
Masters in Informatics Engineering
Internship
Final Report

Soft Real Time Processing
Pipeline for Healthcare
Related Events
Jaime Filipe Carvalho Pereira Correia
jaimec@student.dei.uc.pt

Supervisors:

Joel Perdiz Arrais, University of Coimbra
jpa@dei.uc.pt

Marco Tinoco, MedicineOne
marco@medicineone.net

1st September 2016

DEPARTMENT
OF INFORMATICS ENGINEERING
FACULTY OF SCIENCES AND TECHNOLOGY
UNIVERSITY OF COIMBRA

FCTUC

mailto://jaimec@student.dei.uc.pt
mailto://jpa@dei.uc.pt
mailto://marco@medicineone.net

i

“I think the big mistake in schools is trying to teach children anything, and by using fear
as the basic motivation. Fear of getting failing grades, fear of not staying with your class,
etc. Interest can produce learning on a scale compared to fear as a nuclear explosion to a
firecracker.”

Stanley Kubrick

ii

UNIVERSITY OF COIMBRA

Abstract
Faculty of Sciences and Technology

Department of Informatics Engineering
Masters in Informatics Engineering

Soft Real Time Processing Pipeline for Healthcare Related Events

by Jaime Filipe Carvalho Pereira Correia

Data analytics and business intelligence approaches have proven their poten-
tial for assisting decision making and in some cases even achieve complete au-
tomation. The healthcare industry, public and private, generates and stores large
amounts of data. Such data is valuable not only for internal usage but also for
commercialization as data centric services, relevant to the surrounding markets
and organization, such as the pharmaceutical complex.
MedicineOne is a Portuguese technological company that develops and commer-
cializes electronic health record (EHR) and clinic management systems (CMSs).
Aware of their privileged position, the company decided to build a soft real
time platform to support healthcare event aggregation, analysis and visualiza-
tion. Building this new system will outfit the company with the necessary techno-
logical infrastructure and expertise to start providing new services to their clients,
empowering them with insight from their operational data. The extracted intel-
ligence creates conditions to streamline internal processes and improve resource
allocation. A direct consequence is better healthcare.
Companies operating abroad in homologous positions have proven that this busi-
ness model is viable. There is a clear demand from the pharmaceutical industry
for ways to measure, in a short time-frame, the success of their products and ser-
vices and how they rank among competitors. Access to healthcare events as they
happen would give institutions such as governments and pharmacies an under-
standing of the state of the healthcare system as well as the health of the general
population. It would also make it possible to accurately determine the demand
for drugs and diagnostic tests, increasing efficiency.
During this project, the intern was responsible for studying the state of the art and
become proficient enough to build a scalable soft real time data ingestion plat-
form capable of receiving and aggregating events form CMS / EHR and make
them available for processing and querying.

KEYWORDS: business intelligence, aggregation, real time, soft real time,
stream processing, batch processing, in memory, database, noSQL, visualization

HTTP://WWW.UC.PT/EN
http://www.uc.pt/en/fctuc
http://www.uc.pt/en/fctuc/dei

iii

Contents

Abstract ii

List of Figures v

List of Tables vi

Glossary viii

Acronyms ix

1 Introduction 1
1.1 Purpose . 1
1.2 MedicineOne . 1
1.3 Project Objective . 2
1.4 Document Structure . 3

2 Project 4
2.1 Motivation . 4
2.2 Overview . 5
2.3 Product . 5
2.4 Scope . 6
2.5 Contributions . 7

3 Plan and Methodology 9
3.1 System Development Cycle . 10

3.1.1 Scrum . 10
3.1.2 Kanban . 12
3.1.3 Selected Methodology . 12

3.2 Chronogram . 13
3.2.1 First Semester . 14
3.2.2 Second Semester . 15

3.3 Change Management . 16
3.4 Risk Management . 17
3.5 Development Environment . 17

4 State of the Art 18
4.1 Existing Products and Applications 18
4.2 Analytical Data Processing . 19

4.2.1 Low Latency . 20
4.2.2 Fast Aggregation . 21
4.2.3 General Processing . 21

iv

4.3 Approaches . 22
4.3.1 Stream Processing . 22
4.3.2 Storage . 22

Columnar and Time Series 22
In Memory . 22
Sharding . 23

4.3.3 Reference Architecture . 23
4.4 Technologies . 24

4.4.1 Apache Kafka . 24
4.4.2 Apache HBase . 24
4.4.3 Apache Cassandra . 24
4.4.4 Apache Spark . 25
4.4.5 Apache Storm . 25
4.4.6 Apache Hadoop . 25
4.4.7 InfluxDB . 25
4.4.8 Druid . 25
4.4.9 Redis . 26

5 Requirements 27
5.1 Elicitation . 27
5.2 Functional Requirements . 27
5.3 Load Estimation . 29
5.4 Quality Requirements . 30

6 Risk 32
6.1 Identified Risks . 32
6.2 Materialized Risks . 34

7 Architecture 36
7.1 Drivers . 36
7.2 Style . 37
7.3 Views . 38

7.3.1 Contextual View . 38
Sample Flow . 40

7.3.2 Container View . 40
Sample Flow . 42

7.4 Validation and Traceability . 42

8 Implementation 44
8.1 Overview . 44
8.2 Technology Evaluation and Selection 45

8.2.1 Infrastructure . 46
8.2.2 Distributed Message Broker 46
8.2.3 Distributed Stream Processor 46
8.2.4 Distributed Storage . 47
8.2.5 Distributed, in Memory, OLAP Storage 47
8.2.6 Cluster Manager . 47
8.2.7 Container Scheduler . 48

v

8.2.8 Service Discovery . 49
8.3 Operations . 49

8.3.1 Provisioning . 51
8.3.2 Monitoring and Failure Handling 52
8.3.3 Framework Installation . 53
8.3.4 Container Scheduling . 54
8.3.5 Hardware . 55

8.4 Development . 55
8.4.1 Integration . 56
8.4.2 Data Model . 57

Events . 57
Raw Storage . 58

8.4.3 Stream Processing Topologies 59
Raw Event Persistence . 59
Event ETL for Druid . 60

8.4.4 System deployment . 60
8.4.5 Application Deployment . 60

9 Results 62
9.1 Management . 62
9.2 Performance . 63

9.2.1 Message Broker . 64
9.2.2 Stream Processor . 64
9.2.3 Distributed Storage . 64
9.2.4 Distributed, In memory OLAP Storage 64

9.3 Validation . 65
9.3.1 Functional Requirements . 65
9.3.2 Quality Requirements . 65
9.3.3 Stream Processing Topologies 66

9.4 Applications . 66

10 Conclusion 68
10.1 Future Work . 68

A System Requirements Specification 69

Bibliography 97

vi

List of Figures

1.1 MedicineOne logo . 1

2.1 Scope Diagram . 7

3.1 Scrum Representation . 11
3.2 Kanban Board . 12
3.3 Chronogram 1st Semester . 14
3.4 Chronogram 2nd Semester . 15
3.5 Chronogram 2nd Semester . 16

4.1 Practice Fusion Insight . 19
4.2 Star Schema . 20
4.3 Lambda Architecture . 23

5.1 Event Volume Estimation . 29
5.2 Storage Estimation . 30

7.1 Context View . 39
7.2 Container View . 41

8.1 Druid Architecture . 47
8.2 Context View . 48
8.3 Context View . 50
8.4 Context View . 51
8.5 Context View . 53
8.6 Context View . 53
8.7 Context View . 54
8.8 Context View . 57
8.9 Context View . 59
8.10 Context View . 60

9.1 Context View . 63

vii

List of Tables

3.1 Time budget for the project. 9

5.1 Functional Requirements. 28
5.2 Quality Requirements. 31

6.1 Risk Exposure Matrix. 32

7.1 Architecturally significant requirements. 37
7.2 Architectural drivers. 37
7.3 Traceability Matrix. 43

9.1 Functional Requirements Validation. 65
9.2 Quality Requirements Validation. 66

viii

Glossary

availability The degree to which a system or component is operational and ac-
cessible when required for use. Often expressed as a probability. Avail-
ability is usually expressed as a ratio of the time that the service is actually
available for use by the business to the agreed service hours[1]. 5

container A lightweight alternative to full machine virtualization that involves
encapsulating an application, effectively giving it its own operating envi-
ronment, such as operative and file systems. 44, 48, 54

containerizing Wrapping / packaging an application in a container. 44

MATE Codename of the project. 5, 6, 18, 36–38, 40–42, 45, 56, 57, 59–62, 65, 66, 68

quorum The minimum number of members of an assembly or society that must
be present at any of its meetings to make the proceedings of that meeting
valid. 50

real time In this document, real time is an abuse of language used to refer to soft
real time in non technical contexts. 4, 19–22, 24, 26, 36, 62

reliability The probability that software will not cause the failure of a system for
a specified time under specified conditions[1]. 5

REST RESTful application program interface (API) is an API that uses hypertext
transfer protocol (HTTP) requests to GET, PUT, POST and DELETE data. 62

soft real time A real time system where the utility of the results produced by a
task decreases over time after the deadline expires, as defined by K. G. Shin
et al.[2]. viii, 1, 2, 5, 6, 10, 20–23, 36, 40, 45, 47, 62, 65, 68

ix

Acronyms

API application program interface. viii, 26, 35, 45, 56, 61, 62

BI business intelligence. 5, 20, 22

CMS clinic management system. ii, 6, 8, 40, 44, 56, 60

CQL cassandra query language. 58

DC/OS Data Center Operating System[3]. 45, 46, 48–50, 52–54, 60–62, 64, 67, 68

DNS domain name system. 44, 49

DWH data warehouse. 5, 19, 20

EHR electronic health record. ii, 18

ETL extract, transform and load. 6, 20, 21, 25, 45, 59, 60, 64

ETLR extract, transform, load and refresh. 20

GUI graphical user interface. 62, 63

HTTP hypertext transfer protocol. viii, 54

IoT internet of things. 25

IT information technology. 38

JIT just in time. 16, 21

JSON javaScript object notation. 54, 56, 57, 60, 64

KPI key performance indicator. 2

NoSQL not only structured query language (SQL). 44, 60

OLAP online analytical processing. 2, 19, 21, 25, 41–43, 45, 47, 60, 65, 67

OLTP online transaction processing. 20

RDBMS relational database management system. 21

ROI return of investment. 37

x

RTDWH real time data warehouse. 5

SMART specific, measurable, assignable, realistic and time related. 27, 29

SOA service oriented architecture. 37, 38, 50, 56, 66

SQL structured query language. ix, 44

SSH secure socket shell. 51

WAG wild altogether guess. 13

WCF windows communication foundation. 56

1

Chapter 1

Introduction

1.1 Purpose

This document describes the requirement analysis, planning, implementation
and testing of a soft real time event processing and storage solution at Medici-
neOne as part of a curricular internship.

On the following chapters, the project is described, firstly in terms of plan-
ning and employed methodologies and secondly by reporting the results of its
constituent steps / components.

The document aims to make the process and technological decisions known
to the reader and provide the necessary indicators so that they can recreate or
evaluate them.

Finally, it will serve as an introductory point to new developers, joining the
project, looking to understand the code base, documentation, state of the art and
reasoning behind the decisions made along the way.

1.2 MedicineOne

The internship was hosted by MedicineOne, a Portuguese technological company
that specializes in developing software for the healthcare market.

MedicineOne develops and commercializes a complete clinical management
system with a strong market presence. The multiple solutions and deployments
coursing with data create the ideal conditions for intelligence extraction.

FIGURE 1.1: MedicineOne logo (http://medicineone.net).

With very large deployments, some of them centralized and under the control
of the company, events such as drug prescriptions can be ingested in soft real
time and analyzed to create new intelligence based services and products. An
example would be the ability to empower pharmacies with access to a current
view of what drugs are being prescribed on their area of coverage.

Being in a favorable position, MedicineOne idealized the project and submit-
ted it as a internship proposal for research and development.

Chapter 1. Introduction 2

1.3 Project Objective

The objective of the internship was to, starting from a product idea, analyze, plan,
implement and validate a soft real time event aggregation, processing and vi-
sualization system for healthcare related events, such as drug therapy prescrip-
tions. Generally it can be described as a soft real time online analytical processing
(OLAP) system with especial focus on arbitrary aggregation and querying.

The objective of the system is providing insight into healthcare metrics such
as drug and diagnostic test prescription frequencies as well as geographical and
chronological distribution of certain events like pathology diagnoses. More specif-
ically, create a platform atop of which higher level function can be implemented.
Some examples are machine learning, notifications or complex event processing.

The information is already being generated and stored by the current deploy-
ments of MedicineOne’s products. Through means of anonymization and aggre-
gation, it becomes possible to treat it statistically and generate a set of metrics
that will interest the healthcare professionals and surrounding industry. Even
though the exact business model is not clear at the time of development, such
a system can add value both to healthcare organizations and the pharmacy and
related industries. And example of how it could do so would be providing key
performance indicators (KPIs) and metrics that can contribute to a more efficient
processes or market strategies.

Starting from the back-end components of the system, the objective was de-
veloping it as much as possible going towards the front-end as time and resources
allowed. The success threshold is defined by the Annex A, containing a system
requirements specification document, which means the project would be consid-
ered successful if all Medium and High Priority requirements were satisfied. This
means that the Front-end components were considered optional. The rational be-
hind that decision is that they were added to the scope of the project after the
internship had begun. Also, it was very likely that there wouldn’t be enough
time given the size and breadth of the back-end.

For the company, the final objective is turning the result of the internship into
a market ready product. There are preliminary plans to commercialize it in two
different formats. The first is deployed on premise under the control of a client
organization so they can explore their internal data. The other option is selling
access to the platform as a service, putting focus on performance and scalability
to accommodate a growing number of sources as well as a growing number of
clients using the service.

Chapter 1. Introduction 3

1.4 Document Structure

The present document is organized as follows;

• Introduction: Describes the report and introduces the reader to the project
and its context.

• Project: Contains the general description of the project, detailing its scope
and objectives as well as the contributions made by the intern.

• Plan and Methodology: Overviews the general plan for the internship and
employed project management methodologies, from life cycle to risk man-
agement.

• State of the Art: Presents the state of the art, not only from a technical stand-
point, but also from a product perspective, presenting and briefly exploring
similar solutions.

• Requirements: Describes the process of requirement analysis and turning
the idea into a set of well defined requirements, presenting an introduction
to the most relevant ones.

• Risk: Section dedicated to listing identified risks as well as how they were
prioritized and dealt with.

• Evaluation: Various possible technologies and components were found and
are discussed on the State of the Art. This chapter compares homologous
solutions.

• Architecture: Contains the results of the architectural design step and re-
spective backing information, such as drivers. Also, contains the necessary
information to correctly interpret the architectural views and implement
them.

• Implementation: Describes the implementation step of the project includ-
ing programming, configuration and deployment of components as well as
documentation of each of them for review and replication purposes.

• Results: This section presents and discusses the results and evaluates the
success of the project.

• Conclusion: Section with the final reflections and conclusions.

• References: List of cited or referenced sources.

4

Chapter 2

Project

2.1 Motivation

MedicineOne develops and commercializes a complete clinical management sys-
tem, the current iteration, MedicineOne 8, is still fundamentally a solution thought
and designed for deployment on premise. Even though they provide hosted so-
lutions, the data still lives isolated inside a logically and physically portioned
relational database.

Given the importance of data driven approaches, with an ever growing list of
studies and success examples, every company with that possibility wants to start
exploring and extracting value from their data. Surrounding markets understand
the value offered by products that can give them insight into the current state of
the healthcare environment.

Besides the immediate and obvious benefits for the healthcare providers them-
selves, such a solution can add value to the pharmaceutical and other tightly
connected industries, by giving them relevant, up to date, market and demand
metrics. Being made available in real time can improve the actionability of the
data as well as greatly reduce the time to take action leading to competitive ad-
vantage. A great example would be to monitor in real time how effective a new
drug direct marketing campaign is, making it possible to adjust as necessary and
monitor the effects.

With a large client base and large volumes of data, MedicineOne is in a privi-
leged position to develop and market this service. A centralized system to aggre-
gate the relevant information from all the individual deployments and empower
its clients with the ability to explore and visualize this data in real time.

Chapter 2. Project 5

2.2 Overview

The project, code named MATE for ease of reference stems from the need to make
use of the available data. Using empirical information extracted from real data
to assist decision making can bring benefits to public and private organizations
alike, however, historically, extracting business intelligence (BI) from data, and
maintaining a data warehouse (DWH) are costly and high latency operations.
From the moment an event takes place, it used to take at least days before the
data could be analyzed using classic BI and DWH approaches. Presently, with the
advancements in real time data warehouse (RTDWH) and stream processing, it is
possible to analyze and visualize data in soft real time[4], creating the necessary
tools for faster decision making, lower response times and increased efficiency.

MedicineOne wants a system that will aggregate relevant information, such as
prescriptions and pathology diagnostics, from the various deployments of their
MedicineOne 8 clinical management system. The system is supposed to ingest
and process events fast enough to be able to present relevant information to the
users in soft real time. Due to its area of application, the system needs to be
reliable and tolerant to technical and human failures, putting great emphasis on
availability and reliability.

From a high level of abstraction, the system needs to gather the events, store
them and execute the necessary computations such as transforming them or gen-
erating new data. The existing data also needs to be made available for query
with low latencies.

The system is aimed at the healthcare industry, possibly to be made available
for subscription as a service, where the end users can extract insight from historic
data or quickly get an overview of the current state of affairs, being able to for
example assess the effects of recently implemented policies.

2.3 Product

The MATE system is meant to serve as the base for a commercial product, men-
tioned and described to some extent in various parts of this report, like chapter
chapter 1. However, that aspect was not part of the scope and is meant to con-
textualize and help elicit and prioritize requirements. It also had the purpose of
validating the usefulness of the resulting system. For that purpose when study-
ing the state of the art, products similar to the one intended where analyzed in
terms of commercial viability.

The product development was at a very early stage in the host company, it’s
exact features and commercialization plan being uncertain. To avoid restricting
the evolution of the product and it’s adaptability to market requirements, special
care was taken in making sure that the more general solutions and approaches
were given preference.

Chapter 2. Project 6

2.4 Scope

The purpose of this section if defining the scope internship, with special focus
on what is expected of the intern. MedicineOne wants a system that can con-
sume real time events from the various deployments of their CMS, for purposes
of storage, aggregation, and processing to support analytical and visualization
applications.

Initially the project was divided in two parts, visualization and data aggre-
gation, assigned to two different internships. Due to external circumstances, the
visualization internship was terminated and its scope merged into this one. How-
ever, the tasks resulting from this addition were kept as low priority due to the
high likelihood of not having enough time to successfully complete them.

In order to avoid ambiguity when crediting contributions, a preoccupation
brought by the supervisor, the second intern, in charge of the front-end was in-
ternally reallocated to another project at MedicineOne. To deal with the added
workload both parties, intern and host company, agreed that the added require-
ments would not be included in the success threshold definition. In light of this,
a more requirement oriented approach was taken, putting most of the effort into
developing functionality with the intent of creating a prototype as close as possi-
ble to what would be expected of a system capable of sustaining an actual prod-
uct. The selected approach was start from the back-end, and progress towards
the front-end components, and do as much as possible in the available time.

This was reflected by the requirements in the form of prioritization, all re-
quirements relating to the front-end, even though elicited and planed for, were
considered low priority and only covered if they would not negatively impact the
development of the back-end.

As a conclusion the intern was responsible for implementing a soft real time
data storage and processing system, optimized for dimensional time series. On
top of this, the system was also expected to implement mechanisms to be able to
push data to the front-end, making it capable of displaying events and metrics
to the users in real time (push). It was also the intern’s responsibility to, at least
partially, modify the MedicineOne 8 Server in order to make it capable of sending
out events to a MATE deployment.

From a more technical perspective, the product MedicineOne wants to create
will be an aggregation of a few different components, listed below and illustrated
by Figure 2.1.

• MedicineOne 8, their CMS;

• MedicineOne 8 Mate Connector, responsible for sending events to the real
time pipeline;

• Real time pipeline, responsible for ingesting events, aggregating and mak-
ing them available for processing and query;

• Processing modules, responsible for data processing tasks, like extract, trans-
form and load (ETL) or machine learning;

Chapter 2. Project 7

• Front-end, responsible for making the information available to the end clients;

FIGURE 2.1: Visual representation of the scope.

For disambiguation purposes, follows a list of concerns that are outside of the
scope of this project;

• Securing the infrastructure, it is assumed to be secured with conventional
methods, such as firewalls and a distinction between internal machines and
internet facing machines;

• Data science or machine learning, while the system tries to be general to
support such applications, implementing or studying them, is not part of
the scope and outside of the interns area of knowledge;

• Product and market development, the project is purely technical;

2.5 Contributions

The following contributions were made towards the advancement of the project:

• First Semester:

– Study of the state of the art, both in technology and similar products;

– Requirement elicitation, analysis and documentation;

– Risk management plan and analysis;

– Evaluation of existing technologies;

– Architectural design;

• Second Semester:

Chapter 2. Project 8

– Study and selection of infrastructure and deployment management
systems;

– Selection of technologies and platforms;

– Configuration and composition of the selected technologies and plat-
forms;

– Automation and execution of deployment;

– Development of a event generation service in the existing CMS;

– Development of event processing components;

– Evaluation of the results;

9

Chapter 3

Plan and Methodology

Being a rather large project for a single developer, good planning and the choice
of an adequate life cycle were fundamental for the success of the project and qual-
ity of the produced artifacts. The project was divided into two distinct stages,
with different levels of dedication. During the first semester the project was given
16 hours of dedication weekly and 40 during the second.

TABLE 3.1: Time budget for the project.

First Semester Second Semester Total

Start Date: 29/9/15 2/6/2016
End Date: 22/1/16 17/6/16

Weekly Effort (hours): 16 40
Business Days: 84 95 179

Weeks: 16 19 35
Total Effort (hours): 256 760 1016

Effort Percentage: 25% 75% 100%

This distribution of effort was a conditioning factor when it comes to task
distribution and life cycle. Trying to get development work done during the first
semester would not be productive since it only corresponds to 25% of the time.
This aspect becomes even more relevant when considered that the first semester
was shared with other courses.

On that basis the tasks scheduled for the first semester were:

• Familiarization with the domain;
• Research of the state of the Art;
• Requirements elicitation and analysis;
• Planning and life-cycle selection;
• Architectural design;
• Technology selection;
• Production of this report;

In summary, the first semester was used for planning and document produc-
tion, creating the supporting structures to guide implementation during the sec-
ond semester. While some life-cycle methodologies encourage less formal doc-
umentation, the decision was made, that since the project was starting from an

Chapter 3. Plan and Methodology 10

unstructured idea, at least the requirements and the architecture should be for-
malized.

The second semester was dedicated to more practical tasks, detailed below.

• Automating deployment of platforms;
• Studying orchestration and scheduling platforms;
• Streamlining deployment of Apache Mesos;
• Deployment of Mesosphere DC/OS 1.6;
• Porting existing platforms to DC/OS;
• Developing MedicineOne 8 to MATE connector and event generator;
• Developing data processing topologies;
• Testing and benchmarking;

3.1 System Development Cycle

Being the first of its kind in the organization, the system development cycle[1]
required sufficient flexibility to explore what was in fact viable while keeping as
close as possible to its initial objectives. That coupled with the fact the intern had
no previous experience with soft real time event processing made an agile system
development cycle methodology with emphasis on incremental development the
best fit. It was important to make the project easy to gradually steer in the desired
direction while being forgiving to mistakes and making it possible to fix them
without having to re-plan everything.

Incremental planing and implementation with focus on delaying decisions,
gave the project the necessary agility to accommodate change and correct mis-
takes. With that in mind as a limiting factor, a few different development cycles
methodologies were explored before making a decision.

3.1.1 Scrum

Scrum is a management and control process devised to reduce complexity and
focus on building software that creates values for businesses. Management and
teams are able to get their hands around the requirements and technologies, and
deliver working software, incrementally and empirically[5].

The key concepts of Scrum, as defined by the Scrum Alliance[7], necessary to
understand this report, are:

• Sprint: A spring is the fundamental work unit of scrum, defined by a time-
box of one month or less during which a deployment ready, usable, and
potentially releasable product Increment is created. The sprint is by nature
immutable, meaning that its goal will not change while it is being under-
taken. May be canceled when necessary.

• Product backlog: The Product Backlog is an ordered, prioritized list of ev-
erything that might be needed in the product and is the single source of re-
quirements for any changes to be made to the product. The Product Owner
is responsible for the Product Backlog, including its content, availability,

Chapter 3. Plan and Methodology 11

Working increment
of the software

Sprint Backlog SprintProduct Backlog

FIGURE 3.1: A visual depiction the key concepts in Scrum[6]
(http://wikimedia.org).

and ordering. It lists all features, functions, requirements, enhancements,
and fixes that constitute the changes to be made to the product in future
releases.

• Sprint backlog: The Sprint Backlog is the set of Product Backlog items se-
lected for the Sprint, plus a plan for delivering the product Increment and
realizing the Sprint Goal. The Sprint Backlog is a forecast by the Develop-
ment Team about what functionality will be in the next Increment and the
work needed to deliver that functionality into a “Done” Increment. The
Sprint Backlog makes visible all the work that the Development Team iden-
tifies as necessary to meet the Sprint Goal.

• Increment: Is the sum of all completed items of the Product Backlog, an
increment is generated as the result of each sprint and it must be complete,
according to the goal set for the sprint. By definition, it must also be usable,
deployment ready in other words, regardless of whether the Product Owner
decided to deploy it or not.

• Product Owner: Is responsible for maximizing the value of the product and
the efficiency of the development team. Even though it varies, their usual
responsibilities are managing the product backlog and properly prioritize
them tasks in it, and making sure the product stays consistent with its goals.

From scrum it imported the concepts of sprint, product backlog and sprint back-
log. However, to make it more agile, sprints were purposely kept short and task
oriented as advised by just in time delivery methodologies like kanban[8].

Chapter 3. Plan and Methodology 12

3.1.2 Kanban

Kanban is the name commonly given to a software development management
process based on Toyota’s JIT production management system[9]. The most char-
acteristic principle, is having a board divided into sections each representing a
stage of the process where the tasks are posted and moved as they advance in
completion.

To Do Doing Done

FIGURE 3.2: Illustration of a Kanban board.

When applied to software development it tries to increase focus by reducing
tasks to atomic user stories, a small story describing the desired functionality, and
making the work-flow visual and team oriented. By having a board with tasks,
as user stories, and their current stage in process, it helps reduce bottlenecks in
cases where the development process is multi staged. If a team is overworked and
bottle-necking the process, the problem becomes evidently and visually apparent.

3.1.3 Selected Methodology

The decision was made with a few considerations in mind;

• The intern would be working on an isolated branch project;

• Most of the contacts with other organizational structures would happen at
requirement elicitation;

• The lack of experts on the area made technical review a non issue to an
extent;

• Most validation would happen on results and properties of the resulting
system;

Chapter 3. Plan and Methodology 13

• A lot of the effort would be directed to research and technology selection;

As there was no need to formally communicate a lot of technical results on a
regular basis, a lighter methodology with emphasis on production was preferred.
However, due to the technical breath of the project, dwelling into a multitude
of domains, it was necessary to still have a formal way of breaking down and
managing the activities. The objective being help maintain the effort task oriented
and make prioritization decisions with a good overview of what was the current
state of completion.

To fit all these requirements, a hybrid methodology gave the best chances of
success. Incorporating most of kanban’s principles while at the same time bor-
rowing the notions of iterative development, product and sprint backlog from
SCRUM.

During development, at the beginning of each sprint, a functional require-
ment, described as a user story, was selected from the kanban board, and worked
on for the duration of the sprint, producing a version of the system that fulfills it.
During a spring, each user story went through the following stages, represented
as columns in the kanban;

• To Do;

• Research & Prototyping;

• Implementation;

• Validation;

• Done.

Sprints lasted around 1 work week (40 hours).

3.2 Chronogram

This section shows the estimated duration and scheduling of the constituents of
the project. All shown durations are the result of a three point wild altogether
guess (WAG) estimation process. While not ideal, this was the only option since
both the hosting organization and the intern lacked the necessary expertise to
make better estimations.

To improve the quality of the results, three estimations were made for each
task, representing the Optimistic (O), Pessimistic (P) and Most Likely (M) scenar-
ios. The final estimations(E) were calculated according to the following formula:

E =
O + 4M + P

6
(3.1)

σE =
P −O

6
(3.2)

The weights used in this estimation were chosen for being widely accepted by
the industry. They empirically produce good results, and are based on assump-
tion that this type of data typically follows well known distributions[10].

Chapter 3. Plan and Methodology 14

3.2.1 First Semester

The chronogram on figure 3.3 shows the plan for the first semester, with allo-
cated tasks mainly concerning research, requirements analysis, architecture and
documentation efforts.

ID Task Name Start Finish Duration
out 2015 nov 2015 dez 2015 jan 2016

27/9 4/10 11/10 18/10 25/10 1/11 8/11 15/11 22/11 29/11 6/12 13/12 20/12 27/12 3/1 10/1 17/1

1 4d02/10/201529/09/2015Introduction

4 15d23/10/201505/10/2015Research

7 15d16/11/201526/10/2015Requirements

12 15d07/12/201516/11/2015Architecture

16 49d22/01/201616/11/2015Report

3 2d02/10/201501/10/2015Presentation of the idea

2d30/09/201529/09/2015Getting used to the work evironment

5 10d16/10/201505/10/2015Research state of the art

6 5d23/10/201519/10/2015
Research Technologies and similar
products

2

15 19d31/12/201507/12/2015Tooling Development

8 10d06/11/201526/10/2015SRS Production

5d13/11/201509/11/2015SRS Adjustment10

9 0d13/11/201513/11/2015SRS Delivery

0d16/11/201516/11/2015SRS Delivery11

14 0d07/12/201507/12/2015Architecture Delivery

13 15d04/12/201516/11/2015
Architecture design and
documentation

0d22/01/201622/01/2016Report Delivery18

17 48d20/01/201616/11/2015Report Production

FIGURE 3.3: Chronogram of the 1st Semester.

Not everything went according to plan and only about 65% of the planned ef-
fort was actually put in. This delayed some tasks on the chronogram and forced
the Tooling Development task to be reallocated to the second semester. However,
the remaining tasks, the most important ones, concerning planning and docu-
mentation, were still concluded with success laying out a solid foundation for
the work to develop on the second semester.

The research phase, even though longer than planned, was satisfactory and
gave the developer the necessary know-how and awareness of the employed
techniques and existing technologies to achieve the goal of the project. This
included real time event ingestion, aggregation and visualization as well as an
understanding of the limits of what is currently viable. Due to the approach
taken during the research phase, using readily available articles, use cases and
benchmarks as the main sources of information, most choices lack a more for-
mal, peer reviewed publication to support them. However, empirical data makes
them very likely to hold true.

The requirements were successfully elicited from João Miguel, chairman of
MedicineOne as well as the project owner. This was done through a couple of
formal meetings and a few more informal conversations for validation. After
vetting them for viability, requirements were then distilled into a SRS document
that was submitted to a revision and correction process until they were accepted,

Chapter 3. Plan and Methodology 15

setting the first formal definition of the scope of the project as well as the priorities
of each functionality.

After making sure that the project was well understood and its scope well
defined, the architecture was designed through an incremental process, creating
a proposal and validating it against the SRS until all the drivers were satisfied.

In the end it was presented to supervisor and approved.

3.2.2 Second Semester

The development cycle methodology of the project discourages making decisions
too early. However, based on the architecture proposal, the list of tasks and their
estimated durations it was conjectured that the second semester would loosely
follow what is depicted by the gantt chart in Figure 3.4.

ID Task Name Start Finish Duration
abr 2016mar 2016 jun 2016fev 2016 mai 2016

29/517/4 22/515/510/4 8/5 12/614/2 13/3 3/420/36/3 1/57/2 21/2 24/428/2 5/627/3

80d27/05/201608/02/2016Development1

20

19

2

17

11

3

4

10

9

8

6

7

5

10d19/02/201608/02/2016Preparation

5d12/02/201608/02/2016Testing Environment

2d16/02/201615/02/2016Data model

3d19/02/201617/02/2016Tooling development

45d22/04/201622/02/2016Develop Back-end

5d26/02/201622/02/2016Deploy ZooKeeper

5d04/03/201629/02/2016Deploy Kafka

10d18/03/201607/03/2016Deploy HDFS

5d25/03/201621/03/2016Deploy Storm

10d08/04/201628/03/2016Deploy Druid

16

15

12

13

14

10d22/04/201611/04/2016Configure Stack

25d27/05/201625/04/2016Develop Front-end

15d13/05/201625/04/2016Implement Visualization

5d20/05/201616/05/2016
Implement Real time
subscription

5d27/05/201623/05/2016Implement permissions

24d01/07/201630/05/2016Reporting

5d03/06/201630/05/2016Benchmarking

15d24/06/201606/06/2016Documentating

18 5d03/06/201630/05/2016Testing

19/6 26/6

21 0d01/07/201601/07/2016Deliver Report

FIGURE 3.4: Planned chronogram of the 2nd Semester.

The plan was starting on some preparations deemed necessary, namely defin-
ing the data model and creating mock event originators. This was meant to avoid
getting tangled into legacy integration too early on, and help prepare the testing
environment. This step would facilitate the following ones increasing the pro-
ductivity of the developer.

The lion share of the remaining time was scheduled for sprints implement-
ing user stories and making sure the project would stay on track. Even though
a rather inflexible list of tasks is presented, with defined technologies and plat-
forms, all of them are used for illustration purposes and subject to change if the
need were to arise. An example would be finding a better solution, or finding
out that one of them does not perform as expected. The ability to makes changes

Chapter 3. Plan and Methodology 16

during the development is one of the main reasons why an agile just in time (JIT)
methodology was chosen.

The second semester had considerable deviations from plan due to both inter-
nal and external circumstances. In reality the distribution was as shown in Figure
3.5.

ID Task Name Start Finish Duration
abr 2016mar 2016 jul 2016fev 2016 mai 2016

19/68/5 12/65/61/5 29/5 3/76/3 3/4 24/410/427/3 22/514/2 13/3 15/520/3 26/617/4

127d02/08/201608/02/2016Development1

24

23

2

21

11

3

4

10

9

8

6

7

5

10d19/02/201608/02/2016Preparation

5d12/02/201608/02/2016Testing Environment

2d16/02/201615/02/2016Data model

3d19/02/201617/02/2016Tooling development

117d02/08/201622/02/2016Develop Back-end

5d26/02/201622/02/2016Deploy ZooKeeper

5d04/03/201629/02/2016Deploy Kafka

10d18/03/201607/03/2016Deploy HDFS

5d25/03/201621/03/2016Deploy Storm

10d08/04/201628/03/2016Deploy Druid

12 15d29/04/201611/04/2016Automate Mesos Deployment

21d01/09/201603/08/2016Reporting

5d09/08/201603/08/2016Benchmarking

15d30/08/201610/08/2016Documentating

22 5d09/08/201603/08/2016Testing

jun 2016

28/221/2

25 0d01/09/201601/09/2016Deliver Report

13 5d06/05/201602/05/2016Deploy Kafka on Mesos

14 10d20/05/201609/05/2016Deploy Cassandra on Mesos

15 10d03/06/201623/05/2016Deploy Storm on Mesos

16 10d17/06/201606/06/2016Write Processing Topologies

ago 2016

10/7 17/7 24/7 31/7 7/8 14/8 21/8 28/8

17 15d08/07/201620/06/2016Replace Mesos with DC/OS 1.7

18 2d12/07/201611/07/2016Update Kafka and Cassandra

19 10d26/07/201613/07/2016Containerize Storm 1.0

5d02/08/201627/07/2016Containerize Druid20

FIGURE 3.5: Chronogram of the 2nd Semester.

Reasoning for the deviation are explored in detail in Chapter 8.

3.3 Change Management

Since the project was experimental for the participants, for the reasons described
on the previous subsections, it was assumed chance would be a constant presence
throughout the development process.

The changes were expected to come from two main originators. First one
would be a selected component not being able to fulfill a requirement and having
to be replaced. Another possible source would be the project owner, who would
possibly to want to introduce a few changes or corrections.

Since the human and time resources were known to be limited to what the
internship context allowed, changes went through a proper process to make sure
how costly they would be. Their acceptance depended on the result of said eval-
uation. If they would enlarge or change significantly the scope of the project, they
were not accepted and instead listed as future work. On the other hand, if they
did not add significant overhead and were within the scope of the project, they
were prioritized by the project owner and added to the product backlog.

Chapter 3. Plan and Methodology 17

3.4 Risk Management

Risk management, is the process of identification, assessment, and prioritization
of potential problems and uncertainty, with the intent of minimizing or avoiding
their negative impact.

The employed process, discourages focusing on documentation and extrane-
ous activities that do not produce functionality, however, to reduce unexpected
issues and reduce risk, the intern decided to use a very light risk management
process.

At the end of each stage, sprint, or kanban card a brief analysis was conducted
to determine if any new risks had arisen. Any risks found were pinned on a sep-
arate kanban board, and each went through analysis to determine its probability,
impact. Additionally, mitigation plans were created when possible or risks were
just accepted when it was unavoidable.

Risks that went through this process, as well as the resulting plan, were doc-
umented in Chapter 6.

More formal approaches lose their appeal in a single developer context, since
there is no need to communicate the risks and plans to an entire team or differ-
ent levels of management. In this particular case it is used merely as a personal
tracking mechanism and a way to deal with uncertainty in a very dynamic and
recent technological ecosystem.

3.5 Development Environment

To potentiate scalability, distributed, replicable, components are preferable when-
ever possible, creating the necessity to emulate a multiple machine development
and deployment environment. The default approach is to use virtualization to
simulate the entire environment, however this slows down deployment and re-
builds. The current proposal of components and technologies to be used are all
open source and run on Linux, therefore containers become a viable, more attrac-
tive solution. Their very low overhead, fast spin-up times and flexibility of de-
ployment and network topology add value to the development. Currently docker
containers are very popular and come with a set of tools that make it straightfor-
ward and easily automatable to build an application or set of services, pack them
into a container, distribute and get running with the proper interconnections. On
top of that it supports a layered container representation that integrates a git like
version management system, making it efficient and fast to ship changes across a
network.

Depending on how this rather recent technology evolves, it might also be pos-
sible to use it for the actual deployment of the final product, since containers are
notoriously easy to schedule and orchestrate over a physical cluster with the help
of project like Docker Swarm[11] or Kubernetes[12]

Fundamental chances to the development environment were made during the
second semester, but as they were not part of the initial plan, they are not dis-
cussed in this chapter. Details are present in chapters 7 and 8.t

18

Chapter 4

State of the Art

Understanding the state of the art technologies, products and practices is neces-
sary to navigate a new field. To help understand technical decisions and guide
readers who are not familiar with this particular subject, this chapter contains an
overview of the current state of technology and products.

4.1 Existing Products and Applications

Practice Fusion is the company behind the largest EHR in the United States of
American. Founded in 2005, they pioneered an innovative approach to EHRs[13],
a free, cloud based product. In terms of business model, the company generates
revenue though analytics products, centered around the data available in the sys-
tem. One of the materializations of this model is Insight[14], a web application
that gives users access to low latency healthcare analytical data. Keeping with a
growing tendency, Practice Fusion made the public beta available to anyone for
free.

The now private service, part of a larger, invite only, platform called Practice
Fusion Pharma[15], is only available to their partners. This platform is function-
ally homologous to the intended application of MATE. It stores the same type
of events; drug therapy prescriptions and pathology diagnoses. Finally, it pre-
sented a similar business model, based on selling analytics based products to the
pharmaceutical industry.

From a market perspective this proves that there is a demand and the busi-
ness model can be successful, making a platform like MATE, and products built
on top of it, relevant and viable.

Chapter 4. State of the Art 19

FIGURE 4.1: Screenshot of Practice Fusion Insight
(http://www.practicefusion.com).

4.2 Analytical Data Processing

Businesses and organizations have always had the need to perform analytical
workloads on their data. In the era of information technology information is be-
ing produced at ever growing rates, making its analysis a technical challenge.
Analytical workloads require a global view of the data as well as the ability to
process it at different granularities. The ability to analyse recent data, as close as
possible to real time, has always been desirable and the goal of a lot of research.

Classical DWHs for OLAP store data in a relational database, usually in a star
schema, shown in Figure 4.2. Factual or event data is on a large table connected to
smaller dimensional tables using foreign keys. Most of the analytical workload is
write once, read many, so the typical trade offs discarding granular data in favor
of rolled up data and writing in batch every so often. Update regularity usually
varies from weekly to daily. This type of solution tends to employ views or cube
storage to pre-calculate aggregations at various levels of granularity.

Chapter 4. State of the Art 20

Time Dimension

TimeID: Int (PK)
Day: Int
Month: Int
Year: Int

Location Dimension

LocationID: Int (PK)
CIty: Text
Region: Text

Book Dimension

BookID: Int (PK)
Book: Text
Genre: Text

FactTable

BookID: Int (PK)
LocationID: Int (PK)
TimeID: Int (PK)
Sale: Int

FIGURE 4.2: Sample star schema
(http://chrthomsen.github.io/pygrametl)1.

2

To comply with the schema, lading data into the DWH becomes a complex
process, commonly called ETL or extract, transform, load and refresh (ETLR).
Data is firstly extracted from the original sources, typically online transaction
processing (OLTP) databases. After going through a transformation process to
comply with the schema, it is inserted into the DWH. Depending on the em-
ployed process the DWH might be recreated from scratch every time to avoid
consistency and performance issues. As an alternative the ETL step can take over
that responsibility and just insert or update data as necessary. In either case the
process is very heavy due to the necessity to update or recreate indexes and con-
sistency assertions. Typically, as a result of the inner workings of indexes and
views, to get satisfactory load performance it is necessary to drop all indexes,
views and cubes before starting the Load or Refresh. Afterwards the will have
to be recreated[16]. This process can take a long time, proportional to the data
volume and number of dimensions in the star schema, therefore it is obviously
not adequate for a real time approach.

The next subsections explore the necessary capabilities to achieve soft real
time analytical processing and how they have evolved;

4.2.1 Low Latency

Historically, the first approach to achieve BI on fresh data was decrease the re-
quired time for the ETL process. Many techniques were used, the most notable
being data base pivoting. Two data warehouse database engines are used in a
double buffering, pivoting scheme, while one responds to queries the other one
is loaded. Other approaches are higher level of aggregation, faster index types

2http://chrthomsen.github.io/pygrametl/

http://chrthomsen.github.io/pygrametl/

Chapter 4. State of the Art 21

or even optimized operations like the Star Join operation implemented by some
databases, optimized to join fact tables with dimensional tables.

Due to technological, financial and conceptual advances, it is now possible,
with some trade offs, to process, aggregate and visualize data in soft real time.
Most implementations rely on multi staged approaches. A highly indexed and
pre-processed store for fast querying of historic data, and a fast layer with small
quantities of raw data to cover the time between updates[17].

4.2.2 Fast Aggregation

Due to historically slow access to storage, aggregating large quantities of data was
impractically slow. To achieve OLAP capabilities, data had to be pre-aggregated
in dimensional structures called cubes, firstly as views in regular relational database
management system (RDBMS) and later in specialized storage engines. However,
updating existing cubes is too slow and computationally heavy to achieve real
time ingestion and querying. To reduce the time between ingestion and availabil-
ity JIT aggregation strategies are employed leveraging parallel computing tools
like Apache Hadoop[18]. A complementary strategy is using faster storage, on
the limit keeping the entire data set in main memory, distributed and replicated
across a cluster.

Naive implementations will suffer a financial penalty resulting from the higher
prices of main memory and the fact that read operations become CPU bound.
However, with proper caching and doing pre-computation, when it doesn’t cause
increased latency, makes it a very powerful technique. Some success examples are
InfluxDB[19] and Druid[20].

4.2.3 General Processing

For some applications like data enrichment or machine learning, the traditional
data aggregation and indexing processing it not enough. Achieving general pro-
cessing while not increasing latency / decreasing performance was not trivial.

The biggest impact in this area, kick starting the age of big data, was the usage
of mapReduce, namely Apache Hadoop[18] to leverage a cluster of commodity
nodes and parallelize not only the ETL but on the extreme, even the data storage
itself[21].

This approach is called batch processing, and makes it possible to load and
achieve general processing over large batches of data by leveraging large quanti-
ties of computational resources. The availability of cloud based computational
resources made it even more attractive, however, batch loading, even though
powerful, still has high latencies. Processing and loading times went from days
to hours, but still far away from what is considered real time due to the overhead
of loading data from storage, distributing work and coordination between nodes
when necessary.

Chapter 4. State of the Art 22

4.3 Approaches

This section described the technical approaches used to achieve soft real time
analytical workloads over historical data and events streams.

4.3.1 Stream Processing

To achieve near real time performance, a different approach emerged, while still
leveraging distributed computing, stream processors deal with a continuous stream
of data, one event at a time, routing it through a path of computational tasks.
Since events are processed individually, or in small batches, the latency is very
low, and high input volumes can be dealt with using clustered resources and al-
ternative storage approaches. An example would be keeping data in main mem-
ory, more on the subsection dedicated to storage.

While stream processors like Apache Storm[22] achieve very low latencies,
sometimes sub second, they are less powerful in the sense that they do not have
access to all the data as is the case with batch processing. Usually this can be
compensated for by changing the paradigm around data, adopting an immutable
approach, accepting that a record should never be altered and is the single source
of truth at that point in time. Instead, new information is appended and every-
thing treated as temporal series. When global consistency is required, it can be
eventually achieved by using batch processing as a slower, more accurate com-
plementary mechanism.

4.3.2 Storage

As described on the previous sections, storage was for a long time the bottleneck
for BI and the possibility of soft real time processing and querying. Under certain
specific conditions there were always well documented techniques to deal with
this. The following complementary approaches have proven their value;

Columnar and Time Series

Column oriented data stores store data tables as contiguous sections of column
data as opposed to rows. Most analytical queries involve operations over very
few columns, therefore the locality principle can be explored to get faster loads.
Apache HBase[21] is a well known widely used example.

Other data stores leverage this same principle, but segment data chronologi-
cally, this is especially useful for dealing with data series, the prime examples are
InfluxDB[19] or Amazon RedShift. Commonly these databases deal with grow-
ing volumes of data by aging it. For example, older data might get aggregated,
saving storage and processing at the cost of granularity loss.

In Memory

In accordance with the von Neumann architecture[23], memory has always been
regarded as scarce and expensive. With hardware steadily decreasing in price and
being easily available on demand through cloud computing, this is no longer the

Chapter 4. State of the Art 23

case. At this point in time storing an entire database in memory is in many cases a
viable option. All the previously mentioned approaches are still valid and benefit
greatly from being combined with in memory storage. At first, it might seem like
storing data on a volatile medium might not be such a good idea, but the risk of
loss can be easily mitigated by using distributed data stores that replicate data
segments across many nodes creating a resilient platform. Plus, snapshots of the
data can be periodically persisted to disk. A great example of a simple in memory
distributed data store is Redis[24].

Sharding

In order to execute analytical workloads in soft real time over growing volumes
of data, storage operations need to have controlled complexity, ideally constant.
Since this is not always possible, an alternative is using a storage that can scale
horizontally and add more hardware as data grows, keeping complexity bounded.
Sharding data over a cluster is a very effective way of achieving this goal. In lots
of applications, as is the case of the /glsmate platform, data can be treated as a
multi dimensional time series and it makes sense to segment it over the temporal
dimension. This way, operations can be distributed and each node will always
be responsible for a fixed size portion of the data, delivering results in consistent
times.

4.3.3 Reference Architecture

With knowledge of the previously explored techniques, soft real time can be
achieved by using different complementary technologies together, with the caveat
of added complexity.

A widely accepted approach to soft real time is the Lambda Architecture[25]
illustrated in Figure 4.3, by Nathan Marz, author of Apache Storm. It can be
described as a set of architectural principles that allow generic, scalable, fault tol-
erant low latency data processing, as long as the data has a temporal dimension.

FIGURE 4.3: Sample, two path, lambda architecture.
(http://lambda-architecture.net/)

A natural evolution of the database pivoting method previously described,
data is batch processed and ingested in regular intervals, and the gap is filled by
a stream processing approach. Queries are then mapped and distributed over the

Chapter 4. State of the Art 24

two segments by a serving layer.

The batch segment brings the benefits of batch loading and high availability
of a write once read many data store. At the same time, the stream segment
compensates for the batch loading delay by keeping the recent data in memory
and highly available. This also adds fault tolerance to the system since errors
during stream loading will later be corrected by the batch loading. Even in case
of total loss at the serving layer, data can be recreated from the raw storage at the
batch layer.

This architecture and derivatives are the current state of the art on what con-
cerns real time analytical workloads and is used by small and multi-billion dollar
companies alike. Some notable examples are twitter, with Apache Storm[22] and
Heron, and NetFlix with SURO[26]

As a last note, it is important to understand how overloaded[4] the term real
time is. It can mean anything from real time ingestion, and real time processing to
real time visualization, and chronologically range from sub-second to sub-hour.

4.4 Technologies

The following subsections briefly introduce the technologies found and studied
during research. Due to their open source nature and immaturity, these are ac-
tively changing technologies, for more detailed information, consult the official
documentation.

4.4.1 Apache Kafka

Apache Kafka[27] is a distributed high performance publish-subscribed messag-
ing system, implemented as a distributed commit log. One of its core advantages
is performance, able to handle megabytes of reads and writes ever second from
thousands of clients[27]. Kafka ensures durability by using persistent storage and
sharding across nodes[27].

4.4.2 Apache HBase

Apache HBase [21] is a distributed, columnar, scalable data store aimed at big
data based on Google’s BigTable. Capable of managing billions of rows times mil-
lions of columns[21] by leveraging the Hadoop Distributed File System (HDFS),
HBase is well suited for raw storage and for batch loading while being very pop-
ular, and well supported.

4.4.3 Apache Cassandra

Apache Cassandra[28] is a distributed, high performance, highly scalable database
designed to handle large amounts of data on a cluster of commodity nodes. Cas-
sandra was developed by Facebook and later open sourced as an apache top level
project. Boasting linear scalability[29], Cassandra provides high availability, with

Chapter 4. State of the Art 25

no single point of failure, as well as a hybrid key-value and column oriented stor-
age format. Made with scalability and performance in mind, you can add new
machines without any downtime or interruption. Currently it has over 1500 well
known companies and organizations relying on it, for example, CERN, Comcast,
eBay, Instagram, Netflix and Reddit. Some of the known production deployments
have over 75000 nodes storing over 10PB of data.

4.4.4 Apache Spark

The Apache Spark[30] project calls itself a fast and general distributed platform
for big data processing. It can serve as the supporting layer for such diverse tasks
as visualization, machine learning or even stream processing.

Since Spark operates on RDDs (Resilient Distributed Datasets), a logical col-
lection of data partitioned across machines[31], it would be well described a
micro-batch processors, however, it has been evolving into a more general dis-
tributed computing platform.

4.4.5 Apache Storm

Apache Storm[22] is a distributed stream processing system, making it easy to
process large streams of data with very low latency. It is used for a variety of
purposes such as machine learning, analytics, ETL, etc. Widely considered as the
default stream processor, it integrates with most other platforms, namely Druid,
Kafka and other stores and compute platforms.

4.4.6 Apache Hadoop

Widely known and used, Apache Hadoop[18] is the default batch processor, map
reduce framework and even general distributed computing platform. It boasts
support for many applications on top of itself such as Pig, Hive and HBase. Based
on Google’s MapReduce, even though being slowly replaced by Apache Spark,
Hadoop made big data main stream and is still relevant as the batch processor of
choice.

4.4.7 InfluxDB

InfluxDB[19] is a time series database built to handle heavy write / read loads,
able to serve as the data back-end for large internet of things (IoT) deployments
and system monitoring. Capable of managing its own cluster, build in go and
completely self contained, influx is a very optimized purpose specific database.

4.4.8 Druid

Druid[20] is a distributed, in memory, data store designed for OLAP on dimen-
sional time series. It boasts low latency data ingestion, fast, sub-second aggrega-
tion and well suited for exploratory design.

Chapter 4. State of the Art 26

Druid achieves this by internally employing the same principle behind a lambda
architecture, saving the trouble of having to add or implement a custom merging
layer, the component responsible for querying both the historic and real time data
and merge the results to answer client queries.

4.4.9 Redis

Redis[24] is a popular, in memory, key-value data structure store[24] with typical
use cases such as database, message broker, cache and even Publish / Subscribe
messenger. Due to its very low level API, functionality and in memory storage
it is capable of achieving outstanding performance. Due to supporting replica-
tion, with very fast non-blocking first synchronization, auto-reconnection, redis
is painless to scale and make resilient.

27

Chapter 5

Requirements

A more comprehensive and complete system requirements specification docu-
ment is provided as Annex A, however for ease of understanding, and since
some key requirements become architectural drives later in the document, the re-
quirements elicitation and analysis process and the main functional and quality
requirements, will be presented. While the SRS in Annex A, describes require-
ments formally, for development and reporting purposes, requirements will be
used in the form of user stories, as part of the Kanban management process.

5.1 Elicitation

At the beginning of the internship, there was no formal definition of the de-
sired system, therefore, going through a requirements elicitation process was in-
evitable, not only to understand the project but also to properly define its scope.
This was especially important, because there were no imposed constraints in
terms of approach or used technologies.

Requirements were gathered through two formal meetings with the Project
Owner, João Miguel, Chairman of MedicineOne, and a few subsequent informal
conversations. During the process the intern tried to clarify the expected oper-
ational environment of the system, estimate the load it would be submitted to
and manage the Project Owners expectations on what concerned to what could
actually be done. Requirements adhered to the specific, measurable, assignable,
realistic and time related (SMART) principles, so that they could be used for val-
idation of the final artifacts.

5.2 Functional Requirements

This section contains a list of functional user stories and their respective priorities.

Chapter 5. Requirements 28

TABLE 5.1: Functional Requirements.

ID Priority User Story

SR-F-M1S.01 High As the MATE back-end system, I want to receive events
containing anonymized factual and dimensional informa-
tion from the MedicineOne servers, relating to drug therapy
prescriptions, pathology diagnoses and diagnostic tests req-
uisitions so that I can process them.

SR-F-BE.01 High As the MATE back-end system, I want to persist all received
events so that I can be reliable.

SR-F-BE.02 High As the client of the MATE back-end system I want to be able
to subscribe to events in real time and related metrics so that
I can consume them.

SR-F-BE.03 High As the client of the MATE back-end system I want to be able
to get time series of the metrics and events in SR-F-BE.02 so
that I can consume them.

SR-F-BE.04 High As the client of the MATE back-end system I want to be able
to get historic data at different levels of granularity, so that I
can use it for comparison.

SR-F-BE.05 High As the client of the MATE back-end system I want to be able
to get multidimensional aggregates of the data so that I can
consume them.

SR-F-FE-01 Low As the User I want to be able to authenticate on the MATE
front-end using my credentials so that I can use the system
according to my permission level.

SR-F-FE-02 Low As a Operator or Administrator type of User, I want to be
able to set the permissions for each user so that I can control
their access to information according to type, time intervals,
metrics and granularity.

SR-F-FE-03 Low As the User I want to visualize data in a multitude of for-
mats, line, pie, bar and geographical charts as well as gages
so that I can easily assess the information I am being pre-
sented.

SR-F-FE-04 Low As the User I want to overlay real time data over historic
data so that I can easily compare.

SR-F-FE-05 Low As the User I want to have the real time information I am
consulting be updated in real time so that I can stay up to
date without having to refresh.

SR-F-FE-06 Low As the User I want to be able to select between the differ-
ent types of available events so that I can view the one that
interests me.

SR-F-FE-07 Low As the User, for each type of event, I want to be able to select
from the different metrics, time series and aggregates avail-
able so that I can view the one that interests me.

SR-F-FE-08 Low As the User I want to be able to see the pathologies, drugs
prescriptions and diagnostic tests in a user friendly way so
that I don’t have to do the translation between different clas-
sification systems and identifiers myself.

Chapter 5. Requirements 29

5.3 Load Estimation

To properly define SMART quality attributes, metrics had to be chosen, and spe-
cific values assigned to the requirements so that they can later be verified, for
that it was necessary to estimate the workload the system will be submitted to
and how it is expected to vary during its life cycle.

From operating information provided by the supervisor at MedicineOne, taken
from two of their largest running systems, and assuming that the real volume of
data is 4 times greater and will grow 10% each year, as suggested by the Project
Owner, the following projections have been made for the next 20 years.

For the estimation the following assumptions were made, events are sent as
soon as they happen, no buffering to keep near real time latency and each occu-
pies 2KiloBytes;

0

5

10

15

20

25

30

35

40

2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035

Ev
en

ts
 p

er
 S

ec
on

d

Year

Projected Event Volume per Second

Events

FIGURE 5.1: Event volume estimation, in events / second.

Projected to stay well bellow the thousands of events per second, even after
considerable expansion as seen on Figure 5.1, the speed of ingestion should be
no problem, leaving a lot of leeway for addition of additional computations at a
later date. Also makes it trivial to ensure persistence using a simple synchronous
transactional mechanism like acknowledging only after persisting. The low in-
gestion volume also makes it possibly to implement direct event subscription
from the front-end with only minimal temporal aggregation.

Chapter 5. Requirements 30

0

1000

2000

3000

4000

5000

6000

7000

8000

2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035

GB

Year

Projected Data Volume

Total Data

FIGURE 5.2: Storage estimation, in GigaBytes.

Figure 5.2 shows that the storage volume will stay under 10 TeraBytes, in re-
ality it will be probably even less than projected since the 2 kilobyte per event
assumption was a slight overestimation. When it comes to raw storage it presents
no challenge, it also makes it viable and easy to employ in memory databases for
superior performance and near real time on demand aggregation and processing.

Assuming the estimations are good enough, off at most by a small factor (2 or
3 times more), this means that an initial deployment will require no more than a
very modest quantity of convenience hardware, and will most likely have a lot
of scale out potential, enough to cover the necessities in the expected life cycle of
the system (less than 20 years).

5.4 Quality Requirements

From talking to the project owner, and due to the sensitive nature of the data, the
system must meet the following quality requirements, varying in priority:

Chapter 5. Requirements 31

TABLE 5.2: Quality Requirements.

ID Priority User Story

SR-PERF-SYS.01 High The system shall be able to scale up to ingest at
least 40 events per second.

SR-PERF-SYS.02 High The system shall present latencies inferior to
10 seconds between ingestion of an event and
it being reflected on the metrics and/or data
model.

SR-QOS-SYS.02 Medium The system shall be horizontally scalable.
SR-QOS-SYS.03 High The system shall be extensible by means of

module addition. New modules shall be able
to subscribe to the input even feed and query
the existing data.

SR-REL-SYS.01 Medium The system shall be available to ingest events
at least 99% of the time.

SR-REL-SYS.02 Medium The system shall be available to reply to user
queries at least 99% of the time.

SR-REL-SYS.03 High The system shall implement the necessary re-
dundancy to ensure data persistence in the
event of hardware failure.

SR-MAINT-SYS.01 High The system shall employ general standardized
interfaces so that components may be replaced
with homologous ones when they exist, for ex-
ample a standard SQL database.

SR-MAINT-SYS.02 High Failure or planned maintenance of a dis-
tributed component shall not cause system
downtime.

SR-SAFE-SYS.02 High To be safe against human error, the system
shall provide an event replay mechanism,
leveraging permanent storage.

32

Chapter 6

Risk

Risk is defined in ISO 310001 as the effect of uncertainty on objectives. By defi-
nition outside of our control, risks can negatively impact a project, however, just
because they are fortuitous in nature, it does not preclude management and mit-
igation or even complete avoidance of its effects.

“ The first step in the risk management process is to acknowledge the reality of risk.
Denial is a common tactic that substitutes deliberate ignorance for thoughtful planning.
”

Charles Tremper

This section will list all identified and analyzed risks as well as the results of the
analysis. Each risk will contain the following properties and respective values:

• Description
• Probability (Low, Medium or High)
• Impact (Low, Medium or High)
• Time-frame
• Consequence
• Plan

For more information about the used risk management method consult Chapter
3.

6.1 Identified Risks

This section lists all identified and analyzed risks. For ease of visualization, table
6.1 depicts the risk exposure matrix.

TABLE 6.1: Risk Exposure Matrix.
``````````````̀Impact

Probability Low Medium High

High R01, R03
Medium R07 R06 R02, R04, R05
Low

1http://www.iso.org/iso/catalogue_detail?csnumber=43170

http://www.iso.org/iso/catalogue_detail?csnumber=43170


Chapter 6. Risk 33

R01

DESCRIPTION: Project too complex for the intern.
PROBABILITY: Low

IMPACT: High
TIME-FRAME: 1st semester

CONSEQUENCE: Failure of the project and internship.
PLAN: Research and study of domain during the 1st

semester.

R02

DESCRIPTION: Time and effort conflict with other 1st semester
courses.

PROBABILITY: Hight
IMPACT: Medium

TIME-FRAME: 1st semester (25% of total time).
CONSEQUENCE: Considerable delay.

PLAN: Shift work to 1st semester, focus on planing.

R03

DESCRIPTION: Legal issues resulting from manipulation of patient
data.

PROBABILITY: Low
IMPACT: High

TIME-FRAME: Whole project.
CONSEQUENCE: Added workload to comply with norms.

PLAN: Anonymizing data at source by removing personal
identification information.

R04

DESCRIPTION: Not enough time to develop front-end.
PROBABILITY: High

IMPACT: Medium
TIME-FRAME: 2st semester.

CONSEQUENCE: Project left at prototype stage at the end of the in-
ternship.

PLAN: Accept consequences and try to accelerate devel-
opment by using already existing frameworks and
technologies.



Chapter 6. Risk 34

R05

DESCRIPTION: Too hard to integrate with the existing, undocu-
mented, unstructured, code base with no regression
testing.

PROBABILITY: High
IMPACT: Medium

TIME-FRAME: 2st semester.
CONSEQUENCE: Delay project and cause regression.

PLAN: Develop a mock up event generator, request help
from someone familiar with the code base.

R06

DESCRIPTION: Finding out that some of the selected technologies
or frameworks are inadequate.

PROBABILITY: Medium
IMPACT: Medium

TIME-FRAME: 2st semester.
CONSEQUENCE: Having to replace it or in the worst case, develop a

custom one.
PLAN: Adopting a JIT agile process to delay decision, and

be able to rely on incremental development to re-
duce the cost of change.

R07

DESCRIPTION: Basal open source components losing community
support and becoming obsolete and or unsup-
ported.

PROBABILITY: Low
IMPACT: Medium

TIME-FRAME: Life of the project.
CONSEQUENCE: Forcing the platform to stagnant resulting in slowed

down development and or extra costs.
PLAN: Employing encapsulation and separation of con-

cerns to make functional components easy to re-
place.

6.2 Materialized Risks

Follows a list of all risks that materialized and any notes considered relevant.

• R02: Risk 01 materialized, however, it had been predicted and the plan
reduced impact to acceptable levels, no major consequences were felt.



Chapter 6. Risk 35

• R04: When it became evident that effort would have to be directed to oper-
ational concerns, development of a front-end was dropped since it was low
priority.

• R05: The data model as well as application logic of MedicineOne 8 was too
complex to integrate by a single person. Since the various teams were busy,
an event generation API was developed to be used by the system when
integration takes place.

• R06: Some technologies proved to be inadequate and it was necessary to
update some of them at an advanced stage. To accommodate, the delivery
of the project was delayed.



36

Chapter 7

Architecture

“ The software architecture of a program or computing system is the structure or struc-
tures of the system, which comprise software elements, the externally visible properties of
those elements, and the relationships among them. ”

Bass L.; Clements P.; Kazman R.1

A software architecture is one of the first approaches to solving a problem and
or designing a system. Typically, represented as a diagram with boxes and lines,
boxes representing elements of the system, and lines their interaction[32]. Soft-
ware engineering still retains an artistic component, once the requirements are
defined, the process of planning the architecture to satisfy them is not as system-
atic as what is expected of other engineering disciplines.

Considering that MATE has non trivial quality requirements and is the first
project of the type both for MedicineOne and the intern, design and creating an
adequate architecture was given a lot of attention. The end goal was making sure
that no assumptions were wrong and that no mistakes were made at the very
beginning that would latter threaten to make the project fail for lack of technical
viability. Once defined, the requirements were distilled to yield a set of architec-
tural drives later used to iteratively validate and refine architectural drafts.

This section exposes the drivers as well as the resulting architectural views.

7.1 Drivers

The functionality expected from the system is not exceptional or innovative, it can
be generally described as a soft real time analytical processing platform, however,
the quality requirements, like the need for near real time ingestion and availabil-
ity, create specific needs that end up becoming the drivers for the system.

The following list contains the quality requirements that, for their reaching
implications, were the deciding factors behind the proposed design.

1Software Architecture in Practice 2nd Edition Reading, MA: Addison-Wesley, 2003.



Chapter 7. Architecture 37

TABLE 7.1: Architecturally significant requirements.

ID User Story

SR-PERF-SYS.02 The system shall present latencies inferior to 10 seconds
between ingestion of an event and it being reflected on
the metrics and/or data model.

SR-QOS-SYS.02 The system shall be horizontally scalable.
SR-QOS-SYS.03 The system shall be extensible by means of module addi-

tion. New modules shall be able to subscribe to the input
even feed and query the existing data.

SR-REL-SYS.03 The system shall implement the necessary redundancy to
ensure data persistence in the event of hardware failure.

SR-MAINT-SYS.01 The system shall employ general standardized inter-
faces so that components may be replaced with homol-
ogous ones when they exist, for example a standard SQL
database.

SR-SAFE-SYS.02 To be safe against human error, the system shall provide
an event replay mechanism, leveraging permanent stor-
age.

From the list of drivers in table 7.1 resulted the following list of architectural
drivers;

TABLE 7.2: Architectural drivers.

ID Driver

AD.01 Low latency ingestion and processing, specifically, under 10 seconds.
AD.02 Horizontally scalability.
AD.03 Modular to allow for extension and composition.
AD.04 Highly available and redundant with tolerance to partial infrastruc-

ture and software failures.

7.2 Style

Generally, the MATE platform was designed to follow a service oriented archi-
tecture (SOA). According to Erl, Thomas[33], a SOA has the following objectives;

• Increased intrinsic interoperability;
• Increased federation;
• Increased vendor diversification options;
• Increased business and technology alignment;
• Increased return of investment (ROI);
• Increased organizational agility;



Chapter 7. Architecture 38

• Reduced information technology (IT) burden;

Since they overlap with the drivers for the system, this style, SOA, was se-
lected. Namely, it allows the usage of existing open sources solutions and their
composition and extension when necessary. As advised by Erl, Thomas[33] the
architecture and service design was based around the following core principles;

• Standardized service contract;
• Service loose coupling;
• Service abstraction;
• Service reusability;
• Service autonomy;
• Service statelessness;
• Service discoverability;
• Service composability;

Following these guidelines, the applications developed on top of the MATE
platform in the future, will themselves adhere to this style and be services. They
will focus on implementing business logic and using the available support ser-
vices to obtain, process and store data.

7.3 Views

The result of the architectural design was a set of diagrams and accompanying
text describing how the system should be built, responsibilities distributed, func-
tionality segmented and how they satisfy the drivers.

The diagrams and notation were based on Simon Brown’s C4 model[34] for
its elegance and objective approach, conveying only the important points. Even
though the name C4 comes from the fact that the book describes four levels of
detail, Context, Containers, Components and Classes, the author goes on to ar-
gument that in most cases a Class diagram is too close to implementation to be
defined at this stage, since it would incur in considerable effort and yield very
little return, making iterative validation too heavy to undertake.

In the particular case of this project, since most of the system will be made
using open source components and frameworks, the intern decided that only the
first two levels of detail, Context and Containers, would be useful.

7.3.1 Contextual View

The contextual view gives an overview of the system and surroundings as well
as external interactions or integrations. Since MATE will consume events from
an existing system, the context diagram was especially important when making
sure the existing context was well understood and that the new system would be
compatible with it.



Chapter 7. Architecture 39

FIGURE 7.1: Contextual view of the system.



Chapter 7. Architecture 40

Actors:

• MedicineOne User: Healthcare professional using the CMS.
• Operator: The Software operator configures and manages the system.
• Administrator: The MATE administrator manages the platform, data and

the applications running on it.
• Client: The user consumes the services.

Systems:

• MedicineOne 8: CMS composed by the Client and Server application.
• MATE: Soft real time event processing and storage platform.

Sample Flow

MedicineOne User uses the MedicineOne application, which acts as a client to
the MedicineOne server, when relevant, the server generates and sends an event
to MATE which persists, analysis, and indexes it and makes it available to the
Client in soft real time.

7.3.2 Container View

MATE will be composed mostly of existing open source platforms, each ensuring
a specific function in the soft real time processing stack. This view will be the
most useful for the developer as it presents a clear road map of what needs to be
deployed, connected and configured, plus it clarifies the responsibility distribu-
tion.



Chapter 7. Architecture 41

FIGURE 7.2: Container view, showing the main components.

Containers:

• Distributed OLAP storage: In memory, distributed OLAP storage with
stream and batch ingestion capabilities for dimensional events.

• Distributed storage: Distributed, high performance storage.
• Distributed stream processor: Processes streams of events with low la-

tency.
• Distributed batch processor: Batch processing of large amounts of data for

applications that require a global vision of the data.
• Distributed message broker: Message broker for both external and internal

messaging.
• Scheduler: Responsible for deploying all the services, monitoring their health

and restart them if they fail.
• Scalable scalable analytical application: A sample analytical application

implemented on top of the MATE platform.



Chapter 7. Architecture 42

Sample Flow

MedicineOne generates and sends an event, the message broker immediately per-
sists it, locally and on the distributed storage, ensuring reliability and resilience.
The stream processor then consumes events from the broker and passes them
through the defined processing tasks, sometimes called topologies. It will for
example calculate event metrics, like count by type and other dimensions, and
when relevant notify applications through the message broker and push events
and notifications to the users of a sample analytical application. The events them-
selves, and the time series resulting from the computed metrics will then be feed
into the OLAP data storage, which will ensure optimal performance by managing
the received data, separating recent data, from historic data. The batch processor
can also be used to consume events from the storage or message broker and gen-
erate more complex metrics that require a global view of the data.

7.4 Validation and Traceability

For traceability purposes this section depicts the relationships between require-
ments, architectural drivers and the design decisions and mechanisms employed
to fulfill them.

The properties given by the architectural style, in conjunction with the dis-
tributed nature of the components / services theoretically ensure that most of
the objectives are achieved. However, some issues, mainly performance related,
could arise from unforeseen emergent properties. Since the platform can be used
uncountable types of applications, it is very hard to prove that all properties will
apply to all of them. For the purpose of this project it was assumed that most
analytical applications will mostly perform a linear usage of the services avoid-
ing the risk of deadlocks between them and reducing the possibility of resource
contention.

When it comes to the subject of scalability, the system is scalable as a result of
being a composition of components that have been proven to be scalable by their
respective developers and independent benchmarks. For this property to hold
true for applications developed on MATE, the developers must ensure that they
are themselves horizontally scalable, either through statelessness or workload
distribution.

Table 7.3 is a traceability matrix that relates requirements with drivers and
finally with the measures taken to ensure them.



Chapter 7. Architecture 43

TABLE 7.3: Traceability Matrix.

Driver Requirements Measures

AD.01 SR-PERF-SYS.02 Usage of distributed, scalable services and in
memory processing and storage. Examples
would be the stream processor and the in mem-
ory OLAP storage.

AD.02 SR-QOS-SYS.02 All services are provided by distributed, hori-
zontally scalable components.

AD.03 SR-QOS-SYS.03,
SR-MAINT-SYS.01

Service oriented architecture with well defined
interfaces to allow interoperability and reduce
coupling. Usage of a message broker and mes-
saging passing communication pattern.

AD.04 SR-REL-SYS.03,
SR-SAFE-SYS.02

Usage of distributed, redundant components.
Multiple points of persistence. Usage of a sched-
uler to deploy, manage and monitor the services
and ensure availability.



44

Chapter 8

Implementation

In this chapter the reader will find a description of the implementation process,
and its different steps, from technology selection to deployment and operational
concerns. As a complement, there are also narrative descriptions of the process
and important events that came to pass.

8.1 Overview

As depicted in the chronogram in Figure 3.5 in chapter 3 the implementation
started with an attempt to deploy and configure the main components, namely,
Apache Kafka[27], Apache Storm[22], Apache HDFS[35] and Druid[20]. It be-
came evident that the automation and management of the system has been greatly
underestimated and that it would be a central concern. Just using Docker[36] con-
tainers to simulate a clustered environment would not be enough since it lacked
important features such as networking across different machines, coordination as
well as service discovery.

After some research and testing, Apache Mesos[37], an open source cluster
manager, was selected for the task. The deployment was automated using Ansi-
ble[38], a software for declarative configuration, management and deployment.
Some platforms like HDFS and Storm had already been ported to run on a Mesos
cluster and could be deployed directly. By adding Mesosphere Marathon[39], a
container scheduler, on top of Mesos, it became possible to run the remaining
platforms by containerizing them. To provide a service discovery system, Mesos-
DNS, a Mesosphere open source project was used, making it possible for services
to find each other through name (domain name system (DNS)).

After noticing performance issues and some compatibility failures with Mesos,
Apache HDFS was replaced with Apache Cassandra, a distributed not only SQL
(NoSQL) data store with homologous capabilities.

Once Kafka, the message broker, had been deployed attention was shifted to
the event production component for the CMS, MedicineOne 8, in other words,
integration.

MedicineOne 8 was developed organically, to fit the emerging needs of the
clients, using a feature oriented development process. Architecturally the system
is divided in modules, web services, developed by different teams, as a conse-
quence there is a lack of centralized technical documentation and data model.



Chapter 8. Implementation 45

This coupled with the lack of an application level logging layer, since a lot of it
is done at database level using triggers, made full integration too expensive to
be undertaken by the intern alone. As implementing such a mechanism required
inside knowledge of each different module, cooperation from the different teams
would be necessary to achieve full integration. Since this was not possible due
to scheduling and prioritization matters, it was decided that the best course of
action would be to implement a module in MedicineOne 8 to provide an event
logging API, to be integrated in the business process at a later date. This module
is responsible for receiving event data, complete it when necessary and send it to
the MATE platform.

At the same time some testing tools were developed to feed the previously
mentioned module with data from test databases.

After installing Storm, business logic was implemented as Apache Storm topolo-
gies, or processing tasks. Events are taken from the message broker, persisted to
the distributed data storage, and then go thorough an ETL pipeline that prepares
them for ingestion and stores them on the message broker, to be loaded by the
OLAP data store.

Some difficulties were felt at this stage making sure event processing was
transactional due to the fact that the Mesos ports of Storm and Kafka were not on
the latest version. As to strengthen the decision to use Apache Mesos, a month
after, Mesosphere open sourced their Data Center Operating System[3] (DC/OS),
a higher level cluster management platform implemented over Apache Mesos, it
was decided that updating would create the desired results. Due to the added
workload the project deadline was delayed and the machine provisioning scripts
updated to deploy DC/OS on the infrastructure.

This update greatly improved the deployment process as well as management
with its useful graphical management interface and supporting services such as
log management. Installing some tools, such as Kafka and Cassandra became
as easy as clicking an icon or running a command. Storm and Druid has to be
manually containerized and deployed with Marathon. Finally, it was necessary
to update the topologies to run on Apache Storm 1.0.1.

8.2 Technology Evaluation and Selection

For some described functional modules in the architecture, there were multiple
viable platforms. This sections lists them according to function and explains the
process that lead to the final choices. In general the selection criteria were;

• Adequacy to the purpose;
• Compatibility;
• Performance;
• Fulfilling the low latency requirements necessary for soft real time;
• Ease of deployment;



Chapter 8. Implementation 46

8.2.1 Infrastructure

In the beginning there was uncertainty whether the platform should be deployed
on a public cloud, using the available platforms, or on premise. In the end it
was decided to develop for on premise installation, and with the decision to use
Apache Mesos and DC/OS, explained next, the flexibility to deploy on cloud or
on premise alike was attained to some extent.

The factors that weighed the most on this decision were financial and avoiding
lock in to a particular vendor. At the time of the study, the smallest possible Storm
cluster on Azure alone would cost an estimate of $892.80 / month. Also, using
any of the proprietary services would lock the platform to a particular provider
and possibly cause legal issues due to the nature of the data being stored.
Another factor that favored on premise deployment was the flexibility of being
able to license the platform to clients for private, internal usage. The manage-
ment costs of running the infrastructure were considered acceptable since Medici-
neOne has their own private cloud infrastructure and deploys all of its services
on their own infrastructure or rented dedicated servers.

8.2.2 Distributed Message Broker

When looking for a distributed, redundant, persistent message brokering plat-
form, the solutions considered were;

• Apache Kafka[27];
• RabbitMQ[40];

While RabbitMQ was a more mature solutions, it is not distributed by design as
is the case with Kafka, which was built around that principle.

Moreover, Apache Kafka, presented higher performance, was easier to deploy
and integrated both with Apache Mesos and Mesosphere DC/OS[3].

8.2.3 Distributed Stream Processor

For stream processing, at the time of research there were essentially 2 mature,
industry tested options;

• Apache Storm[22];
• Apache Spark[30];

Storm was designed and used at twitter for stream processing, on the other
hand, Spark is a general distributed computation platform with some available
stream processing features. The biggest difference being Spark is more oriented
to batch, or small batch processing. As this was a latency sensitive applica-
tion, Storm, which processes events individually, yielding lower times, was se-
lected. The simpler, easier to understand pipe and filter model used by Storm
and the ability to simulate the cluster environment straight from IDE for fast test-
ing weighed heavily on the decision.



Chapter 8. Implementation 47

8.2.4 Distributed Storage

The distributed storage was initially meant to be provided by Apache HDFS due
to its compatibility with the Hadoop ecosystem. However due to compatibility
issues with the cluster manager and the fact that it was not trivial to deploy on
the small development cluster, it was replaced with Apache Cassandra. This was
an easy choice since Cassandra is battle tested and widely used by the industry
for its simplicity, performance and linear scalability[29].

8.2.5 Distributed, in Memory, OLAP Storage

Druid[20] was developed and open sourced by Metamarkets specifically for the
purpose of high volume, soft real time OLAP workloads. Being a distributed
system, capable of using Apache Cassandra for deep storage, and stream and
batch ingestion, it perfectly fit the role like no other platform. The distributed
architecture with in memory stream ingestion for recent data and post processing
or batch ingestion of historic data follows the principles of a lambda architecture,
making it adequate for soft real time applications. Druid also includes its own
broker component, responsible for mapping queries over the two data layers and
reducing the results back to the client.

FIGURE 8.1: Druid Architecture (http://druid.io).

InfluxDB[19] was found during research and mentioned, but it is mean to be
used on time series with a single dimension, for example, a temperate over time
measured by a network of sensors.

8.2.6 Cluster Manager

For managing and monitoring the physical infrastructure and services, there were
two viable options;

• Kubernetes[12];



Chapter 8. Implementation 48

• Apache Mesos[37];

In the end Apache Mesos was selected for its ability to run not only containers
but also popular frameworks / platforms, some of which were relevant to the
project, such as Spark, Storm, Cassandra and Kafka. This decision proved to be
right when Mesosphere DC/OS[3], which runs on top of Mesos, was release a
month later, bringing considerable benefits.

Apache Mesos and DC/OS where designed to abstract the infrastructure and
make applications highly available, the architectural overview in figure 8.1 is pre-
sented for clarification.

FIGURE 8.2: DC/OS architectural overview (https://dcos.io/).

Some interesting properties of Mesos and DC/OS[3] are;
• No single point of failure, redundant, active / passive master nodes;
• The ability to automatically move and reschedule tasks on node failure;
• Unified infrastructure management;
• Production proven, used by Twitter and Apple to name a few;
• Scalable and elastic, possible to add and remove nodes without interrup-

tions;
• Getting a lot of attention and investment from large companies like Mi-

crosoft;
• Growing numbers of packages / frameworks;
• Enterprise version with paid support;

8.2.7 Container Scheduler

The following options were found during research and were compatible with
Docker containers;

• Docker Swarm[36];
• Apache Aurora[41];



Chapter 8. Implementation 49

• Mesosphere Marathon[39];

Swarm proved early on that it was not adequate due to the lack of discovery
and cluster wide networking mechanisms. Once it was decided to use Apache
Mesos and Mesosphere DC/OS[3] Marathon was selected for already being bun-
dled and deeply integrated. It is important to note that Marathon schedules con-
tainers over the infrastructure and takes care of resource reservation and assign-
ment, allowing control over resource distribution and automatic port attribution
and mapping.

8.2.8 Service Discovery

Since Mesosphere DC/OS[3] has both proxy and name(DNS) based service dis-
covery, there was no need to choose, both can be used as required.

8.3 Operations

After the first development and deployment tasks it became evident that the real
complexity of the system was not in the functionality itself but in the manage-
ment of a complex system composed by a variety of distributed components. All
of them needed to be deployed, managed, scaled, monitored and restarted in case
of failure. After realizing that automating the provisioning and deployment with
Ansible[38] the intern decided to slightly change the focus of the internship to
operation concerns and use a cluster manager. The intent was achieving the fol-
lowing goals;

• Avoid static partitioning of the physical cluster, since dynamic scheduling
is more efficient;

• Simplify deployment of distributed components;

• Provide basic low level services needed by multiple components, such as
logging and state coordination;

• Service discovery;

• Reschedule services on partial infrastructure failure;

• Create a high availability environment;

• Streamline scale out process;

• Abstract physical infrastructure;

• Create a replicable deployment platform;



Chapter 8. Implementation 50

This addition is consistent with the architectural drivers of the project, mak-
ing the operational layer friendly to SOA principles. Also, since it covers the
functions of scheduling and monitoring it improves system maintainability and
availability.
As described in the section Overview, the initial choice was Apache Mesos, how-
ever, Marathon DC/OS[3] 1.7 was released latter and adopted, adding higher
level capabilities, a consistent command line interface and a graphical user inter-
face.
DC/OS also made cluster provisioning a lot easier since it has its own configura-
tion and installation tools.

From a deployment and operational point of view, the resulting system looks
as depicted in figure 8.3.

FIGURE 8.3: Deployment diagram.

Apache Mesos has two types of nodes, masters, responsible for managing ap-
plications and slaves (also known as agents) where the actual applications are
scheduled. To avoid having a single point of failure, the master nodes can be
replicated with shared state being kept by a Zookeeper[42] ensemble. As de-
scribed by its developers, “ZooKeeper is a centralized service for maintaining
configuration information, naming, providing distributed synchronization, and
providing group services”[42]. This way, even when a master fails, the remaining
ones, as long as there enough to get the configured quorum, can elect a new active
master and avoid failure or loss of availability. To clarify consult the overview of
the architecture in figure 8.4.



Chapter 8. Implementation 51

FIGURE 8.4: Apache Mesos architectural overview (Apache Mesos
documentation).

8.3.1 Provisioning

Initially provisioning of Apache Mesos nodes was done using Ansible[38]. With
this tool, a declarative description of the wanted for a set of machines is written,
referred to as a play-book. When this play-book is executed, actions are executed
over secure socket shell (SSH) on the target machines to get them to the desired
state. This includes such actions as installing packages, creating configuration
files and altering system settings. Below, is an example play-book that provisions
an Apache httpd machine.

LISTING 8.1: Sample play-book from http://docs.ansible.com/
---
- hosts: webservers

vars:
http_port: 80
max_clients: 200

remote_user: root
tasks:
- name: ensure apache is at the latest version

yum: name=httpd state=latest
- name: write the apache config file

template: src=/srv/httpd.j2 dest=/etc/httpd.conf
notify:
- restart apache

- name: ensure apache is running (and enable it at boot)



Chapter 8. Implementation 52

service: name=httpd state=started enabled=yes
handlers:

- name: restart apache
service: name=httpd state=restarted

However, with the update to DC/OS provisioning can be done with the cus-
tom installer. For this purpose an extra node, called bootstrap node is necessary.
This greatly simplified the provisioning process, Ansible is still used to get the
nodes into the desired state when it comes to authentication, disk partitioning,
etc. But the actual installation and configuration only requires creating a few
configuration files and running a few commands on the bootstrap machine. The
main configuration file used for the development deployment is listed below;

LISTING 8.2: Main DC/OS installation configuration file.
---
agent_list:
- 10.0.249.23
- 10.0.249.24
- 10.0.249.25
# Use this bootstrap_url value unless you
# have moved the DC/OS installer assets.
bootstrap_url: file:///opt/dcos_install_tmp
cluster_name: ClusterOne
master_discovery: static
exhibitor_storage_backend: static
master_list:
- 10.0.249.20
- 10.0.249.21
- 10.0.249.22
resolvers:
- 10.0.254.250
dns_search: medicineone.dom
ssh_port: 22
ssh_user: administrator

8.3.2 Monitoring and Failure Handling

The DC/OS has monitoring mechanisms inbuilt, both for packages / frameworks
and containers. Marathon, the container scheduler, which is also responsible for
scheduling the scheduler for other frameworks, monitors the health of each task,
according to its definition. On the event any of them fails, or a subset of the nodes
is lost due to hardware failure or network partitioning, they will be restarted or
rescheduled on a different machine if necessary.

Since Apache Mesos also manages persistent volumes, applications that de-
pend on this mechanism cannot be rescheduled on a different slave and will wait
for the one with its data volume to be restored. Mesos has a tagging mechanism
that allows distinguishing slaves according to arbitrary criteria, in this situation
applications might also fail to reschedule if no suitable slaves are available.



Chapter 8. Implementation 53

A feature also implemented by Apache Mesos, and build upon by the DC/OS
is log management. All the tasks are isolated inside containers under a supervisor
controlled by Mesos, making the file system and logs available for consultation.

FIGURE 8.5: DC/OS log viewer.

8.3.3 Framework Installation

The Mesosphere DC/OS has a large selection of packaged frameworks and tools
that can be easily installed. Well known examples are;

• Apache Spark;
• Apache Kafka;
• Apache Cassandra;
• Jenkins;
• Chronos;
• ArangoDB;

FIGURE 8.6: DC/OS package management dashboard.



Chapter 8. Implementation 54

Installation is easy, all that is required is creating a file with the desired con-
figurations and installing the packages with the command line tool, dcos-cli. The
command for installing Apache Spark with the default settings would be;

LISTING 8.3: Apache Spark package installation using the command
line.

$ dcos package install spark

Another possibility would be using the graphical user interface, by connecting
to one of the master nodes and clicking the desired package. Process depicted in
figure 8.7.

FIGURE 8.7: DC/OS package installation example.

8.3.4 Container Scheduling

In DC/OS containers are scheduled and monitored by Marathon[39] and referred
to as tasks. Tasks are defined in javaScript object notation (JSON) in a declarative
fashion. To achieve task isolation, Mesos can employ different technologies, in-
cluding Docker containers. Since Docker has an online repository mechanism for
containers, this makes it easy to distribute executables across the cluster as con-
tainers. Marathon also supports directly running binaries or commands, how-
ever the users has to provision a file server, or distributed file system to make
them available on all nodes.
To schedule as task one creates a declarative file defining how many instances
should be scheduled and what resources should be attributed to each one, such
as cpu, memory, disk and network ports. A workload, that can be a binary, com-
mand or docker image must also be declared. Below is an example of a task that
launches one instance of a python HTTP server.

LISTING 8.4: Sample Marathon task.
{

"id": "pdtest",
"cmd": "python3 -m http.server 8080",
"cpus": 0.05,



Chapter 8. Implementation 55

"mem": 128.0,
"disk": 128.0,
"container": {

"type": "DOCKER",
"docker": {

"image": "python:3",
"network": "BRIDGE",
"portMappings": [

{ "containerPort": 8080, "hostPort": 0 }
]

}
},
"healthChecks": [{

"protocol": "TCP",
"portIndex": 0

}]
}

8.3.5 Hardware

The development system was deployed on 6 virtual machines running on Medici-
neOne’s private cloud infrastructure. The cluster was setup with 3 master nodes
for redundancy as well as 6 slave nodes for the actual workload. While not ideal,
that is what was available, and it was good enough to test redundancy / replica-
tion and partitioning / distribution. For proper benchmarking and for the system
to truly shine, more resources will be necessary.

Master nodes specifications:
• CPU: 4 x vCPU;
• RAM: 3GB;
• Storage: 256GB;
• OS: CentOS 7;

Slave nodes specifications:
• CPU: 4 x vCPU;
• RAM: 6GB;
• Storage: 256GB;
• OS: CentOS 7;

8.4 Development

In addition to the supporting platform, there was the need to define data mod-
els, as well as develop integration and configure components, those steps are
explored in this section.



Chapter 8. Implementation 56

8.4.1 Integration

MedicineOne 8, the CMS generating the information MATE will process follows
a SOA. Furthermore, it grew organically, developed by distinct teams and in-
dividuals, as such it is pretty heterogeneous and requires in depth knowledge
to extend, especially when it comes to crosscutting concerns. The system was
meant to send events such as pathology diagnosis, and drug and diagnostic test
prescriptions to MATE, however there is no single point in MediconeOne 8 where
these can be caught. Moreover, there is no logging functionality at the applica-
tion level, most of it being currently done at the database level using triggers.
Given the high effort necessary to implement this feature, it was decided to in-
stead implement a service / module exposing a event generation and publishing
API. This module was named MateEventLogger and is responsible for receiving
the necessary information, generate an event payload in JSON and publish it to
MATE. The rational was that it could be later integrated into the business logic
by the teams responsible for each area.

The MateEventLogger service was developed in dotNet, more specifically C#,
published with windows communication foundation (WCF), which are the basal
technologies for MedicineOne 8. For testing and validation purposes, extra tool-
ing was developed to load data from existing databases and generate events with
past data.

The service exposes the following contract;

LISTING 8.5: MateEventLogger service contract;
namespace MateEventLoggerLibrary.Contract {

/// <summary>
/// This API exposes the endpoints of the Mate event logger
/// </summary>
[ServiceContract]
public interface IMateEventLogger {

/// Logs an event.
[OperationContract]
void LogEvent(Event eventInstance);
/// Generates an event based on the PK’s of the involved

entities.
/// organizationLocal: PK of the ORG_LOCAIS_ORGANIZACAO
/// physician: PK of the physician, from

ORG_UTILIZADORES
/// patient: PK of the patient from, CLI_UTENTES</param>
[OperationContract]
Event CreateBaseEvent(Guid organizationLocal, Guid

physician, Guid patient);
}

}

The Event returned by CreateBaseEvent is a general event that can then be con-
verted into a specific event by adding a data object with the specific details, for
example, if it was a dug prescription event, an object would be added with the
classification system and code of the prescribed drug.



Chapter 8. Implementation 57

8.4.2 Data Model

Data models were defined both for event representation and for the raw event
storage table;

Events

In the MateEventLogger service, events are represented by the data objects de-
picted in the class diagram in figure 8.8;

Event
Class

Properties

Id : Guid

IsTest : bool

Location : Location

Organization : Organization

Patient : Patient

Physician : Physician

ServerId : Guid?

Timestamp : DateTime

Type : string

Methods

CreateFromBase<T>() : T

Event() (+ 1 overload)

DiagnosticTestPrescriptionEvent

Event

Class

Methods

DiagnosticTestPrescriptionEvent() (+ 1 overload)

DrugPrescriptionEvent

Event

Class

Methods

DrugPrescriptionEvent() (+ 1 overload)

PathologyDiagnosisEvent

Event

Class

Methods

PathologyDiagnosisEvent() (+ 1 overload)

DiagnosticTest
Class

Properties

Code : string

ConventionAreaCode : string

Drug
Class

Properties

Classi�cation : string

Code : string

Pathology
Class

Properties

Classi�cation : string

Code : string

DiagnosticTest Drug Pathology

FIGURE 8.8: MateEventLogger event data objects class diagram.

Before being sent to MATE events are serialized to JSON, as illustrated by the
example below;

LISTING 8.6: MateEventLogger serialized event;
{

"Drug": {
"Classification": "PRT",
"Code": "3220092"

},
"Id": "7efd8810-f117-4aff-83d3-d6bade719f8f",
"Timestamp": "2016-08-31T15:17:43.1098015Z",
"Type": "DrugPrescriptionEvent",
"ServerId": "2ffff04a-6f8e-11e6-8b77-86f30ca893d3",
"IsTest": true,
"Organization": {

"Uuid": "9531ddc5-2fd1-450e-9f9d-89c8e63564e0",



Chapter 8. Implementation 58

"Name": "USF Cruz de Celas",
"Type": "SNS"

},
"Location": {

"Country": "PRT",
"Distrito": "60000",
"Concelho": "60300",
"Freguesia": null,
"PostalCode": "3000063",
"CoordinatesSource": null,
"Latitude": null,
"Longitude": null

},
"Physician": {

"Specialties": [
"MEDICINA GERAL E FAMILIAR"

],
"SpecialtiesPk": [

"ad4f10b6-cc03-4c2b-9043-9f6c01c6331b"
],
"Age": null,
"Sex": "Female"

},
"Patient": {

"Age": 37,
"Sex": "Male",
"Height": 174.0,
"Weight": 69.0

}
}

Raw Storage

For persistence and failure tolerance purposes, all events are persisted to the dis-
tributed data storage, provided by Apache Cassandra. This task is carried out by
a Storm topology that streams the events from Kafka, the message broker, and
inserts them Cassandra. No processing is done, and for performance reasons,
events are partitioned / segmented according to MedicineOne 8 server id and
the date (day). This ensures even partitioning and scalability while keeping re-
lated events together (locality) for batch processing workloads. Furthermore, the
keyspace where the data is stored has a replication factor of 2, ensuring one of the
replicas can be lost without loss of data or availability. Note that this value was
used for development purposes and might need to be increased in production.

The Cassandra table where the events are stored as well as its keyspace are
defined as follows, using cassandra query language (CQL);

LISTING 8.7: Mate keyspace definition.
CREATE KEYSPACE IF NOT EXISTS mate WITH REPLICATION = { ’class’

: ’SimpleStrategy’, ’replication_factor’ : 2 };



Chapter 8. Implementation 59

LISTING 8.8: Cassandra table definition for raw event storage.
CREATE TABLE IF NOT EXISTS mate.raw_events (

server_id uuid,
date text,
time_stamp timestamp,
type varchar,
event_json varchar,
PRIMARY KEY((server_id, date), time_stamp)

)
WITH CLUSTERING ORDER BY (time_stamp ASC);

8.4.3 Stream Processing Topologies

Two stream processing topologies were developed for the MATE system during
the internship;

• Raw event persistence topology;
• Event ETL topology (prepares events for Druid);
These topologies run on top of Apache Storm, which distributes them across

the available hardware; Storm topologies are pipe and filter processing tasks
based around the concepts of Spouts and Bolts. Spouts represents the data ori-
gins, for example a spout can read data from Kafka and emit the messages to a
graph of Bolts, each representing a processing step. Parallelism of both spouts
and bolts can be controlled by the developer. Topologies can be made transac-
tional using an acknowledgment mechanism at each processing step.

Raw Event Persistence

This topology reads events from Kafka, deserializes them, extracts the date of the
event from the times stamp and inserts it into Cassandra.

FIGURE 8.9: Raw event persistence Storm topology.



Chapter 8. Implementation 60

Event ETL for Druid

For interoperability and generality, events are sent by the MedicineOne 8 CMS as
nested objects serialized in JSON. While druid can ingest data in JSON it requires
them to be flat, as there is no support for nested dimensions. This topology loads
the events from the message broker, deserializes them, flattens the JSON and de-
pending on the type of event saves them to a different queue on the message
broker. This way druid can then effortlessly load them from the message broker.

FIGURE 8.10: Event ETL Storm topology.

8.4.4 System deployment

The DC/OS has a consistent command line interface client that allows scripting
cluster management easily. Since it allows framework / package installation, task
management on Marathon, etc, it was possible to automate the deployment of the
MATE system. A folder was created with the configuration files for each compo-
nent, and Marathon task definitions. The administrator only needs to make sure
the configurations are correct and run a script. This will take care of installing the
necessary frameworks and tasks, namely;

• Apache Kafka;
• Kafka Manager (Web based graphical management interface for Kafka);
• Apache Cassandra;
• Apache Storm;
• Druid;
• Pivot (Druid OLAP exploratory visualization framework);
• Raw event persistence topology;
• Event ETL topology (prepares events for Druid);
Being able to effortlessly deploy and destroy the system, or create multiple

instances for testing greatly accelerates development and debugging.

8.4.5 Application Deployment

Firstly, any application developed for MATE can use any of its components, from
the message broker to the OLAP or distributed NoSQL storage.



Chapter 8. Implementation 61

Future applications developed on top of MATE can be deployed using vari-
ous strategies;

For processing tasks, that load events, process them and store the results, the
most natural way would be to leverage Apache Storm. This entails writing the
processing logic using the Storm API and submitting it to Storm. From then on,
Storm will make sure the application is distributed across the cluster and kept
running even on the event of partial infrastructure failures.

If the workload requires some framework supported by Mesos and DC/OS, it
can be installed and the application submitted to the new service, Apache Spark
would be the prime example.

As a last example, for user facing applications, a very convenient alternative
would be developing the application in whichever is considered the best tech-
nology or language. This application would then be encapsulated as a Docker
container, a Marathon task defined and then scheduled on Marathon. This appli-
cation would be monitored, kept running and scalable with a command or click
on the web graphical user interface.

The listed approaches and the resulting compositions create a very stable,
modular deployment platform, that makes extension safe and effortless.



62

Chapter 9

Results

The real time analytics field is changing very fast as more and faster hardware and
tools are available. The lack of stability felt during the project is a direct result of
that, new tools and approaches are released every week. The main example is
Mesosphere’s DC/OS that came out close to the end of the internship and while
making some previous work obsolete, was well received by the community and
users.

The result of the internship is a general, low latency, or soft real time dimen-
sional event processing system for analytic applications. It has the necessary
primitives / tools to do stream processing, batch processing and even machine
learning and prediction applications. The necessity to generalize and not com-
mit to any particular use case was a consequence of MedicineOne 8 not being yet
ready for data publishing for lack of a standardized representation convention
and consistent data model. Allied to this, comes the fact that the product, from a
market perspective has not yet been developed and the MATE will have to adapt
to the clients necessities.

While this was unexpected, it is in no way a negative result. The performance
and quality requirements exceed the expectations and the current state of the art
allows for more than initially expected. According to the threshold of success
defined in the requirements and the intern’s opinion the project was a success,
the next sections present evidence in favor of this statement.

9.1 Management

Management of the platform is to a large degree taken care of by Mesos’, Marathon’s
and DC/OS’ graphical user interfaces (GUIs). The command line and REST APIs
make it possible to automate all management processes or make the system elas-
tic to a degree. However, day to day management can easily be done through the
GUI. For illustrative purposes a few screenshots are presented in figure 9.1.



Chapter 9. Results 63

FIGURE 9.1: Management interfaces.

The GUIs let the operators easily scale, schedule and terminate tasks as well
as consulting their logs or redefine their access to computational resources. It is
also possible to install and configure packages / frameworks entirely through the
GUI and with very little effort. For example, to manage kafka and inspects its per-
formance, an application called Kafka-Manager[43] was installed and configured
through a simple graphical interaction.

9.2 Performance

Since the main function of the system is performing analytical operations over
streams of events, the metric chosen for performance testing is events / second.
Even though benchmarking is presented, the reader should be aware that since
the tools being benchmarked were designed for much larger deployments, these
results, while more than good enough to cover the requirements, are not at all
representative of the full potential of the system. This was mostly a consequence
of infrastructure availability and to compensate for it, third party benchmarks are
referenced.

When it comes to system wide performance, it far exceeds the requirements
by at least one order of magnitude. As shown on the more detailed subsections,
the bottleneck will be the stream processor, at 821 events / second processing
rates. However, as long as event volumes stay within that limit, latency from in-
gestion to availability at the data storages will be way under the stipulated limit
of 10 seconds.



Chapter 9. Results 64

9.2.1 Message Broker

With 2 message brokers, a queue with 2 partitions and a replication of 2, the mes-
sage broker service was able to consistently ingest an average of 9358 events /
second, each approximately 1Kilobyte in size with a sample size of 16 millions
events. These were less than ideal conditions, machines properly tunned for
Kafka, will yield much better results with linear scaling as verified by Linkedin’s
benchmark[44]. However, as stated, this more than covers the performance re-
quirements of the system and leaves enough performance for functionality ex-
pansion.

9.2.2 Stream Processor

Processing data from a queue loaded with 16 million events, both topologies per-
formed as expected. The raw event persistence operated at the distributed data
stores capability. The event ETL topology managed to process and write on aver-
age 821 events / second. The bottleneck was JSON deserialization and flattening,
on a larger cluster this could be fixed by increasing the number of messages al-
lowed to be in flight inside a topology before acknowledge and increasing the
parallelism of the flattening bolt. While a definite bottleneck, it still performs ad-
equately for the project requirements and will accommodate the growth in the
foreseeable future.

9.2.3 Distributed Storage

Apache Cassandra’s scheduler on DC/OS had a known bug at the time of writing
that made it impossible to run each node with less than 2Gigabytes of memory.
This severely limited what could be done on the small development cluster. The
write benchmark was performed with a single node, in this condition, it averaged
889 writers / second with 4 clients in parallel. Once again, since this result is not
representative due to the limitations, a good source of performance information
is the benchmark done by Netflix[29], which shows an average of 11429 writes /
second per node with linear scalability from 50 to 350 nodes.

9.2.4 Distributed, In memory OLAP Storage

Druid is an in memory data storage, and while historic data may be paged to
disk for a performance / cost trade-off, recent data must be in memory. The fact
there wasn’t enough memory available to run Druid fully distributed made the
benchmark hold very little value. Information about performance is available at
the official website[45]. The data supports that as long as there is enough memory
to hold all the events expected between segment archiving events, Druid will not
be the bottleneck in the system. This information is corroborated by Linkedin’s
benchmark[46] where druid can ingest 20000 rows per real time process while
keeping sub-second query latency.



Chapter 9. Results 65

9.3 Validation

As predicted during the risk analysis there was no time to work on an actual
implementation of a user facing analytical soft real time dashboards application,
and work was centered around back-end and operations.

Specifically the following requirements were not fulfilled;
• SR-F-FE-01
• SR-F-FE-02
• SR-F-FE-03
• SR-F-FE-04
• SR-F-FE-05
• SR-F-FE-06
• SR-F-FE-07
• SR-F-FE-08
• SR-PERF-SYS.03

All of them were low priority and the risk of not having time to do them had been
accepted.
Excluding the previously mentioned, the High and Medium priority are vali-
dated in the next two subsections.

9.3.1 Functional Requirements

All the functional requirements are directly fulfilled by the services that compose
the MATE system. For details consult table 9.2.

TABLE 9.1: Functional Requirements Validation.

ID Priority Validation

SR-F-M1S.01 High Generation and publishing assured by the MateEventLogger
service. Ingestion and availability for processing is ensured
by the message broker.

SR-F-BE.01 High The message broker is replicated and persistent for a period
of 1 week, and the Raw Event Storage topology persists them
permanently on the distributed data storage.

SR-F-BE.02 High Functionality provided by the message broker and the OLAP
data storage.

SR-F-BE.03 High Functionality provided by the distributed data storage and
the OLAP data storage.

SR-F-BE.04 High Functionality provided by the distributed data storage, for
maximum granularity, and the OLAP data storage for ag-
gregates.

SR-F-BE.05 High Functionality provided by the OLAP data storage.

9.3.2 Quality Requirements

Quality requirements are generally satisfied by the components and the architec-
ture. For details consult table 9.2. However, since the mean time between failure



Chapter 9. Results 66

of components is unknown, the intern was not able to accurately calculate the
necessary replication to achieve the desired availability goals.

TABLE 9.2: Quality Requirements Validation.

ID Priority Validation

SR-PERF-SYS.01 High Satisfied, consult Performance section.
SR-PERF-SYS.02 High Satisfied under the assumption there are

enough resources, consult Performance sec-
tion.

SR-QOS-SYS.02 Medium The system is a composition of horizontally
scalable services.

SR-QOS-SYS.03 High Satisfied through SOA and the presence of
scheduling services such as Marathon.

SR-REL-SYS.01 Medium Satisfied by the usage of redundant com-
ponents under the assumption there enough
replicas.

SR-REL-SYS.02 Medium Satisfied by the usage of redundant compo-
nents and a monitoring service, under the as-
sumption there enough replicas.

SR-REL-SYS.03 High Satisfied by the redundant message broker and
redundant distributed data store.

SR-MAINT-SYS.01 High Satisfied by the architecture.
SR-MAINT-SYS.02 High Satisfied by the usage of redundant com-

ponents under the assumption there enough
replicas.

SR-SAFE-SYS.02 High The message broker is replicated and persis-
tent for a period of 1 week, and the Raw Event
Storage topology persists them permanently
on the distributed data storage.

9.3.3 Stream Processing Topologies

Since the Apache Storm library allows local testing of the topologies and each
bolt has a well defined function, topologies were validated by unit testing each
part. As they were developed in Java jUnit and maven was used for test manage-
ment. Topologies were considered successful when all tests were passed. Tests
consisted of a few examples where the results where known and considered rep-
resentative of the domain. Furthermore, the system was left running for 16 mil-
lion events and no exceptions were logged at any point.

9.4 Applications

Possible applications for the MATE system are;



Chapter 9. Results 67

• OLAP Dashboard: Druid can be for aggregation and other analytical queries
while using Cassandra for state storage and making the actual front end ap-
plication stateless. By wrapping it in a docker container and scheduling it
with a Marathon task, it would be extremely easy to manage and scale as
necessary.

• Machine Learning: Machine learning from the events streams and historic
data could be easily implemented by using DC/OS package manager to
install Apache Spark. With the help of MLlib[47] it would be easy to train a
given model from aggregates (Druid), historic data (Cassandra, Druid) and
even streams (Kafka). The state of said model could be saved on Cassandra
or other easily deployable high performance storage like Redis. Predictive
analysis could then be applied to incoming events using Spark or Storm.



68

Chapter 10

Conclusion

Looking back, the internship started full on uncertainty, exploring a completely
new field, however it is definitely a success technically and academically. Thanks
to the freedom given at MedicineOne it was possible to explore the viability lim-
its of soft real time analytics platforms as well as explore the area of operations
management. The result of the project is a soft real time processing platform ad-
equate to MedicineOne’s data processing needs for the foreseeable future. And
while less focus was placed on the actual application of the platform, initially a
dashboard application, a lot more was put into provisioning, deployment, and
quality attributes. As it stands, MATE is more than just a frail prototype, it is
a reliable, easy to deploy anywhere, cloud or premise, replicable environment
that can support analytics and even some more performance demanding machine
learning applications. At a personal level it was incredibly rewarding to explore
an emerging field, surrounded by active communities and constant change, even
if it came at the cost of having to deal with unexpected change and compatibility
issues.

I thank all the involved parties for the opportunity to explore, learn and grow.

10.1 Future Work

For the future there are some topics worth exploring, namely;

• Security, which according to the road map will be a big part in the next
DC/OS update;

• Data schema abstraction, developing an abstraction layer that made it pos-
sible to define, in a declarative format, new events to be ingested would
make the system much more general and flexible;

• Better stream processing, new alternatives have surfaced, namely Concord
and Heron, both are worth exploring;

• Study and characterize failure, most platforms used are relatively new and
their failure patterns are now well known;

• Application level logging on MedicineOne 8, adding logging at application
level would make the system more friendly to analytics and intelligence
extraction;



69

Appendix A

System Requirements Specification



  
 

 
 
Internal Document Template (v 1.1) M1.TPL.QMS.210606.RJ01 

© Copyright 1989-2011 MedicineOne, life sciences computing SA         1 | 27 

 

System Requirements Specification 
MedicineOne 
 

 

 

 

 

 

 

 

 

 

 

 

 

Authors and Contributors 

Name Initials Contact 

Jaime Correia JC jaime.correia@medicineone.net 

Marco Tinoco MT marco@medicineone.net 

Revision History 

Version Date Author Description 

1.0 14/11/2015 JC 
Requirement document based on previous meetings and 

state of the art study. 

2.0 11/01/2015 JC, MT 
Corrections suggested by Marco Tinoco and added 

requirement SR-F-FE-08. 

    

    

    

Access List 

Internal Access External Access 

Public Restricted 
 

The contents of this document are under copyright of MedicineOne, Lifes Sciences Computing S.A. It is released on condition that it shall not be copied in whole, in part or otherwise 

reproduced (whether by photographic or any other method) and the contents therefore shall not be divulged to any person other than that of the addressee without prior written 

consent of submitting company. 

 



  
 

 
 
Internal Document Template (v 1.1) M1.TPL.QMS.210606.RJ01 

© Copyright 1989-2011 MedicineOne, life sciences computing SA         2 | 27 

 

System Requirements Specification 
MedicineOne 
 

 

Table of Contents 

 

1. INTRODUCTION ....................................................................................................................................................... 4 

1.1. OBJECTIVE .......................................................................................................................................................... 4 

1.2. SCOPE ................................................................................................................................................................ 4 

1.3. AUDIENCE ........................................................................................................................................................... 4 

1.4. DEFINITIONS AND ACRONYMS ............................................................................................................................... 5 

1.5. REFERENCE DOCUMENTS ..................................................................................................................................... 5 

2. STANDARDS, CONVENTIONS, PROCEDURES AND TOOLS ................................................................................. 6 

2.1. DESIGN STANDARDS ............................................................................................................................................ 6 

2.2. PROJECT LIFE CYCLE ........................................................................................................................................... 6 

2.2.1. CONSIDERATIONS AND RATIONAL ...................................................................................................................................... 6 

2.2.2. LIFE CYCLE ................................................................................................................................................................... 7 

2.2.3. CHANGE MANAGEMENT .................................................................................................................................................. 8 

2.3. SOFTWARE TOOLS ............................................................................................................................................... 8 

3. LOAD ESTIMATIONS ............................................................................................................................................... 9 

3.1. DATA VOLUME..................................................................................................................................................... 9 

3.2. EVENT VOLUME ................................................................................................................................................. 10 

4. SOFTWARE REQUIREMENTS CATALOGUE ........................................................................................................ 11 

4.1. FUNCTIONAL REQUIREMENTS ............................................................................................................................. 11 

4.1.1. MEDICINEONE SERVER - EXISTING SYSTEM ..................................................................................................................... 11 

4.1.2. BACKEND ................................................................................................................................................................... 11 

4.1.3. FRONTEND ................................................................................................................................................................. 13 

4.2. PERFORMANCE REQUIREMENTS ......................................................................................................................... 15 

4.3. INTERFACE REQUIREMENTS ............................................................................................................................... 17 

4.4. OPERATIONAL REQUIREMENTS ........................................................................................................................... 18 

4.5. RESOURCE REQUIREMENTS ............................................................................................................................... 18 

4.6. VERIFICATION REQUIREMENTS ........................................................................................................................... 18 



  
 

 
 
Internal Document Template (v 1.1) M1.TPL.QMS.210606.RJ01 

© Copyright 1989-2011 MedicineOne, life sciences computing SA         3 | 27 

 

System Requirements Specification 
MedicineOne 
 

4.7. DOCUMENTATION REQUIREMENTS ...................................................................................................................... 18 

4.8. SECURITY REQUIREMENTS ................................................................................................................................. 18 

4.9. PORTABILITY REQUIREMENTS ............................................................................................................................. 18 

4.10. QUALITY REQUIREMENTS ................................................................................................................................. 19 

4.11. RELIABILITY REQUIREMENTS ............................................................................................................................ 20 

4.12. MAINTAINABILITY REQUIREMENTS .................................................................................................................... 21 

4.13. SAFETY REQUIREMENTS .................................................................................................................................. 21 

5. USE CASES CATALOGUE ..................................................................................................................................... 22 

5.1. ACTORS LIST ..................................................................................................................................................... 22 

5.2. USE CASES ....................................................................................................................................................... 22 

6. EXTERNAL INTERFACES SPECIFICATION .......................................................................................................... 25 

7. PENDING ISSUES ................................................................................................................................................. 26 

 

 

 

 

 

 

 

 

 

 

 

 

  



  
 

 
 
Internal Document Template (v 1.1) M1.TPL.QMS.210606.RJ01 

© Copyright 1989-2011 MedicineOne, life sciences computing SA         4 | 27 

 

System Requirements Specification 
MedicineOne 
 

1. Introduction 

1.1. Objective 

The purpose of this document is giving the reader a formal definition of the requirements of the real time 

healthcare aggregation and visualization platform to be developed. 

As well as a guide for the developer and a management tool for the Product Owner, it will also serve as 

communication channel between the two parties and help materialize and scope the system. 

Since the project was born from an idea and hadn’t had previous formalization or development, this document 

will provide a much needed common ground to help convey the idea and validate its understanding and 

expected functionality. 

1.2. Scope 

This document pertains to the RTHAV project, and seeks to expose its various types of requirements and 

constraints as well as the process that lead to their gathering. 

It will serve as the first formal definition of the project and condition and drive the next steps of the 

development process. Finally it will be a tool to validate the final product and thus categorize it in terms of 

completeness and readiness to be used in production and/or marketed. 

1.3. Audience 

This document is mainly meant for internal use by M1, specifically by the developers and other involved 

technical personnel as well as the stakeholders, specifically the Project Owner. 

The technical sections are aimed at the developers and will serve as a starting point and general guide both for 

development and validation of the end product. 

For the remaining stakeholders this document will ensure that their input and ideas were properly understood 

and materialized and as a mean to rectify and approve them. 

  



  
 

 
 
Internal Document Template (v 1.1) M1.TPL.QMS.210606.RJ01 

© Copyright 1989-2011 MedicineOne, life sciences computing SA         5 | 27 

 

System Requirements Specification 
MedicineOne 
 

1.4. Definitions and acronyms 

Table 1 presents the list of definitions used throughout this document. 

Name Description 

Applicable Document A document is considered applicable if it contains 

provisions that through reference in this document 

incorporate additional provisions to the present 

document. 

Reference Document A document is considered a reference document if it 

is referred but not applicable to the present 

document. 

Real Time Healthcare Aggregation and Visualization 

(RTHAV) 

Code name for the real time healthcare data 

aggregation and visualization platform this 

documents pertains to. 

Project Owner The product owner represents the stakeholders and 

the customers. In the current project this is the 

person who idealized and created the project. 

Table 1: Definitions 

Table 2 presents the list of acronyms used throughout this document. 

Name Description 

AD Applicable Document 

M1 MedicineOne 

RD Reference Document 

TBC To be confirmed 

TBD To be defined 

RT Real Time 

RTHAV Real Time Healthcare Aggregation and Visualization 

UML Unified Modelling Language 

SRS Software Requirements Specification 

Table 2: Acronyms 

1.5. Reference Documents 

Reference Source Version/Date 

Kanban  https://github.com/agilelion/Open-Kanban 27/10/2015 

Scrum http://epf.eclipse.org/wikis/scrum/ 27/10/2015 

A User Case Template: Draft 

for discussion, Derek Coleman 

http://www.bredemeyer.com/pdf_files/use_case.pdf 27/10/2015 

External Interface Modelling http://www.agilemodeling.com/shared/ExternalInterfaceS

pecTemplate.doc 

27/10/2015 

Table 3: Reference documents 

  



  
 

 
 
Internal Document Template (v 1.1) M1.TPL.QMS.210606.RJ01 

© Copyright 1989-2011 MedicineOne, life sciences computing SA         6 | 27 

 

System Requirements Specification 
MedicineOne 
 

2. Standards, conventions, procedures and tools 

To achieve a homogenous documentation and development process, this section will detail the standards and 

lifecycle the project will follow.  

2.1. Design Standards 

For design needs, UML will be used when possible and expressive enough. 

Even though the project will follow an agile life cycle without focus on formal documentation, there will be at 

least an SRS with the initial requirements, extracted from use cases. 

2.2. Project Life Cycle 

2.2.1. Considerations and Rational 

Given that the project will be developed under the guise of a curricular internship, and divided into two stages, 

(first and second semester) with distinct levels of dedication (part time during first semester), it is especially 

important to use an adequate life cycle. 

During the first semester, the project will be developed in part time, with an average weekly effort of 16 hours, 

on the second semester full time attention will be available, totalizing 40 hours of weekly dedication. 

This distribution conditions the life cycle greatly, and trying to fight against it would not be productive, 

therefore, and since the project will require considerable architectural and documental effort, the first 

semester will be dedicated to precisely that regardless of chosen life cycle. 

The second semester will be used for implementation, testing, benchmarking and finalizing documentation. 

Looking at the project itself, a scalable event aggregation system with support for real time visualization, and 

the development environment, an incremental, iterative life cycle confers agility to the process and makes it 

easy to gradually steer the project in the desired direction while making decisions based on the reception of 

previous builds.  

As a final note, there is no development team, the project is the sole responsibility of one developer, therefore 

only some portions of the chosen Life Cycle, or specifically process, will be used, namely task management, 

development / deployment / testing pipeline and requirements and change management. 

  



  
 

 
 
Internal Document Template (v 1.1) M1.TPL.QMS.210606.RJ01 

© Copyright 1989-2011 MedicineOne, life sciences computing SA         7 | 27 

 

System Requirements Specification 
MedicineOne 
 

 

2.2.2. Life Cycle 

Certain considerations made the choice of life cycle evident. Since analytics and business intelligence is not an 

area where the developer is well versed or especially knowledgeable about, and there is no readily available 

expert in the organization, the only sane option is to define end goals and interactively try to achieve one at a 

time. 

Starting from the integration with the existing system, and moving in a direction of adding functionality trying to 

achieve a functional front end application. 

The project will follow an incremental life cycle, based on SCRUM, maintaining the notion of backlogs and 

sprints. 

 

 

During the development stage, features will be segmented and incrementally added to the backlog, this way, at 

the end of each sprint the project owner will have the opportunity to experience the resulting artifact and 

possibly introduce changes.  

For backlog and sprint management a 

Kanban board will be used. This 

choice makes it easy to estimate 

progress, time spent on each feature 

and to easily get an overview of the 

remaining work and in the end, 

evaluate the readiness of the product. 

The planned sprint duration is 1 week. 



  
 

 
 
Internal Document Template (v 1.1) M1.TPL.QMS.210606.RJ01 

© Copyright 1989-2011 MedicineOne, life sciences computing SA         8 | 27 

 

System Requirements Specification 
MedicineOne 
 

2.2.3. Change Management 

It is expectable that during the requirement analysis, architectural design or after every sprint, the product 

owner might want to change certain aspects of the system to better fit company objectives. 

After evaluation by the developer, changes will be dealt with according to cost and complexity. 

Minor changes that do not add cost to the project will be added to the backlog and dealt with through the 

normal process. 

Since there are very limited resources, and the project is part of a curricular internship, changes that require 

extending the scope of the project should be solved by allocating more human resources to the project and 

isolation of that proposed functionality in a new module. 

2.3. Software Tools 

This section lists the software tools necessary for the production of documentation and management of the 

development process as well as tools that are foreseeable to be needed later on. Even though the last part is 

not a part of the Requirements in the strict sense, the information is still useful to have for planning purposes. 

Name Version Notes 

MS Word <versions> Word Processor 

Git <version> Repository and versioning tool 

MS Visio <version> Diagram authoring 

Sublime Text 2 Text Editor 

Visual Studio 2013 IDE to manipulate and integrate the 

existing system. 

SQL Server Management 

Studio 

2013 Manipulating the existing data 

sources. 

IntelliJ Idea <latest> Software development. 

Java SDK 8 Software development. 

Build Platform ? Platform to automate solution 

building. 

Deployment Platform ? Platform to automate deployment. 

Logging Platform ? Platform to collect and analyse logs. 

Table 4: List of software tools to be used 

  



  
 

 
 
Internal Document Template (v 1.1) M1.TPL.QMS.210606.RJ01 

© Copyright 1989-2011 MedicineOne, life sciences computing SA         9 | 27 

 

System Requirements Specification 
MedicineOne 
 

3. Load Estimations 

From operating information provided by MedicineOne, taken from two of their largest running systems, and 

assuming that the real volume of data is 4 times as much and will grow 10% each year, as suggested by the 

Project Owner, the following projections have been made for the next 20 years. 

It is also assumed that each event will be around 2Kbytes in size. 

Even if the values end up not representing real life condition, they should at least be in the same order of 

magnitude and serve as a good benchmark. 

 

3.1. Data Volume 

Data volume estimation will heavily impact technology selection, especially data persistence components such 

as databases. 

 

  

0

1000

2000

3000

4000

5000

6000

7000

8000

201520162017201820192020202120222023202420252026202720282029203020312032203320342035

G
B

Year

Projected Data Volume

Total Data



  
 

 
 
Internal Document Template (v 1.1) M1.TPL.QMS.210606.RJ01 

© Copyright 1989-2011 MedicineOne, life sciences computing SA         10 | 27 

 

System Requirements Specification 
MedicineOne 
 

3.2. Event Volume 

This estimation will serve to establish some performance requirements, therefore being extremely important to 

set metrics for system validation. 

 
  

0

5

10

15

20

25

30

35

40

2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035

Ev
en

ts
 p

er
 S

ec
o

n
d

Year

Projected Event Volume per Second

Events



  
 

 
 
Internal Document Template (v 1.1) M1.TPL.QMS.210606.RJ01 

© Copyright 1989-2011 MedicineOne, life sciences computing SA         11 | 27 

 

System Requirements Specification 
MedicineOne 
 

4. Software Requirements Catalogue 

4.1. Functional Requirements 

4.1.1. MedicineOne Server - Existing System 

SR-F-M1S.01 

Type Functional 

Status Proposed. Version 1.0. Phase 1.0 

Priority: High 

Difficulty: Medium 

Details Created on 05-11-2015. 

The MedicineOne Server shall generate events for the listed actions, and reliably send them to the Central 

Repository serialized as JSON. 

 

Each event should contain the following information: 

 Timestamp 

 Location (Zip-Code or Coordinates) 

 Organization 

 Physician Information 

a. Specialty 

b. Age 

 Patient Information 

a. Sex 

b. Age 

 

The relevant actions are listed below, with their particular attributes to include in the event, nested. 

 Drug prescriptions; 

o Country Identifier (M1SYSTEM.InstallationSettingValue, SettingId = InstallationCountry) 

o National Identifier (dbo.cli_prescricoes_utentes.Cod_Nacional) 

 Pathology diagnoses; 

o Classification System (dbo.std_classificacoes_patologias.?(PK? | Nome?)) 

o Pathology Code (dbo.cli_patologias.Codigo) 

 Diagnostic test prescription; 

o Specialty Code (dbo.cli_actos_clinicos.codigo_area_convencao) 

o Sub Type Code (dbo.cli_actos_clinicos.Codigo) 

 

4.1.2. Backend 

SR-F-BE.01 

Type Functional 

Status Proposed. Version 1.0. Phase 1.0 

Priority: High 

Difficulty: Medium 

Details Created on 05-11-2015. 

The Central Repository shall persist received events. 

 



  
 

 
 
Internal Document Template (v 1.1) M1.TPL.QMS.210606.RJ01 

© Copyright 1989-2011 MedicineOne, life sciences computing SA         12 | 27 

 

System Requirements Specification 
MedicineOne 
 

SR-F-BE.02 

Type Functional 

Status Proposed. Version 1.0. Phase 1.0 

Priority: High 

Difficulty: High 

Details Created on 05-11-2015. 

The Central Repository shall provide metrics related to the events in real time for subscription. 

The events are described in the requirement SR-F-M1S.01. 

 

The metrics to be made available in real time are: 

 Total events of each type; 

 Top N of each type of event, by specific attributes of each type and respective count; 

 The previous metrics, segmented by geographical region; 

 

SR-F-BE.03 

Type Functional 

Status Proposed. Version 1.0. Phase 1.0 

Priority: High 

Difficulty: High 

Details Created on 05-11-2015. 

The Central Repository shall provide time series related to the events in real time for subscription. 

The events are described in the requirements SR-F-M1S.01 and SR-F-BE.02. 

 

The time series to be made available in real time on subscription are: 

 Count for each type; 

 Count for the specific attributes of each type; 

 The previous time series, segmented by geographical region; 

 Evolution of the previously mentioned metrics. 

 

SR-F-BE.04 

Type Functional 

Status Proposed. Version 1.0. Phase 1.0 

Priority: High 

Difficulty: High 

Details Created on 05-11-2015. 

The Central Repository shall provide access to historic portions of the data artefacts described in SR-F-BE.02 

 

 

 

 



  
 

 
 
Internal Document Template (v 1.1) M1.TPL.QMS.210606.RJ01 

© Copyright 1989-2011 MedicineOne, life sciences computing SA         13 | 27 

 

System Requirements Specification 
MedicineOne 
 

SR-F-BE.05 

Type Functional 

Status Proposed. Version 1.0. Phase 1.0 

Priority: High 

Difficulty: High 

Details Created on 05-11-2015. 

The Central Repository shall let other systems query the event data and multidimensional aggregates of that 

same data, both real time, and historic. 

 

4.1.3. Frontend 

SR-F-FE-01 

Type Functional 

Status Proposed. Version 1.0. Phase 1.0 

Priority: Low 

Difficulty: Medium 

Details Created on 05-11-2015. 

The Frontend shall authenticate users with a username and password, and credit them with the permissions 

associated with the account. 

 

The system will provide the following user profiles: 

 Operator: Full permissions, access to all data, user and respective permissions management. 

 Administrator: User and respective permissions management. 

 User: Access to data defined on personal permissions. 

 

 

SR-F-FE-02 

Type Functional 

Status Proposed. Version 1.0. Phase 1.0 

Priority: Low 

Difficulty: Medium 

Details Created on 05-11-2015. 

The Frontend shall let the Operator and Administrator set the permissions for each user, allowing control over 

which time series, time intervals, metrics and aggregates he can access. 

 

  



  
 

 
 
Internal Document Template (v 1.1) M1.TPL.QMS.210606.RJ01 

© Copyright 1989-2011 MedicineOne, life sciences computing SA         14 | 27 

 

System Requirements Specification 
MedicineOne 
 

SR-F-FE-03 

Type Functional 

Status Proposed. Version 1.0. Phase 1.0 

Priority: Low 

Difficulty: Medium 

Details Created on 05-11-2015. 

The Frontend shall provide visualisations for the data elements described of the previous SR-F-FE 

requirements. 

 

There should be the following elements, according to type of data and information available: 

 Line charts (time series) 

 Gauges (metrics, aggregates) 

 Pie charts (metrics, aggregates) 

 Bar charts (metrics, aggregates) 

 Geographical charts (location information available) 

 

SR-F-FE-04 

Type Functional 

Status Proposed. Version 1.0. Phase 1.0 

Priority: Low 

Difficulty: Medium 

Details Created on 05-11-2015. 

The Frontend shall let the user overlay real time data series with sections of historic data of the same time 

series for comparison purposes. 

 

SR-F-FE-05 

Type Functional 

Status Proposed. Version 1.0. Phase 1.0 

Priority: Low 

Difficulty: Medium 

Details Created on 05-11-2015. 

The Frontend shall update visualisations pertaining to real time data, in real time as well. 

Real time in this context means, as soon as it gets the notification from the backend. 

 

SR-F-FE-06 

Type Functional 

Status Proposed. Version 1.0. Phase 1.0 

Priority: Low 

Difficulty: Medium 

Details Created on 05-11-2015. 

The Frontend shall let the users select between the three types of events available. 

 



  
 

 
 
Internal Document Template (v 1.1) M1.TPL.QMS.210606.RJ01 

© Copyright 1989-2011 MedicineOne, life sciences computing SA         15 | 27 

 

System Requirements Specification 
MedicineOne 
 

SR-F-FE-07 

Type Functional 

Status Proposed. Version 1.0. Phase 1.0 

Priority: Low 

Difficulty: Medium 

Details Created on 05-11-2015. 

The Frontend shall let the user, select the different metrics, time series and aggregates in each section. 

 

SR-F-FE-08 

Type Functional 

Status Proposed. Version 1.0. Phase 1.0 

Priority: Low 

Difficulty: Medium 

Details Created on 05-11-2015. 

The Frontend shall, when necessary, provide a translation layer to show and input identifiers of drugs, 

pathologies and diagnostic tests in a user friendly format. 

 

4.2. Performance Requirements 

SR-PERF-SYS.01 

Type Performance 

Status Proposed. Version 1.0. Phase 1.0 

Priority: High 

Difficulty: High 

Details Created on 05-11-2015. 

The system shall be able to scale up to ingest at least 40 events per second. 

This metric comes from the estimations presented on a previous sections. 

 

SR-PERF-SYS.02 

Type Performance 

Status Proposed. Version 1.0. Phase 1.0 

Priority: Medium 

Difficulty: High 

Details Created on 05-11-2015. 

The system shall present latencies inferior to 10 seconds between ingestion of an event and it being reflected 

on the metrics and/or data model. 

 

 

 

 



  
 

 
 
Internal Document Template (v 1.1) M1.TPL.QMS.210606.RJ01 

© Copyright 1989-2011 MedicineOne, life sciences computing SA         16 | 27 

 

System Requirements Specification 
MedicineOne 
 

SR-PERF-SYS.03 

Type Performance 

Status Proposed. Version 1.0. Phase 1.0 

Priority: Low 

Difficulty: High 

Details Created on 05-11-2015. 

The Frontend shall be replicable to accommodate a growing number of users, limited only by the performance 

of the data backend. 

This can be achieved by making the Frontend stateless. 

 

SR-PERF-SYS.04 

Type Performance 

Status Proposed. Version 1.0. Phase 1.0 

Priority: High 

Difficulty: High 

Details Created on 05-11-2015. 

The data storage and processing capability shall be scalable horizontally to accommodate a growing number 

of events and queries to the aggregates and metrics. 

  



  
 

 
 
Internal Document Template (v 1.1) M1.TPL.QMS.210606.RJ01 

© Copyright 1989-2011 MedicineOne, life sciences computing SA         17 | 27 

 

System Requirements Specification 
MedicineOne 
 

4.3. Interface Requirements 

SR-I-SYS.01 

Type Interface 

Status Proposed. Version 1.0. Phase 1.0 

Priority: High 

Difficulty: Medium 

Details Created on 05-11-2015. 

When not constrained by proprietary component implementations, interfaces, shall use well defined and 

standardised protocols and languages for interoperability. 

 

At the time of writing, JSON over HTTPS seems like a good option. 

 

SR-I-SYS.02 

Type Interface 

Status Proposed. Version 1.0. Phase 1.0 

Priority: High 

Difficulty: Medium 

Details Created on 05-11-2015. 

System components should be as decoupled as allowed by performance requirements. 

This is not a hard requirement, more of a design guideline or recommendation. 

 

  



  
 

 
 
Internal Document Template (v 1.1) M1.TPL.QMS.210606.RJ01 

© Copyright 1989-2011 MedicineOne, life sciences computing SA         18 | 27 

 

System Requirements Specification 
MedicineOne 
 

4.4. Operational Requirements 

The operation of the system as a whole shall be done using the web based front end, after the operator has 

authenticated with the necessary credentials. 

Operation of the used components and infrastructure will depend on their individual characteristics since at 

this point decisions on that end still haven’t been made. 

4.5. Resource Requirements 

There are no explicit limits. Ideally, as specified in the performance requirements, the system should be able to 

scale to be able to accommodate a growing number of requests. When possible, components that scale 

horizontally should be used, and when it is not, bottleneck mitigation plans should be established. 

4.6. Verification Requirements 

The system shall produce, store and make available enough logs and metrics, such as performance, ingestion 

speed and hardware load, to make it possible to verify requirements. 

When it comes to functional requirements, a checklist shall be made, containing tests, either manual or 

automated to ascertain the validity of each one. 

4.7. Documentation Requirements 

In the interest of saving time, after the initial planning documentation, only the absolute necessary to 

understand and operate the system will be produced, such as deployment and building documentation as well 

interface documentation. 

4.8. Security Requirements 

The system transfers health-care data, therefore it should always use encrypted channels when crossing public 

networks and systems, however, and since the data is anonymized there should be no pressing legal issues on 

this end. 

Operation and usage of the system should require authentication and provide auditability and accountability 

through adequate logging. 

4.9. Portability Requirements 

In the interest of portability the following characteristics are required: 

1. The frontend shall be web based and run on at least the 3 most popular browsers; 

2. Interface between modules shall use well documented standards and protocols; 

3. Deployment requirements and procedures shall be documented and or automated; 



  
 

 
 
Internal Document Template (v 1.1) M1.TPL.QMS.210606.RJ01 

© Copyright 1989-2011 MedicineOne, life sciences computing SA         19 | 27 

 

System Requirements Specification 
MedicineOne 
 

  

4.10. Quality Requirements 

SR-QOS-SYS.01 

Type Quality 

Status Proposed. Version 1.0. Phase 1.0 

Priority: High 

Difficulty: High 

Details Created on 05-11-2015. 

The system shall present latencies inferior to 10 seconds in real time metrics, from ingestion to availability for 

presentation. 

 

SR-QOS-SYS.02 

Type Quality 

Status Proposed. Version 1.0. Phase 1.0 

Priority: medium 

Difficulty: High 

Details Created on 05-11-2015. 

The system shall be horizontally scalable. 

 

SR-QOS-SYS.03 

Type Quality 

Status Proposed. Version 1.0. Phase 1.0 

Priority: High 

Difficulty: Medium 

Details Created on 05-11-2015. 

The system shall be extensible by means of module addition. 

New modules shall be able to subscribe to the input even feed and query the existing data. 

 

 

  



  
 

 
 
Internal Document Template (v 1.1) M1.TPL.QMS.210606.RJ01 

© Copyright 1989-2011 MedicineOne, life sciences computing SA         20 | 27 

 

System Requirements Specification 
MedicineOne 
 

4.11. Reliability Requirements 

SR-REL-SYS.01 

Type Reliability 

Status Proposed. Version 1.0. Phase 1.0 

Priority: Medium 

Difficulty: High 

Details Created on 05-11-2015. 

The system shall be available to ingest events at least 99% of the time. 

 

SR-REL-SYS.02 

Type Reliability 

Status Proposed. Version 1.0. Phase 1.0 

Priority: Medium 

Difficulty: High 

Details Created on 05-11-2015. 

The system shall be available to reply to user queries at least 99% of the time. 

 

SR-REL-SYS.03 

Type Reliability 

Status Proposed. Version 1.0. Phase 1.0 

Priority: High 

Difficulty: High 

Details Created on 05-11-2015. 

The system shall implement the necessary redundancy to ensure data persistence in the event of hardware 

failure. 

  



  
 

 
 
Internal Document Template (v 1.1) M1.TPL.QMS.210606.RJ01 

© Copyright 1989-2011 MedicineOne, life sciences computing SA         21 | 27 

 

System Requirements Specification 
MedicineOne 
 

4.12. Maintainability Requirements 

SR-MAINT-SYS.01 

Type Maintainability 

Status Proposed. Version 1.0. Phase 1.0 

Priority: High 

Difficulty: High 

Details Created on 05-11-2015. 

The system shall employ general standardized interfaces so that components may be replaced with 

homologous ones when they exist, for example a standard SQL database. 

 

SR-MAINT-SYS.02 

Type Maintainability 

Status Proposed. Version 1.0. Phase 1.0 

Priority: High 

Difficulty: High 

Details Created on 05-11-2015. 

Failure or planned maintenance of a clustered component shall not cause system downtime. 

 

4.13. Safety Requirements 

SR-SAFE-SYS.01 

Type Maintainability 

Status Proposed. Version 1.0. Phase 1.0 

Priority: High 

Difficulty: High 

Details Created on 05-11-2015. 

Failure or planned maintenance of a clustered component shall not cause system downtime. 

 

SR-SAFE-SYS.02 

Type Maintainability 

Status Proposed. Version 1.0. Phase 1.0 

Priority: High 

Difficulty: High 

Details Created on 05-11-2015. 

To be safe against human error, the system shall provide an event replay mechanism, leveraging permanent 

storage. 

  



  
 

 
 
Internal Document Template (v 1.1) M1.TPL.QMS.210606.RJ01 

© Copyright 1989-2011 MedicineOne, life sciences computing SA         22 | 27 

 

System Requirements Specification 
MedicineOne 
 

5. Use Cases Catalogue 

 

This section will list the use cases elicited from the project owner, which after analysis, originated the previous 

section, a listing of requirements. 

 

5.1. Actors List 

The described system will be modeled according to the following list of actors: 

 MedicineOne Server: Represents the actual MedicineOne Server software, which in this case is the 

real time event producer. 

 Central Repository: This is the main component of the RTHAV responsible for receiving and processing 

events and exposing a real time and historic data access interface. 

 Visualization Platform: User facing part of the system responsible for producing visualizations and 

managing users. 

 Operator: Operator of the RTHAV system. 

 User: The end user that will access the Visualization Platform.  

5.2. Use Cases 

UC.1  

Use Case Generate and send event 

Description An event is generated for each drug prescription, diagnostic test and diagnostic that 

arrives at the MedicineOne Server. 

Actors MedicineOne Server (primary) 

Central Repository 

Assumptions The event generation is started by the responsible component of the server. 

Steps 1. Server receives a request to process one of the tasks that should create events; 

2. The responsible module gathers the necessary information to generate the event; 

3. Information is sent to the event generation module of the server; 

4. The event is serialized to JSON; 

5. REPEAT 

a. Persist even in queue; 

b. Establish secure connection to the Central repository; 

c. Send serialized event; 

6. UNTIL operation is successful; 

7. Remote event from persistent queue; 

Non-Functional Reliability: The system shall not lose events; 

Performance: Each event, when connection is successfully established should not take 

more than 5 seconds between generation and arriving at the Central Repository. 

Issues If the system takes too long to send the event, real-time performance will not be achieved 

and late events might cause problems. 

 



  
 

 
 
Internal Document Template (v 1.1) M1.TPL.QMS.210606.RJ01 

© Copyright 1989-2011 MedicineOne, life sciences computing SA         23 | 27 

 

System Requirements Specification 
MedicineOne 
 

UC.2  

Use Case Compare prescriptions of a drug in the current week with the same period last year. 

Description The user wants to compare the prescriptions of a determined drug with the number of 

prescriptions on a homologous period during the previous year. 

Actors User (primary) 

Visualisation Platform 

Assumptions The system is running and the user is authenticated and has the necessary permissions. 

Steps 1. User selects the prescription section 

2. User selects the drugs of interest 

3. User selects a time series of prescription volume. 

4. User initiates the overlay addition. 

5. User selects historic period of interest. 

6. The visualisation system presents both graphs on the same plot. 

Non-Functional  

Issues  

 

UC.3  

Use Case Monitor prescriptions nearby 

Description A user is interested in monitoring the sales of a specific drug in the vicinity. 

Actors User (primary) 

Visualisation Platform 

Assumptions The system is running and the user is authenticated and has the necessary permissions. 

Steps 1. User selects the prescription section 

2. User selects the drugs of interest 

3. User applies a geographical filter 

4. The visualisation system will plot prescription count in real time 

Non-Functional Latency: The visualisation needs to be as low latency as possible. Events should be 

pushed to the client. 

Issues  

 

UC.4  

Use Case Monitor pathology dissemination. 

Description A user wants to visualise in real time the diagnoses of a determined pathology. 

Actors User (primary) 

Visualisation Platform 

Assumptions The system is running and the user is authenticated and has the necessary permissions. 

Steps 1. User selects the pathology section 

2. User selects pathology of interest 

3. User selects geographical visualization  

4. The system presents the number of occurrences on each geographical area. 

Non-Functional Latency: The visualisation needs to be as low latency as possible. Events should be 

pushed to the client. 

Issues  

 

 



  
 

 
 
Internal Document Template (v 1.1) M1.TPL.QMS.210606.RJ01 

© Copyright 1989-2011 MedicineOne, life sciences computing SA         24 | 27 

 

System Requirements Specification 
MedicineOne 
 

UC.5  

Use Case Visualize market share of drugs in a category. 

Description A user wants to know what the most successful drugs are in a determined category. 

Actors User (primary) 

Visualisation Platform 

Assumptions The system is running and the user is authenticated and has the necessary permissions. 

Steps 1. User selects the prescription 

2. User selects category of interest 

3. User selects market share visualization  

4. The system presents top N drugs and their respective market share. 

Non-Functional  

Issues  

  



  
 

 
 
Internal Document Template (v 1.1) M1.TPL.QMS.210606.RJ01 

© Copyright 1989-2011 MedicineOne, life sciences computing SA         25 | 27 

 

System Requirements Specification 
MedicineOne 
 

 

 

6. External Interfaces Specification 

 

 

EXT-INTERF.01 

Description Event ingestion interface. 

Frequency 30 times a second 

Sizing Must be able to ingest 30 events a second; 

Each even will weight around 2Kbytes. 

Format JSON 

Security TLS 

 

EXT-INTERF.02 

Description Time Series / Metrics Query 

Frequency Up to once a second for each end user.  

Timing --- 

Sizing Upper estimate of 100kbs per user. 

Format JSON 

Security HTTPS 

 

EXT-INTERF.03 

Description Historic Data / Aggregate Query 

Frequency Up to once every 10 seconds for each user. 

Timing Should load in under 10 seconds. 

Sizing Upper estimate of 100kbps per user. 

Format JSON 

Security HTTPS 

 

EXT-INTERF.04 

Description Web Front End 

Frequency Up to once every 10 seconds for each user. 

Timing Should load the basic front end (excluding data from other interfaces) under 1 second. 

Sizing Upper estimate of 100kbps per user. 

Format HTTP 

Security HTTPS for authentication. 

 

 

 

  



  
 

 
 
Internal Document Template (v 1.1) M1.TPL.QMS.210606.RJ01 

© Copyright 1989-2011 MedicineOne, life sciences computing SA         26 | 27 

 

System Requirements Specification 
MedicineOne 
 

 

7. Pending issues 

 

1. Technological selection would require a better understanding of the domain than is possible to have 

until prototyping and testing is done. To deal with the issue, the life cycle was adjusted to be forgiving 

and allow change to both chosen technologies and architectures. 

2. The project might be too large for the time frame and resources allocated to it. This issue cannot be 

easily dealt with, therefore, if it proves to be true, the project will only go as far as possible, priority 

being assigned to requirements as described in the respective sections. 

  



  
 

 
 
Internal Document Template (v 1.1) M1.TPL.QMS.210606.RJ01 

© Copyright 1989-2011 MedicineOne, life sciences computing SA         27 | 27 

 

System Requirements Specification 
MedicineOne 
 

 

 

 

 

 

 

 

 

 

Instituto Pedro Nunes  

Rua Pedro Nunes   

Quinta da Nora  

3030-199 Coimbra 

 

Tel (+351) 239 103 500  

 Fax (+351) 239 103 501  

 E-mail geral@medicineone.net 

 

www.medicineone.net 



97

Bibliography

[1] “Systems and software engineering – Vocabulary”. In: ISO/IEC/IEEE 24765:2010(E)
(Dec. 2010), pp. 1–418. DOI: 10.1109/IEEESTD.2010.5733835.

[2] K. G. Shin and P. Ramanathan. “Real-time computing: a new discipline of
computer science and engineering”. In: Proceedings of the IEEE 82.1 (Jan.
1994), pp. 6–24. ISSN: 0018-9219. DOI: 10.1109/5.259423.

[3] Mesosphere DC/OS. URL: https://mesosphere.com/ (visited on 06/15/2016).

[4] Eric Tschetter. Real Real-Time. For Realz. 2013. URL: http://druid.io/
blog/2013/05/10/real-time-for-real.html (visited on 11/14/2015).

[5] What is Scrum? URL: https://www.scrum.org/resources/what-
is-scrum (visited on 12/14/2015).

[6] Scrum Process. 2009. URL: https://upload.wikimedia.org/wikipedia/
commons/5/58/Scrum_process.svg (visited on 11/12/2015).

[7] What is Scrum? An Agile Framework for Completing Complex Projects. URL:
https://www.scrumalliance.org/why-scrum (visited on 12/14/2015).

[8] Dan Radigan. A brief introduction to kanban. URL: https://www.atlassian.
com/agile/kanban/ (visited on 11/14/2015).

[9] David Peterson. What is Kanban? URL: http://kanbanblog.com/explained/
(visited on 11/14/2015).

[10] How To Do 3-Point Estimating. URL: http://4pm.com/3-point-estimating-
2/ (visited on 04/12/2016).

[11] Docker Swarm. URL: https://docs.docker.com/swarm/ (visited on
12/11/2015).

[12] Kubernetes. URL: http://kubernetes.io/ (visited on 03/28/2016).

[13] Practice Fusion. URL: http://www.practicefusion.com (visited on
10/29/2015).

[14] Insight Practice Fusion. URL: https : / / insight . practicefusion .
com/ (visited on 10/29/2015).

[15] Insight Practice Fusion. URL: http://www.practicefusion.com/pharma/
(visited on 12/18/2015).

[16] Surajit Chaudhuri and Umeshwar Dayal. “An Overview of Data Warehous-
ing and OLAP Technology”. In: vol. 26. 1. New York, NY, USA: ACM, Mar.
1997, pp. 65–74. DOI: 10.1145/248603.248616. URL: http://doi.
acm.org/10.1145/248603.248616.

http://dx.doi.org/10.1109/IEEESTD.2010.5733835
http://dx.doi.org/10.1109/5.259423
https://mesosphere.com/
http://druid.io/blog/2013/05/10/real-time-for-real.html
http://druid.io/blog/2013/05/10/real-time-for-real.html
https://www.scrum.org/resources/what-is-scrum
https://www.scrum.org/resources/what-is-scrum
https://upload.wikimedia.org/wikipedia/commons/5/58/Scrum_process.svg
https://upload.wikimedia.org/wikipedia/commons/5/58/Scrum_process.svg
https://www.scrumalliance.org/why-scrum
https://www.atlassian.com/agile/kanban/
https://www.atlassian.com/agile/kanban/
http://kanbanblog.com/explained/
http://4pm.com/3-point-estimating-2/
http://4pm.com/3-point-estimating-2/
https://docs.docker.com/swarm/
http://kubernetes.io/
http://www.practicefusion.com
https://insight.practicefusion.com/
https://insight.practicefusion.com/
http://www.practicefusion.com/pharma/
http://dx.doi.org/10.1145/248603.248616
http://doi.acm.org/10.1145/248603.248616
http://doi.acm.org/10.1145/248603.248616


BIBLIOGRAPHY 98

[17] Nickerson Ferreira and Pedro Furtado. “Real-time Data Warehouse: A Solu-
tion and Evaluation”. In: Int. J. Bus. Intell. Data Min. 8.3 (Feb. 2013), pp. 244–
263. ISSN: 1743-8195. DOI: 10.1504/IJBIDM.2013.059046. URL: http:
//dx.doi.org/10.1504/IJBIDM.2013.059046.

[18] Apache Hadoop. URL: https://hadoop.apache.org/ (visited on 11/19/2015).

[19] InfluxDB. URL: https://influxdata.com (visited on 11/18/2015).

[20] Druid. URL: http://druid.io/ (visited on 11/18/2015).

[21] Apache HBase. URL: https://hbase.apache.org/ (visited on 11/19/2015).

[22] Apache Storm. URL: http://storm.apache.org/ (visited on 11/18/2015).

[23] Raúl Rojas and Ulf Hashagen, eds. The First Computers: History and Architec-
tures. Cambridge, MA, USA: MIT Press, 2000. ISBN: 0-262-18197-5.

[24] Redis. URL: http://redis.io/ (visited on 11/20/2015).

[25] Nathan Bijnens Michael Hausenblas. Lambda Architecture. 2014. URL: http:
//lambda-architecture.net/ (visited on 11/18/2015).

[26] Netflix Suro. URL: http://techblog.netflix.com/2013/12/announcing-
suro-backbone-of-netflixs.html (visited on 01/18/2016).

[27] Apache Kafka. URL: http://kafka.apache.org/ (visited on 11/19/2015).

[28] Apache Cassandra. URL: http://cassandra.apache.org/ (visited on
03/08/2016).

[29] Apache Cassandra Scalability Benchmark, Netflix. URL: http://techblog.
netflix.com/2011/11/benchmarking-cassandra-scalability-
on.html (visited on 03/22/2016).

[30] Apache Spark. URL: http://spark.apache.org/ (visited on 11/18/2015).

[31] Matei Zaharia et al. “Resilient Distributed Datasets: A Fault-tolerant Ab-
straction for In-memory Cluster Computing”. In: Proceedings of the 9th USENIX
Conference on Networked Systems Design and Implementation. NSDI’12. San
Jose, CA: USENIX Association, 2012, pp. 2–2. URL: http://dl.acm.
org/citation.cfm?id=2228298.2228301.

[32] Linda Northrop. The Importance of Software Architecture. 2003. URL: http:
//csse.usc.edu/GSAW/gsaw2003/s13/northrop.pdf (visited on
11/14/2015).

[33] Thomas Erl. SOA Principles of Service Design (The Prentice Hall Service-Oriented
Computing Series from Thomas Erl). Upper Saddle River, NJ, USA: Prentice
Hall PTR, 2007. ISBN: 0132344823.

[34] Simon Brown. The Art of Visualising Software Architecture. Communicating
software architecture with sketches, diagrams and the C4 model. Leanpub, Jan.
2016. URL: https://leanpub.com/visualising-software-architecture.

[35] HDFS. URL: https://hadoop.apache.org/docs/stable/hadoop-
project- dist/hadoop- hdfs/HdfsUserGuide.html (visited on
11/19/2015).

[36] Docker. URL: https://www.docker.com/ (visited on 12/11/2015).

http://dx.doi.org/10.1504/IJBIDM.2013.059046
http://dx.doi.org/10.1504/IJBIDM.2013.059046
http://dx.doi.org/10.1504/IJBIDM.2013.059046
https://hadoop.apache.org/
https://influxdata.com
http://druid.io/
https://hbase.apache.org/
http://storm.apache.org/
http://redis.io/
http://lambda-architecture.net/
http://lambda-architecture.net/
http://techblog.netflix.com/2013/12/announcing-suro-backbone-of-netflixs.html
http://techblog.netflix.com/2013/12/announcing-suro-backbone-of-netflixs.html
http://kafka.apache.org/
http://cassandra.apache.org/
http://techblog.netflix.com/2011/11/benchmarking-cassandra-scalability-on.html
http://techblog.netflix.com/2011/11/benchmarking-cassandra-scalability-on.html
http://techblog.netflix.com/2011/11/benchmarking-cassandra-scalability-on.html
http://spark.apache.org/
http://dl.acm.org/citation.cfm?id=2228298.2228301
http://dl.acm.org/citation.cfm?id=2228298.2228301
http://csse.usc.edu/GSAW/gsaw2003/s13/northrop.pdf
http://csse.usc.edu/GSAW/gsaw2003/s13/northrop.pdf
https://leanpub.com/visualising-software-architecture
https://hadoop.apache.org/docs/stable/hadoop-project-dist/hadoop-hdfs/HdfsUserGuide.html
https://hadoop.apache.org/docs/stable/hadoop-project-dist/hadoop-hdfs/HdfsUserGuide.html
https://www.docker.com/


BIBLIOGRAPHY 99

[37] Apache Mesos. URL: http://mesos.apache.org/ (visited on 03/28/2016).

[38] Ansible. URL: https://www.ansible.com/ (visited on 04/11/2016).

[39] Mesosphere Marathon. URL: https://mesosphere.github.io/marathon/
(visited on 03/29/2016).

[40] RabbitMQ. URL: https://www.rabbitmq.com/ (visited on 11/19/2015).

[41] Apache Aurora. URL: http://aurora.apache.org/ (visited on 03/29/2016).

[42] Apache Zookeeper. URL: https://zookeeper.apache.org/ (visited on
11/19/2015).

[43] Kafka-Manager. URL: https://github.com/yahoo/kafka-manager
(visited on 08/03/2016).

[44] Kafka benchmark at Linkedin. URL: https://engineering.linkedin.
com/kafka/benchmarking-apache-kafka-2-million-writes-
second-three-cheap-machines (visited on 03/08/2016).

[45] Druid Benchmark. URL: http : / / druid . io / blog / 2014 / 03 / 17 /
benchmarking-druid.html (visited on 03/08/2016).

[46] Druid Benchmark at Linkedin. URL: https://www.linkedin.com/pulse/
20140909054748 - 5574162 - true - performance - measure - of -
realtime-big-data-analytics-platforms (visited on 03/08/2016).

[47] MLlib. URL: http://spark.apache.org/mllib/ (visited on 06/15/2016).

http://mesos.apache.org/
https://www.ansible.com/
https://mesosphere.github.io/marathon/
https://www.rabbitmq.com/
http://aurora.apache.org/
https://zookeeper.apache.org/
https://github.com/yahoo/kafka-manager
https://engineering.linkedin.com/kafka/benchmarking-apache-kafka-2-million-writes-second-three-cheap-machines
https://engineering.linkedin.com/kafka/benchmarking-apache-kafka-2-million-writes-second-three-cheap-machines
https://engineering.linkedin.com/kafka/benchmarking-apache-kafka-2-million-writes-second-three-cheap-machines
http://druid.io/blog/2014/03/17/benchmarking-druid.html
http://druid.io/blog/2014/03/17/benchmarking-druid.html
https://www.linkedin.com/pulse/20140909054748-5574162-true-performance-measure-of-realtime-big-data-analytics-platforms
https://www.linkedin.com/pulse/20140909054748-5574162-true-performance-measure-of-realtime-big-data-analytics-platforms
https://www.linkedin.com/pulse/20140909054748-5574162-true-performance-measure-of-realtime-big-data-analytics-platforms
http://spark.apache.org/mllib/

	Abstract
	List of Figures
	List of Tables
	Glossary
	Acronyms
	Introduction
	Purpose
	MedicineOne
	Project Objective
	Document Structure

	Project
	Motivation
	Overview
	Product
	Scope
	Contributions

	Plan and Methodology
	System Development Cycle
	Scrum
	Kanban
	Selected Methodology

	Chronogram
	First Semester
	Second Semester

	Change Management
	Risk Management
	Development Environment

	State of the Art
	Existing Products and Applications
	Analytical Data Processing
	Low Latency
	Fast Aggregation
	General Processing

	Approaches
	Stream Processing
	Storage
	Columnar and Time Series
	In Memory
	Sharding

	Reference Architecture

	Technologies
	Apache Kafka
	Apache HBase
	Apache Cassandra
	Apache Spark
	Apache Storm
	Apache Hadoop
	InfluxDB
	Druid
	Redis


	Requirements
	Elicitation
	Functional Requirements
	Load Estimation
	Quality Requirements

	Risk
	Identified Risks
	Materialized Risks

	Architecture
	Drivers
	Style
	Views
	Contextual View
	Sample Flow

	Container View
	Sample Flow


	Validation and Traceability

	Implementation
	Overview
	Technology Evaluation and Selection
	Infrastructure
	Distributed Message Broker
	Distributed Stream Processor
	Distributed Storage
	Distributed, in Memory, OLAP Storage
	Cluster Manager
	Container Scheduler
	Service Discovery

	Operations
	Provisioning
	Monitoring and Failure Handling
	Framework Installation
	Container Scheduling
	Hardware

	Development
	Integration
	Data Model
	Events
	Raw Storage

	Stream Processing Topologies
	Raw Event Persistence
	Event ETL for Druid

	System deployment
	Application Deployment


	Results
	Management
	Performance
	Message Broker
	Stream Processor
	Distributed Storage
	Distributed, In memory OLAP Storage

	Validation
	Functional Requirements
	Quality Requirements
	Stream Processing Topologies

	Applications

	Conclusion
	Future Work

	System Requirements Specification
	Bibliography

