
Diogo Alexandre Santos Amores

MINING GITLAB REPOSITORIES FOR

SOFTWARE DEVELOPMENT ACTIVITIES

Dissertation in the context of the Master in Informatics
Engineering, Specialization in Software Engineering advised by

Prof. Mário Zenha-Rela and presented to the
Faculty of Sciences and Technology / Department of Informatics

Engineering.

October 2021

Diogo Alexandre Santos Amores

Acknowledgements

Firstly, I would like to thank my family for all the support they have given me throughout
these years and for always believing in me.

To my advisor, Mário Zenha-Rela, thank you for your availability, solid advice and espe-
cially, for helping me find motivation when it sometimes lacked to see this through the
end.

And finally, to my friends, from the ones I made when I first entered university to the ones
who were already there, thank you for making me a better person and enriching my life. I
would not be who I am today without you.

i

Faculty of Sciences and Technology

Department of Informatics Engineering

Mining GitLab Repositories for
Software Development Activities

Diogo Alexandre Santos Amores

Dissertation in the context of the Master in Informatics Engineering, Specialization in Software
Engineering advised by Prof. Mário Zenha-Rela and presented to the

Faculty of Sciences and Technology / Department of Informatics Engineering.

October 2021

This page is intentionally left blank.

Abstract

With the growing complexity of modern societies, organizations become increasingly con-
scious of the improvements made possible by Process Management to improve workflows
and optimize resources. Mining Software Repositories, initially an obscure research topic,
has grown to provide invaluable contributions to the field of process management, made
only possible by the exponential increase in the usage of software repositories, available
event data, and open-source projects.

In particular, software repositories such as GitLab and GitHub contain vast data that is
considered of particular interest to researchers in this field. Mining Software Repositories
aims to shift these repositories from purely storage spaces to actual tools that help in shap-
ing and improving the development process. The data these repositories contain provide
information about the different states of the project during development such as the his-
tory of every change made to every file and the responsible contributors. Due to this, these
repositories present an excellent starting point for project analysis and provide an oppor-
tunity to better understand how a project is being conducted, if established methodologies,
schedules, and if work distribution is comparable to the envisioned execution.

The primary goal of this thesis is to mine these software repositories and extract infor-
mation that can be useful for monitoring software projects. This information can prove
extremely valuable in order to improve the effectiveness of teams and identify issues early
in order to improve the quality of the produced software. It can also provide insight into
the development practices of individual team members.

To achieve this goal, a tool that uses git-based repositories (such as GitHub and GitLab)
as the main source to extract event logs was designed and built by the author. The aim of
this tool is to extract this data and establish a method to categorize the different contents
of these repositories into software development activities (such as Code or Test). After this
categorization, multiple aspects of the log will be analyzed and displayed to the user via a
user-friendly visual interface.

Keywords

Business Management, Process Management, Mining Software Repositories, Software De-
velopment, event logs, workflow, performance, efficiency, GitLab, GitHub, Process Mining

iii

This page is intentionally left blank.

Resumo

Com a crescente complexidade da sociedade moderna, as organizações tornam-se cada vez
mais conscientes das melhorias potenciadas por Process Management para melhor fluxos
de trabalho e otimizar recursos. Mining Software Repositories, inicialmente um tópico
de pesquisa obscuro, cresceu para fornecer contribuições inestimáveis no campo de process
management. Estas contribuições foram possibilitadas pelo aumento no uso de repositórios
de software, dados de evento disponíveis e projetos open-source.

Em particular, repositórios de software como GitLab e GitHub contêm uma quantidade
vasta de dados que são considerados de particular interesse para cientistas neste campo.
Mining Software Repositories visa alterar a função puramente de armazenação destes
repositórios para ferramentas que possam ajudar a moldar e melhorar o processo de de-
senvolvimento de software. Os dados que estes repositórios contêm fornecem informação
sobre os diferentes estados de um projeto durante o desenvolvimento, como o histórico
de alterações feitas em cada ficheiro bem como os autores responsáveis. Devido a isto,
estes repositórios apresentam um excelente ponto de partida para a análise de projetos e
fornecem uma oportunidade para melhor entender como um projeto está a ser conduzido,
se as metodologias estabelecidas, planos e distribuição de trabalho são comparáveis à exe-
cução prevista.

O objetivo principal da presente tese é explorar estes repositórios de software de modo a
extrair informação que pode ser útil para monitorizar projetos de software. Este tipo de
informação pode ser extremamente valiosa de modo a melhorar a eficácia de equipas de
desenvolvimento e identificar eventuais problemas com a devida antecedência, a fim de mel-
horar a qualidade do software produzido. Estes dados podem também fornecer informações
relativas às práticas de desenvolvimento de membros individuais de uma equipa.

Para atingir este objetivo, uma ferramente que usa repositórios git (como GitHub e GitLab)
como fonte principal para extrair logs de evento foi desenvolvida pelo autor. O objetivo
desta ferramenta é extrair estes dados e estabelecer um método para categorizar os difer-
entes conteúdos do repositório em atividades de desenvolvimento de software (como Code
ou Test). Após esta categorização, vários aspetos dos logs serão analisados e exibidos ao
usuário através de uma interface visual simples e acessível.

Palavras-Chave

Business Management, Process Management, Mining Software Repositories, Desenvolvi-
mento de Software, logs de evento, workflow, desempenho, eficácia, GitLab, GitHub

v

This page is intentionally left blank.

Contents

1 Introduction 1
1.1 Context and Motivation . 1
1.2 Goals . 2
1.3 Thesis Structure . 3

2 Background 5
2.1 Problem Specification . 5
2.2 Mining Software Repositories . 6

2.2.1 Introduction . 6
2.2.2 Software Repositories . 6
2.2.3 Application of Mining Software Repositories 7
2.2.4 ActiVCS . 8

3 Work Plan 15
3.1 First Semester . 15
3.2 Second Semester . 16
3.3 Methodology . 16

4 Exploratory Phase 19
4.1 Project Scanner . 19

4.1.1 Framework . 19
4.1.2 Overview of Django and Flask . 20
4.1.3 Log Retrieval . 21
4.1.4 Repository Logs . 22
4.1.5 File Directory Tree . 23
4.1.6 Regex . 27
4.1.7 Nature of the Effort and Evolution of the Effort 29
4.1.8 Files . 31

4.2 Process Mining . 33
4.2.1 Process Mining in Software Development 33
4.2.2 Data Preparation . 34
4.2.3 Process Discovery . 34
4.2.4 Analysis . 35
4.2.5 JIRA . 35
4.2.6 Webhooks . 35

4.3 GitLab . 37
4.3.1 GitLab Webhook Demonstration . 39
4.3.2 GitLab API Demonstration . 44
4.3.3 Identification of Relevant Information for Data Preparation 48

4.4 PM4Py - Process Mining for Python . 50
4.5 Conclusion . 50

vii

Chapter 0

5 System Specification 51
5.1 User Stories . 51
5.2 Use Cases . 52
5.3 Functional Requirements . 55
5.4 Non-Functional Requirements . 56

5.4.1 Usability . 56
5.4.2 Availability . 57
5.4.3 Security . 57

5.5 Mockups and Navigation Diagram . 57
5.6 C4 Models . 61

5.6.1 Context Diagram . 61
5.6.2 Container Diagram . 62
5.6.3 Entity-Relationship Diagram . 62

5.7 Conclusion . 64

6 Development 65
6.1 Project Organization . 65
6.2 Project Structure . 67

6.2.1 Base Structure . 67
6.2.2 Application Structure . 68

7 ProjectScanner Overview 75
7.1 Homepage . 75

7.1.1 Create Project . 76
7.1.2 Regex . 77

7.2 Project . 79
7.3 Project View . 80
7.4 Social View . 82

7.4.1 Team . 82
7.4.2 Individuals . 84

7.5 Artifact View . 88
7.5.1 File Directory Tree . 88
7.5.2 Files . 91

7.6 View File and View Modification History . 93

8 Conclusion and Further Work 95

viii

This page is intentionally left blank.

Chapter 0

x

This page is intentionally left blank.

List of Figures

2.1 Sample Log File used in ActiVCS . 9
2.2 ActiVCS’s Activity Set extracted from [26] 10
2.3 ActiVCS’s KPI Set extracted from [26] . 10
2.4 ActiVCS’s Chart Visualization of activity at File Level 11
2.5 ActiVCS’s Chart Visualization of Commit activity 11
2.6 ActiVCS’s displayed information on the KPIs 12
2.7 ActiVCS’s displayed information on the KPIs 13

3.1 Gantt Diagram for the First Semester . 15
3.2 Gantt Diagram for the First Semester . 16

4.1 Django MTV (extracted from [10]). 20
4.2 Django ORM (extracted from [4]). 21
4.3 Commit Log . 22
4.4 Lines Log . 23
4.5 Sample Commit Log . 24
4.6 File Directory Tree after the First Commit 24
4.7 File Directory Tree after the Second Commit 24
4.8 File Directory Tree after the Third Commit 25
4.9 File Directory Tree using anytree . 26
4.10 Variation of the File Directory Tree using anytree 26
4.11 Sample Dendograms (image extracted from [12]) 27
4.12 Implemented D3 Dendogram with color coding 27
4.13 Activities (example) . 28
4.14 Snippet of a D3 Dendogram with color coding related to the Activity Type 29
4.15 Template of the Line Chart (extracted from [6]) 30
4.16 Template of the Stacked Bar Chart (extracted from [6]) 30
4.17 Template of the Pie Chart (extracted from [6]) 31
4.18 Process Mining Phases . 34
4.19 A Dataset Example . 34
4.20 Example Process Model with a Petri Net . 35
4.21 JIRA Board and Plan Tracker . 36
4.22 Webhooks vs APIs . 37
4.23 The GitLab logo . 37
4.24 GitLab Repository Interface . 38
4.26 Location of the authtoken . 40
4.27 Ngrok Output . 40
4.28 Available GitLab template repositories . 41
4.29 Webhook configuration . 42
4.30 Created webhook and Test events . 42
4.31 Successful webhook output . 43

xii

List of Figures

4.32 Ngrok Web Interface with the available request 43
4.33 Output of the Web Receiver . 44
4.34 GitLab’s User Setting for generating access tokens 45
4.35 Commit Endpoints . 46
4.36 Output for commits in the sample project 46
4.37 Output for API request using the since argument 47
4.38 Branch Endpoints . 47
4.39 Branch request Output . 48

5.1 Navigation Diagram . 58
5.2 Initial mockup for the Individual Tree page 59
5.3 Initial mockup for the Social View - Effort Across Time page 60
5.4 Initial mockup for the Project View page . 60
5.5 Context Diagram . 61
5.6 Container Diagram . 62
5.7 Entity-Relationship Diagram . 63

6.1 Base Structure of a Django Project . 67
6.2 Structure of the ProjectScanner Application 68
6.3 Homepage View of the ProjectScanner . 70
6.4 Commit Model of the ProjectScanner . 70
6.5 Gitpy function that fetches the Commit Log 71
6.6 Project Form in the ProjectScanner . 71
6.7 Function that creates the Default Regex . 72
6.8 ProjectScanner’s Admin Panel . 72
6.9 Template folder of the ProjectScanner . 73
6.10 Template of the Project View . 74

7.1 The Homepage of the ProjectScanner . 75
7.2 Create Project Page . 76
7.3 Confirmation of project creation . 76
7.4 Configure Regex . 77
7.5 View Regex . 77
7.6 Create New Regex . 78
7.7 Project Information . 79
7.8 Project View . 80
7.9 Project View - Nature of the Effort . 80
7.10 Project View - Nature of the Effort (Tooltip) 81
7.11 Project View - Evolution of the Effort . 81
7.12 Project View - Evolution of the Effort (Tooltip) 81
7.13 Social View . 82
7.14 Social View Team - Select Team Members 82
7.15 Social View Team - Nature and Evolution of the Effort 83
7.16 Social View Team - Evolution of the Effort (Scroll) 83
7.17 Social View Individual - Select Team Member 84
7.18 Social View Individual . 84
7.19 Social View Individual - Nature of the Effort 85
7.20 Social View Individual - Evolution of Effort 85
7.21 Social View Individual - Modified Files . 86
7.22 Social View Individual - Modified Files . 86
7.23 Social View Individual - File Directory Tree 87
7.24 File Directory Tree of the selected team member 87

xiii

Chapter 0

7.25 Artifact View Individual . 88
7.26 Artifact View - Trees . 88
7.27 Artifact View - Trees . 89
7.28 Artifact View - Snippet of the File Directory Tree 89
7.29 Artifact View - File Directory Tree per Commit 89
7.30 File Directory Tree of the Project . 90
7.31 Artifact View - CHURN File Directory Tree 90
7.32 Artifact View - CHURN File Directory Tree 90
7.33 Artifact View - Files . 91
7.34 Artifact View - Files - Activities of the Files 91
7.35 Artifact View - Files - Most Modified Files 92
7.36 Artifact View - Files - Modified Files by the Most People 92
7.37 View File . 93
7.38 Modification History . 94

1 Mockup for the Homepage . 110
2 Mockup for the New Project page . 110
3 Mockup for the Modify Regex Page . 111
4 Mockup for the Project Page . 111
5 Mockup for the Social View Page . 112
6 Mockup for the Contribution per Activity Chart in the Social View Page . . 112
7 Mockup for the Nature of the Effort Chart in the Social View of an Individual113
8 Mockup for the Evolution of the Effort per Category Charts in the Social

View of an Individual . 113
9 Mockup for the Manipulated Files Page in the Social View on an Individual 114
10 Mockup for the Artifact View Page . 114
11 Mockup for the CHURN Tree Page in the Artifact View Page 115
12 Mockup for File View Page of a selected file 115
13 Mockup for File View Page of a Selected File 116
14 Mockup for Tree Page in the Artifact View 116
15 Mockup for File View Page of a selected file 117
16 Mockup for Directory Tree Page in the Artifact View 117
17 Mockup for the Modification History Page in the Artifact View 118
18 Mockup for the File Page in the Artifact View 118
19 Mockup for the File Category Page in the Artifact View 119
20 Mockup for the Most Modified Files Page in the Artifact View 119
21 Mockup for the Modification History Chart in the Artifact View 120

xiv

This page is intentionally left blank.

List of Tables

4.1 Categories and Scope of the different features of the ProjectScanner 30
4.2 Categories and Scope of the different features of the ProjectScanner 33
4.3 Webhook identified triggers and the relevant data 49
4.4 GitLab API identified endpoints and the relevant data 49

5.1 Create Project Use Case . 53
5.2 Create Regex Use Case . 54
5.3 Display Artifact View - Tree per Commit Use Case 54
5.4 View File Use Case . 55
5.5 Project General Functional Requirements 55
5.6 Effort Views Functional Requirements . 56
5.7 Files Functional Requirements . 56
5.8 Trees Functional Requirements . 56
5.9 Non-Functional Requirement - Usability . 57
5.10 Non-Functional Requirement - Availability 57
5.11 Non-Functional Requirement - Security . 57

6.1 Development Order and Priorities . 66

1 Select Regex Use Case . 104
2 Delete Regex Use Case . 104
3 Select Project Use Case . 104
4 Update Project Use Case . 105
5 Display Project View Use Case . 105
6 Display Social View - Team Effort Use Case 105
7 Display Social View - Individual Nature of the Effort Use Case 106
8 Display Social View - Individual Effort Use Case 106
9 Display Social View - Manipulated Files Use Case 106
10 Display Social View - Individual Tree Use Case 107
11 Display Artifact View - File Category Use Case 107
12 Display Social View - Most Modified Files Use Case 107
13 Display Artifact View - Modified Files by Most People Use Case 108
14 Display Artifact View - Complete Tree Use Case 108
15 Display Artifact View - CHRUN Tree Use Case 108
16 View Modification History Use Case . 109
17 Display Social View - Handover of Work Use Case 109
18 Display Social View - Delete Projet Use Case 109

xvi

This page is intentionally left blank.

Chapter 1

Introduction

This document presents the ’Mining GitLab repositories for software development activi-
ties’ thesis performed as part of the Master in Informatics Engineering, Specialization in
Software Engineering advised by Prof. Mário Zenha-Rela and presented to the Faculty of
Sciences and Technology / Department of Informatics Engineering.

This first chapter of the thesis serves as an introduction to the project, the context and
motivations as well as a basic overview of the structure that will be followed throughout
the document.

1.1 Context and Motivation

As businesses become increasingly aware of the need for Process management (or Busi-
ness process management) as a means to better understand a business’ practices in order
to improve methodologies and the outcome of their work, it becomes inherently obvious
that understanding business processes as a whole, how to improve said processes, how to
make them more agile and efficient is the root to success for any business to strive in an
increasingly competitive market.

Business process management (BPM) is a discipline that uses various methods to discover,
model, analyze, measure, improve and optimize business processes. A business process
coordinates the behavior of people, systems, information, and things to produce business
outcomes in support of a business strategy. Processes can be structured and repeatable,
or unstructured and variable [13] and should allow a correlation and understanding of the
company’s workflow in order for tasks to be efficiently and consistently executed.

As per the work of this thesis, the focal point will be monitoring, and visualization of
these processes, as applied to the software development activity. Monitoring of processes
can prove difficult for businesses, especially the larger they become due to an increasing
lack of centralization of the tools developers use. Tools such as GitLab or GitHub are
seen as common usage to address this problem, offering options such as version control,
storage of file changes, and multiple logged traces related to the whole life cycle of software
development. However, these tools fall short when it comes to actually get insights, namely
through visualization of this data which becomes necessary in order to understand the work
being done throughout the development and identifying potential roadblocks or deviations
of projects even on a small scale. Manual approaches are incredibly vexing or most of the
times practically impossible.

1

Chapter 1

The information available in these tools is incredibly useful for analysis purposes and can
be deemed as a essential into obtaining more information about a specific project and
understanding the different activities done by developers during the course of a project.
This will be the starting point of this thesis which can be associated to the research area
of Mining Software Repositories. This field has been gathering increased interest over
the years has it focuses on analyzing the data present in these tools as they provide an
useful opportunity into looking at the overall history of a software project and aid in the
monitoring of complex systems without interfering with actual development activities and
deadlines [27].

1.2 Goals

The main goal of this thesis is to develop an MVP (Minimum Value Product) of a software
tool that we named ProjectScanner, that visualizes information extracted from project
repositories.

To accomplish this, we shall extract available logs from these repositories and categorize
them into activities by using a default configuration and by enabling the user to create
their specific configuration to suit individual projects.

After extracting and categorizing the logs into activities, we will then look into the data
obtainable from these logs in order to understand the kind of information we want do
display to the user. The information displayed aims to provide a more inside look into the
development and helping understand the work of developers and their relationship with
the different activities in order to establish if internal methodologies, schedules and work
distribution are being properly executed.

Since the extraction of logs from these sources can be associated with the Mining Software
Repositories research field, we contextualize what we aim to achieve by introducing this
research topic.

As a starting point, we looked into Mining Software Repositories and in specific, the
project ActiVCS which we considered very aligned to what we are trying to accomplish in
the thesis. This will be the focus of Chapter 2.

There are also plans to further integrate this artifact with other ongoing and future projects
of the same nature. This means that the architecture needs to be simple, modular, and
easily scalable to be fully integrated into a future system. One of these integrations will
be applying Process Mining techniques to the collected project dataset in order to further
explore and improve development processes. This was initially the main idea behind the
thesis but we ultimately decided to shift priorities and developed ProjectScanner as a
baseline work that is useful on its own that provides the groundwork for further Process
Mining analysis to be integrated in the future.

2

Introduction

1.3 Thesis Structure

In this section, an overview on the focus of this thesis will be presented as well as a brief
summary of what each subsequent chapter of the document will entail.

• Chapter 2 - Background: The Background Chapter introduces the context of the
problem we aim to aid with the overview of the Problem Specification, an introduction
to Mining Software Repositories and the analysis a similar artifact to the one we
developed.

• Chapter 3 - Work Plan: The Work Plan Chapter will focus on the work plan for
the First and Second semester. The Gantt Diagrams split per work milestone and a
brief description of what was accomplished will be provided.

• Chapter 4 - Exploration Phase: The Exploration Phase Chapter will introduce
the exploratory work done throughout the development of the ProjectScanner, de-
scribing and justifying the decisions that were made during development. Along with
this, key topics introducing Process Mining will also be presented here as it contains
exploratory material into an earlier approach of the thesis theme.

• Chapter 5 - System Specification: The System Specification Chapter introduces
relevant Diagrams for the System Architecture, the chapter will provide a template
for the overall system diagram and then expand into the specifications for the software
being developed for this thesis. After this, the different components relevant to
development will be introduced. These entail the User Stories, Use Cases, Functional
Requirements, Non-Functional Requirements, Mockups, Navigation Diagram and the
Entity-Relationship Diagram.

• Chapter 6 - Development: The Development Chapter introduces the organiza-
tion methodology used throughout development along with the implemented require-
ments. This chapter also features the Project Structure of the ProjectScanner along
with an explanation of key components within it.

• Chapter 7 - Project Scanner Overview: The Project Scanner Overview Chapter
will introduce the ProjectScanner and all the implemented requirements.

• Chapter 8 - Conclusion and Further Work: For this final chapter we will
discuss the conclusion topics of the thesis and provide some essential points into
future development of the ProjectScanner.

For the next chapter, the objective is to describe in more detail the background work done
prior to the development of the ProjectScanner.

3

This page is intentionally left blank.

Chapter 2

Background

This chapter will feature an introduction to the main problem we wish to address with
the development of the ProjectScanner tool. After this introduction, an overview into
Mining Software repositories will be presented in order to better contextualize this problem.
Finally, we will introduce a project of similar nature to ours, named ActiVCS and analyze
the key functionalities behind this artifact.

2.1 Problem Specification

Project Development involves most of the time complicated processes that relate to the
coordination of multiple people working towards a specific goal. As mentioned in section
1.1, monitoring these specific development processes is extremely important to ensure that
development follows established goals and meets certain criteria.

However, it can prove difficult to have access to the data to monitor and the specific metrics
associated with this data as there’s a lack of tools that can aggregate and present it in a
simple and efficient way to provide actual conclusions either to on-going or already finished
projects (post-mortem analysis). Software is intangible, making it difficult to correctly
establish specific variables that influence the development, leading to bugs, inconsistencies
and budget or time limit bypasses [29].

This entails the main objective we wish to aid by developing the ProjectScanner tool.
Ensuring the understanding of the different states of projects can be extremely useful
in order to provide clarity of the development process and in being able to distinguish
the kinds of development activities that were done by each member of a collaborative
team. This establishes the possibility to understand how a project is being conducted, if
internal methodologies are being followed and the actual work being developed across time.
This can lead teams in a good direction when it comes to identifying timely solutions to
problems that can be hard to pinpoint without centralization and adequate presentation
of the relevant data produced in software development.

Data that can be considered relevant can usually be found in the configuration manage-
ment systems that teams use to manage and store development software as a result of
collaborative work. Software Repositories such as GitLab and GitHub are two of the most
popular examples of systems of this nature. These systems actively store data that can
be utilized to aid in addressing this problem. This data includes information such as the
history related to every change that was made to a file as well as the individual member

5

Chapter 2

or members behind it. For this reason, these systems serve as the most promising starting
point into project analysis.

The extraction of information from software repositories and the different analysis that can
be done with this data is addressed by the researah field ’Mining Software Repositories’.
As we established the main issues with monitoring software projects and concluded that
data from software repositories provided a good starting point into this problem, the next
step into the research was looking into Mining Software Repositories and in specific, an
artifact developed in this field of study.

2.2 Mining Software Repositories

2.2.1 Introduction

Mining Software Repositories (MSR) is a research field that has been made popular by
the increased use of software repositories as means to store and manage source code.
MSR focuses on extracting and analyzing data available in these repositories to uncover
interesting, useful, and actionable information about software systems and projects [23].

Even though software repositories are available for most large software projects and are
usually standard use within software development teams, the data these repositories con-
tain had not been seen as valuable means to improve software projects until relatively
recently. This can be briefly explained by some key issues. Companies in most cases were
not very willing to openly provide repository data as it contained very sensitive informa-
tion about the software systems being developed. This means that varied data for analysis
was ultimately scarce. Another issue considered by researchers is the complexity behind
the actual data extraction as most system repositories usually do not consider automated
data extraction and the mining of its contents, making the support to get this information
extremely limited. Usually, researchers are more interested in getting access to already
extracted data that is easy to process [16].

With the increasing occurrence of public repositories, a new option to explore MSR became
possible and the paradigm began to change as this concept evolved and many high quality
software emerged from projects of this nature [27]. These public and open source repos-
itories finally provided valuable data available to be extracted and easily shared among
researchers throughout the world. As this field began gathering popularity, it became eas-
ier to have access to tools and information that aid in the extraction of the data from these
sources. Mining Software Repositories became a renowned and important field within the
area of Empirical Software Engineering, originating its own Conference in 2008 (Interna-
tional Conference on Mining Software Repositories) after four years of being the Inter-
national Conference on Software Engineering’s largest workshop [16] and is consistently
having many contributions and and high quality papers.

2.2.2 Software Repositories

Software Repositories are obviously the primary object of study within the Mining Software
Repositories field of study. As mentioned in 2.2.1, MSR focuses on the extraction and
analysis of data from these repositories in order to aid in better software development.

Software repositories can be considered any online of offline instance described as a storage
space for data such as source code, software packages, metadata, software defects and other

6

Background

relevant information related to software and its development [3]. Most software repositories
also provide additional functionalities such as access control, versioning and branching.
These repositories may also offer many built-in security systems such as anti-malware and
authentication systems [35] in order to provide safe development storing spaces.

These repositories can be inserted into the following categories:

• Historical Repositories: These types of repositories aggregate large amounts of
data for record keeping. Some popular examples are:

– Source Control Repositories such as CVS, Mercurial, GitHub and GitLab
store files and include metadata related to every change done to the repository.
These changes can target files or other contents and are usually represented by
commit objects and references to these objects [34];

– Bug Repositories (or Bug Tracking Systems) such as JIRA, Bugzilla or
Wrike, focus on maintaining a record on bugs and issues of software during
multiple development cycles in one centralized platform. These records usually
contain information such as the current behaviour versus the expected, the
author and the possible developers who might be assigned to fix the bug/issue
[31];

– Archived Communications such as messages, emails and platforms such as
Discord, Slack or Microsoft Teams store discussions related with workplace chat,
files and application integration [33].

• Run Time Repositories: Such as Deployment Logs contain information related
to software deployment. These can range from software updates, installation or even
software errors or abrupt terminations of the system.

• Code Repositories: Such as Google Code and Sourceforge.net actively store source
code of a vast quantity of projects.

2.2.3 Application of Mining Software Repositories

The information available in Software Repositories provide excellent and valuable datasets
which can be directly applied to aid collaborative teams to understand and manage com-
plex projects without taking time away from other important activities. Research has
proven that interesting and actionable results can be delivered from the mining of these
repositories, allowing managers and developers alike a new understanding into their sys-
tems, resulting in an increase of the software quality and efficiency with less applied cost
[7][28].

Mining Software Repositories aims to shift these repositories from purely storage spaces to
tools that actually shape and improve the development process. Information in Historical
Repositories can potentially be used to capture dependencies between different project
components such as functions, documentation files or configuration files, this information
can then be used by developers to propagate different changes that relate to specific code
dependencies [11]. Other interesting application is establishing direct correlations between
concrete development activities (such as Code or Testing) and the different components
present in these repositories as well. These correlations can then be used to analyse the
evolution and effort of each activity over development cycles [26]. Bug Repositories and
Archived Communications can be used to establish a direct connection between these
sources and the actual source code being developed. This can help in the reporting of bugs

7

Chapter 2

or issues by better by determining which portion of the code is related to a specific bug or
issue, reducing significantly the maintenance effort and its cost [7]. Run Time Repositories
can be useful in identifying critical execution anomalies by determining usage patterns of
different project artifacts across deployments and Code Repositories can be used to identify
accurate library usage patterns by looking at library usage across a plethora of projects
[16].

One of the many interesting facts we found during this research was the very close proximity
between Mining Software Repositories and the previous topic that this thesis focused on,
Process Mining. This topic will be introduced as a part of the Exploratory Phase in 4.2.
Mining Software Repositories represents an extremely important field to the application
of Process Mining. This can be explained by the fact that in order to explore Process
Mining, the required data needs to be extracted from these sources and correctly parsed
into a format that the Process Mining algorithms can accept. This ultimately became one
of the primary reasons for the shift in priorities in the thesis theme. With the goal of
extracting data from repositories, it came as a natural conclusion to us to explore the data
we could directly obtain from these sources before moving on to apply Process Mining
techniques to it.

As for the next point into the research, the focus was on a specific artifact named ActiVCS.
This artifact deals with the extraction and analysis of logs from Historical Repositories and
served as crucial point for us into understanding one of the direct applications of MSR.

2.2.4 ActiVCS

ActiVCS is an artifact developed with the intent to analyze event logs extracted from
Version Control Systems (a more general term to Source Control Repositories explained
in 2.2.2), and use them to discover process activities to better understand the work of
developers. While researching for possible ways to interpret the different kind of data
we could get with logs this artifact proved useful in establishing some baseline work and
solidifying our own ideas.

The first step into using ActiVCS was feeding it a log it could use to extract information.
This log focuses on the commits that were pushed to a repository and is structured as
presented in 2.1.

8

Background

Figure 2.1: Sample Log File used in ActiVCS

ActiVCS specifies four main steps after getting this log. These steps entail [26]:

• Preprocess VCS: In this step information within the log is extracted. ActiVCS
considers the following entities from the contents of the log: Project, User, Commit,
File and Edit. Project represents the repository project the log was extracted from.
User represents the user who performs the Commit. Commit represents the status
of the repository at a given state and contains a revision number, timestamp and
the author of the Commit. File relates to a file contained in the Commit and is
represented by its full path (e.g, sge/.idea/.gitignore). Edit is used to contain the
number of lines added and removed from a file.

• Classify Activities: In this step, the information is classified into different develop-
ment activities. To accomplish this, the full path of the files present in the commits is
used as the means to categorize activities. ActiVCS then applies regular expressions
to the these file paths. The file paths are tested against the Regular Expressions and
categorized according to the contents of the full path and the extension of the file.
(e.g, a file with test in its full path would be considered a Test activity regardless of
the extension it had). Figure 2.2 presents the activity set considered by ActiVCS,
these activity types are based on [30].

• Compute Key Performance Indicators (KPIs): ActiVCS then computes a set
of KPIs based on [30]. Key Perfomance Indicators (KPIs) are measurable metrics
with the objective of evaluating effectiveness of businesses in achieving specific goals
[19]. Figure 2.3 presents the considered KPI sets. ActiVCS divides these KPIs
into basic (absolute and relative) and specialization metrics. Basic metrics feature
statistics such as frequency counts related to the number of times each user works
on a file and specialization metrics aim to measure the imbalance of work between
different commit authors.

9

Chapter 2

• Visualize results: The last step is visualizing the results. ActiVCS considers being
informative to project managers extremely important. Due to this, the results are
graphically displayed. Figures 2.4 and 2.5 present the different interfaces of ActiVCS.

Figure 2.2: ActiVCS’s Activity Set extracted from [26]

Figure 2.3: ActiVCS’s KPI Set extracted from [26]

In figure 2.3, UTW refers to User Activity Workload and is computed using the number of
files relative to an activity t that a user u edits over the course of a project. UTI indicates
User Activity Involvement and is 1 if an user u has edited a file related with an activity w
at least once and 0 otherwise [26].

10

Background

Figure 2.4: ActiVCS’s Chart Visualization of activity at File Level

Figure 2.5: ActiVCS’s Chart Visualization of Commit activity

11

Chapter 2

Figure 2.4 and 2.5 present the visualization of the data fetched after manually creating and
loading a log file from a VSC repository using ActiVSC. The information from the log is
sorted into different activities with each activity displaying a chart that visualizes specific
information.

Figure 2.4 provides information about File Changes in the repository according to the
type of activity across time. Using as an example the Code activity in the same figure,
we can visualize how the number of file changes across the development period shaped the
workflow of the Project. This can prove useful to identify critical points in development
cycles. Figure 2.5 follows the same logic but focuses instead on the number of Commits
associated with each category and their relative evolution across the timeline.

For instance, we can establish looking at the evolution shown in the two charts in 2.4 that
the Test and the Code activity started at mainly the same time. The peak in changes for
these two activities were in the beginning of the development of the Project, where both
activities had similar levels of changes. Code had a decline in File Changes followed by
another peak and eventually stabilizing across time. The Test Activity stabilized as well
but much earlier than the Code Activity (which is not a good indicator of quality focus).

By specifically looking at 2.5, we can conclude an interesting fact. Only one Commit was
fully associated with the Test category, meaning that throughout the development of this
Project, multiple Commits associated with other activities also had aspects related with
the Test Activity (otherwise, there would be no curve of File Changes detailed in 2.4. This
can mean that the majority of the developers of this Project were working on multiple
activities at once and there wasn’t an inherit focus on the Test activity by a singular user
(this might also indicate the adoption of a test-driven-development approach). The files
associated with the Code category also had an increased amount of effort across time when
related to the test files. Depending on the nature of the project and how important these
tests are to the development of the project, we can eventually correlate eventual faults in
the code to specific Commits that were pushed after the last Test file change.

Figure 2.6: ActiVCS’s displayed information on the KPIs

12

Background

Figure 2.7: ActiVCS’s displayed information on the KPIs

Figures 2.6 and 2.7 present the associated information related with the KPI set that Ac-
tiVCS implemented into the artifact.

Figure 2.6 features a bar-chart relating each activity type with the TW (workload of
a specific activity) KPI and a bar-chart that relates the number of authors that were
involved in a specific Activity Type. Below the bar-charts, the specific values of other
KPIs are displayed and contain:

• Project Workload: Contains the computed value of the PW KPI in 2.3, the higher
the value, the higher the workload. This KPI can be useful in comparing the different
PW among projects.

• GINI Workload: General imbalance of the workload. The higher the number, the
higher the imbalance of the workload within activity types. As with the PW KPI,
this KPI can be useful for comparing workloads among projects.

• Number of Authors: Number of Authors that were involved in the project.

• GINI Authors: Imbalance related to the Authors. The higher the number, the
more imbalance there was between the workload of authors. As with the PW and
GINI Workload KPIs, this KPI can be useful for comparing workloads among the
authors in different projects.

Figure 2.7 contains more KPI related information. This information is split into Project
KPIs, Author KPIs and Activity-type KPIs and feature similar information to Figure 2.6.
Author KPIs display the workload of each author split by Activity type and Activity-type
KPIs feature information related to the KPIs in 2.3.

With this introduction of ActiVCS, we can already establish different ways in which we
can explore the logs to visualize different information from using MSR. Some aspects
of ActiVCS will be kept in mind when developing ProjectScanner and this introduction
served as a good stepping stone into using MSR and interacting with the available data in a

13

Chapter 2

mostly visual and engaging way that can be considered useful for developers and managers
as means to better understand the data they are working with.

Hopefully the reader is also aroused to the significant value that this information can
provide to the team and project managers, not only during the post-mortem reflection on
a project, but also during its active development.

For the next chapter, before featuring all the of the exploratory work that went into the
development of ProjectScanner, it’s important to introduce the Work Plan now that an
overview into the main topics was discussed. The Work Plan chapter will detail how the
preliminary work was split into tasks and the specific timeline for each.

14

Chapter 3

Work Plan

This chapter presents the exploratory work displaying the Gantt diagram of the preliminary
work done up until the current point in the thesis and detailing how each task was split
throughout the semesters.

3.1 First Semester

Figure 3.1: Gantt Diagram for the First Semester

For the first semester, the first step into the thesis was the research into Process Mining
as a whole, which was a complete new field that the author had no previous experience
with. Due to this, specification into the focus of the thesis was necessary and in order to
complement the Process Mining study and apply it to the main theme of the project, an
analysis into Process Mining in Software Development started.

After the learning of the core concepts was completed, a study into the API and Webhook
of GitLab was necessary in order to understand implementation specifications and how to
directly apply the GitLab tools to process mining. Following this was an overview into the
analysis tool that would produce the process models using process mining algorithms and
the relevant data to construct the dataset was surveyed.

After the Background was complete, the knowledge presented allowed a more precise look
into possible frameworks for the implementation of the project. Following the decision, the
context and container diagrams of the system were built.

15

Chapter 3

3.2 Second Semester

Figure 3.2: Gantt Diagram for the First Semester

For the second semester, as our understanding of the nature of the tool evolved, we shifted
focus into researching Mining Software Repositories. The first step consisted in researching
this field and searching for existing tools that worked with the data from software repos-
itories. Then, a study of our own was conducted in order to build our own application.
The exploratory nature of this thesis meant that there was no defined structure to follow,
this meant that topics would be explored as they appeared in research and were deemed
relevant for future discussion.

After the exploratory phase was completed, system specification was revised from the
first semester and further enhanced with development work of the ProjectScanner. This
meant User Stories, Use Cases, Functional/Non-Functional Requirements, ER Diagram,
Mockups and Navigation Diagrams all had to be discussed and built in order to establish
the necessary steps for a smooth development proccess. The Container Diagrams were
updated as some of our previous decisions had to be adapted to the new direction of the
ProjectScanner.

Development cycles were established in order to guide development and finally, the final
report for the thesis concluded.

3.3 Methodology

Since this is an exploratory research structure work was structured in one ’week time-
boxes’: after discussing with the supervisor the goals for the week, that goal becomes the
focus of the thesis work. At the end of each week, the work performed was presented and
discussed. After discussion, the next step was devised and executed the following week.

When the development cycle began, prior checkup meetings would be decided. Each meet-
ing would present some of the established software requirements and report the progress
or problems into them. These steps would guide the route of development and decide on
the next checkup meeting.

16

Work Plan

This chapter allowed an outlook of the contents of the report and how each task was
assigned in the timeline leading to the report. The planning for both semesters is specified
and the methodology allows an understanding of how of how the goals of the thesis were
achieved.

In the next chapter, the focus will be on documenting and detailing all the preliminary
research that helped shape the ProjectScanner and the development phase.

17

This page is intentionally left blank.

Chapter 4

Exploratory Phase

This chapter presents the exploratory work that went into the development of ProjectScan-
ner. This will include choices in the many technologies present in the project as well as
the baseline logic behind each implementation decision.

The initial idea behind the Thesis had Process Mining and an increased focus in GitLab
in mind for development. Due to this, the chapter will also present the work done and
the technologies explored into this topic as a possible proof of concept for building upon
the ProcessScanner. While these topics will be split into their own sections, portions of
sections about Process Mining will be relevant to ProjectScanner and may be referenced
as means to better explain the decisions made and contextualize the reader.

4.1 Project Scanner

4.1.1 Framework

When discussing frameworks, there was not any inherit restrictions from the start aside
from the fact that the produced software should be a web service. With this in mind,
the options were narrowed to frameworks we had already experience working on, decision
which could improve the quality of the developed code and the speed of development due
to fact that no time would need to be allocated to learn the framework and programming
language.

Our initial approach was constrained by the adoption of PM4Py when selecting frameworks.
PM4Py is a python library that allows the extraction of process models from datasets using
Process Mining technologies. An overview into PM4Py can be found in 4.4 below.

With the objective of implementing Process Mining analysis as mentioned in 1.2, it seemed
sensible to keep this library in mind and choose a python based frameworks. While PM4Py
could be used with other languages a lot of work can be reduced by using the same pro-
gramming language. To add to this point, python based frameworks are excellent options
for building web services with the author already having experience with two of the more
common and popular ones, Django and Flask.

19

Chapter 4

4.1.2 Overview of Django and Flask

Django is an open source high-level python web framework built for web development in
mind. Django helps write code that is complete, following the "batteries included" philos-
ophy [10], featuring a vastly versatile standard library that encapsulates most development
needs without the need to resort to outside libraries. It is also easily scalable due to its
"shared-nothing" architecture [10], meaning that every part of the Django architecture is
independent from each other and can easily be replaced for scalability. Another great ad-
vantage is that it’s incredibly secure, featuring default protections against many common
security attacks such as SQL injection, cross-site scripting, cross-site request forgery and
clickjacking [10].

Django also features an automatic admin interface, allowing simple readability of a database
as well as the performance of basic database functions directly within this interface.

Django follows the MTV (Model-Template-View) and has its own ORM (object-relational
mapping) allowing for database query code to be written using Django’s model system,
making it much simpler to handle database functionalities.

Flask is a python micro web framework for web development. The main difference between
Django and Flask is that Flask is more minimalist in nature in order to be much lighter,
modular and simpler. It doesn’t offer most of the options Django provides by default
such as the ORM or MTV. Flask provides the flexibility to make the developer decide
what they need and focus on it, the standard web development library is very straight-
forward and offers more overall customization than Django, allowing much more room for
experimentation.

The ProjectScanner could certainly be developed in either Django or Flask, the decision
ultimately was based on ease of development, since our focus is on supporting research,
not on a final product. While the Flask simplicity could offer some benefits and allow
room to experiment different things for the application, Django offers a set of really useful
features for the development of the ProjectScanner that are available from the start, namely
the ORM and Django Admin interface and the secure database options. ORM and Admin
interface are still possible with Flask, however these require some effort configuring, making
it hard to choose Flask over Django.

Figure 4.1: Django MTV (extracted from [10]).

20

Exploratory Phase

Figure 4.2: Django ORM (extracted from [4]).

4.1.3 Log Retrieval

One of the first steps into building the ProjectScanner was establishing how to get the
repository logs for analysis. A key aspect we considered when fetching the logs included an
automatic process behind it. This meant that the platform would take care of the details
behind getting the logs in order to make ProjectScanner user friendly and streamline some
of the aspects relating to getting the actual data.

The initial research into Process Mining lead to an overview into the GitLab API and the
GitLab Webhook as baselines for the implementation. This research will be mentioned
further into this chapter in sections 4.3.1 and 4.3.2 as contextualization but the main
aspect into consideration is that Process Mining greatly benefits from a stream of constant
real-time event logs, making the adoption of Webhook a promising approach to explore in
the future with the API aiding in getting more specific information when needed. This
was not a requirement with the ProjectScanner due to it being focused on the readily-
available information within the logs. Nonetheless, we decided to that we would specify a
requirement that would allow automation in the updating of the logs to accommodate this
exploration in the future as well as aiding in easily keeping the logs of the ProjectScanner
relevant.

The next step was deciding on the tool to help with extraction. One of the other advantages
of choosing python-based frameworks is the vast community support on libraries. We
easily came across the Gitpy library. This library is a python wrapper for Git and allows
functions such as log extraction and creating automatic commits in python[15]. As such,
we used the Gitpy library to perform the streamline proccess we discussed earlier. Gitpy
would allows us to:

• Extract the required logs from Git based repositories.

• Streamline this extraction by requiring only the repository URL instead of the logs.

• Allow log updating, guaranteeing that the logs contain their most up to date version.

The standard interaction of ProjectScanner with this library can be described as follows:

1. An URL to a Git-based repository is manually provided by the user (in the case

21

Chapter 4

of private projects, a different kind of URL must be provided, one of the possible
approaches is mentioned in 4.3.2).

2. This URL is then used with GitPy to create a local (temporary) clone of the project.

3. The required logs are extracted.

4. The local clone of the project is deleted.

As a final note into this topic, we found very late into development the existence of a
framework named PyDriller. This framework helps developers analyze Git repositories. It
functions similarly to Gitpy but provides some increased ease of use by providing methods
to get specific information within the logs. This would essentially remove the need to
develop a parser for the logs. However, this parser was already implemented and was
working as intended. Due to this, we decided to maintain our usage of the Gitpy library
but document a simpler alternative in case this step needed to be revisited in the future.

4.1.4 Repository Logs

After establishing all the main steps of interaction with the retrieval of logs, we focused on
analysing the actual content of the logs in order to understand what data these logs contain
and the overall relevancy of its contents to what we aim to achieve with the development
of the ProjectScanner.

ProjectScanner works with two types of logs, we will be referring to them from this point
onward as the Commit Log and the Lines Log.

Figure 4.3: Commit Log

Figures 4.3 and 4.4 represent two examples of the Commit Log and Lines Log that the
ProjectScanner interacts with. The Commit Log presents an accurate history of every
change made to the repository since creation and is structured as follows:

• Commit ID: The unique identifier associated with every commit in a repository.
It can be used to access other repository information that is not available with the
logging we are using.

22

Exploratory Phase

Figure 4.4: Lines Log

• Merge ID: Unique identifier relating to a branch merge within the repository. As
with the Commit ID, it can also be used to access additional merge specific informa-
tion.

• Author: Identification of the author who pushed the commit.

• Commit Message: A text message of variable length. The main objective is de-
scribing the nature of the changes made with the commit.

• Commit Changes: Identifies all the files that were changed in any way by the
current commit. Files can have one of three associated changes:

– Added (A): Indicates that the file was added to the repository;

– Modified (M): Indicates that the file was modified in some way, this entails
any change to the number of lines the file originally had;

– Deleted (D): Indicates that the file was removed from the repository.

In the Commit Log, these changes are displayed firstly by the nature of the change
(A, M or D), followed by the full file path of the affected file in the repository. This
field is also of variable length.

The Line Log was introduced later in development as we found it relevant for the user to
be able to check the history of lines added and removed from each file. The Lines Log
requires a commit ID, meaning that the Lines Log in 4.4 represents the information on the
number of added and removed lines related to the affected files of a specific commit. It is
also of variable length and is structured as follows:

[added lines] [removed lines] [full path of the affected file]

4.1.5 File Directory Tree

The File Directory Tree was one of the first features to the ProjectScanner that we discussed
during meetings. As we explored this feature, it also began to shape the development of
the ProjectScanner as new feature concepts began to arise from building upon this idea.

After going through different Commit Logs, we realised that we could reconstruct the
contents of the repository at any point in time. To accomplish this, we needed to traverse
the Commits in chronological order as we could look at the files that were added as a result
of each commit in order to recreate the history of the repository at any specific time.

23

Chapter 4

Figure 4.5: Sample Commit Log

Using the three commits in 4.5, the File Directory Tree per Commit would be represented
the following way:

Figure 4.6: File Directory Tree after the First Commit

Figure 4.7: File Directory Tree after the Second Commit

24

Exploratory Phase

Figure 4.8: File Directory Tree after the Third Commit

We found this process of visualizing the evolution of the repository across time extremely
interesting and also concluded on some ways it could prove useful. While platforms such
as GitHub and GitLab allow the user to consult this information, it takes multiple actions
to get successive outlooks. The insight this provides is not very meaningful as it is built
mostly for browsing through the many different folders and files of a project and not with
a perspective of monitoring this process as development advances.

Having the File Directory in the repository presented as a tree could allow developers and
managers to have an increased outlook at how a project is being structured across devel-
opment, allowing for more control over the project. Teams who apply agile methodologies,
focusing on short development cycles and rapid production can greatly benefit from an
outlook like this. With the rapid development of software and files, it can be hard to
correctly keep track of project evolution. The File Directory Tree can help in this scenario
by displaying exactly what happened between commits and showcasing the actual project
structure across time.

We expanded further into this concept as we wanted to be able to get more information
about the individual files within the tree. This is where we established the use of an
additional log to the ProjectScanner, the Lines Log covered in 4.1.4. With the Lines
Log, we discussed the possibility to color code the files based on the number of lines being
added/removed at that point in time, similarly to an heat map. While the number of lines
added/removed does not necessarily correlate with the effort being applied on a certain
file (due to refactors or slight code organization changes), it can serve as decent indicator
into what files are being worked on the most at a certain time and can help in shaping
decisions and pinpointing eventual problems. We decided to name this type of tree the
CHURN File Directory Tree.

The next point of discussion was how to effectively display the File Directory Tree to the
user. The first option we explored was the python library anytree, this library provides
simple data tree structures as well as built-in methods for tree creation and allows the
generated trees to be exported to many formats.

25

Chapter 4

Figure 4.9: File Directory Tree using anytree

Figure 4.10: Variation of the File Directory Tree using anytree

Figure 4.9 and 4.10 present the first variations of the File Directory Tree using anytree.
Unfortunately, we had problems implementing the color coding. The way we were exporting
the Tree also did not help as we were using an image to display the tree on the front-end.
This would also compromise any possible interactive elements that could be added to the
dynamic of the File Directory Tree.

Due to this, we focused on finding an alternative solution. The solution would be the
usage of D3.js. D3.js is a JavaScript library for manipulating documents based on data
[8] and there exists a large community support of this library. One of the tools we found
incredibly useful was the D3.js graph gallery, which provides vast amounts of charts
which are easily editable, allowing for extra customization and interactivity which we did
not find possible with our initial approach.

After some research, we decided to display the File Directory Tree as a dendogram to the
user. Dendograms are diagrams used to display trees and focus on representing hierarchical
structure which we found fitting for the purpose of the File Directory Tree.

26

Exploratory Phase

Figure 4.11: Sample Dendograms (image extracted from [12])

As far as implementation details, we used the basic Dendogram template available on
the D3.js Graph Gallery to present the Dendogram. The D3.js dendogram requires the
data to be specified in JSON and in a specific format. We initially tried to use the
anytree generated tree exported to JSON and adapt the formatting to work with the
D3.js dendogram template but problems arose. We eventually decided to construct the tree
from scratch using python, as this would allow us complete control over the formatting and
make the integration with the template much easier. The approach was based on using
python dictionaries to construct the tree. The file paths available from commits were
split by the "/" token, which would allow us to know their exact placement within the
directory hierarchy. For instance, a file path src/code/code.py would be divided in three
dictionaries, where code would be a dictionary that had as a parent the src dictionary and
the code.py dictionary would have as a parent the code.py dictionary. The number of lines
added/removed per file would be used as an indicator to assign a specific color to that file.
This lead to 4.12 as one of the first instances of our implementation of the File Directory
Tree.

Figure 4.12: Implemented D3 Dendogram with color coding

4.1.6 Regex

As the development continued, we noticed a similarity in purpose of our tool when com-
pared to the tool we discussed in 2.2.4. The File Directory Tree feature aligned with the
monitoring aspect of contents of repositories that ActiVCS builds upon. With this in
mind, we searched for relationships we could find between our own tool being developed
and ActiVCS. This lead to the ’Regex’ feature.

27

Chapter 4

Software Repositories such as GitLab and GitHub offer no way to distinguish between
actual development activities (such as Code or Testing), making them process unaware.
Looking at our own approach with the File Directory Tree, there is also no concrete way
to tell apart specific files and what software activity could be related to said file. ActiVCS
provides a solution to this problem by establishing a direct relationship between the filetype
or filepath of the file and the development activity that could be involved when modifying
it.

We concluded that a similar approach would greatly increase the usefulness of the Pro-
jectScanner and one of the immediate uses we had for this feature was applying the different
development activities to the File Directory Tree using color coding. This would establish a
concrete way to distinguish software development activities, which is useful for monitoring
and built directly into our File Directory Tree feature.

For the implementation of this feature, we used ActiVCS as a reference. In order to classify
the different contents of the repository into activities, the full file paths of the files available
from the Commit Log are categorized after their extraction. To categorize the files, these
file paths are tested with a set or regular expressions, each set of regular expressions is
associated with a development activity. For the majority of the testing, we used the same
set of regular expressions and activities to the one ActiVCS uses. We slightly tweaked the
Regular Expressions as the testing into the Regex advanced. A sample of the activities
and some regular expression rules is referenced in figure 2.2.

This implementation is not flawless as it’s extremely difficult to correctly categorize a nearly
unlimited range of file paths, whose activities are largely dependant on the programming
language being used, the framework, among many other types or variables. Software
Development is also not a process that follows a strict set of rules as there are an extended
amount of ways to run projects, there is also no guarantee that all projects use the activities
that we initially specified. Due to this, we decided to allow the ProjectScanner to use
custom Regex Configurations. The objective with custom Regex Configurations is that a
power user with some degree of familiarity of how our tool works and some knowledge of
regular expressions can craft a custom Regex Configuration that can best represent the
reality of the project and the development process, allowing for more tailored monitoring
and conclusions that can be directly applied to the project at hand.

Figure 4.13: Activities (example)

28

Exploratory Phase

Figure 4.14: Snippet of a D3 Dendogram with color coding related to the Activity Type

4.1.7 Nature of the Effort and Evolution of the Effort

For the next step into the research of features for the ProjectScanner we decided to focus
on other information present in the Commit Log. Up until this point the major point of
focus within the Commit Log was the full path of the Files that were present with each
commit. As such, with the total number of commits and the authors, we can display the
evolution of each activity type across the whole timeline of the project. This is also an
aspect of similarity with between the ProjectScanner and ActiVCS which can be utilized
to compare the actual state of the project to the idealized one, which can be useful during
development and after development is complete.

Other points we considered relevant to the usefulness of the ProjectScanner for monitoring,
now that we were able to discern development activities from the Commit Log was assigning
development roles to the various members of a project and displaying how the various
activities weighed in into the overall effort of that specific developer. We named these
features Evolution of the Effort and Nature of the Effort respectively.

We also noticed that we could apply this concept to a project scope, an individual scope
and a team scope. This would mean that we could better apply the information the
ProjectScanner presents to a wide variety of scenarios. For instance, if a Project is split
into different teams, it could be presented as useful to the teams to be able to check
the Nature of the Effort and the Evolution of the Effort of the team members. The File
Directory Tree could also be applied in this way.

With this in mind, we created the first set of requirements and split them into different
categories, this would later be used as a starting point into the Navigation Diagram.

29

Chapter 4

Category Scope Features

Project Project Nature of the Effort
Evolution of the Effort

Social Individual
Team Members

Nature of the Effort
Evolution of the Effort
File Directory Tree per Commit

Artifact Project File Directory Tree
File Directory Tree per Commit

Table 4.1: Categories and Scope of the different features of the ProjectScanner

The following point of focus was in finding the best way to present the Nature of the
Effort and the Evolution of the Effort. For this, we decided to use Chart.js to display the
charts. Chart.js is a chart library which provides simple and flexible charting for developers
[6]. Chart.js provides a vast amount of templates for many chart types which are easily
customized to fit the needs of developers. The templates we used with the ProjectScanner
was the Line Chart and Stacked Bar Chart for the Evolution of the Effort, for the Nature
of the Effort we used the Pie Chart Template. The final result applied to our data will be
presented in Chapter 7.

Figure 4.15: Template of the Line Chart (extracted from [6])

Figure 4.16: Template of the Stacked Bar Chart (extracted from [6])

30

Exploratory Phase

Figure 4.17: Template of the Pie Chart (extracted from [6])

4.1.8 Files

The final step into the research of the ProjectScanner focused on the files present in the
commit. Our ideas for the final features centered around aspects of the Project that we
considered useful to have ease of access to and would provide helpful information to our
monitoring tool.

Activities of the Files

The ProjectScanner will feature a full list of the files of the repository sorted by the
development activities considered by the selected Regex. We found this useful as this
makes it easier to search for a specific file.

Most Modified Files

ProjectScanner will display a list of all the files in descending order. To accomplish this,
we introduced the concept of Modification.

A Modification is simply the number of times a file was changed by a commit, we considered
initially using the Lines Log to get the number of added/removed lines. However, as we
mentioned in 4.1.5, this number does not necessarily correlate with the actual effort that
is being applied to that file. Using the Lines Log with the File Directory Tree makes sense
from a perspective of scope. The File Directory Tree displays a view per commit and as
such, having the number of lines added/removed is a much better indicator of what files

31

Chapter 4

are being most worked on at that specific commit. Most Modified Files is centered around
a project scope and represents every change that occurred throughout the timeline of the
project.

Due to this, we considered Modifications to better accurately present the effort that went
into specific files by correlating this effort with the number of commits that changed the
file. Most Modified Files can be used to better understand which files had a critical role
in development and eventually establish certain critical points and faults in the project.

Modified Files by the Most People

This feature is similar to the Most Modified Files but the files are listed in descending
order according to the number of people that were involved in the change of certain file.
We consider this feature to have similar applications to the Most Modified Files.

View File

We considered important to allow users of the ProjectScanner to view information specific
to each file without having to consult other sources. While Software Repositories such as
GitLab and GitHub offer information such as the number of contributors and date when
the changes occured to an individual file, we decided to include some of this information
in the ProjectScanner as well in order to centralize all the information.

View File will contain the author of the file, an history of the added/removed lines across
time using the Line Chart template that Chart.js provides and the date and author of each
modification.

Modification History

Modification History will focus on the number of Modifications of a specific file across
time, with an indication of the author of the modifications. This will be displayed using
the Stacked Bar Chart template that Chart.js provides.

Manipulated Files

For this final feature, we decided to allow the users to consult the actual files that an
individual user modified. For this, we will use the Line Chart Template provided by
Chart.js. It will indicate the number of modifications across time with a tool tip that will
display the files involved.

After this step, we updated Table 4.1 to reflect these changes and help with shaping the
full requirement set and Navigation Diagram in the future.

32

Exploratory Phase

Category Scope Features

Project Project Nature of the Effort
Evolution of the Effort

Social Individual
Team Members

Nature of the Effort
Evolution of the Effort
File Directory Tree per Commit
Manipulated Files

Artifact Project

File Directory Tree
File Directory Tree per Commit
Activities of the Files
Most Modified Files
Modified Files by the Most People
View File
Modification History

Table 4.2: Categories and Scope of the different features of the ProjectScanner

4.2 Process Mining

4.2.1 Process Mining in Software Development

One of the first steps that were necessary in order to understand how to develop a process
mining software was to understand exactly what process mining entailed and how it could
be directly applied to Software Development.

Process mining represents one of the multiple areas in the field of process management and
is focused on the discovery, monitoring and improvement of current processes by analyzing
event logs of the development of a project [5]. The objective is in extracting the process
models used by teams when developing. These process models are built using datasets
that are constructed with the event logs of the systems development teams utilize when
developing software.

Using these datasets, a plethora of information can be retrieved and analyzed using process
mining techniques in order to enhance efficiency, identify trends, patterns and discover
problems in workflow [5]. This can be extremely hard to track and correct using raw data,
especially the more complex the software and the respective team are but also due to
eventual bias in the engineers reviewing these processes.

Process mining delivers crucial information for development teams by focusing on practical
results that are a mirror of what is happening during development. These results can be
directly applied to the team’s processes, improving or reworking them and leading to higher
quality software.

Process Mining Phases

The task of mining processes can be divided by phases. While these are not linear for all
cases there’s a set structure that applies and it can be condensed into three vital phases
as follows [22][9].

33

Chapter 4

Figure 4.18: Process Mining Phases (adapted from [22])

4.2.2 Data Preparation

Data Preparation can be described in simpler terms as the learning period of Process
Mining. The main goal is firstly, understanding what kind of data is necessary for analysis
and what it represents within the context of the process mining. For instance, if the goal
with a certain mining process is identifying the processes behind pull requests for a team
of developers, the first step would be in identifying what set of data would be relevant for
this information and how to obtain it. A possible solution for Data Preparation would
begin with extracting event logs from the team’s repository of pull requests, commits and
issues in order to build the process models in the next phase.

After defining the and extracting the data it is necessary to arrange it into an appropriate
dataset. This usually means parsing the event logs into a format that will be accepted by
the process mining algorithms that will be applied to the dataset.

Figure 4.19: Dataset Example (extracted from [21])

It is common that the Data Preparation phase is revisited multiple times, as it is unlikely
that the produced dataset is complete within the first iteration and with the results of
upcoming phases there can be a need to return to the Data Preparation phase to re-
evaluate.

4.2.3 Process Discovery

Process Discovery is the phase where process models are extracted using the dataset in
Data Preparation by applying it to process mining algorithms.

There exists a wide variety of process mining algorithms available for building process
models, these techniques mostly focus on building process models using different kinds of
graphs such as Petri Nets. The algorithms won’t be mentioned in this section, however,

34

Exploratory Phase

they will be briefly touched upon in an upcoming section of this report on the tool that
the project will be using for applying the algorithms.

Figure 4.20: Example Process Model with a Petri Net (extracted from [21])

Like the Data Preparation phase, Pattern Discovery can be revisited multiple times based
on the results and analysis of the datasets in order to identify the processes that best reflect
the reality that is being modelled.

4.2.4 Analysis

The Analysis phase is the culmination of this first step in process mining. The process
models and results obtained in Pattern Discovery are analyzed. This step usually includes
checking for conformance, meaning establishing and analyzing the differences between the
process models generated and what is actually happening in reality and performance check-
ing, focusing on detecting bottlenecks, referring to timestamps and other relevant infor-
mation between events in process models in order to draw conclusions on execution and
eventual deviations from the models obtained [21].

As with the above phases, the Analysis phase may also need to be repeated and improved
according to the results and analysis gathered.

4.2.5 JIRA

JIRA is an issue tracking and project management product developed by Atlassian, it
initially started out as a bug and issue tracker but evolved into a work management tool
usable for a variety of cases, namely, agile teams, project management teams, software
development teams and others [2].

JIRA essentially functions similarly to other very popular tools such as Trello or Wrike,
allowing users to track their projects, assign different tasks to each team member, prioritize,
filter tasks, open issues and offers integration with other Atlassian products such Bitbucket
and Confluence.

4.2.6 Webhooks

Webhooks (also commonly referred to as "Reverse APIs" or "web callbacks") are light-
weight solutions to fetch real-time data. Unlike a standard API request implementation,
using webhooks avoids having to constantly request the API information by utilizing a
"triggering system" meaning that one can get real-time data every time something happens
(with APIs, the request needs to be handled by the user making it much harder to get

35

Chapter 4

Figure 4.21: JIRA Board and Plan Tracker extracted from [17]

real-time information). Using JIRA as an example, a webhook can be customized to alert
an application whenever an issue is updated or when a sprint is started [1].

Webhooks use HTTP POST requests and the format is usually JSON or XML, making
them easily integrated into web services without the need of adding new software compo-
nents [20].

36

Exploratory Phase

Figure 4.22: Webhooks vs APIs extracted from [18]

Within the scope of the project in mind, webhooks are an incredibly reliable option as the
need to constantly monitor if events are happening in order to get real-time data from the
API is removed (a very important subject to have in mind with process mining) and a
much more customized approach can be developed. Multiple webhooks can be configured
to listen only to certain events, opening up multiple development options and a more
versatile way to fragment information and split it into small portions.

4.3 GitLab

Figure 4.23: The Gitlab Logo extracted from [32]

GitLab is an open-source web-based DevOps platform created by Dmitriy Zaporozhets and
Valery Sizov [32]. GitLab streamlines software workflow into a single application, helping
teams reducing product lifecycles and boosting productivity by providing a way for teams
to perform all tasks in the DevOps lifecycle within one single platform [14].

37

Chapter 4

Figure 4.24: GitLab Repository Interface extracted from [14]

GitLab features Git-repositories with a variety of capabilities such as Source Code Man-
agement (issue-tracking, version control), Code Reviews and built-in wiki for projects. It
also helps manage projects by providing built-in metric tools to boost deliveries, verifying
quality with Continuous Integration methodologies (performing a variety of automated
tests in order to verify commits before these are pushed to a live version of a project),
security and monitoring tools in order to ensure the quality of the produced software [14].

38

Exploratory Phase

Figure 4.25: Different GitLab Interfaces extracted from [14]

Our next step into the research would fall into the study and sample demonstrations of
the GitLab Webhook, API and what information could be drawn from these.

4.3.1 GitLab Webhook Demonstration

For the demonstration of a Webhook directly applied to GitLab, the GitLab Webhook Doc-
umentation was consulted (available here: https://docs.gitlab.com/ee/user/project/
integrations/webhooks.html).

To provide a better visual presentation and enable the testing of the Webhook, the tool
Ngrok was used. Ngrok provides an easy way to test Webhook implementations by exposing
local servers to the public internet via secure tunneling [24], meaning one can implement
and test Webhooks in a web service even when working localhost.

Setting Up Ngrok

The first step is creating an account in the Ngrok website via https://dashboard.ngrok.
com/login, this a necessary step in order to connect the Ngrok account to the web service
using the authtoken of the account.

After the creation of the account, login into the dashboard of Ngrok to retrieve the auth-
token.

Next, we downloaded Ngrok from https://ngrok.com/download and unzip the file. The
following commands are then used to authenticate the account and start Ngrok.

39

https://docs.gitlab.com/ee/user/project/integrations/webhooks.html
https://docs.gitlab.com/ee/user/project/integrations/webhooks.html
https://dashboard.ngrok.com/login
https://dashboard.ngrok.com/login
https://ngrok.com/download

Chapter 4

Figure 4.26: Location of the authtoken

./ngrok authtoken [your_auth_token_here]

./ngrok http [port]

After running these commands, the output should be like the one in the following figure.

Figure 4.27: Ngrok Output

After this step, the setting up of Ngrok is complete. Looking at the output there’s two
noticeable lines that are important to understand.

• Web Interface: Acessing the URL displays the Ngrok Web Interface allowing for a
better presentation of the contents of the Webhook;

• Forwarding: Ngrok randomly generates a tunneling URL for the web service. This
URL will be used to configure the GitLab Webhook.

Configuring the Webhook

Before configuring the webhook, a webhook receiver is needed in order to fetch the webhook
request. For demonstration purposes, a simple webhook receiver written in Ruby was used
directly from the GitLab Webhook documentation shown below.

require ’webrick’

40

Exploratory Phase

server = WEBrick::HTTPServer.new(:Port => ARGV.first)
server.mount_proc ’/’ do |req, res|

puts req.body
end

trap ’INT’ do
server.shutdown

end
server.start

This code can be run with the following line, noting that the port for the service must be
the same as the one used to run Ngrok in the previous setup.

ruby print_http_body.rb [port]

GitLab comes into play after running the ruby code. An account is needed to use GitLab
and can be created here: https://gitlab.com/users/sign_up. For this demonstration,
a project template for GitLab was selected, this project template comes already populated
with sample data and is extremely useful for testing Webhooks.

Figure 4.28: Available GitLab template repositories

After selecting the project, the Webhook setting should be found in Settings -> Web-
hooks.

41

https://gitlab.com/users/sign_up

Chapter 4

Figure 4.29: Webhook configuration

The page should be similar to the one in the above figure.

• URL: The URL to which the webhook should send the information to. The Forward-
ing URL Ngrok generated is going to be placed here. However, since Ngrok randomly
generates an URL each time it is executed, old URLs from previous executions won’t
be valid;

• Secret Token: This field is not necessary for the demonstration;

• Triggers: The triggers are the events to which the Webhook will respond and send
data everytime they occur. Multiple of these can be selected or multiple webhooks
can be configured to only respond to specific triggers.

After configuring the webhook, clicking the Add webhook button which is not displayed
in the figure will create a new webhook with the specified configuration.

Figure 4.30: Created webhook and Test events

The webhook is now created, GitLab provides an extremely useful Test feature to the
webhook allowing the firing of a sample trigger to verify if the configuration is working.

42

Exploratory Phase

Manually executing an event within the template repository is also possible if that event
is part of a trigger the webhook is listening to.

Figure 4.31: Successful webhook output

GitLab should return an HTTP 200 message on a successfully completed webhook. The
next step is checking the Ngrok Web Interface for the request.

Figure 4.32: Ngrok Web Interface with the available request

The request was executed successfully and a preview of the contents of the request should
be available within the Ngrok Web Interface. In the example above, a push event trigger
was fired and the result is the JSON data referring to the information of the dummy push
that was triggered.

43

Chapter 4

Figure 4.33: Output of the Web Receiver

The webhook receiver also contains the request data however it is far less readable.

GitLab Webhook usage in the GitLab Application

With this demonstration the ease of use and versatility of webhooks is directly demon-
strated using GitLab. Webhooks are very useful as gateway to getting real time information
without using more heavy processes to achieve the same.

However, the GitLab Webhook documentation specifies some constraints in the usage of
Webhooks such as a limit to how many commits can be sent with a push event. These
constraints apply to some of the triggers available and should be taken into account. This
is not expected to be aproblem, as we are using the webhook as an event trigger, followed
by an API call to access more detailed data. The different kinds of information that can be
retrieved is also vastly different upon simple glance into the GitLab API Documentation,
making a study into the API necessary.

The demonstration and research into the GitLab Webhook solidifies its place in the imple-
mentation when expanding the ProjectScanner.

While useful, webhooks are not enough to fetch all possible relevant data but its impor-
tance is still significant, acting as a simple approach to accurately signal whenever new
information is available and retrieve it easily.

4.3.2 GitLab API Demonstration

After establishing that an implementation based on webhooks alone would not have the
detail required to perform in-depth mining of software processes due to constraints pointed
out in the documentation and the fact that GitLab API offered a plethora of extra depth
with its requests, the objective with the study was to understand how the API worked,
what resources were available from it and which of these would be considered relevant for
future work into the Data Preparation phase of the GitLab application.

All information present in this subsection is based on the GitLab API Docs (https://
docs.gitlab.com/ee/api/).

44

https://docs.gitlab.com/ee/api/
https://docs.gitlab.com/ee/api/

Exploratory Phase

Making an API Request

Every request made to the API begins with the base URL endpoint for the request, this
URL will serve as the base of communications featuring the API.

https://gitlab.com/api/v4/projects

To fetch specific data, all that needs to be done is add the specific resource to the endpoint.
According to the request that is specified and the constructed endpoint, authentication may
be required to perform that certain request. There are many authentication methods made
available by the API but the simplest one that will be used to provide request examples
will be the personal access token, this token can be retrieved from the User Settings of the
user’s GitLab account. A project id is also required for the majority of requests, this id
can be found in the Settings tab of the specific project in GitLab.

Figure 4.34: GitLab’s User Setting for generating access tokens

For the examples of requests, the Commit section of the documentation will be followed
(https://docs.gitlab.com/ee/api/commits.html).

Looking at the above figure, a request to the API that fetches all commits in a project,
the endpoint can be constructed with:

https://gitlab.com/api/v4/projects/[project_id]/repository/commits

45

https://docs.gitlab.com/ee/api/commits.html

Chapter 4

Figure 4.35: Commit Endpoints

The following figure represents the output of this request, the project used was the Tem-
plate Project that was created for the webhook demonstration.

Figure 4.36: Output for commits in the sample project

Using attributes, it is possible to narrow the request to more specific data. The following
example will feature a request to the API that fetches the commits created since a specific
date, the endpoint can be constructed with:

https://gitlab.com/api/v4/projects/[project_id]/
/repository/commits?since=YYYY-MM-DDTHH:MM:SSZ

46

Exploratory Phase

Figure 4.37: Output for API request using the since argument

The previous examples featured the usage of the commit resource that is also available as
a push trigger using the webhook, in order to further establish the need of the GitLab API
the last example will feature a resource that is not available using the webhook.

Figure 4.38: Branch Endpoints

The endpoint can be constructed as:

https://gitlab.com/api/v4/projects/[project_id]/repository/branches

47

Chapter 4

Figure 4.39: Branch request Output

GitLab API usage in the GitLab Application

The GitLap API is a necessary tool for the GitLab application to bypass some of the
constraints identified with the usage of webhooks as well as further extend the possible
information that can be fetched from repository activity allowing us to further develop our
future dataset and discover better process models.

These technologies will be used in a balance, the webhook will be able to control exactly
whenever requests to the API are necessary. According to the type of trigger, information
available from the trigger and if any webhook contraint is active or not, the usage of the
GitLab API can be managed and limited to the necessary requests, acting as a complement
to the webhook and vastly increasing the efficiency of fetching the necessary data for the
application.

4.3.3 Identification of Relevant Information for Data Preparation

After the study into the webhook and the API, one can now attempt to select the data that
will be used to construct the Data Preparation dataset. For this, the API and Webhook
documentation were analyzed to identify which webhook Triggers and API Endpoints
would serve the purpose of contributing to the depiction of what a workflow of software
development activites resembles within a GitLab repository.

The following tables 4.3 and 4.4 represent the initial assessment of triggers, endpoints
and the specific relevant data that can be obtained. As explained previously in 4.2.2, Data
Preparation can change as a better understanding is reached and process mining algorithms
are applied to the dataset, meaning that these tables are not the final and will be most
likely changed according to the development of the project.

48

Exploratory Phase

Trigger Event Type Relevant Event Data

Push events push user, timestamp, added, modified,
removed, branch, commits

Issue events issue
user, timestamp(created, updated),
state (updated, closed, reopened),
title, description

Merge request events merge_request

user, target_branch, source_branch,
timestamp(created, updated),
last_commit, title, description,
state(opened, closed, locked, merged),
merge_status(can_be_merged, cannot_be_merged)

Pipeline events pipeline
branch, source, status, stages,
timestamp(created, finished),
duration

Job events build build_name, build_stage, build_status,
timestamp(started, finished, duration), pipeline

Deployment events deployment status(created, running, success, failed, canceled)
Release events release timestamp(created, released), name, description

Table 4.3: Webhook identified triggers and the relevant data

Endpoint Relevant Event Data

Issues API
user, timestamp(updated, closed, created),
state(updated, closed, reopened), title,
descripton

Issue Statistics counts, all, closed, opened

Jobs API
commit, user, status,
timestamp(created , started , finished),
duration,

Merge requests API

title, description,
timestamp(merged_at, created_at,
updated_at, closed_at), target_branch, source_branch,
state(merged, cannot_be_merged),

Pipelines API
status, branch,
timestamp(created, updated, finished, commited),
duration

Releases API name, description, timestamp(created, released)
Branches API name, merged, commit
Commits API user, title, message, timestamp(commit_date, created)

Deployments API timestamp(created, updated, finished),
status(created, running, success, failed, canceled)

Table 4.4: GitLab API identified endpoints and the relevant data

49

Chapter 4

4.4 PM4Py - Process Mining for Python

PM4Py is an open-source python library developed by the process mining team of Fraun-
hofer FIT (Fraunhofer Institute for Applied Information Technology). It allows the extrac-
tion of process models from datasets using a variety of available process mining algorithms.

This library is going to be essential for future work into the GitLab process mining appli-
cation as its results will represent the main graphical presentation of the data fetched from
GitLab, allowing for an analysis of the processes extracted, how they are working and how
well they reflect the actual processes of development.

PM4Py offers a large range of implemented approaches for process mining algorithms.
These won’t be explained as it is out of scope of this thesis work, however, as mentioned in
4.2.3, process mining algorithms focus on extracting process models using different kinds
of graphs such as Petri Nets and annotated rooted-trees.

For the initial assessment of algorithms, the main goal was focusing on algorithms that
deemed relevant for the GitLab process mining app. More algorithms can be selected as
a better understanding of the overall work is reached but as of now, the following list
represents the algorithms that will be explored in the future:

Process Discovery Algorithms

• Inductive Miner - Discovering block-structured process models from event logs-a
constructive approach;

• Inductive Miner Infrequent - Discovering block-structured process models from
event logs containing infrequent behaviour;

• Inductive Miner Directly-Follows - Scalable process discovery and conformance
checking;

• Heuristics Miner - Process mining with the heuristics miner-algorithm; [25]

Conformance Checking Algorithms

• Token-based Replay - A Novel Token-Based Replay Technique to Speed Up Con-
formance Checking and Process Enhancement;

• Alignments - Conformance checking using cost-based fitness analysis;

• Decomposed/Recomposed Alignments - Recomposing conformance: Closing
the circle on decomposed alignment-based conformance checking in process mining;

• Log Skeleton - Log skeletons: A classification approach to process discovery; [25]

4.5 Conclusion

The current chapter detailed all the base work necessary in order to build the ProjectScan-
ner. It details every major decision related to the exploratory work that went into shaping
the development process of the tool. This chapter also introduces our previous point of fo-
cus and establishes decisions and the thought process behind an eventual expansion of our
tool with the inclusion of Process Mining. The next chapter will introduce the decisions
that were made for the implementation of the system itself as a result of the preliminary
work in this chapter.

50

Chapter 5

System Specification

For this chapter, the System Description is introduced, containing the User Stories, Use
Cases, Functional and Non-Functional Requirements, Mockups, Navigation Diagram, the
two abstraction models of the C4 model and the Entity-Relationship Diagram.

5.1 User Stories

User stories are informal and a general overview of a software feature written from the
perspective of the end user of said software 1. Since our software doesn’t have a specific
client, being mainly an internal tool for project repository analysis, this meant that we
had no pre-requisite requirements to work with or client specifications. These requirements
had to be built while working on the Exploration Phase.

User Stories provided a quick and preliminary way to build a starting set of requirements.
User Stories usually sprang from brainstorming ideas from meetings across the second
semester and would be explored within the following weeks to evaluate relevancy.

From the meetings and exploration, we would eventually focus on the following User Stories
as a decent starting point into building the requirements for the software:

User Story Template: “As a [user], I [want to], [so that].”

A set of examples of the User Stories will be presented in this subsection, with the total
set of Use Cases being fully present in the Appendix.

User Stories related with the ProjectScanner:

• "As a user, I want to be able to upload my git repository so that I can visualize
information about it."

• "As a user, I want to be able to configure the used regex of my Project so that the
information displayed can more accurately represent the reality of my project."

• "As a user, I want to be able to upload multiple projects unto the platform so that
I can monitor multiple projects at once."

User Stories related to the Nature of the Effort
1https://www.atlassian.com/agile/project-management/user-stories

51

Chapter 5

• "As a user, I want to be able to visualize the overall nature of the effort of the
project, divided by the categories identified by the regex so that I can have a better
understanding of where that effort is being applied."

• "As a user, I want to be able to visualize the nature of the effort of the team mem-
bers, sorted by the categories identified by the regex so that I can have a better
understanding of where that effort is being applied per team member."

• "As a user, I want to be able to visualize the nature of the effort of a specific team
member across time within the categories identified by the regex so that I can have
a better understanding of how that effort was distributed across time."

User Stories related to Project Files

• "As a user, I want to be able to visualize a specific project file so that I can better
understand its role within the project."

• "As a user, I want to be able to visualize the history of modifications so that I can
understand which team members were working on a specific file across time."

• "As a user, I want to be able to visualize which project files a specific team member
worked on so that I can have establish the focus of that specific team member’s
work."

User Stories related to Directory Trees

• "As a user, I want to be able to visualize the complete directory tree of my project
sorted by the categories identified by the regex so that I can better understand how
which project file is connected to the overall project as well as their internal roles."

• "As a user, I want to be able to visualize the directory tree per commit, sorted by
the categories identified by the regex so that I can have a better understanding of
the evolution of the project as well as the internal roles of the files."

• "As a user, I want to be able to visualize the directory tree of a specific team member,
sorted by the categories identified by the regex so that better understand the project
state when a specific team member was working on the project."

5.2 Use Cases

The following step into establishing the requirements for the Project Scanner was taking
the User Stories and transforming them into Use Cases. Use Cases provide a more detailed
outlook of how tasks will actually be performed within the software itself and are a nec-
essary step to establish basic interactions of the user with the platform. Resulting ideas
of meetings that happened during/after the writing of the Use Cases were added solely as
one/multiple Use Cases but don’t have a User Story counterpart.

A set of examples of Use Cases will be presented in this subsection, with the total set of
Use Cases being fully present in the Appendix.

We used the following template to write the Use Cases:

Name – Identifier of the use case, should provide the clear purpose of the use case.

52

System Specification

ID – Unique identifier of the use case.

Actor – Who or what is using the use case.

Description – A short description of the use case.

Preconditions – The prerequisite state of the system before the usage of the use case.

Postconditions – The postcondition state of the system after the usage of the use case.

Triggers – Event which causes the use case to trigger.

Basic Flow – Steps taken by the actor to fulfill the purpose of the use case.

Alternative Flow – Variations of the Basic Flow of the use case. These can contain
alternative paths of the use case as well as exceptions caused by malfunctions of the system.

Name Create Project
ID FR01
Actor User
Description The user creates a new project.
Trigger Clicking "Novo Projeto" located in the Homepage.
Preconditions 1. There is not another project in the Database with the same name.

Basic Flow

1. User is in the Homepage
2. User clicks "Novo Projeto"
3. User inputs the Project Name
4. User inputs the git repository HTTPS URL
5. User clicks "Criar Projeto"
6. User clicks the "Confirmar" button.

Postconditions Project is created and populated in the Database.

Alternative Flow

6. If there is already a project with the name the user input,
the user will be redirected to the new project page to try again.
7. Project may fail to correctly populate the Database due to no
internet connection to fetch the needed logs, incorrect URLs or an unrelated
failure on Git’s part.

Table 5.1: Create Project Use Case

53

Chapter 5

Name Create Regex
ID FR02
Actor User
Description The user creates a regex configuration to be applied to the project.

Trigger 1. a) Redirected after creating a project
b) Clicking the "Modificar Regex" button located in that project’s page.

Preconditions 1. There is an active project selected.

Basic Flow

1. User is in the Configure Regex Page
2. User clicks "Modificar Regex"
3. User clicks "Criar nova configuração".
4. User inputs the regex name.
5. User inputs at least one role name and ruleset.
6. User clicks the "Utilizar Regex".

Postconditions Regex is populated in the Database and applied to the project.

Alternative Flow

7. If there is already a Regex Configuration with the name
the user input, the user will be redirected to the regex creation
page to try again.
8. Due to a system failure, Regex failed to create/correctly
populate.

Table 5.2: Create Regex Use Case

Name Display Artifact View - Tree per Commit
ID FR17
Actor User

Description The user consults the file directory tree per commit within the
Artifact View page, visualizing the data displayed.

Trigger 1. Clicking the "Árvore por Commit" button on the Artifact View - Tree Page
Preconditions There is an active project selected with a regex configuration.

Basic Flow
1. User clicks the "Vista de Artefactos" button on the navigation bar.
2. User clicks on the "Árvores" button.
4. User clicks the "Árvore por Commit" button.

Postconditions The Artifact View - Tree per Commit is displayed with the associated data.
Alternative Flow None

Table 5.3: Display Artifact View - Tree per Commit Use Case

a

54

System Specification

Name View File
ID FR20
Actor User
Description The user consults information about a file, visualizing the data displayed.

Trigger 1. a) Clicking the file name on any Artifact Tree page.
b) Clicking the "Ver Ficheiro" button on any Artifact View - File page.

Preconditions There is an active project selected with a regex configuration.

Basic Flow

1. User clicks the "Vista de Artefactos" button on the navigation bar
2. User clicks the "Ficheiros" button
3. User clicks the "Categoria de Ficheiros" button
4. User clicks the "Ver Ficheiro" button

Postconditions The Social View - Handover of Work is displayed with the associated data.

Alternative Flow

1. User clicks the "Vista Social" button on the navigation bar
1.1 User clicks the "Indíviduos" button
1.2 User clicks the "Árvore de Indivíduo" button
1.3 User clicks on one of the files

2. User clicks the "Árvores" button
3. a) User clicks the "Árvore Completa" button
b) User clicks the "Árvore por Commit" button
c) User clicks the "Árvore CHURN" button
4. User clicks on one of the files

Table 5.4: View File Use Case

5.3 Functional Requirements

The follow-up to the completion of the Use Cases was specifying them into the Functional
Requirements of the system. This entailed gathering all the Use Cases and organizing
them into priorities of development. The priorities were categorized as such:

Must Have: Requirement necessary for the project.

Should Have: Requirement is important but not a necessity for the project.

Could Have: Requirement is preferable for the project but not crucial.

Project General Functional Requirements

Name ID Priority
Create Project FR01 Must Have
Create Regex FR02 Should Have
Select Regex FR03 Must Have
Delete Regex FR04 Could Have
Select Project FR05 Must Have
Update Project FR06 Must Have
Delete Project FR22 Could Have

Table 5.5: Project General Functional Requirements

55

Chapter 5

Effort Views Functional Requirements

Name ID Priority
Display Project View FR07 Must Have
Display Social View - Team Effort FR08 Must Have
Display Social View - Individual Nature of the Effort FR09 Must Have
Display Social View - Individual Effort Across Time FR10 Must Have

Table 5.6: Effort Views Functional Requirements

Files Functional Requirements

Name ID Priority
Display Social View - Manipulated Files FR11 Must Have
Display Artifact View - File Category FR13 Must Have
Display Artifact View - Most Modified Files FR14 Should Have
Display Artifact View - Modified Files by Most People FR15 Should Have
View Modification History FR19 Must Have
View File FR20 Must Have

Table 5.7: Files Functional Requirements

Trees Functional Requirements

Name ID Priority
Display Social View - Individual Tree FR12 Must Have
Display Artifact View - Complete Tree FR16 Must Have
Display Artifact View - Tree per Commit FR17 Should Have
Display Artifact View - CHURN Tree FR18 Should Have
Display Social View - Handover of Work FR21 Could Have

Table 5.8: Trees Functional Requirements

Due to the nature of the project and what was explained during the Exploration Phase,
the focus of the project was shifted from Process Mining specifically to Mining Software
Repositories and Data Visualization. However, we ended up still including one Functional
Requirement associated with Process Mining (FR21) in case there was enough time to
expand and include this specific requirement.

5.4 Non-Functional Requirements

Non-functional requirements are used to specify how a software system should work by
defining quality attributes and constraints if they exist. For the ProjectScanner, we con-
sidered the following categories.

5.4.1 Usability

One of the key points we considered for the ProjectScanner was the user-friendly interface
that would allow an user to navigate through the many different functionalities seamlessly.

56

System Specification

ID NFR1
Source User
Stimulus Navigate through the application and use the different functionalities
Artifact ProjectScanner
Environment Normal
Response Navigation should be efficient and provide no confusion to the user
Metric Time spent using the navigation bar, number of clicks, number of backtracks

Table 5.9: Non-Functional Requirement - Usability

5.4.2 Availability

Other of the aspects we considered was Availability, if the ProjectScanner finds eventual
use outside internal applications, it’s important to guarantee that the system is consistently
available.

ID NFR2
Source User
Stimulus Response from server
Artifact Server
Environment Server failure
Response The server should be available and have as little downtime as possible
Metric Total amount of downtime

Table 5.10: Non-Functional Requirement - Availability

5.4.3 Security

Security is one of the most important qualities of software and since ProjectScanner deals
with sensitive project information that can come from private sources, it’s important to
assure that the data it contains can’t be accessed by outside sources. This has been one
topic we have mentioned before and one of the reasons we decided to develop the tool with
Django.

ID NFR3
Source Unauthorized sources
Stimulus Unauthorized sources attempt to access database information
Artifact ProjectScanner
Environment Normal

Response
All the database information is encrypted and there are protocols
in place that help against attacks such as cross-site scripting,
Cross-site request forgery, and SQL Injection.

Table 5.11: Non-Functional Requirement - Security

5.5 Mockups and Navigation Diagram

The Navigation Diagram and Mockups are presented in Figure 5.2, Figure 5.3, Figure 5.4
and Figure 5.7. These aid the visualization of key components as well as how each page

57

Chapter 5

interacts with each other prior to the start of development and represent the preliminary
work done with the User Stories and Use Cases.

The Mockups were used to help establish a baseline for the how each page would be
presented and while weren’t strictly followed, this baseline was extremely important to the
development of the ProjectScanner as a starting point into joining the User Stories, Use
Cases, Functional Requirements and the Navigation Diagram together.

In this section, only a few mockup images will be shown as examples, the full mockups are
available in the Appendix.

Figure 5.1: Navigation Diagram

For simplicity purposes, the pages presented in the Navigation Diagram are split into three
color coded categories:

• Blue: Represents a page that can be accessed by all pages using the navigation bar.

• Light Blue: Represents the page to where the user will be directed when entering
ProjectScanner for the first time and a page that can be accessed by all pages using
the navigation bar.

• White: A standard page, navigation shown by the diagram is applied.

58

System Specification

Figure 5.2: Initial mockup for the Individual Tree page

59

Chapter 5

Figure 5.3: Initial mockup for the Social View - Effort Across Time page

Figure 5.4: Initial mockup for the Project View page

60

System Specification

5.6 C4 Models

For the System Architecture, the C4 Model was applied to create the first two levels of
the model, the Context and Container diagrams for the system. The C4 model allows a
phased abstraction into each model level, with each level having an increased focus into
the whole system.

5.6.1 Context Diagram

Figure 5.5: Context Diagram

Figure 5.5 represents the context diagram of the system and displays our main external
entity interacts with the system.

Firstly, a clone of the git repository is temporarily stored in the project’s folders and
a complete log of all commit information will be requested, after this log is parsed and
populated in the database, the ProjectScanner will request a second set of logs (one log for
each commit in the repository) to populate the database with the number of lines added
and removed per file and per commit. After this last step, the project is then deleted from
the project folder.

61

Chapter 5

5.6.2 Container Diagram

Figure 5.6: Container Diagram

Figure 5.6 depicts the second level of the C4 model and displays in a more detailed way
the components that shape the internal service. These components will be explained in
greater detail in the 6 but for a succinct explanation, a Django project can be divided into:

• View Logic: This component handles all logic related to the pages, this includes
web responses, redirects and renders of pages.

• App Logic: This component handles all logic unrelated to the View Logic, this
includes implementation of all auxiliary functions that can handle different aspects
of the ProjectScanner (building of the File Directory Trees, parsing log files and logic
for using Git for instance).

• Model: Establishes the internal communication between the Database and the above
components.

• Template: Handles the display of the information dealt by the Server Side compo-
nents.

5.6.3 Entity-Relationship Diagram

Figure 5.7 represents the ER diagram of the Project Scanner. All tables have a primary
key presented as the id (these are auto-generated by Django).

62

System Specification

Figure 5.7: Entity-Relationship Diagram

The Project Table has all information related to projects in ProjectScanner. A Project has
an id, a project name (has to be unique among all projects), a project URL, when it was
last updated, a boolean characterizing whether that project was created from a private
repository, and finally, a foreign key relationship with the Regex table, used to identify
which regex is selected for each project. The Project Table is also used as a foreign key to
most other tables that relate to project-specific information. This relationship immensely
helps specific Django queries as it guarantees faster lookups (for example, we can easily
search for all Files contained in one project by simply using the id of the project associated
with the Files instead of iterating through the Commits of the Project to find the Files
associated with that Commit to once again iterate through them. We also would have
to be aware of repeated files among the Commit information, as a file can have multiple
commits applied to it).

The Regex Table is applied as a foreign key to the Project Table as stated above and is
mainly used to specify a regex configuration for the project. The Regex table has an id,
a class name, and a Many to Many relationship with the RegexClass table (named regex
classes), this means a Regex Configuration can have multiple Regex Classes associated
with it. The same logic is applied to the RegexRule Table, which contains an id and
a regex rule. A Many to Many relationship is also established between the RegexClass
and the RegexRule. The regex rule field in the RegexRule Table is a CharField that is
populated with a regular expression meaning that multiple regular expressions entail one
specific Regex Class and at least one or more Regex Classes entail a Regex Configuration.

63

Chapter 5

Moving on to the Project-specific information, a Project contains one or more Commits.
A Commit has an id, a foreign key relationship with the Author (a commit has one author
but an author can have multiple commits), the associated project, a commit id (which is
unique to every commit), commit info (a TextField containing the files that were changed
by that specific commit), a commit message (containing the message that the author wrote
when they pushed the specific commit) and the date of the commit. A commit also has a
Many to Many relationship with the File Table (named file associated).

The File Table contains an id, the associated project (presented by a foreign key relation-
ship), creation date, file category (which is a CharField containing the regex class name
associated with that file using the regular expressions under the RegexRule Table), file
name and the full commit path of the File. This path is associated with the directories
leading to that file. The File Table has a Many to Many relationship with the LineFiles
Table (named lines) and a foreign key relationship with the Modification Table.

The Modification Table serves to easily identify how many times a File was changed after
a Commit. These changes entail the author of the modification, the date, the associated
project, and the File.

LineFiles is used to specify the number of lines added and removed from a specific file
after a commit. The LineFiles Table contains an id, associated project, commit id, date,
and then the number of lines added and removed on that specific commit. A File can
have multiple LineFiles Tables associated with it according to the number of commits that
actively change that specific file.

The Author Table has an id, associated project, and author name. This Table (similarly to
the Project Table) is also used as a foreign relationship with multiple other tables related
to Commit information.

5.7 Conclusion

This chapter featured an overview of all relevant elements that shape and enable the
development of the ProjectScanner to start. User Stories, Use Cases, Fundamental Re-
quirements, Non-Fundamental Requirements are outlined and culminate in the Mockups
and Navigation Diagram that form the early stages of development. The Context and
Container Diagrams describe different abstraction levels of how each component in the
overall system interacts with each other and finally, the Entity-Relationship demonstrates
the different table relationships.

For the next chapter, an overview of the Development phase will be introduced. This in-
cludes our internal organization, the general structure of a Django project and the structure
of our own tool.

64

Chapter 6

Development

This chapter begins by explaining the basic course of action behind the development. After
this, it details the Project Structure showing the different components that follow a Django
project and how these relate to each other.

6.1 Project Organization

Organization is crucial to a smooth development cycle and to ensure the quality of the final
product. When discussing organization, we briefly explored ideas such as a Trello board
or similar frameworks but we ultimately decided using these frameworks wasn’t necessary
and concluded on a more internal system.

This system was ultimately based on the already established Functional Requirements and
the Mockups. Firstly, we decided on an order of Development based on the Functional
Requirements presented in Tables 5.5, 5.6, 5.7 and 5.8.

The first step before the actual development was establishing the Navigation Diagram
as designed in Figure 5.7. After the base navigation was implemented, the development
followed the order of Table 6.1. Table 6.1 illustrates the different development cycles and
sequential order of development of the different requirements.

65

Chapter 6

Requirement ID Priority Development Cycle
1. Project General - - -

Create Project FR01 Must Have First
Select Regex FR03 Must Have First
Select Project FR05 Must Have First
Update Project FR06 Must Have First

2. Effort Views - - -
Display Project View FR07 Must Have First

Display Social View - Team Effort FR08 Must Have First
Display Social View - Individual Nature of the Effort FR09 Must Have First
Display Social View - Individual Effort Across Time FR10 Must Have First
3. Files - - -
Display Social View - Manipulated Files FR11 Must Have First
Display Artifact View - File Category FR13 Must Have First
View Modification History FR19 Must Have First
View File FR20 Must Have First
4. Trees - - -
Display Social View - Individual Tree FR12 Must Have First
Display Artifact View - Complete Tree FR16 Must Have First
5. Trees - - Second

Display Artifact View - Tree per Commit FR17 Should Have Second
Display Artifact View - CHURN Tree FR18 Should Have Second

6. Files - - -
Display Artifact View - Most Modified Files FR14 Should Have Second
Display Artifact View - Modified Files by Most People FR15 Should Have Second
7. Project General - - -

Create Regex FR02 Should Have Second
8. Project General - - -

Delete Regex FR04 Could Have Third
Delete Project FR22 Could Have Third

9. Trees - - -
Display Social View - Handover of Work FR21 Could Have Third

Table 6.1: Development Order and Priorities

Requirements were then split into the following categories:

• To Do: Development of this requirement hasn’t begun.

• Ongoing: Requirement is currently being implemented.

• Done: Requirement is completed.

• Done with Issues: Baseline of the requirement is completed but it has issues/problems
and should be revisited as soon as possible.

These four categories were essentially applied to all requirements according to Table 6.1.
Whenever a requirement was considered Done or Done with Issues (sometimes there
were problems with requirements that couldn’t be solved at the time or that required
certain inputs from a meeting) it was inserted into a simple ’To do’ List and the process
continued.

66

Development

6.2 Project Structure

It is of extreme relevance to a Project that the mainline conventions of a project structure
remain in accordance to the framework being used in order to guarantee that the code can
be decently maintained and scalable in the future.

As we’ve already discussed, there are plans to introduce further functionalities into the
ProjectScanner, mainly in regards to Process Mining as it would be a logical step into
advancing the ProjectScanner. For this reason, we have even stronger motives to guarantee
that the ProjectScanner can be maintained and further expanded in the future.

This subsection’s main purpose is exploring the Project Structure of a Django Application.
We’ll begin with introducing what a Django project directory looks like in its default state
and then advance into the specifics of the ProjectScanner.

6.2.1 Base Structure

Figure 6.1: Base Structure of a Django Project

Figure 6.1 represents the initial state of a Django Project after creation. It is important
to note that this base template only contains the base Project directory. This directory,
named "emptyproject" contains the base configuration files for Django applications and
are described as follows:

• root: The root directory of the project.

• emptyproject: This corresponds to the python package to the project, the name
of this package is the name used to import anything project specific contents (such
as urls).

• __init__.py: An empty file whose purpose is simply telling the python interpreter
that this folder is considered as a python package This is very standard python
behaviour and is used in numerous python based projects and frameworks.

• asgi.py and wsgi.py: Enable compatibility for ASGI and WSGI for deploying
purposes.

• settings.py: As the name implies, this file is used to specify settings to the Django
Project. These include for instance, installing applications that are going to be used
to actually develop the Project or configuring Database connections.

• urls.py: Used to declare every URL and the specific path across the project.

67

Chapter 6

• manage.py: Command line utility used to interact with the Django Project, this
includes running the webserver, maintaining and running database migrations or
configuring some aspects of the Admin Panel (such as creating a super user).

It is noticeable that this base structure by itself does not allow us to begin writing code for
the Project as it is mostly filled with configuration files (asides from the urls.py which we
will actively use to update and create the URLs for the project). This is where the notion
of Application becomes relevant.

Django Applications are the actual place where code will be developed. These are extremely
useful because they allow the project to be split into different components and it makes
the code incredibly easy to be maintained and scaled. We mentioned that the logical step
into scaling the ProjectScanner would be to implement Process Mining methodologies in
the future. Using Django applications allows different requirements to be easily added to
the project without the risk of hindering progress already made by simply using another
application to build the Process Mining requirements. If one wishes to switch projects,
Django Applications allow the developer to move applications into other projects without
much effort1.

6.2.2 Application Structure

Figure 6.2 presents the ProjectScanner’s application named "app", where all code was
implemented for this Project. The ProjectScanner’s project directory is the same as the
base structure featured in 6.1 (here, the project folder is named "ProjectScanner" instead
of "root").

Figure 6.2: Structure of the ProjectScanner Application

1https://docs.djangoproject.com/en/3.2/intro/tutorial01/ and https://djangobook.com/mdj2-django-
structure/

68

Development

There are a two important files outside the application folder that are relevant to the
project, these are:

• RegularExpressions.csv: This file contains the Regex for the Default category that
ProjectScanner features upon creation. When first entering the ProjectScanner, the
Default Regex will be immediately created and available to use.

• requirements.txt: A text file featuring all the different libraries used in the Project.
Extremely useful for setting the project up in multiple environments. These can be
installed into a python Virtual Environment using a simple script line2.

Our application contains the following files:

• views.py: This file features all functions or classes that deal with webpage logic.
Webpage logic can be considered any function or class that receives a web request
and returns some kind of web response or redirect. Figure 6.3 contains an example
of a View function of the ProjectScanner.

• models.py: File that contains the models of the Project. A Django Model is used
to create tables and the different relationships between entities. A Django Model
features python code that the Django Framework converts into SQL when commu-
nicating with the Database. Figure 6.4 contains an example of a Model used in
ProjectScanner.

• gitpy.py: Auxiliary file containing all functions that deal with the use of Git and
relate to the gitpy library. Figure 6.5 contains an example of one of these functions.

• forms.py: File that contains the Django Forms used in the Project. Django by
default provides a Form Class that can be used to create HTML forms as it would
normally be done in the HTML. Django Forms allow the developer to create these
forms using python and even permit the usage of a Django model as the basis for
the Form. Figure 6.6 contains an example of a Form used in the ProjectScanner.

• aux.py: File that contains another set of auxiliary functions. Functions in this file
deal with the parsing of the logs and their correct addition to the database, building
the D3 dendogram for displaying the File Directory Tree, Regex functions and other
small functions associated with sorting and checks. Figure 6.7 contains one of the
functions used in the ProjectScanner.

• apps.py: A standard configuration file of the application.

• admin.py: Used to indicate which Models are going to be displayed in Django’s
Admin Panel. The Admin Panel can be used to create/update/delete Models or
Users with their specific set of permissions. For the ProjectScanner, usage of the
Admin Panel is not required but can be useful. Figure 6.8 contains the Admin Panel
of the ProjectScanner.

• static/css: Folder containing the css code used within the project.

• templates: This folder contains all templates used in the ProjectScanner. As men-
tioned in 5.6.2, Django Templates deal with the display of information dealt by the

2https://docs.djangoproject.com/en/3.2/topics/forms/ and https://djangobook.com/mdj2-django-
structure/

69

Chapter 6

other Server Components. These are HTML files that use the Django Template Lan-
guage. Figure 6.9 shows the different files of the ProjectScanner template and Figure
6.10 showcase one sample Template of the ProjectScanner.

Figure 6.3: Homepage View of the ProjectScanner

Figure 6.4: Commit Model of the ProjectScanner

70

Development

Figure 6.5: Gitpy function that fetches the Commit Log

Figure 6.6: Project Form in the ProjectScanner

71

Chapter 6

Figure 6.7: Function that creates the Default Regex

Figure 6.8: ProjectScanner’s Admin Panel

72

Development

Figure 6.9: Template folder of the ProjectScanner

73

Chapter 6

Figure 6.10: Template of the Project View

The next Chapter will focus on an overview of the ProjectScanner and aims to showcase
what was accomplished as a culmination point of the main objective of this dissertation.

74

Chapter 7

ProjectScanner Overview

This chapter will provide an overview of all the implemented requirements of the Pro-
jectScanner in order to showcase the tool. As a side note, there was an increased focus on
the visual aspects when applied to certain requirements such as the File Directory Tree
and the required charting of the information present in the Commit Log and Lines Log.
However, other aspects were kept minimal with the objective of being improved in the
future.

7.1 Homepage

(a) Homepage
(b) Homepage with projects

Figure 7.1: The Homepage of the ProjectScanner

Figure 7.1a and Figure 7.1b represent the Homepage, the first page the user is directed to
after accessing the ProjectScanner. In this page, the user is able to:

• Create a new project;

• If projects already exist, the user can select or update it.

On this page, along with all the others, the user has access to the Navigation Bar.
The Navigation Bar allows the user to easily switch between pages and access the many
functionalities of the ProjectScanner. If no Project has been selected, the user is unable

75

Chapter 7

to access the other pages (this is indicated by the gray color in the Navigation Bar if any
project is selected the color will change to blue) and any attempts will redirect the user to
the Homepage. ProjectScanner will remember the last project selected for one week.

7.1.1 Create Project

Figure 7.2: Create Project Page

Figure 7.2 presents the Create Project Page. Within this page, the user can insert the
project name, the URL to the git-based repository and select whether the repository is a
private one or not. On this page, the steps to successfully create a project are detailed to
the user so that this process can be simpler. These entail:

• Use HTTPS for GitHub/GitLab links;

• For private repositories, an Access Token is required, this Access Token requires the
adequate permissions for log extraction;

• The page then details two links for the GitHub and GitLab documentation that
explain how to configure these Access Tokens;

• Finally, the example format for private repositories for GitHub and GitLab is shown.

Figure 7.3: Confirmation of project creation

After clicking the button displayed in blue, the user will be asked to confirm the creation
of the project as shown in Figure 7.3.

76

ProjectScanner Overview

7.1.2 Regex

Figure 7.4: Configure Regex

After successfully creating a project, the user will be redirected to the Configure Regex
page as shown in 7.4. The Default Regex Configuration is already created and is imme-
diately available to use. A user can view a Regex Configuration (7.5), which will display
the development activities considered along with the rules that were applied, delete a
configuration and create a new one (7.6).

Figure 7.5: View Regex

77

Chapter 7

Figure 7.6: Create New Regex

Figure 7.6 presents the page to create a new configuration and explains to the user some
concepts to keep in mind when creating custom configurations such as:

• In case of a tie in activities, the ProjectScanner considers the last found activity for
the categorization of that file;

• It is extremely important that the standard activity that catches any remaining files
that could not be categorized by the all the other activities is created last (in the
default configuration, this activity is named unknown);

• The maximum amount of activities of a Regex Configuration is twenty.

The user will be required to input a name to the Regex Configuration and assign any
number of development activities (named Roles on the creation page) along with the desired
regular expressions to apply.

78

ProjectScanner Overview

7.2 Project

Figure 7.7: Project Information

After creating a project and selecting an available Regex Configuration the user will be
redirected to the Project page, the user can also simply click on the "Projeto" button in
the Navigation Bar to be redirected here. On this page, the following information about
the project is displayed:

• Date of the first commit;

• Date of the last commit;

• Date of the last update to the ProjectScanner’s logs of this project;

• Number of developers;

• Number of files;

• The Regex Configuration currently applied to the project.

The user can also update the project, modify the current Regex Configuration being applied
(which will redirect the user to 7.4) and delete the project.

79

Chapter 7

7.3 Project View

Figure 7.8: Project View

Figure 7.8 showcases the Project View page, this page is available at any time by clicking
the "Vista de Projeto" button on the Navigation Bar. This page displays the Nature of
the Effort and Evolution of the Effort on a project scale.

Figure 7.9: Project View - Nature of the Effort

80

ProjectScanner Overview

Figure 7.10: Project View - Nature of the Effort (Tooltip)

Figure 7.9 and 7.10 present the Nature of the Effort applied to each development activity
by every member of the project.

Figure 7.11: Project View - Evolution of the Effort

Figure 7.12: Project View - Evolution of the Effort (Tooltip)

Figure 7.11 and 7.12 feature the Evolution of the Effort, showcasing how each activity
progressed throughout the development of the project. The user can scroll horizontally
through the chart to visualize the remaining graph if needed. It is also possible to get
increased information by hovering over any element in the chart, as shown in 7.12.

81

Chapter 7

7.4 Social View

Figure 7.13: Social View

Figure 7.13 displays the Social View page of the ProjectScanner. The user can access this
page at any time by clicking the "Vista Social" button on the Navigation Bar. Here, the
user can select one of two options:

• Team: Displayed in 7.13 as "Equipa" will allow the user to consult the Nature of
the Effort and Evolution of the Effort of any number of team members.

• Individuals: Displayed in 7.13 as "Indivíduos" will allow the user to consult the
Nature of the Effort, Evolution of the Effort, Manipulated Files and the Individual
File Directory Tree of a specific team member.

7.4.1 Team

Figure 7.14: Social View Team - Select Team Members

Figure 7.14 displays the page following the click of the "Equipa" button shown in 7.13.
Here, the user will be provided with a list of all the authors who contributed to the project
along with the number of commits they pushed into the repository. The user can select
any number of members available from this page.

We considered the inclusion of this filter extremely important, as during testing we would
find that projects with many members would generate extremely convoluted charts that
could be hard to effectively visualise. When using open source repositories this was even
more evident, as the charts would display a vast amount of authors that had minimal
contributions.

82

ProjectScanner Overview

Figure 7.15: Social View Team - Nature and Evolution of the Effort

Figure 7.15 showcases the Evolution of the Effort and Nature of the Effort respectively
for the selected team members. The Line Chart features the different team members and
the evolution of their effort across the development. The Nature of the Effort presents
the selected team members and relates each commit change done by that member to the
different development activities established. The user can hover over any of the charts to
look at concrete values via the available tool tip.

Figure 7.16: Social View Team - Evolution of the Effort (Scroll)

83

Chapter 7

7.4.2 Individuals

Figure 7.17: Social View Individual - Select Team Member

Figure 7.17 displays the page following the click of the "Indivíduo" button shown in 7.13.
Here, the user will be provided with a list of all the authors who contributed to the project.
The user can then select one of the members from this page.

Figure 7.18: Social View Individual

From 7.18, the user can consult the Nature of the Effort, Evolution of the Effort, Manip-
ulated Files and the File Directory Tree on an individual scope.

84

ProjectScanner Overview

Nature of the Effort

Figure 7.19: Social View Individual - Nature of the Effort

Figure 7.20 displays the Nature of the Effort related to the specific individual. This effort
is categorized by the different development activities the author was involved with. Below
the Pie chart, a role is attributed to the author based on the activity the user had the most
effort in.

Evolution of the Effort

Figure 7.20: Social View Individual - Evolution of Effort

On the page shown in 7.20 the Evolution of the Effort is displayed in two different ways.
The first one is the stacked bar chart, relating the changes the specific user pushed to the

85

Chapter 7

repository and the categorized development activities. The Line chart below it displays
the same information with each line representing the different development activities.

Manipulated Files

Figure 7.21: Social View Individual - Modified Files

Figure 7.22: Social View Individual - Modified Files

Figure 7.22 and 7.22 present the Manipulated Files page of a specific author. Here, the
Line Chart displays the different modifications the author did on a set of files through the
project’s development. The user can hover any specific point in the chart to get the list of
files that were changed on that specific date.

Below the Line Chart, extra information about the files that member worked on is pre-
sented:

86

ProjectScanner Overview

• Name of the file;

• Full path of the file;

• Development activity applied to the file;

• The date of every modification that was done to the file by the specified member;

This page also allows the user to consult the View File and the Modification History pages.
These pages will be shown in 7.6

File Directory Tree

Figure 7.23: Social View Individual - File Directory Tree

(a) File Directory Tree after the first commit

(b) File Directory Tree after the third commit

Figure 7.24: File Directory Tree of the selected team member

Figure 7.23 and 7.24 displays the different components of the Social View - File Directory
Tree page. Figure 7.23 contains a legend that attributes a color to different software
development activities. The user is also able to view the File Directory Tree at different
commits pushed by the specified team member. The buttons or the slider can be used to
advance commits and visualize the changes in the tree.

Figure 7.24 contains two examples of the presentation of the File Directory Tree after
one and two commits respectively. The user can also click on any of colored files to be
redirected to that file’s View File page (7.6).

87

Chapter 7

7.5 Artifact View

Figure 7.25: Artifact View Individual

Figure 7.25 displays the Social View page of the ProjectScanner. The user can access this
page at by clicking the "Vista de Artefacto" button on the Navigation Bar. Here, the user
can select one of two options:

• Trees: Displayed in 7.25 as "Árvores" will allow the user to consult the File Directory
Tree, File Directory Tree per Commit and the CHURN File Directory Tree.

• Files: Displayed in 7.25 as "Ficheiros" will allow the user to consult Most Modified
Files, Modified Files by the Most People and Activities of the Files.

7.5.1 File Directory Tree

Figure 7.26: Artifact View - Trees

From 7.26, the user can consult the File Directory Tree, File Directory Tree per Commit
and the CHURN File Directory Tree on an project scope.

88

ProjectScanner Overview

File Directory Tree

Figure 7.27: Artifact View - Trees

Figure 7.28: Artifact View - Snippet of the File Directory Tree

Figure 7.27 and 7.28 displays the different components of the Artifact View - File Directory
Tree page. Figure 7.27 contains a legend that attributes a color to different software
development activities.

Figure 7.28 contains a snippet of the File Directory Commit after the last commit pushed
to the repository. The user can also click on any of colored files to be redirected to that
file’s View File page (7.6).

File Directory Tree per Commit

Figure 7.29: Artifact View - File Directory Tree per Commit

89

Chapter 7

(a) File Directory Tree after the first commit

(b) File Directory Tree after the third commit

Figure 7.30: File Directory Tree of the Project

Figure 7.29 and 7.30 display the different components of the Artifact View - File Directory
Tree page. Figure 7.29 contains a legend that attributes a color to different software
development activities. The user is also able to view the File Directory Tree at different
commits pushed to the repository. The buttons or the slider can be used to advance
commits and visualize the changes in the tree.

Figure 7.30 contains two examples of the presentation of the File Directory Tree after
one and three commits respectively. The user can also click on any of colored files to be
redirected to that file’s View File page (7.6).

CHURN File Directory Tree

Figure 7.31: Artifact View - CHURN File Directory Tree

Figure 7.32: Artifact View - CHURN File Directory Tree

90

ProjectScanner Overview

Figure 7.31 and 7.31 display the components of the Artifact View - CHURN File Directory
Tree page. Figure 7.31 contains a legend that attributes a color to total number of lines
added and removed. The user is also able to view the CHURN File Directory Tree at
different commits pushed by every contributor to the project. The buttons or the slider
can be used to advance commits and visualize the changes in the tree.

Figure 7.32 contains a snippet of a CHURN File Directory Tree. Here, the files present in
the tree are colored according to the number of lines added and removed at that specific
instance and the legend in 7.31.

7.5.2 Files

Figure 7.33: Artifact View - Files

Figure 7.33 presents the Artifact View - Files pages following the click on the "Ficheiros"
button in 7.25.

Here, the user can consult the Activities of the Files, Most Modified Files and Modified
Files by the Most people by clicking the shown buttons respectively. The user can click
any of the button to show/hide the corresponding information about the files. From any of
these buttons, the user will also be able to consult the View Page and Modification History
of any of the shown files (7.6).

Figure 7.34: Artifact View - Files - Activities of the Files

Figure 7.34 presents the contents of the page after clicking the "Categoria de Ficheiros"
button, corresponding to the Activities of the Files. The many files available in the repos-
itory will be shown sorted by the development activities established by the current Regex.

91

Chapter 7

Figure 7.35: Artifact View - Files - Most Modified Files

Figure 7.35 showcases the page after clicking the "Ficheiros Mais Modificados" button,
corresponding to the Most Modified Files. Here, the files are sorted in descending order
according to the number of modifications.

Figure 7.36: Artifact View - Files - Modified Files by the Most People

Figure 7.36 showcases the page after clicking the "Ficheiros modificados por mais pessoas"
button, corresponding to the Modified Files by Most People. Here, the files are sorted in
descending order according to the number of people that changed the file.

92

ProjectScanner Overview

7.6 View File and View Modification History

Figure 7.37: View File

Figure 7.38 features the View File page after clicking the "Ver Ficheiro" button from either
7.4.2 or any of the File Directory Tree pages. Here, the user can visualize information about
the selected file. This page displays:

• Name of the file;

• The activity associated with the file;

• Date of creation;

• A line chart displaying the evolution of the file according to the number of added
and removed lines;

• The date of every modification done to the file;

93

Chapter 7

Figure 7.38: Modification History

Figure 7.38 features the Modification History of the selected file. Here, the user can
visualise the different contributions of every member involved in the project related to the
selected file across the whole development.

94

Chapter 8

Conclusion and Further Work

With the present thesis, we had the objective of encapsulating the process that went into
the development of the ProjectScanner and other topics that we deemed relevant and that
resulted directly from the approach we took into the development.

As a starting point for the thesis, the ProjectScanner began as a tool that had an increased
focus on GitLab and explored Process Mining. However, as our understanding of Process
Mining evolved as a direct result of research, we realized that Mining Software Repositories
worked in very close proximity to Process Mining and could be considered groundwork for
the implementation of process mining techniques. The correct parsing of the vast event
data available from software repositories is one of the mandatory requisites for Process
Mining techniques to be applied. With this in mind, the decision to focus on the field of
Mining Software Repositories seemed logical, the data would need to be parsed to fit the
Process Mining criteria and the exploration of the directly available data from the logs
made sense from a perspective of scaling the tool.

ProjectScanner evolved into a tool that represents the perfect environment to explore
Process Mining techniques in the future while still being useful on its own by presenting
tangible results that can be applied to development teams and help in understanding,
monitoring, and improving development processes.

The heavily exploratory nature of this thesis did mean that some backtracking was manda-
tory after the work into Process Mining was completed for the first semester. However, we
ultimately found that most decisions that were previously established only needed some
minor adjustments, which solidifies the relationship between the different focus points of
our thesis.

The first semester was largely focused on understanding Process Mining and its applica-
tions. We deemed this a crucial step to grasp its usefulness in aiding the improvement of
software development processes. After the groundwork, framework and language decisions
were established and a study into the necessary development tools was produced. An initial
version of the system architecture was built to define our planned structure and establish
how our system interacted with the different components.

For the second semester, we focused on revising some of the previously established concepts
as our understanding of the nature of the tool we wanted to develop deepened. As men-
tioned earlier, not many changes were made and many of the groundwork established in
the first semester remained unchanged. The new additions had an increased focus on being
beneficial to the current route of the ProjectScanner and also aiding in the exploration of
our previous topic of focus in the future. The first step into the actual development focused

95

Chapter 8

on selecting the required tools for data extraction from software repositories. After this,
we focused on understanding this data and what could be drawn from it, this allowed us
to dynamically construct our set of requirements as the exploration occurred and relation-
ships were drawn between the work that we were doing and the research that had been
done in advance.

After the exploration phase, we were able to identify and build our set of functional and
non-functional requirements for the project. User Stories began as a simple way to put
into writing the work done in the Exploration Phase(2) and the results from the different
brainstorming meetings. These User Stories were then refined into proper Use Cases af-
ter establishing their relevancy for the Project and sorted into Functional Requirements
where a priority was assigned for each requirement according to their importance to the
project. The Mockups and Navigation Diagram were designed as means to understand
the different interactions of the ProjectScanner and how these relate with the established
requirements. The entity-relationship diagram was created, showcasing the different rela-
tionships of our data structure. The System Architecture was revised from the previous
first semester version due to the exploratory nature of our work and the newly established
nature of our tool. After each development cycle was completed, we had implemented every
Must Have, Should Have requirement and two out of the three Could Have requirements,
with the one missing being related to Process Mining. We considered this development
more than satisfactory for the completion of the MVP(Minimum Value Product) of the
ProjectScanner.

In regards to future work, we discussed some possibilities that would further improve the
ProjectScanner. The possibility of switching between an English and Portuguese interface,
which would widen the range of use of our tool and provide more accessibility for non-
Portuguese speakers in case the tool finds use outside internal applications. A more diverse
range of timestamps such as days, weeks, and months and the ability to filter through
a user input date or a commit message can also be interesting additions. Establishing
project KPIs like ActiVCS (2.2.4) implements can provide increased insight by comparing
the different KPIs across projects. A Compare View could be developed that showcases
the different KPI values for the uploaded projects in the tool. A simple and efficient
design can also improve the usability of the ProjectScanner as not much work went into
the actual design of the tool outside some mandatory points related to the many charts
of the project and the File Directory Tree. Finally, and one of the points we consider the
most important is applying Process Mining techniques to the data, this has been a topic of
discussion multiple times throughout development and many of our decisions were based
on this inclusion. ProjectScanner provides a perfect environment by providing data that
can easily be transformed into a compatible dataset for process mining algorithms, these
algorithms can be used to further improve, discover development processes and enrich our
tool.

96

References

[1] Atlassian. Webhooks. https://developer.atlassian.com/server/jira/platform/
webhooks/. Access: January 2021.

[2] Atlassian. What is jira used for? https://www.atlassian.com/software/
jira/guides/use-cases/what-is-jira-used-for#Jira-for-requirements-&
-test-case-management. Access: January 2021.

[3] Vangie Beal. Webopedia - repository. https://www.webopedia.com/definitions/
repository/. Access: September 2021.

[4] The Django Book. “workflow mining: Discovering process models from event logs.”
ieee transactions on knowledge and data engineering 16, no. 9. https://doi.org/10.
1109/TKDE.2004.47, 2004.

[5] Celonis. What is process mining? https://www.celonis.com/process-mining/
what-is-process-mining. Access: January 2021.

[6] Chart.js. Chart.js. https://www.chartjs.org/.

[7] Thomas S.W. & Hassan Chen, TH. A survey on the use of topic models when mining
software repositories. https://doi.org/10.1007/s10664-015-9402-8, 2016.

[8] D3.js. D3 data-driven documents. https://d3js.org/.

[9] Wil M.P. van der Aalst Dirk Fahland. Simplifying discovered process models in a con-
trolled manner. http://www.padsweb.rwth-aachen.de/wvdaalst/publications/
p716.pdf, 2012. Access: January 2021.

[10] MDM Web Docs. Django introduction. https://developer.mozilla.org/en-US/
docs/Learn/Server-side/Django/Introduction. Access: January 2021.

[11] H. Gall, K. Hajek, and M. Jazayeri. Proceedings. international conference on software
maintenance (cat. no. 98cb36272). https://doi.org/10.1109/ICSM.1998.738508,
1998.

[12] D3.js Graph Gallery. D3.js graph gallery - dendogram. https://www.
d3-graph-gallery.com/dendrogram.

[13] Gartner. Business process management (bpm) definition. https://www.gartner.com/
en/information-technology/glossary/business-process-management-bpm. Ac-
cess: January 2021.

[14] GitLab. Gitlab devops lifecycle. https://about.gitlab.com/
stages-devops-lifecycle/. Access: January 2021.

[15] Gitpy. Gitpy. https://pypi.org/project/gitpy/.

97

https://developer.atlassian.com/server/jira/platform/webhooks/
https://developer.atlassian.com/server/jira/platform/webhooks/
https://www.atlassian.com/software/jira/guides/use-cases/what-is-jira-used-for#Jira-for-requirements-&-test-case-management
https://www.atlassian.com/software/jira/guides/use-cases/what-is-jira-used-for#Jira-for-requirements-&-test-case-management
https://www.atlassian.com/software/jira/guides/use-cases/what-is-jira-used-for#Jira-for-requirements-&-test-case-management
https://www.webopedia.com/definitions/repository/
https://www.webopedia.com/definitions/repository/
https://doi.org/10.1109/TKDE.2004.47
https://doi.org/10.1109/TKDE.2004.47
https://www.celonis.com/process-mining/what-is-process-mining
https://www.celonis.com/process-mining/what-is-process-mining
https://www.chartjs.org/
https://doi.org/10.1007/s10664-015-9402-8
https://d3js.org/
http://www.padsweb.rwth-aachen.de/wvdaalst/publications/p716.pdf
http://www.padsweb.rwth-aachen.de/wvdaalst/publications/p716.pdf
https://developer.mozilla.org/en-US/docs/Learn/Server-side/Django/Introduction
https://developer.mozilla.org/en-US/docs/Learn/Server-side/Django/Introduction
https://doi.org/10.1109/ICSM.1998.738508
https://www.d3-graph-gallery.com/dendrogram
https://www.d3-graph-gallery.com/dendrogram
https://www.gartner.com/en/information-technology/glossary/business-process-management-bpm
https://www.gartner.com/en/information-technology/glossary/business-process-management-bpm
https://about.gitlab.com/stages-devops-lifecycle/
https://about.gitlab.com/stages-devops-lifecycle/
https://pypi.org/project/gitpy/

Chapter 8

[16] Ahmed E. Hassan. The road ahead for mining software repositories.
https://www.researchgate.net/publication/264799710_The_Road_Ahead_
for_Mining_Software_Repositories, 2008.

[17] JIRA. Jira. https://www.atlassian.com/software/jira. Access: January 2021.

[18] KC Karnes. What are webhooks? and why should you get hooked? https://
clevertap.com/blog/what-are-webhooks/, 2020. Access: January 2021.

[19] Klipfolio. What is a kpi? https://www.klipfolio.com/resources/articles/
what-is-a-key-performance-indicator.

[20] Phil Leggetter. What are webhooks and how do they en-
able a real-time web? https://www.programmableweb.com/news/
what-are-webhooks-and-how-do-they-enable-real-time-web/2012/01/30,
2012. Access: January 2021.

[21] Eryk Lewinson. Introduction to process mining. https://towardsdatascience.com/
introduction-to-process-mining-5f4ce985b7e5, 2020. Access: January 2021.

[22] Horia Ciocarlie Maria Laura Sebu. Applied process mining in software de-
velopment. https://www.researchgate.net/publication/269301615_Applied_
process_mining_in_software_development, 2014. Access: January 2021.

[23] MSRConf. Mining software repositories. https://www.msrconf.org/. Access:
September 2021.

[24] Ngrok. Ngrok. https://ngrok.com/product. Access: January 2021.

[25] PM4Py. Implemented approaches - scientific work implemented in pm4py. https:
//pm4py.fit.fraunhofer.de/implemented-approaches. Access: January 2021.

[26] Paul Kneringer Saimir Bala and Jan Mendling. Discovering activities in software
development processes. http://ceur-ws.org/Vol-2793/paper6.pdf, 2020.

[27] Tamanna Siddiqui and Ausaf Ahmad. Data mining tools and techniques for
mining software repositories: A systematic review. https://www.researchgate.
net/publication/320213363_Data_Mining_Tools_and_Techniques_for_Mining_
Software_Repositories_A_Systematic_Review, 2018.

[28] Walter Tichy. An interview with prof. andreas zeller: Mining your way to software
reliability. https://doi.org/10.1145/1880066.1883621, 2010.

[29] Olivier Vandecruys, David Martens, Bart Baesens, Christophe Mues, Manu De
Backer, and Raf Haesen. Mining software repositories for comprehensible soft-
ware fault prediction models. https://www.semanticscholar.org/paper/
Mining-software-repositories-for-comprehensible-Vandecruys-Martens/
b264d893c37494d61af0b7636fe29f64df4183b5, 2008.

[30] Bogdan Vasilescu, Alexander Serebrenik, Mathieu Goeminne, and Tom Mens. On
the variation and specialisation of workload-a case study of the gnome ecosystem
community. https://doi.org/10.1007/s10664-013-9244-1, 2014.

[31] Wikipedia. Bug tracking system. https://en.wikipedia.org/wiki/Bug_tracking_
system. Access: September 2021.

[32] Wikipedia. Gitlab - wikipedia. https://en.wikipedia.org/wiki/GitLab. Access:
January 2021.

98

https://www.researchgate.net/publication/264799710_The_Road_Ahead_for_Mining_Software_Repositories
https://www.researchgate.net/publication/264799710_The_Road_Ahead_for_Mining_Software_Repositories
https://www.atlassian.com/software/jira
https://clevertap.com/blog/what-are-webhooks/
https://clevertap.com/blog/what-are-webhooks/
https://www.klipfolio.com/resources/articles/what-is-a-key-performance-indicator
https://www.klipfolio.com/resources/articles/what-is-a-key-performance-indicator
https://www.programmableweb.com/news/what-are-webhooks-and-how-do-they-enable-real-time-web/2012/01/30
https://www.programmableweb.com/news/what-are-webhooks-and-how-do-they-enable-real-time-web/2012/01/30
https://towardsdatascience.com/introduction-to-process-mining-5f4ce985b7e5
https://towardsdatascience.com/introduction-to-process-mining-5f4ce985b7e5
https://www.researchgate.net/publication/269301615_Applied_process_mining_in_software_development
https://www.researchgate.net/publication/269301615_Applied_process_mining_in_software_development
https://www.msrconf.org/
https://ngrok.com/product
https://pm4py.fit.fraunhofer.de/implemented-approaches
https://pm4py.fit.fraunhofer.de/implemented-approaches
http://ceur-ws.org/Vol-2793/paper6.pdf
https://www.researchgate.net/publication/320213363_Data_Mining_Tools_and_Techniques_for_Mining_Software_Repositories_A_Systematic_Review
https://www.researchgate.net/publication/320213363_Data_Mining_Tools_and_Techniques_for_Mining_Software_Repositories_A_Systematic_Review
https://www.researchgate.net/publication/320213363_Data_Mining_Tools_and_Techniques_for_Mining_Software_Repositories_A_Systematic_Review
https://doi.org/10.1145/1880066.1883621
https://www.semanticscholar.org/paper/Mining-software-repositories-for-comprehensible-Vandecruys-Martens/b264d893c37494d61af0b7636fe29f64df4183b5
https://www.semanticscholar.org/paper/Mining-software-repositories-for-comprehensible-Vandecruys-Martens/b264d893c37494d61af0b7636fe29f64df4183b5
https://www.semanticscholar.org/paper/Mining-software-repositories-for-comprehensible-Vandecruys-Martens/b264d893c37494d61af0b7636fe29f64df4183b5
https://doi.org/10.1007/s10664-013-9244-1
https://en.wikipedia.org/wiki/Bug_tracking_system
https://en.wikipedia.org/wiki/Bug_tracking_system
https://en.wikipedia.org/wiki/GitLab

References

[33] Wikipedia. Microsoft teams. https://en.wikipedia.org/wiki/Microsoft_Teams.
Access: September 2021.

[34] Wikipedia. Repository (version control). https://en.wikipedia.org/wiki/
Repository_(version_control). Access: September 2021.

[35] Wikipedia. Software repository. https://en.wikipedia.org/wiki/Software_
repository. Access: September 2021.

99

https://en.wikipedia.org/wiki/Microsoft_Teams
https://en.wikipedia.org/wiki/Repository_(version_control)
https://en.wikipedia.org/wiki/Repository_(version_control)
https://en.wikipedia.org/wiki/Software_repository
https://en.wikipedia.org/wiki/Software_repository

Appendices

100

This page is intentionally left blank.

Appendix

Appendix A

User Stories related with the ProjectScanner:

• "As a user, I want to be able to upload my git repository so that I can visualize
information about it."

• "As a user, I want to be able to be able to immediately use the ProjectScanner even
if I have no regex configuration so that I can effortlessly visualise information."

• "As a user, I want to be able to configure the used regex of my Project so that the
information displayed can more accurately represent the reality of my project."

• "As a user, I want to be able to upload multiple projects unto the platform so that
I can monitor multiple projects at once."

• "As a user, I want to be able to update my project with the most recent commits at
any time so that I don’t have to upload the project again."

• "As a user, I want to be able to easily see information such as number of files,
number of developers involved and activities assessed by the regex so that I can
better understand the initial state of the repository within the platform."

• "As a user, I want the information the tool can provide to be easily accessed so that
I know without much effort the available functionalities."

User Stories related to the Nature of the Effort Applied

• "As a user, I want to be able to visualize the overall nature of the effort of the
project, divided by the categories identified by the regex so that I can have a better
understanding of where that effort is being applied."

• "As a user, I want to be able to visualize the overall nature of the effort of the project
across time, sorted by the categories identified by the regex so that I can have a better
understanding of when that effort was being applied."

• "As a user, I want to be able to visualize the nature of the effort of the team mem-
bers, sorted by the categories identified by the regex so that I can have a better
understanding of where that effort is being applied per team member."

• "As a user, I want to be able to visualize the nature of the effort of the team members
across time, divided by the categories identified by the regex so that I can have a
better understanding of when that effort was being applied per team member."

• "As a user, I want to be able to visualize the nature of the effort of a specific team
member within the categories identified by the regex so that I can have a better
understanding of the work that team member did."

• "As a user, I want to be able to visualize the nature of the effort of a specific team
member across time within the categories identified by the regex so that I can have
a better understanding of how that effort was distributed across time."

User Stories related to Project Files

102

• "As a user, I want to be able to visualize a specific project file so that I can better
understand its role within the project."

• "As a user, I want to be able to visualize the number of lines added and removed
across time so that I can better understand the evolution of the file across time."

• "As a user, I want to be able to visualize who created a specific file, when that files
was created and the number of modifications a file has so that I can better understand
the role of a specific file within the project."

• "As a user, I want to be able to visualize the history of modifications so that I can
understand which team members were working on a specific file across time."

• "As a user, I want to be able to visualize which project files a specific team member
worked on so that I can have establish the focus of that specific team member’s
work."

• "As a user, I want to be able to visualise the project files sorted by the categories
identified by the regex so that I can have a better understanding of the role of each
file within the project."

• "As a user, I want to be able to visualise the most modified project files so that I
can have better understanding of what files were the most worked on."

• "As a user, I want to be able to visualise the project files most modified by different
team members so that I can have a better understanding of the project flow."

User Stories related to Directory Trees

• "As a user, I want to be able to visualize the complete directory tree of my project
sorted by the categories identified by the regex so that I can better understand how
which project file is connected to the overall project as well as their internal roles."

• "As a user, I want to be able to visualize the directory tree per commit, sorted by
the categories identified by the regex so that I can have a better understanding of
the evolution of the project as well as the internal roles of the files."

• "As a user, I want to be able to visualize the directory tree per commit with the
corresponding heatmap of the files, also sorted by the categories identified by the
regex so that I can have a better understanding of the evolution of the project, the
internal roles of the files and the effort being applied to each file across the project
cycle."

• "As a user, I want to be able to visualize the directory tree of a specific team member,
sorted by the categories identified by the regex so that better understand the project
state when a specific team member was working on the project."

103

Chapter 8

Name Select Regex
ID FR03
Actor User

Description The user selects a regex configuration from the available ones and applies
it to the project.

Trigger 1. a) Redirected after creating a project
b) Clicking the "Modificar Regex" button located in that project’s page.

Preconditions 1. There is an active project selected.

Basic Flow 1. User is in the Configure Regex Page
2. User selects and clicks one of the available Regexes.

Postconditions Project is updated with the new Regex.
Alternative Flow Regex can’t be applied due to a system failure.

Table 1: Select Regex Use Case

Name Delete Regex
ID FR04
Actor User
Description The user selects a regex configuration from the available ones and deletes it.

Trigger 1. a) Redirected after creating a project
b) Clicking the "Modificar Regex" button located in that project’s page.

Preconditions 1. There is an active project selected.

Basic Flow
1. User is in the Configure Regex Page
2. User selects one of the available Regexes and clicks the "Apagar Regex"
button.

Postconditions Regex is deleted from the Database and from the active project.
Alternative Flow 3. Regex can’t be deleted due to a system failure.

Table 2: Delete Regex Use Case

Name Select a Project
ID FR05
Actor User
Description The user selects a project making it the active project.
Trigger 1. Clicking the project name on the Homepage.
Preconditions None

Basic Flow 1. User is in the Homepage
2. User selects one of the available projects by clicking its name.

Postconditions Project now becomes the active project.
Alternative Flow 3. Project can’t be selected due to a system failure.

Table 3: Select Project Use Case

104

Name Update Project
ID FR06
Actor User

Description The user updates a project, fetching all git logs up to the
current point.

Trigger 1. Clicking the "Atualizar Projeto" button on the Project page.
Preconditions There is an active project selected.

Basic Flow 1. User is in the Project page.
2. User clicks "Atualizar Projeto"

Postconditions Project is updated with the latest information.

Alternative Flow
3. Project may fail to correctly populate the Database due to no
internet connection to fetch the needed logs, incorrect URLs or an unrelated
failure on Git’s part.

Table 4: Update Project Use Case

Name Display Project View
ID FR07
Actor User

Description The user consults the Project View, visualizing the data displayed about
the project.

Trigger 1. Clicking the "Vista de Projeto" button on the navigation bar.
Preconditions There is an active project selected with a regex configuration.
Basic Flow 1. User clicks the "Vista de Projeto" button on the navigation bar.
Postconditions The project view is displayed with the associated data.
Alternative Flow None

Table 5: Display Project View Use Case

Name Display Social View - Team Effort
ID FR08
Actor User

Description The user consults the Team Effort within the Social View page,
visualizing the data displayed about the team members.

Trigger 1. Clicking the "Equipa" button on the Social View page.
Preconditions There is an active project selected with a regex configuration.

Basic Flow
1. User clicks the "Vista Social" button on the navigation bar.
2. User clicks on the "Equipa" button.
3. User selects team members from the available selection.

Postconditions The Social View - Team Effort is displayed with the associated data.
Alternative Flow None

Table 6: Display Social View - Team Effort Use Case

105

Chapter 8

Name Display Social View - Individual Nature of the Effort
ID FR09
Actor User

Description The user consults the Individual Nature of the Effort within the Social View page,
visualizing the data displayed about the individual.

Trigger 1. Clicking the "Natureza do Esforço" button on the Team member Social View Page
Preconditions There is an active project selected with a regex configuration.

Basic Flow

1. User clicks the "Vista Social" button on the navigation bar.
2. User clicks on the "Indivíduos" button.
3. User selects a team member from the available selection.
4. User clicks "Nature of the Effort" button.

Postconditions The Social View - Individual Nature of the Effort is displayed with the associated data.
Alternative Flow None

Table 7: Display Social View - Individual Nature of the Effort Use Case

Name Display Social View - Individual Effort Across Time
ID FR10
Actor User

Description The user consults the Individual Effort Across Time within the Social View page,
visualizing the data displayed about the individual.

Trigger 1. Clicking the "Evolução do Esforço" button on the Team member Social View Page.
Preconditions There is an active project selected with a regex configuration.

Basic Flow

1. User clicks the "Vista Social" button on the navigation bar.
2. User clicks on the "Indivíduos" button.
3. User selects a team member from the available selection.
4. User clicks "Evolução do Esforço" button.

Postconditions The Social View - Individual Effort is displayed with the associated data.
Alternative Flow None

Table 8: Display Social View - Individual Effort Use Case

Name Display Social View - Manipulated Files
ID FR11
Actor User

Description The user consults the Manipulated Files of an individual within the Social View page,
visualizing the data displayed.

Trigger 1. Clicking the "Ficheiros Manipulados" button on the Individual Social View Page.
Preconditions There is an active project selected.

Basic Flow

1. User clicks the "Vista Social" button on the navigation bar.
2. User clicks on the "Indivíduos" button.
3. User selects a team member from the available selection.
4. User clicks "Ficheiros Manipulados" button.

Postconditions The Social View - Manipulated Files is displayed with the associated data.
Alternative Flow None

Table 9: Display Social View - Manipulated Files Use Case

106

Name Display Social View - Individual Tree
ID FR12
Actor User

Description The user consults the Individual Tree of an individual within the Social View page,
visualizing the data displayed.

Trigger 1. Clicking the "Árvore de Indivíduo" button on the Individual Social View Page
Preconditions There is an active project selected with a regex configuration.

Basic Flow

1. User clicks the "Vista Social" button on the navigation bar.
2. User clicks on the "Indivíduos" button.
3. User selects a team member from the available selection.
4. User clicks "Árvore de Indivíduo" button.

Postconditions The Social View - Individual Tree is displayed with the associated data.
Alternative Flow None

Table 10: Display Social View - Individual Tree Use Case

Name Display Artifact View - File Category
ID FR13
Actor User

Description The user consults the File Category of the Project within the Artifact View page,
visualizing the data displayed.

Trigger 1. Clicking the "Categoria de Ficheiros" button on the Artifact View - Files Page
Preconditions There is an active project selected with a regex configuration.

Basic Flow
1. User clicks the "Vista de Artefactos" button on the navigation bar.
2. User clicks on the "Ficheiros" button.
4. User clicks "Categoria de Ficheiros" button.

Postconditions The Artifact View - File Category is displayed with the associated data.
Alternative Flow None

Table 11: Display Artifact View - File Category Use Case

Name Display Artifact View - Most Modified Files
ID FR14
Actor User

Description The user consults the most modified files of the Project within the Artifact View page,
visualizing the data displayed.

Trigger 1. Clicking the "Ficheiros Mais Modificados" button on the Artifact View - Files Page
Preconditions There is an active project selected with a regex configuration.

Basic Flow
1. User clicks the "Vista de Artefactos" button on the navigation bar.
2. User clicks on the "Ficheiros" button.
4. User clicks "Ficheiros Mais Modificados" button.

Postconditions The Artifact View - Most Modified Files is displayed with the associated data.
Alternative Flow None

Table 12: Display Social View - Most Modified Files Use Case

107

Chapter 8

Name Display Artifact View - Modified Files by Most People
ID FR15
Actor User

Description The user consults the modified files by most people within the Artifact View page,
visualizing the data displayed.

Trigger 1. Clicking the "Ficheiros modificados por mais pessoas" button on the
Artifact View - Files Page

Preconditions There is an active project selected.

Basic Flow
1. User clicks the "Vista de Artefactos" button on the navigation bar.
2. User clicks on the "Ficheiros" button.
4. User clicks "Ficheiros modificados por mais pessoas" button.

Postconditions The Artifact View - Modified Files by Most People is displayed with
the associated data.

Alternative Flow None

Table 13: Display Artifact View - Modified Files by Most People Use Case

Name Display Artifact View - Complete Tree
ID FR16
Actor User

Description The user consults the complete file directory tree within the Artifact View page,
visualizing the data displayed.

Trigger 1. Clicking the "Árvore Completa" button on the Artifact View - Tree Page
Preconditions There is an active project selected.

Basic Flow
1. User clicks the "Vista de Artefactos" button on the navigation bar.
2. User clicks on the "Árvores" button.
4. User clicks the "Árvore Completa" button.

Postconditions The Artifact View - Complete Tree is displayed with the associated data.
Alternative Flow None

Table 14: Display Artifact View - Complete Tree Use Case

Name Display Artifact View - CHURN Tree
ID FR18
Actor User

Description The user consults the CHURN file directory tree within the
Artifact View page, visualizing the data displayed.

Trigger 1. Clicking the "Árvore CHURN" button on the Artifact View - Tree Page
Preconditions There is an active project selected with a regex configuration.

Basic Flow
1. User clicks the "Vista de Artefactos" button on the navigation bar.
2. User clicks on the "Árvores" button.
4. User clicks the "Árvore CHURN" button.

Postconditions The Artifact View - CHURN Tree is displayed with the associated data.
Alternative Flow None

Table 15: Display Artifact View - CHRUN Tree Use Case

108

Name View Modification History
ID FR19
Actor User
Description The user consults the modification history of a file, visualizing the data displayed.
Trigger 1. Clicking the "Ver Histórico de Modificações" button on any Artifact View - File Page.
Preconditions There is an active project selected with a regex configuration.

Basic Flow

1. User clicks the "Vista de Artefactos" button on the navigation bar
2. User clicks the "Ficheiros" button
3. User clicks the "Categoria de Ficheiros" button
4. User clicks the "Ver Ficheiro" button

Postconditions The View Modification History is displayed with the associated data.

Alternative Flow 3. User clicks the "Ficheiros mais modificados" button
3.1 User clicks the "Ficheiros modificados por mais pessoas" button

Table 16: View Modification History Use Case

Name Display Social View - Handover of Work
ID FR21
Actor User
Description The user consults the handover of work, visualizing the data displayed.
Trigger 1. Clicking the "Handover of Work" button on the Social View - Team page
Preconditions There is an active project selected with a regex configuration.

Basic Flow
1. User clicks the "Vista de Social" button on the navigation bar
2. User clicks the "Equipa" button
3. User clicks the "Handover of Work" button

Postconditions The Social View - Handover of Work is displayed with the associated data.
Alternative Flow None

Table 17: Display Social View - Handover of Work Use Case

Name Delete Project
ID FR22
Actor User
Description The user selects a project from the available ones and deletes it. displayed.
Trigger 1. Clicking the "Apagar Projeto" button on the Project Page
Preconditions There is an active project selected with a regex configuration.

Basic Flow 1. User clicks the "Projeto" button on the navigation bar
2. User clicks the "Apagar Projeto" button

Postconditions The selected project is deleted from the database
Alternative Flow 3. The project can’t be deleted due to a system failure

Table 18: Display Social View - Delete Projet Use Case

109

Chapter 8

Figure 1: Mockup for the Homepage

Figure 2: Mockup for the New Project page

110

Figure 3: Mockup for the Modify Regex Page

Figure 4: Mockup for the Project Page

111

Chapter 8

Figure 5: Mockup for the Social View Page

Figure 6: Mockup for the Contribution per Activity Chart in the Social View Page

112

Figure 7: Mockup for the Nature of the Effort Chart in the Social View of an Individual

Figure 8: Mockup for the Evolution of the Effort per Category Charts in the Social View
of an Individual

113

Chapter 8

Figure 9: Mockup for the Manipulated Files Page in the Social View on an Individual

Figure 10: Mockup for the Artifact View Page

114

Figure 11: Mockup for the CHURN Tree Page in the Artifact View Page

Figure 12: Mockup for File View Page of a selected file

115

Chapter 8

Figure 13: Mockup for File View Page of a Selected File

Figure 14: Mockup for Tree Page in the Artifact View

116

Figure 15: Mockup for File View Page of a selected file

Figure 16: Mockup for Directory Tree Page in the Artifact View

117

Chapter 8

Figure 17: Mockup for the Modification History Page in the Artifact View

Figure 18: Mockup for the File Page in the Artifact View

118

Figure 19: Mockup for the File Category Page in the Artifact View

Figure 20: Mockup for the Most Modified Files Page in the Artifact View

119

Chapter 8

Figure 21: Mockup for the Modification History Chart in the Artifact View

120

	Introduction
	Context and Motivation
	Goals
	Thesis Structure

	Background
	Problem Specification
	Mining Software Repositories
	Introduction
	Software Repositories
	Application of Mining Software Repositories
	ActiVCS

	Work Plan
	First Semester
	Second Semester
	Methodology

	Exploratory Phase
	Project Scanner
	Framework
	Overview of Django and Flask
	Log Retrieval
	Repository Logs
	File Directory Tree
	Regex
	Nature of the Effort and Evolution of the Effort
	Files

	Process Mining
	Process Mining in Software Development
	Data Preparation
	Process Discovery
	Analysis
	JIRA
	Webhooks

	GitLab
	GitLab Webhook Demonstration
	GitLab API Demonstration
	Identification of Relevant Information for Data Preparation

	PM4Py - Process Mining for Python
	Conclusion

	System Specification
	User Stories
	Use Cases
	Functional Requirements
	Non-Functional Requirements
	Usability
	Availability
	Security

	Mockups and Navigation Diagram
	C4 Models
	Context Diagram
	Container Diagram
	Entity-Relationship Diagram

	Conclusion

	Development
	Project Organization
	Project Structure
	Base Structure
	Application Structure

	ProjectScanner Overview
	Homepage
	Create Project
	Regex

	Project
	Project View
	Social View
	Team
	Individuals

	Artifact View
	File Directory Tree
	Files

	View File and View Modification History

	Conclusion and Further Work

