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Abstract. Intensity-modulated proton therapy (IMPT) is a very promis-
ing alternative for radiotherapy due to the unique depth-dose characteris-
tics of protons that allow better trade-offs between tumor irradiation and
organ sparing. Optimal selection of proton beam directions – beam an-
gle optimization (BAO) – plays a decisive role in further improving these
trade-offs having a profound impact on the quality of dose distributions,
particularly because in IMPT the number of beams is typically lower than
in intensity-modulated radiation therapy for photons (IMRT). Compu-
tational time efficiency becomes even more critical in the optimization of
proton beam directions due to the increased degrees of freedom provided
by different levels of energy and the existence of different scenarios for
robust IMPT plans. In this study, we consider direct-search methods to
address the IMPT BAO problem given their good performance in the
resolution of the IMRT BAO problem. In order to test the effectiveness
of reducing the number of polling directions at each iteration, both in
terms of computational time and quality of the solution, a strategy for
randomly selecting a reduced number of polling directions among a set
of evenly distributed directions across quadrants is proposed. This strat-
egy considers a set of probabilistic directions, where a descent direction
exists with a given probability, instead of deterministic directions that
guarantee at least one descent direction. For the prostate cancer case
used in the computational tests, the randomized strategy proposed shows
that considering as few as two polling directions improved significantly
the computational time while the resulting treatment plan is at least
as good as that obtained by the deterministic method. In future work,
this type of randomized approximation has to be extended and tested in
different cancer cases to validate the excellent performance found for a
single prostate cancer case.
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1 Introduction

The number of cancer cases will grow by 63.1% in 2040, according to the
World Health Organization [1]. More than half of all the cancer patients will
need some form of radiotherapy (RT), either with curative or palliative intent.
Technological advances and emergence of new treatment modalities are two of
the key factors that contribute to the continuous improvement of RT treatments
and make RT treatment planning an area of research constantly evolving.

The goal of RT is to eliminate the cancer cells by irradiating the tumor with
a prescribed dose while sparing, as much as possible, the surrounding organs.
Irradiation with photon beams is clearly mainstream in RT treatments but the
use of proton beams, in particular intensity-modulated proton therapy (IMPT),
presents itself as a very promising alternative due to the unique depth-dose char-
acteristics of protons: dose is slowly deposited along the beam path before reach-
ing a sharp peak, known as the Bragg peak, rapidly falling to almost zero beyond
the peak [2]. This characteristic allows for treatment plans where a better com-
promise can be reached between the irradiation of the tumor and the inevitable
radiation of adjacent structures, not possible with other treatment modalities.
Nevertheless, obtaining high-quality treatment plans taking the most possible
advantage of the unique characteristics of this treatment modality requires the
optimization of different parameters including the optimal selection of proton
beam directions.

In IMPT, the number of beams is typically lower than in intensity-modulated
radiation therapy for photons (IMRT), being the selection of the beam directions
even more critical. In addition to the smaller number of directions, the differen-
tiating characteristics between protons and photons makes the selection of the
irradiation directions in IMPT more complex. There are more degrees of freedom
due to the availability of different levels of energy, and it is necessary to consider
robustness due to the existence of different sources of uncertainty. Thus, obtain-
ing optimal beam irradiation directions in a clinically acceptable time becomes
even more important considering the existence of different possible scenarios
required for robust plans.

The beam angle optimization (BAO) problem, i.e., the optimal selection of
irradiation directions, is a very difficult problem because it is a highly non-convex
optimization problem [3]. Typically, the measure used to compare the quality of
different beam ensembles, and thus to guide the BAO search, is the optimal value
of the fluence map optimization (FMO) problem [4], the problem of finding the
optimal fluence intensities for each beam. Obtaining the optimal FMO solution
for a given beam angle ensemble is time costly mainly because it requires a
complete dose computation. Thus, the beam angle optimization problem can be
seen as the optimization of an expensive multi-modal black-box function which
results in a computationally time consuming procedure.

In previous works, direct-search methods proved to be suited for BAO in
IMRT [5–11]. Although direct-search approaches require few function evaluations
to converge, several attempts were made to further improve its computational
time performance, including considering FMO surrogates [5] or reducing the



search space [9]. Recently, different studies proposed direct-search approaches
that use few (random) directions in each iteration, with numerical benefits but
at the cost of guaranteed convergence to a local minimum [12,13]. Nevertheless,
the almost-sure probabilistic convergence proved for these approaches translates
into quality results in practice with faster computational time [13].

In this study, we propose a randomized direct-search method for BAO. Con-
sidering a prostate cancer case treated with IMPT, the proposed probabilistic
approach obtained quality solutions compared to the ones obtained by the de-
terministic counterpart, in a faster computational time. The paper is organized
as follows. In the next section we briefly describe deterministic and probabilistic
direct-search methods. IMPT for a prostate cancer case is presented in Sect. 3.
In the following section, the randomized direct-search proposed for BAO is de-
scribed. Computational tests are presented in Sect. 5 and conclusions are made
in the last section.

2 Direct-Search

Direct-search methods are a class of widely used derivative-free optimization
algorithms and, as such, only use function values never resorting to any type
of derivative. One of the most popular direct-search method is the Nelder-Mead
method [14]. That is the algorithm underlying fminsearch in MATLAB [15]. The
Nelder-Mead method is a simplex method that moves and manipulates the ver-
tices of a simplex in Rn, i.e., n + 1 affinely independent points. In this work,
we will focus on directional direct-search methods that use a set of directions,
instead of simplices, to move to novel points when a decrease (considering min-
imization) in the objective function is obtained.

2.1 Deterministic Direct-Search

Deterministic direct-search methods consider a set of directions that corre-
spond to a positive basis (or a positive spanning set). A positive basis for Rn is
a set of directions (non-null vectors) that span Rn with nonnegative coefficients,
but no proper subset does. A positive spanning set contains at least one positive
basis [16]. A positive basis for Rn has at least n + 1 directions (in this case is
called minimal positive basis) and at most 2n directions (in this case is called
maximal positive basis). The main motivation for using positive bases in direc-
tional direct-search methods is that at least one of its directions forms an acute
angle with the negative gradient vector (unused and/or unknown) which means
that this direction is a descent direction unless the current iterate is already a
stationary point [17].

Direct-search methods evaluate the function in the neighborhood of the cur-
rent iterate, xk, at points of the form xk + αkdi, where αk is the step along
directions di of a positive basis (or a positive spanning set) Dk. This procedure,
called polling, aims to decrease the function value at the current iterate and is
the core step of direct-search methods displayed in Algorithm 1. An optional



step, called search step, can also be performed. In this step, a finite number of
trial points Sk can be evaluated, not necessarily in the neighborhood of the cur-
rent iterate. When the search step fails to improve the function value, or Sk = ∅,
the polling around the current iterate takes place. When both search and poll
steps fail to decrease the function value, the step size, αk, is decreased – the most
common choice is to halve the step size as displayed in step 3 of Algorithm 1.
If one of the steps manage to find a point that improves the function value at
the current iterate then αk is increased or kept – the most common choice is to
keep the same step size as displayed in step 4 of Algorithm 1.

Algorithm 1 Direct-search algorithm

Initialization:

– Choose initial point x0 ∈ Rn.
– Choose initial step size α0 > 0.

For k = 0, 1, 2, . . .

1. Search step:
Evaluate f at a finite number of points, Sk.
If ∃ xk+1 ∈ Sk: f(xk+1) < f(xk), select xk+1 and go to step 4.
Otherwise, go to step 2.

2. Poll step:
Choose a set of poll directions, Dk.
If f(xk) ≤ f(x), ∀x ∈ {xk + αkdi : di ∈ Dk}, xk+1 = xk and go to step 3.
Otherwise, choose xk+1 = xk + αkdi : f(xk+1) < f(xk) and go to step 4.

3. αk+1 = 1
2
× αk.

4. αk+1 = αk.

Selection of the set of poll directions, Dk, is one of the distinguishing features
of a direct-search method. Commonly used minimal and maximal positive bases
are [I − e], with I being the identity matrix of dimension n and e = [1 . . . 1]T ,
and [I −I], respectively. When all directions of Dk are explored at each iteration,
polling is called complete and leads to the convergence of the gradient to zero for
the whole sequence of iterates [18]. Polling is called opportunistic when the first
poll direction leading to descent is taken, obtaining a subsequence of iterates
where the gradient is driven to zero [19]. In this case, the order of the poll
directions may influence the computational performance of the method [20].

2.2 Probabilistic Direct-Search

The main motivation for exploring probabilistic approaches for direct-search
is the need of evaluating the function on at least n+ 1 (minimal positive base)
polling points to ensure the convergence of deterministic methods. For a large
dimensional space (large n) and particularly for expensive (in terms of com-
putational time) functions to evaluate, convergence might be too slow. Recent



numerical experiments suggested that polling directions randomly generated not
necessarily fulfilling the positive spanning property compare favorable to the tra-
ditional use of positive bases (or positive spanning sets), particularly if the num-
ber of directions is considerably less than n+ 1 (which can go down to two) [12].
Direct-search methods (Algorithm 1) were extended by assuming that the set
of polling directions Dk includes only a descent direction with a certain prob-
ability [13]. Nevertheless, that probabilistic approach enjoys almost-sure global
convergence (convergent with probability one) provided the polling directions
Dk are uniformly distributed on the unit ball [13]. Thus, Algorithm 1 remains
the same for probabilistic direct-search methods except Dk, in poll step, where
random directions uniformly distributed on the unit ball are considered without
restrictions on the number of directions (can be as low as one).

3 IMPT for a Prostate Case

The prostate case considered in this study is included in the matRad pack-
age [21], an open source RT treatment planning system written in MATLAB.
The rectum and the bladder are in the vicinity of the prostate and for that reason
are the organs-at-risk (OARs) included in the treatment planning optimization.
The tolerance doses considered for this two OARs are mean doses of 50 Gy.
The remaining normal tissue, called Body, is also included in the optimization
just to certify that dose is not accumulating elsewhere. The prescribed dose for
the planning target volume (PTV) - tumor plus a margin - is 68 Gy. Consid-
ering the appropriate options in matRad, as displayed in Figure 1, the fluence
optimization for IMPT can be formulated as a quadratic nonlinear model that
penalizes deviations from the prescribed/tolerated doses, implying that overdose
or underdose may be clinically accepted at reduced levels, but are decreasingly
acceptable for increased deviations from the prescribed/tolerated doses [22].

Two lateral parallel opposed beams are illustrated in Fig. 1 as they corre-
spond to the most commonly used beam angle configuration for prostate proton
therapy. For being widely used in clinical practice for prostate IMPT, this two-
beam ensemble will be used as benchmark in our computational tests.

4 Randomized Direct-Search for BAO

IMPT BAO is a very challenging optimization problem that considers the
determination of how many and which irradiation directions (angles) should be
used in the treatment. For prostate cancer cases, appropriate beam selection
is even more critical as proton therapy typically uses only a couple of beams.
For that reason, optimal two-beam ensembles are aimed for the prostate case in
study. The couch, where the patient lies during treatment, is also a degree of
freedom. Figure 2 displays the benchmark two-beam ensemble (in red), possible
coplanar beam directions (in black), when the couch is fixed at zero degrees, and
possible noncoplanar beam directions (in blue), when couch is allowed to rotate.



Fig. 1. IMPT for the prostate case from matRad package [21].

As highlighted before, BAO can be seen as the optimization of an expensive
multi-modal black-box function, f , where the gantry angles, θ, and the couch
angles, φ, for a two-beam ensemble are the input of f :

min f(θ1, θ2, φ1, φ2)

s.t. (θ1, θ2, φ1, φ2) ∈ R4.

Note that this problem would be simpler if only coplanar beam directions
were considered (φ1 = φ2 = 0) as the number of variables would be only two in
a smaller search space (R2). The objective function f(θ1, θ2, φ1, φ2) that mea-
sures the quality of the beam angle ensemble (θ1, θ2, φ1, φ2) is the optimal value
obtained by running the IMPT described in the previous section for each fixed
set of two-beam ensembles.

We have developed deterministic direct-search approaches for BAO that were
able to obtain high-quality treatment plans [5–11]. Although these approaches
imply a computational time that is compatible with the clinical practice, these
computational times are significant and can represent a drawback in some practi-
cal situations. The direct-search approaches for BAO we have developed consider
the maximal and minimal positive bases highlighted in Sect. 2.1, which for this
prostate case correspond to the directions (column-vetors) of the matrices

1 0 0 0 -1 0 0 0
0 1 0 0 0 -1 0 0
0 0 1 0 0 0 -1 0
0 0 0 1 0 0 0 -1

 and


1 0 0 0 -1
0 1 0 0 -1
0 0 1 0 -1
0 0 0 1 -1

 ,
respectively. One of the advantages of the directions of these positive bases is
that for an appropriate choice of the initial step-size (power of two) all iterates



Fig. 2. Coplanar beam directions are displayed in black while some of the possible
noncoplanar beam directions are displayed in blue. Benchmark 2-beam ensemble is
displayed in red.

will have integer values until the step-size becomes inferior to one, which is an
interesting feature for the problem at hand.

The probabilistic direct-search approach tailored for BAO has the exact same
algorithm (Algorithm 1) as the deterministic one except for the set of directions
Dk that drops the need to be a positive spanning set. Gratton et al. suggested
polling directions Dk that are uniformly distributed on the unit ball [13]. In-
stead of considering the l2−norm, that would loose the feature described in the
previous paragraph, we propose the use of the l1−norm and randomly selecting
directions uniformly distributed by quadrants. Figure 3 illustrates the proposed
directions for two- and three-dimensional search spaces. Note that the number
of possible directions is 2n which is equal to 2n for a 2-dimensional search space
but will be increasingly larger than 2n for higher dimensional spaces.

For the prostate case considered in this study, the IMPT BAO search space
is four-dimensional with possible polling directions proposed corresponding to
the column-vectors of the following matrix

1 1 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1
1 1 1 1 -1 -1 -1 -1 1 1 1 1 -1 -1 -1 -1
1 1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 1 -1 -1
1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1

 .
Considering the benchmark two-beam ensemble as starting solution and an ap-
propriate initial step-size, following any of these polling directions will always
give an iterate with integer values as desired. The maximum number of random
polling directions used at each iteration will, in theory, determine the pace of
the algorithm. As important as verifying the computational time performance
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Fig. 3. Poll directions, one for each quadrant, considered for two-dimensional – 3(a)
and three-dimensional – 3(b) problems.

of the proposed randomized approach is to perceive the quality of the solutions
obtained.

5 Computational Results

A personal computer with MATLAB R2016a version running an Intel i7-6700
processor @ 2.60 GHz was used for the computational tests. The prostate case
considered is included in the matRad package, that was used for IMPT fluence
optimization by selecting the appropriate options. IMPT BAO optimization was
performed considering both deterministic direct-search approaches (with maxi-
mal – 2n polling directions – and minimal – n + 1 polling directions) and ran-
domized direct-search approaches (with a maximum of one, two, n + 1, 2n, 3n
and 4n = 2n, polling directions randomly chosen at each iteration). Opportunis-
tic polling was considered without performing search step, i.e., Sk = ∅. Results
obtained were compared with the two-beam benchmark ensemble. The goal of
including deterministic direct-search approaches in the computational tests is to
further benchmark the results obtained by randomized approaches as results ob-
tained by deterministic methods have already proved to be of high-quality [10].
The purpose of allowing an increased maximum number of polling directions at
each iteration in randomized approaches is twofold. First, to acknowledge if more
polling directions will make a difference in the quality of the solutions obtained,
regardless of the computational time. Second, when considering more than 2n
of the possible poll directions defined in Sect. 2.2, we always end up with a pos-
itive spanning set. Thus, in this case, we have a set of polling directions that is
deterministically descent, i.e., there is at least one direction that is guaranteed
to form an acute angle with the negative gradient vector, instead of being prob-
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Fig. 4. Optimal FMO obtained by the different approaches – 4(a) and the correspond-
ing computational times in seconds – 4(b).

abilistically descent which is the case when we randomly consider at most 2n
polling directions.

As BAO is always performed resorting to the optimal FMO value, this is a
natural measure to compare the quality of the solutions obtained by the different
approaches. The optimal FMO value of the benchmark beam angle ensemble is
5114.82 while for the solutions of deterministic noncoplanar BAO solutions con-
sidering the maximal and the minimal positive basis are 2662.58 and 2753.35,
respectively. These solutions manage to improve 48% and 46% the optimal FMO
of the benchmark beam angle ensemble. The randomized approaches obtain a
different solution each time the algorithm is run. For that reason, each random-
ized approach was run twenty times. The median (best) optimal FMO value
of randomized noncoplanar BAO solutions, considering 4n, 3n, 2n, n + 1, 2
and 1 directions each iteration are 2808.52 (2480.31), 2826.79 (2503.8), 2834.77
(2503.8), 2832.83 (2505.52), 2985.26 (2547.94) and 2989.08 (2744.06), respec-
tively. Figure 4 summarizes the performance of the different approaches both in
terms of quality of solutions, as measured by the optimal FMO value, as in terms
of computational times (in seconds). All BAO solutions clearly outperform the
benchmark solution in terms of optimal FMO value, being deterministic BAO
solutions slightly better than average randomized BAO solutions. It is interesting
to see that randomized BAO solutions show no benefits from the possible inclu-
sion of more poll directions while considering few random directions only present
a small degradation of average results, that for 2 polling directions manage to
obtain similar best results. In terms of computational times, the reduction of the
maximum number of polling directions shows great benefits, with decreases to
one third or half of the computational time when considering a maximum of 2
random directions compared to deterministic 2n or n+1 directions, respectively.

Although BAO solutions considerably improved the optimal FMO value of
the benchmark solution, a set of other metrics is typically used in clinical practice
to assess the quality of a treatment plan. A graphical instrument that gathers
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procedure with a deterministic maximal positive basis and a probabilistic selection of
at most 2 poll directions at each iteration.

most of these metrics is the dose-volume histogram (DVH). The DVH displays
the fraction of a structure’s volume that receives at least a given dose. Ideally,
the DVH line for the PTV should be at 100% volume until the prescribed dose
is reached and then immediately fall to 0%, while for OARs the DVH line would
ideally fall immediately to zero at 0% of the OAR volume meaning that no
dose was received. Figure 5 displays the DVH results for the benchmark 2-beam
ensemble, for the BAO solution obtained by the deterministic approach with
2n directions (the best deterministic approach in terms of optimal FMO value)
and by an average BAO solution of the probabilistic approach with 2 directions
(the solution with best trade-off between optimal FMO value and computational
times). By simple inspection of the DVH curves, we can verify that tumor cov-
erage is similar for both BAO solutions that clearly outperform the benchmark
solution in this important feature. In terms of organ sparing, benchmark solution
obtained the best results. Interestingly, while rectum sparing is similar for both
BAO solutions, the deterministic approach with 2n directions is outperformed
by the probabilistic approach with 2 directions in terms of bladder sparing.

Figure 6 displays the different two-beam ensembles whose DVHs were com-
pared in Fig. 5. Although the polling directions followed are different as well as
the maximum number of directions allowed in each iteration, it is interesting
to acknowledge that the solutions obtained by deterministic and randomized
methods are spatially close, which may indicate these regions as appropriate to
irradiate this patient.



Fig. 6. Benchmark 2-beam ensemble is displayed in red while 2-beam ensembles ob-
tained by the BAO procedure considering a deterministic maximal positive basis and
a probabilistic selection of at most 2 poll directions in each iteration are displayed in
blue and green, respectively.

6 Conclusions

In clinical practice, the number and directions of beams in an IMPT treat-
ment plan are manually selected based on prior trial-and-error experience. How-
ever, the optimal selection of beam irradiation directions can deeply impact the
quality of dose distributions. On one hand, the number of beams considered in
IMPT is lower than in IMRT, typically 2–3 beams and rarely more than 4–5,
which makes the optimal selection of beam irradiation directions more decisive.
On the other hand, mainly because of high dose gradients in proton therapy,
uncertainty due to anatomical variations but also other uncertainty factors spe-
cific of proton therapy, need to be addressed through robustness embedded in
the optimization loop, including the optimal selection of beams. Thus, in proton
therapy, decision on best beam ensembles cannot be based on dosimetric criteria
alone, but must also take into consideration different sources of uncertainty. Nev-
ertheless, assuming that robustness can be mostly handled by the FMO problem,
strategies successfully developed for IMRT can be tested for IMPT.

In addition to the need for robustness, computational time becomes even
more important in the optimization of irradiation directions by proton beams
due to an increased number of degrees of freedom (e.g., different energy levels). In
this study, we consider direct-search methods to address the IMPT BAO problem
given their good performance in the resolution of the IMRT BAO problem.
In order to test the effectiveness (both in terms of computational time and
quality of solution) of reducing the number of polling directions at each iteration,
moving from a set of deterministic directions (that guarantee at least one descent
direction) to a set of probabilistic directions (where a descent direction exists
with a given probability), we propose a strategy of random choice of polling
directions evenly distributed across quadrants.



The proposed randomized strategy shows, for a prostate cancer case, that
considering few polling directions (e.g., two) improved significantly the computa-
tional time at the cost of slightly decreasing the quality of the solution obtained.
This is one of the differences from recent works on probabilistic descent that
reported improved numerical behavior both in terms of computational times as
well as the quality of the solution obtained when only two polling directions
are considered. Nevertheless, although the optimal FMO value using only two
polling directions was not the overall best, the resulting treatment plan is at
least as good as that obtained by the deterministic method.

In future work, this type of randomized approximation has to be tested in
more cases to validate the excellent performance found only for one prostate
cancer case. Furthermore, different cancer sites where more beams are used,
e.g. skull base cancer, have also to be tested to validate these approaches for
optimization problems in higher dimensions. Inclusion of robustness must also
be fully incorporated which was not the case in this preliminary study. Finally,
different strategies for randomly selecting polling directions must be tested as
well, as the success of this approach is closely linked to this choice.
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