mixture of some AIs
and with the same manufacture conditions used in this thesis, but with a membrane. Those
experiments could be used in future work.

Some model improvements can be done, such as using Computational Fluid Dynamics to better
describe the gas flow in the tunnel, namely the effect of the monolith in the flow, and therefore
produce more reliable predictions of the AI concentration at any point in the gase phase. On the
other hand, the model for the AI release from the product may be upgraded to incorporate the
effect of the monolith microstructure, and how that microstructure is in part determined by the
manufacturing process conditions.
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Appendix A

Physical and chemical properties

Table A.1: Physical and chemical properties of 𝛼-pinine, eucalyptol and PLC (for Biotechnol-
ogy Information, 2021b,a; Hansen, 2012; Welty et al., 2007) .

Properties 𝛼-pinene eucalyptol PLC

Vapor Pressure at 25 ◦𝐶 (mmHg) 4.75 1.9 -
Density at 25 ◦𝐶 ( kg ·m−3) 859.2 926.7 1145
Molar volume (cm3 ·mol−1 ) 159.5 167.5 -
𝛿𝐷 ( MPa1/2) 16.9 16.7 -
𝛿𝑃 ( MPa1/2) 1.8 4.6 -
𝛿𝐻 ( MPa1/2) 3.1 3.4 -
𝛿𝑇 ( MPa1/2) 17.3 17.7 20.2
Molar mass (g ·mol−1) 136.23 154.25 -

Table A.2: Physical and chemical properties of air (Çengel and Ghajar, 2015).

Properties air

Molar mass (g ·mol−1) 29
𝜌 at 25 ◦𝐶 ( kg ·m−3) 1.1948
` at 25 ◦𝐶 (Pa · s) 1.83
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Appendix B

Illustrative example

Figure B.1: 3 D representation of the concentration in the center of the tunnel, for various times
between 10 min and 8h..
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Appendix C

Active ingredient release

(a) Exp4-replica I (b) Exp4-replica II

(c) Exp5-replica I (d) Exp5-replica II

Figure C.1: 𝛼-pinene release experimental fitting.
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(a) Exp7-replica I (b) Exp7-replica II

(c) Exp8-replica I (d) Exp8-replica II

(e) Exp9-replica I (f) Exp9-replica II

Figure C.2: Eucalyptol release experimental fitting.
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