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Abstract: Cherries have largely been investigated due to their high content in phenolics in order
to fully explore their health-promoting properties. Therefore, this work aimed to assess, for the
first time, the anti-inflammatory potential of phenolic-targeted fractions of the Saco cherry, using
RAW 264.7 macrophages stimulated with lipopolysaccharide. Additionally, the cytotoxic effects
on gastric adenocarcinoma (AGS), neuroblastoma (SH-SY5Y) and normal human dermal fibroblast
(NHDF) cells were evaluated, as well as the ability to protect these cellular models against induced
oxidative stress. The obtained data revealed that cherry fractions can interfere with cellular nitric
oxide (NO) levels by capturing NO radicals and decreasing inducible nitric oxide synthase and
cyclooxygenase-2 expression. Furthermore, it was observed that all cherry fractions exhibited dose-
dependent cytotoxicity against AGS cells, presenting cytotoxic selectivity for these cancer cells when
compared to SH-SY5Y and NHDF cells. Regarding their capacity to protect cancer cells against
oxidative injury, in most assays, the total cherry extract was the most effective. Overall, this study
reinforces the idea that sweet cherries can be incorporated into new pharmaceutical products, smart
foods and nutraceuticals.

Keywords: anti-inflammatory; cytotoxicity; oxidative stress; phenolic compounds; sweet cherries

1. Introduction

Over the past few years, research related to multi-target active compounds, particularly
those extracted from natural products, has been widely explored, given their potential
for treatment and/or prevention of several disorders [1]. In fact, and in accordance with
the most recent reports, almost half of the drugs approved in the last 30 years are derived
from nature, mainly from medicinal plants [2]. Even so, and despite their use in traditional
medicine, there is still a lack of knowledge about the full biological potential, medicinal
value and chemical profile of most natural products.

The genus Prunus is distributed worldwide, and includes approximately 430 species;
among such species, Prunus avium, especially their fruits, known as sweet cherries, have
been a target of exhaustive studies [3–8]. Since ancient times, their vegetal parts have
been used in traditional medicine as diuretics, sedatives, draining and anti-inflammatory
agents [9,10]. Supported by scientific evidence, their consumption and economic value are
rising worldwide, mostly due to their potential therapeutic properties [11]. These are closely
linked to their high content of phenolic compounds, which have already showed potential
to counteract oxidative stress and inflammatory conditions [5,9,11–15]. Taking into account
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that inflammation is considered to be a mechanism of protection against infection or injury,
the overexpression of pro-inflammatory enzymes, together with an unbalanced production
of free radicals and reactive species, such as nitric oxide (•NO) and hydrogen peroxide
(H2O2), induce cell damage and apoptosis, contributing to the development of many
chronic inflammatory disorders (e.g., diabetes, obesity and rheumatoid arthritis) [16,17].

Nowadays, it is already accepted that the daily ingestion of phenolic-rich sources is
an effective approach to suppress these events, given their capacity to act as antioxidant
species, modulate arachidonic acid metabolism (e.g., cyclooxygenase (COX), lipoxyge-
nases and phospholipase A2), interact with pro-inflammatory nuclear factor κB, decrease
the expression of inducible nitric oxide synthase (iNOS) and, thus, promote a healthy
state [18–22].

Bearing these facts in mind and considering previous studies from our research group,
which showed that sweet cherry phenolics possess notable antioxidant and α-glucosidase
inhibitory effects and the capacity to interfere with human colorectal adenocarcinoma and
hepatic cells growth [4,5], we considered it relevant to study, for the first time, the effects
of these active metabolites on •NO levels in LPS-stimulated RAW 264.7 macrophages.
For this purpose, we prepared three enriched fractions in phenolics extracted from sweet
cherries (cv. Saco): one rich in coloured phenolics (coloured fraction), another one rich
in non-coloured phenolics (non-coloured fraction) and a third one rich in both coloured
and non-coloured phenolics (total extract). Additionally, the cytotoxic potential of each
fraction against two human cancer cell lines, namely gastric adenocarcinoma (AGS) and
neuroblastoma (SH-SY5Y) and the possible mechanisms of action involved were also
investigated, as well as their protective effects after exposure to tert-butyl hydroperoxide
(t-BHP), H2O2, and glutamate. For comparative purposes, we also tested the effects of each
fraction on the viability of normal human dermal fibroblast (NHDF) cells.

2. Results and Discussion
2.1. Anti-Inflammatory Activity

Inflammation is a physiological response of the human body that aims to elimi-
nate, neutralize and/or destroy stimuli resulting from microbial infection or tissue in-
jury [18]. However, when it occurs exaggeratedly, it may become dangerous for host tissues,
and may be a precursor of many disorders, including cancer and neurological patholo-
gies [23,24]. In this context, pro-inflammatory COX enzymes convert arachidonic acid
into prostaglandins, and higher amounts of tumour necrosis factor (TNF)-a, interleukin
(IL)-6 and •NO, which are originated from oxygen and L-arginine by inducible nitric oxide
synthase (iNOS) [18,25,26]. Furthermore, several pieces of research have been conducted
into the effective compounds that can inhibit iNOS, COX-2 and the related pathways,
with or without low side effects, in order to prevent the occurrence of chronic disor-
ders. Knowing that many phenolics had already shown to have promising therapeutic
applications [12,24,27–29], we decided to evaluate the anti-inflammatory potential of the
phenolic-targeted fractions from sweet cherries.

2.1.1. Effect of Sweet Cherry Fractions on RAW 264.7 Macrophage Viability

In order to exclude the possibility that the cytotoxicity of phenolic-targeted fractions
might contribute to their anti-inflammatory effects on RAW 264.7 cells, preliminary exper-
iments were conducted to assess the range of concentrations for which the exposure to
each fraction did not significantly affect cell viability (Figure 1A). Through MTT and LDH
leakage assays, it was possible to see that concentrations ranging from 50 to 800 µg/mL
did not affect cell viability and, hence, these were chosen for the subsequent experiments.
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Figure 1. (A) Effect of sweet cherry fractions on RAW 264.7 macrophages, evaluated by 3-(4,5-dime-
thylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) reduction and lactate dehydrogenase 
(LDH) leakage assays. (B) Effect on nitric oxide levels of cells pre-treated for 2 h with cherry fractions 
and cherry extract, followed by 22 h co-treatment with 1 µg/mL of lipopolysaccharide (LPS). (C) 
Effect of cherry fractions and cherry extract on LPS-induced iNOS mRNA and protein. The double 
band at ~130–135 kDa was used to quantify the relative protein expression via Western blot. (D) 
Effect of cherry fractions and cherry extract on LPS-induced COX-2 mRNA expression. β-actin was 
used as an internal control for both Western blot and qPCR analysis. Results are expressed as mean 
± SEM of, at least, six independent experiments, performed in triplicate. Statistical differences are 
shown against LPS-treated controls. * p < 0.05, ** p < 0.01 and # p < 0.0001. 

2.1.2. Effect of Sweet Cherry Fractions on ●NO Levels in Cell Culture Medium 
Considering the previously selected concentrations, the possible capacity of each 

fraction to initiate an immune response when in the presence of invaders by decreasing 
●NO concentrations in the culture medium of LPS-challenged macrophages was evaluated 
(measured as nitrite formation). The bacterial LPS was used to induce inflammation in 
these cells and, consequently, to promote the formation of several inflammatory media-
tors, including ●NO and COX-2. Therefore, after 22 h of concomitant exposure to LPS and 
each fraction from sweet cherries, it was possible to observe a significant concentration-
dependent reduction of ●NO levels, suggesting the presence of anti-inflammatory effects 
(Figure 1B). Statistical differences were found between fractions. The total extract was the 
most effective at scavenging ●NO (IC50 = 176.29 ± 1.39 µg/mL), followed by the coloured 

Figure 1. (A) Effect of sweet cherry fractions on RAW 264.7 macrophages, evaluated by 3-(4,5-
dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) reduction and lactate dehydrogenase
(LDH) leakage assays. (B) Effect on nitric oxide levels of cells pre-treated for 2 h with cherry fractions
and cherry extract, followed by 22 h co-treatment with 1 µg/mL of lipopolysaccharide (LPS). (C) Effect
of cherry fractions and cherry extract on LPS-induced iNOS mRNA and protein. The double band
at ~130–135 kDa was used to quantify the relative protein expression via Western blot. (D) Effect of
cherry fractions and cherry extract on LPS-induced COX-2 mRNA expression. β-actin was used as an
internal control for both Western blot and qPCR analysis. Results are expressed as mean ± SEM of, at
least, six independent experiments, performed in triplicate. Statistical differences are shown against
LPS-treated controls. * p < 0.05, ** p < 0.01 and # p < 0.0001.
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2.1.2. Effect of Sweet Cherry Fractions on •NO Levels in Cell Culture Medium

Considering the previously selected concentrations, the possible capacity of each
fraction to initiate an immune response when in the presence of invaders by decreasing
•NO concentrations in the culture medium of LPS-challenged macrophages was evaluated
(measured as nitrite formation). The bacterial LPS was used to induce inflammation in
these cells and, consequently, to promote the formation of several inflammatory mediators,
including •NO and COX-2. Therefore, after 22 h of concomitant exposure to LPS and
each fraction from sweet cherries, it was possible to observe a significant concentration-
dependent reduction of •NO levels, suggesting the presence of anti-inflammatory effects
(Figure 1B). Statistical differences were found between fractions. The total extract was
the most effective at scavenging •NO (IC50 = 176.29 ± 1.39 µg/mL), followed by the
coloured and non-coloured fractions (IC50 values of 338.31± 1.52 and 367.93± 2.10 µg/mL,
respectively). All of them were more effective than the positive control, dexamethasone
(IC50 = 593.64 ± 2.37 µg/mL).

The obtained data are in agreement with other studies focused on the potential of
phenolic-rich fractions to reduce •NO levels in culture medium [4,14,26,30]. Furthermore,
it was also possible to verify that the combination of coloured and non-coloured phenolic
compounds in total extract acts synergistically to enhance the anti-inflammatory poten-
tial. Among the phenolics present in cherries, quercetin, ρ-coumaric and ferulic acids (at
20 µM), quercetin and kaempferol (at 100 µM) and cyanidin 3-O-rutinoside (at 33 µM)
already showed the potential to scavenge the •NO produced by LPS-stimulated RAW
264.7 cells [27–29,31]. In order to understand if the obtained results can be associated with
the capacity of phenolic-targeted fractions to modulate iNOS and/or COX-2, and/or their
antioxidant capacity to scavenge •NO, specific studies were conducted, and the results are
presented in the following sections (Sections 2.1.3 and 2.1.4, respectively).

2.1.3. Effect of Sweet Cherry Fractions on LPS-Induced iNOS and COX-2 Expression

Therefore, to expand on the results, and knowing that iNOS and COX-2 are two
critical enzymes that exacerbate inflammation, both being the main cells responsible
for synthesizing NO and prostaglandins, respectively, we decided to check the capac-
ity of phenolic-target fractions to modulate their expression using Western blot analysis
and qPCR. For that, we used protein extracts from cells treated with cherry fractions at
200 µg/mL (coloured fraction) and 400 µg/mL (total extract and non-coloured fraction),
which corresponded approximately to almost half of the •NO inhibition. As observed in
Figure 1C,D, the incubation of RAW cells under LPS seems to enhance COX-2 and iNOS
mRNA expression when compared to untreated cells (negative control). In addition, the
treatment with phenolic-target fractions slightly decreases both mRNA expression levels
when compared to cells only exposed to LPS alone. Overall, the total extract and coloured
fraction seemed to be the most effective at decreasing iNOS expression, while, in COX-2, it
was the coloured and non-coloured fractions. Although no statistically significant results
were observed in the Western blot assay, significant data were obtained in the qPCR as-
say that assessed the total extract and coloured fraction for iNOS, and the coloured and
non-coloured fractions for COX-2. Similar differences between RNA expression though
qPCR and protein detection via Western blot analysis have been reported in other works
that have employed LPS as a pro-inflammatory factor. The vestigial increments observed
in COX-2 mRNA expression after total extract treatment are considered to be predictable
and related to its role of mediating prostaglandin synthesis, which has been verified in
the early stages of inflammation [30,32,33]. Additionally, and given the obtained data, it is
expectable that this modulation occurs in a concentration-dependent manner and becomes
more expressive over time.

The anti-inflammatory effects of sweet cherries are known. For example, Jacob and
colleagues [34] already reported that the daily consumption of 280 g of cherries by healthy
women can lower plasma C-reactive protein and NO concentrations, 3 h after intake.
Additionally, Delgado and collaborators [35] also mentioned the capacity of sweet cherry
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fruits to down-regulate the levels of IL-1β and TNF-α pro-inflammatory cytokines and
increase IL-4 and IL-2 anti-inflammatory cytokines in rats that consumed 141 g fresh
cherries for 10 days.

The anti-inflammatory capacity shown by these fruits is attributed to the presence
of anthocyanins. In fact, the anthocyanins extracted from cherries already showed a
stronger ability to inhibit COX-2 at a concentration of 125 µg/mL (47.4% of inhibition) than
ibuprofen (39.8%) and naproxen (41.3%) [36]. This modulation is due to the capacity of
phenolics to down-regulate nuclear factor-kappa B (NF-κB), affecting the biosynthesis of
iNOS and COX-2, and consequently reducing the formation of NO and prostaglandins,
respectively, and suppressing mitogen-activated protein kinases (MAPKs) and JNK1/
phosphorylation [37,38]. Besides the anthocyanins, other phenolics present in cherries
also showed the ability to interfere with inflammation-related pathways and reduce pro-
inflammatory markers, including hydroxybenzoic acids (25 µM), caffeic acid (10 µM),
ρ-coumaric acid (50 µM) and quercetin (100 µM) [27,29,39–41].

2.1.4. •NO Scavenging Activity

Taking into consideration the in vitro results obtained with RAW 264.7 macrophage
cells, we decided to assess if a process of direct •NO scavenging occurs at the same time,
contributing also to the diminishment of the •NO levels in the culture medium. For
this, a cell-free assay based on the photolytic decomposition of sodium nitroprusside
was performed, using the same concentrations studied in cells. All the targeted fractions
displayed significant scavenging activity in a concentration-dependent manner. The total
extract and the coloured fractions were the most active, exhibiting NO reductions of around
26% at the highest concentration tested (800 µg/mL) (IC50 values of 156.41 ± 0.96 and
167.29 ± 0.96 µg/mL, respectively) (Figure 2).
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Figure 2. Antioxidant activity of sweet cherry fractions against nitric oxide radicals (•NO) in the
cell-free assay. Data represent the mean ± SEM of three independent experiments, performed in
triplicate (# p < 0.001 compared to the respective control).

In fact, it is well known that the structure of phenolics (and especially the catechol,
pyrogallol and methoxy groups) gives them the capacity to transfer hydrogen atoms to
radical species and, in this way, diminish their levels [5]. Moreover, the obtained results
offer further support for the influence of the interaction of non-coloured phenolics with
anthocyanins in the biological potential of sweet cherries. Overall, the results obtained
suggest that the decrease in cellular •NO levels is mainly due to the scavenger capacity of
the extracts to scavenge •NO, and less because of their capacity to decrease the expression
of iNOS and COX-2.

2.2. Effect of Sweet Cherry Fractions on the Viability of Human Cancer Cells

AGS and SH-SY5Y cell lines were selected given that they are largely used as models
of cellular response to xenobiotics and dopaminergic cells, respectively [42,43]. In this
study, five different concentrations of each fraction (50, 100, 200, 400 and 800 µg/mL) were
tested. The MTT assay demonstrated that AGS cells were more sensitive than SH-SY5Y
and NHDF cells. In fact, there were verifiably significant decreases in cells viability, in a
dose-dependent manner, when AGS cells were incubated with different concentrations of
phenolic-targeted fractions from sweet cherries (Figure 3).
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Figure 3. Effects of sweet cherry phenolic-targeted fractions on cellular viability of (A) NHDF, (B) AGS
and (C) SH-SYH5 cells, assessed through 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bro-
mide (MTT) reduction and lactate dehydrogenase (LDH) leakage assays. Cells were treated with
each fraction for 24 h. Values show mean ± SEM of six independent assays performed in triplicate
compared to the respective control (* p < 0.05, ** p < 0.01 and # p < 0.0001).

The coloured fraction was the most effective at inducing DNA damage and cell death
in AGS cells, revealing an IC50 of 130.39 ± 1.73 µg/mL. On the other hand, no changes
were verified with SH-S5Y5 nor NHDF cells, which supports the cytotoxic selectivity of
the fractions for AGS cells (Figure 3). Moreover, and as expected, the most notorious LDH
response was also obtained in the highest tested concentrations of the coloured fraction,
i.e., 200, 400 and 800 µg/mL, showing values of 112.77, 126.89 and 163.05%, respectively
(Figure 3). Since MTT reduction results are more expressive than those of LDH in culture
medium, it was also possible to conclude that mitochondrial activity losses happened
before the membrane was damaged and, therefore, that the necrotic process only occurs in
the highest concentrations tested (400 and 800 µg/mL). This evidence is in agreement with
other previous studies [5,43].

Significantly, the obtained data are directly linked to the capacity of phenolics to
interact with the different cancer-related pathways, for example, by arresting cell cycles,
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removing pre-carcinogen agents, regulating metastasis proteins and inducing apoptosis.
Additionally, phenolics can also reduce oxidative stress and stimulate DNA repair and, thus,
block malignant transformation by promoting cellular differentiation and, consequently,
inhibit the development and/or progression of the tumour. These abilities are strongly
related to the chemical structure of these compounds, pointing to the carboxyl, hydroxyl
and methoxy groups, which promote antioxidant and also pro-oxidant behaviours and
anti-inflammatory actions, which in turn, increase their cytotoxicity effects on cancer cells.

In this work, the anticancer bioactivity of cherries is predominantly correlated with
anthocyanin content, which is in accordance with previous studies [5,44,45]. In fact, the
existence of multiple hydroxyl groups on their B ring enhances their biological potential.
In agreement with this observation, it was already reported that the phenolic-enriched frac-
tions obtained from sweet cherries, underlining the anthocyanin-rich fraction, can efficiently
interfere with human colon carcinoma Caco-2 cells, exhibiting an IC50 of 667.84 µg/mL and
a correlation between this activity and an anthocyanin content of 0.6674 [5]. Even so, other
non-coloured phenolics present in cherries, e.g., hydroxycinnamic acids, and quercetin
derivatives were also revealed to have anti-cancer effects on several human cancer cells,
with this activity related to their antioxidative effects [46–48].

Effect of Sweet Cherry Fractions on the Morphology of AGS Cells

Taking into account the obtained results, and in order to deepen the previous results,
morphological and nuclear evaluation assays were also performed.

The observation of the cells after treatment under a microscope revealed high amounts
of debris (Figure 4), mainly in the highest concentrations (800 µg/mL) (Figure 4H–J), which
can be considered to be further evidence regarding the toxicity effects of phenolic-targeted
fractions on cancer cells.
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Figure 4. Effects of sweet cherry phenolic-targeted fractions on AGS cells morphology (control
vs. treatment after 24 h of incubation). (A) Corresponds to the control, (B,E,H) correspond to Saco
total extract, while (C,F,I) correspond to the coloured fraction and (D,G,J) correspond to the non-
coloured one, at concentrations of 200, 400 and 800 µg/mL, respectively. As expected, and considering
the data in the previous figure, an increase in debris was observed as the concentration of each
fraction increased.
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Furthermore, through nuclear staining, it was also possible to clearly observe the
formation of cytoplasmatic blebs, followed by cell structure losses, nucleus condensation
and vacuolization as the concentration of each fraction increased (Figure 5).
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Figure 5. Effects of sweet cherry phenolic-targeted fractions on AGS cell nuclei, visualized with
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(A) Corresponds to the control, (B,E,H) correspond to Saco total extract, while (C,F,I) correspond to
the coloured fraction and (D,G,J) correspond to the non-coloured one, at concentrations of 200, 400
and 800 µg/mL, respectively.

These events are compatible with some types of programmed cell death. As expected,
among fractions and in accordance with the obtained values of the viability assays (Figure 3),
the most notorious effects were observed for the coloured fraction, where it is possible
to see a necrosis event at the highest concentration (800 µg/mL), which is characterized
by mitochondrial and cellular swelling following plasma membrane disruption. On the
other hand, at 200 µg/mL, we only observed morphological changes, including condensed
chromatin and fragmented nuclei, which are characteristics of apoptosis.

Similar results were already reported for other phenolic-rich fractions [5,26,43,49,50].
Particularly, Gonçalves and collaborators [5] revealed that 800 µg/mL of anthocyanin-
rich fractions from sweet cherries causes necrosis in Caco-2 cells after 24 h of exposure.
Focusing on individual phenolics, Shang and colleagues [51] reported that quercetin at
160 µM causes apoptosis in AGS cells. Furthermore, 100 µM cyanidin 3-O-rutinoside
and 50 µM of catechin derivatives showed the potential to induce apoptosis in human
adenocarcinoma HepG2 cells and breast cancer MDA-MB-231 cells, after 24 and 48 h of
exposure, respectively [51,52].
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2.3. Cytoprotective Effects

The final step of this work was to evaluate the capacity of phenolic-targeted frac-
tions obtained from sweet cherries to protect AGS and SH-SY5Y cells against induced
oxidative stress. As is known, oxidative stress plays a crucial role in cancer development
and progression and, hence, its relief will interfere with the cancer tumour growth and
metastasis. Therefore, it is not surprising that phenolics have been intensively studied in
order to discover their full biological potential. Once again, the cellular viability of AGS
and SH-SY5Y cells was determined via MTT and LDH leakage assays. The total protection
was compared to stressed control cells. In a general way, the obtained outcome is very
promising and revealed that phenolics can protect against oxidative stress and apoptosis.

Firstly, the capacity of phenolics to protect AGS cells after exposure to t-BHP and H2O2
was assessed. In most assays, the total protection was accomplished in the lowest tested
concentrations (50 and 100 µg/mL). Regarding the protection offered by phenolics against
t-BHP (Figure 6A), we observed that the non-coloured fraction was the most effective,
showing increments in cell viability rates of 3.42% at 50 µg/mL. On the other hand, neither
the coloured fraction concentration nor the concentrations of 200 and 800 µg/mL of the
total extract showed the capacity to protect these cells against t-BHP-induced oxidative
stress. Even so, dose-dependent protection was observed in AGS cells against the oxidative
damage induced by 600 µM H2O2 (Figure 6B). Amongst the fractions, the coloured fraction
showed the highest protection, revealing increments of viability between 27.10 and 67.17%,
followed by the total extract and non-coloured fraction, which can be considered to be
further evidence of the strong antioxidant effects shown by anthocyanins. Regarding the in-
sult with different concentrations of H2O2 for 24 h (Figure 6C), none of the fractions nor the
total extract showed the capacity to protect these cells against the induced oxidative stress.

In SH-S5Y5, all targeted fractions showed effectiveness at protecting these cells against
the neurotoxicity induced by glutamate in a dose-dependent manner. The total protection
was again achieved in the lowest tested concentrations (50 and 100 µg/mL). Unsurprisingly,
the total extract was the most promising one, promoting rises in cell viability ranging from
0.34 and 18.44%, which suggests that the combination of different phenolics is an added
value in intensifying the health benefits (Figure 7A).

Regarding the protective effects offered by phenolics against the induced oxidative
stress promoted by H2O2, the coloured fraction revealed pro-oxidant behaviour in the
highest tested concentrations (100–800 µg/mL). On the contrary, the non-coloured extract
in all concentrations and the total extract (≤400 µg/mL) showed the capacity to protect
these cells in a dose-dependent manner (Figure 7B). Furthermore, the phenolic-target
fractions also presented the potential to protect neuronal cells after exposure to t-BHP at
different concentrations and times (Figure 7C,D). In both experiments, the coloured fraction
was the most notorious for attenuating the t-BHP-induced cytotoxicity, followed by the
total extract and non-coloured fraction. The obtained results revealed that the capacity of
phenolics to protect against oxidative injury increases with the time of exposition, and also
with the concentration of the pro-oxidant agent.

Overall, the protection showed by phenolics is, in part, mediated by antioxidant mech-
anisms. Furthermore, the interactions occurring between different phenolic subclasses
also serve to increase their biological potential. Indeed, it was already documented that
phenolics can pass through the cellular membrane and, hence, scavenging the radicals
before them can cause damage in cells and promote apoptosis [5,12,43]. Regarding individ-
ual compounds, Vepsäläinen and collaborators [53] already reported that quercetin and
anthocyanin-rich extracts from berries (0.25 to 31 µg/mL) can significantly decrease reactive
oxygen species production on neuroblastoma cells (46% and 86%) in a dose-dependent
manner. Other phenolics, including phenolic acids, also showed the ability to attenuate ox-
idative stress in cancer cells [5,54–56]. Even so, it is also important to note that these effects
are strongly dependent on the time and concentration of the insulting agent. Furthermore,
it is also important to take into account that, in some situations, multiple substitutions
by hydroxyl groups in the structure of phenolics can result in pro-oxidant effects, which,
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in turn, serve to enhance cellular reactive species concentrations with the objective of
intensifying their cytotoxic levels and suppressing cancer cell growth [4,57–59]. Of course,
these pro-oxidant behaviours are also dependent on the concentrations used [60].
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Figure 6. Effects of sweet cherry phenolic-targeted fractions on cellular viability of AGS cells, assessed
through 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) reduction and lactate
dehydrogenase (LDH) leakage assays, after exposure to Saco fractions for 24 h, and then insulted
with (A) tert-butyl hydroperoxide (4 mM; 2 h) and (B) hydrogen peroxide (H2O2; 600 µM; 2 h).
(C) Additionally, and after treatment using the non-toxic concentration of 50 µg/mL of each fraction,
cells were also exposed to different concentrations of H2O2 (100, 200, 400, 600 and 1200 µM) for
24 h. Values show mean ± SEM of six independent assays performed in triplicate compared to the
respective negative control (* p < 0.05, ** p < 0.01 and # p < 0.0001).
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Figure 7. Effects of sweet cherry phenolic-targeted fractions on cellular viability of SH-SY5Y cells,
assessed through 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) reduction
and lactate dehydrogenase (LDH) leakage assays, after exposure to Saco fractions for 24 h and then
insulted with (A) glutamate (25 µM; 6 h) and (B) hydrogen peroxide (750 µM; 24 h). Additionally, and
after treatment using the non-toxic concentration of 50 µg/mL of each fraction for 6 and 24 h, cells
were insulted with tert-butyl hydroperoxide (t-BHP) for a further 12 and 24 h, at concentrations of
(C) 250 or (D) 100 µM, respectively. Values show mean ± SEM of six independent assays performed
in triplicate compared to the respective negative control (* p < 0.05, ** p < 0.01 and # p < 0.0001).

3. Materials and Methods
3.1. Reagents

All chemicals used were of an analytical grade and were used as received without
any further purification unless otherwise specified. N-(1-naphthyl)ethylenediamine di-
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hydrochloride, sulfanilamide and sodium nitroprusside dihydrate (SNP) were purchased
from Alfa Aesar (Karlsruhe, Germany). Dulbecco’s Modified Eagle Medium with Glu-
taMAX™ supplement (DMEM + GlutaMAX), iNOS primary antibody and anti-rabbit
HRP-conjugated secondary antibody were obtained from Invitrogen (Grand Island, NY,
USA). Foetal bovine serum, antibiotics (10,000 U/mL penicillin, 10,000 mg/mL strepto-
mycin), trypsin-ethylenediaminetetraacetic acid solution, 3-(4,5-dimethylthiazol-2-yl)-2,5-
diphenyltetrazolium bromide (MTT), dimethyl sulfoxide (DMSO), dexamethasone and
β-nicotinamide adenine dinucleotide (NADH) were from Sigma-Aldrich (St. Louis, MO,
USA). Water was deionized using a Milli-Q water purification system (Millipore Ibérica,
Madrid, Spain).

3.2. Samples

Approximately 1 kg of Saco sweet cherry fruits, grown in the Fundão region (Portugal),
was harvested by hand in June 2017, at the commercial maturity stage. Within 1 h of
harvest, samples were transported to the laboratory facilities at 0 ◦C. Then, their pits were
removed and separated from the pulp, which, in turn, was frozen with liquid nitrogen and
maintained at −80 ◦C until lyophilization. After lyophilization, the pulp was powdered
and divided into the three aliquots used for the preparation of the extracts.

3.3. Extract Preparation

The preparation of the cherry extracts was performed according to a previous
method [5]. Briefly, 1 g of powered cherries was extracted with 20 mL ethanol 70% for
2 h, under agitation at room temperature, and protected from light. Then, the obtained
homogenates were centrifuged at 2900× g for 10 min. After that time, the supernatant,
i.e., the solvent cherry extract, was collected and evaporated under reduced pressure at
30 ◦C. In order to obtain the fractions enriched in phenolic compounds, a solid-phase ex-
traction (SPE) procedure was performed using Sep-Pak C18 solid-phase extraction columns
(70 mL/10,000 mg; Macherey-Nagel, Düren, Germany). The resulting extract was dissolved
in 50 mL deionized water and placed in the SPE cartridge preconditioned with 20 mL ethyl
acetate, 20 mL ethanol and 20 mL 0.01 mol/L HCl. The loaded cartridge was again washed
with 3 mL 0.01 mol/L HCl. The fraction enriched with non-coloured phenolics (fraction I)
was eluted with 20 mL ethyl acetate, while the fraction with anthocyanins (fraction II) was
eluted with 40 mL ethanol containing 0.1% HCl. To obtain the combined extract (fraction
III), another SPE column was performed, being preconditioned as previously described,
then the extract was passed through the column and eluted with 40 mL ethanol containing
0.1% HCl. Next, each eluate was concentrated under reduced pressure, and the obtained
residues were dissolved in deionized water and lyophilized. Finally, they were stored in
silica at room temperature, and protected from light, until their use.

The phenolic profile of each fraction was already analysed via chromatographic tech-
niques. Among the phenolics, hydroxycinnamic acids were the main phenolic compounds
found in non-coloured fraction (99.7%) and total extract (69.8%), while cyanidin 3-O-
rutinoside was the predominant anthocyanin in the coloured fraction (81.5%) and total
extract (24.5%) [5].

3.4. Cell Models

AGS cells were acquired from Sigma-Aldrich (St. Louis, MO, USA), and NHDF cells
from the American Type Culture Collection (LGC Standards S.L.U., Barcelona, Spain).
SH-SY5Y and RAW cells were kindly provided by colleagues from CICS-UBI (Covilhã,
Portugal). AGS and SH-SY5Y cells were cultured in DMEM + GlutaMAX, while RAW and
NHDF cells were maintained with a DMEM and RPMI 1640 medium supplemented with
2 mM L-glutamine, 10 mM 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid and 1 mM
sodium pyruvate, respectively. All mediums were supplemented with 10% foetal bovine
serum and 1% penicillin/streptomycin, and maintained in a humidified atmosphere of 5%
CO2, at 37 ◦C.
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After a few passages, and in order to evaluate the cytotoxic and pro-apoptotic effects of
the cherry fractions on RAW 246.7 macrophages, AGS, SH-SY5Y and NHDF cells, they were
seeded in 96-well plates at a density of 2.5 × 104, 1.0 × 104, 3.0 × 104 and 1.0 × 104 cells
per mL, respectively. After 24 h, the medium was removed, and different concentrations of
cherry fractions (ranging from 50–800 µg/mL) dissolved in the medium containing 0.5%
(v/v) DMSO were added, and plates were incubated again for another 24 h [26,50].

To evaluate the cytoprotective effects of cherry fractions on cells, preliminary assays
were performed to determine the appropriate concentration and exposure time of each
oxidative stress inducer able to cause around 50% cell death (data not shown). Therefore,
in AGS cells, 24 h after the exposure with the fractions, the medium was removed, and
cells were exposed to t-BHP (4 mM; 2 h) or H2O2 (600 µM; 2 h). Additionally, and after
treatment using the non-toxic concentration of 50 µg/mL of each fraction, cells were also
exposed to different concentrations of H2O2 (100, 200, 400, 600 and 1200 µM) for 24 h. On
the other hand, SH-SY5Y cells were exposed to glutamate (25 µM; 6 h), H2O2 (750 µM;
24 h) or t-BHP (100 µM; 24 h) after 24 h of treatment with each fraction [26]. To deepen the
outcome, SH-SY5Y cells were also exposed to 250 µM t-BHP for 12 h, after 6 h of treatment
with each fraction.

All experiments were conducted in the cells’ logarithmic growth phase. Results are
expressed as percentage of the respective control and correspond to the mean ± standard
error of the mean (SEM) of, at least, six independent experiments performed in triplicate.

3.4.1. Membrane Integrity Assay

The release of the stable cytosolic enzyme lactate dehydrogenase (LDH) into the
medium is used as a marker for loss of membrane integrity, and it can be assessed spec-
trophotometrically at 340 nm (Bio-Rad Laboratories, Hercules, CA, USA) in a kinetic mode.
It is based on the conversion of pyruvate to lactate by LDH, using NADH as a cofactor [5].
Briefly, after each assay, 50 µL of culture medium was placed in 96-well plates and mixed
with NADH (252.84 mM) and pyruvate (14.99 mM). Both pyruvate and NADH solutions
were prepared in phosphate-buffered saline (PBS; pH 7.4). A decrease in absorbance is
directly related to the decrease in NADH levels. Untreated cells were used as a control.

3.4.2. MTT Reduction Assay

Cell viability was determined using the colorimetric 3-(4,5-dimethylthiazol-2-yl)-
2,5-diphenyltetrazolium bromide (MTT) assay. To accomplish this, at the end of each
experiment, the medium was removed and MTT (0.5 mg/mL dissolved in the appropriate
serum-free medium) was added and incubated at 37 ◦C for 4 h. Afterwards, MTT was
discarded, and the formazan crystals were solubilized using DMSO. The absorbance was
read at 570 nm using a microplate reader, the Bio-Rad Xmark spectrophotometer. Untreated
cells were used as a control.

3.5. Intracellular Polyphenol Staining and Fluorescence Microscopy

The morphological studies were based on previous work [50]. Briefly, AGS cells were
seeded at a density of 7.5 × 104 cells per mL, in coverslips placed in 24-multiwell plates.
After 24 h, the medium was discarded, and the adherent cells were treated with different
concentrations of each fraction (50–800 µg/mL) for another equal period of time. Next,
the medium was removed, and cells were carefully washed with PBS and then fixed in
coverslips with 4% of paraformaldehyde solution prepared in PBS, followed by 10 min of
incubation at room temperature. Then, the solution was rejected, and the fixed cells were
again repeatedly rinsed with PBS. Nuclear morphology was observed using 4,6-diamidino-
2-phenylindole (DAPI), added to the fixed cells at 1 µg/mL for 10 min at room temperature.
Finally, cells were washed twice with PBS and chromatin fluorescence was analysed using
a Zeiss AxioImager A1 fluorescence microscope. Digital images were generated with
AxioVision 4.8.2 software.
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3.6. Determination of •NO Levels in Culture Medium Interference

The nitrite accumulation in the culture medium was determined according to a method
described by Taciak and colleagues [61]. Cells were cultured at density of 15 × 104 cells
per mL in 96-well plates for 24 h at 37 ◦C and 5% CO2. Then, the medium was removed,
and cells were exposed to increasing concentrations of each fraction for 2 h. After that
period, cells were stimulated with 1 µg/mL LPS for a further 22 h. The nitrite conversion
was determined using a mixture composed of 75 µL of culture media mixed with an equal
volume of Griess reagent (1% sulphanilamide and 0.1% N-[naphth-1-yl]ethylenediamine
dihydrochloride in 2% H3PO4), after an incubation period of 10 min, in the dark, at room
temperature. The absorbance was then measured at 560 nm in a microplate reader (Bio-Rad
Laboratories, Hercules, USA). •NO levels were expressed as a percentage of the •NO in cells
exposed to LPS (positive control) and correspond to the mean ± SEM of six independent
experiments, performed in triplicate. Dexamethasone at equal concentrations of each tested
concentration was used as a positive control.

3.7. Detection of Inducible Nitric Oxide Synthase (iNOS) Expression

Western blot analysis was carried out with protein extracts obtained from RAW
264.7 cells based on the method reported by Pereira and colleagues [62], with some modifi-
cations. Briefly, RAW 264.7 cells were cultured in six-well plates at density of 50 × 104 for
24 h. Then, the medium was removed, and the cells were exposed to each fraction for 2 h,
followed by the addition of 1 µg/mL LPS for further 24 h. Afterwards, cells were washed
with PBS, scraped, and incubated on ice with ice-cold RIPA lysis buffer (150 mM NaCl,
0.5% sodium deoxycholate, 0.1% SDS, 1% Triton X-100, 50 mM Tris pH 8.0, 1 mM PMSF,
1 mM sodium orthovanadate and 40 µL/mL of complete EDTA-free protease inhibitor
cocktail) for 30 min. Then, cell debris were removed by microcentrifugation (10,000× g for
10 min). Total protein content was measured using a Pierce BCA Protein Assay Kit (Thermo
Fisher Scientific, Waltham, MA, USA) according to the manufacturer’s recommendations.
After quantification, 30 µg of total protein was mixed with a loading buffer containing 4%
β-mercaptoethanol, followed by denaturation for 5 min at 100 ◦C, and then loaded in 8%
or 12.5% SDS-PAGE. Proteins were subsequently electrically transferred onto polyvinyli-
dene difluoride membranes (Millipore, Merck, Milford, CT, USA), using a Trans-Blot® Cell
system (Bio-Rad, Hercules, CA, USA). Next, membranes were blocked with a solution
of 5% skimmed milk powder in Tris-buffered saline (TBS), for 1 h at room temperature,
and incubated overnight at 4 ◦C with primary antibody rabbit anti-iNOS (1:300). After,
membranes were washed at room temperature with TBS containing 0.1% of Tween and
incubated for 1 h at room temperature with the respective HRP-conjugated secondary
antibody (anti-rabbit 1:20,000). Then, membranes were washed, and antibody binding
was detected using the SuperSignal™ West Pico PLUS Chemiluminescent Substrate (Ther-
moFisher Scientific, Grand Island, NE, USA) according to the manufacturer’s instructions.
Images of blots were captured with the ChemiDoc MP Imaging system (Bio-Rad, Hercules,
CA, USA). Additionally, the expression of iNOS was normalized with β-actin (loading
control). Then, blots were incubated for 2 h at room temperature with mouse anti-β-actin
(1:20,000) before incubation for 1 h with HRP-conjugated goat anti-mouse secondary an-
tibody (1:40,000). Next, images were acquired, and protein bands were quantified using
the Image Lab software (Bio-Rad, Hercules, CA, USA). The results correspond to the mean
± SEM of, at least, four independent experiments.

3.8. iNOS and Cyclooxygenase (COX)-2 Gene Expression Analyses

The quantitative analysis regarding iNOS and COX-2 gene expression via qPCR
was conducted under similar conditions to those applied to perform the Western blot
assay. The cells were harvested and total cellular RNA was extracted using the NZY total
RNA Isolation kit (NZYTech, Lisboa, Portugal) according to the manufacturer’s instruc-
tions. For each RT-PCR reaction, the total RNA was loaded in a One-step NZYSpeedy
RT-qPCR Probe kit (NZYTech, Lisboa, Portugal) to carry out the synthesis of cDNA,
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and the PCR reaction was completed in a CFX Connect Real-Time PCR Detection Sys-
tem (BIO-RAD, Hercules, CA, USA). β-actin was employed as an internal control. The
oligonucleotide primers used were: 5′-GAGCGAGTTGTGGATTGTC-3′ (forward) and
5′-CTCCTTTGAGCCCTTTGT-3′ (reward) for iNOS; 5′-GGAGAGACTATCAAGATAGT-3′

(forward) and 5′-ATGGTCAGTAGACTTTTACA-3′ (reward) for COX-2; 5′-CTGTCCCTG-
TATGCCTCTG (forward) and 5′-ATGTCACGCACGATTTCC-3′ (reward) for β-actin. The
thermal cycling conditions were as follows: 20 min at 50 ◦C for cDNA synthesis, 2 min at
95 ◦C for retrotranscriptase inactivation, followed by 40 cycles of denaturation at 95 ◦C for
5 s and annealing/extension at 55 ◦C for 1 min. The fluorescence signal was detected at the
end of each cycle. The results were analysed with BIORAD CFX Manager 3.1 (BIO-RAD,
Hercules, CA, USA), and a melting curve was used to confirm the specificity of the products.
The expression levels of the target genes were normalized to the reference gene β-actin. At
least three independent experiments were performed and all reactions were completed in
duplicate to confirm reproducibility.

3.9. Determination of •NO Levels in Cell-Free System

The capacity of sweet cherry extracts to capture •NO was based on the work of
Gonçalves et al. [5]. Briefly, five different concentrations equal to the ones tested in cells
were dissolved in potassium phosphate buffer (100 mM, pH 7.4), and mixed with 100 µL
SNP (20 mM). The blank and control contained 100 µL phosphate buffer and 100 µL SNP.
Then, the plates were incubated at room temperature for 1 h, under light. Subsequently,
an equal volume of Griess reagent (1% sulfanilamide and 0.1% naphthylethylenediamine
in 2% H3PO4) was added to each well, and plates were incubated for 10 min in the dark
(blanks received 100 µL of H3PO4). After that time, the absorbance was recorded at
560 nm. The •NO scavenging activity was determined through the comparison of the
absorbances between the extracts and the control and corresponded to the mean ± SEM of
three independent experiments, performed in triplicate.

3.10. Statistical Analysis of Results

Statistical analysis was performed using GraphPad Prism Version 6.01 (San Diego,
CA, USA). A one-way ANOVA followed by Dunnett’s post hoc test (LDH and MTT assays)
were used to determine the statistical significance in comparison to the control. Values of
p < 0.05 were considered to be statistically significant.

4. Conclusions

Considering the current interest in cherry fruits given their high content of phenolic
compounds as functional foods, the obtained data revealed that phenolic-targeted fractions
from sweet cherries can exert anti-inflammatory and antiproliferative properties on RAW
macrophages and AGS cells, respectively, and also have the capacity to counteract oxidative
stress in cancer cells. Additionally, anthocyanins and non-coloured phenolics seem to act
synergistically, which may contribute to the health-promoting properties attributed to
sweet cherries. Altogether, this work supports their incorporation into pharmaceutical
products, nutraceuticals and dietary supplements, once phenolics can be considered to be
promising agents in the prevention and/or treatment of diseases mediated by inflammatory
mediators, reactive species and free radicals. This notwithstanding, to exclude the risk of
toxicity and demonstrate their safety, clinical trials should be conducted to explore the full
biological potential of sweet cherries and their safe dosage.
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