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Abstract 

The aim of the present work is to broaden the scope of application of the 

Incremental Hole-Drilling (IHD) technique and to enable reliable residual stress 

measurements in anisotropic and layered materials, such as Fibre Metal Laminates (FMLs). 

The so-called integral method, according to the last developments in the field, was 

implemented with a numerical method for the resolution of the final system of linear 

equations using Python. The objective was to obtain non-uniform residual stresses in 

samples of a hybrid component made of micro-alloyed steel and Glass Fibre Reinforced 

Polymer (GFRP/Steel). For the IHD technique, relieved strains, caused by relaxed residual 

stresses during the incremental drilling process, and the necessary calibration coefficients, 

that relate these two variables, needed to be determined. Experimental IHD procedure was 

performed with the purpose of determining relieved strains in GFRP/Steel samples. 

Determination of calibration coefficients was done by numerical simulation using the Finite 

Element Method (FEM), through ANSYS software. Finally, a comparison of the results, 

obtained with other techniques and methods in the same samples, was performed for 

assessment and validation of the method studied in this thesis. 

The results obtained allowed to conclude that the incremental hole-drilling 

technique can be used for measuring non-uniform residual stresses in FMLs. Despite some 

observed scattering in the residual stresses determined for deeper layers, the method used in 

this thesis allowed to determine the residual stress profile through the thickness of a 

GFRP/Steel sample, agreeing well with the results obtained by other techniques and 

methods, clearly identifying the singularities at the interfaces between cross-ply fibres and 

fibres-metal plies. 
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Resumo 

O presente trabalho teve como objetivo ampliar a área de aplicação da técnica 

do furo incremental (TFI) e permitir uma determinação fiável de tensões residuais em 

laminados de fibra-metal (anisotrópicos e em camadas). O denominado método integral, de 

acordo com os últimos desenvolvimentos na área, foi implementado com um método 

numérico para a resolução do sistema final de equações lineares em Python. O objetivo era 

obter tensões residuais não uniformes em amostras de um componente híbrido feito de metal 

e polímero reforçado com fibra de vidro (PRFV/Aço). Para a TFI, deformações aliviadas, 

causadas pelas tensões residuais relaxadas durante o processo de furação, e os coeficientes 

de calibração necessários, que relacionam essas duas variáveis, precisam de ser 

determinados. O procedimento experimental da TFI foi realizado com o objetivo de 

determinar deformações aliviadas em amostras de PRFV/Aço. A determinação dos 

coeficientes de calibração foi feita por simulação numérica utilizando o método dos 

elementos finitos através do software ANSYS. Por fim, foi realizada uma comparação dos 

resultados obtidos com outras técnicas e métodos, nas mesmas amostras, para a avaliação e 

validação do método proposto nesta dissertação de mestrado. 

Os resultados obtidos permitiram concluir que a técnica do furo incremental 

pode ser utilizada para a medição de tensões residuais não uniformes em laminados de fibra-

metal. Apesar de alguma dispersividade observada nas tensões residuais determinadas para 

camadas profundas, o método utilizado nesta dissertação de mestrado permitiu determinar o 

perfil de tensões residuais ao longo da espessura de uma amostra de PRFV/Aço. Houve uma 

concordância com os resultados obtidos por outras técnicas e métodos, identificando 

claramente as singularidades nas interfaces entre as camadas de fibras orientadas e as 

camadas fibra-metal. 

 

 

 

Palavras-chave: Tensão Residual, Técnica do Furo Incremental, 
Método Integral, Material Anisotrópico, Laminado de 
Fibra-Metal, Método dos Elementos Finitos 



 

 

   

 

 

vi  2021 

 

 

  



 

 

  Contents 

 

 

Rute Rafaela de Almeida Vasconcelos  vii 

 

 

Contents 

LIST OF FIGURES .............................................................................................................. ix 

LIST OF TABLES ............................................................................................................. xiii 

LIST OF SIMBOLS AND ACRONYMS/ ABBREVIATIONS ......................................... xv 

List of Symbols ................................................................................................................ xv 

Acronyms/Abbreviations ................................................................................................ xvi 

1. INTRODUCTION ......................................................................................................... 1 

1.1. Motivation ............................................................................................................... 2 

1.2. Main Objectives ...................................................................................................... 2 

1.3. Dissertation Structure.............................................................................................. 3 

2. LITERATURE REVIEW .............................................................................................. 5 

2.1. FML Materials ........................................................................................................ 5 

2.1.1. Brief History of the Development of FMLs .................................................... 6 

2.1.2. Range of Materials .......................................................................................... 9 

2.1.3. Manufacturing FMLs ..................................................................................... 11 

2.1.4. Forming Techniques for FMLs ..................................................................... 12 

2.1.5. Residual Stresses in FMLs: Origin, Importance and Determination ............. 14 

2.2. Incremental Hole-Drilling Technique (IHD) ........................................................ 17 

2.2.1. Brief History of the IHD Technique .............................................................. 20 

2.2.2. Residual Stress Calculation in Isotropic Materials ........................................ 23 

2.2.3. Residual Stress Calculation in Composite Laminates ................................... 30 

3. METHOD FOR CALCULATING RESIDUAL STRESSES IN FMLS AND 

SOFTWARE DEVELOPMENT ......................................................................................... 35 

4. MATERIALS AND EXPERIMENTAL PROCEDURE ............................................ 39 

4.1. GFRP/Steel Material ............................................................................................. 39 

4.1.1. Manufacturing Process .................................................................................. 39 

4.1.2. Specimen Information ................................................................................... 40 

4.2. Experimental Application of the IHD Technique ................................................. 41 

4.3. Neutron Diffraction Technique ............................................................................. 44 

5. NUMERICAL SIMULATION: DETERMINATION OF CALIBRATION 

COEFFICIENTS ................................................................................................................. 47 

6. EXPERIMENTAL RESULTS AND DISCUSSION .................................................. 53 

6.1. Relieved Strains .................................................................................................... 53 

6.2. Residual Stresses ................................................................................................... 55 

6.3. Discussion ............................................................................................................. 59 

6.3.1. Numerical Simulation of an Externally Applied Uniform Stress .................. 63 

7. CONCLUSIONS AND RECOMMENDATION FOR FUTURE WORK ................. 65 

BIBLIOGRAPHY ............................................................................................................... 67 



 

 

   

 

 

viii  2021 

 

ANNEX A – Python Script Developed ............................................................................... 75 

ANNEX B – Sub-matrices of Calibration Coefficients ...................................................... 79 

ANNEX C - Strain Field Figures ........................................................................................ 97 

 

 



 

 

  LIST OF FIGURES 

 

 

Rute Rafaela de Almeida Vasconcelos  ix 

 

 

LIST OF FIGURES 

Figure 2.1. Fibre Metal Laminates (a) and (b) [3,4]. ............................................................. 5 

Figure 2.2. Schematic of fibre bridging mechanism to prevent crack propagation in FMLs. 

(adapted from article [9]). ....................................................................................... 7 

Figure 2.3. (a) The world's first commercial jet airliner, de Havilland DH.106 Comet [13]; 

(b) the world's largest passenger airliner, A380 [14]. The figures present different 

scales. ...................................................................................................................... 8 

Figure 2.4. Development of fibre metal laminates (FMLs). (adapted from article [1]). ....... 9 

Figure 2.5. FMLs classification based on material constituents. (adapted from article [1]).

 ............................................................................................................................... 11 

Figure 2.6. Schematic representation of vacuum bag system [19]. ..................................... 12 

Figure 2.7. Schematic illustration of lay-up (a) and press brake bending (b) techniques [1].

 ............................................................................................................................... 13 

Figure 2.8. Variants of die forming methods [1]. ................................................................ 14 

Figure 2.9. (a) Head of IHD machine: end mill, strain gauge rosette, connection wires to 

the data acquisition system (a three wire connection in a 1/4 Wheatstone bridge 

configuration is commonly used); (b) three-element strain gauge rosette (ASTM 

type B) [31]. .......................................................................................................... 17 

Figure 2.10. (a), (b) Vishay RS 200 Milling Guide - a typical hole-drilling apparatus (an 

optical device for centring the tool holder and a hole-drilling tool, respectively) 

[32,33]. .................................................................................................................. 18 

Figure 2.11. IHD method process flowchart. (adapted from article [34]). .......................... 18 

Figure 2.12. Hole geometry and residual stresses: (a) uniform stresses; (b) non-uniform 

stresses [28]. .......................................................................................................... 23 

Figure 2.13. Schematic geometry of a typical three-element clock-wise (CW) hole-drilling 

rosette [28]. ............................................................................................................ 24 

Figure 2.14. ASTM three element strain gauge rosette types (different sizes) [28]. ........... 25 

Figure 2.15. Relation between measured strains (MS) and residual stresses (RS) in the 

integral method for three drilling steps [58]. ......................................................... 27 

Figure 2.16. Physical interpretation of coefficients 𝐚𝒊𝒋 for the integral method. (adapted 

from article [56]). .................................................................................................. 28 

Figure 2.17. Example of a strain gauge rosette placement. ................................................. 31 

Figure 2.18. General matrix format of the Equation (2.10) corresponding to the integral 

method (adapted form article [58]). ...................................................................... 32 



 

 

   

 

 

x  2021 

 

Figure 2.19. Physical interpretation of 2D calibration coefficients 𝑪𝒊𝒋 for the integral 

method. (adapted from article [56]). ..................................................................... 32 

Figure 4.1. Schematic illustration of GFRP/steel FML, with 𝟎°/𝟗𝟎°/𝑺𝒕𝒆𝒆𝒍s configuration, 

used in this work. .................................................................................................. 40 

Figure 4.2. Representation of the cross-section of the specimen used in this work. ........... 41 

Figure 4.3.  FML samples showing the stacking ply configuration, its geometry and 

IHD measuring point using a HBM RY61M strain gauge rosette. The IHD 

measuring coordinates are also shown. ................................................................. 42 

Figure 4.4. Vishay RS 200 Milling Guide (drilling tool) existing at GTR lab and 

experimental procedure. ........................................................................................ 43 

Figure 5.1. ANSYS finite element analysis mesh used for calculation of coefficients in 

orthotropicand layered materials (left) and an amplified view showing different 

layers of the material (GFRP 𝟎°/GFRP 𝟗𝟎°/Steel)s used in the present study 

(right). ................................................................................................................... 47 

Figure 5.2. Basic stress conditions that were applied to the FEM model: (a) 𝛔𝒙 = 𝟏, 𝛔𝒚 =

𝝉𝒙𝒚 = 𝟎 ; (b) 𝛔𝒚 = 𝟏, 𝝈𝒙 = 𝝉𝒙𝒚 = 𝟎 ; (c) 𝝉𝒙𝒚 = 𝟏, 𝝈𝒙 = 𝛔𝒚 = 𝟎. ....................... 48 

Figure 5.3. Meaning of the calibration coefficients 𝑪𝒊𝒋 in each sub-matrix (adapted from 

article [34]). ........................................................................................................... 49 

Figure 5.4. (a) ANSYS finite element mesh with the location of three strain gauges 

representing the HBM rosette; (b) HBM rosette (RY61M) [66]. ......................... 50 

Figure 5.5. Strain gauge grid area and, marked in red, the corner coordinates of grid lines 

where displacements are read................................................................................ 51 

Figure 6.1. Sample 1 - Graph evolution of relieved strains 𝜺𝟏, 𝜺𝟐 and 𝜺𝟑 along depth. ..... 53 

Figure 6.2. Sample 2 - Graph evolution of relieved strains 𝜺𝟏, 𝜺𝟐 and 𝜺𝟑 along depth. ...... 54 

Figure 6.3. Sample 3 - Graph evolution of relieved strains 𝜺𝟏, 𝜺𝟐 and 𝜺𝟑 along depth. ...... 54 

Figure 6.4. Sample 1 - Residual longitudinal stress (𝝈𝒙) as a function of depth. ............... 56 

Figure 6.5. Sample 2 - Residual longitudinal stress (𝝈𝒙) as a function of depth. ............... 56 

Figure 6.6. Sample 3 - Residual longitudinal stress (𝝈𝒙) as a function of depth. ............... 56 

Figure 6.7. Sample 1 - Residual transverse stress (𝝈𝒚) as a function of depth. .................. 57 

Figure 6.8. Sample 2 - Residual transverse stress (𝝈𝒚) as a function of depth. .................. 57 

Figure 6.9. Sample 3 - Residual transverse stress (𝝈𝒚) as a function of depth. .................. 57 

Figure 6.10. Sample 1 - Residual shear stress (𝝉𝒙𝒚) as a function of depth. ....................... 58 

Figure 6.11. Sample 2 - Residual shear stress (𝝉𝒙𝒚) as a function of depth. ....................... 58 

Figure 6.12. Sample 3 - Residual shear stress (𝝉𝒙𝒚) as a function of depth. ....................... 58 

Figure 6.13. Sample 1 - Residual longitudinal stress (𝝈𝒙) as a function of depth. ............. 60 

Figure 6.14. Sample 1 - Residual transverse stress (𝝈𝒚) as a function of depth. ................ 60 



 

 

  LIST OF FIGURES 

 

 

Rute Rafaela de Almeida Vasconcelos  xi 

 

Figure 6.15. Sample 1 - Residual shear stress (𝝉𝒙𝒚) as a function of depth. ....................... 60 

Figure 6.16. Sample 2 - Residual longitudinal stress (𝝈𝒙) as a function of depth. .............. 61 

Figure 6.17. Sample 2 - Residual transverse stress (𝝈𝒚) as a function of depth. ................. 61 

Figure 6.18. Sample 2 - Residual shear stress (𝝉𝒙𝒚) as a function of depth. ....................... 61 

Figure 6.19. Sample 3 - Residual longitudinal stress (𝝈𝒙) as a function of depth. .............. 62 

Figure 6.20. Sample 3 - Residual transverse stress (𝝈𝒚) as a function of depth. ................. 62 

Figure 6.21. Sample 3 - Residual shear stress (𝝉𝒙𝒚) as a function of depth. ....................... 62 

Figure 6.22. ANSYS FEM mesh for simulation of tensile calibration tests. ...................... 63 

Figure 6.23. Longitudinal stress (𝝈𝒙) redistribution through the FML layers due to an 

externally simulated uniform stress of 15 MPa. .................................................... 64 

Figure 0.1. Strain field around the hole (a) radial and (b) tangential, when applying 𝝈𝒙 =
𝟏, 𝝈𝒚 = 𝝉𝒙𝒚 = 𝟎 to the 1st depth increment of the hole with maximum depth 

(around 1 mm depth). ............................................................................................ 97 

Figure 0.2. Strain field around the hole (a) radial and (b) tangential, when applying 𝝈𝒙 =
𝟏, 𝝈𝒚 = 𝝉𝒙𝒚 = 𝟎 to the last depth increment (18th) of the hole with maximum 

depth (around 1 mm depth). .................................................................................. 97 

Figure 0.3. Strain field around the hole (a) radial and (b) tangential, when applying 𝝈𝒚 =

𝟏, 𝝈𝒙 = 𝝉𝒙𝒚 = 𝟎 to the 1st depth increment of the hole with maximum depth 

(around 1 mm depth). ............................................................................................ 98 

Figure 0.4. Strain field around the hole (a) radial and (b) tangential, when applying 𝝈𝒚 =

𝟏, 𝝈𝒙 = 𝝉𝒙𝒚 = 𝟎 to the last depth increment (18th) of the hole with maximum 

depth (around 1 mm depth). .................................................................................. 98 

Figure 0.5. Strain field around the hole (a) radial and (b) tangential, when applying𝝉𝒙𝒚 =

𝟏, 𝝈𝒙 = 𝝈𝒚 = 𝟎 to the 1st depth increment of the hole with maximum depth 

(around 1 mm depth). ............................................................................................ 99 

Figure 0.6. Strain field around the hole (a) radial and (b) tangential, when applying 𝝉𝒙𝒚 =

𝟏, 𝝈𝒙 = 𝝈𝒚 = 𝟎 to the last depth increment (18th) of the hole with maximum depth 

(around 1 mm depth). ............................................................................................ 99 

 

  



 

 

   

 

 

xii  2021 

 

 



 

 

Residual Stress Measurement in FMLs using IHD   

 

 

Rute Rafaela de Almeida Vasconcelos  xiii 

 

 

LIST OF TABLES 

Table 2.1. Comparison of different FML forming technologies. (adapted from article [1]).

 ............................................................................................................................... 14 

Table 4.1. Material properties of GFRP/steel FML used in the numerical/experimental 

results. .................................................................................................................... 41 

Table 4.2. MPISI configuration parameters for ND residual stress measurements. ........... 45 

Table 0.1. First 9 columns of matrix 𝑪𝟏𝟏 obtained using the FEM (ANSYS). ................... 79 

Table 0.2. Last 9 columns of matrix 𝑪𝟏𝟏 obtained using the FEM (ANSYS). ................... 80 

Table 0.3. First 9 columns of matrix 𝑪𝟏𝟐 obtained using the FEM (ANSYS). ................... 81 

Table 0.4. Last 9 columns of matrix 𝑪𝟏𝟐 obtained using the FEM (ANSYS). ................... 82 

Table 0.5. First 9 columns of matrix 𝑪𝟏𝟑 obtained using the FEM (ANSYS). ................... 83 

Table 0.6. Last 9 columns of matrix 𝑪𝟏𝟑 obtained using the FEM (ANSYS). ................... 84 

Table 0.7. First 9 columns of matrix 𝑪𝟐𝟏 obtained using the FEM (ANSYS). ................... 85 

Table 0.8. Last 9 columns of matrix 𝑪𝟐𝟏 obtained using the FEM (ANSYS). ................... 86 

Table 0.9. First 9 columns of matrix 𝑪𝟐𝟐 obtained using the FEM (ANSYS). ................... 87 

Table 0.10. Last 9 columns of matrix 𝑪𝟐𝟐 obtained using the FEM (ANSYS). ................. 88 

Table 0.11. First 9 columns of matrix 𝑪𝟐𝟑 obtained using the FEM (ANSYS). ................. 89 

Table 0.12. Last 9 columns of matrix 𝑪𝟐𝟑 obtained using the FEM (ANSYS). ................. 90 

Table 0.13. First 9 columns of matrix 𝑪𝟑𝟏 obtained using the FEM (ANSYS). ................. 91 

Table 0.14. Last 9 columns of matrix 𝑪𝟑𝟏 obtained using the FEM (ANSYS). ................. 92 

Table 0.15. First 9 columns of matrix 𝑪𝟑𝟐 obtained using the FEM (ANSYS). ................. 93 

Table 0.16. Last 9 columns of matrix 𝑪𝟑𝟐 obtained using the FEM (ANSYS). ................. 94 

Table 0.17. First 9 columns of matrix 𝑪𝟑𝟑 obtained using the FEM (ANSYS). ................. 95 

Table 0.18. Last 9 columns of matrix 𝑪𝟑𝟑 obtained using the FEM (ANSYS). ................. 96 

 

 

 

 

 

 



 

 

   

 

 

xiv  2021 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Residual Stress Measurement in FMLs using IHD   

 

 

Rute Rafaela de Almeida Vasconcelos  xv 

 

 

LIST OF SIMBOLS AND ACRONYMS/ 
ABBREVIATIONS 

List of Symbols 

𝐷 – Diameter of the rosette 

𝐷0 – Hole diameter 

𝜀 – Relieved strain 

𝛽 – Clockwise angle from the x-axis (gauge 1) to the maximum principal stress 

direction 

𝜎𝑚𝑎𝑥 – Maximum (more tensile) principal stress 

𝜎𝑚𝑖𝑛 – Minimum (more compressive) principal stress 

𝜎𝑥 – Uniform normal x-stress 

𝜎𝑦 – Uniform normal y-stress 

𝜏𝑥𝑦 – Uniform shear xy-stress 

𝑖 – Number of hole depth increments so far 

𝑗 – Sequence number for hole depth increments, 1 ≤ 𝑗 ≤ 𝑖 

𝑘 – Strain record, 1 ≤ 𝑘 ≤ 3 

𝑙 – Load case, 1 ≤ 𝑙 ≤ 3 

𝑝 – Isotropic (equi-biaxial) strain 

𝑞 – 45° shear strain 

𝑡 – x-y shear strain 

𝑃 – Isotropic (equi-biaxial) stress 

𝑄 – 45° shear stress 

𝑇 – x-y shear stress  

�̅�𝑖𝑗 – Calibration constants 

�̅�𝑖𝑗 – Calibration constants 

𝐶𝑖𝑗
𝑘𝑙 – Calibration coefficients 

𝜃 – Angle between vectors UX and UR 



 

 

   

 

 

xvi  2021 

 

𝑈 – Displacement 

m – Index for strain gauge grid lines, 1 ≤ 𝑚 ≤ 𝑛 

n – Number of strain gauge grid lines 

𝐸 – Young’s modulus 

𝜈 – Poisson’s ratio 

𝐺 – Shear modulus 

 

Acronyms/Abbreviations 

ARALL® – ARamid ALuminium Laminate 

ASTM – American Society for Testing and Materials 

BOAC – British Overseas Airways Corporation 

CAFRALL® – CArbon and Flax fibre Reinforced ALuminium Laminate 

CAKRALL® – CArbon and Kenaf fibre Reinforced ALuminium Laminate 

CARALL® – CArbon Reinforced ALuminium Laminates 

CFRP – Carbon Fibre Reinforced Polymers 

CLT – Classical Laminate Theory 

CTE – Coefficient of Thermal Expansion 

DFG – German Research Foundation 

FEM – Finite Element Method 

FML – Fibre Metal Laminate 

FEA – Finite Element Analysis 

FOREL – National German Comprehensive Platform for Development of 

Lightweight System Solutions for the Electromobility 

FRC – Fibre Reinforced Composite 

FRP – Fibre Reinforced Polymer 

GFRP – Glass Fibre Reinforced Polymer 

GLARE® – Glass Laminate Aluminium Reinforced Epoxy 

GTR – Grupo de Tensões Residuais 

HBM – Hottinger Baldwin Messtechnik 

IHD – Increment Hole-Drilling Technique 



 

 

Residual Stress Measurement in FMLs using IHD   

 

 

Rute Rafaela de Almeida Vasconcelos  xvii 

 

IM – Integral Method 

ISF – Incremental Sheet Forming 

LEIKA – Efficient Multi-Material Designs for Lightweight Bodies 

MPISI – Materials Probe for Internal Strain Investigations  

NECSA – South African Nuclear Energy Corporation 

SPF – Shot Peening Forming 

UD – Unidirectional 

XRD – X-Ray Diffraction 

PRFV – Polímero Reforçado com Fibra de Vidro 

TFI – Técnica do Furo Incremental 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

   

 

 

xviii  2021 

 

 

 

 

 

 

 



 

 

  INTRODUCTION 

 

 

Rute Rafaela de Almeida Vasconcelos  1 

 

 

1. INTRODUCTION 

During the past decades, there has been an increasing demand for high strength-

to-weight ratio materials, which have a great impact on the reduction of energy consumption. 

The main reason is to conciliate the accelerated technological evolution with a greener and 

more sustainable society. The technological evolution has been accompanied by the 

evolution of environmental awareness and so the need to take care of our world has become 

mandatory. As a consequence, emerges the need to find more resistant and lighter structures 

and materials of better quality. The necessary evolution in engineering materials led to the 

appearance of composite and lightweight materials, which arrived to help, not only 

qualitatively but also environmentally. 

Hybrid composite materials, such as fibre metal laminates, make the automotive 

and aircraft transports lighter (around 25% weight reduction compared to a full-metal 

lightweight structure [1]), contributing to an efficient decrease of fuel consumption (less 𝐶𝑂2 

into the atmosphere). The best example is the case of Glass-fibre Laminate Aluminium 

Reinforced Epoxy composite (GLARE®), which was selected for long parts of the fuselage 

of the Airbus A380 [2]. This type of materials has played an important role in history and 

will have an even more important role in the future. Therefore, it is essential to better 

understand and predict the actual behaviour of these hybrid composites. 

During its production, FMLs are subjected to elevated temperatures, in particular 

those based in new thermoplastic matrices, compared to the thermoset ones. The difference 

in Coefficients of Thermal Expansion (CTE) of the different materials leads to the origin of 

tensile residual stresses upon cooling. The hybrid materials can be compromised due to the 

existence of these residual stresses, so it is essential to better understand their mechanical 

behaviour, by predicting how those stresses arise and determining their distribution through-

thickness. Studies concerning the residual stresses in FML materials are limited and this 

issue still needs further attention and understanding.  
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1.1. Motivation 

The experimental determination of residual stresses in composite laminates is 

difficult and complex. FML materials (anisotropic and layered) are composed of 

alternatively distributed layers of amorphous and crystalline structures. To determine 

residual stresses, diffraction techniques cannot be used, as they are only useful for crystalline 

materials or have highly restricted application for hybrid composites. One possible method 

might be the incremental hole-drilling (IHD) technique. This widely accepted semi-

destructive technique is characterised by its relatively lower cost, its fastness in determining 

residual stress profiles and its independence from the material’s microstructure, managing 

to provide reliable and useful information about the residual stresses near the surface of the 

material. Nonetheless, standard procedures related to this technique (e.g., ASTM E 837) are 

only valid for isotropic materials with linear elastic behaviour, therefore not applicable to 

the case of FMLs. While in this technique, for isotropic materials, the necessary calibration 

coefficients are almost material’s independent, for anisotropic and layered materials there is 

a visible dependency on the material properties and stacking ply strategy. Due to this, valid 

calibration coefficients can only be determined by numerical simulation, case by case. The 

greatest motivation for this work is associated with the aim to develop and validate 

calculation methods for solving the problem to determine residual stresses in FMLs by IHD 

technique, cooperating under the scope of a German research project (DFG), leading by 

Kassel University and involving the University of the Witwatersrand (Wits - South Africa) 

and the University of Coimbra (GTR/CFisUC). 

1.2. Main Objectives 

The main objective of this work is to contribute to the development of the IHD 

technique, for its reliable application to FML materials. To accomplish this task, the 

following aims must be achieved: 

• Develop the integral method, valid for isotropic materials (ASTM E 

837), for its application to hybrid fibre metal composite laminates 

(anisotropic and layered in nature); 

• Experimentally, to perform IHD tests in GFRP/Steel samples, to 

determine strain relaxation curves as a function of the hole depth; 
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• Numerically, to determine the calibration coefficients, by the finite 

element method (FEM), which are necessary for the determination of 

residual stresses using the so-called integral method; 

• Computationally, contribute with a software developed in Python, 

complementing the one that already exists for isotropic materials at 

GTR/CfisUC. The software should be able to numerically solve the 

system of linear equations resulting from the application of the integral 

method; 

• Validate the obtained results by comparison with results obtained by 

other techniques and methods (e.g., neutron diffraction). 

1.3. Dissertation Structure 

This document is divided into 7 chapters. Yet, 3 major parts can be clearly 

identified. In the initial part, an introduction and an overview of the state of the art in this 

field are made (chapter 1 and 2). Subsequently, the numerical and experimental part of this 

work is presented (chapter 3, 4 and 5). Finally, the results, discussion and conclusions are 

reported, as well as the recommendations for future work (chapter 6 and 7). The topics 

addressed in each chapter are as follows: 

Chapter 2: Literature review 

This chapter introduces scientific concepts about manufacturing of fibre metal 

hybrid composite materials and a brief approach of the origin, importance and determination 

of residual stresses in FMLs. The incremental hole-drilling technique is presented, as well 

as its principles and the residual stress calculation methods, differentiating it for isotropic 

and anisotropic materials. 

Chapter 3: Method for calculating residual stresses in FMLs and software 

development 

The chapter starts by describing the method chosen to solve the residual stresses 

calculation problem. A description of the developed software is also provided, as well as the 

software itself. 
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Chapter 4: Materials and experimental procedure 

It describes the material under study (GFRP/Steel), the specimens used and its 

fabrication. An experimental description of the application of the incremental hole-drilling 

technique is also carried out. 

Chapter 5: Numerical simulation: determination of calibration coefficients  

Numerical simulation created from ANSYS are presented, as well as the method 

for determining calibration coefficients.  

Chapter 6: Experimental results and discussion 

It presents the relieved strains curves and residual stresses curves as a function 

of the hole depth. Analysis of the obtained results and comparison with partner results by 

other methods is carried out. 

Chapter 7: Conclusions and recommendation for future work 

It presents the main conclusions of the work and recommendations for future 

research, for an optimization and development of the methodology used. 
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2. LITERATURE REVIEW 

2.1. FML Materials 

Fibre metal laminates (FML) are hybrid composite materials. They are an ideal 

combination of metals and composites resulting in a material that joins the best 

characteristics of both, without sharing their individual disadvantages. This allows the 

material to retain the qualities of simple metal structure and it presents considerable 

advantages in other aspects such as fatigue, corrosion and fire resistance, and weight 

reduction. These hybrid composites are versatile, high-performance materials with 

applications in the aerospace industry, where weight and space savings are essential. They 

are composed of thin (0.2-0.5 mm thick) metal layers alternating with fibre reinforced 

polymer matrix composite plies, such as Glass Fibre Reinforced Polymers (GFRP) or Carbon 

Fibre Reinforced Polymers (CFRP). There are several types of structural arrangements for 

them; from asymmetric to multi-stacking laminates, based on various performance 

requirements and manufacturing considerations. By alternating the stacking arrangement 

and the fibre orientations we can obtain different material characteristics, and so specialized 

performance features can be achieved [3,4]. FMLs are shown in Figure 2.1. 

 

 
 

(a) (b) 

Figure 2.1. Fibre Metal Laminates (a) and (b) [3,4]. 

 

Introducing a new material is a big investment in time and money. Much has to 

be learned about a large variety of properties; new production techniques have to be 
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introduced and require concerted efforts of various disciplines, which turns out to be 

economically risky. The driving force behind hybrid composite developments was the need 

to reduce fatigue failure on airplanes with the incentive of reducing aircraft fuel consumption 

(through weight reduction) and maintenance costs [5].  

2.1.1. Brief History of the Development of FMLs 

In the 1950s, some tragic events caused by metal fatigue failure took place, thus 

compromising the use of metal in specific situations. One of the incidents that marked the 

history and changed the course of aviation occurred in 1954, when the BOAC Flight 781 (de 

Havilland DH.106 Comet, shown in Figure 2.3.a)) crashed after suffering a catastrophic 

decompression in mid-flight. The cause was fatigue fracture of the plane's roof. The fact that 

the windows were square at the time, with sharp corners, made the fuselage undergo 

considerably higher stresses than expected due to stress concentration effects. As a result, 

the incident changed the history of aviation where windows started to feature rounded 

corners (oval windows) [6]. Like this disaster many other happened, leading the aviation 

industry to improve and correct this so important impasse, the fatigue failure. Around that 

time, while composites were gaining notoriety, some weaknesses in them were observed, 

such as poor impact resistance and lower residual strength, weak plastic behaviour and 

inferior durable characteristics. Therefore, researchers have embarked on intensive 

investigation to find effective solutions [7]. 

In the end of the 70’s, due to costs (related to lack of investment capital) and in 

order to increase structural stability, Fokker, a NASA worker, embedded fibres into the 

adhesive between titanium layers. Surprisingly, the bonded structures offered a new 

advantage: better fatigue resistance. Fibres were shown to resist to crack initiation and 

further crack growth, thus improving the fatigue strength of the material [7,8]. In a multilayer 

material, the adhesive layers behave as crack dividers. If cracks start in only one of the sheets 

of the laminate, the sheets that are still uncracked reduce the crack growth rate in the cracked 

sheet, until a crack is initiated in the neighbouring sheet. Crack growth in thin sheet materials 

is slower than in plate material, because of the plane-stress effect. That is why FMLs have 

such a high fatigue resistance, especially against fatigue crack growth [5]. In Figure 2.2 it is 

shown the mechanism of fibre metal laminates to prevent crack propagation. 
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Figure 2.2. Schematic of fibre bridging mechanism to prevent crack propagation in FMLs. (adapted from 
article [9]). 

 

In order to continue the research started by Fokker, the Delft University of 

Technology (TU Delft) in the Netherlands (1978) conceived an FML, consisting of 

aluminium sheets and aramid fibre reinforced epoxy (ARALL®), to increase fatigue 

performance of aluminium alloys. They were initially applied in the aviation industry, as 

wing panel materials on the Fokker F-27 and in cargo doors of the military transport C-17 

Globemaster III in 1980s [1,7].  

To avoid potential failure when using ARALL® as fuselage materials  (to 

improve fatigue crack growth resistance), aramid fibres were replaced by glass fibres [10]. 

In the 1990s, GLARE® was developed at TU Delft and commercialized on the Airbus A380 

(shown in Figure 2.3.b)) in fuselage and then in cargo doors at aircraft C-17. During this 

period, many investigations and developments were made regarding FML materials. Lin et 

al. [11] replaced the aramid fibres in ARALL® with carbon fibres, and developed CArbon 

Reinforced ALuminium Laminates (CARALL®). Then, NASA developed TiGr [12], which 

also belongs to the FMLs class. It consists of titanium layers interleafed with graphite fibre 

reinforced polymer. With the appearance of these FMLs, many more were created, using 

different metals, like steels and magnesium alloys. 

 

https://www.sciencedirect.com/topics/engineering/fatigue-crack-growth
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(a) (b) 

Figure 2.3. (a) The world's first commercial jet airliner, de Havilland DH.106 Comet [13]; (b) the world's 
largest passenger airliner, A380 [14]. The figures present different scales. 

 

Until then these hybrid materials were used to create simple components, as the 

techniques used (bending and lay-up techniques) did not allow it to be different. Since the 

2000s, interest in expanding the industrial applications of FMLs to mechanical, construction, 

aerospace, automobile, biomedical and marine industries led to research for producing 

complex shaped FML components, using different techniques that increase complex 

geometry and enable a large production volume (forming, especially die forming techniques) 

[1]. 

Among the development of FML forming techniques, LEIKA – efficient multi-

material designs for lightweight bodies, the first interdisciplinary research project launched 

by FOREL (a national German comprehensive platform for development of lightweight 

system solutions for the electromobility), was a particularly remarkable project partnering 

with several German industrial and academic research institutes. They bonded cover sheets 

of steel or magnesium to a core of carbon fibre reinforced plastic to create a sandwich 

laminate, presenting a lighter weight alternative to aluminium. Since lightweight engineering 

is critical to the development of new electric vehicles and for demonstrating the material’s 

unique properties, LEIKA aimed to create a hybrid vehicle floor. The three-year project 

demonstrated the significant light-weighting opportunities presented by FMLs and their 

advanced manufacturing technologies in the automotive industry [1,15].  

To summarise all the events that marked the discovery and evolution of such 

important materials, a review of these events is presented in Figure 2.4. 
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Figure 2.4. Development of fibre metal laminates (FMLs). (adapted from article [1]). 

 

2.1.2. Range of Materials  

The material selection to create FMLs, considerably affects their material 

properties and impact characteristics. Fibre reinforced composite (FRC) largely determine 

the stiffness and strength of FMLs, while metallic materials contribute for impact resistance, 

energy absorption and ductility [7]. Aluminium sheet is the most commonly used metallic 

material in FMLs attributable to its high impact resistance and superior ductility. Laminates 

with permanent bonding between aluminium and fibre composite are characterised by 

favourable strength and anti-corrosion parameters (excluding CARALL® laminates) and by 

resistance to impacts by means of concentrated force. On account to its low density, 

magnesium alloy is also used in FMLs [16]. 

FMLs applications in marine engineering were very restricted due to corrosion 

and hygrothermal (stress produced by humidity and temperature) effect. Fortunately, 

corrosion resistance of FMLs can be improved using titanium based. As laminates consisting 

of titanium and carbon fibres do not suffer from galvanic corrosion in operation conditions, 

it can be used in humid environments [7,16]. Titanium based FMLs, compared with 

aluminium based FMLs, have higher stiffness, high yield strength, fatigue and impact 

resistance at both room and elevated temperatures. Stainless steel based FMLs are also an 

alternative, due to the higher stiffness [7]. 
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Regarding the fibre reinforced laminates, glass and carbon fibres are the most 

commonly used in FMLs. However, polypropylene fibres are a promising candidate against 

the impact loading.  

In what fibres is concerned, several different composite recycling processes have 

been developed to cope with the rising accumulation of plastic waste. The innovation of 

adding natural fillers (e.g., natural fibres, cellulose nanocrystals, etc) in the polymers matrix 

to fabricate eco-friendly composites has improved material properties while minimising the 

problem regarding residue accumulation. This idea of hybrid composites with the 

combination of natural and synthetic fibres is still recent but there are already studies that 

conclude these composites can be very useful, as they exhibit important properties. More of 

this topic is presented in the article [17].  

In a recent study, fibre metal laminates of aluminium alloy with a sandwich of 

synthetic and natural fibre were investigated for its fire flexible blankets and thermal 

insulation properties. It was verified that CArbon and Flax fibre Reinforced ALuminium 

Laminate (CAFRALL®) and CArbon and Kenaf fibre Reinforced ALuminium Laminate 

(CAKRALL®) are suitable to be used in fire-designated zones of an aircraft engine, as they 

can be candidates for future use in aerospace industry. More about this work can be found 

in article [18]. 

Among several reinforced laminates, thermoset epoxy resin is extensively used 

for bonding unidirectional prepregs. Thermoplastic resins (e.g.: Bispheno-A and 

polypropylene) are used in some FMLs due to their relatively short processing cycles [7]. In 

Figure 2.5, the most known FML materials are indicated, as well as their corresponding 

composition. 
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Figure 2.5. FMLs classification based on material constituents. (adapted from article [1]). 

2.1.3. Manufacturing FMLs 

Hybrid materials can be manufactured by forming metal and Fibre Reinforced 

Polymers (FRP) panels separately and then bonding them with adhesives. But, since this 

method requires a long cycle time and multiple tool sets, the manufacturing process bonding 

of the metal and the FRP before forming is more accurate. The most common process for 

fabricating FMLs, similar to the polymeric composite materials, is the use of autoclave 

technology. A few steps are needed for the correct manufacturing process of FMLs 

[7,19,20]: 

• Treatment of metal to improve the adhesive bonding between metallic 

layer and fibre reinforced laminate.  

• Preparation of materials with cutting, lay-up and debunking. 
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• Cure preparation - involves tool cleaning and part transferring (in some 

cases), and the vacuum bag preparation shown in Figure 2.6 (in all cases). 

• Cure - incorporates the flow-consolidation process, chemical curing 

reactions, and bonding between fibre and metal layers. 

• Post-treatment - After hot-curing cycle in an autoclaving process, the 

residual stress in FMLs is inevitable due to the different thermal 

expansion of metal and FRP layers. It can lead to certain tensile stresses 

in metal sheets and compression stresses in fibre laminates. Residual 

stress could have a negative effect on the fatigue resistance of FMLs, and 

so the material’s fatigue performance could be decreased. This condition 

can be improved by post-stretching, thus reversing the effect of residual 

stress (reduce or eliminate residual stress).  

 

 

Figure 2.6. Schematic representation of vacuum bag system [19]. 

2.1.4. Forming Techniques for FMLs 

Composite layers have a very limited formability. Metal alloys can be deformed 

plastically but they also exhibit some elastic deformation. The deformation of fibres is pure 

elastic, so after deforming, the fibres cause spring back. During the deformation process to 

create different shapes of elements, most of the applied work in FMLs is elastic, which leads 

to spring back, residual stresses, or both [8]. Due to these characteristics, the need of high 

technology for its production, as well as manufacturing costs, FMLs did not move sooner to 

other industries. When realised FMLs would be an indispensable material, possible to be 

applied in various industries, showing the best properties, production research has been done 

in order to decrease cost production while increasing production. 
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The lay-up and press brake bending forming techniques were used initially, 

when more advanced techniques were not yet known. Today, they are still used, but less 

often. The lay-up technique can be used for large components like fuselage and wing panels. 

This technique shown in Figure 2.7.a), is a similar technique used in manufacturing FRP 

components. With a designated sequence, each layer is stacked onto a mould and since it is 

a large area-to-thickness ratio, the material deforms into the mould without significant 

forming force. The panel is then vacuum bagged and sent to an autoclave for curing. The 

applicable geometries of this technique are significantly restricted, only managing to form a 

simple curve [1]. The next technique, press brake bending, also applied in metal working 

process, is used to produce single curvature FML components. However, the design of such 

components is limited by the low failure strain of the embedded fibres. Thin FMLs with 

unidirectional (UD) reinforcement can be bent easily when the bending line is parallel to the 

direction of the embedded fibres. Bending thicker FMLs will increase the risk of 

delamination due to the increased interlaminar shear stress [1]. 

 

 

 

(a) (b) 

Figure 2.7. Schematic illustration of lay-up (a) and press brake bending (b) techniques [1]. 

 

More recent forming technologies for FML components are shot peening 

forming (SPF), incremental sheet forming (ISF) and die forming methods. There are some 

variants of die forming like stamping, hydroforming and electro-magnetic forming – see 

Figure 2.8. In die forming, material blanks are pressed against a die mould and shaped under 

the deforming force introduced [1]. The most widely used die forming method is stamping. 

It is a well-developed mass production technology for forming sheet metal components. It 

has also drawn extensive interests in producing FRP components and has recently been used 

to form FMLs. In stamping method, the tool sets typically comprise a set of matched dies, 

and a blank holder. Tool sets are usually heated [1]. 
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Figure 2.8. Variants of die forming methods [1]. 

 

According to article [1], alternative forming technologies, such as SPF, ISF and 

laser forming, are feasible but limited. Limitations in formability and/or productivity make 

them not the best candidates for the high-volume production of complex-shaped FML 

components. On the other hand, stamp forming has shown progress for producing more 

complex-shaped FML components, such as deep drown panels. Table 2.1 presents a 

comparison of several important forming methods; comparing the ability to create complex 

forms, the radius size that can be realised in each of the techniques, as well as their cycle 

time and production volume. 

 

Table 2.1. Comparison of different FML forming technologies. (adapted from article [1]). 

 Shape Radii Cycle time 
Production 

volume 

Bending (Press brake) Single curvature Small Short Large 

Lay-up 
Single, shallow double 

curvature 
Large Long Medium 

Laser forming Single curvature Large Long Small 

Shot peening forming 

(SPF) 

Single, shallow double 

curvature 
Large Long Medium 

Incremental sheet forming 

(ISF) 
Complex double curvature Small Long Small 

Die forming/Stamping Complex double curvature Small Medium Large 

2.1.5. Residual Stresses in FMLs: Origin, Importance and 
Determination 

Residual stresses are static multiaxial stresses, existing in an isolated system 

without any external force or moment being exerted on it. These stresses are found in 
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mechanical equilibrium within the material. The combination of residual and applied stress 

can affect structural integrity and safety [21].  

The residual stress could either enhance the material properties or be detrimental 

to its service life, depending on its state. Usually, residual stresses should be minimised as 

they can cause different detrimental effects (if we are dealing with tensile residual stresses), 

thus, reducing the lifetime of the components, e.g., in case of fatigue loading. But sometimes, 

deliberately introducing compressive residual stresses might be beneficial, e.g., by shot 

peening or deep rolling at the surface of metallic components. In some cases, they can 

improve component’s mechanical behaviour, enhancing its fatigue life (e.g., in 

polycarbonate samples by quenching), generally increasing the lifetime of products [22]. 

FML materials are well known for their excellent characteristics, such as high 

tensile strength, low density, excellent fatigue properties and impact damage resistance. 

However, they have a major disadvantage that can compromise the excellent properties they 

present. The existence of tensile residual stresses has a very negative effect on the durability 

of hybrid components, which can decrease their lifetime. After processing these hybrid 

components at elevated temperatures, the difference in the CTE between the metal and the 

composite leads to the appearance of residual stresses during cooling [23]. The residual 

stresses created can have a decisive effect on the mechanical properties of hybrid 

components and can cause defects as well as delamination, part failure due to geometric 

distortion, built-in cracking or premature failure of parts subjected to alternating loading or 

corrosive environments [24]. So, it is very important to identify the residual stresses to 

evaluate different combinations of FML materials and to accelerate the development of 

promising material FML systems [23]. 

Although a great development in this area has been carried out in the last 

decades, regarding the determination of residual stresses in metallic materials, studies 

concerning the residual stresses in FML materials are limited and this issue still needs further 

attention and understanding. There are many well-known and effective methods capable of 

determining residual stresses, which are divided into three main groups: destructive, semi-

destructive and non-destructive methods. Examples of non-destructive methods, also called 

physical methods, are: diffraction method, ultrasonic method, magnetic method, etc. 

Unfortunately, these techniques have some barriers that unable their use in hybrid 

composites, as they are only useful for crystalline materials or have highly restricted 
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application. A diffraction method, such as X-Ray Diffraction (XRD), is based on measuring 

the strains of the crystal lattice through variations in the interplanar distance of the crystalline 

material. Hence, it is not possible to be used in non-crystalline materials. Furthermore, XRD 

technique is a method limited to sample surface characterisation (up to ≈  20 𝜇𝑚 depth, 

depending on the material under testing), therefore it cannot be used for layered materials as 

it would not reach all the layers [25,26]. Another diffraction method, neutron diffraction, is 

based on the same principles as the prior technique, but instead of using X-rays, it uses a 

neutron beam. Comparatively, this technique allows a complete description of complex 

stress states and analyses samples to greater depths (up to ≈ 150 𝑚𝑚, depending on the 

material) due to the penetrating nature of neutrons. However, the necessary neutron beams 

are only available in facilities that have nuclear reactors, which reduces their availability and 

substantially increases their cost [25,27].  

Regarding semi-destructive methods, the Incremental Hole-Drilling (IHD) 

technique is one of the most common residual stress measuring method [28]. This technique 

is considered semi-destructive as it involves the removal of a small portion of the sample 

material, which can be repaired later in case of large components. In this mechanical 

technique, a small hole is drilled into increments along depth. The residual stress 

determination is made from the measured relieved strain values and numerically determined 

calibration coefficients. A more exhaustive approach to this technique is made in the next 

section (2.2). There is already a standard test method for determining residual stresses by the 

IHD technique in isotropic materials with linear elastic behaviour, such as the procedure 

proposed by the American standard ASTM E 837-20 [28]. This was possible due to the 

almost independence of the necessary calibration coefficients from the material properties. 

It was shown that these coefficients depend on the geometry only. Due to recent 

developments, the use of this technique in FML materials is feasible, but, unfortunately, a 

standard test method for anisotropic and layered materials (FML) seems to be impossible to 

achieve, due to dependency of the calibration coefficients from the material properties and 

stacking ply strategy. This is in the scope of the present work. 
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2.2. Incremental Hole-Drilling Technique (IHD) 

The Hole-Drilling (Strain-Gauge) Method is one of the most cost-efficient and 

simple methods to evaluate the residual stresses present in industrial workpieces. This 

mechanical technique is relatively simple, inexpensive, fast, versatile, well known and with 

a long history of application to isotropic materials  with a linear elastic behaviour [29]. It 

consists in making a small hole at material’s surface, in successive depth increments (drilling 

the hole in a series of steps) and measuring the relaxed strains on the surface at the end of 

each drilled increment, using most commonly, electrical strain gauges  (see Figure 2.9.a)) – 

usually a ASTM standard three-element strain gauge rosette (type A, B or C) is used (see 

Figure 2.9.b)) [28]. The technique is based on relating the measured strain relaxation at 

surface with the residual stress existing at a given depth increment, along the total depth of 

the hole. This method allows to evaluate the residual stresses not only along the layers but 

also between layers. There are several calculation procedures that can be used, all of them 

requiring valid calibration procedures [30].  

  

(a) (b) 

Figure 2.9. (a) Head of IHD machine: end mill, strain gauge rosette, connection wires to the data acquisition 
system (a three wire connection in a 1/4 Wheatstone bridge configuration is commonly used); (b) three-

element strain gauge rosette (ASTM type B) [31]. 

 

The equipment used in this study for performing IHD procedure is presented in 

Figure 2.10. Shortly summarising, the measurement procedure with the IHD method is done 

following the steps shown in Figure 2.11. It should be emphasised that the incremental hole-

drilling method is not just about making a hole in a series of small steps, this method 

incorporates the entire process required for the calculation of residual stresses.  
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(a) (b) 

Figure 2.10. (a), (b) Vishay RS 200 Milling Guide - a typical hole-drilling apparatus (an optical device for 
centring the tool holder and a hole-drilling tool, respectively) [32,33]. 

 

 

Figure 2.11. IHD method process flowchart. (adapted from article [34]). 
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As we can observe in the Figure 2.11, on the left side is shown the process of 

calculating the relieved strains, caused by the drilled hole. On the right side, the process of 

calculating the calibration coefficients by using the Finite Element Method (FEM) is 

presented. The calibration coefficients are necessary since it is required to relate the residual 

stress existing in a given depth increment with the relieved strains measured at surface. So, 

the two distinct procedures are needed to calculate the residual stresses existing in the 

material to be tested. However, in some specific cases (isotropic materials) the coefficients 

determination process is not necessary, as there are already tabulated values for calibration 

coefficients (previously calculated using the FEM) in materials that fulfilled all conditions 

announced by the ASTM E837, since, as previous referred, these coefficients are almost 

material independent and depend only on the geometry (hole diameter and depth, 

incremental size, and strain gauge geometry). Composite laminates (anisotropic and layered 

materials), which are out of the scope of the ASTM standard, need the coefficients 

determination phase since there is a clear dependency on the material properties. 

Some of the limitations of the hole technique are the potentially errors and 

uncertainties due to inaccuracies committed during drilling (e.g.: cutter bias, hole 

eccentricity, surface roughness, poor sample surface preparation, etc). Besides, residual 

stress determination by IHD is very sensitive to measurement errors, due to error propagation 

in the inverse problem involved. In an in-depth analysis of all types of errors [35], it is shown 

that the margin of error increases with depth. The relieved strains are mostly influenced by 

the near-surface residual stresses. Interior stresses have influences that diminish with their 

depth from the surface. Since the strains, related with the residual stresses existing at each 

depth increment, are measured at material’s surface, the sensitivity of the method decreases 

with the hole depth and, therefore, there is a limit depth from which is not possible to 

measure the strain relaxation, i.e., the curves of strain relaxation curves present an 

asymptotic behaviour. Thus, the depth of the hole is limited to approximately 0.4 times the 

nominal radius of the rosette (𝑍 ≤ 0.4 ∙ 𝐷) (𝐷 is the diameter of the rosette); more or less 

equal to the hole diameter [32]. Another limitation is the plasticity effect that occurs 

whenever the residual stress state induces localised plastic deformations. This happens due 

to the stress concentration around the hole. If the local stress concentration exceeds the yield 

stress of the material, the strain field around the hole is modified. Since the theory for 

calculating the residual stresses for this technique is based on a purely elastic situation, as it 
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happens with the finite element calculation of the calibration coefficients, an overestimation 

of the residual stresses installed in the material in this situation would be observed (the actual 

values are usually smaller than indicated). Therefore, the domain of application of the 

standard for the IHD method is in isotropic materials with linear elastic behaviour whose 

residual stresses do not exceed 60% of the material's yield stress, according to Nobre et al. 

(2020) [36]. The ASTM E837 indicates 80% [28]. 

The ASTM E837 standard [28] is an internationally accepted reference for the 

hole-drilling strain-gauge method, which defines the scope, measurement range, minimum 

requirements of instrumentation, test procedure, and algorithms and coefficients for the 

computation of uniform and non-uniform stress distribution, but only for isotropic and linear 

elastic materials. For isotropic materials the values for calibration coefficients are already 

tabulated, this because calibration coefficients are almost material independent, and so it is 

considered that the values do not vary from material to material. They just depend on hole 

geometry (depth and diameter), strain gauge type and position. In the case of anisotropic and 

layered materials there is also a dependence on the material properties, where the type of 

material used is relevant. On the other hand, the general equation which governs the strain 

distribution around the hole, based on the Kirsch’s solution, does not present a trigonometric 

form, as it happens for the case of isotropic materials [37]. For this particular situation it is 

necessary to find new calculation procedures. 

2.2.1. Brief History of the IHD Technique 

There is already a lot of published literature and consolidated information about 

the hole-drilling method. A description of the most important events that marked the history 

of this method are presented, by points in history [38,39]:  

• The discovery of this technique was made by Mathar in 1934, he used 

mechanical strain gauges to measure displacements around holes that 

were made in tensioned plates [40]. 

• In 1950, the mechanical strain gauges were replaced by electric strain 

gauges, thus improving the measurement accuracy of the method. This 

step was taken by two professors from Ghent University in Belgium, 

Soete and Vancrombrugge [41]. 
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• In 1951, a new method was proposed, similar to the hole-drilling method, 

the ring drilling method. It was introduced by Milbradt and then 

improved by Gunnert in 1958 [42,43]. 

• In 1956, Kelsey published the first investigation into residual stress 

variation with depth by using the hole-drilling method [44]. Kelsey is 

also known for using blind holes instead of through holes. 

• The work of Rendler and Vigness [45], in 1966, turned the IHD method 

into a systematised and easily reproducible procedure. They also 

geometrically defined the ASTM E 837-99 type A strain gauge rosette. 

• An important step was also taken in 1971, when Beaney and Procter 

perfected the use of abrasive air jets to allow the formation of a hole 

without stresses induced by the friction process [46]. 

• In 1978, Bijak-Zochowski was the first to describe a reliable method for 

the calculation of non-uniform residual stresses in depth (first reference 

to the so-called integral method) [30]. 

• Regarding the theoretical field, in 1981, Schajer achieved the first 

generalised study of the IHD, using a finite element analysis (FEA). He 

established a numerical procedure for obtaining the calibration 

coefficients (in isotropic materials) using a FEA, also demonstrating the 

independence of these coefficients from the material properties [47]. 

• In 1982, Flaman proposed ultra-high speed drilling as a process that did 

not introduce residual stresses in steels [48]. 

• In 1994, Zhu and Smith presented a theoretical analysis in order to apply 

the method to curved surfaces [49]. In the same year, Schajer and Yang 

developed the method to be used in situations of elastic orthotropy 

(common in modern materials such as fibre reinforced composites) 

considering only uniform stresses in depth [37]. 

• Tootoonian and Schajer proposed, in 1995, a hole drilled incrementally 

with a progressive increase in diameter. This allowed to increase the 

sensitivity in the measurement of strain relaxation by the IHD method 

[50]. 
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• In 1997, a new rosette proposal was made. This rosette had 6 

extensometers and allowed the measurement and relaxation of radial and 

tangential strain. Thanks to this, sensitivity in measuring strains has been 

improved and the depth of evaluation increased. The rosette was 

designated a type C rosette in the revision of ASTM E 837-99. 

• Sicot et al. [51] (2000 to 2003) published works carried out on 

composites where the application of the method was studied for different 

translation and rotation speeds. The objective was to know which 

parameters provide a better drill hole. The same author, in 2004, also 

studied the influence of the number of increments per layer [52]. 

• Some important modifications of ASTM E 837, up to the latest version 

from 2020, were carried out. In 2007, the integral method was inserted 

in the ASTM E 837 standard. Later, in 2013, the Tikhonov regularization 

was also included. 

• Pagliaro and Zuccarello (2007) [53] conducted a study regarding the 

development and application of the through-hole drilling method for the 

residual stress analysis in orthotropic materials. 

• In 2013, Nobre et al. [54] have shown that commercially available ultra-

high speed milling equipment are able to obtain perfect hole shapes 

without observed delamination in GFRPs. In addition, induced drilling 

strains due to the thermomechanical effects of cutting are relatively low. 

• In 2018, Smit and Reid [55] presented a work where Power Series were 

used for determining the residual stress in composite laminates using 

IHD method. In 2020, these authors also extended the use of Tikhonov 

regularization to incremental hole-drilling of composite laminates using 

the integral method. The objective was to smooth the results of residual 

stress distribution and to reduce stress uncertainties through Tikhonov 

regularization [56]. 

• Great contributions were also made by Magnier et al. [45], Shokrieh and 

Ghasemi [57], and Ghasemi and Mohammadi [58], for the development 

of the incremental hole drilling technique applied to orthotropic 

materials. 
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2.2.2. Residual Stress Calculation in Isotropic Materials 

When a hole is drilled in a body that presents residual stresses, a relaxation of 

stresses occurs at that location. This happens because every perpendicular to a free surface 

(the hole surface, in this case) is necessarily a principal axis on which the shear and normal 

stresses are zero [32]. The elimination of these stresses on the hole surface changes the stress 

in the immediately surrounding region, causing the local strains on the surface of the test 

object to change correspondingly [32,40]. Because of this effect, there is a relation between 

residual stresses and relaxed strains, making it possible to calculate the residual stresses 

using the relaxed strain values. Furthermore, the residual stresses can either be 

approximately constant (uniform) with depth or can vary significantly in the depth direction 

(non-uniform), as shown in Figure 2.12. 

 

  

(a) (b) 

Figure 2.12. Hole geometry and residual stresses: (a) uniform stresses; (b) non-uniform stresses [28]. 

 

The surface strains that will be relieved by drilling a hole (diameter 𝐷0) only 

depend on the stresses that originally existed at the boundaries of the hole [59]. Important to 

note that residual stresses are not necessarily along the entire depth of the region around the 

test location. The in-plane stresses are 𝜎𝑥, 𝜎𝑦 and 𝜏𝑥𝑦 throughout the thickness. From these 

values it is possible to determine the principal stresses 𝜎𝑚𝑎𝑥, 𝜎𝑚𝑖𝑛 and the angle 𝛽 defining 

the direction of the maximum principal stress 𝜎𝑚𝑎𝑥, clockwise from the direction of gage 1 

(see Figure 2.13). 

Based on ASTM E 837 standard, the equations for determining in-depth residual 

stresses in isotropic materials are described, for both uniform and non-uniform stresses. 

Normally, uniform residual stress measurements are made in thin workpieces but, it can also 

be made for thick workpieces. Nonetheless, non-uniform residual stress measurements are 
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only made in thick workpieces (ASTM E 837). It is important to defer between thin and 

thick materials. According to Nobre et al. [36], for a thin workpiece, the material thickness 

is small compared with the hole and strain gauge circle diameters, i.e., thickness ranging 

from 0.2𝐷 to 𝐷 (where 𝐷 represents strain gauge circle diameter). On the contrary, for a 

thick workpiece, the material thickness is large compared with the hole and strain gauge 

circle diameters, i.e., thickness greater than 𝐷 to 1.2𝐷 [36]. 

2.2.2.1. Uniform Stress 

Considering the simplest uniaxial residual stress case, where a thin plate is 

subjected to a uniform stress state and where a hole was drilled. For uniform stress state, the 

surface strain relief is related to the relieved principal stresses and their orientation by the 

following equation, based on the Kirsch’s solution [61]: 

 

 εr = (A + B cos 2β)σmax + (A − 𝐵 cos 2β)σmin (2.1) 

 

Since there are three unknown values, it is necessary three independent strain 

measurements and, therefore, a standard three-element strain gauge rosette is used. Figure 

2.13 shows a typical three-element hole-drilling rosette, where the unknowns 𝛽, 𝜎𝑚𝑎𝑥 and 

𝜎𝑚𝑖𝑛 are represented. 

 

 

Figure 2.13. Schematic geometry of a typical three-element clock-wise (CW) hole-drilling rosette [28]. 

 

In the above Equation (2.1), A and B are two calibration constants, which depend 

on the geometry of the strain gauge used, the elastic properties of the material and the radius 
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and depth of the hole. Due to its physical size, strain gauges measure an average strain rather 

than a point value and, thus, the new coefficients �̅� and �̅� are obtained by integrating over 

the active gauge area. An important achievement provided by Schajer in 1981 is that these 

constants are almost material independent, and the following relations are valid [32,48]: 

 

 

{
 

 A̅ =
−a̅(1 + ν)

2E

B̅ =
−b̅

2E

 (2.2) 

 

where, �̅� and �̅� are dimensionless, almost material-independent and vary only 

with the hole geometry and strain gauge rosette used. They represent the strains measured 

for unit stress cases. Due to this achievement, the ASTM E 837 standard was proposed 

tabulating values for types A, B and C strain gauge rosettes (see Figure 2.14), based on finite 

element analysis over the practical limits of hole diameters and depths. 

 

 

Figure 2.14. ASTM three element strain gauge rosette types (different sizes) [28]. 

2.2.2.2. Non-Uniform Stress 

In engineering practice, however, almost all cases present a non-uniform stress 

field distributed over the depth. Manufacturing processes, such as welding, machining, etc. 

or finishing processes, such as surface treatments, to induce favourable compressive residual 

stresses at material surface (shot-peening, deep rolling, case hardening, nitriding, etc.) 

induce non-uniform stresses over the depth with relative high gradients. Due to development 

of calculation methods, it was possible to improve and refine the hole-drilling technique to 

be applied in the study of non-uniform residual stresses in depth.  

 In order to assess the non-uniform residual stresses that are present in a material, 

it is necessary to drill the hole incrementally, to a maximum depth that depends on the hole 

diameter. It is needed to calculate the residual stresses at each increment, based on relieved 

strains measured by strain gauges in the surface material. There are several methods for 
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calculating residual stresses in a non-uniform case (e.g., integral method, power series 

method, average stress method, and differential method). In this work, only the integral 

method and the power series method will be further presented as they are considered the 

most important ones. For more information about the other methods see [39]. The integral 

method is the most accurate and used one. It assumes that the relieved strain measurements 

are the accumulated result of the residual stress in each of the successive depth increments. 

Another important method is the power series method. It assumes that the non-uniform stress 

can be described using a polynomial, dividing the stress field into components of a power 

series. 

 

Integral Method 

The integral method was proposed by Bijak-Zochowski [30] and later developed 

by several authors, among which Schajer’s work (1988) stands out [61]. It is, theoretically, 

the most correct method of calculating residual stresses by IHD technique, and it is only 

possible due to the availability of viable calibration coefficients provided by the use of the 

FEM [61]. In the integral method, the contributions to the total measured strain relaxations 

of the stresses at all depths are considered simultaneously. It is also assumed a constant and 

uniform residual stress analysis in each depth increment. This is an important method 

because it can measure high stress gradients. However, the calculations of this method are 

very sensitive to experimental errors, therefore strain measurements must be extremely 

accurate. Also, the relieved strain values to be used are limited to approximately half the 

hole diameter (𝑍 ≤ 0.2 ∙ 𝐷0) (𝐷0 is the hole diameter) as the margin error increases with 

depth. 

In the hole integral drilling method, it is considered that for each increment in 

hole-depth, the total strain measured on the surface can be divided in two parts. First the 

relieved strain caused by residual stresses on the removed layer, and then the relieved strain 

due to contribution of the residual stress re-distribution caused by the change in hole-

geometry (due to the removal of other layers) [58]. This relation between measured relaxed 

strains and residual stresses in the integral method is shown in Figure 2.15. 
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Figure 2.15. Relation between measured strains (MS) and residual stresses (RS) in the integral method for 
three drilling steps [58]. 

 

For the integral method, the total measured strain is the sum of the strains caused 

by the relaxation of the existing stresses in each increment. According to the procedure 

indicated by ASTM E 837 [28], the following combination strain vectors for each set of 

measured strains 𝜀1, 𝜀2, 𝜀3, have to be calculated: 

 

 

{
 
 

 
 pi =

(ε3 + ε1)i
2

qi =
(ε3 − ε1)i

2

ti =
(ε3 + ε1 − 2ε2)i

2

 (2.3) 

 

where 𝑝 corresponds to the isotropic (equi-biaxial) strain, 𝑞 are the 45° shear 

strain and 𝑡 are the x-y shear strain. The components 𝑝𝑖, 𝑞𝑖 and 𝑡𝑖, after 𝑖 increments, are 

given by: 

 

 

{
 
 
 
 

 
 
 
 
pi =

1 + ν

E
∑a̅ijPj

j=i

i=1

qi =
1

E
∑b̅ijQj

j=i

i=1

ti =
1

E
∑b̅ijTj

j=i

i=1

    , 1 ≤ j ≤ i (2.4) 
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For the first equation present in (2.4), the matrix form is: 

 

 a̅ P =
E

1 + ν
 p (2.5) 

 

where, for a hole of 𝑖 increments: 

 

p =  

[
 
 
 
 
p1
p2
p3
⋮
pi ]
 
 
 
 

            a̅ =

[
 
 
 
 
a̅11 0 0 ⋯ 0
a̅21 a̅22 0 ⋯ 0
a̅31 a̅32 a̅33 ⋯ 0
⋮ ⋮ ⋮ ⋱ ⋮
a̅i1 a̅i2 a̅i3 ⋯ a̅ij]

 
 
 
 

            P =  

[
 
 
 
 
P1
P2
P3
⋮
Pj ]
 
 
 
 

 

 

For the next equations, the corresponding vectors and matrices are very similar. 

It should be noted that both matrix [�̅�] and [�̅�] are lower triangle matrices. Their lines 

correspond to the strain relaxation due to the applied stress in varied increment, keeping the 

hole depth constant. 

The relieved strain (measured on the surface) after performing 𝑖 steps in the hole 

depends on the residual stresses that exist in that material from the first to the 𝑖 increment 

(1 ≤ 𝑗 ≤ 𝑖). The calibration constants �̅�𝑖𝑗 and �̅�𝑖𝑗 (presented in Equations (2.4)) relate the 

relieved strains with the residual stresses. They indicate the relieved strains in a hole 𝑖 steps 

deep, due to unit stresses within a hole step 𝑗 [58]. The interpretation of de calibration 

constants is shown in Figure 2.16. 

 

 

Figure 2.16. Physical interpretation of coefficients �̅�𝐢𝐣 for the integral method. (adapted from article [56]). 
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The 𝜎𝑚𝑎𝑥,  𝜎𝑚𝑖𝑛 and 𝛽 values for each set of measurements corresponding to 

each increment, are calculated using the equations: 

 

 (σmax)j, (σmin)j = Pj ±√Qj
2 + Tj

2 (2.6) 

 βj =
1

2
arctan (

−Tj

−Qj
) (2.7) 

 

They are nearly the same as the equations used for uniform stress, but in this 

case the calculation is done for each increment. 

 

Power Series Method 

The power series method was introduced by Schajer in 1981 [47]. By using 

weighted averages, this method allows to minimise the influence of random errors in the 

relieved strain measurement. Thus, there is a substantial improvement in the numerical 

stability and reliability of calculations, especially if many strain measurements are made in 

small increments, contrary to the integral method. The disadvantage of this method is that it 

has a lower spatial resolution. Finite element calculations are used to compute series of 

coefficients �̅�(ℎ) 
0 , �̅�(ℎ) 

1 , �̅�(ℎ) 
2  and �̅�(ℎ) 

0 , �̅�(ℎ) 
1 , �̅�(ℎ) 

2 , these corresponding to the strain 

responses when hole-drilling into stress fields with power series variations with depth ℎ. 

This is, 𝜎(ℎ) = 1 
0 , 𝜎(ℎ) = ℎ 

1 , 𝜎(ℎ) = ℎ2 
2 , etc. Thus, the value of each component of the 

power series 𝜎(ℎ) 
0 , 𝜎(ℎ) 

1 , 𝜎(ℎ) 
2 , etc., is determined relative to the original residual stress 

field. In practice, two terms are typically used (linear distributions in depth). Applying the 

least squares method, the P component is obtained by solving the equation: 

 

 [
∑a̅0a̅0 ∑a̅0a̅1

∑a̅1a̅0 ∑a̅1a̅1

] [
P0
 
P1

] =
E

1 + ν
[
∑a̅0p

∑a̅0p
] (2.8) 

 

The Q and T components are obtained by equations identical to Equation (2.8). 

One of the most current methods, presented by Smit and Reid [56] for 

determining residual stresses is based on this method. However, rather than using it for 

determine the residual distribution through the total hole depth, they came up with the idea 

of considering the method for each layer of the laminate. 
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2.2.3. Residual Stress Calculation in Composite Laminates 

Since composite laminates are anisotropic and layered materials, presenting 

different properties through it, there is a non-uniform residual stress along its depth. The 

calculation of residual stresses in hybrid components are distinct from what is used in 

isotropic materials with non-uniform stress field (ASTM E 837 [28]). Measuring the residual 

stresses in fibre reinforced composites, the calibration coefficients that relate the residual 

stress existing in a depth increment with the relieved strains measured at material surface, 

depend directly on the elastic constants of the material. Every time a new material is 

analysed, new coefficients need to be calculated by FEM. Because of this, it becomes an 

impossible task to develop a standard methodology for determination of residual stresses in 

composite materials.  

The integral method used for isotropic materials cannot be applied for composite 

materials, as mentioned in [62]. As an alternative,  Equation (2.9), where relieved strain and 

residual stress can be related are presented below, being applicable for any material where a 

linear elastic behaviour is assumed [45]. 

 

 [ 

ε1
ε3
ε2
 ] = [ 

C11 C12 C13

C21 C22 C23

C31 C32 C33
 ] ∙ [ 

σx
σy
τxy
 ] = [C] ∙ (σ) (2.9) 

   

The matrix [𝐶], instead of a single calibration coefficient, in Equation (2.9), 

result from the material being anisotropic, as the 9 coefficients 𝐶𝑘𝑙 directly depend on the 

elastic constants of the material. By imposing a unit uniform stress value 𝜎𝑥, it contributes 

to strain values 𝜀1, 𝜀3 and 𝜀2. The contribution of this single stress value (𝜎𝑥) on the relieved 

strains measured is given by the coefficients 𝐶11, 𝐶21 and 𝐶31, respectively. For calculating 

the calibration coefficients 𝐶12, 𝐶22 and 𝐶32 a unit load is applied in the y direction (𝜎𝑦)  

and for the coefficients 𝐶13, 𝐶23 and 𝐶33, they can be obtained by imposing the in-plane unit 

shear load (𝜏𝑥𝑦), [23,45,58]. The Figure 2.17 shows a strain gauge rosette placement as well 

as the localised strain gauges that correspond to the measured relieved strains 𝜀1, 𝜀2, 𝜀3, and 

the direction of the imposed stresses 𝜎𝑥, 𝜎𝑦, 𝜏𝑥𝑦. 
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Figure 2.17. Example of a strain gauge rosette placement. 

 

For measuring a non-uniform residual stress state in anisotropic and layered 

materials, Akbari et al. [63] proposed the pulse integral method. The equation that results 

from the application of this method, where the Equation (2.9) was expanded by using the 

integral incremental formalism, is [45,58]: 

 

 (ε)i = [ 

ε1
ε3
ε2
 ]

i

=∑[ 
C11 C12 C13

C21 C22 C23

C31 C32 C33
 ]

ij

i

j=1

∙ [ 

σx
σy
τxy
 ]

j

=∑[C]ij

i

j=1

∙ (σ)j, 1 ≤ j ≤ i (2.10) 

 

In this case, although it is a non-uniform stress situation, the residual stress state 

within each depth increment is considered constant and uniform. Each matrix [𝐶]𝑖𝑗 in 

Equation (2.10) is composed by 9 coefficients 𝐶𝑘𝑙 for evaluating residual stress. The 

coefficient 𝐶𝑖𝑗
𝑘𝑙 inside the matrix [𝐶]𝑖𝑗 depends not only on the residual stress (𝜎)𝑗 in the 

present 𝑗th increment, but also on all the residual stresses which were present in all previously 

drilled increments. For an easier comprehension, the general expanded matrix equation, for 

a situation where 𝑖 increments are performed, is following represented (in Figure 2.18), with 

some extra information. 

The matrix [𝐶]𝑘𝑙
𝑖𝑗

 is lower triangular (since only stresses that exist within the hole 

contribute to measured relieved strains) and square, as the number of rows (equal to the 

number of columns) represents the number of increments in the drilled hole (𝑖 × 𝑖). The 

interpretation of de calibration coefficient sub-matrices is shown in Figure 2.19. It is similar 

for isotropic materials (Figure 2.16), but in place of the calibration constants, there are sub-

matrices of calibration coefficients, this due to the dependance on the elastic constants of the 

anisotropic and layered material. 
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Figure 2.18. General matrix format of the Equation (2.10) corresponding to the integral method (adapted 
form article [58]). 

 

 

Figure 2.19. Physical interpretation of 2D calibration coefficients 𝑪𝒊𝒋 for the integral method. (adapted from 

article [56]). 

 

To determine the residual stresses from the integral equations, numerical 

solutions are required [64]. Two ways of obtaining residual stresses are presented in this 

work.  
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Inverse problem by Tikhonov regularization 

It is possible to solve the Equation (2.10) by an inverse problem, using Tikhonov 

regularization. This method, successfully used in isotropic materials to reduce uncertainty in 

residual stress determination, due to measurement errors, can be applied in composite 

laminates, but just through the use of an approximation. This because there is no 

trigonometric relationship between residual stresses and residual strains as there is for 

isotropic materials and, therefore, decoupling of equi-biaxial and shear components of 

residual stress is not possible. However, for orthotropic laminates, Tikhonov regularization 

can be applied separately to the primary strain in each measurement direction through 

simplifying approximations [56]. The approach consists of considering the use of 

regularization independently for x and y, considering that the shear stresses are negligible. 

For this specific situation, a part of equation shown in Figure 2.18 is presented in a simple 

form by Equation (2.11). Where {𝜀1, 𝜀2, 𝜀3, ⋯ , 𝜀𝑖}
𝑇 corresponds to measured strains in the 

same strain gauge for all increments. {𝜎1, 𝜎2, 𝜎3, ⋯ , 𝜎𝑗}
𝑇
 corresponds to the residual stresses 

for all increments, where only one load case is applied, and matrix [𝐶] is composed by all 

coefficients 𝐶𝑖𝑗
𝑘𝑙, existing in matrix [𝐶]𝑖𝑗

𝑘𝑙 from Figure 2.18, when 𝑘 and 𝑙 do not vary. 

 

 

[
 
 
 
 
𝜀1
𝜀2
𝜀3
⋮
𝜀𝑖 ]
 
 
 
 

=

[
 
 
 
 
𝐶11 0 0 ⋯ 0
𝐶21 𝐶22 0 ⋯ 0
𝐶31 𝐶32 𝐶33 ⋯ 0
⋮ ⋮ ⋮ ⋱ ⋮
𝐶𝑖1 𝐶𝑖2 𝐶𝑖3 ⋯ 𝐶𝑖𝑗]

 
 
 
 

∙

[
 
 
 
 
𝜎1
𝜎2
𝜎3
⋮
𝜎𝑗 ]
 
 
 
 

 
(2.11) 

 

By adding a penalty function to Equation (2.11), where [𝐷] is the matrix to 

define the penalization type, it is possible to improve the stabilization of the calculated 

results:  

 

 [C]𝑇[𝜀] = ([𝐶]𝑇[𝐶] + 𝛼[𝐷]𝑇[𝐷])[𝜎] 
(2.12) 

 

For taking into account the discontinuities at the interfaces between materials, 

the rows of matrix [𝐷] on both sides of an interface need to be zero. As 𝛼 is the regularization 

parameter, an estimate of the optimal value can be iteratively determined by using Morozov 

Discrepancy Principle [65]. The Equation (2.12) is implemented separately for each stress 
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component (x and y). More about the use of Tikhonov regularization in anisotropic and 

layered materials can be seen in articles [34,56]. 

 

Iterative method 

Another alternative resolution, based on Magnier’s [45] and Ghasemi’s [58] 

works, is solving the Equation (2.10), as a function of residual stresses in a iterative solving 

process. With this direct process of substitution, it is possible to obtain the global equation 

capable of determining the corresponding residual stresses for each increment. Still, this 

iterative method causes the solutions to be quite sensitive to measurement errors for the ill-

conditioned [𝐶]𝑖𝑗, as well as the inverse solution, so the Tikhonov regularization should get 

better results. The iterative resolution process is further developed in the following chapter, 

as this was the solving process chosen to be used in this work. 
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3. METHOD FOR CALCULATING RESIDUAL 
STRESSES IN FMLS AND SOFTWARE 
DEVELOPMENT 

The rosette is attached on the specimen surface, so the relieved strains are read 

in the surface part, while the non-uniform stresses exist through thickness. Since there is a 

difference in depth of the residual stresses and the measured relieved strains, and all stress 

components in all material removed affect the measured strains, residual stresses and 

relieved strains do not present a one-to-one relationship [56,58]. As already mentioned, 

calibration coefficients relate the residual stresses that exist initially in the material with the 

relaxed strains measured on the specimen surface. Integral equations govern the relationship 

between the residual stresses and the measured strains, with the calibration coefficients 

always being part of them. An integral matrix equation that relates these variables was 

presented in the previous chapter (Figure 2.18). It is necessary to solve the system of 

equations as a function of the variable residual stress. It was already mentioned that the 

system of equations can be solved by the inverse problem using Tikhonov regularization. 

This method, prescribed by the ASTM standard, is more efficient for ill-conditioned 

numerical cases, and usually involved in inverse problems, as in the case of the incremental 

hole-drilling residual stress calculation. This approach is a good choice, since this method is 

able to smooth the final residual stress values and, therefore, the scattering, in particular for 

the deeper increments. Since South African partners (Wits University) developed and 

determine the residual stresses by this method, our final results will be compared with 

Tikhonov regularization. 

In this work, Equation (2.10) was solved by an iterative solving method, that was 

also used by Magnier [45] and Ghasemi [58]. First, and to facilitate the problem solving, the 

equation was divided in two parts (see Figure 2.15): the relieved strain caused by residual 

stresses on the removed layer (sub-matrix that lie on the diagonal of the whole matrix and 

residual stresses (𝑖)) and the relieved strain due to contribution of the residual stress re-
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distribution caused by the change in hole-geometry (remaining sub-matrices and residual 

stresses (𝑗)), for each line (increment), as shown in the Equation (3.1). 
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(3.1) 

 

Then, the equation was developed as a function of the residual stresses for each 

increment, while the sub-matrices that lie diagonally, become inverse matrices: 
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(3.2) 

 

As already mentioned, for each drilling increment, there is an influence by the 

previous ones. This influence can be seen in Equation (3.2), when residual stresses are 

determined, increment by increment, taking into account all previous residual stresses. The 

sub-matrices which are part of the same row of the whole matrix (Figure 2.18) are used in 

resolution of each equation corresponding to its incremental depth 𝑖. For a better 

understanding, the equations used to obtain the residual stresses within three depth 

increments are presented below. 

For the first drilling increment, residual stresses are determined by: 
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(3.3) 

 

In the second drilling increment, residual stresses are: 
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For the third drilling increment, residual stresses are obtained by: 
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To solve the general equation for each increment, a code in Python was created. 

By implementing the Equation (3.2), the code gives us the values of residual stresses 

corresponding to each increment, {𝜎𝑥, 𝜎𝑦, 𝜏𝑥𝑦 }𝑗
𝑇
. It is important to note that the coefficient 

matrix obtained by the FEM, through a 3D simulation, presents a different format from the 

matrix presented in Figure 2.18. Nonetheless, the calibration coefficients 𝐶𝑖𝑗
𝑘𝑙 present in each 

are the same, just differentiating in its location. The whole matrix obtained by FEM is shown 

in Equation (3.6) and has 9 lower triangular sub-matrices [𝐶]𝑘𝑙 associated. 
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(3.6) 

 

These sub-matrices’ format [𝐶]𝑘𝑙 is presented in Equation (3.7) and each one 

corresponds to a load case (𝑙) and a strain (𝑘) record.  
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 (3.7) 

Therefore, in this code it was necessary to transform the obtained matrix (3.6) 

into a matrix with the same format as presented in Figure 2.18, so that it was possible to 

calculate the residual stresses through the use of Equation (3.2). The script created, capable 

to solve, by iterative method, the system of equations presented by the integral method, can 

be seen in ANNEX A 
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4. MATERIALS AND EXPERIMENTAL PROCEDURE 

To study the mechanical behaviour or to determine residual stresses, it is very 

important to consider what material is used and its properties, since for FMLs there is a great 

dependence on the material properties and the stacking ply strategy. In the case of the IHD, 

the calibration coefficients, necessary for residual stresses calculation, are dependent of the 

fibre properties (orthotropic in nature), but also of such strategy. The manufacturing/forming 

process used, ends up having its influence on the existence of residual stresses and in their 

corresponding amplitude. The FML used in the present work was glass fibre reinforced 

polymer embedded with steel.  

During IHD tests, to determine the relaxed strains caused by the relief of residual 

stresses, it was necessary to carry out the experimental procedure of the IHD method. The 

incremental hole-drilling performed on the specimens was done carefully and always 

following the rules for this technique to obtain viable relaxed strain values. A description of 

each step of this process is given, from the moment the specimen is prepared to the end of 

the determination of the relieved strains. 

4.1. GFRP/Steel Material 

GFRP composites are highly favourable structural materials in aerospace and 

automotive applications due to their superior high strength-to-weight ratio, but their brittle 

failure behaviour compromises the structural integrity and damage tolerance in case of 

impact or crash event. Since metallic materials are comparatively more ductile but heavier, 

by combining metals and GFRP, a hybrid composite with optimised mechanical properties 

is obtained [38]. 

4.1.1. Manufacturing Process 

Samples were manufactured by using an advanced intrinsic manufacturing 

technology, where two plies of cross ply prepreg glass were pressed and bonded together on 

both sides of an internal steel sheet (1 mm). For increasing the bonding behaviour of 

dissimilar materials, the surface of the metal side was processed by sand blasting before 
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manufacturing for increasing the surface roughness, thus improving the mechanical 

interlocking. In the manufacturing process of the samples, prepared glass fibre prepregs 

[0º/90º] with a thickness of 0.44 mm (2 plies) were first placed into a heated die with the 

dimension of 100 mm × 250 mm × 20 mm. As the next step, a thin metal sheet with thickness 

of 1 mm was placed on top of the GFRP prepreg and finally the same GFRP prepregs [0º/90º] 

were pressed onto the sheet metal by a heated punch. A pressure of 0.3 MPa and the 

temperature of 160 °C, with the constant curing process of 18 minutes, were employed. After 

curing, the samples which were not further pressed were cooled down in laboratory 

atmosphere with a cooling rate of approximately 100 C/min. The objective was to obtain 

final samples to also allow the use of diffraction methods, in particular neutron diffraction, 

to complement the analysis performed by IHD and validate the obtained results. Figure 4.1 

shows the designed sample configuration used in the present work. 

 

 

Figure 4.1. Schematic illustration of GFRP/steel FML, with [𝟎°/𝟗𝟎°/𝑺𝒕𝒆𝒆𝒍]𝒔 configuration, used in this 
work. 

4.1.2. Specimen Information 

In this particular situation, the type of glass used was G U300-0/NF-E506/26% 

(with resin content 26%), while the steel employed was HC340LA (micro-alloyed steel). 

The relevant properties of these two materials are given in Table 4.1. The mechanical 

properties were experimentally determined and evaluated by using the Classical Laminate 

Theory (CLT). Table 4.1 presents the mechanical properties determined for the GFRP plies 

and steel of the hybrid composites used in the present work. The obtained values are 

according to DIN EN ISO 527, DIN 256 EN ISO 14129 and DIN EN ISO 6892-1. 

 

 

 



 

 

  MATERIALS AND EXPERIMENTAL PROCEDURE 

 

 

Rute Rafaela de Almeida Vasconcelos  41 

 

Table 4.1. Material properties of GFRP/steel FML used in the numerical/experimental results. 

 

Young’s Modulus (GPa) Poisson’s Ratio Shear Modulus (GPa) 

𝑬𝒙 𝑬𝒚 𝑬𝒛 𝝂𝒙𝒚 𝝂𝒙𝒛 𝝂𝒚𝒛 𝑮𝒙𝒚 𝑮𝒙𝒛 𝑮𝒚𝒛 

GFRP 33.98 8.79 8.79 0.0861 0.3343 0.37 5.23 5.23 3.21 

Steel 190000 0.29  

 

Final GFRP/Steel samples exhibit dimensions of 1.88 𝑚𝑚 (thickness) × 25 𝑚𝑚 

(width) × 250 𝑚𝑚 (length). The total thickness is divided into two pairs of glass fibre layers, 

where each layer is 0.22 𝑚𝑚 thick, and 1 𝑚𝑚 thick layer of alloy steel. A cross-section of 

this specimen can be seen in Figure 4.2. These specimens have this distribution of layers in 

order to perform different techniques on them. 

 

 

Figure 4.2. Representation of the cross-section of the specimen used in this work. 

4.2. Experimental Application of the IHD Technique 

The experimental procedure related to the IHD is a crucial part for determining 

the existing residual stresses in the material. Without obtaining the values of the relieved 

strains, it would not be possible to reach the residual stress values by this method. So, it is 

vital to make sure this process is done carefully and correctly. The experimental procedure 

of the IHD method can be divided into several important parts, bearing in mind that the 

success of all these parts depends on the operator who is carrying out the process. For a 

correct and complete description of the entire procedure, see [51,67]. 

First, the most suitable rosette for this type of application must be selected. In 

this study, the rosette used is an HBM rosette (RY61M) which has six strain gauges, is the 

same as the one shown in Figure 4.3.  
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For evaluation of residual stresses, only the strain information of three strain 

gauges is required. However, the more strain gauges used, the higher the accuracy of the 

values obtained. As in this case (Figure 4.3), each rosette has a diametrically opposite strain 

gauge, the values are obtained in pairs and an average between them is made, so if the hole 

is not fully centred between the strain gauges, the error that comes with it ends up 

disappearing. In the end, only three strain gauge values (𝜀1, 𝜀2, 𝜀3) in each measurement were 

used. 

 

 

Figure 4.3.  FML samples showing the stacking ply configuration, its geometry and IHD measuring point using 
a HBM RY61M strain gauge rosette. The IHD measuring coordinates are also shown. 

 

To start the rosette installation, a careful prepared surface is needed. No product 

that could eventually change the material’s properties should be used, to avoid contamination 

of the material’s surface. Polishing should be avoided to ensure that no residual stresses are 

added to the material. Only isopropyl alcohol should be used to clean the surface of the 

GFRP/Steel specimens (acids and bases attack polymers). 

Accurate alignment is crucial to achieve a good measurement, so it is extremely 

important to ensure that the drill is centred precisely at the centre of the gauge rosette. To 

correctly orient the rosette and to place it in the desired position, it is important to make four 

lines in the surface around the target centre. 
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To place the rosette, a special high temperature resistant glue is needed along 

with a catalyst to speed up the bounding. After inserting the glue into the rosette, and placing 

it in the desired location, finger’s pressure should be applied for a few minutes (3 min.). 

After the rosette installation, it is necessary to connect the rosette to a system 

that can read the data and analyse it, so it can convert the information obtained by each strain 

gauge into relieved strain values. The electrical connection is done by connecting the rosette 

grids into a Wheatstone bridge circuits and by making small welds that connect the rosette 

grids to the cables. A spot-welding pen is used at this step of the procedure. For this particular 

case, relaxed surfaced strains are measured using a universal digital system, Spider 8-30, 

HBM. The system is connected to the computer and data acquisition is done by software 

Catman Express, HBM. 

Regarding the drilling procedure, it is of extreme importance that the hole is 

drilled into the exactly target centre of the strain gauge rosette. By using the optical head 

provided with the drilling machine we can centre the tool holder, so when the drilling tool is 

placed, it will drill in the exact location. In Figure 4.4, the drilling tool and the experimental 

procedure can be observed.  

 

 

Figure 4.4. Vishay RS 200 Milling Guide (drilling tool) existing at GTR lab and experimental procedure. 

 

There are several end mills of varying diameter that can be used for this 

procedure (smaller (0.8 mm) or larger (3.2 mm)), depending on the assessment strategy. For 
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the present work, an end mill of 1.6 mm diameter was used, where final diameter of the hole 

surrounded 1.8 mm. The incremental hole-drilling procedure is usually done in small 

increments, always measuring the relieved strains after each increment. In the experimental 

procedure, eighteen material removal increments were done, and very small depth 

increments were considered (0.01 mm) up to a depth of about 1 mm. Despite this depth 

value, it is not possible to consider all depth for determination of residual stresses since the 

values obtained at a depth greater than 0.4 ∙ 𝐷 are not feasible [32]. As we drill, the 

sensitivity to measure surface strains due to stresses in depth is lost. 

4.3. Neutron Diffraction Technique  

Before hole-drilling, the residual stresses were previously determined, at same 

locations in the sample, at the South African Nuclear Energy Corporation – NECSA, by 

neutron diffraction.  

Briefly explaining, the neutron diffraction technique uses the unique penetrating 

power of the neutron with the sensitivity of diffraction, to measure the separation of lattice 

planes within grains of polycrystalline engineering materials, thus providing an internal 

strain gauge. Using calibrated elastic constants, the strain is then converted to stress [27,68].  

The stress investigations in South Africa (NECSA) were performed using the 

Materials Probe for Internal Strain Investigations (MPISI) [69] angle dispersive neutron 

strain scanner located at beam port 5 of the SAFARI-1 nuclear research reactor. In this 

technique the penetrating capabilities of thermal neutrons are used to measure the 

interatomic spacing of the crystal lattice structure within a well-defined gauge volume (GV), 

from which the lattice strain and tri-axial residual stresses can be calculated by incorporating 

the elasticity modulus of the material. The beam was monochromatic with a wavelength of 

1.67 Å. A gauge volume of 0.2 mm × 0.2 mm × 10 mm was used and the d-spacing of the 

-Fe (211) lattice plane was measured around a 2 angle of 85.5. The 10 mm length was 

aligned parallel to the surface and 0.44 mm length was aligned through the depth. This shape 

and orientation were chosen to reduce the gauge volume, having enough space resolution to 

measure high gradient residual stresses through the steel layer, since ND technique requires 

as large a gauge volume as possible to improve neutron counting statistics. Table 4.2 resumes 

the MPISI configuration parameters used during the experiments. 
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Table 4.2. MPISI configuration parameters for ND residual stress measurements. 

Monochromator crystal plane Si (331) 

Estimated wavelength [Å] 1.648 

Detector centre angle (𝟐𝜽) 90.0° 

Positional accuracy of calibration sample edges [mm] ~ 0.02 

Primary and secondary slit distances from CoR [mm] 9 

Nominal size of primary slit opening [mm2] 0.2 × 10.0 

Nominal size of secondary slit opening [mm] 0.2 

Projected instrument GV [mm3] 0.21 × 10.1 (h) × 0.21 
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5. NUMERICAL SIMULATION: DETERMINATION 
OF CALIBRATION COEFFICIENTS 

As mentioned before, numerical simulation needs to be used to obtain the 

calibration coefficients that relate the relieved strains to the residual stresses present in the 

material and which are to be determined. Nine elastic constants (𝐸𝑥, 𝐸𝑦, 𝐸𝑧, 𝜈𝑥𝑦, 𝜈𝑥𝑧, 𝜈𝑦𝑧, 

𝐺𝑥𝑦, 𝐺𝑥𝑧, 𝐺𝑦𝑧) are required to relate the stresses and strains in an anisotropic and layered 

material. For obtaining the whole [𝐶]𝑖𝑗
𝑘𝑙 matrix, the effects of 𝜎𝑥, 𝜎𝑦 and 𝜏𝑥𝑦 on 𝜀 are 

considered separately. It can be shown that all matrix values can be determined considering 

three different stress states. The first column of [𝐶]𝑖𝑗 can be determined by considering the 

uniaxial stress state 𝛔𝐱 = 𝟏, 𝛔𝐲 = 𝝉𝒙𝒚 = 𝟎, the second column considering 𝛔𝐲 = 𝟏, 𝛔𝐱 =

𝝉𝒙𝒚 = 𝟎, and the last column considering a pure shear stress state 𝛕𝐱𝐲 = 𝟏, 𝛔𝐱 = 𝛔𝐲 = 𝟎. 

The unit loads are converted into the cylindrical coordinate system by Equation (5.1) [45], 

and 𝜎𝑟 and 𝜏𝑟𝜃 are applied at the hole boundary within each depth increment for calculating 

the coefficients in the finite element model. More information on the calculation of the 

calibration coefficients by FEM in anisotropic materials can be found in [8,14, 34, 2]. 

 

 [
σr
τrθ
] = [ cos2 θ sin2 θ sin 2θ

−0.5 ∙ sin 2θ 0.5 ∙ sin 2θ cos 2θ
] ∙ [

σx
σy
τxy
] (5.1) 

 

Figure 5.1. ANSYS finite element analysis mesh used for calculation of coefficients in orthotropicand layered 
materials (left) and an amplified view showing different layers of the material (GFRP 𝟎°/GFRP 𝟗𝟎°/Steel)s 

used in the present study (right). 
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In the present work, the finite element model, created from ANSYS engineering 

simulation software, whose its mesh is visible in Figure 5.1, is a cylindrical model with a 

hole diameter of 1.8 𝑚𝑚, the outer diameter equal to 5 times the average radius of the strain 

gauge rosette used (to avoid edge effects) and a total height of 1.88 𝑚𝑚, corresponding to 

the samples thicknesses (see chapter 4). Only the bottom edge at outer diameter is fixed, 

with the purpose of no interference in the behaviour of the material during the simulation, 

since the thickness of the specimen can be considered a sensitive parameter (thickness much 

smaller compared to its length). Two different types of elements were used to create the 

model. SOLID186 higher order 3-D 20-node solid element that exhibits quadratic 

displacement behaviour, was used to modelling the different material layers. The element is 

defined by 20 nodes having three degrees of freedom per node: translations in the nodal x, 

y, and z directions. This element was used with two ANSYS available key options: layered 

structural solid to model layered thick shells or solids, which allow modelling the different 

glass fibre plies and homogeneous structural solid to modelling the metallic (steel) layers. In 

addition, SURF154 3-D structural surface effect element, which is used for various load and 

surface effect applications in 3-D structural analyses. In this case, this element was used to 

apply stresses at surface for each incremental hole depth. The FEM model is composed by, 

approximately, three hundred thousand elements and one million and thirteen thousand 

nodes. 

 

 

(a) (b) (c) 

Figure 5.2. Basic stress conditions that were applied to the FEM model: (a) 𝛔𝐱 = 𝟏, 𝛔𝐲 = 𝝉𝒙𝒚 = 𝟎 ; (b) 𝛔𝐲 =

𝟏, 𝛔𝐱 = 𝝉𝒙𝒚 = 𝟎 ; (c) 𝛕𝐱𝐲 = 𝟏, 𝛔𝐱 = 𝛔𝐲 = 𝟎. 
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The IHD was simulated using the “birth and death of elements” ANSYS code 

features. For each hole depth (hole-volume removed), the load cases (a), (b) and (c) 

presented in Figure 5.2, and already converted into 𝜎𝑟 and 𝜏𝑟𝜃 by Equation (5.1), were 

successively applied to the hole wall for each depth increment (from 𝑗 =  1 to 𝑖). The load 

cases were applied to simulate the IHD procedure, as they take the role of residual stresses. 

After applying stress in each depth increment, the relieved strain values, in the region of 

each strain gauge, were obtained and Equation (2.10) was solved by inverse problem to 

obtain each calibration matrix element. By carrying out this process repeatedly, it was 

possible to determine all calibration coefficients of the whole matrix [𝐶]𝑖𝑗
𝑘𝑙 presented in 

Equation (3.6). As mentioned above, for calculation of the first column of equation presented 

in Figure 2.18, where the coefficients 𝐶𝑖𝑗
11, 𝐶𝑖𝑗

21 and 𝐶𝑖𝑗
31 are part of, a stress 𝜎𝑥 (load case (a)) 

should be applied at the hole wall of each depth-increment. In other words, these three 

coefficients are the effects of the stress 𝜎𝑥 on the measured strains along the strain gauge 1, 

3 and 2, respectively. The same method is applied for the second (𝜎𝑦 applied) and third (𝜏𝑥𝑦 

applied) columns (see Figure 5.3).  

 

 

Figure 5.3. Meaning of the calibration coefficients 𝑪𝒊𝒋 in each sub-matrix (adapted from article [34]). 

 

It is relevant to note that, in all sub-matrices, the first and second coefficients of 

the third column (𝐶𝑖𝑗
13 and 𝐶𝑖𝑗

23) are equal to zero. These coefficients are the effects of the 

shear residual stresses on the measured strain gauges 1 (0° direction) and 3 (90° direction), 

and because of the absence of shear residual stresses in them, these coefficients are equal to 

zero [58].  
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The relieved strains are obtained by a simulated rosette (Figure 5.4.a)). This 

rosette, used for FEM model, is identical to the 6-element strain gauge rosette RY61M from 

HBM (Figure 5.4.b)). Note that the three diametrically opposite strain gauges were not 

considered as they exist to avoid possible eccentricity effects during experimental procedure. 

In the end, only three strain gauge values are used. 

 

 

 

(a) (b) 

Figure 5.4. (a) ANSYS finite element mesh with the location of three strain gauges representing the HBM 
rosette; (b) HBM rosette (RY61M) [66]. 

 

To obtain the relieved strain values caused by the three loads referred above, 

displacement data were used. Practical strain gauges measure strain over a finite area that 

corresponds to the region where they are located. When measured strains with 

displacements, the strain can be obtained by single integration of the displacement field 

along the 𝑋1 and 𝑋2 edges of the strain gauge area [62] – see Figure 5.5.  

With (𝑋1, 𝑌1) and (𝑋2, 𝑌2) being the corner coordinates of grid line, and using the 

mean value theorem, the integration can be closely approximated by [62]: 

 

 𝜀∗ ≈
∑ (𝑈(𝑋2, 𝑌(𝑚)) − 𝑈(𝑋1, 𝑌(𝑚)))
𝑛
𝑚=1

𝑛(𝑋2 − 𝑋1)
 (5.2) 

 

Through the Equation (5.2), it is possible to observe that the relieved strain 𝜀∗ 

depends solely on the relative displacements along the 𝑋1 and 𝑋2 boundaries, and not at all 

on the distribution of the displacements or strains in the area between. To the case of a strain 
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gauge oriented in any arbitrary direction, knowing that (𝑋, 𝑌) axes are associated with 

direction of the grid lines of the strain gauge and considered (𝑥, 𝑦) axes associated with the 

geometry of the specimen, where 𝜙 is the angle between (𝑋, 𝑌) axes and (𝑥, 𝑦) axes; for 

cartesian (𝑥, 𝑦) coordinate system, U (displacement) is [62]: 

 

 𝑈(𝑋, 𝑌) = 𝑢(𝑥, 𝑦) cos𝜙 + 𝑣(𝑥, 𝑦) sin𝜙 (5.3) 

 

 

Figure 5.5. Strain gauge grid area and, marked in red, the corner coordinates of grid lines where 
displacements are read. 

 

ANNEX C shows the radial and tangential strain field around the hole, obtained 

by the FEM simulation, for the load case (a), (b) and (c) corresponding to the first and last 

increment (18th increment), when the hole attained its maximum simulated depth (around 1 

mm depth). The 9 sub-matrices [𝐶]𝑘𝑙 determined by numerical simulation, corresponding to 

the samples studied in this thesis, are presented in ANNEX B. 
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6. EXPERIMENTAL RESULTS AND DISCUSSION 

In this chapter, all the results obtained experimentally and computationally are 

presented. These include the relieved strains determined by experimental IHD technique and 

the residual stresses calculated by the software developed. Also included for further 

comparison are the residual stresses obtained by the partners from Wits University, using 

Tikhonov regularization and those obtained by the neutron diffraction method. In addition, 

a numerical simulation performed in this work, where external uniform stresses were applied 

to a model sample, is presented. The relieved strains presented through the depth model were 

determined, and used, collectively with the calibration coefficients earlier obtained, so as to 

determine the applied stress in the model. 

6.1. Relieved Strains  

Several experimental tests (described in section 4.2) were carried out on identical 

specimens (Figure 4.2) with known properties (Table 4.1). Three tests that were performed 

with a diameter of the hole approximately equal to 1.80 𝑚𝑚 will be following presented and 

analysed. The values of the relaxed strain, measured as a function of depth and obtained in 

the present work in the three tests performed, are presented in Figure 6.1, Figure 6.2 and 

Figure 6.3.   

 

Figure 6.1. Sample 1 - Graph evolution of relieved strains 𝜺𝟏, 𝜺𝟐 and 𝜺𝟑 along depth. 
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Figure 6.2. Sample 2 - Graph evolution of relieved strains 𝜺𝟏, 𝜺𝟐 and 𝜺𝟑 along depth. 

 

 

Figure 6.3. Sample 3 - Graph evolution of relieved strains 𝜺𝟏, 𝜺𝟐 and 𝜺𝟑 along depth. 

 

All three samples present similar behaviour in evolution of the three relieved 

strains in depth and the range of values for all samples is roughly the same. While relieved 

strains data read by strain gauge with direction of x axis (𝜀1) have positive values, relieved 

strains obtained by strain gauges with direction of y axis (𝜀3) and direction of 45° (𝜀2) 

present negative values. The values of strain gauge 𝜀2 are very close to zero. Finally, it is 

possible to identify a visible inversion in the slope of the strain relaxation curves, which 

clearly indicates the discontinuity induced at layers interface (different properties). 
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6.2. Residual Stresses 

The residual stresses were determined by the iterative calculation method 

described in chapter 3, using the software developed. For each sample, it was possible to 

obtain three graphics corresponding to the in-plane residual stress (𝜎𝑥, 𝜎𝑦 and 𝜏𝑥𝑦) presented 

in the material. All the obtained residual stresses for the three samples are shown in Figure 

6.4 to Figure 6.12, where the residual stresses are in function of depth, and presented at the 

centre of each depth increment. The trend line of each dot group is displayed with the same 

colour as the dots. The graphics corresponding to the same type of residual stress are 

presented in groups so that the results of the various samples can be compared. 

Starting by comparing the graphics corresponding to the same type of residual 

stress but obtained in different samples, it is possible to verify a certain similarity on the 

residual stress distribution observed for the three samples, especially for the cases of 

longitudinal (x) and transverse (y) residual stress – according to Figure 4.3. While within 

each layer the residual stress follows a certain behaviour, it can be observed (in all graphics) 

a clear discontinuity at layers interface of the material. Thus, it is feasible to make an easy 

distinction between the 0° oriented ply, 90° oriented ply and steel alloy by the observed 

points. For the case of longitudinal residual stress, the first layer presents compressive stress, 

while the second layer mostly presents tensile stress. In the steel layer there are both 

compressive and tensile stresses as the values are more vertically spread compared to the 

other layers. For the graphics corresponding to transverse residual stress, the 0° ply has 

tensile stress, while 90° ply presents compressive stress. The behaviour in the steel ply is 

similar to the one observed for the case of longitudinal residual stress. Finally, in the case of 

shear residual stress, there is a greater observed difference between samples but the stress 

values are much lower for this specific case. It is important to note that for transverse fibres, 

i.e., oriented at 90°, the resistance is low, so high values of residual stress for this orientation 

can mean higher values than the real ones. This can occur if there is a delamination during 

IHD tests. Also, the transverse residual stress in fibres reach values above 50 MPa in tension 

which, combining with stress concentration around the hole, can lead to transverse cracking. 
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Residual longitudinal stress (𝝈𝒙) as a function of depth for all samples: 

 

 

Figure 6.4. Sample 1 - Residual longitudinal stress (𝝈𝒙) as a function of depth. 

 

Figure 6.5. Sample 2 - Residual longitudinal stress (𝝈𝒙) as a function of depth. 

 

Figure 6.6. Sample 3 - Residual longitudinal stress (𝝈𝒙) as a function of depth. 
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Residual transverse stress (𝝈𝒚) as a function of depth for all samples: 

 

 

Figure 6.7. Sample 1 - Residual transverse stress (𝝈𝒚) as a function of depth. 

 

Figure 6.8. Sample 2 - Residual transverse stress (𝝈𝒚) as a function of depth. 

 

Figure 6.9. Sample 3 - Residual transverse stress (𝝈𝒚) as a function of depth. 
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Residual shear stress (𝝉𝒙𝒚) as a function of depth for all samples: 

 

 

Figure 6.10. Sample 1 - Residual shear stress (𝝉𝒙𝒚) as a function of depth. 

 

Figure 6.11. Sample 2 - Residual shear stress (𝝉𝒙𝒚) as a function of depth. 

 

Figure 6.12. Sample 3 - Residual shear stress (𝝉𝒙𝒚) as a function of depth. 
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6.3. Discussion 

The residual stress values obtained in this work were compared with the work 

carried out by a South African partner (Wits University), who used NASTRAN code (FEM) 

to achieve calibration coefficients and the integral method using Tikhonov regularization to 

calculate residual stress values. The results were also compared with the neutron diffraction 

method, but only for steel layer since this method cannot be used to determine stresses in 

FRP due to lack of crystallinity in them. Figure 6.13 to Figure 6.21 compare the results 

obtained in this work with the results obtained by Wits University (Tikhonov regularization) 

and by NECSA (neutron diffraction method). 

There is a good agreement between the values obtained in this work and those 

obtained by the partners in the first two layers. However, as expected, it is noted that as the 

depth increment increases, it is possible to observe some scattering in the steel alloy ply and, 

therefore, a slight difference between the results. Overall, by comparing the results obtained 

in this study with the partner values, there is a good agreement between them (especially in 

fibre layers). Comparing the results with neutron diffraction, regarding the longitudinal and 

transverse residual stress, there still is a good agreement, even though, unfortunately, neutron 

diffraction is not able to provide residual stresses near the GFRP/steel interface. The residual 

stress obtained refers to half the thickness of the samples. Since we are working with 

symmetrical samples, the existence of symmetry in the values of residual stresses along 

thickness is expected. 

  



 

 

   

 

 

60  2021 

 

Residual stress (𝝈𝒙, 𝝈𝒚, 𝝉𝒙𝒚) as a function of depth for sample 1: 

 

 

Figure 6.13. Sample 1 - Residual longitudinal stress (𝝈𝒙) as a function of depth. 

 

Figure 6.14. Sample 1 - Residual transverse stress (𝝈𝒚) as a function of depth. 

 

Figure 6.15. Sample 1 - Residual shear stress (𝝉𝒙𝒚) as a function of depth. 
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Residual stress (𝝈𝒙, 𝝈𝒚, 𝝉𝒙𝒚) as a function of depth for sample 2: 

 

 

Figure 6.16. Sample 2 - Residual longitudinal stress (𝝈𝒙) as a function of depth. 

 

Figure 6.17. Sample 2 - Residual transverse stress (𝝈𝒚) as a function of depth. 

 

Figure 6.18. Sample 2 - Residual shear stress (𝝉𝒙𝒚) as a function of depth. 
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Residual stress (𝝈𝒙, 𝝈𝒚, 𝝉𝒙𝒚) as a function of depth for sample 3: 

 

 

Figure 6.19. Sample 3 - Residual longitudinal stress (𝝈𝒙) as a function of depth. 

 

Figure 6.20. Sample 3 - Residual transverse stress (𝝈𝒚) as a function of depth. 

 

Figure 6.21. Sample 3 - Residual shear stress (𝝉𝒙𝒚) as a function of depth. 
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6.3.1. Numerical Simulation of an Externally Applied Uniform 
Stress 

For a better assessment of the determination of residual stresses using IHD in 

FMLs, an additional FEM simulation in ANSYS was performed. An axial and uniform stress 

of 15 MPa, corresponding to a 700 N tensile load, was externally applied to the sample 

(simulating a tensile test). While the model was subjected to this uniform axial external 

stress, the simulation of the IHD method was carried out, to determine the curves of strain 

relaxation vs. hole depth. These curves were then used with the integral method developed 

in this thesis to verify the ability of the method to determine a well-known externally applied 

uniform stress. Figure 6.22 shows the finite element model created in ANSYS. Note that the 

ASTM rosettes used for this simulation are of type A (Figure 2.14) and, therefore, the grids 

in the Figure 6.22 are not superimposed since the 2nd strain gauge is physically at 135º of the 

strain gauge 1. However, since the FML sample and the stacking ply configuration enable 

symmetry, a quarter model was used instead and, therefore, strain relaxation corresponding 

to the strain gauge 2 was determined in the first quadrant as well. 

 

 

Figure 6.22. ANSYS FEM mesh for simulation of tensile calibration tests. 

 

The stresses determined by the method developed in this thesis are shown in 

Figure 6.23 as well as the externally applied uniform stress of 15 MPa (continuous black 

line). It can be seen a stress redistribution in each layer since the material properties through 

thickness are not the same. The stress redistribution can be analytically determined using the 
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classical theory of laminates (CLT) [70]. This work is underway at moment and was not 

possible to present the results in this thesis. However, it is possible to observe that the stresses 

in the GFRP are linear, as expected, but much lower than the external average stress of 15 

MPa applied, in particular for the fibres at 90º. In the steel layer, the stresses approach 20.9 

MPa (average value) and present a slight variation through this layer. Without be a definitive 

conclusion, since it is yet necessary to calculate the redistribution of stresses by each layer, 

the results shown in Figure 6.23 seem to also indicate that the integral method developed in 

this thesis can be used to determine residual stresses using the incremental hole drilling 

technique.  

 

 

Figure 6.23. Longitudinal stress (𝝈𝒙) redistribution through the FML layers due to an externally simulated 
uniform stress of 15 MPa. 
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7. CONCLUSIONS AND RECOMMENDATION FOR 
FUTURE WORK 

The main objective of this work was to determine residual stresses in 

GFRP/Steel samples by the incremental hole-drilling technique (IHD) and verify the validity 

of the results obtained, contributing to the development of the IHD method. IHD has been 

developed for anisotropic and layered materials during the past two decades, due to the 

complexity of the mechanical behaviour of this kind of materials and the inverse problem 

usually involved for the determination of residual stresses using mechanical methods, such 

as IHD.  

In this work, a methodology for the determination of residual stresses in 

anisotropic and layered materials was developed using IHD integral method, based on 

numerical simulation and calculations performed using Python. The results obtained allowed 

to conclude that the IHD technique can be used for measuring non-uniform residual stresses 

in FMLs. The residual stress determined from the method used agrees well with the results 

obtained by other techniques and methods. There was some visible scattering in the residual 

stress results in the deeper layers, but it does not compromise the reliability of the results. It 

was possible to observe a discontinuity of the residual stress results at layers’ interfaces. 

Thus, there is a clear identification of the interface layers between the fibres and fibres/metal 

due the change in behaviour (singularities) of the determined residual stress. There are 

almost no published studies showing this behaviour in FML composites. 

For a future work, since the results obtained presented a slight scattering in 

deeper layers (steel layers) and once the Tikhonov regularization is a recognized method for 

having the effect of smoothing the stress results, it would be a good alternative to implement 

this method in the future, to further contribute to the development of the IHD and its 

application to FMLs and composite laminates in general. Also, since it is possible to 

analytically determine the stress redistribution in the FML material, a good idea for a future 

work would be to perform experimental tensile tests, applying a well-known external 

uniform stress (calibration stress) during IHD, once the calculation of stress redistribution 
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through the composite laminate plies can be evaluated using the CLT. In this way, a better 

assessment of the residual stresses determined by IHD in FML samples could be carried out, 

complementing the started study presented in section 6.3.1. These experimental tests can 

also allow to analyse other possible error source, such as those related with the 

thermomechanical effects of the cutting procedure during the drilling operation. 
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ANNEX A – PYTHON SCRIPT DEVELOPED 

The script below was developed in order to solve the system of matrix equations 

presented by the integral method – see Chapter 3. 

 

import numpy as np 

 

def read_matrix_in_line(file_path): 

    with open (file_path, 'r') as file: 

        #Read all lines of the file (arrays) 

        #Assume the file has only one matrix and its inline 

        matrix = file.readlines()[0] 

 

        #Transforms a string with an array into an array whose rows are numpy 

arrays 

        new_mat = [np.array([float(b) for b in a.replace(']', '').split(',')]) for a in 

matrix.replace('[', '').split('], ')] 

 

    return new_mat 

 

#Cij matrices must be written in format, for example: [[-4.8902, 0, 0], [-5.0561, 

-5.2645, 0], [-5.0564, -5.2566, -5.1801]] 

#Denote that in this case there are 3 increments, resulting in a 3x3 matrix 

#Put the matrices in separate files, named C11, C12, C13, etc. 

#Need to indicate de Path File 

 

c11 = read_matrix_in_line('C:\Users\Utilizador\Desktop\CoefFinais\C11.txt') 

c12 = read_matrix_in_line('C:\Users\Utilizador\Desktop\CoefFinais\C12.txt') 

c13 = read_matrix_in_line('C:\Users\Utilizador\Desktop\CoefFinais\C13.txt') 

c21 = read_matrix_in_line('C:\Users\Utilizador\Desktop\CoefFinais\C21.txt') 
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c22 = read_matrix_in_line('C:\Users\Utilizador\Desktop\CoefFinais\C22.txt') 

c23 = read_matrix_in_line('C:\Users\Utilizador\Desktop\CoefFinais\C23.txt') 

c31 = read_matrix_in_line('C:\Users\Utilizador\Desktop\CoefFinais\C31.txt') 

c32 = read_matrix_in_line('C:\Users\Utilizador\Desktop\CoefFinais\C32.txt') 

c33 = read_matrix_in_line('C:\Users\Utilizador\Desktop\CoefFinais\C33.txt') 

     

A = [[c11, c12, c13], [c21, c22,c23], [c31, c32, c33]] 

 

#In Excel (strain relaxation values), you cannot write in the first line as this is 

for column labels 

#Need to indicate de Path File 

 

with open('/Users/Utilizador/Desktop/CoefFinais/Deformation_Values.csv', 'r') 

as file: 

    #Read the file 

    #Skip teh first row ([1:]) because the first row has the column labels 

    lines = file.readlines()[1: ] 

    #Form the lines, create the vector of vectors 

    strain = [np.array([float(value) for value in line.split(";")]) for line in lines] 

    print(strain) 

 

def build_new_A(A): 

    new_A = [] 

    row_A = [] 

    matrix = [] 

    row = [] 

    dim = len(A[0][0]) 

    for c in range (dim): 

        for d in range(dim): 

            for a in range(3): #build a matrix 

                for b in range(3): #build a line 

                    row.append(A[a][b][c][d]) 
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                matrix.append(row) 

                row = [] 

            row_A.append(np.array(matrix)) 

            matrix = [] 

        new_A.append(row_A) 

        row_A = [] 

    return new_A 

 

def print_new_A(new_A): 

    for i in range(len(new_A)): 

        for e in range (len(new_A[0])): 

            for j in range(3): 

                print(new_A[i][e][j]) 

            print("-----------------------") 

        print("###################") 

 

#Strain = [np.array([x,xy,y]step1), np.array([x,xy,y]step2), 

np.array([x,xy,y]step3), np.array([x,xy,y]step4)] 

 

def iterative_method(new_A, strain): 

    stresses_dim = [] 

    dim = len(new_A) 

 

    for i in range(dim): 

        b = strain[i] 

        if i > 0: 

            for j in range(i): 

                b = b - np.dot(new_A[i][j], stresses_dim[j]) 

        print(new_A[i][i]) 

        a = np.linalg.inv(new_A[i][i]) 

        result = np.dot(a, b) 

        stresses_dim.append(result) 
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    return stresses_dim 

 

new_A = build_new_A(A) 

print_new_A(new_A) 

stresses = iterative_method(new_A, strain) 

print(stresses) 
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ANNEX B – SUB-MATRICES OF CALIBRATION 
COEFFICIENTS 

The nine matrices (Equation (3.6)), obtained by FEM when simulating the IHD 

technique in ANSYS, are presented in the Tables below. All values were multiplied by 106. 

 

Table 0.1. First 9 columns of matrix 𝑪𝟏𝟏 obtained using the FEM (ANSYS). 

 1 2 3 4 5 6 7 8 9 

1 -0.61339 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

2 -0.76664 -0.66968 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

3 -0.89150 -0.82282 -0.68784 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

4 -1.01105 -0.95288 -0.86307 -0.70803 0.00000 0.00000 0.00000 0.00000 0.00000 

5 -1.06585 -1.00893 -0.92550 -0.80306 -0.57721 0.00000 0.00000 0.00000 0.00000 

6 -1.10305 -1.04662 -0.96637 -0.85364 -0.68012 -0.44352 0.00000 0.00000 0.00000 

7 -1.12828 -1.07220 -0.99362 -0.88582 -0.72578 -0.53713 -0.31986 0.00000 0.00000 

8 -1.14184 -1.08580 -1.00783 -0.90194 -0.74686 -0.56851 -0.38647 -0.18647 0.00000 

9 -1.15025 -1.09424 -1.01642 -0.91096 -0.75679 -0.58033 -0.40148 -0.21076 -0.09032 

10 -1.15959 -1.10357 -1.02585 -0.92072 -0.76723 -0.59216 -0.41553 -0.22882 -0.11162 

11 -1.16832 -1.11228 -1.03462 -0.92970 -0.77663 -0.60247 -0.42721 -0.24281 -0.12693 

12 -1.17602 -1.11996 -1.04233 -0.93755 -0.78474 -0.61115 -0.43679 -0.25372 -0.13880 

13 -1.18258 -1.12651 -1.04890 -0.94421 -0.79156 -0.61835 -0.44457 -0.26237 0.14809 

14 -1.18800 -1.13194 -1.05436 -0.94974 -0.79718 -0.62422 -0.45083 -0.26921 -0.15537 

15 -1.19237 -1.13634 -1.05878 -0.95421 -0.80172 -0.62892 -0.45579 -0.27456 -0.16105 

16 -1.19581 -1.13981 -1.06229 -0.95777 -0.80532 -0.63263 -0.45968 -0.27871 -0.16544 

17 -1.19846 -1.14250 -1.06501 -0.96054 -0.80813 -0.63551 -0.46268 -0.28187 -0.16878 

18 -1.20046 -1.14454 -1.06709 -0.96266 -0.81028 -0.63770 -0.46495 -0.28426 -0.17129 
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Table 0.2. Last 9 columns of matrix 𝑪𝟏𝟏 obtained using the FEM (ANSYS). 

 10 11 12 13 14 15 16 17 18 

1 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

2 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

3 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

4 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

5 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

6 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

7 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

8 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

9 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

10 -0.08783 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

11 -0.10526 -0.08313 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

12 -0.11745 -0.09818 -0.07727 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

13 -0.12690 -0.10830 -0.09041 -0.07070 0.00000 0.00000 0.00000 0.00000 0.00000 

14 -0.13427 -0.11599 -0.09892 -0.08216 -0.06374 0.00000 0.00000 0.00000 0.00000 

15 -0.14003 -0.12192 -0.10525 -0.08934 -0.07368 -0.05656 0.00000 0.00000 0.00000 

16 -0.14449 -0.12649 -0.11004 -0.09456 -0.07972 -0.06512 -0.04929 0.00000 0.00000 

17 -0.14791 -0.13000 -0.11369 -0.09844 -0.08403 -0.07019 -0.05660 -0.04201 0.00000 

18 -0.15050 -0.13266 -0.11644 -0.10135 -0.08716 -0.07372 -0.06081 -0.04818 -0.03476 
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Table 0.3. First 9 columns of matrix 𝑪𝟏𝟐 obtained using the FEM (ANSYS). 

 1 2 3 4 5 6 7 8 9 

1 0.09023 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

2 0.12177 0.10505 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

3 0.15029 0.14022 0.10908 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

4 0.17868 0.17013 0.14578 0.09979 0.00000 0.00000 0.00000 0.00000 0.00000 

5 0.19274 0.18600 0.16397 0.12382 0.07538 0.00000 0.00000 0.00000 0.00000 

6 0.20190 0.19640 0.17560 0.13695 0.09237 0.06204 0.00000 0.00000 0.00000 

7 0.20724 0.20259 0.18252 0.14455 0.10071 0.07460 0.04629 0.00000 0.00000 

8 0.20893 0.20479 0.18509 0.14737 0.10376 0.07839 0.05306 0.02491 0.00000 

9 0.20844 0.20439 0.18474 0.14698 0.10324 0.07786 0.05251 0.02450 0.00932 

10 0.20776 0.20385 0.18427 0.14650 0.10265 0.07727 0.05196 0.02402 0.00952 

11 0.20722 0.20345 0.18395 0.14617 0.10225 0.07690 0.05164 0.02378 0.00964 

12 0.20693 0.20329 0.18387 0.14610 0.10214 0.07683 0.05162 0.02385 0.00993 

13 0.20694 0.20342 0.18407 0.14631 0.10233 0.07707 0.05192 0.02421 0.01044 

14 0.20725 0.20383 0.18454 0.14679 0.10281 0.07759 0.05249 0.02483 0.01118 

15 0.20781 0.20447 0.18524 0.14751 0.10353 0.07836 0.05330 0.02567 0.01210 

16 0.20857 0.20530 0.18611 0.14840 0.10444 0.07930 0.05428 0.02668 0.01316 

17 0.20946 0.20625 0.18709 0.14941 0.10547 0.08037 0.05537 0.02779 0.01431 

18 0.21041 0.20725 0.18813 0.15047 0.10656 0.08149 0.05652 0.02894 0.01549 
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Table 0.4. Last 9 columns of matrix 𝑪𝟏𝟐 obtained using the FEM (ANSYS). 

 10 11 12 13 14 15 16 17 18 

1 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

2 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

3 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

4 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

5 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

6 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

7 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

8 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

9 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

10 0.00977 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

11 0.01051 0.01022 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

12 0.01113 0.01142 0.01074 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

13 0.01188 0.01243 0.01234 0.01134 0.00000 0.00000 0.00000 0.00000 0.00000 

14 0.01277 0.01351 0.01366 0.01328 0.01201 0.00000 0.00000 0.00000 0.00000 

15 0.01381 0.01467 0.01498 0.01484 0.01423 0.01274 0.00000 0.00000 0.00000 

16 0.01496 0.01591 0.01632 0.01633 0.01597 0.01518 0.01352 0.00000 0.00000 

17 0.01618 0.01719 0.01767 0.01778 0.01757 0.01704 0.01613 0.01436 0.00000 

18 0.01741 0.01847 0.01901 0.01919 0.01907 0.01870 0.01807 0.01709 0.01527 
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Table 0.5. First 9 columns of matrix 𝑪𝟏𝟑 obtained using the FEM (ANSYS). 

 1 2 3 4 5 6 7 8 9 

1 0.02510 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

2 0.03643 0.03162 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

3 0.04716 0.04439 0.03659 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

4 0.05923 0.05746 0.05346 0.04330 0.00000 0.00000 0.00000 0.00000 0.00000 

5 0.06488 0.06331 0.05993 0.05276 0.03286 0.00000 0.00000 0.00000 0.00000 

6 0.06872 0.06727 0.06422 0.05792 0.04299 0.02085 0.00000 0.00000 0.00000 

7 0.07133 0.06999 0.06712 0.06129 0.04762 0.03014 0.00998 0.00000 0.00000 

8 0.07269 0.07139 0.06860 0.06296 0.04976 0.03329 0.01655 -0.00207 0.00000 

9 0.07222 0.07094 0.06816 0.06251 0.04931 0.03288 0.01621 -0.00209 -0.01265 

10 0.07185 0.07058 0.06780 0.06216 0.04896 0.03256 0.01593 -0.00227 -0.01280 

11 0.07152 0.07026 0.06749 0.06185 0.04865 0.03226 0.01566 -0.00248 -0.01301 

12 0.07122 0.06998 0.06721 0.06158 0.04837 0.03198 0.01539 -0.00273 -0.01323 

13 0.07094 0.06972 0.06696 0.06133 0.04811 0.03172 0.01513 -0.00297 -0.01345 

14 0.07068 0.06948 0.06673 0.06110 0.04787 0.03147 0.01489 -0.00322 -0.01368 

15 0.07044 0.06925 0.06651 0.06089 0.04765 0.03124 0.01465 -0.00346 -0.01391 

16 0.07021 0.06903 0.06630 0.06068 0.04744 0.03102 0.01442 -0.00370 -0.01414 

17 0.06998 0.06882 0.06610 0.06049 0.04724 0.03081 0.01419 -0.00394 -0.01438 

18 0.06977 0.06862 0.06591 0.06030 0.04705 0.03060 0.01398 -0.00418 -0.01461 
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Table 0.6. Last 9 columns of matrix 𝑪𝟏𝟑 obtained using the FEM (ANSYS). 

 10 11 12 13 14 15 16 17 18 

1 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

2 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

3 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

4 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

5 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

6 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

7 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

8 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

9 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

10 -0.01254 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

11 -0.01273 -0.01231 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

12 -0.01296 -0.01247 -0.01204 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

13 -0.01318 -0.01269 -0.01216 -0.01176 0.00000 0.00000 0.00000 0.00000 0.00000 

14 -0.01341 -0.01292 -0.01237 -0.01184 -0.01145 0.00000 0.00000 0.00000 0.00000 

15 -0.01363 -0.01314 -0.01259 -0.01204 -0.01152 -0.01114 0.00000 0.00000 0.00000 

16 -0.01385 -0.01336 -0.01281 -0.01226 -0.01171 -0.01119 -0.01082 0.00000 0.00000 

17 -0.01407 -0.01358 -0.01303 -0.01248 -0.01192 -0.01138 -0.01086 -0.01047 0.00000 

18 -0.01430 -0.01380 -0.01326 -0.01270 -0.01215 -0.01160 -0.01106 -0.01052 0.01011 

 

 

 

 

 

 

 

 

 

 



 

 

 ANNEX B – SUB-MATRICES OF CALIBRATION COEFFICIENTS 

 

 

Rute Rafaela de Almeida Vasconcelos  85 

 

Table 0.7. First 9 columns of matrix 𝑪𝟐𝟏 obtained using the FEM (ANSYS). 

 1 2 3 4 5 6 7 8 9 

1 0.04082 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

2 0.05270 0.04914 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

3 0.06243 0.06212 0.05552 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

4 0.07112 0.07259 0.07004 0.06273 0.00000 0.00000 0.00000 0.00000 0.00000 

5 0.07924 0.08185 0.08086 0.07795 0.06741 0.00000 0.00000 0.00000 0.00000 

6 0.08571 0.08934 0.08954 0.08868 0.08528 0.06320 0.00000 0.00000 0.00000 

7 0.09009 0.09449 0.09549 0.09588 0.09523 0.07872 0.04976 0.00000 0.00000 

8 0.09182 0.09664 0.09805 0.09896 0.09929 0.08386 0.05799 0.02474 0.00000 

9 0.09054 0.09551 0.09707 0.09814 0.09870 0.08330 0.05723 0.02335 0.00584 

10 0.08914 0.09433 0.09607 0.09734 0.09817 0.08281 0.05659 0.02231 0.00495 

11 0.08800 0.09339 0.09532 0.09678 0.09787 0.08258 0.05628 0.02174 0.00438 

12 0.08725 0.09283 0.09492 0.09656 0.09788 0.08267 0.05633 0.02160 0.00423 

13 0.08695 0.09268 0.09492 0.09671 0.09822 0.08308 0.05672 0.02187 0.00450 

14 0.08708 0.09294 0.09529 0.09721 0.09887 0.08380 0.05743 0.02250 0.00513 

15 0.08760 0.09356 0.09600 0.09801 0.09980 0.08477 0.05840 0.02342 0.00608 

16 0.08843 0.09447 0.09697 0.09906 0.10093 0.08594 0.05957 0.02456 0.00725 

17 0.08948 0.09557 0.09813 0.10027 0.10220 0.08724 0.06088 0.02586 0.00858 

18 0.09066 0.09680 0.09939 0.10157 0.10354 0.08859 0.06224 0.02722 0.00998 
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Table 0.8. Last 9 columns of matrix 𝑪𝟐𝟏 obtained using the FEM (ANSYS). 

 10 11 12 13 14 15 16 17 18 

1 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

2 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

3 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

4 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

5 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

6 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

7 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

8 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

9 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

10 0.00697 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

11 0.00702 0.00806 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

12 0.00724 0.00885 0.00919 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

13 0.00776 0.00968 0.01063 0.01040 0.00000 0.00000 0.00000 0.00000 0.00000 

14 0.00859 0.01071 0.01193 0.01237 0.01166 0.00000 0.00000 0.00000 0.00000 

15 0.00967 0.01193 0.01334 0.01405 0.01408 0.01297 0.00000 0.00000 0.00000 

16 0.01095 0.01332 0.01484 0.01573 0.01604 0.01574 0.01431 0.00000 0.00000 

17 0.01236 0.01480 0.01641 0.01741 0.01790 0.01791 0.01737 0.01571 0.00000 

18 0.01383 0.01633 0.01801 0.01909 0.01969 0.01989 0.01968 0.01899 0.01718 
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Table 0.9. First 9 columns of matrix 𝑪𝟐𝟐 obtained using the FEM (ANSYS). 

 1 2 3 4 5 6 7 8 9 

1 -0.40875 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

2 -0.48169 -0.42187 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

3 -0.53541 -0.49072 -0.40824 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

4 -0.57526 -0.53237 -0.46906 -0.36693 0.00000 0.00000 0.00000 0.00000 0.00000 

5 -0.63295 -0.59321 -0.53831 -0.46656 -0.36673 0.00000 0.00000 0.00000 0.00000 

6 -0.68349 -0.64522 -0.59418 -0.53028 -0.45667 -0.33296 0.00000 0.00000 0.00000 

7 -0.71968 -0.68227 -0.63305 -0.57328 -0.50696 -0.41027 -0.26668 0.00000 0.00000 

8 -0.73848 -0.70140 -0.65285 -0.59456 -0.53118 -0.43982 -0.31934 -0.17211 0.00000 

9 -0.75003 -0.71300 -0.66463 -0.60681 -0.54426 -0.45413 -0.33615 -0.19830 -0.11134 

10 -0.76268 -0.72567 -0.67743 -0.61999 -0.55820 -0.46903 -0.35289 -0.21926 -0.13628 

11 -0.77437 -0.73739 -0.68923 -0.63210 -0.57091 -0.48242 -0.36747 -0.23611 -0.15446 

12 -0.78458 -0.74763 -0.69955 -0.64266 -0.58195 -0.49394 -0.37976 -0.24963 -0.16876 

13 -0.79318 -0.75628 -0.70828 -0.65159 -0.59125 -0.50359 -0.38992 -0.26052 -0.18008 

14 -0.80022 -0.76339 -0.71546 -0.65894 -0.59889 -0.51150 -0.39817 -0.26922 -0.18905 

15 -0.80584 -0.76908 -0.72124 -0.66485 -0.60504 -0.51785 -0.40476 -0.27609 -0.19609 

16 -0.81020 -0.77353 -0.72577 -0.66950 -0.60989 -0.52285 -0.40992 -0.28143 -0.20156 

17 -0.81351 -0.77693 -0.72924 -0.67308 -0.61361 -0.52670 -0.41389 -0.28552 -0.20574 

18 -0.81597 -0.77946 -0.73185 -0.67578 -0.61643 -0.52962 -0.41690 -0.28860 -0.20890 
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Table 0.10. Last 9 columns of matrix 𝑪𝟐𝟐 obtained using the FEM (ANSYS). 

 10 11 12 13 14 15 16 17 18 

1 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

2 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

3 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

4 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

5 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

6 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

7 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

8 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

9 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

10 -0.10887 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

11 -0.12978 -0.10361 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

12 -0.14457 -0.12193 -0.09680 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

13 -0.15613 -0.13435 -0.11293 -0.08898 0.00000 0.00000 0.00000 0.00000 0.00000 

14 -0.16521 -0.14386 -0.12347 -0.10314 -0.08052 0.00000 0.00000 0.00000 0.00000 

15 -0.17236 -0.15121 -0.13134 -0.11208 -0.09288 -0.07168 0.00000 0.00000 0.00000 

16 -0.17792 -0.15692 -0.13732 -0.11860 -0.10044 -0.08237 -0.06263 0.00000 0.00000 

17 -0.18219 -0.16131 -0.14188 -0.12347 -0.10583 -0.08872 -0.07179 -0.05349 0.00000 

18 -0.18543 -0.16464 -0.14534 -0.12711 -0.10977 -0.09315 -0.07706 -0.06122 -0.04431 
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Table 0.11. First 9 columns of matrix 𝑪𝟐𝟑 obtained using the FEM (ANSYS). 

 1 2 3 4 5 6 7 8 9 

1 -0.00009 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

2 -0.00306 -0.00105 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

3 -0.00552 -0.00419 -0.00085 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

4 -0.00729 -0.00600 -0.00350 0.00095 0.00000 0.00000 0.00000 0.00000 0.00000 

5 -0.01141 -0.01037 -0.00845 -0.00587 -0.00263 0.00000 0.00000 0.00000 0.00000 

6 -0.01543 -0.01456 -0.01294 -0.01095 -0.00924 -0.00365 0.00000 0.00000 0.00000 

7 -0.01844 -0.01768 -0.01624 -0.01460 -0.01343 -0.00950 -0.00148 0.00000 0.00000 

8 -0.02000 -0.01930 -0.01795 -0.01645 -0.01552 -0.01194 -0.00548 0.00351 0.00000 

9 -0.01987 -0.01919 -0.01785 -0.01638 -0.01546 -0.01186 -0.00539 0.00335 0.00838 

10 -0.01982 -0.01916 -0.01784 -0.01639 -0.01551 -0.01189 -0.00542 0.00324 0.00821 

11 -0.01977 -0.01914 -0.01783 -0.01641 -0.01556 -0.01194 -0.00546 0.00318 0.00817 

12 -0.01971 -0.01909 -0.01780 -0.01641 -0.01559 -0.01196 -0.00547 0.00318 0.00817 

13 -0.01962 -0.01903 -0.01775 -0.01638 -0.01559 -0.01195 -0.00545 0.00322 0.00822 

14 -0.01951 -0.01894 -0.01768 -0.01633 -0.01556 -0.01191 -0.00540 0.00329 0.00831 

15 -0.01939 -0.01883 -0.01758 -0.01625 -0.01549 -0.01185 -0.00532 0.00340 0.00842 

16 -0.01924 -0.01870 -0.01747 -0.01615 -0.01541 -0.01175 -0.00521 0.00353 0.00856 

17 -0.01909 -0.01856 -0.01734 -0.01603 -0.01529 -0.01163 -0.00507 0.00369 0.00873 

18 -0.01893 -0.01841 -0.01719 -0.01589 -0.01516 -0.01149 -0.00492 0.00387 0.00891 
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Table 0.12. Last 9 columns of matrix 𝑪𝟐𝟑 obtained using the FEM (ANSYS). 

 10 11 12 13 14 15 16 17 18 

1 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

2 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

3 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

4 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

5 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

6 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

7 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

8 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

9 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

10 0.00840 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

11 0.00828 0.00839 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

12 0.00829 0.00827 0.00838 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

13 0.00833 0.00830 0.00826 0.00837 0.00000 0.00000 0.00000 0.00000 0.00000 

14 0.00840 0.00837 0.00831 0.00826 0.00837 0.00000 0.00000 0.00000 0.00000 

15 0.00851 0.00847 0.00840 0.00833 0.00828 0.00837 0.00000 0.00000 0.00000 

16 0.00864 0.00860 0.00852 0.00844 0.00836 0.00830 0.00837 0.00000 0.00000 

17 0.00879 0.00875 0.00867 0.00858 0.00850 0.00841 0.00832 0.00835 0.00000 

18 0.00896 0.00892 0.00884 0.00876 0.00867 0.00857 0.00847 0.00835 0.00832 
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Table 0.13. First 9 columns of matrix 𝑪𝟑𝟏 obtained using the FEM (ANSYS). 

 1 2 3 4 5 6 7 8 9 

1 -0.14417 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

2 -0.17776 -0.15615 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

3 -0.20388 -0.18848 -0.16113 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

4 -0.22733 -0.21334 -0.19527 -0.16455 0.00000 0.00000 0.00000 0.00000 0.00000 

5 -0.23983 -0.22597 -0.20947 -0.18675 -0.14685 0.00000 0.00000 0.00000 0.00000 

6 -0.24967 -0.23575 -0.22000 -0.19977 -0.17301 -0.12386 0.00000 0.00000 0.00000 

7 -0.25705 -0.24307 -0.22769 -0.20880 -0.18577 -0.15064 -0.09592 0.00000 0.00000 

8 -0.26146 -0.24738 -0.23212 -0.21379 -0.19231 -0.16046 -0.11739 -0.06096 0.00000 

9 -0.26561 -0.25150 -0.23626 -0.21806 -0.19692 -0.16585 -0.12422 -0.07201 -0.03454 

10 -0.27042 -0.25624 -0.24097 -0.22286 -0.20196 -0.17152 -0.13094 -0.08075 -0.04480 

11 -0.27499 -0.26073 -0.24542 -0.22734 -0.20658 -0.17655 -0.13666 -0.08768 -0.05242 

12 -0.27901 -0.26468 -0.24932 -0.23126 -0.21056 -0.18080 -0.14136 -0.09311 -0.05837 

13 -0.28235 -0.26796 -0.25257 -0.23450 -0.21383 -0.18424 -0.14511 -0.09735 -0.06296 

14 -0.28499 -0.27056 -0.25514 -0.23706 -0.21640 -0.18692 -0.14799 -0.10057 -0.06642 

15 -0.28694 -0.27250 -0.25706 -0.23899 -0.21832 -0.18891 -0.15012 -0.10292 -0.06895 

16 -0.28830 -0.27385 -0.25841 -0.24034 -0.21968 -0.19030 -0.15160 -0.10455 -0.07072 

17 -0.28915 -0.27471 -0.25927 -0.24121 -0.22055 -0.19120 -0.15256 -0.10560 -0.07186 

18 -0.28961 -0.27517 -0.25975 -0.24169 -0.22104 -0.19171 -0.15310 -0.10620 -0.07252 
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Table 0.14. Last 9 columns of matrix 𝑪𝟑𝟏 obtained using the FEM (ANSYS). 

 10 11 12 13 14 15 16 17 18 

1 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

2 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

3 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

4 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

5 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

6 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

7 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

8 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

9 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

10 -0.03421 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

11 -0.04266 -0.03248 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

12 -0.04865 -0.03972 -0.02983 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

13 -0.05323 -0.04455 -0.03603 -0.02653 0.00000 0.00000 0.00000 0.00000 0.00000 

14 -0.05669 -0.04809 -0.03991 -0.03177 -0.02279 0.00000 0.00000 0.00000 0.00000 

15 -0.05922 -0.05066 -0.04263 -0.03486 -0.02714 -0.01875 0.00000 0.00000 0.00000 

16 -0.06099 -0.05246 -0.04450 -0.03690 -0.02954 -0.02228 -0.01451 0.00000 0.00000 

17 -0.06215 -0.05364 -0.04573 -0.03822 -0.03102 -0.02408 -0.01729 -0.01016 0.00000 

18 -0.06283 -0.05435 -0.04647 -0.03900 -0.03189 -0.02509 -0.01857 -0.01224 -0.00573 
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Table 0.15. First 9 columns of matrix 𝑪𝟑𝟐 obtained using the FEM (ANSYS). 

 1 2 3 4 5 6 7 8 9 

1 -0.18544 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

2 -0.21976 -0.18528 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

3 -0.24408 -0.21733 -0.17182 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

4 -0.26010 -0.23462 -0.19977 -0.14464 0.00000 0.00000 0.00000 0.00000 0.00000 

5 -0.28129 -0.25652 -0.22461 -0.18232 -0.12822 0.00000 0.00000 0.00000 0.00000 

6 -0.29771 -0.27304 -0.24220 -0.20248 -0.15757 -0.11054 0.00000 0.00000 0.00000 

7 -0.30883 -0.28411 -0.25362 -0.21504 -0.17232 -0.13371 -0.08964 0.00000 0.00000 

8 -0.31493 -0.29009 -0.25966 -0.22143 -0.17953 -0.14252 -0.10536 -0.06523 0.00000 

9 -0.32053 -0.29566 -0.26528 -0.22722 -0.18567 -0.14919 -0.11311 -0.07668 -0.05277 

10 -0.32665 -0.30171 -0.27132 -0.23340 -0.19215 -0.15605 -0.12075 -0.08604 -0.06351 

11 -0.33230 -0.30727 -0.27686 -0.23904 -0.19801 -0.16217 -0.12734 -0.09356 -0.07148 

12 -0.33717 -0.31207 -0.28163 -0.24387 -0.20302 -0.16734 -0.13281 -0.09953 -0.07770 

13 -0.34119 -0.31603 -0.28556 -0.24786 -0.20713 -0.17156 -0.13721 -0.10423 -0.08254 

14 -0.34436 -0.31915 -0.28867 -0.25100 -0.21036 -0.17487 -0.14064 -0.10784 -0.08623 

15 -0.34675 -0.32152 -0.29103 -0.25339 -0.21282 -0.17737 -0.14323 -0.11055 -0.08897 

16 -0.34848 -0.32322 -0.29273 -0.25511 -0.21459 -0.17918 -0.14509 -0.11249 -0.09095 

17 -0.34965 -0.32438 -0.29389 -0.25629 -0.21581 -0.18043 -0.14637 -0.11382 -0.09230 

18 -0.35039 -0.32512 -0.29462 -0.25704 -0.21658 -0.18122 -0.14719 -0.11468 -0.09318 
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Table 0.16. Last 9 columns of matrix 𝑪𝟑𝟐 obtained using the FEM (ANSYS). 

 10 11 12 13 14 15 16 17 18 

1 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

2 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

3 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

4 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

5 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

6 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

7 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

8 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

9 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

10 -0.05169 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

11 -0.06053 -0.04915 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

12 -0.06684 -0.05664 -0.04574 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

13 -0.07167 -0.06171 -0.05206 -0.04177 0.00000 0.00000 0.00000 0.00000 0.00000 

14 -0.07533 -0.06547 -0.05613 -0.04701 -0.03742 0.00000 0.00000 0.00000 0.00000 

15 -0.07806 -0.06823 -0.05902 -0.05024 -0.04169 -0.03283 0.00000 0.00000 0.00000 

16 -0.08002 -0.07021 -0.06107 -0.05244 -0.04420 -0.03622 -0.02808 0.00000 0.00000 

17 -0.08137 -0.07157 -0.06248 -0.05392 -0.04583 -0.03811 -0.03069 -0.02323 0.00000 

18 -0.08225 -0.07246 -0.06340 -0.05489 -0.04687 -0.03928 -0.03205 -0.02513 -0.01831 
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Table 0.17. First 9 columns of matrix 𝑪𝟑𝟑 obtained using the FEM (ANSYS). 

 1 2 3 4 5 6 7 8 9 

1 -0.57169 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

2 -0.67388 -0.59859 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

3 -0.75211 -0.69903 -0.59003 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

4 -0.81609 -0.76864 -0.68991 -0.55273 0.00000 0.00000 0.00000 0.00000 0.00000 

5 -0.86946 -0.82526 -0.75478 -0.65127 -0.49182 0.00000 0.00000 0.00000 0.00000 

6 -0.91040 -0.86810 -0.80190 -0.70767 -0.58549 -0.41247 0.00000 0.00000 0.00000 

7 -0.93851 -0.89747 -0.83353 -0.74411 -0.63221 -0.49472 -0.31407 0.00000 0.00000 

8 -0.95273 -0.91226 -0.84922 -0.76161 -0.65360 -0.52335 -0.37001 -0.19126 0.00000 

9 -0.96140 -0.92110 -0.85834 -0.77123 -0.66414 -0.53545 -0.38476 -0.21433 -0.10970 

10 -0.97099 -0.93087 -0.86837 -0.78170 -0.67540 -0.54790 -0.39913 -0.23235 -0.13142 

11 -0.98009 -0.94014 -0.87785 -0.79153 -0.68582 -0.55919 -0.41165 -0.24694 -0.14744 

12 -0.98835 -0.94856 -0.88645 -0.80039 -0.69514 -0.56912 -0.42241 -0.25889 -0.16035 

13 -0.99567 -0.95603 -0.89407 -0.80823 -0.70332 -0.57775 -0.43161 -0.26888 -0.17097 

14 -1.00206 -0.96257 -0.90074 -0.81506 -0.71043 -0.58519 -0.43946 -0.27726 -0.17980 

15 -1.00757 -0.96821 -0.90650 -0.82097 -0.71655 -0.59156 -0.44612 -0.28428 -0.18717 

16 -1.01226 -0.97303 -0.91143 -0.82602 -0.72177 -0.59697 -0.45176 -0.29017 -0.19332 

17 -1.01623 -0.97711 -0.91561 -0.83030 -0.72619 -0.60155 -0.45649 -0.29510 -0.19845 

18 -1.01955 -0.98054 -0.91912 -0.83390 -0.72991 -0.60539 -0.46045 -0.29920 -0.20272 
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Table 0.18. Last 9 columns of matrix 𝑪𝟑𝟑 obtained using the FEM (ANSYS). 

 10 11 12 13 14 15 16 17 18 

1 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

2 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

3 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

4 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

5 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

6 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

7 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

8 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

9 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

10 -0.10898 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

11 -0.12794 -0.10543 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

12 -0.14162 -0.12276 -0.10037 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

13 -0.15267 -0.13488 -0.11635 -0.09437 0.00000 0.00000 0.00000 0.00000 0.00000 

14 -0.16178 -0.14455 -0.12720 -0.10908 -0.08778 0.00000 0.00000 0.00000 0.00000 

15 -0.16938 -0.15246 -0.13575 -0.11884 -0.10128 -0.08086 0.00000 0.00000 0.00000 

16 -0.17572 -0.15903 -0.14268 -0.12642 -0.11007 -0.09320 -0.07377 0.00000 0.00000 

17 -0.18101 -0.16450 -0.14839 -0.13251 -0.11680 -0.10108 -0.08499 -0.06664 0.00000 

18 -0.18542 -0.16905 -0.15311 -0.13749 -0.12215 -0.10705 -0.09204 -0.07678 -0.05957 

 

 

 

 



 

 

  ANNEX C – STRAIN FIELD FIGURES 

 

 

Rute Rafaela de Almeida Vasconcelos  97 

 

 

ANNEX C - STRAIN FIELD FIGURES 

Radial and tangential strain field around the hole for different caseloads ((a), (b) 

and (c) – see Figure 5.2) are shown in figures below, corresponding to the first and last 

increment (18th increment) when the hole attained its maximum simulated depth (around 1 

mm depth). 

 

  

(a) (b) 

Figure 0.1. Strain field around the hole (a) radial and (b) tangential, when applying 𝛔𝐱 = 𝟏, 𝛔𝐲 = 𝝉𝒙𝒚 = 𝟎 to 

the 1st depth increment of the hole with maximum depth (around 1 mm depth).   

 

  

(a) (b) 

Figure 0.2. Strain field around the hole (a) radial and (b) tangential, when applying 𝛔𝐱 = 𝟏, 𝛔𝐲 = 𝝉𝒙𝒚 = 𝟎 to 

the last depth increment (18th) of the hole with maximum depth (around 1 mm depth).   
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(a) (b) 

Figure 0.3. Strain field around the hole (a) radial and (b) tangential, when applying 𝛔𝐲 = 𝟏, 𝛔𝐱 = 𝝉𝒙𝒚 = 𝟎 to 

the 1st depth increment of the hole with maximum depth (around 1 mm depth).   

 

  

(a) (b) 

Figure 0.4. Strain field around the hole (a) radial and (b) tangential, when applying 𝛔𝐲 = 𝟏, 𝛔𝐱 = 𝝉𝒙𝒚 = 𝟎 to 

the last depth increment (18th) of the hole with maximum depth (around 1 mm depth).   
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(a) (b) 

Figure 0.5. Strain field around the hole (a) radial and (b) tangential, when applying 𝝉𝒙𝒚 = 𝟏, 𝛔𝐱 = 𝛔𝐲 = 𝟎 to 

the 1st depth increment of the hole with maximum depth (around 1 mm depth). 

 

  

(a) (b) 

Figure 0.6. Strain field around the hole (a) radial and (b) tangential, when applying 𝝉𝒙𝒚 = 𝟏, 𝛔𝐱 = 𝛔𝐲 = 𝟎 to 

the last depth increment (18th) of the hole with maximum depth (around 1 mm depth). 

 

 

 


