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Resumo

Estima-se que, para cerca de um-terço dos pacientes com epilepsia que tomam

fármacos anti-epiléticos, estes não previnam crises. Deste modo, a previsão de

crises surge como uma potencial solução para mitigar o fardo da epilepsia para

estes doentes e cuidadores.

Os modelos de previsão de crises dependem fortemente de conhecimento relativo

a percursores pré-crise e, portanto, da caracterização apropriada do intervalo pré-

ictal. A abordagem padrão do estado-da-arte para a definição do pré-ictal consiste na

realização de uma grid-search discreta numa gama de intervalos seguida da escolha

daquele que leva à melhor performance de previsão. No entanto, esta abordagem

é subótima devido à incapacidade de abordar a heterogeneidade do processo de

geração de crises. Por conseguinte, foi recentemente proposta a aplicação de métodos

de aprendizagem não supervisionada (mais especificamente, técnicas de clustering)

para caracterizar com precisão o intervalo pré-ictal.

Tratando-se da fonte primária de informação neurológica, o Eletroencefalograma

(EEG) tem sido amplamente utilizado em previsão de crises. Adicionalmente, en-

tre outros biossinais, o Eletrocardiograma (ECG) tem sido extensivamente referido

como uma importante fonte não cerebral de alterações pré-crise. Esta é uma alter-

nativa atrativa dada a facilidade e conforto de aquisição deste sinal numa situação

da vida real.

O presente estudo teve como objetivo o desenvolvimento de modelos de previsão

de crises que integram informação sobre os intervalos pré-ictais obtida a partir de

clustering. Comparámos a performance de modelos de previsão que incorporam

grid-search do pré-ictal espećıfica para cada crise reportada no estado-da-arte com

modelos constrúıdos utilizando informação de pré-ictal obtida com técnicas de clus-

tering. Os modelos foram constrúıdos utilizando caracteŕısticas da Variabilidade do

Ritmo Card́ıaco extráıdas de sinais ECG adquiridos durante a monitorização pré-

cirúrgica num grupo de 41 pacientes com epilepsia do lobo temporal (armazenados

ix



Resumo

na base de dados EPILEPSIAE).

A análise da performance dos modelos em termos de sensibilidade e Taxa de Falsos

Positivos por Hora (FPR/h) revelou diferenças estatisticamente significativas ape-

nas para a FPR/h. Mais especificamente, em alguns casos, observámos FPR/h mais

baixa quando utilizada a informação de intervalos pré-ictais identificada através de

clustering. Ambas as abordagens revelaram performance insatisfatória, tendo sido

obtida sensibilidade de 36.26 ± 41.76 %, FPR/h de 0.72 ± 1.53 h-1, e performance

superior ao acaso para 41.5 % dos doentes (utilizando informação obtida com clus-

tering).

Em conclusão, apesar de a utilização de informação de clustering sobre atividade

pré-ictal ter levado a melhorias nos resultados em alguns casos, são necessários mais

estudos para inferir sobre as vantagens de utilizar informação de pré-ictal espećıfica

para cada crise obtida a partir de técnicas de clustering para desenvolver modelos

de previsão de crises.

Palavras-chave: Epilepsia, Previsão de Crises, Eletrocardiograma, Intervalo pré-

ictal
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Abstract

It is estimated that, for about one-third of patients with epilepsy taking anti-epileptic

drugs, these do not prevent seizures. Thus, seizure prediction arises as a potential

solution to mitigate the burden of epilepsy on these patients and caretakers.

Seizure prediction models heavily rely on knowledge regarding pre-seizure precursors

and, therefore, on the proper characterization of the preictal interval. The standard

state-of-the-art approach for preictal definition consists in performing a discrete

grid-search on a range of intervals and choosing the one leading to the best pre-

diction performance. However, this approach is sub-optimal due to the inability to

address the heterogeneity of the seizure generation processes. Thus, applying unsu-

pervised learning methods (namely clustering techniques) to accurately characterize

the preictal interval has been recently proposed.

As the main source of neurological information, the Electroencephalogram (EEG)

has been widely used in seizure prediction. Additionally, among other biosignals,

the Electrocardiogram (ECG) has been extensively referred as an important non-

cerebral source of pre-seizure alterations. This is an attractive alternative due to

the ease and comfort of acquisition of this signal in a real-life setting.

The present study aimed at developing seizure prediction models that integrate

information about preictal intervals obtained from clustering. We compared the

performance of prediction models integrating seizure-specific preictal grid-search

with the models built using preictal clustering information. The models were built

using Heart Rate Variability (HRV) features extracted from ECG signals acquired

during pre-surgical monitoring in a group of 41 patients with temporal lobe epilepsy

(stored in the EPILEPSIAE database).

Analysis of the model performance in terms of sensitivity and False Positive Rate

per Hour (FPR/h) revealed statistically significant differences only for the FPR/h.

Specifically, in some cases, we observed lower FPR/h when using information of

the preictal intervals identified with clustering. Both approaches performed unsat-
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Abstract

isfactorily, with 36.26 ± 41.76 % sensitivity, 0.72 ± 1.53 h-1 FPR/h, and models

performing above chance for 41.5 % of patients (when using information from clus-

tering).

In conclusion, even though using information of preictal intervals obtained with un-

supervised learning methods led to improved results in some patients, more studies

are required to infer about the advantages of using seizure-specific preictal informa-

tion obtained with unsupervised methods to develop seizure prediction models.

Keywords: Epilepsy, Seizure prediction, Electrocardiogram, Preictal interval
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Introduction

In this Chapter we present the motivation for this study in Section 1.1, as well

as the context of the problem in Section 1.2. The expected goals and contributions

are described in Section 1.3. Lastly, the outline of the document can be found in

Section 1.4.

1.1 Motivation

Epilepsy is one of the most common neurological diseases in the world, affecting

about 1% of the world’s population [1]. Currently, it is estimated that one-third of

patients with epilepsy suffer from Drug Resistant Epilepsy (DRE), characterized by

the lack of response to Anti-Epileptic Drugs (AEDs) [2]. Less than 1% of these

are admitted into epilepsy centres to evaluate the possibility of undergoing surgery

[3, 4]. This evaluation considers clinical information such as Magnetic Resonance

Imaging (MRI) studies and knowledge of the seizure focus [5], thus, at the end,

not all patients qualify for surgery. Additionally, although surgery is reported to

result in seizure freedom in 58% to 70% of the DRE cases [6, 7], its high cost and

risk of adverse cognitive consequences may present significant barriers to the wider

consideration of this treatment [3].

DRE represents a considerable burden for the patients, as well as their families

and caregivers [8]. The unpredictability of seizures can be highly limiting, present-

ing a significant risk of trauma and injuries [8–10]. Additionally, the stigma and

discrimination associated with the disease can cause mental health issues such as

anxiety and depression [11, 12]. The patients’ capacity to lead a normal life is

severely hindered. Many refrain from certain daily activities such as leaving the

house or driving, and report low levels of productivity at work. Furthermore, there

is a considerable monetary burden associated with the disease, for both the patients

and healthcare systems [11].

Finally, evidence of a preictal state has been reported in the literature. This in-
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terval corresponds to the transition between the normal (interictal) and the seizure

(ictal) brain state [13]. This fact prompts the development of seizure prediction

systems as a potentially relevant solution to improve the quality of life of DRE pa-

tients. Moreover, seizure prediction may even prove useful for patients with epilepsy

not suffering from DRE, for whom long-term treatment with AED can be the cause

of neurological side effects. Thus, these patients could benefit from on-demand

administration of rescue medication instead of continuous AED intake [10, 14].

1.2 Context

Based on the fact that epilepsy is a neurological disease, the Electroencephalo-

gram (EEG) is widely used in epilepsy diagnosis and during pre-surgical monitoring

of DRE patients [15, 16]. Furthermore, since the advent of seizure prediction studies

in the 1970s, the EEG has also been the primary source of information in the field.

In addition, several studies have demonstrated that epileptic seizures can cause

alterations in Autonomic Nervous System (ANS) control, either inhibiting or ac-

tivating the sympathetic and parasympathetic systems. This, in turn, may cause

changes in the normal functioning of the physiological systems under their influence,

including the cardio-respiratory function [13, 17]. Such evidence prompted research

studies to report the feasibility of using Electrocardiogram (ECG) signals in seizure

prediction systems. Compared to the EEG, the acquisition of the ECG signal is

easier, less costly, and more comfortable. Nowadays, ECG signal acquisition can

even be done using wearables such as smartwatches [18–20].

The development of such seizure prediction models entails real-time data ac-

quisition, pre-processing and classification. When a seizure is predicted, an alarm

is raised and one alternative is warning the patient in order to avoid potentially

dangerous activities, for instance, driving or swimming. Another option could be

to integrate these algorithms into closed-loop systems, which deliver rescue medi-

cations or electrical stimulation to stop seizure progression [2, 10, 21]. The raised

alarm must be associated with an interval that allows the patient to take action,

the Seizure Prediction Horizon (SPH), as well as the period within which the onset

of the seizure is expected, the Seizure Occurrence Period (SOP).

The preictal period constitutes an important aspect of seizure prediction stud-

ies, which heavily depend on its correct identification. However, the determination

of preictal localization is a matter of active discussion among researchers. The lit-

erature on the topic provides evidence of its existence [13], but a consensus has not

yet been reached when it comes to its localization. Moreover, it has been reported
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that the preictal interval varies not only between patients, but also between seizures

within the same patient [2]. Currently, the state-of-the-art approach for the determi-

nation of the preictal period is based on a grid-search, where a range of intervals are

tested and the interval yielding the best performance is chosen as the optimal value.

However, besides being imprecise and computationally expensive, this method offers

little insight into the mechanisms of seizure generation.

Thus, with the aim of providing an alternative approach to the determination

of the localization of the preictal period, Leal et al. [22] developed a study based

on unsupervised learning using a dataset composed of 41 Temporal Lobe Epilepsy

(TLE) patients from the EPILEPSIAE database [1, 16]. By applying clustering

algorithms to combinations of three features, in a seizure-specific manner, it was

possible to identify and quantify the preictal period for 41% of the seizures analyzed.

If this method is accurate in identifying the preictal, it will provide added value

to seizure prediction methodologies by producing more accurate target inputs for

training. Hereupon, it is necessary to validate the results obtained in that study.

This entails the incorporation of the estimated preictal times into a seizure prediction

model and the evaluation of their impact on the performance when compared to the

standard state-of-the-art approach described above.

Besides the difficulties added by lack of knowledge regarding the seizure gen-

erating processes and the preictal period, most seizure prediction studies present

shortcomings which limit their real-world applicability. Firstly, the use of low-

quality databases, containing discontinuous, short-term recordings and low number

of patients and seizures [23, 24]. Secondly, the fact that seizure prediction models

are developed without considering inter-patient variability and confounding pat-

terns such as concept drifts. The latter include, for example, circadian rhythms or

oscillations in brain activity resulting from changes in AED administration [2].

The results of seizure prediction methodologies should be evaluated in light of

the performance metrics, sensitivity and False Positive Rate per Hour (FPR/h), in

order to enable the comparison between studies. The effects of parameters such as

the SOP and SPH on the patient’s daily life should also be carefully evaluated. For

instance, long durations may increase stress and anxiety unnecessarily [25]. Lastly,

statistical validation is essential in order to ensure that the developed algorithms

perform above chance levels. Although the relevance of this step has been systemat-

ically stressed out in the literature, few studies have considered it in their analysis.
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1.3 Research Goals

The main goal of this thesis is to assess the impact of using preictal informa-

tion (previously obtained using clustering methods) in the performance of seizure

prediction models. The major expected contributions of this research project are

the following:

• Development of patient-specific supervised learning models for seizure predic-

tion using cardiovascular information, more specifically Heart Rate Variability

(HRV) features extracted from the ECG.

• Evaluation of the impact of integrating information regarding the preictal in-

terval starting time (obtained from clustering) into a seizure prediction model.

This entails the comparison to the traditional grid-search approach, as well as

proper statistical validation to ensure that the algorithm outperforms a ran-

dom predictor.

1.4 Outline

This document is composed of five additional chapters, structured as follows.

Chapter 2 presents relevant background information on the topics of epilepsy,

epileptic seizure prediction, the ECG signal, the Autonomic Nervous System, and

changes in the cardiovascular system related to seizures.

Chapter 3 is related to the state of the art in seizure prediction, particularly

ECG-based methodologies.

Chapter 4 describes the adopted methodology.

Chapter 5 reports the results obtained, as well as their discussion and compar-

ison to those reported in seizure prediction studies in the literature.

Chapter 6 presents the main conclusions and future work.
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2

Background Concepts

This Chapter introduces the background concepts necessary to understand the

present document. Firstly, in Section 2.1, concepts related to epilepsy and its clinical

classification are discussed. In Section 2.2, the main seizure prediction concepts are

presented. In Section 2.3 a brief description of the Electrocardiogram signal is

provided. In Section 2.4, the main functions of the Autonomic Nervous System and

its relation to the cardiovascular system are discussed. Finally, Section 2.5 presents

an overview of the main changes in different cardiovascular parameters related to

epileptic seizures.

2.1 Epilepsy and Epileptic Seizures

Epilepsy is one of the most common neurological disorders in the world, secondly

to stroke [10], and is estimated to affect about 1% of the world’s population [1]. It

is a chronic disease characterized by the recurrent occurrence of seizures, which are

caused by abnormal synchronization of neuronal activity in the brain [11, 26].

In 2005, the International League Against Epilepsy (ILAE) and the Inter-

national Bureau for Epilepsy (IBE) reached a consensus about the definitions of

epilepsy and epileptic seizures [26]:

”An epileptic seizure is a transient occurrence of signs and/or symptoms due

to abnormal excessive or synchronous neuronal activity in the brain.”

”Epilepsy is a disorder of the brain characterized by an enduring predisposi-

tion to generate epileptic seizures and by the neurobiologic, cognitive, psychological,

and social consequences of this condition. The definition of epilepsy requires the

occurrence of at least one epileptic seizure.”

Later, in 2014, the ILAE proposed a practical clinical definition of epilepsy,

where it is characterized by one of the following conditions [12]:
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1. ”At least two unprovoked (or reflex) seizures occurring > 24 h apart.”

2. ”One unprovoked (or reflex) seizure and a probability of further seizures similar

to the general recurrence risk (at least 60%) after two unprovoked seizures,

occurring over the next 10 years.”

3. ”Diagnosis of an epilepsy syndrome.”

Finally, the ILAE also updated the classification framework of the epilepsies

(see Figure 2.1). According to this new scheme, the diagnosis of epilepsy can be

performed at three levels - seizure type, epilepsy type, and epilepsy syndrome,

enabling different levels of classification when different resources are available to the

clinician [27]. Over the next subsections, these three levels will be explored in deeper

detail.

Herein, co-morbidities and etiology will not be further discussed, although the

latter may be an important aspect to take into account in treatment selection, for

instance. However, it should be noted that the high clinical heterogeneity of disease

is, initially, a result of the high variety of etiological causes, the most common

being infectious etiology. The remaining etiologic groups are structural, genetic,

metabolic, immune and unknown (see Figure 2.1) [27].

Figure 2.1: ILAE framework for classification of the epilepsies. *Denotes onset of seizure.
Source: Scheffer et al. 2017 [27]
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2.1.1 Seizure Type

The first level of the diagnosis of epilepsy is the classification of the seizure

type. Fisher et al. [28] recently proposed an operational classification of seizure

types, depicted in Figure 2.2. It should be noted that the classification scheme in

Figure 2.2 is not hierarchical, which means that if there is not sufficient available

information to group the seizure into a category in any of the levels present, it might

be skipped [28].

The classification of the type of seizure begins with the identification of the

place of onset in the brain, either focal, generalized, or unknown. If there is not

enough information, the seizure is said to be unclassified [28]. This classification

is performed by analyzing the video-EEG and imaging studies [27].

Figure 2.2: Expanded ILAE 2017 operational classification of seizure types. 1Definitions,
other seizure types and descriptors are listed in the accompanying paper and glossary of
terms. 2Degree of awareness usually is not specified. 3Due to inadequate information or
inability to place in other categories. Source: Fisher et al. 2017 [28]

Focal Seizures

In the case of focal onset seizures, characterized by starting on one side of the

brain, the level of awareness of the patient (aware or impaired awareness) might
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be included in the classification. Additionally, seizures may be grouped according to

the occurrence of motor and non-motor symptoms (motor onset and nonmotor

onset), and the most prominent of these symptoms might be added to provide

further information (see options in Figure 2.2).

Generalized Seizures

Generalized seizures engage both sides of the brain, and can also be subdi-

vided into motor and non-motor (absence) seizures, with the addition of the most

prominent symptom.

Unknown Seizures

In some cases, it is not possible to determine the focus of the seizure, and it

is deemed unknown. In this case, the terms motor and non-motor might also be

used, and further descriptors of the symptoms from the list may also be added.

Focal to Bilateral Tonic-Clonic

Focal to Bilateral Tonic-Clonic (FBTC) is a special type of seizure reflecting a

specific propagation pattern in the brain, which starts within one hemisphere and

propagates to the other.

2.1.2 Epilepsy Type

The second level of the diagnosis of epilepsy is the epilepsy type. The classifi-

cation of epilepsy type constitutes a division into Focal, Generalized, Combined

Generalized and Focal, and Unknown Epilepsies (see Figure 2.1) [27].

Focal Epilepsy

Focal Epilepsies occur when the EEG presents interictal focal epileptiform dis-

charges, and include focal aware seizures, focal impaired awareness seizures, focal

non-motor seizures, and FBTC seizures.

Generalized Epilepsy

A patient is diagnosed with Generalized Epilepsy if the EEG shows interic-

tal generalized spike-wave activity. This classification includes absence, myoclonic,

atonic, tonic and tonic-clonic seizures.
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Combined Generalized and Focal Epilepsy

Combined Generalized and Focal Epilepsies refer to patients who experience

both generalized and focal seizures. Thus, the EEG might show both focal epilep-

tiform discharges and spike-wave activity.

Unknown Epilepsy

When the patient has been diagnosed with epilepsy but there is no sufficient

information available to determine the epilepsy type, the term Unknown is applied.

2.1.3 Epilepsy Syndrome

The third level of the epilepsy diagnosis consists of the epilepsy syndrome clas-

sification. The epilepsy syndrome can be identified by resorting to information re-

garding seizure types, EEG, imaging data, and other clinical information. Epilepsy

syndromes may be associated with etiology and thus carry treatment implications.

It is important to refer that there is no formal classification of syndromes by the

ILAE [27].

Temporal Lobe Epilepsy (TLE) is the most common type of focal epilepsy,

affecting about 60% of these patients. TLE usually begins during childhood or

teenage years and is characterized by the occurrence of seizures involving the tem-

poral lobes [29, 30]. TLE includes both focal aware seizures and focal impaired

awareness seizures [29]. Patients suffering from TLE usually do not become seizure-

free with AEDs alone, although they may help decrease the number of seizures.

In such cases, surgery is considered an option to control seizure occurrence [29].

Another alternative to increase quality of life is seizure prediction.

2.1.4 Drug Resistant Epilepsy (DRE)

Drug Resistant Epilepsy may also be referred to as medically refractory, in-

tractable, or pharmacoresistant epilepsy [31]. The following definition has been

proposed by the ILAE Task Force on Therapeutic Strategies [31] in 2009:

”Drug Resistant Epilepsy may be defined as failure of adequate trials of two

tolerated and appropriately chosen and used AED schedules (whether as monother-

apies or in combination) to achieve sustained seizure freedom.”

In the same report, seizure freedom was defined as ”freedom from all types

of seizures for 12 months or three times the preintervention interseizure interval,

whichever is longer”.
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This condition affects about one-third of patients with epilepsy [2], and indi-

viduals suffering from it are at an increased risk of premature death, namely Sud-

den Unexpected Death in Epilepsy (SUDEP). Additionally, the unpredictability of

seizures increases the probability of sustaining injuries, and psychological issues, this

way reducing the patient’s quality of life [32]. For this reason, these patients are the

focus of seizure prediction methods, which can drastically improve their quality of

life.

2.2 Seizure Prediction and Detection

2.2.1 Seizure Onset

The seizure onset refers to the start of the seizure. Two different onsets might

be considered: clinical and electrographic. The clinical onset is the moment when

the first clinical symptoms arise. The electrographic onset corresponds to the first

visible EEG signs, usually some seconds before the clinical onset [33]. This should

not be confused with the preictal period, which refers to changes occurring before

the more evident and significant changes at the electrographic onset.

Since the determination of the clinical onset can sometimes be difficult and

uncertain, it is usual to annotate the electrographic onset [33].

2.2.2 Early Seizure Detection

Early Seizure Detection corresponds to the detection of the electrographic onset,

before the first clinical manifestations of the seizure arise. Although this approach

is not suitable for warning systems due to its short anticipation time, it might be

useful for timely targeted intervention by a closed-loop treatment delivery system, if

the patient is not yet past the ”point of no return”, i.e., if the evolution into a seizure

state can still be stopped [33]. Additionally, automated detection systems can also

be helpful in (i) determining the source and dynamics of seizures (diagnosis), and

(ii) evaluating the effect of a given treatment [34].

2.2.3 Seizure Prediction

Seizure prediction is the focal point of this thesis, and its aim is to develop

technologies capable of anticipating the occurrence of seizures.

The brain dynamics of patients with epilepsy can be divided into four distinct

periods: the interictal, preictal, ictal and postictal (see Figure 2.3). The interictal
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can be simply described as a period of normal dynamics. The preictal period pre-

cedes a seizure. The seizure (ictus) is denominated the ictal period. The postictal is

the interval after the seizure [35]. It should be noted that, despite this clear division,

the location of these periods is still not clearly defined.

Figure 2.3: The four periods of a seizure episode represented on seizures 1 and 2 of
patient 402: interictal, preictal, ictal and postictal. The example is merely illustrative,
as there is no fixed localization defined for the preictal period. Adapted from: Cui et al.
2018 [35]

Therefore, seizure prediction aims at building systems capable of acquiring on-

line data and applying algorithms in order to detect the preictal period. The pre-

diction is usually associated with a Seizure Occurrence Period (SOP) and Seizure

Prediction Horizon (SPH). The SOP is the time window during which the onset is

expected to take place, and the SPH corresponds to the interval between the alarm

and the SOP, during which preventive measures might be taken in anticipation of

a seizure. From the point of view of the user, shorter SOPs are preferable, as this

reduces the level of uncertainty in the prediction. Regarding SPH, longer periods

are advantageous, since they provide more time to react to the alarm and prepare

for the upcoming seizure [2, 33].

These seizure prediction methodologies might be integrated into warning sys-

tems, which warn the patient or caregivers of the eminence of a seizure and allow

them sufficient intervention time to reduce the negative effects that might result

from it. This may include avoiding potentially dangerous activities, such as driv-

ing or swimming, or taking medication. In addition, closed-loop systems might be

developed that administer medication or electrical neurostimulation to prevent the

onset of the seizure [2, 15, 33].
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2.2.4 Seizure Prediction Framework

Seizure prediction studies typically follow a standard structure, as represented

in Figure 2.4.

Figure 2.4: Schematic representation of the seizure prediction pipeline. Adapted from:
Bou Assi et al. 2017 [2], Kuhlmann et al. 2018 [23]

The goal of the preprocessing step, after signal acquisition, is to prepare the

signal for feature extraction by enhancing its quality. This includes applying a series

of filtering techniques to remove artifacts and increase signal-to-noise ratio [2, 15].

This step is followed by feature extraction and feature selection, where the most

discriminant features are extracted. Afterwards, the data is ready for classification,

wherein machine learning models are trained to discriminate preictal from non-

preictal brain states [2]. Here, regularization is applied to post-process the output,

with the goal of lowering the number of false alarms in order to reduce their impact

on the patient’s life (see Section 2.2.6) [36]. Finally, the results should be evaluated

with the standard metrics used in the field of seizure prediction (see Section 2.2.6)

and statistically validated (see Section 2.2.7) [2].

2.2.5 Seizure Prediction Characteristic

In 2003, Winterhalder et al. [25] proposed the Seizure Prediction Character-

istic to evaluate seizure prediction models and allow their fair comparison. The

main premise is to assess seizure prediction models based on two metrics, sensitivity

and False Positive Rate per Hour (FPR/h) (see Section 2.2.6), and considering the

concepts of SOP and SPH. In order for the prediction to be considered as a True

Positive (TP), the onset must fall within the SOP (see Figure 2.5). If the seizure

begins either during the SPH or after the end of the SOP, it is considered a False

Positive (FP) (false alarm). It should be mentioned that, in some studies, the SOP

is referred to as SPH and the SPH as Intervention Time (IT) [33, 37, 38].
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(a) Correct prediction

(b) False alarm

(c) False alarm

Figure 2.5: Schematic representation of the SPH and SOP and their implication in the
determination of True Positives and False Positives: in order for the prediction to be
deemed correct, the seizure onset must occur within the SOP. (a) Adapted from Winter-
halder et al. 2003 [25]

There are no fixed values for SOP and SPH, as they should be defined according

to the requirements of the system being developed and their impact on the patient.

In the literature, values of SOP ranging from some minutes to a few hours have been

reported [33]. However, the duration of this interval should be carefully addressed,

since long SOPs can induce high amounts of stress in the individual, who spends

a long time waiting for a seizure which may not even occur. Additionally, for high

values of SOP, the performance is no different from a random unspecific predictor

[25, 33]. This dependence of the sensitivity on SOP is well illustrated in Figure 2.6,

where it is clear how longer SOPs naturally lead to higher sensitivity. It is usual for

researchers to consider a SOP with equal duration to the preictal period (see Figure

2.7) [2, 37].
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Figure 2.6: Seizure Prediction Characteristic for a fixed SPH of 10 minutes and FPR/h
of 0.15, depending on the duration of the SOP. The lines with circles and diamonds
represent the values obtained with two seizure prediction algorithms based on long-term
intracranial EEG data, and the grey region represents the range of values obtained with
a random predictor. Note the increase in sensitivity with the increase of SOP duration.
Source: Schelter et al. 2008 [39]

When it comes to SPH, it should provide enough time for preventive action to

be taken. Hence, longer intervals are needed for warning systems, whereas shorter

intervals can be considered for automated intervention systems, provided that there

is enough time for the intervention to take effect [25].

Figure 2.7 depicts the relation between the SOP, SPH and preictal period in

the training of the model.

Figure 2.7: Visual representation of the relation between the preictal period, SOP and
SPH in the training of the model. The SOP has the exact same duration as the preictal
period. The SPH is chosen considering the envisioned application of the model (warning
system or closed-loop intervention). During the training phase, the SPH is the period
immediately before the seizure onset, preceded by the SOP. A correct alarm should be
raised during the preictal period. Afterwards, there is a wait time equal to the SPH, and
the seizure is expected within the SOP.
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2.2.6 Performance Evaluation

To assess the performance of a given algorithm, it is necessary to calculate some

measures of sensitivity and specificity. In standard machine learning problems, such

measures are defined based on the confusion matrix (see Table 2.1) [40]. If we

regard seizure prediction as a binary problem in which the positive class is the

preictal period and the negative class is the interictal, True Positives (TPs) are

related to correctly predicted preictal samples, False Positives (FPs) to interictal

samples classified as preictal, True Negatives (TNs) to correctly predicted interictal

samples, and False Negatives (FNs) to preictal samples classified as interictal.

Table 2.1: Confusion matrix for evaluation of sample performance in Machine Learning
problems.

True Label

Preictal Interictal

Predicted

Label

Preictal TP FP

Interictal FN TN

Additionally, sensitivity and specificity would be calculated by applying Equa-

tions 2.1 and 2.2, respectively.

Sensitivity =
TP

TP + FN
(2.1)

Specificity =
TN

TN + FP
(2.2)

However, the aforementioned metrics are not informative in the field of seizure

prediction because they are computed based on sample classification, providing no

information about the number of correctly predicted seizures or false alarms. Thus,

they were adapted to better convey such information, considering the definitions

presented in Section 2.2.5 for True Positives and False Positives. Winterhalder et

al. [25] proposed the use of the Sensitivity (see Equation 2.3) and the FPR/h.

Nonetheless, there is a lack of consensus when it comes to the definition of

FPR/h [33]. In some studies, it is defined considering the full duration of analyzed

recordings (see Equation 2.4). In others, the concept of corrected FPR/h is used (see

Equation 2.5), considering only the time length during which alarms can actually be

fired. This is important because when an alarm is fired, there may be a time period

during which the algorithm is idle, i.e., no alarms can be fired. This period is called
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refractory period and is usually equal to the sum of the duration of SOP and SPH.

Such divergences should be considered when making comparisons between studies

reporting their performance in terms of FPR/h [33]. Some authors also proposed

the use of the portion of time under false warning instead of the FPR/h [33, 37, 41].

Sensitivity =
TP

All seizures
(2.3)

FPR/h =
FP

Total time analyzed
(2.4)

FPR/hcorrected =
FP

Interictal duration− FP × (SOP + SPH)
(2.5)

Herein, performance metrics will be reported by means of sensitivity (Equation

2.3) and corrected FPR/h (Equation 2.5). Figure 2.8 presents an example of the

assessment of the performance of system prediction models using these metrics.

Figure 2.8: Example of the computation of the performance metrics. Here, a SOP of 15
minutes and an SPH of 10 minutes are considered. Each division in the time axis (x-axis)
corresponds to 10 minutes.

The sensitivity should always be reported alongside the FPR/h, since there is

a trade-off between both metrics. This means that the model can be tuned in order

to obtain very high sensitivity values at the expense of high FPR/h values, and
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vice-versa. This relationship can be observed in Figure 2.9, where it is clear how

the increase in one of the metrics implies an increase in the other.

Figure 2.9: Example of a ROC curve (solid line). The dashed line represents the perfor-
mance of a random predictor. The star denotes the optimal performance values. Adapted
from: Schelter et al. 2008 [39]

Since achieving the optimal performance values of 100% sensitivity and 0 FPR/h

is a utopian goal, it is essential to define the required trade-off between both mea-

sures. This means evaluating the cost of False Positives and False Negatives to the

patient, which varies according to the type of system being developed.

When developing an alarm system, high FPR/h values should be avoided since

they can induce anxiety in the patient, eventually causing them to lose confidence in

the system. On the other hand, if closed-loop systems are considered, higher FPR/h

values can be tolerated, thus leading to higher sensitivity values, if the intervention

technique (e.g., electrical stimulation, on-demand medication) is non-invasive or does

not produce serious side effects [25, 33, 39]. Additionally, a maximum threshold can

be defined based on the average incidence of seizures. In pre-surgical monitoring,

the average incidence is 3.6 seizures a day (0.15 seizures per hour), an uncommonly

high value due to the reduction of AED intake. On the other hand, DRE pa-

tients under normal conditions suffer about 3 seizures per month (0.0042 seizures

per hour) [25]. Taking this into account, Winterhalder et al. [25] proposed maxi-

mum values of FPR/hmax = 0.15 h-1 for patients under pre-surgical monitoring and

FPR/hmax = 0.0042 h-1 for DRE patients under normal conditions.

Regarding sensitivity, Schulze-Bonhage [42] reported that the majority of the

patients required a seizure prediction system to correctly predict at least 90% of

seizures in order to be considered useful.
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In sum, the seizure prediction characteristic evaluates the model’s performance

by measuring the dependence of the sensitivity on the maximum False Prediction

Rate (FPRmax), the SOP and the SPH [25].

2.2.7 Statistical Validation

Besides yielding satisfactory performance values, a seizure prediction model

must also be proven to perform above chance level, since non-null sensitivity and

relatively low values of FPR/h can be obtained without a valid model [43]. Sev-

eral methods have been proposed to perform this statistical validation, such as

comparisons with (i) analytical random predictors, (ii) periodical predictors, (iii)

baseline predictors, (iv) area under the receiver operating curve (AUC), and (v)

surrogate methods. Another alternative for comparisons between different studies

is non-parametric testing [2, 25, 39].

Throughout this section, the most used statistical validation methods will be

further explained.

2.2.7.1 Analytical Predictors

The analytical predictors encompass random and periodic predictors.

Random Predictor

Winterhalder et al. [25] proposed a random predictor in which alarms are

raised randomly without use of any information (e.g. EEG or ECG). Herein, the

parameters of the prediction method are adjusted so that FPR/h = FPR/hmax.

Thus, the probability of raising one alarm during a small interictal time interval, I,

is given by

P = FPR/hmax · I. (2.6)

Considering a longer interval, W, the probability of at least one alarm occurring

is given by

P = 1− (1− FPR/hmax · I)W/I ≈ 1− e−FPR/hmax·W , for I � W. (2.7)

Thus, for W = SOP, this is the sensitivity of the random predictor.

Schelter et al. [39, 44] also proposed a random predictor, which generates alarms

randomly following a homogeneous Poisson process for the false predictions. Herein,
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the probability of raising an alarm at any sampling point of a time series is

PPoiss =
FP

N
, (2.8)

where FP is the number of false-positive predictions and N is the number of samples.

Let us consider a time period of duration equal to SOP, and that the product

FPR/hmax ·SOP is considerably lower than one, which is a reasonable assumption if

we suppose that the patient is not under continuous warning. Then, the probability

of at least one alarm being raised within the SOP period for a certain value of

FPR/hmax can be approximated by

P ≈ 1− e−FPR/hmax·SOP ≈ FPR/hmax · SOP. (2.9)

The probability P forms the basis of a significance level that allows to test if

the sensitivity S(FPR/hmax, SOP, SPH) of a given prediction method is higher than

that of a random predictor.

The proposed method also enables the analysis of more than one seizure and the

consideration of the number of predictors used. Thus, the probability of predicting

at least k out of K seizures using d predictors is

Pbinom,d(k,K, P ) =

[∑
j6k

(
P j(1− P )K−j)]d . (2.10)

Taking this into account, the critical value, σlow, to test the statistical signifi-

cance of the random predictor is given by

σlow =
argmaxk{Pbinom,d(k,K, P ) > α}

K
· 100%, (2.11)

where α is the significance level.

Periodical Predictor

Winterhalder et al. [25] proposed a periodical predictor which raises alarms

periodically. Here, the probability of raising an alarm during SOP is given by

P = min{FPR/hmax · SOPs, 100%}, (2.12)

which is the sensitivity of the periodical predictor.

19



2. Background Concepts

2.2.7.2 Surrogate Time-Series Analysis

Surrogate time-series analysis is a Monte Carlo based method which consists

in applying constrained randomizations to the data. If the performance of the

seizure prediction model is higher for the original data than for the surrogate data,

then the model can be said to perform better than chance [39]. Based on this

concept, two methods have been proposed: seizure-time surrogates and measure-

profile surrogates.

Seizure-Time Surrogates

Andrzejak et al. [45] proposed the seizure-times surrogates, which consists in

shuffling the original seizure onset times, while maintaining the order of the input

data (see Figure 2.10).

(a)

(b)

Figure 2.10: Seizure time-surrogate analysis examples. (a) Original feature data and
labels. (b) Example of surrogate time-series where the seizure onset time is randomly
shuffled.

Measure-Profile Surrogates

Kreuz et al. [46] proposed the measure-profile surrogates, in which the feature

data (measure-profiles) is randomized, while the original onset times are maintained

(see Figure 2.11).
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(a)

(b)

Figure 2.11: Measure-profile surrogate analysis examples. (a) Original feature data and
labels. (b) Example of surrogate measure-profiles where the feature data is randomly
shuffled.

2.2.7.3 Overview

All of the methods discussed above present some advantages and disadvantages,

and the choice of the statistical validation method should be made considering the

model’s characteristics.

When it comes to analytical predictors, they are simple and easy to apply, since

all that is needed is to compute the sensitivity of the random predictor using the

expressions presented above (see Section 2.2.7.1) and to compare them to the value

obtained with the model under analysis. However, such methods might sometimes

be too conservative from the statistical point of view, as well as slightly less powerful

[47].

Regarding surrogate time-series analysis, on the one hand, these methods are

computationally more complex than analytical predictors. On the other hand, they

are more flexible, allowing the inclusion of several constraints and assumptions to

test different null-hypothesis [43], and offer a more solid validation, providing greater

confidence in the results [48]. However, they can lead to inaccurate conclusions if the

null-hypothesis is inadequate [2, 47]. Additionally, the measure-profiles surrogate

analysis is more complex than the time-series surrogate, since there is the need to

retest the model in order to perform the statistical analysis.

Taking into account all of the discussed above, herein, statistical validation of

the developed methodologies will be carried out using the seizure-times surrogate

21



2. Background Concepts

analysis, since it provides the best trade-off between power and complexity.

2.2.8 Data Imbalance

An important problem to consider when developing machine learning models,

particularly seizure prediction models, is class imbalance. This happens when one

of the classes, typically the most relevant one (positive class) is seriously underrep-

resented. In the particular case of seizure prediction, the preictal period is typically

much shorter than the interictal, which creates an unwanted bias towards the interic-

tal period. To counter the effects of class imbalance, undersampling of the interictal

class coupled with ensemble techniques have been widely used in seizure prediction

[49].

2.3 Electrocardiogram (ECG)

The Electrocardiogram (ECG) is a clinical exam which produces a represen-

tation of the cardiac activity over time in a time-voltage graph, recording voltages

using electrodes placed at the surface of the skin [50].

In its normal state, the tissues of the heart are polarized. The electrical acti-

vation of the heart tissues is called depolarization, while its return to the normal

(resting) state is called repolarization. In one cardiac cycle, the atria are depolarized,

pumping blood to the ventricles, followed by the depolarization of the ventricles, to

pump blood to circulation. Finally, the ventricles repolarize. These potential differ-

ences are reflected in the ECG profile [51].

The normal ECG morphology includes five basic waveforms (see Figure 2.12).

P waves correspond to atrial depolarization, the QRS complex represents ventricular

depolarization, and the ST segments, T wave and U wave (this last one not always

visible) are related to ventricular repolarization [51].

Figure 2.12: Representation of the normal ECG morphology, including the basic wave-
forms. Source: Bou Assi et al. 2017 [2]
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Different ECG leads record different perspectives of the electrical potential of

the heart. Thus, depending on the electrode configuration, different outlines are

obtained (see Figure 2.13) [52]. From the data available in an ECG signal, it is

possible to determine the interval between two consecutive R waves (R-R Interval),

which is the basis of Heart Rate Variability (HRV) studies [51].

(a)

(b)

Figure 2.13: ECG electrode configurations. (a) Six limb leads: three unipolar leads (I,
II and III) and three augmented unipolar leads (aVR, aVL and aVF) and respective ECG
patterns. Adapted from: Lindow et al. 2019 [53]. (b) Six unipolar chest leads (V1 to V6).
Source: https://www.cvphysiology.com/Arrhythmias/A013c

Based on the ECG signal, it is possible to compute the Heart Rate (HR) and

Heart Rate Variability (HRV), which can provide information about cardiac and

autonomic functions.

2.3.1 Heart Rate (HR)

The HR is a measure of the number of heartbeats per minute. To obtain its

values it is necessary to detect the QRS complexes and calculate the R-R Intervals

(RRIs). The instantaneous HR is given by the ratio 60/RRI, where RRI is measured

in seconds [51].

2.3.2 Heart Rate Variability (HRV)

HRV is a measure of the variability of R-R Intervals. The RRI represents the

time interval between two consecutive R waves. Thus, HRV is measured by detecting
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the QRS complexes and computing the intervals between consecutive complexes [13].

After computing the RRIs, they can be plotted in a tachogram (see Figure 2.14).

Figure 2.14: HRV tachogram. Source: Pavei et al. 2017 [54]

2.4 Autonomic Nervous System (ANS)

The Autonomic Nervous System (ANS) works to maintain homeostasis by reg-

ulating several key visceral functions, including the cardiovascular and gastrointesti-

nal systems, body temperature and sweating [13, 17]. The ANS is subdivided into

the sympathetic and parasympathetic systems.

The ANS’s responses are influenced by the anterior cingulate, insular, posterior,

orbito-frontal and pre-frontal cortices, as well as the amygdala and hypothalamus.

Thus, if abnormal brain activity propagates to these areas in the brain, it is plau-

sible that the ANS will be affected, activating/inhibiting the sympathetic and/or

parasympathetic regions [13, 17, 21].

The sympathetic nervous system is connected to the heart by neurons from the

rostral ventrolateral medulla. Its stimulation results in increase in Heart Rate (HR),

Blood Pressure (BP), conduction and excitability of the heart. On the other hand,

the parasympathetic nervous system is connected to the heart by the vagus nerve.

When this pathway is activated, the result is the opposite: decrease in Heart Rate

(HR), Blood Pressure (BP), conduction and excitability [17, 21].

Following this line of thought, cardiac parameters, such as Heart Rate (HR),

Blood Pressure (BP) and Heart Rate Variability (HRV), have been pointed as po-

tential biomarkers in the evaluation of ANS function [13]. However, Heart Rate

and Blood Pressure are unable to provide information about the branch of the ANS

that has been activated. In fact, the only information they provide is that there

has been a change in autonomic control [13]. HRV, on the other hand, can provide
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direct information about the sympatho-vagal balance [13, 55]. Increased HRV indi-

cates a predominance of parasympathetic activity, while decreased HRV suggests a

dominance of sympathetic control (see Figure 2.15) [55].

Figure 2.15: HRV as a measure of ANS balance. Increased HRV indicates predominance
of parasympathetic activity, while decreased HRV indicates predominance of sympathetic
activity. Source: Myers et al. 2018 [55]

However, some aspects should be taken into account when considering inspec-

tion of the autonomic function to predict epilepsy, such as the effects of the circadian

cycles, changes in AED intake, and inter-patient variability [13].

2.5 Cardiovascular Changes Related to Epileptic

Seizures

As previously stated in Section 2.4, the propagation of abnormal brain dy-

namics, such as seizure discharges, to brain structures involved in ANS control can

affect autonomic function [13, 17, 21]. In fact, many studies suggest that the occur-

rence of seizures causes changes in autonomic function not only during the seizure

itself, but also during the remaining periods. This can affect the activity of the

parasympathetic and sympathetic systems, resulting in autonomic symptoms such

as alterations in cardio-respiratory function [56]. More specifically, the activation of

the sympathetic nervous system during seizures provokes increase in Blood Pressure

(BP), Heart Rate (HR) and, possibly, tachycardia and tachypnea. On the other

hand, activation of the parasympathetic nervous system causes decrease in Blood

Pressure (BP) and Heart Rate (HR) [17, 56].

It has been postulated that seizures with a right-sided focus result in tachycar-

dia, while seizures with left-sided focus result in bradycardia [57]. This lateralization

hypothesis suggests that stimulation of the right insular cortex may trigger activa-

tion of the sympathetic nervous system, while stimulation of the left cortex might

activate the parasympathetic nervous system [58, 59]. Several research studies have

obtained results that support this theory [57, 60]. Additionally, the lateralization
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patterns appear to vary between patients [13].

The most common changes related to epileptic seizures are tachycardia or in-

crease in Heart Rate and Blood Pressure. Less frequently, bradycardia or decrease

in Heart Rate and Blood Pressure are observed. Other autonomic manifestations

include palpitations, arrhythmias and asystole, the latter being very rare. Such

abnormalities in cardiovascular function are suggested to be more prominent in gen-

eralized than in non-generalized seizures [17, 56]. These cardiac changes can also

increase the risk of SUDEP, especially when combined with other factors such as

alterations in the respiratory system [56] Postictal arrhythmias, although rare, rep-

resent increased likelihood of SUDEP when compared to ictal arrhythmias [61].

In addition, recurrent and excessive stimulation of the ANS due to seizure events

has also been shown to result in long-lasting defects in cardiac tissue and function,

increasing the probability of arrhythmias and ischemia [17, 62]. It can also be linked

to chronic dysfunction in autonomic control, found in 56.3% of patients with DRE.

This effect is more commonly observed in children than in adult patients [17].

2.5.1 Changes in Heart Rate (HR)

A percentage in the range of 38% - 100% of patients with epilepsy have suffered

from significant HR changes in at least one of their seizures [21]. The changes start a

few seconds before or at the electrographic onset and may last for minutes to hours

after the seizure [58]. Inclusively, if more seizures occur before the HR stabilizes,

the changes can be incremental.

Unfortunately, high variability is evident across studies regarding changes in

HR resulting from epileptic seizures. This can be attributed to many factors, such

as the age of the subjects, type of seizures, AED intake, seizure onset lobe, and

cardiac co-morbidities [13, 21, 63]. In fact, Osorio et al. [64] reported that the

probability of detection of a seizure based on HR changes varied with age, gender,

seizure type, etiology, and time since the diagnosis of epilepsy.

This prompted researchers to conduct studies to assess the differences in HR

between the preictal, ictal and postictal states. In a study conducted on 58 DRE

patients, Leutmezer et al. [60] reported preictal HR changes in 75.9% of seizures. In

another study with 30 DRE patients, Zare et al. [65] reported significant differences

in HR between the preictal, ictal and postictal periods. In general, such changes

seem to be more common in temporal lobe seizures when compared to extratemporal

seizures [21, 60, 65].

Importantly, the patterns of HR changes have been reported to be similar across
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different seizures from the same patient, suggesting that ANS operates in a stan-

dardized manner within each patient [58].

2.5.1.1 Tachycardia/Heart Rate Increase

Tachycardia is the most common HR abnormality related to seizures and refers

to the increase in HR past a certain threshold, defined relatively to the resting HR.

As this value depends on several factors, namely age, the upper normal HR is 100

bpm (beats per minute) for adults (more than 15 years old) and 169 bpm for infants

(6-11 months old) [21].

Tachycardia can happen before (0.7 s to 49.3 s), during or after the ictal period.

This effect seems to happen more often in right temporal seizures, which supports

the hypothesis of this alteration being caused by epileptic discharges on the right

insular cortex and the lateralization of ANS control [17, 21].

Preictal HR increase has been reported in 21.1%-28% of seizures [21, 63], and

has been found to be more common in mesial temporal lobe seizures than non-

lesional temporal lobe or extra-temporal lobe seizures [60, 63]. Some studies claim

that this effect is more notorious in right-sided mesial seizures. FBTC seizures have

also been linked to higher preictal HR [63]. Generally, HR increase occurs earlier in

Temporal Lobe Epilepsy (TLE) patients (∼13 seconds before seizure onset), when

compared to patients with Extratemporal Lobe Epilepsy (XTLE) (∼8 seconds before

seizure onset) [17, 56]. HR increase was found more often in adults when compared

to pediatric patients. It also seems more recurrent in male patients and patients

undergoing AED treatment [63].

Ictal tachycardia is estimated to affect about 82% of patients with epilepsy [21].

Additionally, it has been reported in 52% - 100% of seizures, more specifically in

32.9% - 100% of focal seizures and in 48% - 100% of generalized seizures [21, 63].

In rare cases, tachycardia might evolve to ventricular fibrillation, resulting in

SUDEP [61].

2.5.1.2 Bradycardia/Heart Rate Decrease

Bradycardia is less commonly observed. It is characterized by a decrease in

HR below a certain threshold, and is thought to be caused by epileptic discharges

on the left insular cortex or amygdalae. This assumption is supported by the fact

that this alteration is predominant in left-sided seizures [17, 21]. In addition, it is

more common in temporal and frontal seizures [58]. This type of parasympathetic

response also seems more frequent in male patients [56].
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Ictal bradycardia occurs in less than 5% of patients and in 2% - 3.7% of seizures

[56, 60, 63]. Although rare, the occurrence of ictal bradycardia is potentially dan-

gerous as it can trigger syncope and lead to accidents. Most importantly, it can also

cause asystole, which in turn may lead to SUDEP [17]. Asystole has been reported

to be more common in TLE [61].

Ictal asystole has been reported to affect 0.318% of DRE patients, occurring

only in focal epilepsy [61]. In other studies, the percentages of patients affected

by ictal asystole were 0.4% and 0.27% [58]. Long-term monitoring revealed higher

percentages, in the range 5%-16% [66, 67]. The following hypotheses have been put

forward to explain the causes of ictal asystole:

• Direct stimulation of the ANS [62];

• Fear induced by the seizure, which in turn can cause cardioinhibition and

vasodilation [61].

Postictal asystole is an even rarer event, associated with convulsive seizures

[61, 62]. However, it has been linked to higher fatality rates [62].

2.5.2 Changes in Electrocardiogram (ECG) Morphology

Abnormalities in ECG morphology occurring during the ictal period may be

observed in 35% of generalized seizures. Besides, it is estimated that 40% of patients

suffering from DRE show abnormalities in rhythm or repolarization during seizures

or in the moments after, which can be reflected in the ECG [17, 56].

These alterations might be more or less severe, with the most severe including

ST-depression and T-wave inversion, which occur in 6-13% of seizures [56]. In other

studies, ictal ST-depression was found in 40% of patients, while T-wave inversion was

reported in 10% of the individuals. Such ECG morphological changes are indicative

of cardiac ischaemia and occurred more often during ictal tachycardia [57].

Additionally, in a study conducted by Surges et al. [68] on 25 DRE patients

with TLE, QTc1-shortening was found in 68% of patients, mainly in the postictal

phase and in FBTC seizures. Lengthening of the QTc was also observed in 6% of

seizures and 12% of patients.

1QTc: Corrected value of the QT interval to account for inter-patient variability in HR.
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State of the Art

This Chapter presents a discussion of the state of the art in preictal analysis

based on Heart Rate Variability (HRV), in Section 3.1. Afterwards, in Section 3.2,

a brief overview of the state of the art in identification of the preictal period is

presented. Finally, Section 3.3 discusses the state of the art in seizure detection and

prediction, focusing on studies based on HRV. This Section culminates in a brief

analysis of the current shortcomings of seizure prediction and detection studies.

3.1 Preictal Analysis Based on Heart Rate Vari-

ability (HRV) Features

As discussed in Section 2.4, HRV can be used to provide direct information

about Autonomic Nervous System (ANS) activity at any given moment. Thus, it

has been widely used to assess autonomic function in patients with epilepsy and in

seizure detection and prediction studies.

In fact, patients with epilepsy have been reported to have lower HRV values

when compared to healthy subjects [58, 59]. Furthermore, Drug Resistant Epilepsy

(DRE) patients show even lower values of HRV than non-DRE patients [17, 58]. This

fact reflects an impairment in autonomic function and sympathovagal imbalance,

which can in turn trigger arrhythmias and culminate in Sudden Unexpected Death

in Epilepsy (SUDEP) [5, 17, 58, 59]. Such imbalance is translated into an increase

of sympathetic tone and/or decrease of parasympathetic tone [13, 17], both of which

are usually found in DRE [5].

Regarding Temporal Lobe Epilepsy (TLE), changes in HRV have been found

mostly in patients with a higher frequency of seizures. In patients with DRE, a

progressive reduction of HRV has been found with the increase of time with epilepsy,

while no further decrease was detected in non-DRE patients [5].

Interestingly, there appear to be differences in the extent of HRV alteration

between men and women. Behabahani et al. [69] reported a greater percentage of
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changes in male subjects when compared to females. Additionally, men presented

a predominance of parasympathetic over sympathetic activity, while the opposite

was true for women. This may explain the higher likelihood of arrhythmias and

consequent SUDEP in men.

Furthermore, Anti-Epileptic Drugs (AEDs) can also alter the sympathovagal

balance and, consequently, HRV [17, 59]. The same can be said of circadian patterns

[57]. Thus, gender, AED intake and circadian rhythms should be taken into account

in any HRV analysis.

Different metrics can be extracted from the HRV to perform a thorough analysis

of ANS influence on the cardiac function, which will be presented in Section 3.1.1.

3.1.1 Heart Rate Variability (HRV) Features

HRV can be analyzed through linear and non-linear methods, the former com-

prising the time and frequency domain analysis.

Time-domain Analysis

Time-domain features are related to cardiovascular system activity. Table 3.1

presents an overview of the time-domain features most used in seizure prediction

and detection and their relation to the sympathovagal balance.

Table 3.1: Features extracted from the time-domain analysis. The characterization
column presents information on the relation between each feature and the ANS function.

Features Definition Characterization

RRMean [14, 70, 71] Mean of the RRI time-series *

RRMin [22] Minimum of the RRI time-series *

RRMax [22] Maximum of the RRI time-series *

RRVar [22] Variance of the RRI time-series *

SDNN [14, 22, 70] Standard deviation of RRIs OV

NN50 [22, 70] Number of RRIs which last more than 50 ms STV, PSA

pNN50 [14, 22, 70] Percentage of RRIs which last more than 50 ms STV, PSA

RMSSD [14, 22, 70] Root mean square of successive differences STV, PSA

SDSD [22] Standard deviation of successive differences STV, PSA

Triangular Index

[14, 71]

Integral of the histogram of RRIs divided by

the maximum height of the histogram
*

STV: short-term variability; PSA: Parasympathetic activity; OV: Overall variability; *No in-

formation available.
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Frequency-domain Analysis

Frequency-domain analysis is related to the balance between the sympathetic

and parasympathetic branches of the ANS and is based on the computation of the

power spectral density. The spectrum can be divided into three frequency bands:

Very Low Frequency (VLF) band, Low Frequency (LF) band and High Frequency

(HF) band (see Figure 3.1) [14, 17].

Figure 3.1: Estimation of power spectral density of HRV in order to compute power in
the three frequency bands of interest. Source: http://timingforum.org/time-percept

ion-and-the-heart/#fnr8-16561

Table 3.2 presents an overview of frequency-domain features, including the def-

inition of the three frequency bands mentioned above.

Table 3.2: Features extracted from the frequency-domain analysis. The characterization
column presents information on the relation between each feature and the ANS function.

Features Definition Characterization

VLF Power [14, 17, 22] Power of the VLF band (0.003 - 0.040 Hz) LTV

LF Power [14, 17] Power of the LF band (0.040 - 0.15 Hz) SA

HF Power [14, 17, 22] Power of the HF band (0.15 - 0.40 Hz) STV, PSA

Total Power (TP) [22] Total power of the window OV

LF/HF [14] Ratio of LF power to HF power SVB

STV: short-term variability; LTV: Long-term variability; PSA: Parasympathetic activity; SA:

Sympathetic activity; SVB: Sympatho-vagal balance; OV: Overall variability.
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Non-Linear Analysis

Since physiological systems are inherently non-linear, some of their properties

will be missed when applying linear methods. Non-linear HRV features include

measures of entropy, Detrended Flunctuation Analysis (DFA), Poincaré plots, and

Recurrence Quantification Analysis (RQA) (see Table 3.3).

Detrended Flunctuation Analysis (DFA) consists in the computation of the

log-log graph of F(n) against n, where F(n) is the root mean square flunctuation of

the integrated and detrended data in windows of length n (see Figure 3.2). After-

wards, linear regression is applied to the data in order to extract two measures: α1

and α2 (see table 3.3) [72].

Figure 3.2: Detrended flunctuation analysis using healthy human data. The measures
α1 and α2 correspond to the slopes of the linear regression lines. Source: Ramshur 2010
[73]

The Poincaré plot is obtained by computing a scatter plot of RRI(n) against

RRI(n-1). This data is fitted by an ellipse, allowing the extraction of two measures,

SD1 and SD2, the length of the minor and major axis of the ellipse, respectively (see

Figure 3.3) [14, 22]. Additionally, three other features can be derived from these:

SD1/SD2, Cardiac Sympathetic Index (CSI) and Cardiac Vagal Index (CVI) (see

Table 3.3).
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Figure 3.3: Example of a Poincaré plot computed from a 5-min window ranging from 78
to 73 minutes before seizure onset. SD1 is the length of the minor axis of the ellipse and
SD2 is the length of the major axis. Source: Leal et al. 2021 [22]

Recurrence Quantification Analysis (RQA) involves computing the recurrence

plot, which represents the pairwise Euclidean distance between samples (see Figure

3.4). RQA allows to obtain several measures of complexity which quantify the

recurrence point density and the existence of diagonal/vertical lines in the recurrence

plot (see Table 3.3) [22, 70].

Figure 3.4: Example of a colour recurrence plot computed from a 5-min window ranging
from 78 to 73 minutes before seizure onset. Source: Leal et al. 2021 [22]

Table 3.3 presents an overview of the non-linear features most often used in the

field of seizure prediction and detection.
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Table 3.3: Features extracted from the non-linear analysis. The characterization column
presents information on the relation between each feature and ANS function.

Features Definition Characterization

ApEn [14, 22] Approximate Entropy STV, PSA

SampEn [22, 54] Sample entropy SVB

Detrended Flunctuation Analysis (DFA)

α1 [22]
Slope of the linear regression of the data in the

range 4-11 heartbeats
STV

α2 [22]
Slope of the linear regression of the data in the

range 11-64 heartbeats
LTV, SA

Poincaré Plot

SD1 [14, 22, 70] Minor axis of the ellipse STV, PSA

SD2 [70, 74–76] Major axis of the ellipse LTV, OV

SD1/SD2 [14, 22, 74] Ratio of SD1 to SD2 SVB

CSI [70] Cardiac Sympathetic Index *

CVI [70] Cardiac Vagal Index *

Recurrence Quantification Analysis (RQA)

Rec [70] Recurrence rate *

Det [70] Determinism *

L [70] Average length of the diagonal line *

Lmax [70] Length of the longest diagonal line *

TT [70] Laminarity *

Ent [70] Shannon entropy *

STV: short-term variability; LTV: Long-term variability; PSA: Parasympathetic activity; SA:

Sympathetic activity; SVB: Sympatho-vagal balance; OV: Overall variability; *No information

found.

Despite being widely used in cardiac function evaluation, non-linear methods

do not directly measure autonomic function. However, like previously stated, non-

linear properties of the system are not taken into account when using linear methods.

In addition, non-linear properties provide better repeatability across measurements.

Moreover, the non-stationarity of the ECG signal may render non-linear methods

more informative compared to time and frequency-domain HRV parameters [13, 71].

3.1.2 Differences in Heart Rate Variability (HRV) Between

Preictal and Interictal Periods

Some statistical analysis studies have been conducted to determine if there are

significant differences in HRV features between preictal and interictal periods, in

order to evaluate whether seizure prediction based on HRV parameters is feasible.

Table 3.4 presents some of these studies in order to analyze the characteristics of

the dataset used as well as their main conclusions.
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Table 3.4: HRV-based statistical analysis studies to evaluate differences between preictal and interictal periods in patients with epilepsy.

Authors Dataset
Methodology

Results/Conclusions

Feature Extraction Statistical Analysis

Behbahani et

al. 2013 [71]

EPILEPSIAE database.

12 DRE patients (7 male + 5 female, age

= 43,01 ± 10,16 years).

Various types of epilepsy.

Total of 133 seizures.

Time-domain: Triangular Index;

Frequency-domain: LF, HF, LF/HF;

Non-linear: Poincaré plot (SD1, SD2, CSI).

Paired t-test

Comparison of intervals of 240,

90-30, 30-10, 10-5 and 5-0

minutes prior to seizure onset.

Increase in LF/HF and CSI 30 minutes before

seizure onset, more significant in the last 5 minutes.

Gradual decrease of triangular index before seizure

onset.

Moridani et

al. 2017 [77]

PhysioNet database.

2 hour long recordings.

7 patients with focal epilepsy.2

Total 11 seizures.

Time-domain: MeanNN, SDNN, RMSSD, NN50,

pNN50;

Frequency-domain: VLF, LF, HF, LF/HF;

Non-linear: Poincaré plot (SD1, SD2, CSI).

Paired t-test

Comparison of 5 minute intervals

(in the range 15-0 min before

onset) to interval 2h prior to

onset.

MeanNN decreased moments prior to seizure onset,

while LF/HF and CSI increased.

Changes found for all seizures.

Changes up to 30 minutes before onset, but most

changes occur about 10 minutes before seizure

onset.

Billeci et al.

2017 [78]

Short-term (30 minutes before onset)

recordings.

13 patients.2

Various types of epilepsy.

Total 31 seizures.

Time-domain: MeanNN, NN50;

Frequency-domain: LFn
3, HFn

3, LF/HF;

Non-linear: Poincaré plot (SD1, SD2, CSI), RQA

(Rec, Det, Lam, Ent, Lmax, TT).

Friedman test + paired Wilcoxon

test.

Compare interictal (15 min),

preictal (15 min) and ictal

periods.

Significant changes between preictal and interictal

periods: decrease in NN50, and increase in Ent and

TT.

Gagliano et

al. 2020 [24]

Short-term continuous recordings (10

minutes before onset).

9 patients with focal epilepsy.2

Total 100 seizures.

Time-domain: MeanNN, SDNN, RMSSD, SDSD,

NN50, pNN50.
k-means clustering (2 classes)

Significant differences between interictal and

preictal periods.

Changes start 3.5-6.5 minutes before seizure onset.

Relation between seizure type and HRV pattern and

preictal duration.

Relation between seizure duration and preictal

duration.

Inter- and intra-patient variability.

Leal et al.

2021 [22]

4 hour long recordings from

EPILEPSIAE database.

41 DRE patients with TLE.

Total 238 seizures.

Time-domain: MeanNN, MinNN, MaxN, VarNN,

SDNN, RMSSD, SDSD, NN50, pNN50;

Frequency-domain: TP, VLF, LF, HF, LFn
3,

HFn
3, LF/HF;

Non-linear: Poincaré plot (SD1, SD2, SD1/SD2),

DFA (α1, α2), ApEn, SampEn, LLE4, CD5, RQA

(Rec, Det, Lam, Ent, L, Lmax, TT).

Clustering (2 classes): k-means

clustering, agglomerative

hierarchical clustering, DBSCAN,

expectation-maximization

clustering.

Preictal solutions for 97/238 (41%) seizures.

No solutions found for 4/41 patients.

Preictal duration up to 120 min, but most often

situated in the 40-0 min before seizure onset.

Inter- and intra-patient variability.

Time-domain features were more relevant.

1No information available about the duration of the recordings; 2No information available about whether the dataset is constituted of DRE patients; 3Normalized to account for inter-patient variability; 4Largest

Lyapunov exponent; 5Correlation dimension.35
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There are some interesting aspects that should be highlighted from the analysis

of the information in Table 3.4.

Dataset: The majority of the studies were conducted using relatively small datasets,

both in number of patients and seizures. This can raise some questions as to the

validity of their findings. Leal et al. [22] presented the most complete study in this

regard, with the biggest dataset among the research papers analyzed. Additionally,

only Behbahani et al. [71] and Leal et al. [22] used datasets composed of DRE

patients.

Time analyzed: The preictal times analyzed by Billeci et al. [78] and Gagliano

et al. [24] were also very short (15 and 10 min respectively). The results reported

by Behbahani et al. [71] and Leal et al. [22] indicate that changes in HRV can be

found much earlier before the seizure onset.

Feature extraction: The majority of studies used features from the three analysis

domains discussed in Section 3.1.1. Only Gagliano et al. [24] used solely time-

domain features. Additionally, there does not seem to be a consensus about the

type of features which is better able to discriminate between preictal and interictal

intervals.

Conclusions: Despite the limitations mentioned above, all of the studies analyzed

found significant differences in HRV between the interictal and preictal intervals.

These findings support the existence of the preictal period as a transitional period

between normal and seizure brain activity. Lastly, it is important to emphasize

that both Gagliano et al. [24] and Leal et al. [22] reported intra- and inter-patient

variability in their findings, which reinforces the need for patient-specific approaches

in seizure prediction.

3.2 Preictal Identification

Evidence of the preictal as a transition stage between normal and epileptic brain

states has already been reported in the literature [13]. However, no consensus has

yet been reached when it comes to its clinical definition, i.e., the characterization of

patterns, duration and localization of the preictal in time. Furthermore, it has been

reported that this period displays inter- and intra-patient variability [2, 22, 24].

In seizure prediction, correct preictal identification is crucial to obtain adequate

and valid results. Hence, although some studies use a fixed preictal for the entirety
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of the dataset, several researchers have performed attempts to determine the opti-

mal preictal. This is usually done by applying a grid-search approach, where several

preictals are used in the training phase and the one yielding the best performance

results is chosen [2, 77]. However, this method is imprecise, computationally ex-

pensive and does not offer much insight into the mechanisms of seizure generation.

Hence, there is a clear need for comprehensive studies focusing on finding patterns

for preictal identification.

Bearing this in mind, and in an attempt to provide an alternative approach to

the search for the optimal preictal, Leal et al. [22] proposed a method based on HRV

and unsupervised learning (clustering). The study was based on the assumptions

that (i) the preictal would be localized in the range of 120-0 minutes prior to the

seizure, (ii) the solutions were comprised of two clusters, (iii) the smaller cluster

would correspond to the preictal, and (iv) the preictal might not be continuous

and/or located strictly before the onset of the seizure. Details about the dataset,

features, and clustering algorithms used are available in Table 3.4.

The clustering algorithms were applied to combinations of three features, out

of a total of thirty-two features. This process was conducted in a seizure-specific

manner, and for all four clustering methods used. Afterwards, in the case where

more than one acceptable solution was found, the optimal solution was selected

based on time continuity and duration, i.e., solutions yielding continuous and longer

preictals were favored. Figure 3.5 presents an example of the clustering solutions

obtained for one patient.
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Figure 3.5: Clustering solutions obtained for patient 21902. The smaller clusters, inside
the dashed black ellipses, represent the preictal solution. These are continuous for seizures
2 and 4, and discontinuous for seizure 3. No acceptable clustering solution was found for
seizure 1. Source: Leal et al. 2021 [22]

Of the 238 seizures analyzed, it was possible to find solutions for 97 (41%). 52

(54%) of these solutions were continuous over time. Additionally, for 12 patients,

solutions were found for more than half of the seizures considered. On the other

hand, no solutions were found for any of the seizures of 4 of the 41 patients . A

summary of the results obtained is presented in Figure 3.6.

Figure 3.6: Summary of the accepted clustering solutions. Grey-coloured squares rep-
resent seizures without accepted clustering solutions. The x-axis represents the patient
index, and the y-axis the seizure index. Source: Leal et al. 2021 [22]
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Regarding the duration of the preictal clusters, they were found to range be-

tween 1.58 and 80.75 minutes. Additionally, after careful analysis of the duration

of the preictal solutions, it was concluded that 53% of the solutions were located

within 40-0 min before onset. The authors also concluded that time-domain fea-

tures were predominant in the accepted solutions, namely RRMin, RRMean, and

RRMax. This study presents interesting findings, which need to be validated, by

incorporating them into a seizure prediction pipeline, in order to inspect if there are

significant differences in performance, in comparison to the traditional grid-search

approach.

3.3 Seizure Detection and Prediction

Epileptic seizure prediction started in 1975 with Viglione and Walsh [79]. Since

then, many progresses have been made in the field of seizure detection and predic-

tion, with the evolution of technology, storage and processing capacity allowing to

perform faster analysis on larger quantities of data [10].

Seizure detection and prediction studies were typically based on EEG signals.

This approach is the gold standard for epilepsy diagnosis, so it is reasonable that it

is the most widely used signal for seizure detection and prediction. EEG signals can

be acquired through scalp electrodes or, in a more invasive form, using intracranial

electrodes. The latter are more practical for long-term usage and contain fewer

artifacts [2]. Here, the NeuroVista study, conducted by Cook et al. [80], takes special

relevance for being the first clinical trial of a seizure prediction device, and the only

one to date. The trial was performed on a set of 15 DRE patients (9 male + 6 female,

age = 44.5 ± 13.0 years). The system developed patient-specific algorithms in order

to warn the patients of seizure likelihood, and achieved sensitivities in the range of

18-100% in the advisory phase. It was concluded that seizure prediction was feasible,

and thus the foundations were set for advances in the field and their application in

clinical practice. Unfortunately, the authors did not disclose information about the

algorithms applied in the development of this system.

Besides the EEG signal, more recently, a plethora of signals and parameters have

been analyzed as potential biomarkers for the prediction of seizures. Some examples

of these signals are ECG, photoplethysmogram (PPG), accelerometry, electrodermal

activity (EDA) and electromyogram (EMG). Additionally, multimodal techniques

conjugating more than one signal have also been proposed, typically conjugating

EEG and ECG [81–83].

Throughout the next subsection, the state of the art in seizure detection and
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prediction using the ECG signal will be presented, while focusing on the most recent

studies regarding seizure prediction based on HRV measures.

3.3.1 Seizure Detection and Prediction Based on Electro-

cardiogram (ECG)

In the past few years, the ECG signal has gained increased relevance in the

field of seizure detection and prediction. In fact, this signal has proved useful in

detection of seizures in newborns, since the clinical signs are typically too subtle to

be noticed at this age and EEG use is difficult. However, great care should be taken

when dealing with adult patients because the results might be severely influenced by

confounding factors such as cardiac co-morbidities, stress, physical exercise, AED

administration and circadian rhythms [15].

Some seizure detection and prediction studies based on the ECG signal with

focus on HR have been developed with the aim of creating simple and interpretable

systems. In a study by Osorio [84] published in 2014, seizures could be detected

up to 0.8 seconds before onset. Ungureanu et al. [85] developed a patient-specific

wearable system for detection of nocturnal seizures which achieved sensitivities of

95%. In 2017, De Cooman et al. [86] developed an online seizure detection system for

TLE patients, obtaining sensitivity of 81.89% and FPR/h of 1.97 h-1. Additionally,

in 2018, De Cooman et al. [87] presented an adaptive seizure detection study based

on real-time user feedback, achieving sensitivity of 77.12% and FPR/h of 1.24 h-1.

Regarding HRV, several features can be extracted to evaluate cardiac function,

as previously discussed in Section 3.1.1. As previously stated, the use of ECG-based

information, more specifically HRV, to develop seizure detection and prediction mod-

els is relatively recent. Thus, the number of published research studies concerning

these topics is still limited. In Table 3.5, a summary of recent HRV prediction and

detection studies is presented, for easier comparison of the study typology (detection

or prediction), dataset characteristics, methodology, and performance results.
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Table 3.5: HRV-based seizure detection/prediction studies.

Authors Typology Dataset

Methodology
Results/Conclusions

Feature Extraction
Feature

Selection
Classification

Regular-

ization

Statistical

Validation

Behbahani

et al. 2014

[74]

Seizure detection

EPILEPSIAE database.

Long-term continuous

recordings.

15 DRE patients (8 male + 7

female, age = 42.2 ± 12.64

years) with focal epilepsy.

Total of 206 seizures (96 FBTC

+ 110 FOIA).

Time-domain: MeanNN;

Frequency-domain: LF, HF,

LF/HF;

Non-linear: Poincaré plot

(SD1, SD2, SD1/SD2, S6).

-

ANNs

(multi-layer

perceptron)

75% data for

training, 15%

for validation

and 15% for

testing

- -

FOIA seizures:

Sensitivity = 83.33%

Specificity = 86.11%

FBTC seizures:

Sensitivity = 86.66%

Specificity = 90.00%

Behbahani

et al. 2016

[88]

Seizure detection

EPILEPSIAE database.1

16 DRE patients (8 male + 8

female, age = 42.31 ± 11.89

years) with focal epilepsy.

FOIA and FBTC seizures.

Total of 170 seizures (86

left-sided + 84 right sided).

Time-domain: MeanNN;

Frequency-domain: LF, HF,

LF/HF;

Non-linear: Poincaré plot

(SD1, SD2, CSI).

-

SVM with

RBF7 kernel

Leave-One-Out

Cross-Validation

- -

Right-sided seizures4:

Accuracy = 86.74%

Left-sided seizures4:

Accuracy = 79.41%

Behbahani

et al. 2016

[38]

Patient-specific

seizure prediction

SOP: various

values between 1-8

min SPH: various

values between

1-3.5 min

EPILEPSIAE database.

Long-term (at least 4-6 days

long) continuous recordings.

16 DRE patients (8 male + 8

female, age = 42.31 ± 11.89

years).

Various types of epilepsy.

Total of 170 seizures.

Time-domain: MeanNN;

Frequency-domain: LF, HF,

LF/HF;

Non-linear: Poincaré plot

(CSI).

Yes (un-

specified)

Adaptive

threshold

(circadian

rhythms - day

and night)

-
Random

predictor

Changes in features 30-15

minutes before onset.

Sensitivity = 78.59% and

FPR/h = 0.21 h-1 (with

SPH = 110 s and

SOP = 4 min 30 s).

Performance above random

predictor for 10/16 patients

(with SOP = 2 min, SPH = 110

sec and FPR/h = 0.21 h-1).

1No information available about the duration of the recordings; 2No information available about whether the dataset is constituted of DRE patients; 3Normalized to account for inter-patient variability; 4No

information about specificity or FPR/h; 5TINN: Baseline width of the RRI histogram; 6S: Area of the ellipse; 7RBF: Radial Basis Function. 8KFD: Katz Fractal Dimension.
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Table 3.5: HRV-based seizure detection/prediction studies.

Authors Typology Dataset

Methodology
Results/Conclusions

Feature Extraction
Feature

Selection
Classification

Regular-

ization

Statistical

Validation

Fujiwara et

al. 2016 [89]

Seizure Prediction

Preictal = 15 min

Long-term (24-72h) recordings.

14 DRE patients (10 male + 4

female, age 14-63 years).

Various types of epilepsy.

11 awakening seizures + 4

sleeping seizures.

Time-domain: MeanNN,

SDNN, RMSSD, TP, NN50;

Frequency-domain: LFn
3,

HFn
3, LFn/HFn

3.

-

Multivariate

Statistical

Process Control

(MSPC)

- -

Awakening seizures:

Sensitivity = 91%

FPR/h = 0.71 h-1

Sleeping seizures4:

Sensitivity = 75%

Moridani et

al. 2017 [77]

Patient-specific

seizure prediction

Preictal:

grid-search with 5

min step (from 2h

prior to onset).

PhysioNet database.

2 hour long continuous

recordings.

7 patients with focal epilepsy2.

Total 11 seizures.

Time-domain: MeanNN,

SDNN, RMSSD, NN50,

pNN50;

Frequency-domain: VLF,

LF, HF, LF/HF;

Non-linear: Poincaré plot

(SD1, SD2, CSI).

- Threshold - -
Sensitivity = 88.3%

Specificity = 86.2%

Pavei et al.

2017 [54]

Seizure prediction

Preictal = 10 min

12 DRE patients (9 female + 3

male, age = 34.5 ± 7.5 years)

with TLE1.

Total 34 focal seizures.

Time-domain: SDNN,

RMSSD;

Frequency-domain: LF, HF;

Non-linear: SampEn,

Poincaré plot (CSI and CVI).

-
SVM with

Gaussian kernel
- -

CVI, CSI, SampEn and SDNN

are potential biomarkers for

seizure detection/prediction.

Successful prediction of seizures

up to 5 minutes before onset.

Sensitivity = 94.1%

FPR/h = 0.49 h-1

1No information available about the duration of the recordings; 2No information available about whether the dataset is constituted of DRE patients; 3Normalized to account for inter-patient variability; 4No

information about specificity or FPR/h; 5TINN: Baseline width of the RRI histogram; 6S: Area of the ellipse; 7RBF: Radial Basis Function. 8KFD: Katz Fractal Dimension.
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Table 3.5: HRV-based seizure detection/prediction studies.

Authors Typology Dataset

Methodology
Results/Conclusions

Feature Extraction
Feature

Selection
Classification

Regular-

ization

Statistical

Validation

Billeci et al.

2018 [70]

Patient-specific

seizure prediction

Preictal = 15 min

Long-term recordings.

15 DRE patients (8 female + 7

male, age = 17.6 ± 9.9 years)

with TLE.

Most patients suffered from

frontotemporal epilepsy. Total

of 38 seizures.

Seizures mostly recorded in

awake state.

Time-domain: MeanNN,

RMSSD, SDNN, NN50,

PNN50, VarNN;

Frequency-domain: LFn
3,

HFn
3, LFn/HFn

3;

Non-linear: COSEn

(Coefficient of Sample

Entropy), KFD8, Poincaré plot

(SD1, SD2, CSI, CVI), RQA

(Rec, Det, Lmax, Lam, TT,

Ent).

Stepwise

regression

analysis

SVM with

RBF7 kernel.

Five-fold cross

validation

training.

Additionally, for

patients with 3

or more

seizures, double

cross-validation.

- -

Five-fold cross validation:

Sensitivity = 89,06%

FPR/h = 0,41 h-1.

Double cross-validation:

Sensitivity = 70.08%

FPR/h = 3.36 h-1.

Average prediction time = 13.7

min.

The recurrence plots related to

the preictal phase were more

organized when compared to

ictal and postictal.

Giannakakis

et al. 2019

[90]

Patient-specific

seizure detection

Long-term (12-24h) recordings.

9 DRE pediatric patients (3

female + 6 male, age = 8.2 ±
4.3 years) with focal epilepsy.

Total 42 focal seizures.

Time-domain: MeanNN,

SDNN, RMSSD, NN50,

PNN50, Triangular Index,

TINN5;

Frequency-domain: TP, LF,

HF, LF/HF, LFn, HFn,

LFpeak, HFpeak.

minimum

Redun-

dance

Maximum

Relevance

(mRMR)

Threshold - -

Accuracy = 77.1% 4

Mean anticipation time = 21.8s

Yamakawa

et al. 2020

[91]

Seizure prediction

Preictal = 15 min

Same data used by Fujiwara et

al. 2016 [89].

Selected 7 patients (4 female +

3 male, ages 9-54) with focal

epilepsy.

Total of 14 seizures.

Time-domain: MeanNN,

SDNN, RMSSD, NN50, VarNN;

Frequency-domain: TP, LF,

HF, LF/HF.

-

Multivariate

Statistical

Process Control

(MSPC)

- -

Sensitivity = 85.7%

FPR/h = 0.62 h-1

1No information available about the duration of the recordings; 2No information available about whether the dataset is constituted of DRE patients; 3Normalized to account for inter-patient variability; 4No

information about specificity or FPR/h; 5TINN: Baseline width of the RRI histogram; 6S: Area of the ellipse; 7RBF: Radial Basis Function. 8KFD: Katz Fractal Dimension.
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There are some important aspects to be discussed after the analysis of Table

3.5.

Preictal, SOP and SPH: Regarding seizure prediction studies, only Behbahani

et al. [38] correctly applied the Seizure Prediction Characteristic (see Section 2.2.5),

reporting the use of various values of SOP and SPH, even though it might be argued

that the SPH durations are too short to allow proper measures to be taken (in open-

loop systems). Fujiwara et al. [89], Pavei et al. [54], Billeci et al. [70] and Yamakawa

et al. [91] defined a fixed preictal interval and deemed the prediction correct if the

alarm was raised during that interval. In such cases, the preictal interval ranged

between 10 and 15 minutes. These durations might be considered short if we take

into account the results presented in Section 3.1.2. Additionally, only Moridani et

al. [77] attempted to determine the optimal preictal duration by applying a grid-

search approach, starting at 2 hours and advancing with a 5 minute step. However,

the resulting preictal durations were not disclosed.

Typology: Concerning seizure prediction, three out of a total of six studies per-

formed patient-specific analysis. When it comes to seizure detection, the ratio de-

creased to one out of three. It is important that studies are designed in a patient-

specific manner as far as possible, since inter-patient variability has been reported

in HRV dynamics (see Section 3.1.2).

Dataset: Most of the studies used datasets composed of relatively small numbers

of patients and seizures, with the exception of Behbahani et al. [38, 74, 88], who

used data from the EPILEPSIAE database. Additionally, most of the studies used

long-term recordings, although the percentage who used continuous recordings was

smaller. This might raise questions as to the validity of the results. Moreover, only

Moridani et al. [77] did not specify the use of a dataset of DRE patients. While

most studies included TLE patients, the only studies to research patients with this

syndrome and report results for this specific group were Pavei et al. [54] and Billeci

et al. [70].

Feature Extraction: All of the studies used linear time and frequency-domain

features. The majority also used non-linear measures.

Feature Selection: Of the nine studies analyzed, only three performed feature

selection. Besides lowering computational complexity, this step could be useful
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to evaluate the discriminative capability of the features in identifying the preictal

period, in order to gain further insight into the mechanisms of seizure generation.

Classification: The most commonly used classifiers were threshold-based and

non-linear SVMs.

Regularization: None of the studies perform regularization to lower the number

of false alarms, a step typically performed on EEG-based seizure prediction which

could improve the performance of the models. Regularization methods used in the

literature concerning other signals include the Firing Power [36] and the Kalman

filter [92].

Performance Evaluation: Regarding performance evaluation, only one seizure

prediction study (Moridani et al. [77]) did not report results in terms of sensitivity

and FPR/h. It would be useful to understand whether researchers reported the

latter in terms of the corrected FPR/h, to enable a fairer comparison of the results.

However, only Billeci et al. [70] report that they did not use corrected FPR/h.

It should be highlighted that only Behbahani et al. [38] performed statistical

validation, comparing the performance of the seizure prediction method to a random

predictor. This step is crucial to ensure that the model is valid and performs above

chance level. A more comprehensive description of statistical validation methods

can be found in Section 2.2.7.

Results: All of the seizure prediction studies obtained sensitivities above 70% and,

when computed, FPR/h was usually lower than 1 h-1. In the case when FPR/h was

not computed, specificity above 80% was reported.

3.3.2 Shortcomings of Seizure Detection and Prediction Stud-

ies

Current seizure detection and prediction systems display several shortcomings

that hinder their clinical feasibility. Many authors present results with low repro-

ducibility, and with satisfactory performance results only on previously selected data

[2, 8]. Several limitations can be pointed out in current seizure prediction/detection

methods:

• Use of features based on short-term, discontinuous recordings with low num-

bers of subjects and seizures [2, 8, 23];

• Lack of/inadequate statistical validation [2, 8];
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• Testing models on data used for training [2];

• Not accounting for inter- and intra-patient variability [2, 8];

• Not taking into account confounding factors and concept drifts, such as circa-

dian rhythms, stress and AED intake [8, 10, 49];

• Reporting performance metrics that are inadequate for imbalanced datasets

(e.g. accuracy) [49];

• Determination of the preictal interval using a discrete grid-search approach.

Thus, a number of aspects need to be addressed and improved in further studies

in order to make seizure detection/prediction feasible and potentiate the comparison

of results between different researches. Algorithms should be designed in a patient-

specific manner, based on long-term, continuous recordings with a significant number

of seizures. The alterations in brain dynamics provoked by the practical aspects of

signal acquisition in pre-surgical monitoring, where patients usually see their AED

dosages decreased, should also be taken into account, as well as eventual concept

drifts. Finally, performance evaluation should be conducted using the standard

seizure prediction metrics, along with proper statistical validation, to ensure that

the model performs better than chance and to enable comparison of results between

studies [2].
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Methodology

This Chapter describes the methodology adopted in this study. In Section

4.1, a brief overview of the proposed framework is presented. In Section 4.2, a

description of the dataset is provided. In Sections 4.3 and 4.4, the basic steps of

preprocessing and feature extraction, respectively, are described. In Sections 4.5,

the process of splitting the data into train and test datasets is discussed. In Section

4.6, the ensemble learning method is briefly outlined. Sections 4.7, 4.8, 4.9, 4.10

and 4.11 are related to the labelling of the data samples, class balancing, definition

of the preictal intervals, data standardization and feature selection, respectively. In

Section 4.12, the choice of the classifier is briefly discussed. Section 4.13 is related

to output regularization, and Section 4.14 to the training procedures, including

the grid-search. Finally, Sections 4.15 and 4.16 describe the testing phase and the

computation of performance metrics and statistical validation of the models.

Regarding the nomenclature, the term clustering preictal will be used herein to

refer to preictal information obtained from the unsupervised learning study by Leal

et al. [22].

4.1 Overview

The present work has been carried out with the main goal of exploring the im-

pact of the consideration of the preictal period identified with unsupervised learn-

ing algorithms on seizure prediction performance. Toward that end, we developed

patient-specific seizure prediction models based on Heart Rate Variability (HRV)

analysis, integrating the preictal data obtained by Leal et al. [22] (see Section 3.2).

To determine whether the unsupervised preictal identification brings improve-

ments to seizure prediction methodologies, two approaches were compared: the

Standard approach and the Hybrid approach (see Figure 4.1). The Standard ap-

proach consists in applying the standard state-of-the-art grid-search to determine

the optimal preictal interval. Here, instead of considering the same preictal interval
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for all the seizures in the training phase, a seizure-specific analysis was used. The

Hybrid approach defines the preictal interval based on the preictal unsupervised

study by Leal et al. [22]. Thus, the model takes into account clustering preictal

information for the seizures for which the preictal interval has been found in the

unsupervised study, and performs grid-search on the remaining.

In both approaches, the Seizure Occurrence Period (SOP) was equal to the

preictal period under analysis and the Seizure Prediction Horizon (SPH) was set to

10 minutes (see Section 2.2.5). In order to maintain the chronological organization,

the first three seizures were selected for the training dataset, and the remaining

for the testing dataset (see Section 4.5). This division assumes the existence of a

temporal relation between seizures. Thus, the training and testing datasets comprise

123 and 115 seizures, respectively.

Figure 4.1: Schematic representation of the Standard and Hybrid approaches, designed
to evaluate the impact of clustering preictals on seizure prediction performance. The
aim is to compare the state-of-the-art approach with the proposed methodology coupling
grid-search and the use of clustering preictal data.

The general seizure prediction framework applied in the present study is de-

picted in Figure 4.2. Since the proposed approach is patient-specific, the described

steps were performed for each patient separately. In the previous study by Leal et al.

[22], the raw Electrocardiogram (ECG) was preprocessed in order to extract HRV,

and subsequently HRV features. Afterwards, clustering methods were applied in

search of the preictal interval (see Section 3.2). The HRV feature dataset was used

in this study, being divided into training and testing datasets. The training set was

used to perform a grid-search to determine the optimal parameters and to train the
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seizure prediction models using the optimized parameters. In the Hybrid approach,

clustering preictal data is also considered in these steps. After the training phase,

the models were applied to the testing dataset, with the aim of evaluating their

capability of predicting upcoming seizures on unseen data. An ensemble learning

approach was used in the training and testing phases. In the latter, the models’

final output is post-processed in order to lower the number of false alarms, and

finally, the performance is evaluated by computing the sensitivity and FPR/h and

by comparison with the seizure-time surrogates statistical validation algorithm.

Figure 4.2: General framework of the proposed seizure prediction methodology.
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4.2 Dataset Description

The dataset used in this study was extracted from the European Epilepsy

Database, also known as EPILEPSIAE Database [1, 16]. This is the largest known

epilepsy database, built as part of the FP7 EPILEPSIAE project, containing long-

term continuous Electroencephalogram (EEG) and Electrocardiogram (ECG) record-

ings of 275 Drug Resistant Epilepsy (DRE) patients undergoing pre-surgical mon-

itoring. The database also includes extensive clinical metadata (e.g., patient de-

mographics, seizure type and vigilance state) and standardized annotations (e.g.,

seizure EEG and clinical onset).

The selected dataset consists of ECG data from 41 Temporal Lobe Epilepsy

(TLE) patients (17 females and 24 males, aged 41 ± 16 years). This choice is

largely based on the fact that disturbances in ANS cardiovascular control manifest

predominantly in seizures originating in the temporal lobe (see Section 2.5). Meta-

data regarding the patients is presented in Table 4.1. The sampling rate for ECG

acquisition was 256 Hz.

Only seizures separated by more than 240 minutes were considered independent,

and thus the remaining were excluded from this study. After this selection, each

patient had between four and nine seizures. The final dataset consisted of 238

seizures. Additionally, only the four hours preceding the onset of the seizure were

considered.

Further information about the dataset can be consulted in Leal et al. 2021 [22].
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Table 4.1: Dataset description

Patient Gender
Age

(years)
No.

Seizures
Seizure Types

Seizure
Pattern

Vigilance State

402 F 55 5 FOIA, FBTC, FOIA, FBTC, FOIA t, t, t, t, t A, A, A, A, A

8902 F 67 5 UC, FOIA, FOIA, FOIA, FOIA a, b, a, m, a A, A, A, A, A

11002 M 41 5 UC, FOIA, FOIA, FOIA, FOA -, s, a, t, t A, R, A, A, A

16202 F 46 7
UC, FBTC, UC, FOIA, FOIA,

FOIA, FOIA
r, -, r, r, r, -, r

A, A, A, A, A,
A, A

21902 M 47 4 UC, FOIA, FOIA, FOIA t, t, t, b A, A, A, R

23902 M 36 5 FOA, FOA, FOA, FOA, FOA t, t, t, d, t A, A, A, A, A

26102 M 65 4 FOIA, FOIA, FOIA, FOIA m, t, t, t A, A, A, A

30802 M 28 8
FOA, FOA, FOA, FOA, FOA, FOA,

FOA, FOA
t, t, t, t, t, t, t,

t
R, A, 2, A, A, R,

2, 2

32702 F 62 5 FOIA, FOIA, FOIA, FOIA, FOIA t, t, t, r, a A, A, A, A, A

45402 F 41 4 FOIA, FOIA, FOA, FOIA t, t, t, t A, A, A, A

46702 F 15 5 FOA, FOIA, FOIA, FBTC, FOIA a, a, t, b, t A, 2, A, 2, A

50802 M 43 5 FOIA, UC, UC, FOIA, FBTC t, t, t, t, t A, 2, 2, 2, A

52302 F 61 5 UC, FOA, UC, UC, UC -, -, t, d, t A, A, A, 1, A

53402 M 39 5 FOA, FOA, FOA, FOA, FOIA -, -, -, -, t A, A, 2, A, A

55202 F 17 8
FOIA, FOIA, FOA, UC, UC, FOA,

UC, FOIA
t, d, t, t, t, t, r,

r
A, A, A, A, A,

A, A, A

56402 M 47 6 UC, UC, UC, UC, FBTC, FBTC t, -, b, -, a, t A, A, A, A, A, A

58602 M 32 7
FOIA, FOIA, FOIA, FOIA, FOIA,

FOIA, FOIA
r, t, t, r, r, r, t

A, R, A, A, A,
A, 2

59102 M 47 5 FOA, FOIA, FOIA, FOIA, FOA -, t, t, t, t A, A, A, A, A

60002 M 55 6
FOIA, FOIA, FOIA, UC, FOIA,

FOIA
d, c, t, t, d, d 1, A, A, R, R, 1

64702 M 51 5 FOA, FBTC, FBTC, FBTC, FBTC -, m, t, t, t A, A, A, A, 2

75202 M 13 7
FOA, FOA, UC, FOA, FOA, FOA,

FOA
t, t, t, t, t, -, t

2, 2, A, A, A, A,
A

80702 F 22 7
FOIA, FOIA, UC, FOIA, UC,

FBTC, FOIA
b, b, -, c, m, c,

c
A, A, A, A, A,

A, A

81102 M 41 5 FOIA, FOA, FOA, FOA, FOIA t, t, t, t, t A, A, A, A, A

85202 F 54 5 FOIA, FOIA, UC, UC, UC m, c, m, m, m 2, A, A, A, A

93402 M 67 5 FBTC, FOIA, FOIA, UC, UC t, t, t, t, t 2, 2, 2, 2, 2

93902 M 50 6
FOA, FOIA, FBTC, FOIA, FOIA,

UC
t, t, d, d, d, d A, A, 2, A, 2, A

94402 F 37 7
FOA, UC, FOIA, UC, FOA, UC,

FOA
-, d, b, t, -, b, -

A, A, A, 2, A, 2,
A

95202 F 50 7
FBTC, FOIA, FOIA, FOIA, UC,

FOIA, UC
b, b, b, m, b, b,

t
2, 2, 2, 2, 2, 2, 2

96002 M 58 7
FOIA, FOIA, FOIA, FOIA, UC,

FOIA, FOIA
t, t, t, d, a, t, a

A, A, A, A, A,
A, A

98102 M 36 5 FOA, UC, UC, UC, FBTC -, -, -, -, - A, A, A, A, A

98202 M 39 7
FOIA, FOIA, FOIA, FBTC, FOIA,

FOIA, UC
t, a, t, t, t, t, t

A, A, A, A, A,
A, A

101702 M 52 5 FOIA, FOIA, FOIA, FOIA, FOIA t, t, t, r, t A, A, A, 2, A

102202 M 17 7
FOA, UC, FOIA, UC, FOA, FOIA,

UC
b, -, t, -, t, t, t

2, A, 2, A, A, 2,
A

104602 F 17 5 FOIA, FBTC, FBTC, FBTC, UC t, a, t, t, d A, 2, 2, 2, 2

109502 M 50 5 FOIA, FOIA, FOIA, UC, UC t, t, t, t, t A, A, 1, A, A

110602 M 56 5 FOIA, FOIA, FOIA, FOIA, FOA t, t, t, t, t A, A, A, A, A

112802 M 52 6 UC, FOIA, UC, FOIA, FOIA, UC t, t, t, t, t A, A, A, A, A, A

113902 F 29 7
UC, FOIA, FOIA, FOIA, UC, UC,

FOIA
t, d, t, t, t, t, t

A, A, 2, A, 2, A,
A

114702 F 22 9
FOIA, FOIA, UC, FOIA, FOIA,

FOIA, FOIA, FOIA, FOIA
t, t, t, t, d, t, t,

d, t
A, A, A, A, A,

A, 2, A, A

114902 F 16 7
FOA, FOIA, FOIA, FBTC, UC,

FOIA, FOIA
s, b, s, t, r, a, t

A, A, A, 2, A, A,
A

123902 F 25 5 FBTC, FBTC, FOIA, FOIA, FOA t, t, t, t, t 2, 2, R, A, A

Gender: Female (F), Male (M); Seizure Type: Focal Onset Impaired Awareness, Focal to Bilateral Tonic-Clonic, Unclassified (UC),
Focal Onset Aware; Seizure Pattern: rhythmic theta waves (t), rhythmic alpha waves (a), rhythmic beta waves (b), amplitude
depression (m), rhythmic sharp waves (s), rhythmic delta waves (d), repetitive spiking (r), unclear(-); Vigilance State: Awake
(A), REM sleep stage (R), Non-REM sleep stage I (1), Non-REM sleep stage II (2).
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4.3 Extraction of HRV from the ECG signal

The extraction of HRV from the ECG signal performed by Leal et al. [22] will

be briefly described bellow. The ECG recordings were firstly preprocessed and then

the peak-to-peak intervals (R-R Interval) were computed. The different steps of this

process are represented schematically in Figure 4.3.

The raw ECG data was inspected in each 5-min non-overlapping window. For

each window, a notch filter was applied at 50 Hz to remove the powerline interference.

Afterwards, the Discrete Wavelet Transform (DWT) was applied to remove baseline

wander and obtain the frequencies of interest in the ECG [22].

The first step in R-R Interval series extraction is the identification of R-peaks.

To that end, a modified Pan & Tompkins algorithm was applied to each 5-min

non-overlapping window. Subsequently, the R-R Interval series was obtained by

computing the time difference between successive R-peaks. This series was then

edited to remove the interference of abnormal R-R Intervals. Finally, the signal was

divided into 5-min windows with 98.33% (4min 55s) overlap [22]. At this point, the

data is ready for feature extraction.

Figure 4.3: Schematic representation of ECG preprocessing and R-R Interval series
extraction. Source: Leal et al. 2021 [22]

4.4 Feature Extraction

Several linear and non-linear HRV features in the time and frequency domains

were extracted from the R-R Interval series in order to obtain information about the
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relative balance between the sympathetic and parasympathetic nervous systems. In

total, 32 features were extracted (see Table 4.2). The definition of the majority of

the features and their relationship to the sympathovagal balance has been previously

discussed in Section 3.1.1. Further information about the features can be consulted

in Leal et al. 2021 [22].

Table 4.2: HRV features used in the study.

Linearity/Domain Features

Linear/Time-domain
NN50, pNN05, SDNN, RMSSD, SDSD, RRMean, RRMin,

RRMax, RRVar

Linear/Frequency-

domain

Total Power, VLF Power, LF Power, HF Power, LF Norm, HF

Norm, LF/HF

Nonlinear
SD1, SD2, SD1/SD2, DFA (α1, α2), ApEn, SampEn, LLE, CD

RQA (Rec, L, TT, Det, Lam, Ent, Lmax)

4.5 Data Splitting

In order to perform training and testing, the dataset was split into two subsets

for each patient (see Figure 4.4). The train set included the first three seizures in

chronological order and was used for parameter optimization and model training.

Thus, the train set may include seizures with and without clustering preictal infor-

mation. The test set included the remaining seizures and was used to independently

evaluate the previously trained models. This division aims to mimic a real-world

scenario where the seizure prediction model is initially trained in a set of seizures

that have been retrospectively collected, and is then applied to online data to predict

imminent seizures and issue timely warnings.

Figure 4.4: Schematic representation of the data splitting step. The seizures are orga-
nized in chronological order. The example is merely illustrative, as the total number of
seizures and the seizures with clustering preictal data vary between patients.
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4.6 Ensemble Learning

Ensemble learning was used to deal with the stochasticity of the class balancing

process (see Section 4.9). This consists in repeating the training process N times,

obtaining N classifier models. Afterwards, in the testing/validation phase, the final

prediction results from the application of a voting scheme to the N prediction vectors

(see Figure 4.5). In the present study, the ensemble size was N =31 to ensure that

there is statistical significance and to avoid ties in the voting process. Regarding

the voting scheme, a hard-voting approach was used, where, for each sample, the

class with the most votes is chosen.

Figure 4.5: Schematic representation of the ensemble learning approach.

4.7 Data Labeling

The samples of each recording were labelled into three classes: interictal, pre-

ictal and SPH. The preictal starting time varied between seizures depending on the

findings of the unsupervised learning or grid-search (see Section 4.8). We considered

an SPH of 10 minutes in order to provide enough time for the patient or caregiver

to take preventive action. The samples corresponding to the SPH were not fed to

the classifier either in the training or testing phases.

4.8 Preictal Definition

In the training phase, the preictal intervals were defined using a seizure-specific

approach (see Figure 4.6). In the Standard approach, the preictal intervals were

defined based on the grid-search, by using permutations with repetitions of the six

discrete values considered (see Section 4.14). In the Hybrid approach, we used the

clustering preictals for the seizures for which clustering was conclusive and grid-

search for the seizures with no clustering preictal information.
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In the testing phase, the preictal interval was defined as the average of the

preictal intervals obtained in the training phase (including clustering preictals, if

available).

(a) Standard approach (b) Hybrid approach

Figure 4.6: Schematic representation of the preictal grid-search approach used in the
training phase.

4.9 Class Balancing

As discussed in Section 2.2.8, class imbalance is a serious issue affecting the

performance of seizure prediction models. In order to address this problem, we ap-

plied a random downsampling approach, in which the predominant class (interictal)

is randomly undersampled in order to match the interictal and preictal number of

samples.

The sequential downsampling approach is depicted in Figure 4.7. The process

was carried out for each seizure independently, maintaining the chronology of the

samples in each seizure episode. In sum, the interictal samples were divided into n

groups, where n is the number of preictal samples. Afterwards, one sample was cho-

sen randomly from each group. This way, samples from the entirety of the interictal

interval were chosen, with the aim of preserving interictal representativeness.

Figure 4.7: Schematic representation of the sequential downsampling process for one
seizure. The samples are organized in chronological order.
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4.10 Standardization

The feature data is standardized by subtracting the mean and scaling to unit

variance (z-score normalization). Thus, we obtain N sets of mean and variance

values during the training phase, which are used to scale the data in the testing

phase.

4.11 Feature Selection

A feature selection step was applied to improve prediction by trying to select

the most important features and to decrease computational complexity, potentially

providing insight into the dynamics of seizure generation. To this end, both relevance

and redundancy assessment methods were applied. Relevance methods evaluate the

relationship of the feature data to the data labels in order to identify features which

can better discriminate between interictal and preictal states. Redundancy methods

simply evaluate the correlation between the features, removing features which do not

provide additional information.

Relevance methods (described in Section 4.11.1) were first applied, followed by

redundancy assessment methods (described in Section 4.11.2) (see Figure 4.8). The

following methods of relevance assessment were applied: ANOVA F-value, Kruskal

Wallis H-value, Area Under the Curve (AUC), and feature-target correlation. Re-

dundancy methods consisted in applying Pearson’s correlation coefficient (linear)

and Spearman’s rank coefficient (nonlinear) in parallel and selecting the features

which were selected by at least one of the methods (union).

Figure 4.8: Schematic representation of the feature selection step. Firstly, F features
are selected using one of the filter-based relevance assessment feature selection methods.
Afterwards, redundancy-based methods are applied to the set of F features, yielding the
final set of features.
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4.11.1 Relevance Assessment Methods

We chose to use filter-based methods over wrapper-based due to their low com-

putational cost on the long seizure prediction pipeline. The chosen methods, speci-

fied above, will be further discussed throughout the present section. Other methods

were also tested, such as minimum Redundance Maximum Relevance (mRMR) [93]

and mutual information, but were excluded because they were too computationally

complex.

Preliminary experiments were also conducted with embedded methods, specifi-

cally Ridge [94] and Lasso [95]. However, it was not possible to apply these methods

in the final computations. Ridge was computationally expensive, taking a long time

to run the full training process. Lasso, on the other hand, did not converge even

with a large number of maximum iterations.

For each method, we obtained a ranking of features, from which the F most

relevant features were selected. The number of features chosen, F, was defined as

either 10 or 20, considering that the total number of features is 32. The optimal

value of F was defined by applying a grid-search approach (see Section 4.14). After

the relevance assessment, redundancy assessment methods are applied to the set of

F selected features.

Table 4.3: Brief description of the relevance assessment methods applied in this study.

Method Description

ANOVA F-value
Selects features by ranking them according to the ANOVA

f-statistics

Kruskal-Wallis

H-value

Selects features by ranking them according to the Kruskal-Wallis

h-statistics

AUC
Selects features by ranking them according to the Area Under the

Curve (AUC)

Feature-target

correlation

Selects features by ranking them according to the Pearson

correlation to the target

4.11.2 Redundancy Assessment Methods

After applying relevance-based feature selection methods to select F features,

redundancy assessment filter methods were applied. Thus, all the features selected

by either the Pearson’s correlation coefficient (linear) or the Spearman’s rank coef-

ficient (nonlinear) were selected. Initially, only features which had been selected by

both methods were chosen, but this approach sometimes returned very few or even
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no features.

We considered that features correlated by more than 90% were redundant. After

evaluating pair-wise correlation between all features, we discarded the features of

each pair that were more common among all pairs.

4.12 Classification

In order to select the best classifier, preliminary experiments were conducted

using SVM with linear kernel and Logistic Regression. A linear kernel was chosen

instead of non-linear kernels since similar results have been reported in the literature

[96]. Additionally, linear SVMs are simpler and computationally lighter and require

the optimization of only one parameter.

The results obtained using the two classifiers mentioned above showed no sig-

nificant differences, and the Logistic Regression required more time to train. Ad-

ditionally, SVMs have been widely used in the field of seizure prediction with good

results [2]. Thus, the choice fell on the linear SVM.

As mentioned above, the linear SVM requires optimization of one hyperparam-

eter, the cost (C). This is a regularization parameter used to define the penalization

attributed to misclassifications as well as the width of the class separation margin.

To select the optimal cost, a grid-search was performed (see Section 4.14).

4.13 Post-processing

After classification and voting, the obtained output consists of a point-by-point

classification of the data. As it is highly unlikely that all points will be classified

correctly, it is necessary to post-process this output in order to generate alarms that

are well localized in time, thus reducing the number of noisy false alarms.

Therefore, we applied the regularization filter proposed by Teixeira et al. [36],

known as firing power. This method quantifies the number of samples classified as

preictal in a given window, called the firing power of the output. In order to do that,

a moving window technique is used, where the length of the window corresponds to

the number of samples of the preictal interval.

The mathematical formulation of this measure is given by

fp[n] =

n∑
k=n−τ

o[k]

τ
, (4.1)
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where fp[n] is the firing power at the time n, τ is the number of samples of the

moving window, and o[k] is the classifier output at time k.

The alarm generation process is depicted in Figure 4.9. In sum, the firing power

at any given moment is calculated based on the past τ samples. The output measure

is naturally normalized between zero and one, zero meaning that no samples in the

interval were classified as preictal, and one meaning that all samples were classified

as preictal. Finally, alarms are generated when the firing power exceeds a certain

threshold value. The threshold is defined in a patient-specific manner in the grid-

search (see Section 4.14).

Figure 4.9: Schematic representation of the firing power regularization technique. The
firing power is computed for the final prediction obtained by applying ensemble learning.
When the firing power exceeds a defined threshold, alarms are generated. In this example,
the length of the moving window is 6 samples and the threshold is 0.9.

4.14 Training Phase

Prior to training the models, a grid-search was used to search for the optimal

problem parameters. This process incorporates the search for the best: number of

features to select in the relevance assessment, SVM hyperparameter (cost), preictal
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intervals, and firing power threshold. The values considered were the following:

• Number of features in the relevance analysis: F = [10, 20];

• SVM cost: C = [2-20, 2-16, 2-12, 2-8, 2-4, 2-0, 24, 28];

• Preictal intervals: P = [20, 40, 60, 80, 100, 120] minutes;

• Firing power threshold: T = [0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5, 0.55,

0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9].

The first step of the grid-search consists in optimizing the number of features

in the relevance assessment, SVM cost and preictal locations. The optimization of

the preictal intervals was described in Section 4.8. It should be highlighted that

seizures with clustering preictal intervals starting after the SPH interval were not

used in the training phase, since samples corresponding to the SPH are not fed into

the classifier.

The number of preictal permutations is given by PP = P S, where P is the

number of preictal intervals considered in the grid-search and S is the number of

seizures for which to determine the optimal preictal. Additionally, there are eight

different options for the SVM cost (C) and two options for the number of features

in the relevance assessment (F). Thus, the number of combinations of parameters

(L) in the grid-search step in each study is presented in Table 4.4.

Table 4.4: Number of combinations of parameters assessed during the grid-search. This
value depends on the number of seizures that require preictal optimization.

Approach P S PP=PS C F L = PP · C · F

Standard

6

3 216

8 2

3456

Hybrid

1 6 96

2 36 576

3 216 3456

P: number of preictal intervals in the grid-search; S: number of seizures in the preictal grid-search; PP: number of preictal

permutations in the grid-search; C: number of SVM cost values; F: number of number of features values in the relevance assessment;

L: number of total combinations.

Similarly to Direito et al. [96], a k -fold cross-validation was used to optimize the

parameters PP, C and F. The number of folds, k, corresponds to the number of train-

ing seizures (in our case k=3). This was combined with a performance evaluation

metric (MMsample) which incorporates sample sensitivity (SSsample) and specificity

(SPsample). This metric translates the Euclidean distance between the point cor-

responding to these two values and the point corresponding to null performance

(SSsample = 0 and SPsample = 0) in the ROC plot:

MMsample =
√
SSsample

2 + SPsample
2. (4.2)
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The division in k groups (folds) is carried out by assigning one seizure to each

fold. An example of this division is depicted in Figure 4.10. Each fold contains

samples corresponding to both interictal and preictal periods. For each iteration i

of the cross-validation procedure, the fold i corresponds to the validation set, and

the remaining two folds correspond to the training set (see Figure 4.10).

Ensemble learning was also applied (see Sections 4.6 and 4.9). Thus, each of

the k iterations was carried out N=31 times. To calculate the performance metric,

MMsample, the average of the performances over the N repetitions of the ensemble

and the k folds of the cross-validation was computed.

Hereupon, the combination of parameters yielding the highest performance,

i.e., highest MMsample, was selected. If there was more than one combination of

parameters yielding the highest performance, the one with the lowest runtime was

selected.

Regarding the optimization of the firing power threshold, the first step con-

sists in applying the hard voting approach to obtain the final prediction from the N

prediction outputs corresponding to the highest performance. Afterwards, we com-

puted the performance for each of the 17 threshold values considered when applying

firing power. Specifically, we computed the sensitivity (SS) and FPR/h and then

determined the Euclidean distance, D, between the point corresponding to these

two values and the optimal performance point (SS=100% and FPR/h=0 h-1) in the

ROC plot [97, 98]:

D =

√
(100− SS)2 + FPR/h2. (4.3)

The threshold corresponding to the minimum distance was selected (see Figure 4.10).

Figure 4.10: Schematic representation of the grid-search approach followed in the train-
ing phase for a given model.
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After the grid-search, the final models are trained using the optimized preictal

intervals and parameters (see Figure 4.2), yielding N models.

4.15 Out-of-sample Classification

Once completed the training phase, we obtain N=31 optimized models, which

are tested on an unseen dataset in the testing phase (see Section 4.5). Thus, the

same steps applied in the training phase are applied in the testing phase, with the

exception of the class balancing (see Figure 4.2).

The testing preictal interval corresponds to the average of the preictal intervals

optimized during the training phase (see Section 4.8). The mean and standard

deviation of each of the 31 training models’ data were used to standardize the testing

data 31 times (see Section 4.10), and the same features identified during feature

selection in each of the 31 models were chosen for testing (see Section 4.11). Finally,

the 31 classifier models were tested on this data, yielding 31 output vectors. In order

to obtain the final prediction, the hard voting approach was used. Afterwards, the

output was regularized using the firing power with the threshold defined in the

grid-search. The last step corresponds to the performance evaluation.

4.16 Performance Evaluation

4.16.1 Performance Metrics

As discussed in Section 2.2.6, the performance of seizure prediction method-

ologies is evaluated based on two metrics: sensitivity and FPR/h. In the present

study, the corrected FPR/h is used to account for the refractory period after an

alarm is raised. The optimal values for sensitivity and FPR/h are 100% and 0 h-1,

respectively, corresponding to the scenario where all seizures are correctly predicted

and no false alarms are raised.

4.16.2 Statistical Validation

The seizure prediction performance was also evaluated by comparison to the

seizure-times surrogates (see Section 2.2.7.2).

The specific process of surrogate analysis used in this study is depicted in Figure

4.11. For each seizure, the preictal interval is randomly shifted to a different time in

the preceding interictal period, this way obtaining the surrogate targets. Afterwards,
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the surrogate sensitivity is calculated using the surrogate targets and the alarms

obtained by testing the original targets.

This process is repeated R times. In the present study, R=30 to guarantee

the statistical validity of the results. The distribution of surrogate sensitivities is

then compared to the seizure prediction method’s sensitivity. Since the process

underlying the generation of surrogate sensitivities is random, we assume that these

follow a normal distribution. Thus, a one-sample t-test was used.

A one-tailed test is applied to evaluate the null hypothesis that the perfor-

mance of the seizure prediction methodology is not superior to the performance

obtained with the surrogate predictor. Thus, the proposed methodology is said to

achieve greater performance sensitivity than the surrogate predictor with statistical

significance if the null hypothesis is rejected. Herein, a significance level of 5% was

considered.

Figure 4.11: Schematic representation of the surrogate analysis. The process of shuffling
is repeated separately for each seizure and the surrogate sensitivity is computed for each
repetition. Here, R is the number of repetitions and S is the number of seizures. In this
study, R=30.
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Results and Discussion

In this Chapter, we present the results for the Standard and Hybrid approaches

designed for selecting a preictal interval to integrate into supervised seizure predic-

tion models. The Standard approach corresponds to the standard state-of-the-art

approach, a seizure-specific grid-search of preictal intervals on a given range. The

Hybrid approach integrates clustering preictals and grid-search preictals (applied

for the seizures for which no clustering preictal has been found). We present the

results for the training and testing phases of both approaches in Sections 5.1 and

5.2, respectively. In Section 5.3, we compare the seizure prediction performance

between the Standard and the Hybrid approaches. Sections 5.4 and 5.5 contain the

analysis of the starting time of preictal intervals and selected features, respectively.

Afterwards, in Section 5.6 we compared the performance of Standard and Hybrid

approaches to the state-of-the-art HRV- and EEG-based seizure prediction stud-

ies. In Section 5.7 we performed patient stratification into different groups based

on the available metadata and observed the results obtained for both approaches

in each group. Lastly, we performed a side study to visually validate the preictal

intervals found on the HRV unsupervised learning study. Namely, we performed

visual inspection of R-R Intervals and HRV features in search of alterations of their

values over time, in trying to verify the source of the clustering preictal intervals

(see Section A.3).

5.1 Training Phase

As previously explained in Chapter 4, the seizure prediction framework was ap-

plied using four feature selection methods: ANOVA F-test, Kruskal-Wallis H-test,

Area Under the Curve (AUC), and feature-target correlation. Complete results,

namely preictal interval, SVM cost, number of features selected during the rele-

vance and redundancy assessment, and sample performance metrics, are presented

in Appendix A, for the Standard approach (see Tables A.1, A.3, A.5, and A.7) and

for the Hybrid approach (see Tables A.2, A.4, A.6, and A.8). Table 5.1 presents a
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summary of the performance results obtained for each of the approaches and feature

selection methods, in terms of mean and standard deviation of the sensitivity, speci-

ficity and the metric used to evaluate the k -fold cross-validation overall performance

(see Section 4.14).

Table 5.1: k -fold cross-validation results (mean ± standard deviation) obtained for the
Standard and Hybrid approaches and each feature selection method.

Feature Selection Method Approach SSsample SPsample MMsample

ANOVA F-test
Standard 0.54±0.29 0.74±0.18 1.05±0.05

Hybrid 0.51±0.26 0.70±0.16 1.01±0.08

Kruskal-Wallis H-test
Standard 0.51±0.29 0.76±0.18 1.05±0.05

Hybrid 0.51±0.26 0.70±0.16 1.02±0.07

AUC
Standard 0.42±0.32 0.83±0.15 1.03±0.05

Hybrid 0.40±0.28 0.76±0.17 0.97±0.11

Feature-target correlation
Standard 0.37±0.30 0.82±0.17 0.99±0.13

Hybrid 0.40±0.27 0.75±0.17 0.95±0.14

SSsample: sample sensitivity; SPsample: sample specificity; MMsample: sample performance met-

ric.

After inspecting the results in Table 5.1 we concluded that the average speci-

ficity values are higher than sensitivity for the two approaches and all feature selec-

tion methods. This means that the developed models are more successful in correctly

classifying interictal than preictal samples. As mentioned previously in Section 2.2.6,

there is a trade-off between these metrics, which means that one could obtain higher

sensitivity values at the expense of lower specificity, and vice-versa, depending on

the final application. In the present work, the aim was to maximize both metrics.

In addition, the standard deviations obtained were considerably larger than

desired, especially when it comes to sensitivity. This high variability in the results

indicates that, while high performance was obtained for some patients, very low

values were obtained for others. This is not ideal, but further conclusions cannot

be drawn without analyzing the test results, since high performance values in the

training phase may result from data overfitting.

5.2 Testing Phase

Following the training phase, the machine learning models were tested on un-

seen data to evaluate their predictive power. We present the models’ performance in

terms of sensitivity and FPR/h. Additionally, we verified if the models performed
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above chance level by running a statistical validation using the time-series surrogate

analysis (See Section 2.2.7.2). A fixed SPH of 10 minutes was considered. The

value of SOP corresponds to the testing preictal interval, therefore varying among

patients. Complete results, namely preictal interval, firing power threshold, per-

formance metrics, and surrogate analysis results, are presented in Appendix A, for

the Standard approach (see Tables A.9, A.11, A.13 and A.15) and for the Hybrid

approach (see Tables A.10, A.12, A.14, and A.16). The results obtained for each

approach and each feature selection method are summarized in Figure 5.1.

Considering the average performance values presented in Figure 5.1, it can

be concluded that the obtained sensitivities were suboptimal. As stated before in

Section 2.2.6, patients with epilepsy require a seizure prediction system to yield

sensitivities above 90% in order to have clinical utility [42]. Based on this, the

average results obtained with both Standard and Hybrid approaches are far below

this value. Regarding FPR/h, it has been suggested that patients undergoing pre-

surgical monitoring (which is the case of our dataset) can have a maximum of 0.15

seizures per hour [25]. This value is admitted as the maximum FPR/h. Again, the

average values fall short of the expectations, always exceeding this limit.

Regarding statistical validation, the percentage of patients validated in each

study is usually around 40%, never reaching half of the dataset.

We can conclude that the average sensitivities are usually very similar in the

Hybrid and Standard approaches when applying the same feature selection method,

the only exception being with feature-target correlation feature selection. Average

FPR/h values are always lower in the Hybrid approach, i.e., when clustering preictal

information is used. Performing statistical validation on the developed models also

returned similar results among the four feature selection methods.

However, the results also show high variability, conveyed by the high standard

deviation values. This indicates once again that while the algorithm performed

poorly for some patients, satisfactory results were also obtained for others.
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(a) ANOVA F-test

(b) Kruskal-Wallis H-test

(c) AUC

(d) Feature-target correlation

Figure 5.1: Comparison of test results (mean ± standard deviation) and number of
patients validated with the surrogate analysis for the Standard and Hybrid approaches
with different feature selection methods.
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Figures 5.2 and 5.3 allow visualization and comparison of the sensitivity, FPR/h

and statistical validation results for all patients among approaches and feature se-

lection methods.

Concerning sensitivity, in Figure 5.2, it can be observed that there are a few

cases in which the sensitivity exceeds 90%. In fact, in each approach, there are

between 5 and 10 patients whose values exceed this limit. Furthermore, there is one

patient (32702) for whom 100% sensitivity was obtained in all cases. However, there

are many other cases when the sensitivity is null, and several patients (402, 26102,

81102, 94402, 98102) for whom we always obtained null values.

Regarding FPR/h, in Figure 5.3, we also observed that, for the same approach

and feature selection method, there are cases with very high FPR/h, as well as

several cases with zero false alarms raised. The number of patients verifying FPR/h

below 0.15 h-1 lies between 16 and 22. However, the corresponding sensitivity values

are usually low or null.

With regards to statistical validation, there are two patients (30802, 32702)

for which the models perform above chance level across all approaches and feature

selection methods, corresponding to approximately 5% of the dataset. Contrarily,

performance above chance level was never obtained for five patients (12%).

Additionally, it was possible to obtain sensitivity above 100% and FPR/h be-

low 0.15 h-1 for a few patients, namely patient 109502 in the Hybrid approach

with ANOVA F-test and AUC feature selection, and in the Standard approach pa-

tient 53402 in with Kruskal-Wallis H-test feature selection and patient 21902 with

feature-target correlation feature selection. Statistical validation revealed perfor-

mance above chance in all four cases.

Due to the trade-off between sensitivity and FPR/h, it is not straightforward

to state which of the methodologies used yielded the best performance results. This

should be analyzed in light of the finality of the system, depending on the type

of intervention for which it is designed. As previously mentioned in Section 2.2.6,

higher values of FPR/h can be tolerated if the system applies closed-loop inter-

ventions, such as electrical stimulation, which do not produce serious side effects

[15, 33, 39]. However, the SPH of 10 minutes used in this study is excessive for such

interventions. Thus, the models developed in our study should only be considered

for warning systems, and high FPR/h values cannot be tolerated since they increase

the patient’s anxiety levels and reduce confidence in the system.

Moreover, in order to evaluate the performance of the developed models, it

is critical to determine if the inclusion of clustering preictal information produces

improvements in seizure prediction performance.
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Figure 5.2: Sensitivity and statistical validation results of the seizure prediction algo-
rithm for each of the approaches and feature selection methods. The red colour scale
represents the sensitivity obtained for each patient in each case. The diamond indicates
that the seizure prediction method performed above chance. The asterisk indicates pa-
tients with at least one accepted clustering preictal solution in the training set. S: Standard
approach; H: Hybrid approach; KW: Kruskal-Wallis H-test; Corr: Feature-target correla-
tion.
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Figure 5.3: FPR/h and statistical validation results of the seizure prediction algorithm
for each of the approaches and feature selection methods. The red colour scale represents
the FPR/h obtained for each patient in each case. A non-linear scale was used to allow
for a better analysis of the results. The diamond indicates that the seizure prediction
method performed above chance. The asterisk indicates patients with at least one accepted
clustering preictal solution in the training set. S: Standard approach; H: Hybrid approach;
KW: Kruskal-Wallis H-test; Corr: Feature-target correlation.
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5.3 Comparative Analysis

In order to compare the results obtained in the Standard and Hybrid ap-

proaches, computing the average of the performance metrics is not enough. It is

necessary to compare the results’ distribution of each approach using adequate sta-

tistical tests. Herein, a 5% confidence value was considered for all statistical tests.

The difference between both approaches lies in the fact that the Hybrid ap-

proach includes clustering preictal information. As such, we decided to analyse the

statistical differences between Standard and Hybrid approaches using the patient’s

results for which clustering preictal intervals have been found for at least one of

the three training seizures. This led to the exclusion of 10 patients: 402, 23902,

30802, 52302, 53402, 75202, 93402, 98202, 113902 and 114902. In sum, statistical

differences between Standard and Hybrid approaches were assessed for 31 patients.

We compared the prediction performance between both approaches for each feature

selection method.

In order to choose the appropriate statistical test, the distributions were tested

for normality using the Shapiro-Wilk normality test. The null-hypothesis of this

test is that the distribution is normal. If the null-hypothesis is rejected for any

of the distributions, non-parametric tests should be used. Otherwise, parametric

tests are applied. Given that the p-value results (presented in Tables 5.2, 5.3, 5.4

and 5.5) are below the significance level of 5%, we rejected the null hypothesis that

the Standard and Hybrid distributions come from a normal distribution. Thus, a

non-parametric test for independent variables, the Mann-Whitney test, was used to

compare the distributions. The null-hypothesis of this test is that the Standard and

the Hybrid distributions come from the same distribution. The one-tailed Mann

Whitney test was applied as we wanted to understand if using preictal clustering

information (Hybrid approach) improves seizure prediction results, comparing to

the Standard approach.

The present section reports the results obtained from this analysis. Figures 5.4,

5.5, 5.6, 5.7 display a visual representation of the data distributions for each feature

selection method. Tables 5.2, 5.3, 5.4, 5.5 present the results of the statistical tests

discussed above.
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Figure 5.4: Boxplot data distributions of sensitivity and FPR/h for the Standard and
Hybrid approaches with ANOVA F-test feature selection.

Table 5.2: Results of statistical tests conducted on the performance results obtained
from the Standard and Hybrid approaches with ANOVA F-test feature selection.

Test Approach
Sensitivity (%) FPR/h

TS p-value TS p-value

Shapiro-Wilk normality test
Standard 0.747 6.325×10-6 0.476 2.073×10-9

Hybrid 0.691 8.629×10-7 0.527 7.335×10-9

Mann-Whitney U rank test
Standard vs.

Hybrid
501.500 6.325×10-1 565.000 1.031×10-1

TS: Test Statistics.

Figure 5.5: Boxplot data distributions of sensitivity and FPR/h for the Standard and
Hybrid approaches with Kruskal-Wallis H-test feature selection.

Table 5.3: Results of statistical tests conducted on the performance results obtained
from the Standard and Hybrid approaches with Kruskal-Wallis H-test feature selection.

Test Approach
Sensitivity (%) FPR/h

TS p-value TS p-value

Shapiro-Wilk normality test
Standard 0.716 1.985×10-6 0.432 7.365×10-10

Hybrid 0.730 3.628×10-6 0.656 2.782×10-7

Mann-Whitney U rank test
Standard vs.

Hybrid
473.000 4.562×10-1 520.000 2.786×10-1

TS: Test Statistics.
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Figure 5.6: Boxplot data distributions of sensitivity and FPR/h for the Standard and
Hybrid approaches with AUC feature selection.

Table 5.4: Results of statistical tests conducted on the performance results obtained
from the Standard and Hybrid approaches with AUC feature selection.

Test Approach
Sensitivity (%) FPR/h

TS p-value TS p-value

Shapiro-Wilk normality test
Standard 0.768 1.413×10-5 0.346 1.168×10-10

Hybrid 0.736 4.143×10-6 0.458 1.362×10-9

Mann-Whitney U rank test
Standard vs.

Hybrid
499.500 6.193×10-1 593.000 4.594×10-2

TS: Test Statistics.

Figure 5.7: Boxplot data distributions of sensitivity and FPR/h for the Standard and
Hybrid approaches with feature-target correlation feature selection.

Table 5.5: Results of statistical tests conducted on the performance results obtained from
the Standard and Hybrid approaches with feature-target correlation feature selection.

Test Approach
Sensitivity (%) FPR/h

TS p-value TS p-value

Shapiro-Wilk normality test
Standard 0.779 2.192×10-5 0.352 1.334×10-10

Hybrid 0.686 7.365×10-7 0.530 7.855×10-9

Mann-Whitney U rank test
Standard vs.

Hybrid
568.000 9.155×10-1 594.000 4.837×10-2

TS: Test Statistics.
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The results show statistically significant differences only for FPR/h distribu-

tions when using AUC and feature-target correlation feature selection. This denotes

that, while the incorporation of preictal information does not yield better sensitiv-

ity, that is, does not allow the correct prediction of more seizures, it may provide

lower FPR/h, in certain cases. Considering the discussion on the consequences of

high FPR/h values in Section 2.2.6, this is highly beneficial for the patients. With

lower FPR/h values, patients spend less time under false warning and thus, anxiety

related to the alarms is reduced, allowing them to maintain confidence in the system.

5.4 Preictal Interval

To compare the preictal intervals obtained in the Standard and Hybrid ap-

proaches, we computed the difference between the preictal interval starting time

found in both approaches, for each feature selection method (see Figure 5.8). Addi-

tionally, in order to better analyze the differences in the results obtained with the

grid-search and those obtained by Leal et al. [22], we performed a separate analysis

for the differences between the preictal interval starting time of seizures with ac-

cepted clustering preictal solution, and those without accepted solution (see Figure

5.9).

Regarding the results for the seizures for which no clustering solution was found,

we were expecting that similar preictal intervals would be found in both Standard

and Hybrid approaches, as both result from grid-search. In fact, the results presented

in Figure 5.9 show that the median difference is null, which means that the resulting

preictal intervals are usually the same. However, they also reveal some variability

in the preictal starting time between both approaches. This variability is likely due

to the stochasticity inherent to the process of class balancing performed during the

training phase. Consequently, it might reflect the variability of the interictal ECG

trace.

Considering, the results for seizures with clustering preictal solution, and com-

paring the results obtained with each of the feature selection methods, we concluded

that ANOVA F-test and Kruskal-Wallis H-test presented the lowest differences be-

tween approaches. Hence, using these feature selection methods seems to lead to

more coherent results for grid-search and clustering preictal intervals. In turn, we

might hypothesize that the features selected by these two methods are the ones pro-

viding the preictal interval information in the unsupervised learning preictal search.

In the next section, we tried to provide more insight on this matter.
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(a) ANOVA F-test

(b) Kruskal-Wallis H-test

(c) AUC

(d) Feature-target correlation

Figure 5.8: Differences between preictals used in the Standard and Hybrid approaches,
for each feature selection method. Seizures marked with a diamond were trained using
the clustering preictal information. White blocks are related to seizures with clustering
preictal interval starting after the SPH, which were therefore not used for training in the
Hybrid approach.
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(a) ANOVA F-test (b) Kruskal-Wallis H-test

(c) AUC (d) Feature-target correlation

Figure 5.9: Boxplot data distributions of the difference between preictal intervals in the
Standard and Hybrid approaches, for each feature selection method. The values are sepa-
rated into differences in seizures with accepted clustering preictal solution, and differences
in seizures without accepted solution.

5.5 Feature Selection

In this section, we inspected the results of feature selection for each of the four

methods and each seizure prediction approach (see Section 4.11). In Figures 5.10

and 5.11, we present the relative frequency of each feature in the 31 models obtained

in the training phase, after the application of relevance and redundancy assessment

methods, for the Standard and Hybrid approaches, respectively. Importantly, we

noticed that in the grid-search to optimize the number of features to select in the

relevance assessment (see Section 4.14), F =10 was selected slightly more often than

F =20.
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Figure 5.10: Bar graph of the relative frequency of selection of each feature depending
on the feature selection method used, in the Standard approach.
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Figure 5.11: Bar graph of the relative frequency of selection of each feature depending
on the feature selection method used, in the Hybrid approach
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Results indicate that feature selection yields similar results among Standard

and Hybrid approaches. Nevertheless, we noticed clear differences in the features

selected by ANOVA F-test and Kruskal Wallis H-test methods, when comparing to

AUC and target-feature correlation, in both approaches. Typically, when using the

latter, the time-domain linear features are not selected for the final model. Non-

linear features are prevalent when using these two methods. Contrarily, ANOVA

F-test and Kruskal Wallis H-test methods frequently select features such as RRMin,

RRMean, RRMax, LF/HF and LF Power. These results are in line with the previous

findings regarding the preictal starting time differences found among the feature

selection methods. Since ANOVA F-test and Kruskal Wallis H-test methods select

the features that most frequently led to the identification of unsupervised learning

preictals, it is natural that fewer differences are seen among Standard and Hybrid

preictal intervals. Consequently, this means that similar preictal intervals are used

by both approaches and therefore no statistically significant differences exist among

the final performance observed for Standard and Hybrid approaches.

Furthermore, there are certain features which were seldom selected, suggesting

that they do not provide new and relevant information for seizure prediction. This

is the case of SD1, LF Norm, VLF Norm, VLF Power, Total Power, RRVar and

SDNN.

5.6 Comparative Analysis with Other Studies

In this section, we compare our results with those obtained in other state-of-

the-art HRV-based seizure prediction studies (see section 3.3.1), as well as with

other seizure prediction methodologies based on EEG. Both comparisons will be

performed.

The dataset used in our study includes uniquely TLE patients, due to the close

proximity between the temporal lobe and anatomical structures involved in auto-

nomic control, which determines that alterations in ANS function are predominant

in seizures originating in the temporal lobe [63] (see Section 2.5). Thus, this com-

parison will focus on studies including TLE patients.

It is important to note that comparing our models with state-of-the-art seizure

prediction models can be challenging due to differences in the explored datasets as

well as in the methodologies employed. Characteristics such as the number of pa-

tients, type of epilepsy (e.g. temporal lobe epilepsy), the post-processing techniques,

the choice of SOP and SPH, and the statistical validation method may explain the

differences in the final results reported in each study.
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5.6.1 Comparative Analysis with Heart Rate Variability (HRV)

Studies

Firstly, we compare our models with state-of-the-art HRV-based seizure predic-

tion models (see Table 3.5) including Temporal Lobe Epilepsy patients from various

databases. Table 5.6 shows the results of the present study and the HRV-based

studies complying with the aforementioned criteria.

Table 5.6: Results obtained in the present study and state-of-the-art HRV-based studies.

Study
No. TLE

Patients

Sensitivity

(%)
FPR/h

Patients

Validated (%)

Behbahani et al. 2016 [38] 12 77.09 0.21 70

Fujiwara et al. 2016 [89] 8 N.A. 0.72 N.A.

Pavei et al. 2017 [54] 12 94.1 0.49 N.A.

Billeci et al. 2018 [70] 15 89.06 0.41 N.A.

This study (ANOVA F-test,

Standard approach)
41 36.91 1.17 41.5

This study (ANOVA F-test, Hybrid

approach)
41 36.26 0.72 41.5

This study (Kruskal-Wallis H-test,

Standard approach)
41 30.12 1.06 36.6

This study (Kruskal-Wallis H-test,

Hybrid approach)
41 32.64 0.97 36.6

This study (AUC, Standard

approach)
41 30.69 1.51 39.0

This study (AUC, Hybrid approach) 41 29.76 0.87 39.0

This study (Feature-target

correlation, Standard approach)
41 34.43 1.47 43.9

This study (Feature-target

correlation, Hybrid approach)
41 25.24 0.42 36.6

In Behbahani et al. [38], a sensitivity of 77.09% was obtained for TLE patients,

with a fixed FPR/h of 0.21 h-1 and after optimization of SOP and SPH for each

patient. This average sensitivity value largely surpasses the values obtained in this

study. Additionally, statistical validation was performed by comparison to the ran-

dom predictor, revealing performance above chance for 70% of the TLE patients,

when using SOP = 2 min and SPH = 110 s. This is a considerably higher percentage

when compared to our results.

In a study with patients with various epilepsy syndromes, Fujiwara et al. [89]

reported an overall sensitivity of 91%, but did not specify the value for the TLE

patients. Regarding FPR/h, the authors reported an average of 0.72 false alarms
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per hour for TLE patients. In our study, two approaches achieved lower or equal

FPR/h (ANOVA F-test and Feature-target correlation, Hybrid approach). However,

without knowledge of the sensitivity, it is impossible to perform a fair comparison

since low values of FPR/h may be obtained at the expense of lower sensitivity. No

statistical validation was conducted.

Pavei et al. [54] reported average sensitivity of 94.1% and FPR/h of 0.49 h-1,

thus achieving higher performance than any of the approaches considered in this

study. However, no statistical validation was performed.

Billeci et al. [70] reported 89.06% sensitivity and FPR/h of 0.41 h-1, thus

achieving higher performance than our models. However, no statistical validation

was carried out.

As stated above, there are several characteristics of the seizure prediction

methodology which can affect the seizure prediction performance. Behbahani et al.

[38] reported the only seizure prediction study which used data from the EPILEP-

SIAE database. When it comes to classification, Pavei et al. [54] and Billeci et al.

[70] applied SVMs, although with non-linear kernels. Behbahani et al. [38] and Fuji-

wara et al. [89] used feature threshold decision and Multivariate Statistical Process

Control, respectively.

Billeci et al. [70] did not report results in terms of corrected FPR/h, as was

done in this study. Additionally, none of the other studies specify how FPR/h was

calculated. Thus, comparisons of FPR/h with these studies may not be valid.

The only research study specifying the SPH is Behbahani et al. [38], which

tested several different values. However, the intervals used (between 1-3.5 min)

were shorter than the one used in the present study. This may explain the high

performance values obtained by Behbahani et al. [38], since shorter SPH intervals

allow to capture changes in the signal which occur closer to the seizure onset and

are probably more pronounced. Behbahani et al. [38] was also the only study to

report the SOP, having tested several intervals between 1-8 min. Since our study

employed a seizure-specific approach in the determination of the preictal intervals

of the training seizures, there is high variability of SOP values, which range between

13 and 120 minutes. Thus, SOP values will not be discussed herein. However, we

should consider that longer SOPs are undesirable from the viewpoint of the patient

because they are translated into longer waiting times and thus result in increased

anxiety.

Additionally, Behbahani et al. [38] was also the only study that performed

statistical validation, even though not by comparison to the seizure-times surrogate,

but instead to a random predictor (see Section 2.2.7). Lastly, the number of TLE
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patients in the mentioned studies was relatively small, which may raise questions as

to the statistical confidence in the results.

5.6.2 Comparative Analysis with Electroencephalogram (EEG)

Studies

In this section, our results are compared with state-of-the-art EEG-based seizure

prediction models. Table 5.7 shows the main characteristics and results of the

present study and a selection of EEG seizure prediction studies including data from

TLE patients in their analysis.

Table 5.7: Results obtained in the present study and state-of-the-art EEG-based studies.

Study
No. TLE

Patients

Sensitivity

(%)
FPR/h

Patients

Validated (%)

Alvarado-Rojas et al. 2014 [98] 39 66 0.33 10

Teixeira et al. 2014 [99] 190 75.05 0.32 N.A.

Direito et al. 2017 [96] 130 38.13 0.23 N.A.

Pinto et al. 2021 [48] 19 38; 36; 37
1.03; 0.76;

0.58
32

This study (ANOVA F-test,

Standard approach)
41 36.91 1.17 41.5

This study (ANOVA F-test,

Hybrid approach)
41 36.26 0.72 41.5

This study (Kruskal-Wallis

H-test, Standard approach)
41 30.12 1.06 36.6

This study (Kruskal-Wallis

H-test, Hybrid approach)
41 32.64 0.97 36.6

This study (AUC, Standard

approach)
41 30.69 1.51 39.0

This study (AUC, Hybrid

approach)
41 29.76 0.87 39.0

This study (Feature-target

correlation, Standard approach)
41 34.43 1.47 43.9

This study (Feature-target

correlation, Hybrid approach)
41 25.24 0.42 36.6

After optimization of the SOP, Alvarado-Rojas et al. [98] reported a sensitivity

of 66% and FPR/h of 0.33 h-1 for TLE patients. This performance largely surpasses

that obtained with any of the approaches presented in the present study. Addi-

tionally, a percentage of 10% of validated patients was reported by comparison to a

random predictor.
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Teixeira et al. [99] also report increased performance, with a sensitivity of

75.05% and FPR/h of 0.32 h-1 for TLE patients. However, no statistical validation

was performed to ensure that the algorithms performed above chance.

In a study with a total of 216 patients with various types of syndromes, Direito

et al. 2017 [96] reported a sensitivity of 38.13% and a FPR/h of 0.23 h-1 for TLE

patients. Although the authors achieved lower FPR/h, the sensitivity is only slightly

higher than some of the values reported in this study. Additionally, even though

the authors carried out statistical validation by comparison to a random predictor,

they did not specify the percentage of TLE patients validated, mentioning only that

11% of the total dataset was validated.

Pinto et al. [48] developed an evolutionary algorithm for seizure prediction,

reporting average sensitivities of 38%, 36% and 37% and FPR/h of 1.03 h-1, 0.76

h-1 and 0.58 h-1, for minimum SOP durations of 40, 50 and 60 minutes, respectively.

Overall, performance above chance was obtained for 32% of patients by comparison

to the seizure-times surrogate predictor. Thus, the results reported are similar to

those obtained in the present study.

Once again, apart from the considerable difference introduced by analysing ei-

ther ECG or EEG, we highlight other aspects in methodology that might contribute

to the observed variability in the performance of our models and state-of-the-art

models. Teixeira et al. [99] and Direito et al. [96] used SVM classifiers, although

the former also used Artificial Neural Networks. Alvarado-Rojas et al. [98] used a

threshold-based classifier, and Pinto et al. [48] used a logistic-regression classifier.

Direito et al. [96], Alvarado-Rojas et al. [98] and Pinto et al. [48] reported results in

terms of corrected FPR/h, while Teixeira et al. [99] did not. Teixeira et al. [99] and

Direito et al. [96] specified an SPH of 10 seconds, a value sixty times smaller than

the one used in this study, which may explain the attainment of higher performance

values, and is inadequate for warning systems. Pinto et al. [48] used a SPH of 10

minutes, the same duration used in our study. Additionally, only Pinto et al. [48]

carried out statistical validation by comparison to the seizure-times surrogates.

Lastly, it should be highlighted that the results for EEG and ECG seizure

prediction models might be influenced by different aspects that may dictate the

observation of high variability. The main factor lies in the different characteristics

of each signal. The ECG has a defined trace characterized by a distinctive occur-

rence of R-peaks that allow for a relatively robust HRV analysis. The EEG trace

is considered a more complex signal, that results from a sum of electrical poten-

tials from different locations in the brain and that can be easily affected by noise.

Additionally, both signals can be affected by circadian rhythms and alterations in
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medication. Furthermore, the ECG signal may also reflect changes unrelated to the

epileptogenic process due to alterations in emotional and psychological states (e.g.,

stress, anxiety), physical activity, and cardiac co-morbidities [8, 10, 49]. This can

lead to increased rates of false alarms.

It is natural that, since epilepsy is a neurological condition and the ECG does

not measure cerebral information, this signal presents a lower predictive power than

the EEG. However, the comfort and ease associated with the acquisition of the ECG

signal without causing social stigma (see Section 1.2), would be greatly appreciated

by patients with epilepsy. Furthermore, it is possible that the ECG signal displays

higher predictive capabilities for patients with certain characteristics (e.g., seizure

types, sleep states). This would allow the development of seizure prediction systems

focusing on patients with specific characteristics.

5.7 Patient Stratification

With the aim of assessing if the seizure prediction performance could be in-

creased by restricting the dataset to subjects with certain characteristics, a patient

stratification analysis was performed. The patients were selected based on the meta-

data contained in the EPILEPSIAE database (see Table 4.1) to form the following

groups:

1. Patients with only FOA and/or FOIA seizures (11/41). This includes 24 FOA

seizures and 34 FOIA seizures.

2. Patients who displayed only rhythmic activity patterns (20/41). This includes

114 seizures.

3. Patients who were awake during all seizures (17/41). This includes 96 seizures.

4. Male patients (24/41). This includes 135 seizures.

5. Female patients (17/41). This includes 103 seizures.

Table 5.8 shows the average and standard deviation values of the performance

metrics obtained with each approach and feature selection method, as well as the

proportion of validated patients. The performance obtained with the whole dataset

is also included for easier comparison.

Upon analysis of the table, the group with only FOA and/or FOIA seizures

always presents higher sensitivity when compared to the whole dataset, with dif-

ferences that can exceed 20%. The percentage of validated patients also increases

in most cases. However, we could see that, for this group of patients, when the

sensitivity values increased, it typically led to an increase in FPR/h (as was always

the case for the Hybrid approach).
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Regarding the patients with only rhythmic activity patterns, there is no con-

sistent pattern in the variation of sensitivity, FPR/h or percentage of validated

patients. Thus, the performance improves in some cases but worsens in others.

Regarding the group of patients that only had seizures while awake, we ob-

served no pattern for the sensitivity values when compared to the whole dataset.

Conversely, FPR/h was found to consistently increase in the Standard approach and

decrease in the Hybrid approach.

Concerning the group composed of male patients, it was also difficult to detect a

specific pattern. In most of the cases, when using ANOVA F-test or Kruskal-Wallis

H-test for feature selection, the sensitivity increases, while the opposite happens

when using the other two feature selection methods. The same can be said about

the proportion of validated patients. The FPR/h usually decreases in the Stan-

dard approach and increases in the Hybrid approach, when compared to the results

obtained with the whole dataset. We were expecting that this group displayed an

increase in performance, as per the discussion in Sections 2.5 and 3.1, where it was

stated that male patients display higher rates of cardiovascular changes related to

seizures. Lastly, regarding the group comprising only female patients, the opposite

trend from that of the male patients is verified.

In summary, it is difficult to determine if the patient stratification allowed for

an increase in performance in any of the groups analyzed. Although sensitivity

increased when restricting the dataset to patients with only FOA and/or FOIA

seizures, this was usually paired with an increase in FPR/h. Additionally, standard

deviation values remained high in all groups, indicating high variability of results.

This may motivate us to always perform patient stratification in order to analyze

seizure prediction results separately for each group.
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Table 5.8: Patient stratification results for each of the studies and feature selection
methods.

Feature Selection

Method
Approach

Stratification

Group
Sensitivity (%) FPR/h

Validated

Patients

ANOVA F-test

Whole Dataset 36.91±39.67 1.17±2.37 19/41 (46.3%)

FOA/FOIA 37.27±37.92 0.73±0.81 5/11 (45.5%)

Rhythmic 34.67±40.90 0.87±1.09 8/20 (40.0%)

Awake 30.10±40.27 1.19±2.91 7/17 (41.2%)

Male 42.43±40.78 1.22±1.89 12/24 (50.0%)

Standard

Female 29.12±36.67 1.09±2.91 7/17 (41.2%)

Hybrid

Whole Dataset 36.26±41.76 0.72±1.53 17/41 (41.5%)

FOA/FOIA 55.45±45.00 0.78±0.79 6/11 (54.5%)

Rhythmic 38.83±44.94 0.66±1.10 8/20 (40.0%)

Awake 40.29±46.41 0.59±0.68 8/17 (47.1%)

Male 39.65±43.75 0.88±1.91 10/24 (41.7%)

Female 31.47±38.26 0.51±0.65 7/17 (41.2%)

Kruskal-

Wallis H-test

Whole Dataset 30.12±37.77 1.06±2.17 14/41 (34.1%)

FOA/FOIA 33.18±40.02 0.78±1.04 3/11 (27.3%)

Rhythmic 25.75±35.01 0.70±0.88 6/20 (30.0%)

Awake 27.16±35.71 1.27±3.03 5/17 (29.4%)

Male 35.00±39.00 0.90±1.22 9/24 (37.5%)

Standard

Female 23.24±34.81 1.29±3.04 5/17 (29.4%)

Hybrid

Whole Dataset 32.64±37.94 0.97±1.67 15/41 (36.6%)

FOA/FOIA 49.09±37.04 1.67±2.42 5/11 (45.5%)

Rhythmic 27.42±36.11 0.83±1.21 5/20 (25.0%)

Awake 40.10±36.85 0.83±1.04 9/17 (52.9%)

Male 31.18±36.96 1.10±1.99 8/24 (33.3%)

Female 34.71±39.20 0.77±1.02 7/17 (41.2%)

AUC

Whole Dataset 30.69±36.83 1.51±3.81 16/41 (39.0%)

FOA/FOIA 47.73±45.79 1.43±1.54 6/11 (54.5%)

Rhythmic 36.67±38.22 1.10±1.92 9/20 (45.0%)

Awake 29.41±42.21 1.94±5.43 6/17 (35.3%)

Male 23.26±33.07 1.05±1.81 7/24 (29.2%)

Standard

Female 41.18±39.24 2.16±5.45 9/17 (52.9%)

Hybrid

Whole Dataset 29.76±39.02 0.87±2.10 16/41 (39.0%)

FOA/FOIA 40.91±46.80 1.20±1.63 5/11 (45.5%)

Rhythmic 39.17±42.25 0.90±1.65 9/20 (45.0%)

Awake 29.61±39.77 0.61±1.34 7/17 (41.2%)

Male 29.17±39.75 0.91±1.55 8/24 (33.3%)

Female 30.59±37.96 0.81±2.70 8/17 (47.1%)

Feature-target

Correlation

Whole Dataset 34.43±38.89 1.47±4.43 19/41 (46.3%)

FOA/FOIA 57.73±45.30 3.15±7.66 7/11 (63.6%)

Rhythmic 45.08±41.14 2.10±5.85 12/20 (60.0%)

Awake 40.29±43.13 2.89±6.58 8/17 (47.1%)

Male 33.75±43.31 0.67±0.94 9/24 (37.5%)

Standard

Female 35.39±31.58 2.59±6.62 10/17 (58.8%)

Hybrid

Whole Dataset 25.24±34.89 0.42±0.73 15/41 (36.6%)

FOA/FOIA 46.36±45.18 0.61±0.80 6/11 (54.5%)

Rhythmic 34.25±36.28 0.62±0.93 10/20 (50.0%)

Awake 32.84±40.87 0.46±0.72 7/17 (41.2%)

Male 30.62±38.06 0.61±0.89 9/24 (37.5%)

Female 17.65±28.13 0.15±0.24 6/17 (35.3%)
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Conclusion

The inspection of the preictal interval has the potential to bring great advan-

tages to the field of seizure prediction. Besides the potential to enhance performance

by improving the annotation of the data used to train the classifier, exploring this

interval also represents an important step towards deeper understanding of the mech-

anisms of seizure generation, which are not yet well understood and seem to vary

from seizure to seizure even within the same patient.

The present study focused on the development of HRV-based seizure prediction

models in order to establish whether the inclusion of preictal information obtained

with unsupervised learning methodologies could improve seizure prediction perfor-

mance. To that end, we developed patient-specific seizure prediction methodologies

and compared the results obtained with the Standard and the Hybrid approaches for

preictal determination. The Standard approach consists of a seizure-specific grid-

search in a range of discrete preictal intervals. The Hybrid approach integrates the

clustering preictal information for the seizures for which solutions were obtained by

Leal et al. [22], coupled with the grid-search for the remaining seizures.

It was successfully determined that the inclusion of clustering preictal informa-

tion may, in some cases, improve the prediction performance, namely by reducing

the FPR/h. Decreasing FPR/h would represent an improvement in seizure pre-

diction, allowing the patient to be more confident in the seizure detection system.

Additionally, no significant differences were found regarding sensitivity. However,

we consider both approaches to have performed unsatisfactorily. When using infor-

mation from clustering, we obtained 36.26 ± 41.76 % sensitivity and 0.72 ± 1.53 h-1

FPR/h, and models performed above chance for 41.5 % of patients.

Thus, since our models did not increase both measures of seizure prediction

performance, we cannot state that unsupervised methodologies are required for pre-

ictal inspection, comparing to conventional grid-search methodologies. This may

be related to the lower predictive power of the ECG signal when compared to the

EEG, which determines that improved preictal interval annotation is not neces-
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sarily translated into better performance. Alternatively, the changes in HRV cap-

tured by clustering algorithms may not reflect epileptogenic processes, but instead

have been influenced by other internal or external factors which interfere with the

cardio-respiratory function, such as emotional state, physical activity and circadian

rhythms.

The work described in this document and in Leal et al. [22] represents the first

steps in a novel perspective towards preictal inspection for improvement of seizure

prediction performance. Taking into account the potential effect that an accurate

seizure prediction system could have on the quality of life of a DRE patient, there

are several aspects to explore in order to obtain more reliable results. Future work

related to this topic includes:

• Application of unsupervised learning methodologies for preictal inspection to

ECG data acquired in a real-life setting. The preictal intervals obtained need

to be validated by incorporating them into a seizure prediction methodology

and comparing the results obtained with the Standard and Hybrid approaches.

• Application of the unsupervised learning methodologies for preictal inspection

to EEG data, and posterior validation of the resulting preictal information

by incorporating it into a seizure prediction methodology and comparing the

performance obtained with the Standard and Hybrid approaches. This would

allow to reach final conclusions regarding the potential of unsupervised learn-

ing methods for the determination of the preictal interval.
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A. Supplementary Results

A.1 Training Phase

Table A.1: Training parameters and performance in Standard approach with ANOVA
F-test feature selection.

Patient
No.

Seizures
Preictals (min) C Frel

Ffinal

(average)
SSsample SPsample MMsample

402 3 40, 60, 20 2-8 10 7.81 0.63 0.57 1.01

8902 3 120, 120, 100 2-4 20 10.00 0.68 0.90 1.14

11002 3 80, 40, 80 28 20 12.26 0.87 0.49 1.07

16202 3 40, 20, 20 2-20 10 2.13 0.79 0.76 1.10

21902 3 60, 20, 40 2-8 20 9.32 0.82 0.74 1.11

23902 3 20, 100, 120 20 20 13.00 0.52 0.80 1.03

26102 3 120, 120, 120 2-12 10 7.00 0.00 1.00 1.00

30802 3 120, 80, 20 2-12 20 10.06 0.34 0.89 1.02

32702 3 60, 100, 100 2-4 10 4.00 0.66 0.72 1.10

45402 3 120, 80, 120 2-12 20 9.13 0.31 0.94 1.06

46702 3 60, 40, 40 2-12 20 8.00 0.85 0.60 1.12

50802 3 20, 20, 40 20 10 7.00 0.48 0.84 1.03

52302 3 80, 20, 80 2-20 10 6.00 0.75 0.57 1.05

53402 3 100, 20, 80 2-16 20 11.00 0.65 0.69 1.10

55202 3 60, 120, 80 2-12 10 7.00 0.64 0.66 1.11

56402 3 20, 120, 120 2-8 10 9.00 0.00 0.96 0.96

58602 3 40, 120, 100 2-16 20 11.71 0.66 0.66 1.12

59102 3 100, 40, 120 2-20 10 5.06 0.63 0.72 1.12

60002 3 40, 40, 60 2-20 10 7.97 0.85 0.66 1.09

64702 3 40, 120, 20 2-20 10 4.74 0.93 0.26 1.01

75202 3 20, 60, 80 28 10 4.10 0.64 0.61 1.02

80702 3 20, 80, 60 2-4 10 4.97 0.91 0.39 1.05

81102 3 120, 120, 120 28 10 7.00 0.01 1.00 1.00

85202 3 120, 120, 20 2-2 10 1.00 0.31 0.91 1.06

93402 3 100, 20, 80 28 20 14.00 0.64 0.73 1.07

93902 3 20, 40, 120 2-16 10 4.00 0.62 0.76 1.07

94402 3 120, 20, 120 2-12 10 7.00 0.00 0.99 0.99

95202 3 20, 20, 20 2-16 10 2.94 0.80 0.77 1.15

96002 3 60, 120, 120 2-8 10 6.00 0.00 0.98 0.98

98102 3 80, 120, 120 2-12 10 4.65 0.07 0.99 1.00

98202 3 20, 120, 100 2-4 10 7.00 0.65 0.62 1.06

101702 3 60, 120, 120 20 20 7.00 0.17 0.96 1.01

102202 3 20, 60, 20 2-16 20 8.81 0.66 0.58 1.06

104602 3 100, 80, 120 2-16 10 4.97 0.84 0.56 1.06

109502 3 80, 20, 20 2-20 10 4.00 0.60 0.66 0.98

110602 3 120, 20, 80 28 20 8.77 0.66 0.70 1.10

112802 3 120, 60, 120 2-8 10 5.00 0.01 1.00 1.00

113902 3 120, 20, 20 2-12 20 10.00 0.76 0.71 1.09

114702 3 20, 120, 120 2-8 10 7.03 0.30 0.82 1.00

114902 3 120, 20, 60 24 10 4.16 0.69 0.36 0.99

123902 3 80, 20, 120 2-8 20 7.03 0.57 0.88 1.11

Avg 0.54 0.74 1.05

C: SVM cost; Frel: number of features chosen in the feature selection relevance step; Ffinal: final number of features (after

the relevance and redundancy assessment steps); SSsample: sample sensitivity; SPsample: sample specificity; MMsample: sample

performance metric.
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A. Supplementary Results

Table A.2: Training parameters and performance in Hybrid approach with ANOVA
F-test feature selection.

Patient
No.

Seizures
Preictals (min) C Frel

Ffinal

(average)
SSsample SPsample MMsample

402 3 40, 60, 20 2-8 10 7.94 0.63 0.57 1.01

8902 3 114.0, 60, 80 28 10 5.68 0.68 0.88 1.15

11002 2 120, 20 28 20 8.00 0.50 0.65 1.02

16202 3 25.3, 74.4, 2.73 2-20 10 3.00 0.76 0.71 1.08

21902 3 60, 25.2, 99.03 2-8 10 7.65 0.69 0.75 1.04

23902 3 40, 80, 120 24 20 11.03 0.47 0.88 1.03

26102 3 120, 100, 13.38 2-8 10 7.00 0.29 0.64 0.93

30802 3 120, 80, 20 2-12 20 10.06 0.34 0.89 1.02

32702 2 100, 70.78 2-12 10 2.00 0.73 0.77 1.09

45402 3 93.6, 25.42, 80 2-20 10 4.03 0.37 0.57 0.88

46702 3 5.95, 56.23, 120 2-16 10 2.00 0.55 0.66 1.06

50802 3 66.25, 91.2, 77.58 2-20 20 14.87 0.52 0.60 0.82

52302 3 80, 20, 80 2-20 10 6.00 0.75 0.57 1.04

53402 3 100, 20, 80 2-16 20 11.00 0.65 0.69 1.10

55202 3 0.62, 120, 20 2-20 20 12.10 0.82 0.66 1.15

56402 3 15.1, 120, 120 2-8 10 8.29 0.00 0.97 0.97

58602 3 34.35, 59.48, 100 2-8 20 8.94 0.51 0.60 0.92

59102 3 116.42, 80, 120 2-16 10 5.00 0.67 0.69 1.11

60002 3 38.23, 40, 60 24 10 7.97 0.85 0.66 1.08

64702 3 100, 37.13, 120 2-20 10 4.58 0.14 0.90 0.94

75202 3 20, 60, 80 28 10 4.48 0.64 0.62 1.03

80702 3 60, 19.42, 61.33 2-20 10 2.13 0.83 0.50 1.04

81102 3 120, 41.82, 120 2-8 20 12.00 0.00 0.93 0.93

85202 3 79.65, 120, 37.47 2-20 20 8.00 0.60 0.39 0.94

93402 3 100, 20, 80 20 20 14.00 0.64 0.73 1.07

93902 3 25.13, 60, 56.57 2-12 10 4.00 0.61 0.65 1.00

94402 3 120, 31.82, 120 2-8 20 11.81 0.01 0.99 0.99

95202 3 19.97, 97.6, 80 2-8 20 7.00 0.44 0.74 0.97

96002 3 72.6, 120, 120 2-8 10 4.00 0.01 0.97 0.97

98102 3 36.52, 120, 120 2-12 20 12.71 0.06 0.99 1.00

98202 3 20, 120, 100 24 10 7.00 0.65 0.62 1.06

101702 3 80, 108.5, 20 20 10 2.87 0.33 0.62 0.93

102202 2 20, 40 2-8 10 6.71 0.71 0.48 1.01

104602 3 100, 80, 120 2-16 10 5.10 0.84 0.56 1.06

109502 3 60, 20, 44.03 2-8 20 9.19 0.60 0.60 0.89

110602 3 120, 92.8, 2.2 2-20 10 2.00 0.73 0.74 1.09

112802 3 62.3, 120, 20 24 20 9.00 0.51 0.47 0.86

113902 3 120, 20, 20 2-12 20 10.00 0.76 0.71 1.09

114702 3 40.62, 20.15, 120 2-8 10 5.00 0.33 0.67 1.00

114902 3 100, 20, 40 28 10 4.00 0.70 0.36 0.99

123902 3 120, 120, 0.4 2-8 20 9.00 0.05 0.99 0.99

Avg 0.51 0.70 1.01

C: SVM cost; Frel: number of features chosen in the feature selection relevance step; Ffinal: final number of features (after

the relevance and redundancy assessment steps); SSsample: sample sensitivity; SPsample: sample specificity; MMsample: sample

performance metric.
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A. Supplementary Results

Table A.3: Training parameters and performance in Standard approach with Kruskal-
Wallis H-test feature selection.

Patient
No.

Seizures
Preictals (min) C Frel

Ffinal

(average)
SSsample SPsample MMsample

402 3 60, 20, 20 2-12 10 10.00 0.65 0.47 1.01

8902 3 120, 60, 80 20 20 13.52 0.64 0.91 1.14

11002 3 20, 40, 80 2-20 10 5.58 0.59 0.61 1.04

16202 3 20, 20, 20 2-20 10 1.00 0.80 0.73 1.09

21902 3 60, 20, 40 2-4 20 8.97 0.82 0.75 1.12

23902 3 20, 40, 20 24 20 9.71 0.62 0.84 1.06

26102 3 120, 120, 120 2-12 10 7.00 0.00 1.00 1.00

30802 3 120, 60, 120 2-8 20 7.00 0.25 0.92 1.02

32702 3 60, 100, 100 2-8 10 4.00 0.65 0.75 1.10

45402 3 120, 80, 120 2-12 20 9.16 0.28 0.96 1.06

46702 3 40, 40, 20 24 10 3.48 0.89 0.57 1.14

50802 3 60, 20, 80 28 20 10.00 0.59 0.75 1.05

52302 3 60, 40, 20 2-20 10 5.00 0.64 0.56 1.05

53402 3 100, 20, 120 2-12 10 5.68 0.58 0.74 1.08

55202 3 60, 120, 80 2-12 10 7.00 0.64 0.66 1.11

56402 3 20, 120, 120 2-12 10 9.90 0.00 0.98 0.98

58602 3 40, 120, 100 2-16 20 9.65 0.66 0.67 1.13

59102 3 60, 100, 60 2-20 10 5.71 0.74 0.68 1.12

60002 3 20, 40, 60 2-4 20 12.19 0.82 0.76 1.12

64702 3 60, 120, 20 2-20 20 10.00 0.93 0.23 1.00

75202 3 20, 60, 60 2-12 20 10.00 0.71 0.64 1.04

80702 3 60, 20, 80 20 10 4.00 0.94 0.40 1.06

81102 3 120, 120, 120 2-8 10 5.00 0.00 1.00 1.00

85202 3 120, 120, 20 2-12 10 3.00 0.29 0.98 1.09

93402 3 120, 120, 20 2-12 10 3.00 0.29 0.94 1.06

93902 3 20, 60, 120 2-8 10 3.00 0.51 0.86 1.07

94402 3 120, 20, 120 2-8 10 5.00 0.00 0.98 0.98

95202 3 20, 20, 20 2-12 20 6.90 0.80 0.75 1.14

96002 3 60, 120, 120 2-8 10 4.45 0.01 0.99 0.99

98102 3 80, 120, 120 2-12 10 4.81 0.07 0.99 1.00

98202 3 20, 120, 100 2-4 10 3.00 0.61 0.60 1.03

101702 3 20, 120, 120 24 20 11.00 0.20 0.95 1.01

102202 3 20, 40, 20 2-8 10 5.16 0.65 0.58 1.06

104602 3 120, 100, 20 28 10 2.71 0.71 0.77 1.11

109502 3 100, 20, 20 2-20 10 4.00 0.60 0.65 0.96

110602 3 120, 20, 80 28 20 8.77 0.66 0.69 1.09

112802 3 120, 100, 120 2-8 20 10.74 0.00 1.00 1.00

113902 3 120, 20, 20 2-16 10 6.00 0.79 0.71 1.11

114702 3 20, 120, 120 2-8 10 7.71 0.29 0.84 1.00

114902 3 20, 20, 80 2-20 10 6.00 0.56 0.59 0.96

123902 3 100, 40, 120 2-4 20 7.45 0.60 0.87 1.08

Avg 0.51 0.76 1.05

C: SVM cost; Frel: number of features chosen in the feature selection relevance step; Ffinal: final number of features (after

the relevance and redundancy assessment steps); SSsample: sample sensitivity; SPsample: sample specificity; MMsample: sample

performance metric.
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A. Supplementary Results

Table A.4: Training parameters and performance in Hybrid approach with Kruskal-
Wallis H-test feature selection.

Patient
No.

Seizures
Preictals (min) C Frel

Ffinal

(average)
SSsample SPsample MMsample

402 3 40, 20, 20 2-12 10 10.00 0.65 0.48 1.01

8902 3 114.0, 120, 100 20 20 10.84 0.61 0.90 1.12

11002 2 80, 120 2-8 10 4.00 0.62 0.50 1.01

16202 3 25.3, 74.4, 2.73 2-16 10 4.39 0.77 0.68 1.07

21902 3 60, 25.2, 99.03 2-8 10 8.00 0.72 0.75 1.06

23902 3 20, 40, 20 24 20 9.81 0.64 0.84 1.06

26102 3 120, 120, 13.38 2-12 10 2.00 0.00 0.95 0.95

30802 3 120, 60, 120 2-8 20 7.00 0.25 0.92 1.02

32702 2 100, 70.78 2-16 20 8.00 0.74 0.73 1.07

45402 3 93.6, 25.42, 100 2-20 10 5.10 0.37 0.59 0.90

46702 3 5.95, 56.23, 100 2-20 10 2.00 0.64 0.57 1.06

50802 3 66.25, 91.2, 77.58 2-20 20 10.87 0.51 0.62 0.84

52302 3 60, 40, 20 2-20 20 9.03 0.66 0.53 1.05

53402 3 20, 20, 60 2-16 10 6.94 0.62 0.75 1.08

55202 3 0.62, 120, 20 2-16 10 5.10 0.86 0.67 1.18

56402 3 15.1, 120, 120 2-8 10 6.00 0.00 1.00 1.00

58602 3 34.35, 59.48, 100 2-20 10 3.03 0.55 0.58 0.97

59102 3 116.42, 40, 120 2-16 10 6.74 0.66 0.69 1.11

60002 3 38.23, 40, 40 28 10 6.00 0.85 0.67 1.09

64702 3 100, 37.13, 120 28 10 4.74 0.30 0.69 0.97

75202 3 20, 60, 60 2-12 20 10.00 0.71 0.64 1.04

80702 3 60, 19.42, 61.33 28 10 2.94 0.83 0.46 1.04

81102 3 120, 41.82, 120 2-8 10 8.55 0.00 0.98 0.98

85202 3 79.65, 120, 37.47 2-20 20 8.00 0.59 0.42 0.94

93402 3 120, 120, 20 2-12 10 3.00 0.29 0.94 1.06

93902 3 35.13, 60, 66.57 2-20 10 3.00 0.62 0.69 1.01

94402 3 120, 31.82, 120 2-12 20 8.77 0.00 0.98 0.98

95202 3 19.97, 97.6, 80 2-8 20 7.00 0.42 0.75 0.99

96002 3 72.6, 120, 120 2-8 10 3.00 0.01 0.98 0.98

98102 3 36.52, 120, 120 2-12 20 11.84 0.04 0.99 1.00

98202 3 20, 120, 100 2-4 10 3.03 0.61 0.60 1.02

101702 3 100, 108.5, 20 2-8 10 2.00 0.34 0.60 0.93

102202 2 20, 80 24 10 4.00 0.54 0.52 1.00

104602 3 120, 100, 20 28 10 2.65 0.70 0.76 1.10

109502 3 40, 20, 44.03 28 20 9.13 0.53 0.61 0.90

110602 3 120, 92.8, 2.2 2-20 10 3.00 0.63 0.72 1.06

112802 3 62.3, 60, 20 24 20 7.52 0.45 0.51 0.87

113902 3 120, 20, 20 2-16 10 6.00 0.79 0.71 1.11

114702 3 40.62, 20.15, 120 24 10 5.13 0.33 0.67 1.00

114902 3 20, 20, 80 2-20 10 6.00 0.57 0.59 0.97

123902 3 80, 40, 0.4 2-8 10 3.00 0.82 0.61 1.03

Avg 0.51 0.70 1.02

C: SVM cost; Frel: number of features chosen in the feature selection relevance step; Ffinal: final number of features (after

the relevance and redundancy assessment steps); SSsample: sample sensitivity; SPsample: sample specificity; MMsample: sample

performance metric.
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A. Supplementary Results

Table A.5: Training parameters and performance in Standard approach with AUC fea-
ture selection.

Patient
No.

Seizures
Preictals (min) C Frel

Ffinal

(average)
SSsample SPsample MMsample

402 3 120, 120, 120 2-16 10 10.00 0.00 1.00 1.00

8902 3 80, 40, 60 2-20 20 16.00 0.72 0.72 1.02

11002 3 120, 40, 80 2-4 20 14.00 0.56 0.65 1.03

16202 3 20, 20, 20 2-16 10 8.00 0.80 0.73 1.09

21902 3 60, 20, 100 2-12 10 10.00 0.70 0.74 1.02

23902 3 20, 20, 20 2-4 10 10.00 0.49 0.90 1.07

26102 3 120, 120, 120 2-8 20 15.00 0.00 1.00 1.00

30802 3 120, 100, 20 2-12 20 14.00 0.36 0.86 1.02

32702 3 20, 100, 120 2-12 20 15.00 0.31 0.89 1.04

45402 3 120, 120, 120 2-16 20 12.00 0.35 0.92 1.02

46702 3 60, 60, 40 28 20 12.00 0.88 0.59 1.13

50802 3 20, 120, 40 2-20 20 12.00 0.59 0.78 1.02

52302 3 20, 40, 20 2-12 20 14.00 0.72 0.59 1.00

53402 3 20, 40, 60 2-16 20 12.00 0.67 0.69 1.07

55202 3 40, 120, 80 2-20 20 13.45 0.60 0.65 1.03

56402 3 20, 120, 120 2-8 10 9.00 0.00 0.99 0.99

58602 3 20, 120, 100 24 10 10.00 0.61 0.85 1.12

59102 3 20, 80, 100 2-16 20 16.00 0.75 0.70 1.07

60002 3 20, 40, 20 2-4 20 15.00 0.91 0.83 1.24

64702 3 20, 80, 20 2-8 10 9.00 0.65 0.55 1.01

75202 3 120, 120, 20 2-12 20 15.00 0.01 1.00 1.00

80702 3 60, 20, 60 2-4 10 10.00 0.78 0.66 1.06

81102 3 120, 120, 40 2-12 10 10.00 0.12 1.00 1.01

85202 3 20, 120, 120 2-16 10 10.00 0.00 1.00 1.00

93402 3 120, 120, 120 2-124 10 10.00 0.00 1.00 1.00

93902 3 120, 60, 100 2-16 20 14.00 0.64 0.78 1.02

94402 3 120, 40, 120 28 20 14.00 0.20 0.95 0.99

95202 3 20, 20, 20 2-8 20 9.97 0.84 0.82 1.19

96002 3 20, 120, 120 2-12 10 9.00 0.03 1.00 1.00

98102 3 20, 120, 120 2-12 10 10.00 0.00 1.00 1.00

98202 3 120, 120, 120 2-12 10 10.00 0.01 1.00 1.00

101702 3 20, 120, 120 28 20 14.00 0.26 0.92 1.02

102202 3 20, 40, 20 2-12 20 13.00 0.62 0.59 1.04

104602 3 100, 80, 120 2-20 20 10.39 0.83 0.53 1.04

109502 3 40, 20, 40 24 10 10.00 0.58 0.72 0.98

110602 3 120, 80, 80 2-12 10 10.00 0.64 0.66 1.05

112802 3 120, 20, 120 2-8 10 10.00 0.01 0.98 0.98

113902 3 40, 20, 100 2-8 20 13.00 0.66 0.79 1.04

114702 3 20, 120, 120 2-16 10 10.00 0.00 1.00 1.00

114902 3 40, 120, 120 2-12 10 10.00 0.02 0.96 0.96

123902 3 60, 20, 120 2-4 20 13.00 0.49 0.92 1.04

Avg 0.42 0.83 1.03

C: SVM cost; Frel: number of features chosen in the feature selection relevance step; Ffinal: final number of features (after

the relevance and redundancy assessment steps); SSsample: sample sensitivity; SPsample: sample specificity; MMsample: sample

performance metric.
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A. Supplementary Results

Table A.6: Training parameters and performance in Hybrid approach with AUC feature
selection.

Patient
No.

Seizures
Preictals (min) C Frel

Ffinal

(average)
SSsample SPsample MMsample

402 3 120, 120, 120 2-16 10 10.00 0.00 1.00 1.00

8902 3 114.0, 20, 20 2-12 10 10.00 0.24 0.94 1.03

11002 2 20, 20 2-20 10 9.00 0.29 0.33 0.44

16202 3 25.3, 74.4, 2.73 2-16 10 9.00 0.76 0.67 1.06

21902 3 60, 25.2, 99.03 2-8 20 16.00 0.73 0.65 0.97

23902 3 20, 20, 20 2-4 10 10.00 0.49 0.90 1.08

26102 3 120, 120, 13.38 2-12 10 9.00 0.00 0.99 0.99

30802 3 120, 100, 20 2-12 20 14.00 0.36 0.86 1.02

32702 2 100, 70.78 2-12 20 16.00 0.70 0.71 1.04

45402 3 93.6, 25.42, 120 2-12 10 10.00 0.32 0.63 0.85

46702 3 5.95, 56.23, 120 2-16 10 10.00 0.50 0.69 1.03

50802 3 66.25, 91.2, 77.58 2-20 10 10.00 0.57 0.57 0.82

52302 3 20, 20, 20 2-20 10 9.00 0.61 0.64 0.90

53402 3 20, 40, 60 2-16 20 12.00 0.67 0.70 1.07

55202 3 0.62, 120, 80 2-20 20 13.00 0.69 0.68 1.06

56402 3 15.1, 20, 20 2-20 10 8.23 0.51 0.67 0.89

58602 3 43.35, 59.48, 100 2-8 10 10.00 0.56 0.62 0.94

59102 3 116.42, 20, 40 2-20 20 15.00 0.66 0.60 1.00

60002 3 38.23, 40, 20 2-8 10 9.00 0.79 0.74 1.09

64702 3 20, 37.13, 40 28 10 9.00 0.57 0.61 0.95

75202 3 120, 120, 20 2-12 20 15.00 0.01 1.00 1.00

80702 3 60, 19.42, 61.33 2-8 10 10.00 0.81 0.63 1.07

81102 3 120, 41.82, 120 2-12 10 10.00 0.01 0.95 0.95

85202 3 79.65, 120, 37.47 2-12 10 10.00 0.18 0.76 0.78

93402 3 120, 120, 120 2-12 10 10.00 0.00 1.00 1.00

93902 3 25.13, 60, 56.57 2-20 10 9.00 0.67 0.67 0.97

94402 3 120, 31.82, 120 28 20 14.00 0.20 0.95 0.99

95202 3 19.97, 97.6, 120 2-16 10 10.00 0.28 0.77 0.96

96002 3 72.6, 120, 120 2-8 20 11.00 0.00 0.99 0.99

98102 3 36.52, 120, 120 2-12 20 12.00 0.00 1.00 1.00

98202 3 120, 120, 120 2-12 10 10.00 0.01 1.00 1.00

101702 3 100, 108.5, 20 2-12 10 9.00 0.40 0.60 0.91

102202 2 20, 120 2-8 20 10.00 0.50 0.53 1.00

104602 3 100, 80, 120 2-20 20 10.29 0.83 0.53 1.04

109502 3 40, 40, 44.03 28 20 9.74 0.58 0.68 0.96

110602 3 100, 92.8, 2.2 20 20 16.00 0.59 0.84 1.05

112802 3 62.3, 100, 20 20 10 10.00 0.51 0.53 0.80

113902 3 40, 20, 100 2-8 20 13.00 0.66 0.79 1.04

114702 3 40.62, 20.15, 120 2-12 20 12.00 0.26 0.69 0.93

114902 3 40, 120, 120 2-12 10 10.00 0.02 0.96 0.96

123902 3 120, 120, 0.4 2-16 20 10.00 0.05 1.00 1.00

Avg 0.40 0.76 0.97

C: SVM cost; Frel: number of features chosen in the feature selection relevance step; Ffinal: final number of features (after

the relevance and redundancy assessment steps); SSsample: sample sensitivity; SPsample: sample specificity; MMsample: sample

performance metric.
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A. Supplementary Results

Table A.7: Training parameters and performance in Standard approach with feature-
target correlation feature selection.

Patient
No.

Seizures
Preictals (min) C Frel

Ffinal

(average)
SSsample SPsample MMsample

402 3 120, 120, 120 2-16 10 10.00 0.00 1.00 1.00

8902 3 120, 20, 20 2-12 10 10.00 0.25 0.93 1.02

11002 3 120, 40, 80 20 20 13.00 0.58 0.66 1.04

16202 3 40, 20, 20 2-12 10 8.00 0.80 0.74 1.10

21902 3 120, 120, 120 2-12 20 13.00 0.01 1.00 1.00

23902 3 20, 20, 40 2-8 10 10.00 0.51 0.88 1.08

26102 3 120, 120, 120 2-8 20 13.00 0.00 1.00 1.00

30802 3 120, 100, 20 2-12 20 13.32 0.35 0.87 1.02

32702 3 20, 100, 120 2-8 20 14.00 0.30 0.91 1.05

45402 3 20, 20, 20 2-16 10 10.00 0.48 0.56 0.77

46702 3 60, 20, 40 2-12 20 13.00 0.89 0.55 1.11

50802 3 20, 120, 40 2-20 20 11.00 0.60 0.77 1.01

52302 3 120, 20, 120 2-12 20 11.00 0.00 1.00 1.00

53402 3 120, 20, 40 2-12 20 12.58 0.44 0.91 1.06

55202 3 20, 120, 80 2-20 20 11.00 0.58 0.66 1.04

56402 3 20, 120, 120 2-83 10 9.00 0.00 0.99 0.99

58602 3 20, 120, 100 2-12 20 14.00 0.56 0.85 1.10

59102 3 60, 80, 100 28 20 14.00 0.58 0.78 1.01

60002 3 120, 60, 20 28 20 14.00 0.31 0.96 1.07

64702 3 20, 120, 120 2-12 20 15.00 0.00 1.00 1.00

75202 3 120, 120, 20 2-8 20 14.00 0.01 1.00 1.00

80702 3 60, 20, 60 2-8 20 13.00 0.83 0.61 1.06

81102 3 120, 120, 20 2-8 10 10.00 0.00 1.00 1.00

85202 3 20, 120, 120 2-16 10 10.00 0.00 1.00 1.00

93402 3 20, 20, 20 2-20 10 10.00 0.14 0.35 0.40

93902 3 120, 60, 100 2-16 20 12.00 0.65 0.78 1.02

94402 3 120, 20, 120 2-8 20 15.00 0.01 0.99 0.99

95202 3 20, 20, 20 2-8 20 11.00 0.84 0.81 1.18

96002 3 20, 20, 20 2-8 10 9.00 0.45 0.59 0.76

98102 3 120, 120, 120 2-12 20 13.00 0.04 1.00 1.00

98202 3 20, 80, 100 2-16 10 10.00 0.74 0.68 1.01

101702 3 20, 120, 120 2-12 10 9.00 0.00 1.00 1.00

102202 3 20, 40, 20 2-12 20 12.00 0.66 0.55 1.04

104602 3 100, 100, 120 2-16 20 9.00 0.77 0.59 1.01

109502 3 40, 120, 100 2-12 10 10.00 0.30 0.78 0.95

110602 3 80, 100, 20 20 20 16.00 0.71 0.83 1.10

112802 3 120, 20, 120 2-8 10 10.00 0.01 0.99 0.99

113902 3 40, 20, 100 2-12 20 13.00 0.70 0.75 1.03

114702 3 20, 20, 20 2-16 10 9.00 0.39 0.52 0.68

114902 3 120, 20, 120 2-20 10 9.00 0.31 0.75 0.99

123902 3 80, 20, 120 2-4 20 12.00 0.55 0.90 1.06

Avg 0.37 0.82 0.99

C: SVM cost; Frel: number of features chosen in the feature selection relevance step; Ffinal: final number of features (after

the relevance and redundancy assessment steps); SSsample: sample sensitivity; SPsample: sample specificity; MMsample: sample

performance metric.
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A. Supplementary Results

Table A.8: Training parameters and performance in Hybrid approach with feature-target
correlation feature selection.

Patient
No.

Seizures
Preictals (min) C Frel

Ffinal

(average)
SSsample SPsample MMsample

402 3 120, 120, 120 2-16 10 10.00 0.00 1.00 1.00

8902 3 114.0, 20, 20 2-12 10 10.00 0.26 0.95 1.05

11002 2 20, 20 2-16 10 7.61 0.18 0.39 0.45

16202 3 25.3, 74.4, 2.73 2-16 10 9.00 0.76 0.67 1.06

21902 3 20, 25.2, 99.03 28 20 11.45 0.60 0.68 0.91

23902 3 20, 20, 40 2-8 10 10.00 0.51 0.88 1.08

26102 3 120, 120, 13.38 2-20 10 9.00 0.00 0.99 0.99

30802 3 120, 100, 20 2-12 20 13.29 0.35 0.87 1.02

32702 2 100, 70.78 2-12 20 15.00 0.70 0.71 1.04

45402 3 93.6, 25.42, 120 2-12 10 10.00 0.30 0.74 0.96

46702 3 5.95, 56.23, 20 2-16 20 12.00 0.48 0.67 1.02

50802 3 66.25, 91.2, 77.58 2-20 10 10.00 0.61 0.60 0.86

52302 3 120, 20, 120 2-12 20 11.00 0.00 1.00 1.00

53402 3 120, 20, 40 2-12 20 12.55 0.44 0.91 1.06

55202 3 0.62, 120, 80 2-16 20 11.00 0.68 0.69 1.06

56402 3 15.1, 120, 120 2-8 10 9.00 0.00 0.99 0.99

58602 3 34.35, 59.48, 80 2-4 20 12.00 0.60 0.54 0.97

59102 3 116.42, 40, 100 24 20 14.00 0.50 0.67 0.93

60002 3 38.23, 40, 20 2-8 10 9.00 0.57 0.77 1.01

64702 3 120, 37.13, 120 2-8 20 16.00 0.24 0.78 0.93

75202 3 120, 120, 20 2-8 20 14.00 0.01 1.00 1.00

80702 3 60, 19.42, 61.33 2-8 10 10.00 0.85 0.62 1.07

81102 3 120, 41.82, 120 2-12 10 10.00 0.01 0.96 0.96

85202 3 79.65, 120, 37.47 2-8 10 10.00 0.15 0.75 0.76

93402 3 20, 20, 20 2-12 10 10.00 0.11 0.37 0.39

93902 3 25.13, 60, 56.57 2-12 10 9.00 0.66 0.67 0.99

94402 3 120, 31.82, 120 28 20 15.00 0.11 0.97 0.99

95202 3 19.97, 97.6, 20 2-20 10 7.00 0.78 0.65 1.06

96002 3 72.6, 20, 20 20 10 9.00 0.49 0.66 0.82

98102 3 36.52, 120, 120 2-2 20 13.00 0.00 1.00 1.00

98202 3 20, 80, 100 2-16 10 10.00 0.74 0.68 1.01

101702 3 80, 108.5, 20 2-16 20 13.84 0.45 0.57 0.89

102202 2 20, 120 2-8 20 8.45 0.50 0.53 1.00

104602 3 100, 100, 120 2-16 20 9.00 0.77 0.59 1.01

109502 3 40, 120, 44.03 24 10 10.00 0.26 0.79 0.90

110602 3 80, 92.8, 2.2 24 20 16.00 0.71 0.83 1.10

112802 3 62.3, 40, 20 2-20 10 10.00 0.50 0.58 0.85

113902 3 40, 20, 100 2-12 20 13.00 0.70 0.75 1.03

114702 3 40.62, 20.15, 120 2-12 20 10.03 0.27 0.69 0.94

114902 3 120, 20, 120 2-20 10 9.00 0.31 0.74 0.99

123902 3 20, 20, 0.4 20 10 8.00 0.16 0.81 0.83

Avg 0.40 0.75 0.95

C: SVM cost; Frel: number of features chosen in the feature selection relevance step; Ffinal: final number of features (after

the relevance and redundancy assessment steps); SSsample: sample sensitivity; SPsample: sample specificity; MMsample: sample

performance metric.
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A. Supplementary Results

A.2 Testing Phase

Table A.9: Testing parameters and performance in the Standard approach with ANOVA
F-test feature selection.

Patient
No. Test

Seizures

Preictal

(min)
T SSmethod (%) FPR/h SSsurr (%) P-value

Above

Chance

402 1 40.00 0.60 0.00 1.66 50.00±50.00 - No

8902 2 113.33 0.15 100.00 0.67 10.00±20.00 4.256×10-21 Yes

11002 2 66.67 0.45 50.00 1.11 50.00±38.73 - No

16202 4 26.67 0.25 75.00 12.59 65.00±27.84 3.144×10-2 Yes

21902 1 40.00 0.30 0.00 0.00 0.00±0.00 - No

23902 2 80.00 0.20 50.00 0.76 50.00±34.16 - No

26102 1 120.00 0.10 0.00 0.00 0.00±0.00 - No

30802 5 73.33 0.25 60.00 0.58 30.00±16.93 9.459×10-11 Yes

32702 2 86.67 0.40 100.00 0.64 30.00±24.49 8.655×10-16 Yes

45402 1 106.67 0.15 0.00 0.00 0.00±0.00 - No

46702 2 46.67 0.30 50.00 0.89 40.00±20.00 5.827×10-3 Yes

50802 2 26.67 0.25 0.00 0.81 23.33±28.09 - No

52302 2 60.00 0.45 50.00 1.07 48.33±30.23 3.843×10-1 No

53402 1 66.67 0.30 100.00 0.40 0.00±0.00 0.000 Yes

55202 5 86.67 0.65 20.00 0.00 0.00±0.00 0.000 Yes

56402 3 86.67 0.10 0.00 0.00 0.00±0.00 - No

58602 4 86.67 0.25 50.00 2.74 69.17±22.99 - No

59102 2 86.67 0.25 0.00 0.69 40.00±20.00 - No

60002 3 46.67 0.30 100.00 3.72 54.44±26.50 1.850×10-10 Yes

64702 2 60.00 0.85 0.00 0.00 0.00±0.00 - No

75202 4 53.33 0.25 100.00 8.84 74.17±23.70 1.141×10-6 Yes

80702 4 53.33 0.75 0.00 0.09 12.50±12.50 - No

81102 2 120.00 0.10 0.00 0.00 0.00±0.00 - No

85202 2 86.67 0.25 0.00 0.00 0.00±0.00 - No

93402 2 66.67 0.40 100.00 0.53 33.33±23.57 1.131×10-15 Yes

93902 3 60.00 0.25 66.67 3.41 73.33±23.41 - No

94402 4 86.67 0.10 0.00 0.00 0.00±0.00 - No

95202 4 20.00 0.20 25.00 0.33 11.67±14.04 9.269×10-6 Yes

96002 4 100.00 0.10 0.00 0.00 0.00±0.00 - No

98102 2 106.67 0.10 0.00 0.00 0.00±0.00 - No

98202 4 80.00 0.10 100.00 0.76 44.17±21.10 6.248×10-15 Yes

101702 2 100.00 0.10 50.00 0.37 36.67±22.11 1.470×10-3 Yes

102202 4 33.33 0.40 25.00 0.49 16.67±11.79 3.361×10-4 Yes

104602 2 100.00 0.45 0.00 0.00 0.00±0.00 - No

109502 2 40.00 0.40 100.00 1.85 53.33±22.11 1.674×10-12 Yes

110602 2 73.33 0.60 0.00 1.90 78.33±27.94 - No

112802 3 100.00 0.10 66.67 0.46 40.00±20.00 3.324×10-8 Yes

113902 4 53.33 0.50 0.00 0.00 0.00±0.00 - No

114702 6 86.67 0.50 0.00 0.00 0.00±0.00 - No

114902 4 66.67 0.75 75.00 0.55 40.83 ±15.12 3.199×10-13 Yes

123902 2 73.33 0.10 0.00 0.00 0.00±0.00 - No

Avg 36.91 1.17 Total 17

T: firing power threshold; SSmethod: seizure prediction method sensitivity.; SSsurr: surrogate sensitivity; Avg: average.
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A. Supplementary Results

Table A.10: Testing parameters and performance in the Hybrid approach with ANOVA
F-test feature selection.

Patient
No. Test

Seizures

Preictal

(min)
T SSmethod (%) FPR/h SSsurr (%) P-value

Above

Chance

402 1 40.00 0.60 0.00 1.74 46.67±49.89 - No

8902 2 84.67 0.15 100.00 0.68 28.33±35.78 5.783×10-12 Yes

11002 2 70.00 0.65 0.00 0.00 0.00±0.00 - No

16202 4 34.14 0.85 25.00 0.17 6.67±11.06 4.026×10-10 Yes

21902 1 61.41 0.30 0.00 0.00 0.00±0.00 - No

23902 2 80.00 0.10 100.00 1.72 53.33±36.36 6.773×10-8 Yes

26102 1 77.79 0.80 0.00 0.00 0.00±0.00 - No

30802 5 73.33 0.25 60.00 0.56 40.67±16.72 4.282×10-7 Yes

32702 2 85.39 0.60 100.00 0.21 45.00±15.00 1.161×10-18 Yes

45402 1 73.01 0.65 100.00 2.29 83.33±37.27 1.130×10-2 Yes

46702 2 60.73 0.90 0.00 0.00 0.00±0.00 - No

50802 2 78.34 0.55 50.00 0.00 0.00±0.00 0.000 Yes

52302 2 60.00 0.45 50.00 1.07 58.33±29.11 - No

53402 1 66.67 0.30 100.00 0.40 0.00±0.00 0.000 Yes

55202 5 46.87 0.35 60.00 0.75 38.00±20.88 1.955×10-6 Yes

56402 3 85.03 0.10 0.00 0.00 0.00±0.00 - No

58602 3 64.61 0.65 0.00 0.29 25.56±14.10 - No

59102 2 105.47 0.35 0.00 0.33 26.67±24.94 - No

60002 3 46.08 0.30 66.67 4.42 65.56±25.07 4.065×10-1 No

64702 2 85.71 0.25 0.00 0.00 0.00±0.00 - No

75202 4 53.33 0.25 100.00 8.78 80.83±20.09 8.630×10-6 Yes

80702 4 46.92 0.85 0.00 0.40 30.00±18.71 - No

81102 2 93.94 0.20 0.00 0.00 0.00±0.00 - No

85202 2 79.04 0.80 0.00 0.00 0.00±0.00 - No

93402 2 66.67 0.40 100.00 0.65 31.67±24.09 1.055×10-15 Yes

93902 3 47.23 0.60 0.00 0.00 0.00±0.00 - No

94402 4 90.61 0.10 0.00 0.00 0.00±0.00 - No

95202 4 65.86 0.40 50.00 0.73 28.33±15.46 1.270×10-8 Yes

96002 4 104.20 0.10 0.00 0.00 0.00±0.00 - No

98102 1 92.17 0.10 0.00 0.00 0.00±0.00 - No

98202 4 80.00 0.10 100.00 0.76 45.00±17.56 7.847×10-17 Yes

101702 2 69.50 0.30 50.00 2.03 50.00±31.62 - No

102202 4 30.00 0.90 25.00 0.08 6.67±11.06 4.026×10-10 Yes

104602 2 100.00 0.45 0.00 0.00 0.00±0.00 - No

109502 1 41.34 0.45 100.00 0.00 0.00±0.00 0.000 Yes

110602 2 71.67 0.65 100.00 0.71 26.67±24.94 4.141×10-16 Yes

112802 3 67.43 0.80 0.00 0.29 23.33±15.28 - No

113902 4 53.33 0.50 0.00 0.00 0.00±0.00 - No

114702 6 60.26 0.85 0.00 0.00 0.00±0.00 - No

114902 4 53.33 0.90 50.00 0.60 33.33±16.24 2.951×10-6 Yes

123902 2 80.13 0.10 0.00 0.00 0.00±0.00 - No

Avg 36.26 0.72 Total 17

T: firing power threshold; SSmethod: seizure prediction method sensitivity.; SSsurr: surrogate sensitivity; Avg: average.
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A. Supplementary Results

Table A.11: Testing parameters and performance in the Standard approach with
Kruskal-Wallis H-test feature selection.

Patient
No. Test

Seizures

Preictal

(min)
T SSmethod (%) FPR/h SSsurr (%) P-value

Above

Chance

402 1 33.33 0.75 0.00 1.40 43.33±49.55 - No

8902 2 86.67 0.15 100.00 0.68 36.67±36.36 1.383×10-10 Yes

11002 2 46.67 0.25 50.00 0.91 40.00±20.00 5.827×10-3 Yes

16202 4 20.00 0.20 25.00 13.14 50.00±20.41 - No

21902 1 40.00 0.30 0.00 0.00 0.00±0.00 - No

23902 2 26.67 0.20 50.00 1.80 40.00±32.66 5.498×10-2 No

26102 1 120.00 0.10 0.00 0.00 0.00±0.00 - No

30802 5 100.00 0.25 40.00 0.00 0.00±0.00 0.000 Yes

32702 2 86.67 0.30 100.00 0.64 25.00±25.00 2.440×10-16 Yes

45402 1 106.67 0.10 0.00 0.00 0.00±0.00 - No

46702 2 33.33 0.35 0.00 1.38 36.67±22.11 - No

50802 2 53.33 0.40 50.00 0.00 0.00±0.00 0.000 Yes

52302 2 40.00 0.40 0.00 1.74 50.00±28.87 - No

53402 1 80.00 0.15 100.00 0.00 0.00±0.00 0.000 Yes

55202 5 86.67 0.70 20.00 0.00 0.00±0.00 0.000 Yes

56402 3 86.67 0.10 0.00 0.00 0.00±0.00 - No

58602 4 86.67 0.20 75.00 3.30 69.17±26.37 1.216×10-1 No

59102 2 73.33 0.35 0.00 0.26 31.67±24.09 - No

60002 3 40.00 0.25 33.33 1.89 46.67±25.24 - No

64702 2 66.67 0.90 0.00 0.00 0.00±0.00 - No

75202 4 46.67 0.40 100.00 4.57 65.83±24.57 1.481×10-8 Yes

80702 4 53.33 0.70 25.00 0.20 10.83±15.39 1.427×10-5 Yes

81102 2 120.00 0.10 0.00 0.00 0.00±0.00 - No

85202 2 86.67 0.10 0.00 0.00 0.00±0.00 - No

93402 2 86.67 0.15 0.00 0.00 0.00±0.00 - No

93902 3 66.67 0.10 100.00 2.83 66.67±28.54 3.620×10-7 Yes

94402 4 86.67 0.10 0.00 0.00 0.00±0.00 - No

95202 4 20.00 0.15 50.00 0.78 14.17±15.39 1.544×10-13 Yes

96002 4 100.00 0.10 0.00 0.00 0.00±0.00 - No

98102 2 106.67 0.10 0.00 0.00 0.00±0.00 - No

98202 4 80.00 0.20 75.00 1.04 44.17±22.99 2.972×10-8 Yes

101702 2 86.67 0.10 0.00 0.68 36.67±22.11 - No

102202 4 26.67 0.50 0.00 0.57 15.00±12.25 - No

104602 2 80.00 0.10 0.00 0.00 0.00±0.00 - No

109502 2 46.67 0.50 100.00 1.28 35.00±26.30 3.515×10-14 Yes

110602 2 73.33 0.60 0.00 1.90 75.00±33.54 - No

112802 3 113.33 0.10 66.67 0.53 30.00±21.69 2.652×10-10 Yes

113902 4 53.33 0.55 0.00 0.00 0.00±0.00 - No

114702 6 86.67 0.45 0.00 0.00 0.00±0.00 - No

114902 4 40.00 0.10 75.00 2.05 51.67±15.72 4.093×10-9 Yes

123902 2 86.67 0.15 0.00 0.00 0.00±0.00 - No

Avg 30.12 1.06 Total 15

T: firing power threshold; SSmethod: seizure prediction method sensitivity.; SSsurr: surrogate sensitivity; Avg: average.
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A. Supplementary Results

Table A.12: Testing parameters and performance in the Hybrid approach with Kruskal-
Wallis H-test feature selection.

Patient
No. Test

Seizures

Preictal

(min)
T SSmethod (%) FPR/h SSsurr (%) P-value

Above

Chance

402 1 26.67 0.70 0.00 3.17 43.33±49.55 - No

8902 2 111.33 0.15 100.00 0.68 20.00 ±27.69 6.510×10-16 Yes

11002 2 100.00 0.80 0.00 0.00 0.00±0.00 - No

16202 4 34.14 0.90 25.00 0.00 0.00±0.00 0.000 Yes

21902 1 61.41 0.30 0.00 0.00 0.00±0.00 - No

23902 2 26.67 0.20 50.00 2.57 45.00±32.53 2.073×10-1 No

26102 1 84.46 0.15 0.00 0.00 0.00±0.00 - No

30802 5 100.00 0.25 40.00 0.00 0.00±0.00 0.000 Yes

32702 2 85.39 0.60 100.00 0.21 41.67±18.63 7.962×10-17 Yes

45402 1 73.01 0.50 100.00 2.89 93.33±24.94 8.039×10-2 No

46702 2 54.06 0.75 0.00 0.49 43.33±17.00 - No

50802 2 78.34 0.65 0.00 0.00 0.00±0.00 - No

52302 2 40.00 0.45 50.00 1.32 45.00±29.86 1.873×10-1 No

53402 1 33.33 0.25 100.00 8.67 70.00±45.83 7.129×10-4 Yes

55202 5 46.87 0.40 40.00 0.67 30.67±20.48 1.019×10-2 Yes

56402 3 85.03 0.10 0.00 0.00 0.00±0.00 - No

58602 3 64.61 0.50 0.00 0.86 47.78±22.25 - No

59102 2 92.14 0.35 50.00 0.31 28.33±24.78 2.845×10-5 Yes

60002 3 39.41 0.35 66.67 3.69 62.22±18.72 1.057×10-1 No

64702 2 85.71 0.80 0.00 0.00 0.00±0.00 - No

75202 4 46.67 0.40 100.00 4.56 65.00±23.80 4.935×10-9 Yes

80702 4 46.92 0.80 25.00 0.17 12.50±12.50 4.350×10-6 Yes

81102 2 93.94 0.10 0.00 0.00 0.00±0.00 - No

85202 2 79.04 0.80 0.00 0.00 0.00±0.00 - No

93402 2 86.67 0.15 0.00 0.00 0.00±0.00 - No

93902 3 47.23 0.55 0.00 0.00 0.00±0.00 - No

94402 4 90.61 0.10 0.00 0.00 0.00±0.00 - No

95202 4 65.86 0.25 75.00 1.52 51.67±27.34 3.885×10-5 Yes

96002 4 104.20 0.10 0.00 0.00 0.00±0.00 - No

98102 1 92.17 0.10 0.00 0.00 0.00±0.00 - No

98202 4 80.00 0.20 75.00 1.04 49.17±22.81 6.058×10-7 Yes

101702 2 76.17 0.30 50.00 1.68 55.00±23.63 - No

102202 4 50.00 0.90 0.00 0.18 13.33±12.47 - No

104602 2 80.00 0.10 0.00 0.00 0.00±0.00 - No

109502 1 34.68 0.35 100.00 0.41 20.00±40.00 5.969×10-12 Yes

110602 2 71.67 0.65 50.00 1.14 38.33±21.15 2.956×10-3 Yes

112802 3 47.43 0.60 66.67 1.28 36.67±21.69 1.646×10-8 Yes

113902 4 53.33 0.55 0.00 0.00 0.00±0.00 - No

114702 6 60.26 0.85 0.00 0.00 0.00±0.00 - No

114902 4 40.00 0.10 75.00 2.05 45.83±20.50 9.470×10-9 Yes

123902 2 40.13 0.50 0.00 0.00 0.00±0.00 - No

Avg 32.64 0.97 Total 15

T: firing power threshold; SSmethod: seizure prediction method sensitivity.; SSsurr: surrogate sensitivity; Avg: average.
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A. Supplementary Results

Table A.13: Testing parameters and performance in the Standard approach with AUC
feature selection.

Patient
No. Test

Seizures

Preictal

(min)
T SSmethod (%) FPR/h SSsurr (%) P-value

Above

Chance

402 2 120.00 0.10 0.00 0.00 0.00±0.00 - No

8902 2 60.00 0.40 0.00 0.67 20.00±24.49 - No

11002 2 80.00 0.75 0.00 0.00 0.00±0.00 - No

16202 4 20.00 0.25 100.00 23.07 60.00±21.98 5.233×10-11 Yes

21902 1 60.00 0.40 0.00 0.00 0.00±0.00 - No

23902 2 20.00 0.10 100.00 5.48 33.33±32.49 3.267×10-12 Yes

26102 1 120.00 0.10 0.00 0.00 0.00±0.00 - No

30802 5 80.00 0.10 100.00 2.53 64.67±19.10 3.606×10-11 Yes

32702 2 80.00 0.30 100.00 0.60 28.33±24.78 6.323×10-16 Yes

45402 1 120.00 0.20 100.00 1.26 66.67±47.14 3.361×10-4 Yes

46702 2 53.33 0.35 50.00 0.88 30.00±24.49 6.747×10-5 Yes

50802 2 60.00 0.20 50.00 0.22 11.67±21.15 5.691×10-11 Yes

52302 2 26.67 0.45 50.00 6.75 73.33±30.91 - No

53402 1 40.00 0.40 0.00 2.15 50.00±50.00 - No

55202 5 80.00 0.55 0.00 0.08 0.00±0.00 - No

56402 3 86.67 0.10 0.00 0.00 0.00±0.00 - No

58602 4 80.00 0.15 75.00 2.22 69.17±17.89 4.485×10-2 Yes

59102 2 66.67 0.45 0.00 0.25 36.67±22.11 - No

60002 3 26.67 0.20 33.33 7.27 60.00±30.31 - No

64702 2 40.00 0.45 50.00 0.71 20.00±24.49 1.577×10-7 Yes

75202 4 86.67 0.10 0.00 0.00 0.00±0.00 - No

80702 4 46.67 0.35 50.00 1.01 40.00±22.91 1.289×10-2 Yes

81102 2 93.33 0.10 0.00 0.00 0.00±0.00 - No

85202 2 86.67 0.10 0.00 0.00 0.00±0.00 - No

93402 2 120.00 0.10 0.00 0.00 0.00±0.00 - No

93902 3 93.33 0.25 0.00 0.00 0.00±0.00 - No

94402 4 93.33 0.10 0.00 0.00 0.00±0.00 - No

95202 4 20.00 0.15 50.00 0.76 15.83±16.44 2.403×10-12 Yes

96002 4 86.67 0.10 0.00 0.00 0.00±0.00 - No

98102 2 86.67 0.10 0.00 0.00 0.00±0.00 - No

98202 4 120.00 0.10 0.00 0.00 0.00±0.00 - No

101702 2 86.67 0.15 0.00 0.68 38.3±21.15 - No

102202 4 26.67 0.35 50.00 0.95 20.83±11.33 1.273×10-14 Yes

104602 2 100.00 0.45 50.00 0.00 0.00±0.00 0.000 Yes

109502 2 33.33 0.40 50.00 2.01 50.00±28.87 - No

110602 2 93.33 0.70 50.00 0.62 0.00±0.00 0.000 Yes

112802 3 86.67 0.10 0.00 0.00 0.00±0.00 - No

113902 4 53.33 0.15 100.00 0.87 38.33±22.11 1.625×10-15 Yes

114702 6 86.67 0.10 0.00 0.00 0.00±0.00 - No

114902 4 93.33 0.15 0.00 0.00 0.00±0.00 - No

123902 2 66.67 0.10 50.00 1.06 41.67±18.63 1.130×10-2 Yes

Avg 30.69 1.51 Total 16

T: firing power threshold; SSmethod: seizure prediction method sensitivity.; SSsurr: surrogate sensitivity; Avg: average.
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A. Supplementary Results

Table A.14: Testing parameters and performance in the Hybrid approach with AUC
feature selection.

Patient
No. Test

Seizures

Preictal

(min)
T SSmethod (%) FPR/h SSsurr (%) P-value

Above

Chance

402 2 120.00 0.10 0.00 0.00 0.00±0.00 - No

8902 2 51.33 0.15 0.00 0.65 0.00±0.00 - No

11002 2 20.00 0.90 0.00 0.16 6.67±17.00 - No

16202 4 34.14 0.90 50.00 0.00 0.00±0.00 0.000 Yes

21902 1 61.41 0.40 0.00 0.47 50.00±50.00 - No

23902 2 20.00 0.10 100.00 5.51 51.67±39.76 1.797×10-7 Yes

26102 1 84.46 0.10 0.00 0.00 0.00±0.00 - No

30802 5 80.00 0.10 100.00 2.33 61.33±23.06 3.157×10-10 Yes

32702 2 85.39 0.60 100.00 0.20 40.00±20.00 2.440×10-16 Yes

45402 1 79.67 0.75 0.00 0.00 0.00±0.00 - No

46702 2 60.73 0.20 50.00 0.59 33.33±23.57 3.361×10-4 Yes

50802 2 78.34 0.40 50.00 0.24 15.00±22.91 2.269×10-9 Yes

52302 1 20.00 0.40 100.00 11.55 50.00±50.00 4.350×10-6 Yes

53402 1 40.00 0.40 0.00 2.16 60.00±48.99 - No

55202 5 66.87 0.55 20.00 0.00 0.00±0.00 0.000 Yes

56402 3 18.37 0.70 66.67 1.35 23.33±21.34 4.197×10-12 Yes

58602 3 64.61 0.65 0.00 0.29 26.67±13.33 - No

59102 2 58.81 0.55 0.00 0.00 0.00±0.00 - No

60002 3 32.74 0.30 66.67 5.44 66.67±25.82 - No

64702 2 32.38 0.40 0.00 0.50 21.67±24.78 - No

75202 4 86.67 0.10 0.00 0.00 0.00±0.00 - No

80702 4 46.92 0.90 0.00 0.00 0.00±0.00 - No

81102 2 93.94 0.15 0.00 0.00 0.00±0.00 - No

85202 2 79.04 0.20 50.00 0.00 5.00±15.00 2.440×10-16 Yes

93402 2 120.00 0.10 0.00 0.00 0.00±0.00 - No

93902 3 47.23 0.50 0.00 0.00 0.00±0.00 - No

94402 4 90.61 0.10 0.00 0.00 0.00±0.00 - No

95202 4 79.19 0.65 0.00 0.00 0.00±0.00 - No

96002 4 104.20 0.10 0.00 0.00 0.00±0.00 - No

98102 1 92.17 0.10 0.00 0.00 0.00±0.00 - No

98202 4 120.00 0.10 0.00 0.00 0.00±0.00 - No

101702 2 76.17 0.40 50.00 0.77 45.00±15.00 4.154×10-2 Yes

102202 4 70.00 0.75 0.00 0.00 0.00±0.00 - No

104602 2 100.00 0.45 50.00 0.00 0.00±0.00 0.000 Yes

109502 1 41.34 0.70 100.00 0.00 0.00±0.00 0.000 Yes

110602 2 65.00 0.35 100.00 1.92 63.33±36.36 3.839×10-6 Yes

112802 3 60.77 0.45 66.67 0.73 36.67±21.69 1.646×10-8 Yes

113902 4 53.33 0.15 100.00 0.85 33.33±18.63 2.254×10-18 Yes

114702 6 60.26 0.80 0.00 0.00 0.00±0.00 - No

114902 4 93.33 0.15 0.00 0.00 0.00±0.00 - No

123902 2 80.13 0.10 0.00 0.00 0.00±0.00 - No

Avg 29.76 0.87 Total 16

T: firing power threshold; SSmethod: seizure prediction method sensitivity.; SSsurr: surrogate sensitivity; Avg: average.
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Table A.15: Testing parameters and performance in the Standard approach with feature-
target correlation feature selection.

Patient
No. Test

Seizures

Preictal

(min)
T SSmethod (%) FPR/h SSsurr (%) P-value

Above

Chance

402 2 120.00 0.10 0.00 0.00 0.00±0.00 - No

8902 2 53.33 0.15 50.00 0.72 31.67±30.23 1.402×10-3 Yes

11002 2 80.00 0.75 0.00 0.00 0.00±0.00 - No

16202 4 26.67 0.30 50.00 10.60 61.67±23.92 - No

21902 1 120.00 0.10 100.00 0.00 0.00±0.00 0.000 Yes

23902 2 26.67 0.15 100.00 2.57 53.33±28.67 6.018×10-10 Yes

26102 1 120.00 0.10 0.00 0.00 0.00±0.00 - No

30802 5 80.00 0.35 60.00 0.18 14.67±8.84 1.136×10-22 Yes

32702 2 80.00 0.25 100.00 0.67 43.33±17.00 1.496×10-17 Yes

45402 1 20.00 0.30 100.00 27.24 66.67±47.14 3.361×10-4 Yes

46702 2 40.00 0.35 50.00 1.72 46.67±28.67 2.681×10-1 No

50802 2 60.00 0.25 50.00 0.22 25.00±25.00 4.350×10-6 Yes

52302 2 86.67 0.10 0.00 0.00 0.00±0.00 - No

53402 1 60.00 0.10 100.00 1.75 50.00±50.00 4.350×10-6 Yes

55202 5 73.33 0.20 60.00 0.61 35.33±18.39 2.972×10-8 Yes

56402 3 86.67 0.10 0.00 0.00 0.00±0.00 - No

58602 4 80.00 0.15 75.00 1.04 50.00±19.36 6.073×10-8 Yes

59102 2 80.00 0.35 0.00 0.29 30.00±24.49 - No

60002 3 66.67 0.10 100.00 1.95 61.11±24.47 9.950×10-10 Yes

64702 2 86.67 0.10 0.00 0.00 0.00±0.00 - No

75202 4 86.67 0.10 25.00 0.76 37.50±14.07 - No

80702 4 46.67 0.60 25.00 0.29 17.50 ±17.26 1.319×10-2 Yes

81102 2 86.67 0.10 0.00 0.00 0.00±0.00 - No

85202 2 86.67 0.10 0.00 0.00 0.00±0.00 - No

93402 2 20.00 0.75 0.00 0.15 0.00±0.00 - No

93902 3 93.33 0.25 0.00 0.00 0.00±0.00 - No

94402 4 86.67 0.10 0.00 0.11 7.50±11.46 - No

95202 4 20.00 0.20 25.00 0.66 11.67±19.08 3.781×10-4 Yes

96002 4 20.00 0.25 0.00 3.51 41.67±29.11 - No

98102 2 120.00 0.10 0.00 0.00 0.00±0.00 - No

98202 4 66.67 0.30 100.00 1.74 56.67±22.30 1.165×10-11 Yes

101702 2 86.67 0.10 0.00 0.00 0.00±0.00 - No

102202 4 26.67 0.45 0.00 0.68 17.50±11.46 - No

104602 2 106.67 0.35 50.00 0.00 0.00±0.00 0.000 Yes

109502 2 86.67 0.10 0.00 0.30 26.67±24.94 - No

110602 2 66.67 0.35 100.00 0.90 15.00±22.91 8.465×10-19 Yes

112802 3 86.67 0.10 0.00 0.00 0.00±0.00 - No

113902 4 53.33 0.30 25.00 0.09 0.00±0.00 0.000 Yes

114702 6 20.00 0.55 16.67 0.68 15.00±13.84 2.609×10-1 No

114902 4 86.67 0.70 0.00 0.00 0.00±0.00 - No

123902 2 73.33 0.15 50.00 0.72 45.00±15.00 4.154×10-2 Yes

Avg 34.43 1.47 Total 18

T: firing power threshold; SSmethod: seizure prediction method sensitivity.; SSsurr: surrogate sensitivity; Avg: average.
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Table A.16: Testing parameters and performance in the Hybrid approach with feature-
target correlation feature selection.

Patient
No. Test

Seizures

Preictal

(min)
T SSmethod (%) FPR/h SSsurr (%) P-value

Above

Chance

402 2 120.00 0.10 0.00 0.00 0.00±0.00 - No

8902 2 51.33 0.15 0.00 0.64 0.00±0.00 - No

11002 2 20.00 0.85 0.00 0.16 3.33±12.47 - No

16202 4 34.14 0.90 50.00 0.00 0.00±0.00 0.000 Yes

21902 1 48.08 0.40 0.00 0.00 0.00±0.00 - No

23902 2 26.67 0.15 100.00 2.57 46.67±33.99 1.303×10-9 Yes

26102 1 84.46 0.10 0.00 0.00 0.00±0.00 - No

30802 5 80.00 0.35 60.00 0.16 18.00±13.01 3.547×10-17 Yes

32702 2 85.39 0.60 100.00 0.20 38.33±21.15 5.122×10-16 Yes

45402 1 79.67 0.65 0.00 0.00 0.00±0.00 - No

46702 2 27.39 0.15 50.00 0.68 20.00±24.49 1.577×10-7 Yes

50802 2 78.34 0.50 50.00 0.00 0.00±0.00 0.000 Yes

52302 2 86.67 0.10 0.00 0.00 0.00±0.00 - No

53402 1 60.00 0.10 100.00 1.75 43.33±49.55 5.165×10-7 Yes

55202 5 66.87 0.55 0.00 0.00 0.00±0.00 - No

56402 3 85.03 0.10 0.00 0.00 0.00±0.00 - No

58602 3 57.94 0.75 0.00 0.13 24.44±14.74 - No

59102 2 85.47 0.35 0.00 0.30 25.00±25.00 - No

60002 3 32.74 0.35 66.67 3.41 50.00±23.96 3.969×10-4 Yes

64702 2 92.38 0.60 0.00 0.00 0.00±0.00 - No

75202 4 86.67 0.10 25.00 0.76 39.17±15.39 - No

80702 4 46.92 0.70 25.00 0.08 8.33±11.79 1.069×10-8 Yes

81102 2 93.94 0.10 0.00 0.00 0.00±0.00 - No

85202 2 79.04 0.25 0.00 0.20 15.00±22.91 - No

93402 2 20.00 0.75 0.00 0.18 0.00±0.00 - No

93902 3 47.23 0.50 0.00 0.00 0.00±0.00 - No

94402 4 90.61 0.15 0.00 0.00 0.00±0.00 - No

95202 4 45.86 0.50 0.00 0.10 4.17±9.32 - No

96002 4 37.53 0.40 50.00 0.25 7.50±11.46 8.465×10-19 Yes

98102 1 92.17 0.10 0.00 0.00 0.00±0.00 - No

98202 4 66.67 0.30 100.00 1.74 62.50±19.09 9.119×10-12 Yes

101702 2 69.50 0.45 50.00 0.63 23.33±24.94 1.554×10-6 Yes

102202 4 70.00 0.75 0.00 0.00 0.00±0.00 - No

104602 2 106.67 0.35 50.00 0.00 0.00±0.00 0.000 Yes

109502 1 68.01 0.15 0.00 0.53 26.67±44.22 - No

110602 2 58.33 0.30 100.00 1.01 35.00±22.91 1.047×10-15 Yes

112802 3 40.77 0.55 33.33 1.10 27.78±21.23 8.468×10-2 No

113902 4 53.33 0.30 25.00 0.09 0.00±0.00 0.000 Yes

114702 6 60.26 0.80 0.00 0.00 0.00±0.00 - No

114902 4 86.67 0.70 0.00 0.00 0.00±0.00 - No

123902 2 13.47 0.90 0.00 0.60 16.67±23.57 - No

Avg 25.24 0.42 Total 15

T: firing power threshold; SSmethod: seizure prediction method sensitivity.; SSsurr: surrogate sensitivity; Avg: average.
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A.3 Visual Inspection of R-R Interval Series and

Features

In order to draw some conclusions about the use of unsupervised learning

methodologies to determine the preictal interval, a visual inspection of R-R In-

tervals and features was carried out. The aim of this analysis was to understand if

there were alterations in the R-R Interval series for each seizure and whether such

changes were reflected in the features. The complete results of this analysis are

presented in Table A.17, where we specified which features present alterations.

In summary, it was important to understand if it was possible to find acceptable

clustering solutions for the seizures for which alterations were visually detected.

Figure A.1 depicts in colours whether or not clustering solutions were accepted,

while the diamond means that it was possible to visualize alterations.

Figure A.1: Representation of the seizures with and without accepted clustering preictal
solutions in comparison with the results of the visual inspection of features and R-R
Intervals. The colour scale indicates whether clustering solutions were accepted for each
seizure. The diamond represents seizures for which it was possible to visualize alterations.

Visual inspection revealed alterations for 168 (70.6%) of the 238 seizures. Ear-

lier, it was mentioned that the unsupervised learning approach yielded solutions

for 97 (41%) [22]. Out of these 97 seizures, alterations were found visually for 72.

Thus, there are 25 seizures for which clustering preictals were found but no alter-

ations could be found in the visual inspection. This may be simply due to human

error in analyzing the seizure data. However, it should be considered that the in-

formation analyzed was not the same, since the clustering analysis focused on the

feature data and the visual inspection on the R-R Interval series (feature data is

only analyzed if there are alterations in the R-R Interval series). This fact can
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also account for differences in the results. Additionally, it is also possible that the

clustering analysis mistakenly identified noise samples, for instance, as the preictal

interval.

There are also 96 seizures for which changes were visualized but no clustering

solution was accepted. This is likely related to the fact that the study was limited

to searching for solutions comprised of two clusters, while such alterations might be

better reflected in solutions with higher numbers of clusters. Thus, a future step

would be to perform a more complete clustering analysis, considering solutions with

various numbers of clusters.

Table A.17: Results of the visual inspection of the R-R Intervals and features. For each
seizure, the intervals during which there are alterations in the R-R Interval are stated,
and which features (if any) show alterations during such intervals. Yes means that the
majority of features display alterations. The inspection focuses only on the 120-0 min
before seizure onset.

Patient Seizure
Onset

Time

R-R Interval (min

before onset)

Time-domain

Features

Frequency-domain

Features

Non-linear

Features

402

1 22h45 92-82 Yes -
DFA (α1 & α2),

RQA (Ent TT)

2 21h27 15-0 Yes LF/HF -

3 02h13 - - - -

4 08h53 Noise in 92-0 - - -

5 08h57 Noise in 45-0; 80-71 Yes Yes Yes

8902

1 23h51 80-50 - LF, LFn, LF/HF
DFA (α1 & α2),

LLE

2 23h03 55-24 - LF/HF DFA α1, LLE

3 05h37 65-50 - VLF, TP Yes

4 00h35 80-50 - LF, LFn, LF/HF
DFA (α1 & α2),

LLE

5 05h10 66-51 Yes TP, VLF, HF Yes

11002

1 00h00 100-0
RRMean, RRMin,

RRMax
HF, LF/HF Yes

2 06h38 - - - -

3 15h16 - - - -

4 08h18 50-0 Yes Yes Yes

5 15h40 66-33 Yes - SD1, SD2

16202

1 04h34 86-0 Yes Yes Yes

2 06h05 70-60, 27-7 Yes Yes Yes

3 05h07 20-0 Yes Yes Yes

4 18h48 66-15 RRMean, RRMax LF/HF LLE

5 03h34 7-0 Yes Yes Yes

6 13h50 91-80, 25-15 Yes - -

7 19h27 41-0 Yes HF, LF/HF
SD1, SD2, DFA α2,

RQA (L Ent)

21902

1 16h16 - - - -

2 08h40 58-0 Yes LF, HF, LF/HF Yes

3 20h32 58-0 RRMean LF/HF -

4 06h50 - - - -

23902

1 10h18 153-0 Yes LF, HF, LF/HF SD1, DFA α1

2 20h50 Noise in 47-32 - - -

3 11h18 Noise in 40-29 - - -

4 16h48 - - - -

5 22h17 - - - -

26102

1 15h31 27-0 Yes LF, HF, LFn, HFn Yes

2 08h33 - - - -

3 07h52 62-0 Yes LF, HF SD1, SD2

4 11h36 - - - -

TP: Total Power; VLF: VLF Power; LF: LF Power; HF: HF Power; LFn: LF Norm; HFn: HF Norm.
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Table A.17: Results of the visual inspection of the R-R Intervals and features.

Patient Seizure
Onset

Time

R-R Interval

(min)

Time-domain

Features

Frequency-domain

Features

Non-linear

Features

30802

1 04h33 32-23 Yes LF/HF Yes

2 04h52 160-94
NN50, pNN50,

SDSD, RMSSD
LF, HF

SD1, SD1/SD2,

RQA Lmax

3 10h58 40-9 Yes
HF, LFn, HFn,

LF/HF

SD1, SD1/SD2,

DFA (α1 & α2),

LLE

4 22h58 15-0 Yes LF, LF/HF SD2, DFA α1

5 05h49 90-78 Yes HF, LF/HF SD1, SD2, LLE

6 02h48 87-75, 15-0 Yes Yes Yes

7 07h48 82-35
SDNN, RRMean,

RRMin, RRVar
Yes Yes

8 03h15 32-0

pNN50, NN50,

RMSSD, SDSD,

RRMean

LF, HF SD1, DFA α1

32702

1 08h25 95-85
SDNN, RRMean,

RRVar
TP, VLF

SD2, SD1/SD2,

ApEn, SampEn

2 10h22 140-0
RRMean, RRMax,

RRVar
Yes

SD1, SD2, ApEn,

SampEn

3 10h13 131-0 Yes Yes
SD1, ApEn,

SampEn

4 17h03 - - - -

5 09h29 90-0 Yes LF, HF, LF/HF Yes

45402

1 01h48 100-95, 26-20 Yes Yes Yes

2 08h11
Noise in 38-34,

16-10; 34-0

NN50, pNN50,

SDSD, RMSSD
HF SD1, SD2, CD

3 14h56 130-96 Yes LF, HF, LF/HF SD1, SD2

4 15h13 16-0 Yes Yes SD1, SD2

46702

1 15h56 120-108 Yes LF, HF SD1

2 06h16 - - - -

3 17h06 53-0 Yes Yes Yes

4 02h02 33-7 Yes LF, HF, LF/HF Yes

5 06h45
Gradual increase in

HRV; 67-37, 8-0
Yes Yes Yes

50802

1 02h44 60-0 Yes HF, LF, LF/HF Yes

2 06h37 - - - -

3 12h39 45-30 Yes Yes Yes

4 22h50 - - - -

5 01h18 96-19 Yes LF/HF SD1, DFA α1

52302

1 06h29 20-0
NN50, pNNN50,

RMSSD, SDSD
- Yes

2 11h31 Noise in 98-73 - - -

3 16h27 - - - -

4 02h31 Very noisy - - -

5 09h53 Noise in 24-4; 75-62
NN50, pNN50,

RRMean, RRMin
- -

53402

1 19h09 155-120 Yes LF, HF SD1, SD2

2 08h16 50-0 Yes LF, HF, LF/HF SD1, SD2, SD1/SD2

3 05h46 108-60 NN50, pNN50 LF, HFn, LF/HF Yes

4 19h02 Very noisy - - -

5 09h17 108-10 Yes LF, HF, LF/HF
SD1, SD/SD2, RQA

Rec

55202

1 07h02 - - - -

2 09h55 No HRV in 48-0 - - -

3 18h15 84-78, 56-32 Yes Yes Yes

4 08h09 52-0

NN50, pNN50,

RMSSD, SDSD,

RRMean

HF Yes

5 17h47 90-68 Yes Yes Yes

6 09h57 129-0
RMSSD, SDSD,

RRMean, RRMax
HF, LF/HF

SD1, SD1/SD2,

DFA α1

7 15h34 Very noisy; 34-21 RRMean - -

8 14h11 17-0 Yes LF/HF
SD2, DFA α1, RQA

Rec

56402

1 08h17 103-87, 54-0 Yes LF, HF, LFn, HFn Yes

2 21h11 - - - -

3 01h30 62-57 Yes Yes Yes

4 09h13 62-0 Yes Yes Yes

5 06h29 126-67, 20-0 Yes Yes Yes

6 10h47
Gradual increase in

HRV
Yes Yes -

TP: Total Power; VLF: VLF Power; LF: LF Power; HF: HF Power; LFn: LF Norm; HFn: HF Norm.
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Table A.17: Results of the visual inspection of the R-R Intervals and features.

Patient Seizure
Onset

Time

R-R Interval

(min)

Time-domain

Features

Frequency-domain

Features

Non-linear

Features

58602

1 09h11 35-0 Yes LF, HF, LF/HF Yes

2 03h29 65-24 Yes LF, HF, LF/HF Yes

3 19h52 56-0 Yes HF, LF/HF Yes

4 09h01 25-0

RMSSD, SDSD,

RRMean, RRMin,

RRMax

LF/HF
DFA α1, LLE, RQA

Lmax

5 15h41
Gradual increase in

HRV
Yes LF, HF, LF/HF Yes

6 20h06 - - - -

7 02h31 31-0 NN50, pNN50 Yes Yes

59102

1 08h54 Noise in 96-75; 51-23 RRMean, RRmin LFn, HFn Yes

2 15h41 50-0

RMSSD, SDSD,

RRMean, RRMax,

RRVar

- -

3 09h56 Noise in 70-53; 17-0 Yes LF, HF, LF/HF Yes

4 19h51 - - - -

5 21h12 - - - -

60002

1 02h45 50-46, 7-0 Yes Yes Yes

2 02h22 33-17 Yes Yes Yes

3 12h21 71-50, 19-0 Yes Yes Yes

4 05h40 - - - -

5 00h17 60-7 Yes Yes Yes

6 22h18 96-66 Yes Yes Yes

64702

1 13h53 115-50 Yes TP, VLF, LF/HF Yes

2 04h23 - - - -

3 18h59 123-97 Yes HF, LF/HF Yes

4 19h50 112-93 Yes LF, HF, LF/HF Yes

5 03h41 88-120 Yes LF, HF SD1

75202

1 23h37 67-46, 31-26 Yes Yes Yes

2 01h10 - - - -

3 21h33 - - - -

4 19h27 - - - -

5 09h46 Noise in 94-83; 160-0 Yes LF, HF, LF/HF SD1, DFA α1

6 17h43 - - - -

7 06h25 105-83 Yes - SD1, DFA α1

80702

1 05h03 64-42, 22-0

NN50, pNN50,

RMSSD, SDSD,

RRMean

Yes Yes

2 08h43 27-0

RMSSD, SDSD,

RRMean, RRMin,

RRMax

LF/HF Yes

3 20h43 98-76

NN50, pNN50,

EMSSD, SDSD,

RRMean

HF, LF/HF Yes

4 07h46 13-0
RMSSD, SDSD,

RRMean
LFn, HFn, LF/HF Yes

5 12h27 35-0
RMSSD, SDSD,

RRMean, RRMax
HF, LF/HF

SD1, DFA (α1 &

α2)

6 17h54 - - - -

7 08h53 No HRV in 47-0

81102

1 20h48 - - - -

2 01h05 108-50

NN50, pNN50,

RMSSD, SDSD,

RRMean

LF, HF, LFn, HFn Yes

3 10h30 150-0

RMSSD, SDSD,

RRMean, RRMin,

RRMax

LF, LF/HF
SD1, SD1/SD2,

DFA α1

4 10h44
Noise in 130-113;

145-112
Yes LF, HF, LF/HF SSD1, DFA α1

5 10h42 167-0 Yes LF, HF SD1

85202

1 23h37 124-106

SDNN, RRMean,

RRmin, RRMax,

RRVar

Yes Yes

2 16h51 53-29 Yes Yes Yes

3 04h24 46-0 Yes Yes Yes

4 16h08 137-71
RMSSD, SDSD,

RRMean, RRVar
LF, LF/HF Yes

5 01h51 30-0 Yes Yes
SD1, SD2, DFA (α1

& α2), LLE

TP: Total Power; VLF: VLF Power; LF: LF Power; HF: HF Power; LFn: LF Norm; HFn: HF Norm.
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Table A.17: Results of the visual inspection of the R-R Intervals and features.

Patient Seizure
Onset

Time

R-R Interval

(min)

Time-domain

Features

Frequency-domain

Features

Non-linear

Features

93402

1 22h17 144-104, 46-0

NN50, pNN50,

SDNN, RMSSD,

SDSD

TP, VLF, LF, HF Yes

2 10h21 134-97
NN50, pNN50,

RMSSD, SDSD
TP, HF SD1, SD1/SD2, LLE

3 23h20 110-89, 27-0

NN50, pNN50,

RMSSD, SDSD,

RRMean

HF, LF/HF Yes

4 00h59 148-106 Yes LF, HF, LF/HF Yes

5 06h26 120-69, 56-0 Yes LF, HF, LF/HF Yes

93902

1 08h39 32-0
RRMean, RRMin,

RRMax, RRVar
TP, VLF, LF/HF SD2, SD1/SD2

2 16h02 - - - -

3 02h31 - - - -

4 18h48 Noise in 134-94 - - -

5 04h02 35-0 Yes TP, VLF, LF, HF Yes

6 09h21 81-0
RRMean, RRMin,

RRMax
LF/HF -

94402

1 15h29 - - - -

2 11h02 Noise in 60-40; 91-0 Yes TP, VLF, LF, HF SD1, SD2

3 18h05 - - - -

4 01h36 112-0 RRMean, RRMin
LF, LFn, HFn,

LF/HF
Yes

5 16h10 65-26 RRMean, RRMin HF SD1, DFA α1

6 02h48 38-0

NN50, pNN50,

SDNN, RMSSD,

SDSD

Yes Yes

7 08h16 Noise in 15-0 - - -

95202

1 01h29 Noise in 60-38; 32-0 Yes HF, LF/HF Yes

2 15h00 Noise in 123-103 - - -

3 01h35 56-40 Yes Yes Yes

4 14h13 122-0
RMSSD, SDSD,

RRMean, RRMax
HF

SD1, SD1/SD2,

ApEn, SampEn

5 23h30 Noise in 76-61 - - -

6 23h55 63-34
RMSSD, SDSD,

RRMean
LF/HF SD1, SD2

7 00h04 111-0 Yes -
SD1, SD2, RQA (L

Ent)

96002

1 17h10 Noise in 80-0 - - -

2 10h26 - - - -

3 17h46 195-92, 14-0 Yes Yes Yes

4 00h05 26-0
RMSSD, SDSD,

RRMean, RRMin
- SD1, RQA Ent

5 00h44 84-77
RRMean, RRMin,

RRMax, RRVar
- SD2

6 18h57 85-41
RRMean, RRMin,

RRMax, RRVar
- RQA Lmax

7 06h20 Noise in 6-1; 25-0 Yes Yes Yes

98102

1 07h17 - - - -

2 18h49 95-75 Yes LF, HF, LF/HF Yes

3 05h18 - - - -

4 06h11 8-0 Yes Yes Yes

5 04h07 12-0 Yes LF, LF/HF
SD1, SD1/SD2,

DFA α1

98202

1 04h50 27-0
SDNN, RRMean,

RRMin, RRMax
TP, LF, LF/HF Yes

2 20h38 85-0 Yes - -

3 07h16 108-0 RRMean, RRMin LF, LF/HF
SD1/SD2, AppEn,

SampEn, LLE

4 12h16 22-0 Yes Yes Yes

5 01h22 - - - -

6 07h55 56-0 Yes HF, LF/HF LLE

7 16h57 23-0 RRMean, RRMax - -

101702

1 07h35 - - - -

2 12h29 28-0
RMSSD, SDSD,

RRMean, RRMax
LF/HF

SD1, RQA (Det,

Ent, Lam)

3 19h33 135-86, 41-30 RRMean, RRVar LF/HF SD1, SD2, CD

4 07h35 - - - -

5 07h35 - - - -

TP: Total Power; VLF: VLF Power; LF: LF Power; HF: HF Power; LFn: LF Norm; HFn: HF Norm.
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A. Supplementary Results

Table A.17: Results of the visual inspection of the R-R Intervals and features.

Patient Seizure
Onset

Time

R-R Interval

(min)

Time-domain

Features

Frequency-domain

Features

Non-linear

Features

102202

1 22h50 41-0
RMSSD, SDSD,

RRMean
LF/HF -

2 15h36
Gradual increase in

HRV
Yes HF, LF/HF SD1, SD1/SD2

3 05h47 61-17
NN50, pNN50,

RMSSD, SDSD
HF, LF/HF

DFA α1, RQA (Det,

L, Ent TT)

4 22h14 - - - -

5 14h07 115-100 Yes HF, LF/HF SD1

6 06h16 110-85 Yes LF, HF, LF/HF Yes

7 15h54 - - - -

104602

1 15h35 - - - -

2 23h46 Very noisy - - -

3 06h24 - - - -

4 12h30 - - - -

5 22h44 51-32 Yes LF, HF, LF/HF SD1, DFA α1

109502

1 10h00
Noise in 74-43;

117-92
pNN50, RRMean LF2HF SD1

2 19h42 - - - -

3 02h17 40-0 pNN50 HF SD1

4 07h56 90-70 RMSSD, pNN50

5 10h17
Noise in 83-55;

124-101
Yes LF/HF SD1

110602

1 10h20 52-38 - - ApEn

2 17h39 64-52 Yes HF, LF/HF SD1

3 08h30 - - - -

4 21h34 75-10 Yes Total, VLF Yes

5 11h28 45-0 Yes Yes -

112802

1 17h05 61-47 Yes Yes SD2

2 07h49 40-0 Yes - -

3 15h36 - - - -

4 06h52 18-0 Yes LFn, HFn SD1/SD2

5 11h54 18-0 Yes - -

6 08h39
Decrease in HRV in

120-0
Yes Yes Yes

113902

1 23h32 - - - -

2 16h55 20-15 Yes HF, LF/HF SD1, DFA α1

3 05h17 - - - -

4 13h46 57-28 Yes Yes SD1, SD2

5 22h40 108-94 Yes - -

6 10h00 13-0 Yes - -

7 16h53 92-70, 26-16 Yes Yes Yes

114702

1 20h52 Very noisy - - -

2 14h45
Noise in 119-95;

32-18
Yes Yes Yes

3 04h09 - - - -

4 09h50
Noise in 141-115;

66-41
Yes LF, HF SD1

5 14h27 67-50 Yes LF, HF, LFn, HFn Yes

6 11h03 - - - -

7 02h21 97-91
SDNN, RRMean,

RRMin, RRVar
Yes Yes

8 13h27 142-79

RMSSD, SDSD,

RRMean, RRMin,

RRMax

Yes Yes

9 21h04 - - - -

114902

1 08h30 Noise in 34-17; 52-0 Yes LF/HF Yes

2 14h42 - - - -

3 19h42 116-106
SDNN, RRMean,

RRMax
TP, VLF -

4 05h59 99-62
RMSSD, SDSD,

RRMean, RRMax
HF, LFn, HFn SD1/SD2, DFA α1

5 17h18 96-88, 22-10
RMSSD, SDSD,

RRMean
LF, HF

SD1, ApEn,

SampEn, RQA Det

6 11h52 - - - -

7 09h27 Noise in 108-93; 90-0 Yes LF, HF, LF/HF
SD1, SD1/SD2,

RQA Lmax

TP: Total Power; VLF: VLF Power; LF: LF Power; HF: HF Power; LFn: LF Norm; HFn: HF Norm.
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A. Supplementary Results

Table A.17: Results of the visual inspection of the R-R Intervals and features.

Patient Seizure
Onset

Time

R-R Interval

(min)

Time-domain

Features

Frequency-domain

Features

Non-linear

Features

123902

1 02h52 118-103, 74-48 Yes Yes Yes

2 01h38 69-43, 29-0 Yes LF, HF Yes

3 02h11 89-61 Yes LF, HF, LF/HF
SD1, ApEn,

SampEn, DFA α1

4 18h57 - - - -

5 15h22 Noise in 114-108 - - -

TP: Total Power; VLF: VLF Power; LF: LF Power; HF: HF Power; LFn: LF Norm; HFn: HF Norm.
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