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Abstract   

The influence of climate change on human evolution is much debated. Nevertheless, 

hominin fossils are scarce and different research directions, such as taxon-free methods, attempt 

to confront this reality. This project aims to apply these methods, using various machine 

learning (ML) techniques, to reconstruct the palaeoenvironmental aspects of early Pliocene 

African sites related to Australopithecus anamensis. 

The proposed study used published data from astragalar measurements of bovids, taken 

from Kanapoi (n=31) and Allia Bay (n=15) fossils, and from extant individuals (n= 187). Two 

analyses were performed, ecomorphology where individuals from the extant sample were 

classified into different habitats and soil moist categories, and ecometrics, where the extant 

sample as a community was used to predict various precipitation and temperature variables, as 

well as classify land cover categories. Finally, several ML algorithms were trained for each 

analysis using data from the extant taxa to infer the possible environment of the fossil sample.  

The obtained results reveal better classification and prediction rates when applying 

different algorithms to the analyses in comparison to linear discriminant analysis (LDA), the 

method commonly used in these analyses. Furthermore, the ecomorphological analyses show 

mostly intermediate habitats and a mix of dry and wet categories for both sites. In a similar 

way, ecometric analyses show sites with tropical temperatures (23.8 and 25.7ºC), humid (>850 

mm) but highly variable and consequently highly heterogeneous vegetation, combining 

evergreen broadleaf forests and herbaceous woodlands, but also more open systems such as 

grasslands. These two sites fall within a highly complex and variable context that can contribute 

to sudden changes in the environment. This seems to indicate that A. anamensis had thrived in 

these types of environments. 

Ultimately, ecometric methods seem more promising, as their results allow a clearer 

attribution to a potential climate. Hence, it would be interesting to extend the applied approach 

to other important sites associated with our own evolutionary history. 
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Resumo  

A influência das alterações climáticas na evolução humana é muito debatida. Contudo, 

fósseis de hominídeos são escassos e diferentes direções de pesquisa, como métodos livres de 

táxon, tentam confrontar essa realidade. Este projeto visa aplicar tais métodos, utilizando várias 

técnicas de machine learning (ML), para reconstruir os aspetos paleoambientais de sítios 

africanos do Plioceno inicial associados ao Australopithecus anamensis. 

O estudo proposto utilizou dados publicados de medições de astrágalos de bovídeos, 

retiradas de fósseis de Kanapoi (n = 31) e de Allia Bay (n = 15), e de indivíduos existentes (n 

= 187). Foram realizadas duas análises, a ecomorfologia, onde os indivíduos da amostra 

existente foram classificados em diferentes habitats e categorias de humidade do solo, e a 

ecometria, onde a amostra existente enquanto comunidade foi usada para prever várias variáveis 

de precipitação e temperatura e classificar as categorias de cobertura do solo. Finalmente, 

utilizando estes dados, vários algoritmos de ML foram treinados para cada análise, para inferir 

o possível ambiente da amostra fóssil. 

Os resultados obtidos revelam melhores taxas de classificação e previsão ao aplicar 

diferentes algoritmos às análises, em comparação com a análise discriminante linear (LDA), 

método comumente utilizado nestas análises. Além disso, a análise ecomorfologica mostra 

habitats principalmente intermediários e uma mistura das categorias seca e húmida, para ambos 

os locais. No mesmo sentido, a análise ecométrica mostra locais com temperaturas tropicais 

(23,8 e 25,7ºC), húmidos (> 850 mm), mas muito variáveis e, consequentemente com vegetação 

altamente heterogênea, combinando florestas perenes de folha larga e bosques herbáceos, mas 

também sistemas mais abertos como pastagens. Estes dois sítios enquadram-se num contexto 

muito complexo e variável que pode contribuir para mudanças repentinas no ambiente. Isto 

parece indicar que A. anamensis prosperou nesses tipos de ambientes. 

Em última análise, os métodos ecométricos parecem mais promissores, uma vez que os 

seus resultados permitem uma atribuição mais clara a um potencial clima. Assim, seria 

interessante estendê-los a outros locais importantes associados à nossa história evolutiva. 

Palavras-chave 

 
Paleoambientes; Kanapoi; Allia Bay; Astrágalo; Machine learning; Evolução humana 
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1) Introduction 

Since Charles Darwin (1871) placed humans in an evolutionary structure, a central 

purpose of paleoanthropology has been to understand how environmental factors may have 

shaped the evolution of our early ancestors over the past 7 million years (Laporte & Zihlman, 

1983; Vrba et al., 1995; Potts, 1998a, 1998b, 2007, 2013; Bobe et al., 2002; Bonnefille et al., 

2004; deMenocal, 2004, 2011; Wynn, 2004; Behrensmeyer, 2006; Vrba, 2007; Kingston, 2007; 

Maslin & Christensen, 2007; Elton, 2008; Maslin & Trauth, 2009; Levin, 2015; Marean et al., 

2015; Campisano et al., 2017). This is reflected in the set of hypotheses that have been 

emerging, proposing that environmental changes have been responsible for some aspects of 

human evolution, such as morphological adaptation to bipedalism, increased cranial capacity, 

behavioural adaptability, cultural innovations, cross-continental immigration events, among 

many others (e.g., Wheeler, 1991; Potts, 1998a; Bobe et al., 2002; Plummer, 2004; Plummer et 

al., 2009; White et al., 2009a; Braun et al., 2010; van der Made, 2011; Antón et al., 2014; 

Domínguez-Rodrigo, 2014; Böhme et al., 2019). 

However, establishing the cause of the links between changes in the environment and 

the evolution of hominins is not a simple process. Data that directly relate organisms to their 

surroundings are available only for the present, where conditions are known and therefore 

possible to infer. Even though in recent decades there has been a better understanding of 

paleoclimate and palaeoenvironmental changes, capturing this knowledge and understanding 

which selective pressures shaped the evolution of our ancestors remains an ongoing challenge 

(Behrensmeyer, 2006; Kingston, 2007; Potts, 2007; Marean et al., 2015). For example, to 

address many paleoanthropological questions, reliable estimates of when hominin taxa 

originated and became extinct are needed (Du et al., 2020), although recent research has 

contributed towards this effort (e.g., Püschel et al., 2021). Nevertheless, hypotheses on the 

subject are difficult to test, and as a result, the impact of climate and environment on human 

evolution has been and will continue to be debated (Vrba, 2007; Elton, 2008).  

It is now widely acknowledged that at the end of the Miocene a change in climate 

occurred and, globally, there was a cooling of the temperature extending across the Plio-

Pleistocene (Zachos et al., 2001). Traditionally, the preferred interpretations propose that 

human morphological and behavioural adaptations had been influenced by the environmental 

pressure of an expanding dry savannah, in the light of temperature decreases (Vrba, 1995a; 



 

 2 

Feakins et al., 2013; Uno et al., 2016; Will et al., 2021). The discovery of the first 

Australopithecus, a child's skull, in Taung (South Africa), as well as Australopithecus 

bahrelghazali from Koro Toro region (Chad) (Brunet et al., 1996), among other fossils 

indicative of a grazing environment, prompted different explanations that attempted to link 

these first hominins, open grasslands and the origins of bipedalism (White et al., 2009b).  

Nevertheless, based on more recent environmental studies and discoveries, forests or 

more forested environments are now being considered (Pickford & Senut, 2001; Vignaud et al., 

2002; Haile-Selassie et al., 2004; White et al., 2009a, 2009b; Passey et al., 2010; Cerling et al., 

2011; Bamford et al., 2013; Roche et al., 2013; Senut, 2015). Thus, it is now accepted that their 

habitats were not restricted to a single type of environment, but rather a mixture of 

environments, woodland, and savannah, often described as a "mosaic" (Laporte & Zihlman, 

1983; Kingston et al., 1994; Leakey et al., 1995; Plummer, 2004). This interpretation is 

associated with the heterogeneity of habitat (Reynolds et al., 2015; Barr & Biernat, 2020) and 

emphasizes the ability of our ancestors to adapt or respond to environmental changes (Carrión 

et al., 2019). This can be illustrated with early hominins, such as for example Australopithecus 

sediba, which shows post-cranial anatomy that seems indicative of both bipedal locomotion on 

the ground, as well as climbing trees (Berger et al., 2010).  

However, these reconstructions are often inconsistent (Wood & Strait, 2004) with 

several different habitat scenarios being proposed. One reason for the lack of unanimity and 

multiplicity of hypotheses regarding the palaeoenvironment lies in the definitions, as shown in 

a recent review of the ‘Savannah hypothesis’ in human evolution studies (Domínguez-Rodrigo, 

2014). According to this author, the term "savanna" is both described as a pure pasture and 

mosaic habitats with a substantial number of trees in a pasture environment, depending on the 

publication. 

Part of this problem lies in the complexity of human evolutionary history, as hominin 

fossils are rare and fragmented, thus hominin palaeoecology is not providing more informative 

evolutionary insights (Faith et al., 2021). Besides, this oldest fossil hominin record has 

generally been found so far in areas covering only a portion of the African continent. The fossils 

are mainly derived from the Eastern branch of the East African Rift System (EARS) and caves 

in South Africa, where conditions for fossilization and subsequent exposure are favourable 

(Wood, 2002). Furthermore, in most of these cases, hominins are among the least abundant 

mammal fossils recovered from a locality (Bobe & Behrensmeyer, 2004; Levin, 2015), but are 
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persistent (Villaseñor et al., 2020), hence contributing to the uncertainties surrounding this 

issue. This is partly explained by fossilization bias, as this process is highly complex (Kidwell 

& Behrensmeyer, 1988). For it to take place there has to be a substitution of organic matter for 

mineral material. However, not all types of deposition environments have the best conditions 

or even the same collection protocols, so it is quite unusual to find a fossil of a complete 

organism, particularly challenging for paleoanthropologists, who often deal with isolated teeth 

or specific skeletal parts such as mandibles (Senut, 2015). 

This problem intensifies as we deal with older organic remains, thus several 

palaeoenvironmental questions related to the emergence of hominids during the Miocene and 

their early radiation through the Pliocene remain unanswered, such as for example the 

emergence of bipedalism in hominids (Böhme et al, 2019). Nevertheless, this period is crucial 

for understanding how environmental factors may have influenced the early evolution of our 

ancestors (Agustí, 2007; Elton, 2008). 

The fossil record is, however, a very important and direct source of the history of life 

on Earth when the world existed in other circumstances, and new promising research directions 

are emerging to address more effectively the reality of an incomplete fossil record (Faith et al., 

2021). Analysing this evidence to understand the relationship between ecosystem dynamics and 

the paleobiology of hominins is critical to test hypotheses that attempt to elucidate the influence 

of the environment on the morphological and behavioural adaptations of early hominins 

(Patterson et al., 2017). In addition to being one of the fundamental issues of 

palaeoanthropology, interest in the processes of environmental change has drawn greater 

attention from the general public. 

Despite the difficulty, fieldwork conducted over decades has generated large collections 

of other fossils, including a solid record of mammals (Bobe & Leakey, 2009; Werdelin & 

Sanders, 2010; Bobe, 2011). This is primarily due to the fact that their teeth and skeletons 

withstand fossilization far better than those of most other organisms (Andrews, 2018). In fact, 

creating a complete picture of human evolutionary history requires an understanding of the 

animals and plants that have lived alongside the hominins, a knowledge of how they interacted 

with their environments (Polly et al., 2011). After all, the evolution of our ancestors did not 

take place in a closed ecological context and must therefore be incorporated into the same 

ecological ground as other animals that coexisted at the same time and space (Hardt et al., 

2007).  
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Moreover, extinct mammals have long been a prime source of information about the 

ancient habitats in which they lived (Andrews, 2018; Kovarovic et al., 2018), and the analysis 

of the evolutionary context of vertebrates to study the evolution of hominids has emerged as a 

strong area of research (Vrba, 1995b; Behrensmeyer et al., 1997; Bobe & Behrensmeyer, 2004; 

Bobe et al., 2007a; Werdelin & Sanders, 2010). Particularly bovids are often used in these 

African paleo-ecological environmental reconstructions (Bobe, 2006; Bobe et al., 2007b; Barr, 

2017). As a diverse family of ruminant ungulate mammals, bovids include antelopes, cattle, 

duikers, gazelles, goats and sheep, varying greatly in terms of mass, also varying in terms of 

habitat, occurring in a wide variety of environments, and feeding on a wide variety of plants 

(Castelló, 2016). Additionally, they are a dominant component of most African mammal fossil 

assemblages (Faith & Lyman, 2019), thus making them a particularly useful 

palaeoenvironmental indicator. 

Analysis of this remarkable fossil record can provide essential insights into the 

interaction of environmental changes and mammalian evolution, including processes that are 

likely to affect hominin evolution (Bobe et al., 2007b). As a result, many studies have focused 

on these fossil mammals to understand changes in environments and climate, for example, using 

stable isotope records preserved in dental enamel (e.g., White et al., 2009b; Cerling et al., 2011; 

2013; 2015; Sponheimer et al, 2013; Roche et al., 2013; Wynn et al., 2016; Blumenthal et al., 

2017) and taxon diversity analysis (e.g., Behrensmeyer et al., 1997; Bobe & Behrensmeyer, 

2004). However, many of these analyses are in part limited by the difficulty of taxonomic 

identification (Kingston& Harrison, 2007), especially difficult when dealing with fossil limb 

bones and other less-complete material (Barr, 2018). 

Taking these problems into consideration, taxon-free approaches such as 

ecomorphology and ecometrics have been developed (Bock, 1989; Damuth, 1992;	Ricklefs & 

Miles, 1994; Eronen et al., 2010a; Polly et al., 2011; Žliobaitė et al., 2016; Vermillion et al., 

2018). They have served as important sources of evidence for the environmental context of 

human evolution (Barr, 2015, 2018).  

 

1.1 Taxon-free methods 

Taxon-free methods comprise a family of techniques that links the present and past 

through the functional traits of species, disregarding their shared evolutionary origin (Damuth, 
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1992; Polly et al., 2011; Andrews & Hixson, 2014). This premise is supported by the convergent 

evolution of ecomorphological traits between distantly related species groups (Andrews & 

Hixson, 2014) and phylogenetically unrelated taxa (e.g., Barr, 2014). This is particularly a 

critical requirement to compare changes in the modern world with those of the distant past, as 

species are constantly becoming extinct and new species originate. 

These methods look for morphological traits that have a functional relationship with the 

environment (i.e., functional traits) and ultimately this relationship is applied to fossils to infer 

ecological traits of extinct taxa (Eronen et al., 2010a; Polly et al., 2011; Žliobaitė et al., 2016; 

Barr, 2018; Vermillion et al., 2018; Faith & Lyman, 2019). Ecomorphology deals with the study 

of this complex trait-environment dynamics in individuals (Barr, 2017, 2018) and ecometrics, 

rather than focusing on individual organisms, deals with the functional composition of 

communities (Žliobaitė et al., 2016; Vermillion et al., 2018). Therefore, they are not mutually 

exclusive (Faith & Lyman, 2019). 

That said, it is possible to use mammalian fauna, or any other taxon, that coexisted with 

early hominins to infer their habitat, as they responded to the same selective pressure as early 

hominins, although not in the same way. As organisms interact with their environment through 

their functional traits (Lawing et al., 2012; Barr & Biernat, 2020), a certain combination of 

biotic and abiotic conditions will consequently favour traits that maximise an organism's 

performance by natural selection (Vermillion et al., 2018). These functional traits will constrain 

a species' ability to remain and inhabit a particular habitat over time, regardless of its taxonomic 

identification (Barr, 2018). 

 However, the fact that many features are often phylogenetically restricted (Barr, 2018), for 

example, teeth are limited to vertebrates, it means that taxon-free approaches are not completely 

taxon-free. Nevertheless, comparisons between different communities without common species 

are still possible (Vermillion et al., 2018). This requires sufficient general correspondence 

between the function-environmental relationship to apply to any taxon in which the 

characteristic is found (Polly et al., 2011), meaning that species in different clades have adapted 

to the same habitat several times, consequently, extrapolating out of the sample can be done 

with relative confidence (Barr, 2018).  
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History of Ecomorphology 

 The first examples of taxon-free approaches to reconstruct the ecology of individual taxa 

are as old as palaeontology itself, with different naturalists, observing that an animal's form was 

related to the ecological context of its function (Faith & Lyman, 2019). However, the term 

ecological morphology, today known as ecomorphology, was only coined in 1948, by the Dutch 

zoologist Cornelis van der Klaauw. 

There is now a substantial body of literature exploring how morphological traits can be 

used to understand aspects of diet (Janis, 1988; Van Valkenburgh, 1988; Figueirido et al., 2009; 

Meloro et al., 2015; Forrest et al., 2018) and locomotor preferences based on habitual substrate 

use (Van Valkenburgh, 1987; Elton, 2002; Polly, 2010; Meloro et al., 2013; Elton et al., 2016; 

Püschel et al., 2018, 2020), or based on predator avoidance strategies (Kappelman, 1988, 1991; 

Plummer & Bishop, 1994; Kappelman et al., 1997;  Scott et al., 1999; DeGusta & Vrba, 2003, 

2005; Kovarovic & Andrews, 2007; Plummer et al., 2008, 2015; Barr, 2014, 2015; Curran, 

2012, 2015). 

Whilst it is possible to develop environmental inferences from a free taxon-

characterization of single species taxa, when functional characteristics are analysed at the 

community level, variation at the individual and species level tends to be mitigated, therefore 

tracking environmental gradients more closely than characteristics at the individual or species 

level (Polly, 2010).  

 

History of Ecometrics 

 

Ecometrics is a computational methodology focusing on functional characteristics of 

fossil communities (Eronen et al., 2010b; Polly et al., 2011; Vermillion et al., 2018). Although 

the term is relatively recent, ecometric analysis has a long history in palaeoenvironmental 

reconstruction and is used extensively today. 

Its roots date back to early palaeobotany in the 20th century, with Bailey and Sinnott 

(1915) conducting the first study on the variations in the shape of the community 

dicotyledonous plant leaf relative to climate. Since then, different characteristics have been 

explored for ecometric analysis and strong ecometrics relationships have been documented for 
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a range of characteristics and taxonomic groups, including leaf size and shape (Wolfe, 1995; 

Traiser et al., 2005), dental morphology of large herbivores (Fortelius et al., 2002, 2016; Eronen 

et al., 2010b, 2010c; Liu et al., 2012; Žliobaitė et al., 2016), limbs and locomotion (Polly, 2010; 

Polly & Head, 2015; Barr, 2017; Short & Lawing, 2021), skeletal traits (Lawing et al., 2012), 

as well as body mass (Meloro & Kovarovic, 2013). Some examples are provided below (Figure 

1).  

This type of study has been growing in recent years and appears as an opportunity to 

unite different disciplines for the study of the biology of climate change (Polly et al., 2011). In 

analyses of faunal communities, hypsodonty (the ratio of tooth crown height to tooth root 

height) (Janis & Fortelius, 1988) is the most common feature and the first to be used as a proxy 

for vegetation structure (Fortelius et al., 2002). Crown height relates to precipitation because 

higher-crowned teeth (i.e., hypsodont teeth) is common in pastures and rare in temperate 

forests, since higher-crowned teeth enable animals to tolerate high levels of environmental grit 

associated with arid environments (Fortelius et al., 2002).   

This selective pressure at individual tooth height reaches the level of the mammalian 

community and, therefore, average hypsodonty of mammals is strongly related to annual 

precipitation and has been demonstrated at a range of spatial scales, ranging from regional 

(Žliobaitė et al., 2016), continental and sub-Continental (Fortelius et al., 2016; Žliobaitė et al., 

2018; Faith et al., 2019), to global (Eronen et al., 2010c; Liu et al., 2012).  

Since measuring functional traits is often possible for both existing and fossil organisms, 

this approach provide an important tool for understanding the trait-environmental dynamics. In 

this regard, it is important to select traits with reference to a specific functional hypothesis that 

Figure 1 - Examples of the morphology of ecometric traits. A, Example of an entire leaf margin, characteristic of hotter 
environments. B, Example of a non-entire leaf margin, characteristic of cooler environments. C, Example of hypsodonty (high-
crowned teeth) in a rodent, characteristic of arid environments with more gritty vegetation. D, Example of brachydonty 
(opposite to hypsodonty) in a rodent, found in more wet environments with mixed vegetation. E, Example of raccoon calcaneum. 
The gear ratio (ratio of the length of the sustentacular facet to the total length of the calcaneum) is characteristic for animals 
living in high vegetation cover (e.g., dense woodlands). F, Example of a panther calcaneum. The gear ratio in the panther is 
characteristic of animals that are adapted to run through open habitats (Adapted from Vermillion et al. (2018)). 
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links them to an ecological variable of interest. Such traits can be typical linear measurements 

(e.g., Kappelman, 1988; Plummer & Bishop, 1994; Kappelman et al., 1997; DeGusta & Vrba, 

2003; Plummer et al., 2008, 2015) or more complex variables such as those derived from 

geometric morphometrics (e.g., Figueirido et al., 2009; Cooke, 2011; Curran, 2012, 2018; Cano 

et al., 2013; Forrest et al., 2018; Püschel et al., 2018, 2020; Etienne et al., 2020).  

The astragalus (or talus) (Figure 2) is typically among the most abundant postcranial 

elements in fossil collections (Hussain et al., 1983) due to its high density and corresponding 

resistance to hydraulic transport (Behrensmeyer, 1975). Additionally, the astragalus is also the 

main mechanical connection between the leg and foot and is responsible for transmitting body 

weight, as well as providing stability and mobility throughout locomotor behaviours (Boyer et 

al., 2015). This combination of its high occurrence and good preservation in the fossil record 

and its functional role in the ankle joint make it a good element to study possible morphological 

variations that may be linked to some ecological variable of interest (Püschel et al., 2018). 

 

Astragalus: As a functional trait 

As a taxonomic family, all bovids exhibit skeletal features linked to cursoriality in their 

common ancestry (Schaeffer, 1947). However, there are differences in the ankle joint anatomy 

of these bovids, since each habitat has different levels of vegetative complexity, which in turn 

require different forms of locomotion and predator avoidance behaviours (e.g., DeGusta & 

Figure 2 - Lateral view of left-side hock joint in articulation, with skeletal elements labeled and joint surfaces highlighted: 
astragalus- calcaneus joint (vertical green and black stripes); os malleolus-calcaneus joint (pink and black stippling); 
cubonavicular-calcaneus joint (blue and black horizontal stripes). Orientation abbreviations: A, anterior; I, inferior; P, 
posterior; S, superior. (Adapted from Curran,2018) 
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Vrba, 2003; Plummer et al., 2008; Barr, 2014). For example, open habitat species must be fast 

and agile runners (Jarman, 1974), whereas closed habitat species presumably rely more on 

camouflage as they need to navigate a substrate such as dense forests that includes undergrowth 

and other obstacles (Kappelman, 1988; Kappelman et al., 1997; Plummer et al., 2008).  

To understand the role of the astragalus, one must understand its function in the 

movement of the hock joint, as it is clearly explained in Barr’s (2014) article. When the animal 

gives an impulse to move, during the early stages of plantarflexion (Figure 3A) the astragalus 

will rotate and the cavity between the calcaneus and cubonavicular must accommodate the 

rotating astragalus, which is ellipsoid and elongated in the anteroposterior dimension. Thus, 

astragalar rotation causes the cavity to expand, displacing the calcaneus posteriorly and most 

of the functional length of the astragalus is added to the effective length of the calcaneus. This 

movement is complete when the calcaneus, astragalus and cubonavicular reach a closed 

position (Figure 3G).   

Given this, Barr (2014) concludes that forest bovids are characterised by longer and 

narrower astragalus. This morphology has a dynamic mechanical advantage for the 

plantarflexion of the hock joint, as more proximo-distally elongated astragali act to displace the 

calcaneus even further posteriorly during plantarflexion and increase muscle strength during 

this movement, producing a powerful plantarflexion (Barr, 2014), following the principles of 

mechanical lever systems1 (Figure 4). 

 
1 There are three types of lever systems, Barr (2014) compares the hock joint to the first class lever system, which he describes 
as consisting of an lever (force) arm (calcaneus), a load (resistance) arm (length of the remaining tarsals, metatarsals and 
phalanges) and a fulcrum or center of rotation (astragalus), which is between the force and resistance. The relative proportions 
of the lever and load arms will affect the relative speed and power of this first-class lever system, i.e. increasing the relative 
length of the lever arm will result in a more powerful but slower lever system and the opposite creates a faster but less powerful 
system (Barr, 2014). 

Figure 3 Photographs of Ammotragus lervia hock joints in medial view in various stages of the stride cycle from extreme 
dorsiflexion (A) to extreme plantarflexion (G). The operative center of rotation of the joint is indicated by a black dot on the 
astragalus. (Adapted from Barr (2014)). 
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On the other hand, bovids occupying pasture are characterised by shorter and wider 

astragals, which causes less posterior displacement of the calcaneus during astragalar rotation, 

reducing the lever arm force for the plantarflexion of the hock joint, but increases the range of 

motion and foot speed during locomotion (Barr, 2014), according to Muller's (1996) four-bar 

linkage model2.  

Furthermore, open-field cursors are predicted to increase the surface areas of the 

astragalar joint relative to body size (Barr, 2014) because the dissipation of loads over a larger 

surface area reduces the risk of joint damage (Jungers, 1991).  

Hence, astragalus is strongly related to vegetation structure and this relationship has 

been well studied (Plummer & Bishop, 1994; DeGusta & Vrba, 2003; Plummer et al., 2008, 

2015; Barr, 2014, 2015, 2017) and can be useful for reconstructing the palaeobiology and 

palaeoenvironment of extinct animals (Barr, 2017).  

As vegetation productivity in most terrestrial environments depends on humidity and 

temperature, and other factors such as fire, precipitation seasonality and soil characteristics 

(Bond, 2008; Good & Caylor, 2011), in the absence of anthropogenic actions (Mayaux et al., 

2004), it is likely that one can estimate these climate variables directly from these locomotor 

characteristics, due to their relationship with the structure of the vegetation. This had been 

previously shown, with Barr's (2017) study applied to present-day sub-Saharan African bovids, 

 
2 According to this model, a relatively shorter astragalus should result in a greater potential range of motion, leading to longer 
potential stride lengths, and therefore increases maximum running speed, while a relatively longer astragalus should result in 
shorter and therefore slower potential stride lengths. 

Figure 4 Schematic diagram of the bovid hock joint as a simple first-class lever system during plantarflexion. Note: this 
diagram is simplified, and does not consider the multiple centers of rotation that are present in the bovid astragalus. (Adapted 
from Barr (2014)). 
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revealing that astragalus explain large proportions of variation in annual precipitation and land 

cover (R2 > 0.6).  

As opposed to ecomorphological studies (e.g., Kappelman, 1991; Plummer & Bishop, 

1994; Kappelman et al., 1997; Kovarovic & Andrews, 2007; Plummer et al., 2008, 2015; 

Kovarovic et al., 2021; Dumouchel et al., 2021), these ecometric methods have not been widely 

applied to the African continent's fossil mammalian registry (Fortelius et al., 2016; Žliobaitė et 

al., 2018), nor have they been extensively explored for the astragalus bone, although they have 

proven extremely useful for understanding biological responses to climate change (Eronen et 

al. 2010a).  

Besides, the majority of ecomorphological studies have been carried out using linear 

classification methods (Curran, 2018), such as the popular linear discriminant analysis (LDA), 

a multivariate technique designed to classify individuals (i.e., specimens) into predefined 

categories based on an observed set of measured variables (e.g., Kappelman, 1988, 1991; 

Plummer & Bishop, 1994; Kappelman et al, 1997; DeGusta & Vrba, 2003, 2005; Bishop et al., 

2006; Kovarovic & Andrews, 2007; Colangelo et al., 2010; Cooke, 2011; Fraser & Theodor, 

2011; Curran, 2012, 2015; Cano et al., 2013; Plummer et al., 2015; Forrest et al. 2018; 

Kovarovic et al., 2021), despite the known limitations of these approaches (for further details 

about these limitations see for e.g., Feldesman, 2002; Mitteroecker & Bookstein, 2011).  

Therefore, the proposed research will generate ecomorphological and ecometric models 

based on a series of machine learning algorithms trained using morphometric data from extant 

astragalus applied to a fossil sample to reconstruct the palaeoenvironments of the African 

earliest Pliocene. Although the application of machine learning algorithms to address specimen 

identification or group characterization problems has a vast literature in other biological fields 

(Tarca et al, 2007), only more recently have several machine learning methods been applied 

using morphometric data (e.g., MacLeod, 2007, 2017; van Bocxlaer & Schultheiß, 2010; van 

den Brink & Bokma, 2011; Navega et al., 2015; Sonnenschein, 2015; Li et al., 2016; Hanot, 

2017). Besides, most of them did not compare different algorithms applied to the same problem 

(Püschel et al., 2018). Nevertheless, incorporating ML-derived predictive modelling techniques 

into the functional morphology toolkit may prove to be a useful addition, offering more 

flexibility and predictive power (Püschel et al., 2018). 



 

 12 

The models will be based in the Kanapoi and Allia Bay sites, located in the Lake 

Turkana region of Kenya's Rift Valley.  

1.2 Geological context	

East African Rift System (EARS) 

Most of the key events of early human evolution (before ~1 Myr) occurred in Africa 

(MacLatchy et al., 2010). Based on patterns of the temporal and spatial distribution of hominins 

resulting from fossil recoveries, the East African Rift System (EARS) and South Africa have 

often been considered not only as fossil-rich sites but also as 'birthplaces' therefore being taken 

as the principal theatre of hominin evolution (Maslin et al., 2014). It comprises the earliest 

occurrences of genera and most of the earliest for fossil hominin species, including 

Ardipithecus, Orrorin, Australopithecus, Kenyanthropus, Paranthropus and Homo (Carrión et 

al., 2019). As a result, focusing on these areas to reconstruct the climate context provides an 

understanding of the early hominin environment background. 

The East African Rift System (EARS) (Figure 5) is one of the most extensive, running 

north-south for approximately 4,500 km from Syria through East Africa to Mozambique 

(Maslin & Trauth, 2009). It is densely fractured and consists of four main fissure zones: Afar, 

Rift Main Ethiopia (MER), Kenya-Tanzania and Western Clefts (WoldeGabriel et al., 2016).  

Figure 5 - Hypsographic DEM (Digital Elevation Model) of the East African rift system. Black lines: main faults; white 
surfaces: lakes; grey levels from dark (low elevations) to light (high elevations) (adapted from Chorowicz (2005)). 
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Rifting is one of the basic principles of plate tectonics, as it explains the dismantlement 

of continents and the development of oceans (Scoon, 2018). The Kenya Rift extends from Lake 

Turkana, in northern Kenya, to the northern tip of Lake Natron, on Kenya's border with 

Tanzania (WoldeGabriel et al., 2016). 

Turkana Basin 

Lake Turkana is located in northern Kenya, but the Turkana Basin is part of the wider 

geological context that includes the Omo valley in Ethiopia (Bobe, 2011). This region is 

especially well known for the fossil presence of Australopithecus anamensis (Feibel et al., 

1991; Haile-Selassie et al., 2019) at Kanapoi and Allia Bay (Figure 6), when it was first named 

and described (Leakey et al., 1995, 1998; Ward et al., 2001). Currently is considered to be the 

earliest species of the genus (Bobe et al., 2020). 

 

The largest sample of A. anamensis (4.2 Ma - 3.8 Ma) (Bobe et al., 2020) derives from 

Kanapoi, currently with 74 individuals attributed to this species, including males and females, 

adults and juveniles, and cranial and postcranial elements (Ward et al., 2001; Ward et al., 2020).   

 

Figure 6 - Schematic map of the Omo–Turkana Basin, including Lake Turkana and the Lower Omo Valley. Inset shows the 
Turkana Basin in the context of eastern Africa (adapted from Dumouchel et al., (2021)). 
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Kanapoi 

Kanapoi is a paleontological site in Kenya's Rift Valley, southwest of Lake Turkana. 

Geological and paleontological research in this region began in 1964, conducted by Bryan 

Patterson of Harvard University (Patterson & Howells, 1967). During this expedition, Patterson 

and his colleagues discovered a distal part of a hominin humerus (KNM-KP 271) (Patterson & 

Howells, 1967). Later, from 1994 to 1997, a team of Kenya's National Museums (NMK) led by 

Meave Leakey returned to the fieldwork in Kanapoi, documenting important fossil hominins 

and naming a new species, Australopithecus anamensis (Leakey et al., 1995, 1998; Ward et al., 

2001). This work in the 1990s resulted in the recovery of 650 vertebrate fossils (Harris & 

Leakey, 2003). In the following years, more fossils were recovered and, consequently, Kanapoi 

has the largest sample of vertebrate fossils in Africa contemporaneous to Australopithecus 

anamensis (Bobe et al., 2020).  

Kanapoi formation deposits consist of a lower fluvial sequence, interrupted by a 

lacustrine episode, followed by an upper fluvial sequence limited by the Kalokwanya Basalt 

(Leakey et al., 1995, 1998; Feibel, 2003). Most sediments of Kanapoi Formation have 

accumulated between 4.3 and 3.9 Ma, but some sedimentation continued until 3.4 Ma, the age 

of the Kalokwanya Basalt that closes the sequence (Feibel, 2003). The most fossiliferous range 

of Kanapoi is limited in time (~ 4.2 - 4.1 Ma) (Leakey et al., 1995, 1998; Feibel, 2003) and its 

sediments appear in a limited spatial extent (~ 25 km2) (Feibel, 2003) 

Fauna-based reconstructed environments indicated open and closed environments 

(Harris et al., 2003; Sanders, 2019) as did analyses of stable paleosol isotopes, that produced 

evidence for wooded and grassy environments (Wynn, 2000; Quinn & Lepre, 2020). The latter 

study's result supports environmental heterogeneity rather than temporal averaging where 

mixed habitat faunas exist due to the average time of distinct habitats within the relatively short 

time window (e.g., Behrensmeyer et al., 2007). 

 

Allia Bay 

Allia Bay is a region on the east side of Lake Turkana in Kenya. The first exploration 

of the Koobi Fora Formation took place in 1968, where it was recognised that this locality 

contained fossils (Harris, 1983). These fossils were collected from the surface over the 
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following decades. Coffing and collaborators (1994) described these initial surface finds and 

attributed them to Australopithecus cf. A. afarensis. It was not until 1995 that excavations took 

place at the Allia Bay 261-1 site, carried out for three seasons until 1997 (Ward et al., 1999). 

These excavations resulted in the recovery of thirty-one fossil remains attributed to A. 

anamensis (Leakey et al., 1995, 1998), consisting mostly of isolated teeth (Behrensmeyer & 

Reed, 2013).   

During the last field season over 2,000 fauna remains were recovered during the sieving 

process. Most of these fossils were unidentifiable and fragmentary non-mammals and are 

described in Hagemann (2010). The bone bed itself consists mainly of bones of aquatic species, 

mainly fish and reptiles. Many of the fossils in this bed are rolled and heated, indicating 

transport from a distance, reworking of older sediments, or both (Ward et al., 1999). Unlike 

Kanapoi, Allia Bay is more time restricted (Behrensmeyer & Reed, 2013) and Allia Bay fossils 

are slightly younger than those from Kanapoi (Ward, 2001).  

The site is a fluvial deposit, represented by a channel filled with medium to coarse sand, 

with occasional fine sands and lenticular lamite interbeds, which form the fossiliferous 

sediments reaching a local thickness of at least 14 metres (Coffing et al., 1994). The primary 

structures are poorly preserved, but there is a 20 cm bone bed at the site, where most hominid 

teeth have been found. This is a lag deposit in the channel, about 5 m below the base of the 

Moiti Tuff, 1 m thick, dated elsewhere in the basin to 3.97 ± 0.03 Ma (Coffing et al., 1994; 

McDougall & Brown, 2008).  

Environment reconstructions for Allia Bay based on isotopes indicated seasonal and 

open (Macho et al., 2003) and mosaic habitat of closed woodland and grasslands with higher 

rainfall than the region receives today (Schoeninger et al., 2003). The fauna of Allia Bay 

suggests that the local habitat probably included a mixture of habitats, with more closed gallery 

forest environments, but also lowland grasslands and marginal dry woodland (Feibel et al., 

1991; Coffing et al., 1994; Leakey et al., 1995; Schoeninger & Reeser, 1999). Geological 

evidence supports this palaeoenvironmental reconstruction and suggests that the area exhibited 

seasonal fluctuations in moisture (Brown & Feibel, 1991; Wynn, 2000). 

These sites hold a special place in palaeoanthropology because of their unique record of 

hominin evolution in the Plio-Pleistocene (Fleagle & Leakey, 2011). Consequently, they have 

been extensively studied and contain a solid database of various animals, especially bovids. 
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Hence, developing ML models and applying to these specimens will be useful in assessing the 

impact of climate change on the emergence of the first hominins. These models can 

subsequently be applied to any location of interest with materials from that location.  

1.3 Aims 

1) To reconstruct some of the palaeoenvironmental aspects of the Early African Pliocene by 

performing ecomorphological and ecometric analyses using fossil bovid astragali, testing 

various machine learning methods to better predict different environmental variables that have 

not yet been tested with astragalar data. 

2) To relate the palaeoenvironmental reconstructions obtained with the emergence of early 

hominids to provide ecological contexts for a key episode in our own evolutionary history. 

 

 

 

 

 

 

 

 

 

 

 

 



 

 17 

2) Materials and Methods 

2.1) Sample 

The main data source for this study comes from Dumouchel et al. (2021).  In their paper, 

they performed a multiproxy analysis combining astragalar ecomorphology, dental mesowear, 

hypsodonty index and carbon and oxygen isotopes of mammalian tooth enamel to reconstruct 

the palaeoenvironment of Allia Bay, while comparing it with the results obtained from Kanapoi.  

For the purposes of this study, it was intended to focus only on the data used in the 

ecomorphology of the astragalus. 

Astragalar data 

The astragalar data comprises 15 fossil individuals from Allia Bay and 31 from Kanapoi, 

both held in the National Museums of Kenya, Nairobi, Kenya (detailed in Appendix A, Table 

A1). The data from these specimens was collected from published papers (Geraads & Bobe, 

2020; Geraads et al., 2013; Harris et al. 2003). Unfortunately, due to the inherent difficulty 

associated with the taxonomic identification of post-cranial materials, none of the specimens 

was identified to the tribe rank.  

To conduct an ecomorphological analysis it is necessary to take measures of the 

functional characteristics of the species (Vermillion et al., 2018). Dumouchel and colleagues 

(2021) achieved this by collecting five linear measurements for the astragalus of each specimen, 

following the work of Barr (2015) (Table 1). These linear measurements capture aspects of 

astragalus shape and size (Figure 7). 

 Table 1 Measurements used in this study. All measurements are defined in further detail in Barr (2014). 

 

 

Measurement Description 

B Functional length of the astragalus 
DistRad Radius of circle fit to the margin of the distal trochlea 
MML Maximum medial length 
ProxRad Radius of circle fit to the margin of the proximal trochlea 
WAF Width at level of flange on lateral surface, but excluding flange 
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Furthermore, analysing this data requires comparison with extant data. Hence, a 

comparative sample was generated by using the data from Barr (2014). In this paper a diverse 

sample of 187 individuals from 53 extant bovids species (detailed in Appendix A, Table A1), 

of the 55 species of bovid that occur in sub-Saharan Africa (Barr, 2017), was used to link 

astragalar morphology with habitat categories. 

These individuals are curated in the osteological collections of the American Museum 

of Natural History (AMNH), New York, NY, and the National Museum of Natural History 

(NMNH), Washington, DC. Even though Barr (2014) took 14 measurements for each one of 

the analysed individuals, it was only used the five measurements that were also available for 

the fossil specimens. All measurements were collected following the same method. 

2.2 Methods 

Data analysis was carried out using different machine learning algorithms. This 

discipline combines artificial intelligence, statistics, and data science to deal with topics, such 

as algorithm development for classification, prediction and pattern recognition based on models 

derived from existing data (Jordan & Mitchell, 2015).  

The main decisions in building predictive modelling algorithms includes data 

preparation, data splitting, selection of input variables, as well as evaluation and model selection 

procedures. Data preparation is a critical step when building a successful machine learning 

model (Zhang, 2008). Therefore, the first thing that is important to ensure is the quality of the 

data. 

Figure 7 Anterior and medial views of a bovid astragalus, illustrating the five linear measurements used (adapted from Barr 
(2015)). 
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After compiling the data from Dumouchel et al. (2021) (i.e. the fossil data), with the 

data from Barr (2014) (i.e., the extant data), an initial exploration of the data was carried out. 

The first analyses were done in PAST 4.04 (PAleontological STatistics) software 

(Hammer et al., 2001), a user-friendly program, including a wide range of both general and 

special methods used within the field, but naturally without all the features found in more 

specialized programs. 

A Principal component analysis (PCA) was performed to summarize the variance of this 

sample. PCA is a descriptive and explorative method that does not make any statistical 

assumptions (Hammer & Harper, 2006).  It is a way of projecting points from the original, high-

dimensional variable space onto a two-dimensional plane, with a minimal loss of variance 

(Hammer & Harper, 2006). It helped not only in understanding how the variables correlated 

with each other and the way they contributed to the analysis but also in detecting the existence 

of potential outliers. An outlier is generally considered as an observation that is significantly 

distant from the other observations considered (Benatti, 2019). Since there is no access to the 

original database, it was not possible to rectify the measurements and therefore, there was the 

need to eliminate these specimens from the analysed dataset.  

2.2.1) Ecomorphological analysis 

In an ecomorphological analysis, the first essential task is to associate environmental 

conditions of interest with the comparative species (Barr, 2018). This means that the goal is to 

achieve a correspondence between these ecological/environmental conditions and these 

specimens' measurements which characterize their morphology. Later this correspondence will 

serve to classify the fossils, based on their measurements.    

 Since the extant species had already been used for an ecomorphological analysis in Barr 

(2014), they had a designated habitat category. Hence, it was used the same categorization 

scheme, but some of the specimens needed to be classified as there were no categories for them 

in the original dataset (Ammotragus lervia, Rupicapra rupicapra, and Bubalus bubalis). 

Categories were assigned to these specimens by carrying out a literature review (detailed in 

Appendix B) while following the same classification as Barr (2014):  
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`Forest´ (F) bovids occupy environments where the tree canopy is closed, including rain 

forest and temperate forest. `Open´ (O) habitat bovids include those occupying grasslands, as 

well as more arid environments.  `Heavy Cover (HC)´ habitats include bushland and woodland, 

as well as swampy habitats. `Light Cover (LC)´ includes bovids from light bushland, as well as 

bovids that specialize in tall-grass habitats. 

In addition, to further capture more information, a new category, `Wet and Dry´, was 

added, considering that soil moisture is determined by temperature, precipitation, and 

atmospheric partial pressure of CO2 (PCO2) (Iio et al., 2013), i.e., factors that can certainly 

influence vegetation type. Finally, resorting again to the literature it was possible to categorize 

the soil type where the species live as `Wet or Dry´ (detailed in Appendix B).  

In a certain way, these categories are already implicit in the original habitat 

categorization. However, the focus was not on the vegetation type, but more on soil moisture. 

Thus, the `Dry´ category includes habitats with a wide variety of vegetational cover, from open 

grasslands to temperate forests, whereas the species in the `Wet´ substrate category are also 

found in a variety of habitats, from swamps to tropical forests. 

The remaining analyses, used to evaluate the effect of the environment on astralagar 

morphological variation, were conducted in RStudio v1.3.1073 using the Caret package v.6.0-

88. (Kuhn, 2021), which consist of a set of simple and easy to write functions that help to 

streamline the generation of complex predictive models. With this package, it was possible to 

prepare and run different classification models (i.e., supervised algorithms). Classification is 

the task of predicting a discrete class label, it may predict a continuous value, but it has to be in 

the form of a probability for a class label (Kuhn & Johnson, 2013). These are supervised 

algorithms because labelled datasets are provided to the machine that will be then used to train 

the models. In this case the labels are the categories.  

Prior to the analysis, all variables were size-standardized, so the data was scaled by 

geometric mean (defined as the average of a set of products) using Microsoft Excel 16.47 and 

transformed in PAST using Isometric Burnaby’s method (Burnaby, 1966) (detailed in 

Appendix A, Table A1). This last size correction method projects all the set of measured 

distances onto a space orthogonal before analysis resulting in retention of consistent shape 

(same proportions) over a range of sizes (Hammer & Harper, 2006). This process seeks to assess 

the effect of species size on the results, given that it is natural for size to become a confounding 
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factor when dealing with morphometric data. A confounding factor in a study is a variable that 

is related to one or more variables defined in that study and can mask a real association or 

falsely demonstrate an apparent association between study variables when there is no 

association between them (Skelly et al., 2012).  

Therefore, a principal component analysis (PCA) was again performed, this time using 

the raw data, but also the data scaled by geometric mean, and data transformed using Burnaby’s.  

To represent a wide range of different classification models, models arising from 

different families will be tested, among them: (i) linear discriminant analysis (LDA); (ii) 

classification and regression tree (CART); (iii) k-nearest neighbours (KNN); (iv) naive Bayes 

(NB); (v) support vector machine (SVM) and (vi) random forest (RF). Below a brief description 

is provided for each one of these methods.  

(i) linear discriminant analysis (LDA);  

The linear discriminant analysis developed by Fisher (1936) and Welch (1939) stands 

out from the various methods available within the discriminant analysis family. In different but 

equivalent approaches, Fisher (1936) proposed that the idea is to find the linear combination of 

variables so that the variance between groups is maximized relative to the variance within the 

same group. This means that the goal is to find the combination of variables that provides 

maximum separation between data centres, while minimizing the variance within each data 

group (Fisher, 1936; Welch, 1939).  

(ii) classification and regression tree (CART);  

CART models are achieved by recursively partitioning the data space and fitting a 

simple prediction model within each partition (Loh, 2011). As result of this recursive process, 

the partitioning can be graphically displayed as a decision tree (Breiman, 1984). Classification 

trees are intended for dependent variables that take a finite number of unordered values (i.e., 

categorical categories), with prediction error measured as misclassification cost. The aim of 

CART is to partition the data into smaller, more homogeneous groups (Breiman, 1984).  

(iii) k-nearest neighbours (KNN);  

KNN assumes that similar things exist very close to each other and therefore uses feature 

similarity to classify observations (Venables & Ripley, 2013). When KNN is applied for 
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classification, it predicts the class of an observation using the K-closest samples from the 

training set, where K refers to the number of neighbours that were used to determine class 

membership (Peterson, 2009). The value of K can be set arbitrarily by the user or adjusted by 

applying different approaches (e.g., using a grid search). The "proximity" between observations 

is established by computing a distance metric (e.g., Euclidean, Minkowski, among many 

others), while the choice of this metric depends on the characteristics of the variables (Venables 

& Ripley, 2013). Regardless of the calculated distance metric, it is essential to remember that 

the original scales of the variables affect the resulting distance calculations (Püschel et al., 

2018). Therefore, to allow each predictor to contribute equally to the distance computation, it 

is recommended to centre and scale all variables before performing KNN (Kuhn & Johnson, 

2013). 

(iv) naive Bayes (NB);  

NB is a relatively simple technique for generating classification models that allocate 

observations according to class/category membership to problem instances, represented as 

vectors of feature values, where class membership is drawn from some finite set (Kuhn & 

Johnson, 2013). NB is based on Bayes’ rule, which basically computes the probability that the 

outcome belongs to a certain class membership, given a set of variables (Webb et al., 2005). 

The core of the model is the estimation of the conditional and unconditional probabilities 

associated with the set of variables (Püschel et al., 2018). Despite their naive design and 

simplified assumptions, NB classifiers have performed surprisingly well in many complex real- 

-world situations (Caruana, 2006). 

 (v) support vector machine (SVM)  

Support vector machines are a family of statistical models that have evolved 

considerably (Kuhn & Johnson, 2013) and are considered one of the most successfully applied 

techniques for pattern recognition (Decoste & Schölkopf, 2002). In brief, SVM tries to define 

what is the best decision boundary to separate classes given the existence of many possible 

decision boundaries that can separate all the training samples into classes correctly (Marcé-        

-Nogué et al., 2017). Among all these possible decision boundaries, SVMs find the one that 

achieves maximum margin between the categories. The margin is defined as the distance 

between a planar decision surface that separates the classes and the closest training samples to 

the decision surface. SVMs are part of a wider group of techniques known as kernel methods 
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that owe their name to the use of kernel functions (Hastie et al., 2017). These functions enable 

these algorithms to work in a high-dimensional space without estimating the coordinates of the 

data in that space, but rather by just computing the inner products between points in a suitable 

feature space, which reduces computational cost even in very high-dimensional spaces (Ben-    

-Hur et al., 2008).  

(vi) random forest (RF).  

RF or random decision forests are an ensemble learning method for classification and 

regression that work by generating several decision trees during training, to then output the 

class that is the mode of the classes (i.e., classification) or mean prediction (i.e., regression) of 

the individual trees (Kuhn & Johnson, 2013). In simpler words, RF is a machine-learning 

method that generates multiple decision trees and merges them together to get a more accurate, 

robust, and stable prediction (Püschel et al., 2018). RF are a combination of tree 

predictors/variables such that each tree depends on the values of a random vector sampled 

independently and with the same distribution for all trees in the forest (Lin & Jeon, 2002). Each 

one of the trees in the forest ‘votes’ when classifying of a new observation/sample, and the 

proportion of votes in each category across the ensemble is the predicted probability vector. 

Whereas the kind of tree changes in the algorithm, the tuning parameter of number of randomly 

selected variables to choose from at each split is the same (Ho, 1995).  

The performance of the classification predictions was evaluated using overall accuracy 

(i.e., error rate), as well as Cohen’s Kappa coefficient (Püschel et al., 2020). A combination of 

different metrics provides a complete picture of error distribution (Chai & Draxler, 2014). The 

overall accuracy is a simple metric that reflects the agreement between the observed and 

predicted classes and has the most straightforward interpretation (Kuhn & Johnson, 2013). 

Cohen’s Kappa statistic can range between −1 and 1, where a value of 0 means that there is no 

concordance between the observed and predicted classes, whilst a value of 1 would indicate 

perfect agreement of the model prediction and the observed classes (Kuhn & Johnson, 2013). 

To assess the effectiveness of the models, the complete dataset was resampled using a 

‘leave-group-out’ cross-validation (Püschel et al., 2020). This method generates multiple splits 

of the data into modelling and prediction sets. This procedure was repeated 200 times and the 

data were divided into a modelling set containing 90% of randomly allocated observations, 
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while the testing set contained the remaining 10%. The repetition number was selected to get 

stable estimates of performance and to mitigate overfitting. Overfitting means that the extracted 

model describes the behaviour of known data very well but does poorly on new data points 

(Pham & Triantaphyllou, 2007). By using this data splitting procedure, the model was not 

trained and then tested with the same dataset, instead it was tested the model’s ability to predict 

new data that was not used in estimating it, in order to flag problems like overfitting. 

Additionally, the seed was set at a random number to ensure reproducibility and 

'increased' the sample to correct for class imbalance to standardize the classes. Different 

categories have different numbers of individuals per category, and if the class imbalance is 

severe, it might be a problem.  

The caret package also provides a grid search (automatic and manual) where it is 

possible to specify tuning parameters for the models to work better. First, it started with an 

automatic grid search, setting the 'tune length option to indicate the number of different values 

to be tried for each algorithm parameter. In most of the tested models, this parameter was set to 

10, in the random forest, it was set it to 4, because in this case, as there were 5 variables and 

they need to be divided into n number of trees, the maximum number of variables randomly 

sampled as candidates at each split here cannot be more than 4. This supports only integer 

algorithm parameters, thus providing a quick first attempt at guessing which values to try and 

which models are most promising. The best performing model can be further tuned using a 

more targeted/specific search.  

The best classification models obtained for the ecomorphological data were then used 

to infer the main palaeoenvironment of the Pliocene fossil sample by computing their class 

probabilities to belong to each one of the Habitat and ‘Wet or Dry’ categories.  

2.2.2) Ecometric analysis 

To document the existence of an ecometric pattern, additionally to the abiotic conditions 

and measurement of functional characteristics of species, is also required the geographical 

ranges of species. And this is how it come to deal with functional characteristics at the 

community level. 
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Species occurrence and climatic conditions 

Both types of data were gathered from online databases and available literature. Species 

range maps for existing species was obtained from the 'International Union for Conservation of 

Nature' Red List of Threatened Species website (IUCN, 2015). The occurrence data for existing 

species was also from Barr's (2014) published data, but instead of directly using that dataset, it 

was used the dataset from Barr (2017), where he compiled the species-mean values of the 

astragalus variables for each of 46 sub-Saharan African bovid species (detailed in Appendix A, 

Table A2). Barr (2017) removed some species just to included species for which the range map 

data were available. In addition, he also removed three species Ammotragus lervia, Gazella 

cuvieri, and Addax nasomaculatus, based on them either living alone, hence not being part of a 

wider community or living in the Sahara (one environment in a huge area). When using 

community trait values, care should be taken not to have one specimen dictating the average 

for an area, as this would influence the predictions. Whereas for fossil species is the same 

dataset that has been also applied to the astragalar ecomorphology.  

Climate variables were collected from https://www.worldclim.org/. WorldClim 

databases provide relatively high-resolution datasets of climate for the globe (Hijmans et al., 

2005). The latest version WorldClim version 2 (Fick & Hijmans, 2017) contains average 

monthly climatic gridded data for the period 1970-2000.  

Bioclimatic variables are derived from the monthly temperature and rainfall values to 

generate more biologically meaningful variables. It was used Mean Annual Temperature (ºC * 

10) and Mean Annual Precipitation (mm) to represent annual trends, Temperature Seasonality 

(standard deviation ×100) and Precipitation Seasonality (Coefficient of Variation) (%) to 

represent seasonality, and finally, Max Temperature of Warmest Month, Min Temperature of 

Coldest Month, Wettest Month Precipitation and Driest Month Precipitation to represent 

extreme or limiting environmental factors. Precipitation Seasonality captures dispersion in 

relative terms, it means that if there is a high variation of precipitation in that region, then the 

seasonality is high. Temperature seasonality is a measure of the variation in temperature over 

the year. The higher the standard deviation (the unit is temperature (ºC x10)), the greater the 

variability in temperature. The bioclimatic variables used can be seen in figure 8. 
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Figure 8 Bioclimatic variables used to test for trait–climate relationships. Mean annual precipitation and precipitation of wettest and driest month is in millimeters. Precipitation seasonality 
is a percentage. Mean annual temperature and extremes values of coldest and warmest month are in ºC x 10. Temperature seasonality is in (ºC x 10) x 100.  
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Land cover raster is from Broxton et al. (2014). The land cover variables were simplified 

to only include land cover classes well represented in sub-Saharan Africa (Table 2).  

Table 2 Land cover classes with codes and descriptions following Friedl et al. (2010). Only land cover classes analysed in 

this study are included in the table. 

 

These land cover classifications are defined by the International Geosphere-Biosphere 

Programme (IGBP), detailed in Friedl et al. (2002):  

Evergreen broadleaved forest is land dominated by broadleaved woody vegetation with 

a percentage cover >60% and height greater than 2 m. Almost all trees and shrubs remain green 

all year round. The canopy is never without green foliage. Open shrubland, on the other hand, 

is land with woody vegetation less than 2 m high and with shrub cover between 10% and 60%. 

The foliage of the shrubs can be evergreen or deciduous. Woody savannahs are characterised 

by land with herbaceous vegetation and other understory systems, and with forest canopy cover 

between 30% and 60%. The forest cover height exceeds 2 m, as in savannahs. However, in the 

case of the last, the forest cover is only between 10% and 30%. Finally, grasslands, which are 

also lands with herbaceous types of cover, have a tree and shrub cover of less than 10%. 

Permanent Wetland are characterised by land with a permanent mixture of water and 

herbaceous or woody vegetation. The vegetation may be present in either salt, brackish or fresh 

water. Barren or sparsely vegetated are lands with exposed soil, sand, rocks, or snow and never 

have more than 10% vegetation cover during any time of the year. 

Data analysis 

All spatial and statistical analyses were performed using RStudio Version 1.3.1073 

(RStudio Team, 2020). The packages used were rgdal v.1.5-23. (Bivand et al., 2021), which 

provides bindings for the 'Geospatial' Data Abstraction Library; rgeos v.0.5-5.  (Bivand & 

Code Description Number of pixels in raster 

2 Evergreen broadleaf forest 932 
7 Open shrublands 906 
8 Woody savannahs 1567 
9 Savannahs 1705 
10 Grasslands 860 
11 Permanent wetland 59 
16 Barren or sparsely vegetated 366 
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Rundel, 2020), which serves as an interface to Geometry Engine - Open Source ('GEOS'); 

maptools v.1.1-1. (Bivand & Lewin-Koh, 2021), tools for handling spatial objects; dplyr 

v.1.0.5. (Wickham, et al., 2021), tool for working with data frames; raster v.3.4-5 (Hijmans, 

2020), for geographic data analysis and modelling; tidyr v.1.1.3. (Wickham & Henry, 2020), 

tools to help to create tidy data; reshape2 v.1.4.4 (Wickham, 2007), to restructure and aggregate 

data; GISTools v.0.7-4 (Brunsdon & Chen, 2014), mapping and spatial data manipulation tools; 

viridis v. 0.6.1 (Garnier, 2021), colour-blind-friendly colour maps for R; cartography v.3.0.0.  

(Giraud & Lambert, 2021), create and integrate maps in the R workflow; caret v. 6.0-88. (Kuhn, 

2021), for classification and regression training; CAST v.0.5.1. (Hanna, 2021), 'caret' 

applications for spatial-temporal models; and imager v.0.42.8. (Barthelme, 2021), an image 

processing library. 

First, all the data had to be merged. To achieve this, the map of Africa was transformed 

into a raster, which is an image with the surface divided into a regular grid of pixels. In this 

case, each grid cell was 50x50km. Next, using the bovid geographic distribution, it is 

determined which modern-day species intersected in each grid cell, based on their taxonomic 

name, and is merged with the African map, to mimic the computational locations. The same 

was done for the climatic condition’s variables. Hence, each grid cell represented a list of 

species occurrence and the associated climatic parameters, which are the bioclimatic variables 

and the land cover categories. The bioclimatic variables values were square root transformed to 

improve normality, just so that the measurements are in terms of the unit area of the grid/raster. 

However, the results will be presented in the original unit length. 

Afterwards, for each grid cell, the species-mean values of each astragalus variable are 

computed. Thus, for each grid cell on the map, there is a mean value of each of the 

measurements. These mean values are then used as inputs for prediction models with the 

climate parameters as target variables.  

Finally, a regression technique was used to test the relationship between the ecometric 

variables with the different bioclimatic variables in each grid. While for land cover, a 

classification technique was used.  

There are some differences between the classification and regression problems. 

Fundamentally, classification is about predicting a discrete class label and regression is about 
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predicting a continuous quantity (Kuhn & Johnson, 2013). Nevertheless, some algorithms can 

be used for both classification and regression (Kuhn & Johnson, 2013). 

Model preparation for bioclimatic variables 

The performance of the regression models was measured using the metrics Root-mean-

square error (RMSE), mean absolute error (MAE) and coefficients of determination (R2). The 

first two are the most commons metrics for regression models (Chai & Draxler, 2014). RMSE 

is interpreted as how far, on average, the residuals are from zero (Kuhn & Johnson, 2013). On 

the other hand, the calculation of MAE involves summing the magnitudes (absolute values) of 

the errors to obtain the ‘total error’ and then dividing the total error by n (Willmott & Matsuura, 

2005). These metrics tell us how accurate our predictions are and, what is the amount of 

deviation from the actual values. Coefficients of determination (R2) was introduced by Wright 

(1921), its original formulation quantifies how much the dependent variable is determined by 

the independent variables, in terms of proportion of variance. Regarding MAE and RMSE 

metrics, lower values indicate a better model. For R2, the model closer to 1 is the best, since 

this metric only goes from 0 to 1. 

To evaluate the model's execution, the complete dataset was resampled using the K-

Fold cross-validation process with k = 10. As explained by Kuhn and Johnson (2013), in the K-

Fold Cross-Validation the samples are randomly partitioned into k sets of roughly equal size. 

A model is fit using all samples except the first subset (called the first fold). The held-out 

samples are predicted by this model and used to estimate performance measures. The first 

subset is returned to the training set and the procedure repeats with the second subset held out, 

and so on. The k resampled estimates of performance are summarized (usually with the mean 

and standard error) and used to understand the relationship between the tuning parameter(s) and 

model utility (Kuhn & Johnson, 2013). As the sample size of the ecometric dataset is 

particularly large, the leave-out group would have taken a long time to process.  

All data was centred and scaled as a pre-process to improve the numerical stability of 

some subsequent calculations and standardize their scale. As a result of centring, the variables 

have a zero mean, while scaling coerce the predictors to have a common standard deviation of 
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one. These transformed interval values were, subsequently, used in the analyses. Additionally, 

the seed was set at a random number to ensure reproducibility. 

Then four different regression models (supervised algorithms) were executed, (i) linear 

model; (ii) k-nearest neighbours (KNN); (iv) support vector machine (SVM) and (v) random 

forest (RF). The last three have already been described above, the only difference is that they 

will now be used for regression problems. 

(i) linear model 

Linear regression is a linear model wherein a model assumes a linear relationship 

between the input variables (x) and the single output variable (y) (Yan & Su, 2009). When there 

is a single input variable (x), the method is called simple linear regression. When there are 

multiple input variables, the procedure is referred to as multiple linear regression. 

Again, most of the models tested had the tunning parameter set to 10, and in the random 

forest was set to 4. 

Model preparation for land cover 

For the land cover, the process is similar to ecomorphology as it also deals with 

categories since it is a discrete variable. Thus, four classifiers (supervised algorithms) were 

chosen: (i) linear discriminant analysis (LDA); (ii) k-nearest neighbours (KNN); (iv) support 

vector machine (SVM) and (vi) random forest (RF). They have already been described above 

in the ecomorphological analysis.  

The performance of the classification models was quantified using the confusion matrix 

from which the overall classification accuracy (i.e., error rate) was computed, as well as by 

computing Cohen’s Kappa coefficient (Püschel et al., 2018). 

To assess the model's effectiveness, the complete dataset was resampled using the K-

Fold cross-validation process with k = 10. 

The tuning parameters are the same as in the previous analyses. 
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3) Results 

3.1) Exploratory analysis  

Principal component analysis (PCA) 

 Two fossil specimens from Kanapoi and Allia Bay were removed from the database 

because they corresponded to outliers, probably representing measurement errors. Then, a 

Principal component analysis (PCA) was carried out again (Figure 9). 

  
 The principal components analysis of the astragalar measurements shows a high 

covariation among the five variables. The first principal component (PC) vector explains 

98.46% variance in the data (eigenvalue = 3.95), whereas the other four PCs explained 1.07% 

Figure 9 Principal component analysis (PCA) of the astragalar measurements (only the first two PCs are shown). The models 

located at the extremes of the PC axes correspond to the individuals showing the maximum or minimum values along the 

first two PCs. Data is coloured and shaped by the tribe name. 
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(eigenvalue = 0.042), 0.25% (eigenvalue = 0.010), 0.13% (eigenvalue = 0.005) and 0.07% 

(eigenvalue = 0.003), respectively.  

The first PC explains almost 100% of the variance, which means that almost all the 

variance represented by the five original variables can be effectively summarized by the linear 

transformation represented by the first PC, which is an extreme case of linear dependence. This 

occurs because the variables in this study are highly collinear, which means that probably just 

one or two of the original variables could effectively describe the observed patterns.  

This is a common issue when dealing with traditional morphometric data (i.e., linear 

distances), as size is a confounding factor that seems to be explaining almost all the variance of 

the sample. Thus, the astragalar data was corrected for size and the following figures (Figure 

10 a-c) show a PCA of these transformations, as well as of the raw data for comparison 

purposes. 

With data scaled by geometric mean or transformed by Burnaby's method, the values 

for the different PCs are more evenly distributed. For the Burnaby isometric transformation, the 

first PC explained 59.06% and the second 23.3%, and for the geometric mean transformation 

data, the first PC explained 65.53% and the second 17.75%. Thus, the first PC no longer 

explains almost all the variation.  

However, when removing the effect of size, there is a loss of differentiation between the 

different habitats. It is only in the scatter plot of the first two PC axes of the raw data that there 

is a slight pattern of differentiation between animals occupying different habitats and yet most 

of the different habitats occupy both negative and positive values in the first PC. Thus, it could 

be the size of the animals explaining the distinction between habitats rather than the astragalus 

measurements. Having said that, the following analyses were done using different approaches 

commonly applied to deal with collinear data, such as using size-standardized data, as well as 

reducing the number of variables, among other options. The data with the best results was the 

one that did not go through any transformation, i.e., raw data. The analyses were also repeated 

using fewer variables, but the results were worse than those discussed below and are not 

presented. 
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Figure 10 Principal component analysis (PCA) of the astragalar measurements (only the two first PCs are shown). (a) 

Using the raw data, (b) using the Isometric transformation data, and (c) using the data scaled by geometric mean. The 

models located at the extremes of the PC axes correspond to the individuals showing the maximum or minimum values 

along the two first PCs. Data is coloured based on habitat type and shaped based on ‘wet and dry’ categories. 

10 
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3.2) Ecomorphological analysis  

Habitat Classification  

The statistical results are presented in Table 3, which shows the accuracy and Cohen's 

Kappa results for all applied models after performing the leave-group-out cross-validation 

procedure. The most accurate model for predicting habitat was Random Forest (RF). 

To all models tested it was applied an automatic grid search, and RF model performed 

better. Hence, the obtained RF model was further tuned using a manual grid search. Two 

parameters were tuned in this model, the number of trees to grow (i.e. 100, 200, 500, 1000 and 

2000) as well as the number of variables randomly sampled as candidates at each split (i.e. 1, 

2, 3 and 4). In general, the RF model was quite robust when changing these tuning parameters, 

showing similar classification accuracies. The final best RF model grew 2000 trees and used 

four variables randomly sampled as candidates at each split (average accuracy: 0.712; average 

Cohen’s Kappa: 0.613) (Table 3).  

 
Table 3 Summary statistics of the “leave-group-out” cross-validation procedure for the accuracy and Cohen’s kappa values 

for all the tested models (best results in bold). 

 

The random forest model is statistically different from all other models (p-value <0.05), 

with the highest difference values, both in accuracy and Cohen’s kappa. 

To allow a visual representation of the separation between habitat categories, the RF 

model was used to plot a Decision Boundary (Figure 11a). The model used the two variables 

that most contributed to the separation between categories and led to the identification of a 

linear pattern, allowing some discrimination between ungulate species inhabiting open and 

mixed/closed environments. Figure 11b shows the ecomorphic variables sorted by importance, 

with radius of the distal articular end (Distrad) and Functional length (B) having the most 

contribution, while the remaining variables explain less variation. 

 

 RF  SVM LDA CART  KNN NB 

Accuracy 0.7118750 0.6778125 0.6371875 0.6321875 0.6103125 0.5368750 

Kappa 0.6134392 0.5665606 0.5118211 0.5096735 0.4796661 0.3875724 
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The bivariate plot in Fig. 11a shows that, with the only exception of species ecological 

adapted to open environments, it was not possible to make a clear distinction between species 

from mixed environments (light cover and heavy cover) or those belonging to closed 

environments. 

By applying the final RF model, the fossil sample was classified, and all the specimens 

were categorized as living in Open, Light Cover, Heavy Cover or Forest habitat, as presented 

in Table 4. 

Table 4 Random Forest prediction classification of habitat category for the fossil sample (Kanapoi and Allia Bay). Detailed 

results for individual fossils are provided in Appendix C, Table C1. 

 

‘Wet & Dry’ Classification  

The Random Forest (RF) model was again found to be the most accurate, this time for 

wet or dry prediction. The statistical results are presented in Table 5, which shows the accuracy 

Assemblage  Open (n, %)  Light cover (n, %) Heavy cover (n, %)  Forest (n, %)  Total  

Allia Bay 1 (7%) 5 (36%) 5 (36%) 3 (21%) 14 (100%) 

Kanapoi 4 (13%) 12 (40%) 9 (30%) 5 (17%) 30 (100%) 

Figure 11 (a) Decision boundary plot. The two variables that contributed the most to the RF model are displayed. The 

space is colored depending on what habitat preference the RF algorithm predict that region belongs to, whereas the lines 

between colored areas represent the decision boundaries. Color intensity indicates the certainty of the prediction in a 

particular graph area (i.e., darker colors mean a higher probability of belonging to a certain category). The grey 

rhombuses correspond to the fossil specimens. In addition, (b) variable importance scores for habitat predictors used are 

provided. 

(a) (b) 
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and Cohen's Kappa results for all applied models after performing the leave-group-out cross-

validation procedure. 

Again, an automatic grid search was applied to all models tested, and the RF model 

showed a better performance. Thus, as in the previous analysis the RF model obtained was 

tuned using exactly the same parameters. In these adjustments, the RF model was quite robust, 

showing similar classification accuracies. The best final RF model grew 2000 trees and used 

four randomly sampled variables as candidates in each split (average accuracy: 0.755; average 

Cohen’s Kappa: 0.507) (Table 5).  

Table 5 Summary statistics of the “leave-group-out” cross-validation procedure for the accuracy and Cohen’s kappa values 

for all the tested models (best results in bold). 

 

The random forest model is statistically different from all other models (p-value <0.05), 

with the highest difference values, both in accuracy and Cohen’s kappa. 

Plotting the two variables that contribute most to the RF model led to the identification 

of a linear pattern that allows a fairly good discrimination between bovid species belonging to 

wetter or drier habitats (Figure 12a). Of the five variables used, the Functional length (B) and 

the radius of the distal articular end (Distrad) have the most importance and contributed the 

most to the separation between categories, while the remaining variables explain less variation 

(Figure 12b). 

Compared to the previous bivariate plot (Fig. 11a), this plot shows that there is an 

association between the Dry category and the Open Habitat category, and between the Wet 

category and the other categories (light and heavy cover and forest) (Fig. 12a). 

By applying the final RF model, the fossil sample was classified, and all the specimens 

were categorized as living in Dry or Wet habitats (Table 6). 

 

 

 RF  SVM LDA CART  KNN NB 

Accuracy 0.7550000 0.7111765 0.7044118 0.7008824 0.7220588 0.6326471 

Kappa 0.5070269 0.4176269 0.4047612 0.3961819 0.4401833 0.2508601 
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Table 6 Random Forest prediction classification of ‘Wet and Dry’ category for the fossil sample (Kanapoi and Allia Bay). 

Detailed results for individual fossils are provided in Appendix C, Table C2. 

 

3.3) Ecometric analyses  

The geographical distribution, in Africa, of the modern species used in the comparative 

data is illustrated in Figure 13a. In Figure 13b, they are represented by their richness (i.e., the 

number of modern species intercepting in each grid cell).  This is simply a count of the number 

of species used and it does not consider the abundances of the species or their relative 

abundance distributions. As can be observed in figure 13b, the highest species richness (i.e., 

number of species in a certain area) occurs in East Africa. 

Figure 14 illustrates the spatial distributions of modern-day species community-mean 

values of each of the five astragalus variables.  

Assemblage  Wet (n, %)  Dry (n, %) Total  

Allia Bay  6 (43%) 8 (57%) 14 (100%) 

Kanapoi  19 (63%) 11 (37%) 30 (100%) 

Figure 12 (a) Decision boundary plot. The two variables that contributed the most to the RF model are displayed. The 

space is colored depending on what habitat preference the RF algorithm predict that region belongs to, whereas the lines 

between colored areas represent the decision boundaries. Color intensity indicates the certainty of the prediction in a 

particular graph area (i.e., darker colors mean a higher probability of belonging to a certain category). The grey 

rhombuses correspond to the fossil specimens. In addition, (b) variable importance scores for habitat predictors used are 

provided.  

(a) (b) 
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Figure 14 Rasters showing the spatial distribution of assemblage-average ecometric values for the five variables. 

Variables acronyms: Functional length (B); Radius of circle fit to the margin of the distal trochlea (DistRad); Radius of 

circle fit to the margin of the proximal trochlea (ProxRad); Width at level of flange on lateral surface, but excluding 

flange (WAF); Maximum medial length (MML).  

Figure 13 Map of the African continent showing (a) the geographical distribution of modern-day species used in this 

study and (b) species richness. 

(a) (b) 
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Ecometric precipitation estimates  

On Table 7 are presented the results of MAE, RMSE and R2, after performing the k-fold 

cross-validation procedure, for all models applied to each bioclimatic variable related to 

precipitation (i.e., mean annual precipitation, precipitation of the wettest and driest month and 

precipitation seasonality). The best model, i.e., the one with the lowest error (MAE and RMSE) 

and the best coefficient of determination (R2) to predict all the bioclimatic variables was 

Random Forest (RF). 

An automatic grid search was applied to all the tested models, and the RF model had the 

best performance in all bioclimatic variables tested here. Therefore, each RF model obtained 

for each bioclimatic variable was further tunned using a manual grid search. Similar to the RF 

model used in the ecomorphological analysis, the same two parameters were tuned in this 

model, the number of trees to grow (i.e. 100, 200, 600, 1000 and 2000), as well as the number 

of variables randomly sampled as candidates in each division (i.e. 1, 2, 3 and 4), although in 

this case it is a regression model rather than a classification model.  

In general, all RF models were quite robust when changing these tuning parameters, 

showing similar predictions for all variables. In the end, all these RF models grew 600 trees and 

used three randomly sampled variables as candidates in each split. The results for each model 

can be seen in the table below (Table 7). 

Table 7 Summary statistics of the “K-Fold” cross-validation procedure for the MAE, RMSE and R2mean values for all the 

tested models (best results in bold). 

Precipitation estimates Model 
Accuracy 

MAE RMSE 
R

2
 

Mean Annual Precipitation RF 2.174750 3.247268 0.8749964 
SVM 3.053304 4.303970 0.7810089 
KNN 2.563698 3.871536 0.8234463 
LM 4.451616 5.911415 0.5858922 

Precipitation of Wettest Month RF 0.9858932 1.530273 0.8083321 
SVM 1.4171792 2.005243 0.6714070 
KNN 1.1660399 1.785131 0.7408373 
LM 1.9715621 2.576234 0.4562863 

Precipitation of Driest Month RF 0.6610180 1.019041 0.8148615 
SVM 1.0092131 1.461645 0.6275441 
KNN 0.7654543 1.179462 0.7537227 
LM 1.5074221 1.944205 0.3276453 

Precipitation Seasonality RF 0.5100571 0.7723129 0.7869078 
SVM 0.7661778 1.0994718 0.5710157 
KNN 0.6093220 0.9179234 0.7011483 
LM 1.1252165 1.4687855 0.2297147 
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All models tested for each bioclimatic variable are statistically different (p-value <0.05), 

with RF having the highest difference values in all of them, both in MAE, RMSE and R2. 

By applying the final RF model of each bioclimatic variable, it is possible to create a 

spatial prediction of these precipitation variables using the astragalar variables from the 

comparative data. To achieve this, the RF model was used to predict associations of the mean 

of each ecometric variable with the values of the bioclimatic variable being used, in each grid 

cell on the map. Thus, for each bovid community (i.e., a 50x50km grid cell), particular 

astragalar measurements are associated with specific precipitation values. 

 Figure 15 presents the maps of the currant values, for Africa, taken from 

worldclim.com, and their estimates, across sub-Saharan Africa, for (a) mean annual 

precipitation, (b) precipitation of wettest month, (c) precipitation of the driest month and (d) 

precipitation seasonality.  As well as the ecomorphic variables that contributed most to these 

predictions (Figure 15 1-4). 

In general, of the five ecomorphic variables the radius of the distal articular end 

(Distrad) and Functional length (B) have the most importance and explain most of the variation 

in precipitation estimates, while the remaining variables explain less variation depending on the 

bioclimatic variable tested (Figure 15 1-4).  

The fossil sample was then used to predict the values for Kanapoi and Allia Bay. The 

predicted values of the RF model for each of the precipitation bioclimatic variable are presented 

in Table 8. 

 

Table 8 Random Forest prediction of Mean Annual Precipitation, Precipitation of Wettest Month, Precipitation of Driest 

Month and Precipitation Seasonality, for the fossil sample (Kanapoi and Allia Bay). 

 

These values were not predicted based on location but rather based on the average of 

the astragalus variables measurements of the fossils collected at these sites. 

Assemblage 
Precipitation estimates 

Mean Annual 
Precipitation (mm) 

Precipitation of Wettest 
Month (mm) 

Precipitation of Driest 
Month (mm) 

Precipitation Seasonality 
(%) 

Allia Bay 853.2 198 25.3 58.2 

Kanapoi 1701.9 281.8 27.7 60.1 

     



 

 
 

41  

(c) 

Figure 15 Maps showing precipitation estimates for Africa. For each precipitation variable tested, (a) Mean annual 

precipitation (MAP), (b) precipitation of wettest month (PWM), (c) precipitation of driest month (PDM) and (d) Precipitation  

seasonality (PS), there is a visualisation of the current values used for modelling (left) and their spatial prediction for sub-

Saharan Africa (right), based on modern species ecomorphic variables using the RF model. Units are square root 

transformed. In addition, variable importance scores are provided for the predictors used for each of these bioclimatic 

variables, i.e. (1) for MAP, (2) for PWM, (3) for PDM and (4) for PS.  

Predicted Mean Annual Precipitation Mean Annual Precipitation 

Predicted Precipitation of Wettest Month Precipitation of Wettest Month 

Predicted Precipitation of Driest Month Precipitation of Driest Month 

Predicted Precipitation Seasonality Precipitation Seasonality 

(a) 

(b) 

(d) 

(2) 

(1) 

(3) 

(4) 
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Ecometric temperature estimates  

The results of MAE, RMSE and R
2, after performing the k-fold cross-validation 

procedure, for all models applied to each bioclimatic variable related to temperature (i.e., mean 

annual temperature, max temperature of warmest month, min temperature of coldest month and 

temperature seasonality), are presented in Table 9. The best model, i.e., the one with the lowest 

error (MAE and RMSE) and the best coefficient of determination (R2) to predict all the 

bioclimatic variables was again Random Forest (RF). 

An automatic grid search was applied to all the tested models, and the RF model had the 

best performance in all bioclimatic variables tested here. Therefore, each RF model obtained 

was further tunned using a manual grid search, the exact same two parameters were adjusted in 

this RF model.  

In general, all RF models were quite robust when changing these tuning parameters, 

showing similar predictions for all variables. In the end, all these RF models grew 600 trees and 

mean annual temperature used three randomly sampled variables as candidates in each split, 

while the rest of the bioclimate variables used two variables. The results for each model can be 

seen in the table below (Table 9).  

 

Table 9 Summary statistics of the “K-Fold” cross-validation procedure for the MAE, RMSE and R

2
 mean values for all the 

tested models (best results in bold). 

 

Temperature estimates Model 
Accuracy 

MAE RMSE 
R

2
 

Mean Annual Temperature RF 0.3791258 0.6075898 0.7312159 
SVM 0.5388479 0.8057513 0.5374535 
KNN 0.4447440 0.7119740 0.6337903 
LM 0.7250144 0.9748980 0.3091169 

Max Temperature of Warmest Month 

 

RF 0.3688247 0.5737843 0.7004779 
SVM 0.5278867 0.7663771 0.4685141 
KNN 0.4297809 0.6599279 0.6076861 
LM 0.7322884 0.9648266 0.1526834 

Min Temperature of Coldest Month RF 0.7381527 1.129270 0.8317325 
SVM 1.0897428 1.542461 0.6879371 
KNN 0.8732290 1.333771 0.7663766 
LM 1.4682730 1.903016 0.5200701 

Temperature Seasonality RF 3.333054 4.956625 0.8711849 
SVM 5.153804 7.028412 0.7416879 
KNN 4.012857 5.967009 0.8142574 
LM 6.869985 8.952767 0.5798703 
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All models tested for each temperature estimate are statistically different (p-value 

<0.05), with RF having the highest difference values, both in MAE, RMSE and R2.  

By applying the final RF model of each bioclimatic variable, it is possible to create a 

spatial prediction of these precipitation variables using the astragalar variables from the 

comparative data.  

 Figure 16 presents the maps of the currant values, for Africa, taken from 

worldclim.com, and their estimates, across sub-Saharan Africa, for (a) mean annual 

temperature, (b) max temperature of warmest month, (c) min temperature of coldest month and 

(d) temperature seasonality.  As well as the ecomorphic variables that contributed most to these 

predictions (Figure 16 1-4). 

In general, of the five ecomorphic variables the Functional length (B), Width at level of 

flange on lateral surface (WAF) and the radius of the distal articular end (Distrad) have the most 

importance and explain most of the variation in temperature estimates, while the remaining 

variables explain less variation depending on the bioclimatic variable tested (Figure 15 1-4).  

The fossil sample was then used to predict the values for Kanapoi and Allia Bay. The 

predicted values of the RF model for each of the temperature bioclimatic variable are presented 

in Table 10.  

 

Table 10 Random Forest prediction of Mean Annual Temperature, Max Temperature of Warmest Month, Min Temperature of 

Coldest Month and Temperature Seasonality, for the fossil sample (Kanapoi and Allia Bay). 

 

Assemblage 
Temperature estimates 

Mean Annual 
Temperature (ºC) 

Max Temperature of 
Warmest Month (ºC) 

Min Temperature of 
Coldest Month (ºC) 

Temperature 
Seasonality (ºC) 

Allia Bay 23.79 32.64 14.07 1.176 

Kanapoi 25.7 33.64 16.12 1.073 
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(b) 

(d) 

Mean Annual Temperature Predicted Mean Annual Temperature 

Predicted Max Temperature of 
Warmest Month 

Max Temperature of Warmest 
Month 

Predicted Min Temperature of 
Coldest Month 

Min Temperature of 
Coldest Month 

Predicted Temperature Seasonality Temperature Seasonality 

Figure 16 Maps showing temperature estimates for Africa. For each precipitation variable tested, (a) Mean annual 

temperature (MAT), (b) Max Temperature of Warmest Month (MTWM), (c) Min Temperature of Coldest Month (MTCM) 

and (d) Temperature Seasonality (TS), there is a visualisation of the current values used for modelling (left) and their spatial 

prediction for sub-Saharan Africa (right), based on modern species ecomorphic variables using the RF model. Units are 

square root transformed. In addition, variable importance scores are provided for the predictors used for each of these 

bioclimatic variables, i.e. (1) for MAT, (2) for MTWM, (3) for MTCM and (4) for TS.  

(c) 

(a) 

(2) 

(1) 

(3) 

(4) 
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Ecometric land cover estimates  

  The statistical results are presented in Table 11, which shows the accuracy and Cohen's 

Kappa results for all applied models after performing the k-fold cross-validation procedure. The 

most accurate model for predicting land cover was Random Forest (RF). 

To all models tested it was applied an automatic grid search, and RF model performed 

better. Hence, the obtained RF model was further tuned using a manual grid search. Two 

parameters were tuned in this model, the number of trees to grow (i.e. 100, 200, 500, 1000 and 

2000) as well as the number of variables randomly sampled as candidates at each split (i.e. 1, 

2, 3 and 4). In general, the RF model was quite robust when changing these tuning parameters, 

showing similar classification accuracies. The final best RF model grew 600 trees and used one 

variable randomly sampled as candidates at each split (Accuracy: 0.7469232; Kappa: 

0.6787663) (Table 11). 

    
 Table 11 Summary statistics of the “K-Fold” cross-validation procedure for Accuracy and Cohen’s Kappa mean values for 

all the tested models (best results in bold). 

 

All models are statistically different (p-value <0.05), with RF having the highest 

difference values, both in Accuracy and Cohen’s Kappa.  

By applying the final RF model, it’s possible to create a spatial prediction of the different 

land covers categories using the astragalar variables of the comparative data (Figure 17a). 

Among the five ecomorphic variables the Functional length (B) and radius of the distal articular 

end (Distrad) have the most importance and explain most of the variation in land cover 

estimates, while the remaining variables explain less variation (Figure 17b). 

 

 

 RF SVM KNN LDA 

Accuracy 0.7469232 0.5617654 0.7109609 0.6078916 

Kappa 0.6787663 0.4374237 0.6325701 0.5002338 
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 The fossil sample was then used to classify the data of Kanapoi and Allia Bay into 

different land covers categories (Table 12). 

 

Table 12 Random Forest prediction classification of land cover for the fossil community sample (Kanapoi and Allia Bay).  

 

 

 

 

 

 

 

Assemblage 
Land cover categories 

Evergreen 
broadleaf forest 

Open                   
shrublands 

Woody        
savannahs 

Savannahs Grasslands Permanent 
wetland Barren 

Allia Bay 0.260 0.048 0.172 0.078     0.380    0.052 0.010 

Kanapoi 0.222 0.126 0.274 0.034     0.178    0.132 0.034 

        

(a) 

Figure 17 (a) Maps showing land cover for Africa. Visualisation of the modern-day land cover data used for modelling 

(left). Spatial prediction of sub-Saharan Africa land cover based on modern species ecomorphic variables using the RF 

model (right). Numbers correspond to: (1) Evergreen broadleaf forest, (2) Open shrublands; (3) Woody savannahs; (4) 

Savannahs; (5) Grasslands; (6) Permanent wetland; (7) Barren or sparsely vegetated.  In addition, (b) variable importance 

scores for habitat predictors used are provided.  

 

Land Cover Land Cover Prediction (b) 
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4) Discussion 

Palaeoenvironmental reconstructions provide fundamental ecological contexts for key 

episodes in human evolution. Through ecomorphological and ecometric analyses, using the 

functional morphology of astragalus and testing several machine learning methods, it was 

possible to accurately predict the habitat of modern African bovid species and ultimately use 

these models to predict the palaeoenvironmental conditions of two important Early Pliocene 

fossil sites in East Africa. Several environmental variables were tested, with promising results, 

providing predicted values of averages, variations and extremes of temperature and 

precipitation variables, in addition to vegetation categories. This gives a robust idea of what 

sites related to Australopithecus anamensis, i.e., Kanapoi and Allia Bay would have been like. 

These results contribute towards the study of the environmental circumstances in which a key 

part of human history took place. 

An initial exploratory analysis using PCAs showed that body size was highly correlated 

with most astragalar metrics, and that most habitat categories were not easily distinguishable. 

As previously mentioned by Barr (2014), this happens as the allometric effects of size (shorter 

and wider astragalus) are similar to the predicted functional effects of habitat-specific 

locomotor adaptation. Consequently, there is some overlap amongst different values, making it 

difficult to distinguish between different categories. Such overlap is a direct consequence of 

body size as a covariance factor, considering the way the astragalus adapts is also being 

influenced by changes occurring in other regions of an animal's morphology (Püschel et al., 

2018). After all, body size is one of the most fundamental biological characteristics of mammals 

and has been shown to correlate significantly with many biological variables (Kovarovic et al., 

2018). Nonetheless, it was still possible to detect habitat effects independent of body size using 

size-standardized data. However, it was determined that size correction was not beneficial for 

the ecomorphological analysis, as size seem to be an important factor when classifying astragali 

based on habitat characteristics. Therefore, the raw data was preferred as it resulted in a more 

accurate prediction of the environment.  However, it is also likely that the use of more 

sophisticated tools to quantify morphology (e.g., geometric morphometrics [GM], elliptic 

Fourier analysis, Euclidean distance matrix analysis, among other options) would improve the 

performance of the models, as shape could be captured in a more precise manner (Benítez & 

Püschel, 2014).  
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GM is rapidly becoming the standard method in biological and palaeontological studies 

focused on morphology (Curran, 2018). Rather than analysing linear measurements, 3D GM 

quantifies and analyses morphology using a series of cartesian coordinates of an anatomical 

region of interest (Lawing & Polly, 2010). By using an algorithmic procedure known as the 

generalised Procrustes superimposition, it allows for a mathematically consistent separation of 

shape and size (Bookstein, 1991).  Thus, it determines changes in the shape of objects 

independent of size effects and without a priori assumptions about which features are significant 

(Zelditch et al., 2004). 

Ecomorphological results 

Astragalar ecomorphology results show fossil bovids linked to each of the four habitat 

types, defined a priori, with better representation in the intermediate categories, i.e., light and 

heavy cover. These two categories combined represent about 70% of the predicted habitat for 

Allia Bay and Kanapoi, including habitats with bushland and light bushland, tall-grass habitats, 

woodland, as well as swampy habitats.  

For the ‘wet and dry’ categories, the result for Allia Bay showed that most fossils were 

classified within the ‘dry’ category (57%), whereas most of Kanapoi’s specimens were 

classified as ‘wet’ (63%). This means that Allia Bay has slightly more individuals representing 

a dry substrate. Kanapoi, on the contrary, has slightly more individuals representing a wetter 

substrate. However, it cannot be determined to be a drier or wetter habitat as the results are very 

close to 50%. Instead, Kanapoi and Allia Bay, probably represent a mix of the ‘wet and dry’ 

categories. Overall, these two sites do not differ much, at least when compared using astragalar 

bovid ecomorphological proxies.  

Through the decision boundary plot, it was observed that the RF model was unable to 

establish a good separation between light and heavy cover and forest categories. Hence, it could 

mean that the specimen astragalus belonging to these categories are not very good at 

distinguishing between different complex habitats, only between open and complex habitats. 

After all, this type of environment already integrates some complexity in the vegetation 

structure and the main distinction between these categories is the density of vegetation, which 

creates obstacles around (or below) which animals must move to escape predators (Curran, 

2012). Furthermore, when dealing with ecological and biological data that cannot be easily 

structured as discrete units, such as habitats and skeletal morphologies of closely related 
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species, some overlap between groups is always expected (Kovarovic & Andrews, 2007). In 

fact, this has been previously observed in other studies, where different habitat categories 

overlapped (Degusta & Vrbra, 2005; Scott et al., 1999; Kovaric & Andrews, 2007; Curran & 

Haile-Selassie, 2016; Curran, 2012). Despite that, it was still possible to classify the habitat 

with a 71.2% percentage of correct classification on average. 

Additionally, it was also apparent from the Decision Boundary plot that the assignment 

of the ‘wet and dry’ category falls towards habitat type. Naturally, soil moisture is deeply linked 

to vegetation type (Bond, 2008; Good & Caylor, 2011). Nonetheless, Kanapoi revealed slightly 

wetter environments than Allia Bay despite, in contrast, showing a slightly higher 

representation in open environments (open and light cover) than Allia Bay. In this regard, it 

might be important to include a more specific category about soil moisture in addition to habitat 

type, although the two are mutually implied. The most relevant variables for this classification, 

i.e., the radius of the distal articular end (Distrad) and the Functional length (B), were already 

shown to have the strongest relationship with individual habitat preference (Barr, 2014).  

These results are different from those obtained by Dumouchel and colleagues (2021), 

who concluded that Allia Bay and Kanapoi have a higher representation of open habitats (47% 

and 61%, respectively). Yet, their analysis also indicates highly heterogeneous environments, 

as the remaining individuals are distributed in other categories. Although the fossil samples are 

not entirely equal because two fossil individuals were removed in this study, the difference 

between these results comes, almost certainly, from using models with different accuracies.  

In their ecomorphological analysis, for habitat classification, Dumouchel and colleagues 

(2021) obtained an average accuracy of 77.8% using a linear discriminant function analysis 

(LDA), which is better than the results obtained here (71.2%). However, based on the 

description of their methods, I suspect that their results are overfitted. In their study, it is not 

mentioned which process they used to assess the quality of adjustment of the data, however, 

most ecomorphological studies (e.g. Kappelman, 1988, 1991; Kappelman et al., 1997; 

Kovarovic & Andrews, 2007; Plummer & Bishop, 1994) use the re-substitution process, which 

overestimates the classification power of canonical variables (Kovarovic et al., 2011). Cross-

validation is significantly better for estimating the discriminative power of the data (Curran, 

2012) and it was the approach preferred throughout this dissertation. 
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Furthermore, the use of different machine learning algorithms showed that LDA, a 

method often used in ecomorphological analyses, was not the model with the best accuracy 

results. Hence, when compared to other ecomorphological analyses, the results of this study 

prove to be more accurate for both habitat classification using astragalar data (e.g. Barr, 2015; 

DeGusta & Vrba, 2003), as well as other post-cranial bones (e.g. Kappelman, 1988, 1991; 

DeGusta & Vrba, 2005; Kovarovic & Andrews, 2007; Curran, 2012). As it was the case when 

analysing the ‘wet and dry’ categories, the results presented here are better, with a difference 

of only 1.5% as compared to the results obtained by Curran (2012) in their analysis of the third 

phalanx plantar margin in cervids (although the third phalanx has direct contact with the 

substrate, unlike the astragalus).  

In most LDA applications, researchers tacitly assume that their data conform to the 

assumptions of the normal theory (Feldesman, 2002). However, only when the results are 

compared to another technique that requires fewer or different assumptions, it can be decided 

which technique fits the data better (Feldesman, 2002). The use and choice of several different 

algorithms, depending on the specific problem, are important to successfully solve group 

analysis and classification problems using morphometric data (Püschel et al., 2018), improving 

the traditional way classification tasks have been performed in these areas (Püschel et al., 2018). 

Nevertheless, these results could be improved with larger sample size, as presented by Plummer 

et al. (2008, 2015), whose result values are higher than these. Larger samples will allow more 

robust comparisons between different types of ecomorphic analyses (Plummer et al., 2008).  

Ultimately, the random forests model is the machine learning approach that shows 

consistently high levels of accuracy. Other approaches, such as SVM and KNN, also showed 

good accuracy values, however, the models turned out to be statistically different and for this 

very reason the RF model was the chosen one. The disadvantage that comes with this accuracy 

of RF is the lack of interpretability and clarity of the model, often described as "black box" 

machine learning (i.e., algorithms where the internal parameters are essentially uninterpretable 

by humans) (Hosseini et al., 2020). Hence, one should take special concern with supervised 

applications, such as validating all the steps involved in the model design to obtain an unbiased 

estimate for accuracy (Tarca et al., 2007). 

Finally, the biggest challenge faced when applying ecomorphological analysis is 

understanding what the results mean in terms of interpretable ecological variables (Barr, 2017). 
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This system only considers four habitat categories, with the intermediate categories (light and 

heavy cover) grouping several habitat types together. Thus, given the complexity of 

environments, this general classification obscures ecological nuances that exist in the real world 

(Kovarovic et al., 2018). Furthermore, using two categories to describe the moisture present in 

the soil is underestimating a certainly more complex phenomenon.  

Ecometrics, on the other hand, has a greater emphasis on the multidimensional spectrum 

of many environments (Kovarovic et al., 2018). Compared to ecomorphological analysis, 

ecometric results provide a clearer assignment to a potential climate. 

Ecometric results 

Primarily, to build a good ecometric model, it is important to pay attention to the overall 

richness and the distribution pattern of the taxa that form the faunal community, as these are 

factors that affect the accuracy of predicting the correct habitat association for the fauna (Mares 

& Willig 1994; Andrews, 1996). Since 46 of the 55 species of bovids occurring in sub-Saharan 

Africa were used (Barr, 2017), this should not be a concern in the present study.  

Here again, among the ML regression models included in this study, it was shown that 

the RF model is also the machine learning approach that shows consistently higher levels of 

accuracy when predicting the bioclimatic variables used in the test dataset. As with the 

ecomorphological analysis, it was also tested different machine learning algorithms, including 

the Linear model, although some of this model’s assumption were violated, as the data is not 

independent (i.e., this sort of data is autocorrelated) (Serber & Lee, 2003). Yet, it was included 

for comparison to show the importance of testing more models beyond those commonly known 

and frequently used. Similarly, for the land cover classification, the RF model also shows the 

best results. 

Moreover, it was also found that the variables with the most importance in the 

ecomorphological analysis are again the most relevant in the analysis of the functional 

morphology of the astragalus at the community level, as previously observed by Barr (2017). 

However, it should be noted that for some of the temperature variables, the Width at the level 

of flange on lateral surface (WAF) was also important, in addition to DistRad and B.  
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The results suggest that ecological information from mammal fauna can be successfully 

used to predict several African bioclimatic variables in addition to precipitation and land cover, 

as has been demonstrated previously in astragalar measurements in modern Africa (Barr, 2017). 

Among the eight bioclimatic variables included in this study, mean annual precipitation 

(R2=0.88) and temperature seasonality (R2=0.87) were the most accurately predicted by the 

regression models. On the other hand, the maximum temperature of the warmest month 

(R2=0.70) and mean annual temperature (R2=0.73) were the ones with the lower results, which 

means they do not reconstruct so accurately as the other variables, but the values are not 

substantially different. RMSE or MAE error metrics are not used in the comparison between 

different variables as they are not dimensionless because their value depends on the units in 

which the variable (i.e. precipitation or temperature) is measured. 

Compared to the results from other ecometric studies for the bioclimatic variables, the 

results of this analysis are shown to be consistently better than previous works using other 

morphological features, such as dental traits (e.g., Žliobaitė et al., 2016; Faith et al., 2019; Liu 

et al., 2012) or locomotor aspects, such as tail length (e.g., Lawing et al., 2012) and calcaneal 

gear ratio (e.g., Polly, 2010). As for the land cover, as compared to other ecometric studies 

carried out using locomotor traits testing the same habitat categories as those tested in this 

analysis (e.g., Polly, 2010; Lawing et al., 2012; Barr, 2017; Short & Lawing, 2021), the results 

of this study are more accurate. The significance of the ecometric results presented here lies not 

only in the quantitative formalization of the relationship between the astragalus calculated at 

the community level and all environmental parameters tested but also in the application of 

different algorithms, which allow researchers to choose the most accurate one depending on the 

empirical results obtained from each specific study. 

The models in this study show high overall success prediction and classification rates, 

which were also evident in the spatial prediction plots. The maps made using the astragalar 

variables of the comparative data were practically equal to the maps with the actual values. 

Meaning the RF model made a good association between the mean of each ecometric variable 

with the values of the bioclimatic variables and the land cover categories, in each grid cell on 

the map. Therefore, based on the metrics obtained, these results provide confidence in the 

values of the tested bioclimatic variables and the predicted habitat preference assignments for 

the Kanapoi and Allia Bay fossil samples.   
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According to the ecometric estimates, the two palaeontological sites follow relatively 

similar climatic patterns. The results show high mean temperatures between 23.8°C for Allia 

Bay and 25.7°C for Kanapoi, with minimum and maximum values within a range included in 

the tropical domain (Bonnefille, 2004). Furthermore, the value of temperature variation was 

low, which means that there was fewer extreme differences throughout the year, resulting in 

seasons not being pronounced, but rather a range of uniform and mild climate, as expected for 

a tropical climate region. It is commonly inferred that Africa was warmer in the past (Bobe et 

al., 2002; Fernández & Vrba, 2006; Potts, 2007; Passey et al., 2010; Fortelius et al., 2016). The 

last two studies (Passey et al., 2010; Fortelius et al., 2016), applied to the Turkana basin, also 

show this trend of absence of temperature variations. 

On the other hand, precipitation values indicate a considerable difference between these 

two sites, with Kanapoi showing an average precipitation value of 1702.9 mm compared to 

853.2 mm for Allia Bay. Within these obtained values there is a clear difference between the 

wettest and driest extremes for the two palaeontological sites, which is ultimately reflected in 

the precipitation seasonality values. According to Hare (2003), CV is used to classify the degree 

of variability of rainfall events as minor (CV <20), moderate (20 <CV <30) and high (CV> 30). 

Since the values were 58.2% for Allia Bay and 60.1% for Kanapoi, there was a change in the 

amount and/or pattern of rainfall during the time represented at the site by the fossils used. In 

the ecomophological analysis, a similar pattern occurred, with Kanapoi being wetter than Allia 

Bay, but the differences were minimal and both sites showed a mixture of the ‘wet and dry’ 

categories.  

In general, most of Africa is characterised by a strong seasonal cycle in the precipitation 

regime and a pronounced dry season (Nicholson, 2000; Kingston, 2007). These rainfall 

patterns, especially in Tropical Africa, are mainly controlled by the strength of the Afro-Asian 

monsoon circulation and the migration of the Intertropical Convergence Zone (ITCZ)3 

(Nicholson, 2000; Hardt et al., 2007; Kingston, 2007; Geen et al., 2020). Thus, the timing of 

the monsoon rainfall increase in East Africa is primarily a product of the monsoons as localised 

seasonal migrations of the tropical convergence zone (Geen et al., 2020). The ITCZ follows the 

seasonal and latitudinal movement of incoming solar insolation (Lepre et al., 2007), changing 

 
3  ITCZ is defined as the location where the trade winds from the northern and southern hemispheres converge (Geen et al., 
2020). The rising air in the ITCZ is cooled by expansion, resulting in condensation and rain. This zone of maximum rainfall 
follows the latitudinal position of the sun overhead, resulting in a general bimodal seasonal distribution of rainfall associated 
with the passage of the ITCZ (Kingston, 2007). 
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its mean position based on the temperature contrast between the northern and southern 

hemispheres, migrating towards the warming hemisphere (Schneider et al., 2014). 

Therefore, these climate systems can change according to periodic variations in the 

Earth's orbit around the Sun, as these variations control the amount of incident solar radiation 

(insolation) (Zhang et al., 2015). These changes are the result of variations in orbital 

eccentricity, obliquity and, more specifically, the precession of the Earth's orbital axis (Prell & 

Kutzbach, 1987; Clement et al., 2004; Zhang et al., 2015). Precession is the orbital cycle 

(20,000 years) that determines the position of the seasons within the Earth's revolution (Berger 

et al., 1992), influenced by changes in Milankovitch periodicities (Berger et al., 1993).  

Throughout the extent of the rift, without this climate control, East Africa cannot receive 

sufficient rainfall to fill large deep freshwater lakes (Maslin & Christensen, 2007). In fact, there 

is now considerable evidence for this precessional forcing on moisture availability in the tropics 

in East Africa during the Pliocene (Brown & Feibel, 1986; Feibel et al., 1989; Brown, 1995; 

deMenocal, 1995, 2004; Deino et al., 2006; Hopley et al., 2007; Kingston et al., 2007; Lepre et 

al., 2007). This oscillation in monsoon rainfall led to fluctuations within lakes (Deino et al. 

2006, Kingston et al. 2007, Magill et al. 2013, Scholz et al. 2007, Wilson et al. 2014), changes 

in lake distribution (Trauth et al. 2007) and intervals of fluvial deposition (McDougall et al. 

2005).  

The Turkana Basin is linked to the large and ancestral Omo River (Brown & Feibel, 

1988; Feibel, 1993; 2011). The amount of Omo River water that entered and transited the 

Turkana Basin for at least five million years (Levin et al., 2011) depended on rainfall in the 

Ethiopian highlands and the diversion of streams from the Omo River basin to the Nile (Brown 

& Feibel, 1991). In addition, the Kanapoi Formation lies in the floodplains of the lower Kerio 

River valley, which feed into the Omo-Turkana Basin (Dumouchel et al., 2021). Therefore, a 

large river such as the Omo can experience seasonal flooding altering habitats (Ward et al., 

1999) and the corresponding lake level transgressions and regressions consisted of wetter and 

more seasonal conditions (Trauth et al., 2005, 2007).  

This is supported by previous analyses of palaeoprecipitation for the Turkana Basin. For 

example, Fernandez and Vrba (2006) inferred a palaeoprecipitation of 1100 mm/year for 3.5 

Ma, based on taxonomic analysis of macro mammal faunas. Similarly, the ecometric study by 

Fortelius et al. (2016) also confirmed these trends, according to their estimates, between 4-3 
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Ma, the basin had annual precipitation values ranging between ~ 600 and 1400mm. Moreover, 

Feibel (1988) had already found, based on palaeosol types, that by ~ 3.5 Ma the Turkana Basin 

was characterised by local heavy rainfall conditions. Bonnefille et al. (2004) inferred 

precipitation values between ~ 800 and 1200 mm / year, for the Pliocene. Further support for 

seasonality comes from mammal community structures (Reed, 1997; Bobe & Eck, 2001; Reed 

& Fish, 2005), palaeodiet reconstructions of hominins (Teaford & Ungar, 2000), vetissols 

(Wynn, 2000) and oxygen isotope ratios in fossil enamel of faunal teeth (Beasley et al., 2016). 

Meanwhile, the higher mean precipitation signal for Kanapoi inferred in this study may 

be a consequence of the expansion of a large lake, as the presence of surface water appears to 

inflate local rainfall estimates significantly (Fortelius et al., 2016). Around 4.14 million years 

ago, the largest known lake in the history of the Omo-Turkana Basin, the Lonyumun palaeo-

lagoon, emerged, extending from Kanapoi in the south to the Mursi region in the north (Feibel, 

2011). The expansion of this lagoon undoubtedly had an important effect on the geography, 

vegetation, and fauna of the region (Bobe et al., 2020). Furthermore, the Kanapoi sedimentary 

sequence contains fluvial and deltaic deposits from before and after the Lake Lonyumun 

interval (Feibel et al., 1991; McDougall and Brown, 2008), deposited by the Kerio River 

(Feibel, 2003). As such, the palaeohydrology of the Turkana Basin over time was characterised 

by an alternating lake and riparian conditions (Feibel, 2011), ensuring permanent water 

abundance throughout climatic cycles (Manthi et al., 2020b; Joordens et al., 2019; Bobe et al., 

2020). Nevertheless, these values represent an ‘average’ for the temporal frame represented by 

the fossils used and may not fully reflect Kanapoi's environmental variability.  

It is essential to recognize that nature is highly complex and variable, particularly when 

situated in a context such as the Rift Valley. In addition to precipitation variation by the 

precession forcing, other processes may also have contributed to this ecological variability, 

including abiotic agents (topography, localized climatic conditions, volcanic disturbances, 

fires) as well as biotic factors (organisms and their resources mediation) (Kingston, 2007). 

The floodplains, lake margins and volcanic terrains that prevail in the Rift Valley 

settings are unstable by nature (Levin, 2015). The geographical distribution of faults, tectonic 

movements and the resulting basin geometry and structure are important controls on the 

sedimentology and stratigraphy of the lake of East African settings (Tiercelin, 1990; Cohen et 

al., 1997; Scholz et al., 1998). In particular, the Turkana Basin is located at the intersection of 
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two rift systems (Bosworth & Morley, 1994) and was affected by occasional tectonic activity, 

which disrupted outflow and resulted in short-lived temporary lakes (Brown & Feibel, 1991). 

Consequently, the climate patterns are markedly complex and highly variable 

(Nicholson, 2000). And the consequences of these seasonal and humid periods are reflected in 

the vegetation type, as indicated in the land cover results. As with the ecomorphological 

analysis, the land cover categories reveal that no single category is predominant, but rather there 

is a variety of environments with relatively similar portions, emphasising heterogeneity. Both 

sites reveal a combination of habitats such as woody savannas, evergreen broadleaf forest and 

grasslands, only in different portions. Allia Bay has a high presence of open environments such 

as grasslands (38%), but also highly values for environments dominated by forest cover such 

as evergreen broadleaf forest (26%) and woody savannahs (17.2%), with the remaining 

categories showing values below 7.8%. On the other hand, Kanapoi shows more distributed 

values, with a slightly higher representation in environments with a higher presence of forest 

cover, such as woody savannas (27.4%) and evergreen broadleaf forest (22.2%), followed by 

more open environments, such as grasslands (17.8%), permanent wetlands (13.2%) and open 

shrublands (12.6%), among others (<3.4%). This means that the habitat of these sites was 

dominated by forest cover environments, which could exceed 60%, with heights greater than 

2m, with trees and shrubs that remain green throughout the year (evergreen broadleaf forest) 

but that was also characterised by the presence of land with trees and herbaceous vegetation 

and other understory systems (woody savannahs) and more open systems, without so much 

forest cover (grasslands). For Kanapoi there is also some representation of bovids associated 

with permanent wetlands and open shrublands, characterised by land with a permanent mixture 

of water and land with shrub cover. 

This combination of different vegetation types is expected for complex sites with 

multiple processes and agents capable of producing ecological heterogeneity (Kingston, 2007). 

Currently, there are some examples of these types of environments such as the miombo and 

mopane forests (Siyum, 2020) and the sub-Saharan savannahs of Africa (Prentice et al., 1992), 

with vegetation types of seasonal or semi-dry tropical forests, where the dominant trees are 

green with tree cover from continuous (in true forests) to sparse (in some savannas) (Prentice 

et al., 1992). These types of environments, also known as seasonally dry tropical forests, are 

defined as a forest with 500-2000 mm of annual precipitation and a pronounced dry season 
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(Miles et al., 2006). After all, each biome (e.g. forest, savannah, grassland) is distributed over 

a wide range of precipitation (Staver et al., 2011; Hirota et al., 2011; Guan et al., 2014).  

These results are congruent with palaeoenvironmental reconstructions previously made. 

The literature of Kanapoi’s environmental reconstruction has indicated open and closed, with 

wooded and grassy environments (Harris et al., 2003; Feibel et al., 1991; Feibel, 2003; Wynn, 

2000; Quinn & Lepre, 2020; Bobe et al., 2020), with a fraction of woody canopy cover between 

40% and 60% (Cerling et al., 2011; Manthi et al., 2020a, 2020b). Pedogenic carbonate isotope 

studies reveal high isotopic variability over relatively short distances (Wynn, 2004; Quinn & 

Lepre, 2020), consistent with C3 and C4 mosaic landscapes. Recent studies at Kanapoi have 

shown the presence of a high diversity of very large mammals (Bobe et al., 2020; Sanders, 

2020), which would have a significant impact on the opening forest landscape (Bobe et al., 

2020), contributing to palaeoenvironmental heterogeneity. In addition, stable isotopes of 

macro-and micro-mammal dentitions (Manthi et al., 2020a) also point to an irregular habitat. 

Previous reconstructions in Allia Bay follow the same scenario, indicating a mixture of 

habitats, including habitat from closed gallery forest environments, but also floodplain 

grassland and marginal dry forest (Feibel et al., 1991; Coffing et al., 1994; Leakey et al., 1995; 

Schoeninger & Reeser, 1999), with seasonal environments (Macho et al., 2003), but with a 

greater emphasis on forest components (Schoeninger et al., 2003). 

Studies for the overall Pliocene also indicate the presence of C3 vegetation by stable 

isotopes of herbivore enamel before 2.9 Ma (Bibi et al., 2013; Negash et al., 2015), as well as 

by soil carbonate records from vegetation in East and Central Africa (Cerling et al., 1977). In 

addition, flora characteristic of the modern West African rainforest is found in East Africa 

around 3.4 Ma (Bonnefille & Letouzey, 1976; Bonnefille, 1987). Early Pliocene sites suggest 

the presence of woodland/closed forests to moderate forests and woodland/grasslands 

(WoldeGabriel et al., 1994).  

Whilst the results are in line with what has been previously stated, it is important to 

consider that the assemblage of fossil specimens analysed for Kanapoi, and especially Allia 

Bay is very limited and may not include a representative sample of these two sites. For example, 

in the study of Dumouchel and colleagues (2021) is mentioned that the Kanapoi sample includes 

several small-bodied taxa. Therefore, it could be that bovids from the forest are overrepresented. 

Nonetheless, poorly sampled fossil assemblages still provide significant ecometric patterns 
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(Vermillion et al., 2018), but this does not necessarily imply that sampling is not important 

(Faith et al., 2019).  

Combined ecological interpretations of the Kanapoi and Allia Bay sites suggest that 

early hominids were drawn to a mosaic of environments (Wynn, 2000). It seems clear that 

Australopithecus anamensis thrived in these types of environments. A. anamensis lived in 

mosaic forests in the Afar Basin (White et al., 2006; Kullmer et al., 2008; Curran & Haile-

Selassie, 2016; Saylor et al., 2019; Quinn & Lepre, 2020). Analyses of diet in Bovid tribes in 

Aramis (White et al., 2009b), Woranso-Mille (Curran & Haile-Selassie, 2016) and the Mursi 

Formation (Drapeau et al., 2014) exhibit a more browse-dominated signal. The Allia Bay and 

Kanapoi Bovidae datasets include more individuals with mixed feeding within each tribe 

(Dumouchel et al., 2021). However, in Kanapoi, primates, micro-mammals and hominins have 

emphasized mainly C3 resources, such as fruits and tree leaves (Sponheimer et al., 2006a, 

2006b; Stewart & Rufolo, 2020), despite the availability of C4 resources exploited by macro- 

and micro-mammalian herbivores and Theropithecus (Manthi et al., 2020a). Hence, it seems 

that A. anamensis maintained adaptations to an arboreal lifestyle compared to most later 

hominids (Green et al., 2007; Ward et al., 2013). Furthermore, it is now considered that 

bipedalism probably arose in a woodier context (e.g., Prost, 1980; Moore, 1992; Beasley & 

Schoeninger, 2015; Senut et al., 2018; Kimura, 2019).  

In general, the palaeoecological reconstructions of this study extend what is currently 

known of the habitats in which A. anamensis evolved, a heterogeneous but relatively open forest 

environment, with more or fewer patches of grassy areas shaped by changing hydrological 

conditions as well as the abundance of megaherbivores. The ability of the first Australopithecus 

to thrive in these dynamic environments seems to be an early indication of the adaptability and 

versatility of this genus (Manthi et al., 2020b). 

It is now known that the environmental niche of hominids cannot be fixed to a particular 

vegetation type (Chase, 2011). In recent years, there has been a re-evaluation of the relationship 

between environment and human evolution (Maslin & Christensen, 2007). For example, it is 

no longer taken for granted that savannahs were the predominant environment of early hominin 

evolution (e.g., Vrba, 1985; Reed, 1997; Lee-Thorp et al., 2007), or that human evolution was 

forced by rapid increases in Africa's aridity (e.g., Vrba's Pulse Rotation Hypothesis, 1985, 

1995b). Increased knowledge of African paleoclimates has brought new scenarios of human 



 

 
 

59 

evolution, such as the Variability Selection Hypothesis (Potts, 1996, 1998a), which emphasizes 

the importance of climate instability as a mechanism for selection.  

Potts (1998a, 1998b) suggest that the complex intersection of orbitally forced changes 

in insolation and the Earth's intrinsic feedback mechanisms result in inconsistent and extreme 

environmental variability to behavioural and morphological mechanisms, providing a 

significant evolutionary driver (deMenocal, 2004; Kingston, 2007). Several of the major events 

in the evolution of African fauna occurred when there were increases in the amplitudes of 

palaeoclimatic variability (Potts, 1998a). For example, global climate change around 2.8 

million years ago (Ma), with the onset and intensification of high-latitude glacial cycles that 

overlapped with changes in African monsoon precipitation due to orbital insolation 

(deMenocal, 2004), has been implicated in episodes of late Pliocene faunal renewal that 

included the origin of the genus Homo (deMenocal, 2004, 2011).  

Several lines of evidence from hominid sites in East Africa support this hypothesis, e.g., 

pollen sequence studies (Bonnefille, 1995), isotopic data from palaeosol carbonates (Cerling, 

1992; Levin et al., 2004; Wynn, 2004) and renewal rates for large mammal taxa (Bobe et al., 

2002; Bobe & Behrensmeyer, 2004; Fernández & Vrba, 2006). Habitat instability is 

increasingly considered an influence on human evolution and part of becoming human might 

involve adaptations to unpredictable and unstable environments (Kingston, 2007; Antón et al., 

2014; Potts, 2013).   

Although the results obtained here are highly informative, maximum confidence comes 

from combining analyses of whole faunal and floral assemblages with geological, geochemical, 

and other types of contextual data (Croft et al., 2018). Therefore, an ecometric analysis can 

certainly provide a very useful tool to complement and contribute to applied palaeoenvironment 

reconstructions in Africa. Taxon-free methods have advantages since they do not require the 

destruction of fossils specimens, such as when using chemical approaches (e.g., stable isotope 

analyses) (Žliobaitė, 2018) and can be used on fossils for which a taxonomic identification is 

not possible. Besides, with the advance of computer techniques and the development of 

packages such as caret, the use of these methods has become easier and more user-friendly.  

Finally, it is also worth remembering that climate was only one of many factors affecting 

human evolution. Biological processes including genetic innovation, competition between 

species and dispersal capacity may also have played defining roles (Potts, 2007). As well as 



 

 
 

60 

cultural factors that have increasing importance in later stages of human evolution (Boyd & 

Richerson, 1985; Boyd, 2018; Bender, 2020).  
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5) Conclusion 

This study showed that taxon-free methods offer a good alternative when analysing 

commonly preserved and well represented fauna at sites such as Allia Bay and Kanapoi, as they 

provide high success rates of classification and prediction of the environments of interest. By 

using different ML algorithms, it was possible to produce robust models with high accuracy, 

which became clear when the results were compared with other studies using more traditional 

methods. Still, it is likely that more advanced techniques to capture morphology, such as GM, 

will improve the prediction of the models.  

Based on prediction accuracy and visual assessment, ecometric methods seem more 

promising for palaeoenvironmental reconstruction, as compared to more traditional 

ecomorphological analyses. Nevertheless, it is still possible through the individual functional 

characteristics to obtain a complex relationship with the environment, as seen with the fact that 

the results between the two analyses are corresponding. Furthermore, the functional 

morphology of astragalus was shown to be consistent across all bioclimatic variables tested 

(R2> 0.70), in addition to land cover and mean annual precipitation, both previously tested. 

The results are consistent with former reconstructions. Kanapoi and Allia Bay, during 

the period to which the fossils analysed relate, were warm, humid, but seasonal, containing a 

spectrum of different habitats, with a representation of forest as well as more open habitats. 

This seems to support the suggestion that Australopithecus anamensis thrived in highly 

heterogeneous environments that were constantly fragmented in response to environmental 

fluctuations related to orbital forcing, local tectonics and global climatic events/trends.  

Future work on ecomorphology should seek to infer climate and biological change using 

ecometrics at the community level. I expect this work to contribute to this new direction of 

ecometrics research, possibly repeating analysis incorporating additional mammal fossils to 

improve the accuracy and precision of environmental reconstruction of Turkana Basin, an area 

of interest to a broad paleoanthropological community due to its great significance for human 

evolution. Finally, it would be interesting to extend ecometric analyses across different 

geographic and temporal scales associated with the history of our own evolution in order to 

contribute towards a better understanding of how climate has affected our evolutionary history, 

as well as providing additional future insights to understand climate change.  
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Appendix A – Measurements of the sample used in the study 
 
 
 
Table A1-  Sample used in the ecomorphological analysis. Raw measurements (cm) from the fossil sample (Kanapoi and Allia Bay) taken from Dumouchel et al. (2021). Raw measurements (cm) 
from the extant sample taken from Barr (2014). Iso and gm transformations were performed by me. 
No Taxon Tribe Site MML WAF B ProxRad Dist Rad GM MML.gm WAF.gm B.gm ProxRad. 

gm 
Dist 
Rad.gm 

MML. 
iso 

WAF. 
iso 

B.iso ProxRad
.iso 

Dist 
Rad.iso 

KNMER392
76 

? ? Allia Bay 3.6 2.4 1.65 1.05 0.75 1.621995518 2.219488254 1.479658836 1.01726545 0.647350741 0.462393386 0.09186375 -0.117367 0.1733525 -
0.09430808 

-0.1866964 

AB-203 ? ? Allia Bay 3.6 2.1 2.1 0.55 0.5 1.342810587 2.68094400920
583 

1.56388400537007 1.56388400537
007 

0.40958866807
3113 

0.3723533346
11921 

0.2286199 -0.3192335 0.680916 -0.5497 -0.4001816 

KNMER392
77 

? ? Allia Bay 4.2 2.5 1.95 1.2 0.9 1.85750304 2.261099933 1.345892818 1.049796398 0.646028552 0.484521414 0.2174707 -0.3577818 0.2736706 -
0.09904889 

-0.1633626 

KNMER392
78 

? ? Allia Bay 3.7 2.45 1.7 1.15 0.8 1.699498992 2.177112206 1.441601325 1.000294797 0.67667001 0.470726963 0.0833518 -0.1452329 0.1776776 -
0.02970325 

-0.1656699 

KNMER392
86 

? ? Allia Bay 4.1 2.35 2.1 0.9 0.8 1.708758556 2.399402763 1.375267438 1.228962391 0.526698168 0.468176149 0.2613672 -0.4045246 0.4842396 -0.3521117 -0.2249413 

KNMER393
96 

? ? Allia Bay 3.3 2.2 1.8 0.7 0.9 1.524438593 2.164731341 1.443154227 1.180762549 0.459185436 0.590381275 0.0349356 -0.1429436 0.4256665 -0.3650212 0.02820542 

KNMER394
30 

? ? Allia Bay 4 2.45 2.15 1 0.95 1.820864497 2.196758741 1.345514729 1.180757823 0.549189685 0.521730201 0.1263505 -0.3296519 0.5195004 -0.2635337 -
0.08429098 

KNMER430
69 

? ? Allia Bay 3.9 2.2 2 0.85 0.8 1.634576456 2.385939174 1.345914406 1.223558551 0.520012384 0.48942342 0.2571321 -0.4140477 0.4666412 -0.3382558 -0.1726707 

KNMER431
44 

? ? Allia Bay 4.05 2.4 1.85 1.2 1.05 1.866558938 2.169768078 1.285788491 0.991128628 0.642894245 0.562532465 0.187163 -0.371893 0.2240516 -
0.06000681 

0.01859604 

KNMER431
53 

? ? Allia Bay 3.85 2.35 1.95 1.2 0.95 1.822609421 2.112356029 1.289360174 1.069894612 0.658396684 0.521230708 0.1050843 -0.337275 0.3736871 -
0.02154242 

-
0.04991815 

KNMER431
62 

? ? Allia Bay 4.2 2.6 1.95 1.25 1.1 1.964771227 2.137653454 1.323309281 0.992481961 0.636206385 0.559861619 0.1418103 -0.3120741 0.2418236 -
0.07372832 

0.01643552 

KNMER432
13 

? ? Allia Bay 2.2 1.3 1.45 0.2 0.1 0.60778896 3.61967747 2.13890032 2.38569651 0.32906159 0.16453079 0.1488947 -0.1718313 0.5866471 -0.4690437 -0.4476592 

KNMER432
21 

? ? Allia Bay 4.15 2.55 2 1.2 0.95 1.89018636 2.195550708 1.349073326 1.058096727 0.634858036 0.502595945 0.156627 -0.315563 0.3191063 -0.102586 -0.116258 

KNMER436
61 

? ? Allia Bay 3.15 1.8 1.6 0.9 0.8 1.455482901 2.164230166 1.236702952 1.099291513 0.618351476 0.549645757 0.1430825 -0.3577026 0.3343259 -
0.08081709 

-
0.00286758
2 

KNMKP568
69 

? ? Kanapoi 6.7 4.85 2.5 2.1 2.05 3.22660603 2.076485303 1.503127421 0.774807949 0.650838677 0.635342518 0.03350235 0.06625735 -0.3060675 -
0.07452418 

0.2699994 
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Table A1 - Continued. 

No Taxon Tribe Site MML WAF B ProxRad Dist Rad GM MML.gm WAF.gm B.gm ProxRad. 
gm 

Dist 
Rad.gm 

MML. 
iso 

WAF. 
iso 

B.iso ProxRad
.iso 

Dist 
Rad.iso 

KNMKP568
71 

? ? Kanapoi 3.5 2.05 1.6 1 0.7 1.517078263 2.307066212 1.351281638 1.05465884 0.659161775 0.461413242 0.2067861 -0.3131431 0.2138178 -
0.07420324 

-0.1793107 

KNMKP568
72 

? ? Kanapoi 6.3 4.6 2.55 1.85 1.9 3.040274369 2.072181401 1.51302134 0.838740091 0.608497713 0.624943597 -
0.00284809
3 

0.07720485 -0.1029998 -0.2059065 0.2170964 

KNMKP586
18 

? ? Kanapoi 4.15 2.6 1.95 1.05 0.95 1.838204361 2.257637991 1.414423801 1.060817851 0.571209612 0.516808697 0.1748617 -0.2524781 0.2767817 -0.246638 -0.1113892 

KNMKP586
38 

? ? Kanapoi 1.7 0.9 0.95 0.3 0.25 0.641941215 2.648217563 1.401997533 1.479886285 0.467332511 0.389443759 0.1435089 -0.2169062 0.2948406 -0.207707 -0.1655938 

KNMKP587
15 

? ? Kanapoi 7.25 5 3.4 2.4 1.6 3.427864374 2.115019501 1.458634139 0.991871214 0.700144387 0.466762924 0.04110392 -0.1729567 0.3656258 0.04855255 -0.3248247 

KNMKP587
19 

? ? Kanapoi 6.5 4.3 3 1.8 1.6 2.99625734 2.169373075 1.435123727 1.001249112 0.600749467 0.533999526 0.1555808 -0.2526257 0.329502 -0.2694664 -
0.09400342 

KNMKP596
94 

? ? Kanapoi 6.4 4.55 3.25 1.8 1.5 3.030314467 2.111992029 1.501494333 1.072495952 0.593997758 0.494998132 -
0.02888047 

-
0.06323341 

0.5439506 -0.2970166 -0.2165552 

KNMKP596
95 

? ? Kanapoi 3.95 2.4 1.85 1.2 0.85 1.780393694 2.218610419 1.348016457 1.039096019 0.674008228 0.477422495 0.1692052 -0.3130212 0.2585849 -
0.03324571 

-0.1594981 

KNMKP597
94 

? ? Kanapoi 3.15 1.9 1.45 0.8 0.7 1.371904993 2.296077364 1.384935553 1.056924501 0.583130759 0.510239414 0.1701977 -0.2382453 0.1957392 -0.1719725 -
0.09562765 

KNMKP114 ? ? Kanapoi 4 2.5 1.95 1.3 0.8 1.825633474 2.191020299 1.369387687 1.068122396 0.712081597 0.43820406 0.1212697 -0.2832977 0.3173618 0.03480901 -0.2356476 

KNMKP115 ? ? Kanapoi 4.2 2.7 2.05 1.1 0.95 1.892764759 2.218976226 1.426484717 1.083071729 0.58116044 0.501911289 0.1285088 -0.221619 0.3362247 -0.2280671 -0.1371161 

KNMKP125 ? ? Kanapoi 3.45 2.2 2.1 0.6 0.55 1.393782483
2509 

3.01338268379
137 

1.57843854865262 1.50669134189
569 

0.43048324054
1625 

0.3946096371
63156 

0.1046028 -0.2005888 0.6918528 -0.4912247 -0.343244 

KNMKP127 ? ? Kanapoi 4.7 2.8 2.55 1.3 1.1 2.168834542 2.167062498 1.291015956 1.175746674 0.599400265 0.50718484 0.1538517 -0.4622232 0.6364317 -0.182894 -0.1138528 

KNMKP130 ? ? Kanapoi 2.4 1.5 1 0.4 0.6 0.97118675 2.471203402 1.544502126 1.029668084 0.411867234 0.617800851 0.1601872 -0.1072439 0.05721624 -0.3305976 0.00195463
9 

KNMKP132 ? ? Kanapoi 4.5 3 2.1 1.1 1 1.9897071 2.261639414 1.507759609 1.055431727 0.55284519 0.502586536 0.1345337 -0.1325695 0.2624845 -0.3239579 -0.1656094 

KNMKP368
61 

? ? Kanapoi 3 1.75 1.35 0.95 0.75 1.382469594 2.170029644 1.265850626 0.97651334 0.687176054 0.542507411 0.1471912 -0.2971174 0.1491935 0.01945115 -0.0117195 

KNMKP373
77 

? ? Kanapoi 2.6 1.65 1.3 0.5 0.5 1.06873032 2.432793335 1.543888078 1.216396668 0.467844872 0.467844872 0.1249564 -0.1260408 0.2582027 -0.3073268 -0.1608536 

KNMKP459 ? ? Kanapoi 4.5 2.95 1.85 1.6 1.2 2.161232538 2.082145221 1.364961867 0.855993035 0.740318301 0.555238726 0.09421588 -0.2115008 -
0.00448613
2 

0.1628909 0.02362544 

KNMKP467 ? ? Kanapoi 4 2.5 1.8 1.25 0.8 1.782602458 2.243910291 1.402443932 1.009759631 0.701221966 0.448782058 0.1637599 -0.2528076 0.1852468 -
0.00133126
1 

-0.2243024 

KNMKP494 ? ? Kanapoi 3.15 2 1.4 0.9 0.7 1.409164932 2.235366442 1.419280281 0.993496196 0.638676126 0.496748098 0.1256307 -0.1702257 0.1269801 -
0.08650963 

-0.1075273 
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Table A1 - Continued. 

No Taxon Tribe Site MML WAF B ProxRad Dist Rad GM MML.gm WAF.gm B.gm ProxRad. 
gm 

Dist 
Rad.gm 

MML. 
iso 

WAF. 
iso 

B.iso ProxRad
.iso 

Dist 
Rad.iso 

KNMKP498 ? ? Kanapoi 3.8 2.3 1.8 1 0.75 1.638207992 2.319607778 1.403973129 1.098761579 0.6104231 0.457817325 0.1982322 -0.284555 0.2839411 -0.1748494 -0.2116967 

KNMKP539 ? ? Kanapoi 4.05 2.5 1.55 1.15 0.85 1.726508414 2.345774841 1.448009161 0.89776568 0.666084214 0.492323115 0.2536032 -0.2242168 -
0.04798232 

-
0.08833488 

-0.163664 

KNMKP568
70 

? ? Kanapoi 6.85 4.3 3.2 2.25 1.55 3.186872175 2.149442972 1.349285369 1.004119345 0.706021414 0.486370308 0.2020069 -0.4704641 0.4017215 0.08151177 -0.2250597 

KNMKP586
37 

? ? Kanapoi 3.5 2.4 1.95 1 0.8 1.672941586 2.092123258 1.434598805 1.165611529 0.597749502 0.478199602 -
0.02060679 

-0.1263156 0.4681034 -0.1483758 -0.1400261 

KNMKP586
53 

? ? Kanapoi 3.7 2.35 1.7 1.25 0.9 1.754584167 2.108761762 1.339348687 0.968890539 0.712419514 0.51294205 0.09000421 -0.2404593 0.1804777 0.07246667 -
0.06389362 

KNMKP586
86 

? ? Kanapoi 4.5 2.65 2.6 1.15 0.85 1.978379943 2.274588366 1.339479815 1.314206611 0.581283693 0.429644469 0.1689944 -0.4578412 0.7769897 -0.2627173 -0.3064082 

KNMKP586
87 

? ? Kanapoi 4.35 2.8 2.8 1.3 1.15 2.195276874 1.981526818 1.275465538 1.275465538 0.592180428 0.523851917 -
0.07238035 

-0.3734099 0.9385282 -0.1425225 -
0.03080587 

KNMKP597
95 

? ? Kanapoi 3.9 2.4 1.8 0.95 0.95 1.723451685 2.262900686 1.392554268 1.044415701 0.551219398 0.551219398 0.1865349 -0.2647067 0.2369254 -0.2612836 -
0.04152063 

KNMKP598
38 

? ? Kanapoi 4.75 2.7 2.3 1.2 0.95 2.019937874 2.351557472 1.336674774 1.138648881 0.594077677 0.470311494 0.3106329 -0.4855992 0.4313781 -0.2480634 -0.2353414 

AMNH8169
0 

Aepyceros 
melampus 

Aepycerotini
  

Extant 3.439 2.139 1.516 1 0.922 1.593729518 2.157831652 1.342134895 0.951227911 0.627459044 0.578517239 0.1314621 -0.2344217 0.1237885 -
0.07887553 

0.0388647 

AMNH8205
0 

Aepyceros 
melampus 

Aepycerotini
  

Extant 3.318 2.247 1.4 1.05 0.873 1.570949435 2.112098534 1.43034521 0.891180816 0.668385612 0.555714895 0.05811579 -
0.09222637 

0.02784696 -
0.01333151 

0.00258857
1 

AMNH8353
4 

Aepyceros 
melampus 

Aepycerotini
  

Extant 3.694 2.207 1.722 1.065 0.919 1.688882743 2.187244801 1.306781071 1.019608974 0.6305944 0.544146717 0.1667009 -0.3241178 0.2372865 -
0.08555875 

-
0.02281304 

AMNH8515
0 

Aepyceros 
melampus 

Aepycerotini
  

Extant 3.409 2.255 1.527 1 0.885 1.597023001 2.134596683 1.412002206 0.956154044 0.626165058 0.554156076 0.07579598 -0.1368392 0.1239851 -
0.08724748 

-
0.00498832
3 

AMNH2330
38 

Alcelaphus 
buselaphus 

Alcelaphini  Extant 4.355 2.898 1.847 1.385 1.133 2.054218442 2.120027701 1.410755517 0.899125411 0.674222357 0.551547964 0.09447135 -0.1592684 0.05365491 -
0.00472862 

-
0.00459035
5 

AMNH3471
7 

Alcelaphus 
buselaphus 

Alcelaphini  Extant 3.595 2.404 1.547 1.091 0.979 1.701947749 2.112285763 1.412499298 0.908958575 0.641030255 0.5752233 0.07133592 -0.1245094 0.06381653 -
0.05837305 

0.03815754 

AMNH3472
5 

Alcelaphus 
buselaphus 

Alcelaphini  Extant 4.771 3.137 1.848 1.614 1.353 2.27093888 2.100893178 1.381366988 0.813760342 0.71071926 0.595788822 0.1246727 -0.1971097 -0.1077358 0.0984289 0.1123987 

AMNH8203
3 

Alcelaphus 
buselaphus 

Alcelaphini  Extant 4.23 2.87 1.597 1.426 1.212 2.018505165 2.095610193 1.421844268 0.791179546 0.706463389 0.600444339 0.08491521 -0.1044282 -0.1477524 0.07392765 0.1052339 

AMNH8215
9 

Alcelaphus 
buselaphus 

Alcelaphini  Extant 4.606 3.141 1.813 1.5 1.313 2.201046065 2.092641346 1.427048734 0.823699253 0.681494142 0.596534539 0.07986158 -0.1068646 -
0.09214576 

0.02363295 0.10449 

AMNH8840
6 

Beatragus 
hunteri 

Alcelaphini  Extant 3.969 2.792 1.507 1.332 1.15 1.912415989 2.075385283 1.459933412 0.788008471 0.696501184 0.601333604 0.03895062 -
0.02812322 

-0.1472395 0.05006939 0.1006499 

AMNH8840
7 

Beatragus 
hunteri 

Alcelaphini  Extant 3.85 2.735 1.562 1.2 1.1 1.850693946 2.080300748 1.477824038 0.844007732 0.648405428 0.594371642 0.02325575 -
0.01099357 

-
0.04875621 

-
0.04823383 

0.07823305 
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Table A1 - Continued.  

No Taxon Tribe Site MML WAF B ProxRad Dist Rad GM MML.gm WAF.gm B.gm ProxRad. 
gm 

Dist 
Rad.gm 

MML. 
iso 

WAF. 
iso 

B.iso ProxRad
.iso 

Dist 
Rad.iso 

AMNH8840
8 

Beatragus 
hunteri 

Alcelaphini  Extant 3.883 2.777 1.576 1.215 1.11 1.870853359 2.07552344 1.484349367 0.842396328 0.649436255 0.593312135 0.01529163 0.00161141
6 

-
0.05199886 

-
0.04659579 

0.07729535 

AMNH8171
6 

Connochaetes 
gnou 

Alcelaphini  Extant 4.355 3.008 1.88 1.32 1.178 2.073139911 2.100678289 1.450939218 0.906837011 0.636715348 0.568220212 0.04974039 -
0.08136643 

0.06782672 -
0.08431927 

0.02846617 

AMNH8172
0 

Connochaetes 
gnou 

Alcelaphini  Extant 4.48 2.973 1.874 1.388 1.25 2.124752739 2.108480633 1.399221634 0.881984979 0.653252482 0.588303748 0.1005263 -0.1696209 0.03058847 -
0.04052693 

0.0806505 

AMNH8171
6 

Connochaetes 
gnou 

Alcelaphini  Extant 4.355 3.008 1.88 1.32 1.178 2.073139911 2.100678289 1.450939218 0.906837011 0.636715348 0.568220212 0.04974039 -
0.08136643 

0.06782672 -
0.08431927 

0.02846617 

AMNH8172
0 

Connochaetes 
gnou 

Alcelaphini  Extant 4.48 2.973 1.874 1.388 1.25 2.124752739 2.108480633 1.399221634 0.881984979 0.653252482 0.588303748 0.1005263 -0.1696209 0.03058847 -
0.04052693 

0.0806505 

AMNH8172
2 

Connochaetes 
gnou 

Alcelaphini  Extant 4.761 3.33 1.905 1.55 1.3 2.274377179 2.093320335 1.464137097 0.837591943 0.681505255 0.571585053 0.05185367 -
0.04918729 

-0.0771776 0.01393817 0.04262565 

AMNH2782
4 

Connochaetes 
taurinus 

Alcelaphini  Extant 5.093 3.375 2.212 1.532 1.365 2.399301351 2.12270126 1.406659484 0.921935045 0.638519209 0.568915614 0.1137703 -0.1979936 0.1161387 -
0.09215947 

0.03551155 

AMNH5413
3 

Connochaetes 
taurinus 

Alcelaphini  Extant 5.361 3.602 2.241 1.677 1.474 2.545964734 2.105685098 1.414787861 0.880216434 0.658689407 0.578955388 0.103932 -0.1703647 0.02819077 -
0.03778671 

0.0703268 

AMNH8350
2 

Connochaetes 
taurinus 

Alcelaphini  Extant 5.158 3.414 2.055 1.734 1.4 2.447635604 2.107339831 1.394815468 0.839585761 0.708438788 0.571980567 0.1241459 -0.198191 -
0.06385386 

0.09202274 0.05592644 

AMNH8350
3 

Connochaetes 
taurinus 

Alcelaphini  Extant 4.921 3.396 1.892 1.584 1.45 2.356204991 2.088527958 1.441300741 0.802986161 0.672267483 0.615396371 0.07652815 -
0.08029412 

-0.1471389 0.00379675
8 

0.1564928 

AMNH1137
81 

Damaliscus 
lunatus 

Alcelaphini  Extant 4.613 3.376 1.918 1.488 1.219 2.222123675 2.07594206 1.519267374 0.863138277 0.669629696 0.548574327 -
0.01519024 

0.05490514 -0.0301015 -
0.02165502 

-
0.01675852 

AMNH3472
9 

Damaliscus 
lunatus 

Alcelaphini  Extant 4.556 3.031 1.921 1.385 1.25 2.149865847 2.119201998 1.409855412 0.893544126 0.644226244 0.581431628 0.1035637 -0.1639774 0.04687701 -
0.06732637 

0.061169 

AMNH3473
0 

Damaliscus 
lunatus 

Alcelaphini  Extant 4.872 3.241 2.027 1.579 1.278 2.301604026 2.116784618 1.408148388 0.880690152 0.686043291 0.555264931 0.1082629 -0.1773605 0.02184401 0.02513137 0.00604953
8 

AMNH8203
5 

Damaliscus 
lunatus 

Alcelaphini  Extant 4.412 2.878 1.877 1.363 1.2 2.08052785 2.120615689 1.3833028 0.902174898 0.655122209 0.576776706 0.1161789 -0.2045936 0.06879957 -
0.03824057 

0.05298631 

AMNH4295
3 

Damaliscus 
pygargus 

Alcelaphini  Extant 3.452 2.25 1.48 1.05 0.95 1.628866851 2.119264689 1.381328375 0.908607109 0.644619908 0.583227536 0.09029345 -0.162292 0.06498782 -
0.04654463 

0.05240131 

AMNH8172
7 

Damaliscus 
pygargus 

Alcelaphini  Extant 3.655 2.364 1.506 1.124 1.05 1.726883688 2.116529345 1.36893991 0.872091161 0.650883443 0.608031686 0.1079318 -0.1813038 0.01296524 -
0.03300718 

0.1029085 

AMNH8172
9 

Damaliscus 
pygargus 

Alcelaphini  Extant 3.551 2.279 1.481 1.107 0.96 1.663465438 2.134700198 1.37003147 0.890310051 0.665478209 0.577108474 0.1136198 -0.1875939 0.03413522 -
0.01422838 

0.04219593 

AMNH8178
7 

Damaliscus 
pygargus 

Alcelaphini  Extant 3.544 2.277 1.449 1.1 1.014 1.671364425 2.120423259 1.362359977 0.866956349 0.658144917 0.60668995 0.1118448 -0.1858445 0.00433451
2 

-
0.01952406 

0.09759103 

AMNH1727
6 

Sigmoceros 
lichtensteinii 

Alcelaphini  Extant 4.763 3.394 1.844 1.609 1.331 2.296241106 2.074259531 1.478067783 0.803051559 0.70071039 0.579642964 0.02723501 -
0.00428829
5 

-0.1493819 0.06425551 0.06651828 

AMNH2163
82 

Sigmoceros 
lichtensteinii 

Alcelaphini  Extant 4.863 3.127 2.031 1.482 1.35 2.281312653 2.131667482 1.370702081 0.890276919 0.649625994 0.591764569 0.1535665 -0.2523934 0.04870152 -
0.05415551 

0.09254896 
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Table A1 - Continued.  

No Taxon Tribe Site MML WAF B ProxRad Dist Rad GM MML.gm WAF.gm B.gm ProxRad. 
gm 

Dist 
Rad.gm 

MML. 
iso 

WAF. 
iso 

B.iso ProxRad
.iso 

Dist 
Rad.iso 

AMNH2163
83 

Sigmoceros 
lichtensteinii 

Alcelaphini  Extant 4.771 3.228 1.94 1.472 1.375 2.271491082 2.100382448 1.421092966 0.854064546 0.64803248 0.605329253 0.09066871 -0.1305102 -
0.03004874 

-
0.05466274 

0.1253195 

AMNH8174
0 

Antidorcas 
marsupialis 

Antilopini  Extant 2.852 2.003 1.178 0.9 0.772 1.361341594 2.094992184 1.471342687 0.865322859 0.661112541 0.567087646 0.02555034 -
0.02520258 

-
0.01171142 

-
0.02195084 

0.01731857 

AMNH8174
5 

Antidorcas 
marsupialis 

Antilopini  Extant 2.869 1.83 1.278 0.843 0.761 1.339013466 2.142622216 1.366677816 0.954434016 0.629567978 0.568328862 0.08885455 -0.1649756 0.107779 -
0.06384702 

0.01868211 
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Table A2 - Measurements of the extant sample used for the ecometric analysis taken from Barr (2017). Measurements 
are in millimeters. 

 

id_no binomial B DistRad ProxRad MML WAF astragGeomeans 
10167 Hippotragus 

equinus 
23.0717 15.9025 17.77 56.50475 36.32195 26.625471570029

6 
10170 Hippotragus 

niger 
23.885225 14.44625 16.75 54.691875 37.20755 25.947207935655

6 
11033 Kobus leche 21.434066666

6667 
10.6057 12.065 43.96 26.5589 20.002662249087

5 
11034 Kobus 

megaceros 
18.348375 10.1375 12.1725 40.621975 25.422875 18.783598254490

4 
11035 Kobus 

ellipsiprymnus 
24.072866666
6667 

13.4174 15.92 54.1925 35.3253 25.039915398579
2 

11036 Kobus kob 18.94086 9.945 11.559 40.25814 25.10386 18.556830080631
7 

11037 Kobus vardonii 19.956866666
6667 

10.1266666
666667 

12.458333333
3333 

42.494866666
6667 

26.3434 19.498689469235 

12142 Litocranius 
walleri 

13.9578 8.1675 8.7025 30.80495 20.49605 14.433383969281
2 

12670 Madoqua kirkii 7.87556 3.997 4.393 16.30906 9.3169 7.3197362433554
5 

14603 Neotragus 
batesi 

6.8215666666
6667 

3.05 3.5671666666
6667 

13.479466666
6667 

8.19576666
666667 

6.0639265551172
1 

14604 Nesotragus 
moschatus 

7.2809666666
6667 

3.45666666
666667 

4.0833333333
3333 

14.7219 9.4347 6.7750213388638
5 

15573 Oryx gazella 20.490075 13.22125 15.2025 49.0327 34.220375 23.329225986207
1 

15730 Ourebia ourebi 11.029966666
6667 

5.715 6.8113666666
6667 

23.503266666
6667 

14.9466333
333333 

10.856735581973 

1676 Antidorcas 
marsupialis 

12.0885 7.5175 8.66125 28.219675 18.8644 13.318161778810
8 

19308 Raphicerus 
campestris 

10.489575 4.95875 5.59375 20.8831 12.9612 9.5335504204211
3 

19390 Redunca 
arundinum 

15.981333333
3333 

9.26583333
333333 

10.1375 35.369816666
6667 

22.4892833
333333 

16.421293267427
1 

19391 Redunca 
fulvorufula 

13.913975 7.31375 8.5325 29.677 18.80765 13.711483062889
9 

19392 Redunca 
redunca 

16.34675 8.7525 9.69 34.60045 21.0142 15.874365851269
6 

21203 Sylvicapra 
grimmia 

10.681975 5.455 6.57935 22.60175 14.7553 10.503738052965
3 

21251 Syncerus 
caffer 

31.606225 18.54375 22.0375 71.827225 50.4255 34.199075307880
5 

22046 Tragelaphus 
buxtoni 

25.88566 12.28 16.72 54.50714 34.8687 25.169616980881 

22047 Tragelaphus 
eurycerus 

27.123766666
6667 

13.8033333
333333 

17.926666666
6667 

58.589533333
3333 

37.3227333
333333 

27.122230333809
6 

22050 Tragelaphus 
spekii 

19.637725 9.485575 12.155 41.101025 25.663225 18.863172519411
3 

22051 Tragelaphus 
scriptus 

15.101 7.31166666
666667 

9.7566666666
6667 

31.9878 20.0434666
666667 

14.718249269036
3 

22052 Tragelaphus 
angasii 

18.0964 9.49 12.526666666
6667 

39.686533333
3333 

26.3809 18.643409485678
5 
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Table A2 - Continued.  

id_no binomial B DistRad ProxRad MML WAF astragGeomeans 
22053 Tragelaphus 

imberbis 
19.6152 9.924 12.055 41.435175 26.3221 19.126137983099

9 
22054 Tragelaphus 

strepsiceros 
23.6042 12.8275 16.45 52.3354 36.164625 24.824204774350

9 
22055 Tragelaphus 

oryx 
29.950066666
6667 

19.5483333
333333 

21.733333333
3333 

71.137825 49.483125 33.90301442049 

30208 Damaliscus 
pygargus 

14.7904 9.935 10.95375 35.503725 22.924425 16.728484473353
4 

4139 Cephalophus 
dorsalis 

11.431 5.84625 7.8025 24.93615 16.173 11.602807170002
6 

4141 Cephalophus 
leucogaster 

11.8894 5.705 7.1116666666
6667 

24.468233333
3333 

14.55 11.142188906113
4 

4143 Philantomba 
monticola 

7.60795 3.482325 4.4 15.304075 9.077075 6.9481394662866
8 

4144 Cephalophus 
natalensis 

10.985675 5.59125 7.03875 23.4795 14.5155 10.806135490022
9 

4146 Cephalophus 
nigrifrons 

11.4693 5.53 6.46 23.2956 13.820675 10.569624127690
8 

4150 Cephalophus 
silvicultor 

17.186766666
6667 

8.87666666
666667 

11.876666666
6667 

36.4979 23.9607666
666667 

17.377266014201
1 

4152 Cephalophus 
weynsi 

12.61565 5.787125 7.6775 25.84755 14.449475 11.592383882583
2 

44172 Tragelaphus 
derbianus 

30.943025 18.50665 23.23125 72.034125 50.1729 34.386987398759
6 

5228 Connochaetes 
gnou 

18.859633333
3333 

12.425 14.191666666
6667 

45.3214 31.0357 21.577721393772
1 

5229 Connochaetes 
taurinus 

21.00005 14.22375 16.315 51.333325 34.46825 24.385295877000
6 

550 Aepyceros 
melampus 

15.414775 8.995 10.2875 34.64995 22.123225 16.134661217818
6 

6234 Beatragus 
hunteri 

15.482466666
6667 

11.2 12.491666666
6667 

39.007766666
6667 

27.6822 18.784777280023 

6235 Damaliscus 
lunatus 

19.357775 12.365475 14.53875 46.135 31.31435 21.891395504127
4 

63541 Nanger 
soemmerringii 

13.27545 7.735 9.2 30.4647 19.23875 14.081672211614
8 

811 Alcelaphus 
buselaphus 

17.3043 11.9796 14.033 43.11054 28.9011 20.504488630885
2 

8971 Nanger granti 14.212025 8.83045 9.89625 32.901575 21.82875 15.490698539705
1 

8982 Eudorcas 
thomsonii 

10.33355 6.26125 7.2225 23.78395 15.4279 11.138784139667
3 

 
 
 
 
 
 
 
 
 
 
 
 



 

 94 

Appendix B - Categories assigned to extant data for 
ecomorphological analysis and their reference 

Taxon Tribe Habitat References Dry or 
Wet References 

Aepyceros melampus Aepycerotini LC 

Barr, 2014 

D Frit & Bourgarel, 2013 
Alcelaphus buselaphus Alcelaphini O D Nowak, 1999 
Beatragus hunteri Alcelaphini O D 

Groves, 2013 Connochaetes gnou Alcelaphini O D 
Connochaetes taurinus Alcelaphini O D 
Damaliscus lunatus Alcelaphini O W Duncan, 2013 
Damaliscus pygargus Alcelaphini O W David & Lloyd, 2013 
Sigmoceros lichtensteinii Alcelaphini O D Castelló, 2016 (p.535) 
Antidorcas marsupialis Antilopini O D Skinner, 2013 
Antilope cervicapra Antilopini O D Ranjitsinh, 1989 
Eudorcas thomsonii Antilopini O D Groves, 2013 
Gazella gazella Antilopini O D Mendelssohn et al. 1995 
Litocranius walleri Antilopini LC D 

Groves, 2013 

Madoqua kirkii Madoquini HC D 
Nanger granti Antilopini O D 
Nanger soemmerringii Antilopini O D 
Neotragus batesi Neotragini F W 
Neotragus moschatus Neotragini F W 
Ourebia ourebi Ourebiini LC D 
Raphicerus campestris Raphicerini LC D 
Bubalus bubalis Bovini HC Castelló, 2016 (p.601) W Roth, 2004 
Syncerus caffer Bovini LC 

Barr, 2014 

W Prins & Sinclair, 2013 
Taurotragus derbianus Tragelaphini HC W Groves, 2013 
Taurotragus oryx Tragelaphini LC D Castelló, 2016 (p.555) 
Tragelaphus angasii Tragelaphini HC D Anderson, 2013 
Tragelaphus buxtoni Tragelaphini F W Sillero-Zubiri, 2013 
Tragelaphus eurycerus Tragelaphini F W 

Groves, 2013 

Tragelaphus imberbis Tragelaphini HC D 
Tragelaphus scriptus Tragelaphini F  W 

Tragelaphus spekii Tragelaphini HC  W 

Tragelaphus strepsiceros Tragelaphini HC  D 

Ammotragus lervia Caprini LC Cassinello, 2013 D Castelló, 2016 (p.303) 

Rupicapra rupicapra Caprini LC Lovari, 1987 W Lovari, 1987 

Cephalophus dorsalis Cephalophini F 

Barr, 2014 

W 

Groves, 2013 

Cephalophus dorsalis Cephalophini F W 

Cephalophus leucogaster Cephalophini F W 

Cephalophus natalensis Cephalophini F W 

Cephalophus nigrifrons Cephalophini F W 

Cephalophus silvicultor Cephalophini F W 

Cephalophus weynsi Cephalophini F W 

Philantomba monticola Cephalophini F W 

Sylvicapra grimmia Cephalophini LC W 

Addax nasomaculatus Hippotragini O D Newby, 2013 

Hippotragus equinus Hippotragini O D 

Groves, 2013 
Hippotragus niger Hippotragini LC W 

Oryx gazella Hippotragini O D 

Kobus ellipsiprymnus Reduncini HC W 

Kobus kob Reduncini LC D 

Kobus leche Reduncini HC W Jeffery & Nefdt, 2013 

Kobus megaceros Reduncini HC W Falchetti & Kingdon, 2013 

Kobus vardonii Reduncini HC W Jenkins, 2013 

Redunca arundinum Reduncini LC D 

Groves, 2013 Redunca fulvorufula Reduncini LC D 

Redunca redunca Reduncini LC D 
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Appendix C – Random Forest prediction classification of categories 
tested in ecomorphological analysis for each fossil individual 
 
Table C1 - Random Forest prediction classification of habitat category for individual fossils from Allia Bay (KNMER 
and AB) and Kanapoi (KNMKP). 

 NO F HC LC O 

KNMER39276 0.404 0.07 0.394 0.132 

AB-203 0.694 0.036 0.26 0.01 

KNMER39277 0.206 0.66 0.128 0.006 

KNMER39278 0.078 0.806 0.11 0.006 

KNMER39286 0.202 0.242 0.534 0.022 

KNMER39396 0.076 0.014 0.892 0.018 

KNMER39430 0.042 0.288 0.63 0.04 

KNMER43069 0.254 0.12 0.608 0.018 

KNMER43144 0.112 0.442 0.374 0.072 

KNMER43153 0.236 0.496 0.26 0.008 

KNMER43162 0.004 0.416 0.054 0.526 

KNMER43213 0.8 0.068 0.13 0.002 

KNMER43221 0.324 0.52 0.15 0.006 

KNMER43661 0.32 0 0.556 0.124 

KNMKP56869 0.008 0.184 0.712 0.096 

KNMKP56871 0.774 0 0.21 0.016 

KNMKP56872 0.064 0.156 0.622 0.158 

KNMKP58618 0.08 0.17 0.686 0.064 

KNMKP58638 0.608 0.326 0.066 0 

KNMKP58715 0.012 0.73 0.254 0.004 

KNMKP58719 0.168 0.05 0.742 0.04 

KNMKP59694 0.128 0.332 0.518 0.022 

KNMKP59695 0.138 0.694 0.166 0.002 

KNMKP59794 0.348 0 0.598 0.054 

KNMKP114 0.224 0.76 0.016 0 

KNMKP115 0.076 0.202 0.676 0.046 

KNMKP125 0.722 0.03 0.242 0.006 

KNMKP127 0.24 0.75 0.006 0.004 

KNMKP130 0.37 0.09 0.102 0.438 

KNMKP132 0.006 0.326 0.606 0.062 

KNMKP36861 0.036 0 0.264 0.7 

KNMKP37377 0.712 0.048 0.238 0.002 

KNMKP459 0 0.014 0 0.986 

KNMKP467 0.18 0.804 0.014 0.002 

KNMKP494 0.338 0 0.538 0.124 

KNMKP498 0.328 0.094 0.558 0.02 

KNMKP539 0.226 0.296 0.054 0.424 

KNMKP56870 0.05 0.6 0.338 0.012 

KNMKP58637 0.432 0.06 0.434 0.074 

KNMKP58653 0.058 0.822 0.112 0.008 

KNMKP58686 0.39 0.568 0.042 0 

KNMKP58687 0.59 0.364 0.002 0.044 

KNMKP59795 0.02 0.038 0.866 0.076 

KNMKP59838 0.152 0.71 0.138 0 
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Table C2 - Random Forest prediction classification of ‘wet and dry’ category for individual fossils from Allia Bay (KNMER 
and AB) and Kanapoi (KNMKP). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 NO D W 

KNMER39276 0.552 0.448 

AB-203 0.272 0.728 

KNMER39277 0.318 0.682 

KNMER39278 0.162 0.838 

KNMER39286 0.578 0.422 

KNMER39396 0.87 0.13 

KNMER39430 0.63 0.37 

KNMER43069 0.74 0.26 

KNMER43144 0.364 0.636 

KNMER43153 0.472 0.528 

KNMER43162 0.672 0.328 

KNMER43213 0.202 0.798 

KNMER43221 0.57 0.43 

KNMER43661 0.696 0.304 

KNMKP56869 0.68 0.32 

KNMKP56871 0.292 0.708 

KNMKP56872 0.542 0.458 

KNMKP58618 0.738 0.262 

KNMKP58638 0.42 0.58 

KNMKP58715 0.264 0.736 

KNMKP58719 0.218 0.782 

KNMKP59694 0.174 0.826 

KNMKP59695 0.474 0.526 

KNMKP59794 0.38 0.62 

KNMKP114 0.28 0.72 

KNMKP115 0.702 0.298 

KNMKP125 0.234 0.766 

KNMKP127 0.086 0.914 

KNMKP130 0.67 0.33 

KNMKP132 0.448 0.552 

KNMKP36861 0.946 0.054 

KNMKP37377 0.256 0.744 

KNMKP459 0.762 0.238 

KNMKP467 0.356 0.644 

KNMKP494 0.532 0.468 

KNMKP498 0.694 0.306 

KNMKP539 0.414 0.586 

KNMKP56870 0.194 0.806 

KNMKP58637 0.752 0.248 

KNMKP58653 0.114 0.886 

KNMKP58686 0.072 0.928 

KNMKP58687 0.154 0.846 

KNMKP59795 0.95 0.05 

KNMKP59838 0.12 0.88 


