
����������
�������

Citation: Barbosa, C.; Ramalhosa, E.;

Vasconcelos, I.; Reis, M.;

Mendes-Ferreira, A. Machine

Learning Techniques Disclose the

Combined Effect of Fermentation

Conditions on Yeast Mixed-Culture

Dynamics and Wine Quality.

Microorganisms 2022, 10, 107.

https://doi.org/10.3390/

microorganisms10010107

Academic Editor: Matthias Sipiczki

Received: 29 November 2021

Accepted: 28 December 2021

Published: 5 January 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

microorganisms

Article

Machine Learning Techniques Disclose the Combined Effect of
Fermentation Conditions on Yeast Mixed-Culture Dynamics
and Wine Quality
Catarina Barbosa 1,2 , Elsa Ramalhosa 3 , Isabel Vasconcelos 4, Marco Reis 5 and Ana Mendes-Ferreira 2,6,*

1 CoLAB VINES&WINES—National Collaborative Laboratory for the Portuguese Wine Sector, Associação para
o Desenvolvimento da Viticultura Duriense (ADVID), Edifício Centro de Excelência da Vinha e do Vinho,
Régia Douro Park, 5000-033 Vila Real, Portugal; crbarbosa@utad.pt

2 BioISI—UTAD, Biosystems & Integrative Sciences Institute, WM&B—Laboratory of Wine Microbiology &
Biotechnology, Department of Biology and Environment, Universidade de Trás-os-Montes e Alto Douro,
5000-801 Vila Real, Portugal

3 Mountain Research Centre (CIMO), ESA—Polytechnic Institute of Bragança, Campus de Sta Apolónia,
5300-253 Bragança, Portugal; elsa@ipb.pt

4 CBQF/Centro de Biotecnologia e Química Fina, Escola Superior de Biotecnologia, Universidade Católica
Portuguesa, 4169-005 Porto, Portugal; ivasconcelos@porto.ucp.pt

5 Department of Chemical Engineering, University of Coimbra, CIEPQPF, Rua Sílvio Lima, Pólo II—Pinhal de
Marrocos, 3030-790 Coimbra, Portugal; marco@eq.uc.pt

6 CITAB—Centre for the Research and Technology of Agro-Environmental and Biological Sciences,
Universidade de Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal

* Correspondence: anamf@utad.pt

Abstract: The use of yeast starter cultures consisting of a blend of Saccharomyces cerevisiae and
non-Saccharomyces yeasts has increased in recent years as a mean to address consumers’ demands
for diversified wines. However, this strategy is currently limited by the lack of a comprehensive
knowledge regarding the factors that determine the balance between the yeast-yeast interactions
and their responses triggered in complex environments. Our previous studies demonstrated that
the strain Hanseniaspora guilliermondii UTAD222 has potential to be used as an adjunct of S. cerevisiae
in the wine industry due to its positive impact on the fruity and floral character of wines. To
rationalize the use of this yeast consortium, this study aims to understand the influence of production
factors such as sugar and nitrogen levels, fermentation temperature, and the level of co-inoculation of
H. guilliermondii UTAD222 in shaping fermentation and wine composition. For that purpose, a Central
Composite experimental Design was applied to investigate the combined effects of the four factors
on fermentation parameters and metabolites produced. The patterns of variation of the response
variables were analyzed using machine learning methods, to describe their clustered behavior and
model the evolution of each cluster depending on the experimental conditions. The innovative
data analysis methodology adopted goes beyond the traditional univariate approach, being able to
incorporate the modularity, heterogeneity, and hierarchy inherent to metabolic systems. In this line,
this study provides preliminary data and insights, enabling the development of innovative strategies
to increase the aromatic and fermentative potential of H. guilliermondii UTAD222 by modulating
temperature and the availability of nitrogen and/or sugars in the medium. Furthermore, the strategy
followed gathered knowledge to guide the rational development of mixed blends that can be used to
obtain a particular wine style, as a function of fermentation conditions.

Keywords: supervised and unsupervised machine learning; non-Saccharomyces yeasts; nitrogen;
sugar; temperature; aroma production; central composite design

1. Introduction

The use of starter cultures of active dry yeast of Saccharomyces cerevisiae is a common
practice in wine-producing regions, providing reliable and reproducible fermentations
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that circumvent vintage variability. However, there is a consumer perception that this
practice has led to a loss of wine flavor complexity and stylistic distinction. In this context,
several studies have assessed the contribution of natural non-Saccharomyces yeasts to the
final quality of wines [1–5], showing that these yeasts possess several interesting metabolic
properties and enzymatic activities that are less marked or even absent in S. cerevisiae and
that significantly contribute to the aromatic profile of wines [5–8]. For this reason, there
has been increasing effort devoted to the development of new starter cultures, based on
selected non-Saccharomyces yeasts, to be used as adjuncts of S. cerevisiae in grape juice
fermentations to enhance wine’s flavor and character [9–11]. Nevertheless, the success
of using these mixed starter cultures will be greatly dependent on grape juice composi-
tion and fermentation conditions, as they determine individual yeast growth, interactions
between the different strains involved and ultimately their contribution to the final com-
position of the wines. The effect of nitrogen availability on the growth and fermentation
kinetics of wine yeast, together with its impact on fermentative aroma production, has
been comprehensively studied in recent decades in S. cerevisiae [12–15]. Many volatile and
non-volatile compounds produced by S. cerevisiae that constitute wine’s bouquet, such as
higher alcohols and fatty acids and their associated esters, have been found to be highly
dependent not only on the amount but also on the nature of nitrogen available [16–18].
More recently, it has been shown that non-Saccharomyces yeasts differ in their demands
and preferences for nitrogen sources available in grape juice, which has an impact on their
individual contribution to secondary aroma production in wines [3,19]. In mixed-culture
fermentations, it has been demonstrated that co-inoculation of non-Saccharomyces strains
may lead to faster nitrogen consumption. This can hamper the growth and fermentative
ability of S. cerevisiae strains [17,20–22] and modify the production of fermentative aroma
compounds by S. cerevisiae [17,23–25].

Another critical variable is the concentration of fermentable sugars in grape juice, ranging
from 150 to 300 g/L [26]. Currently, due to global warming, we are witnessing a significant
increase in the initial concentrations of sugars in grape musts, glucose, and fructose, which
selectively influence the species and/or strains of yeasts that are better adapted to grow
under such conditions [27]. Additionally, it is expected that initial sugar fermentation will
significantly impact the production of several metabolites with relevance for the wine com-
plexity and quality. Indeed, fusel alcohols and esters [28], acetic acid [29], and glycerol [30]
are mainly produced in parallel to ethanol by S. cerevisiae through fermentation of sugars.
Besides the direct effect of sugar concentration on ethanol levels, which will determine the
persistence of non-Saccharomyces yeasts during mixed culture fermentations [31,32], the many
physiological studies on the contribution of these yeasts to the aromatic profile of wines have
shown that non-Saccharomyces yeasts display metabolic diversity relative to S. cerevisiae [11].
Recent reports at the genomic level of different non-conventional wine-related yeasts [33,34]
have indicated potential mechanisms such as alterations in the regulation of gene expression,
absence of homologous genes, gene duplications and/or modification of enzymatic activities,
which may underly the differences observed.

The dynamics of yeast populations during alcoholic fermentation is also affected by
the temperature of vinification. It has been established that temperatures above 15 ◦C
provide S. cerevisiae with an advantage that allows it to outcompete non-Saccharomyces
yeasts, while lowering the temperature of fermentation enhances the growth, survival, and
thus the competitive ability of non-Saccharomyces yeasts, as their susceptibility to ethanol is
attenuated in these condition [35–37]. Fermentation temperature is also known to affect the
fermentation rate and the S. cerevisiae metabolism, influencing the overall aroma profile of a
wine [38]. A study conducted under two different temperatures (13 and 28 ◦C) [39] showed
that, at the lowest temperature, S. cerevisiae enhanced the production of acetate esters, fatty
acids, and their corresponding ethyl esters, and decreased volatile acidity and fusel alcohol
concentrations. Despite the importance of fermentation temperature on non-Saccharomyces
yeast survival and persistence during fermentation, there is still a lack of knowledge of the
impact of fermentation temperature on the metabolism of these yeasts.
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The overall effects of non-Saccharomyces strains in mixed-culture fermentation are
highly dependent on the inoculation strategy as it strongly influences the dominance and
persistence of yeast species during fermentation and thus their contribution to wine traits.
Two main inoculation approaches of non-Saccharomyces and S. cerevisiae strains have gener-
ally been studied: (i) simultaneous, where both yeast species are inoculated at the same
time before fermentation, and (ii) sequential inoculation, where the non-Saccharomyces
yeast is initially inoculated followed by the inoculation of S. cerevisiae. Although simul-
taneous co-inoculation can offer the advantage of avoiding a second inoculation stage,
which increases the operation time and operational steps in the winery, yeast manufac-
turers presently recommend the sequential inoculation protocol to apply the commercial
formulation already available on the market. This option is based on the evidence that this
strategy promotes the persistency and individual contribution of the non-Saccharomyces
yeast to the modulation of the sensory profile, and/or to reduce the final alcohol content in
wine (reviewed in [40]).

The effects of fermentation conditions on yeast performance and wine quality have
traditionally been studied altering one variable at a time. This approach is inefficient,
because it cannot discern the presence of interactions among the experimental factors,
making it difficult or even impossible to provide an accurate assessment of their impact on
wine fermentations. Based on the previous knowledge, this caveat is even more evident
when mixed-culture fermentations are used. In a previous work, our group assessed the
potential of a selected a Hanseniaspora guilliermondii strain to be used as a starter culture
in mixed-culture fermentations [17]. The experiments conducted in a natural grape juice
showed that, although the simultaneously co-inoculation of H. guilliermondii UTAD222
negatively affected S. cerevisiae growth and fermentation rate, its presence significantly
altered the panoply of aroma compounds found at the end of the fermentation [17]. In-
tending to increase knowledge of this yeast consortium and to evaluate the suitability
of its application in different winemaking conditions, in the present study we sought to
analyze the influence of H. guilliermondii UTAD222 strain and its interaction with other
production factors (nitrogen, sugar and temperature) on fermentation kinetics and on the
production of sensory relevant metabolites. The experimental plan was carried out using a
Central Composite Design methodology to optimize the number of experiments required to
evaluate the effects of these four factors and their putative interactions. Given that the wine-
making environment is a complex biological system, it is expected to present the abstract
characteristics of modularity, hierarchy, and functional specificity [41–44]. These systems
are not fully characterized by single responses or parameters, but by multiple dimensions
reflecting different aspects of the biological mechanisms. Therefore, data analysis methods
should conform to such conditions and be able to extract the relevant information conveyed
in data [44]. In this setting, responses are more appropriately analyzed multivariately than
univariately, and, furthermore, adequate methodologies should be developed to flexibly
infer the existing modules and their relationship. These aspects were considered in this
work, where response modules were first identified and summarized using unsupervised
machine learning techniques. Then, the collective dependence of the responses in each
module upon the experimental factors was determined through supervised methodologies,
leading to predictive models for the behavior of each functional cluster. With the developed
predictive models, it is not only possible to infer which factors are critical to each module
and how they affect them, but also to predict the underlying latent variable response and,
upon reconstruction, the values of all correlated variables in each cluster.

The proposed advanced data analysis methodology used herein will pave the way for
the rational use of mixed cultures while providing practical guidelines for winemakers to
adjust mixed starter cultures as a function of winemaking conditions towards the controlled
production of new, diversified, and tailor made wines.
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2. Materials and Methods
2.1. Yeasts Strains and Maintenance Conditions

The strain H. guilliermondii UTAD222, previously isolated in our laboratory from a
fermenting grape juice from Douro Region [45], was selected for this study for its interesting
oenological traits such as high ethanol tolerance and low potential for hydrogen sulfide pro-
duction. S. cerevisiae UCD522 was supplied by the Enology Culture Collection, Department
of Viticulture and Enology, University of California, Davis, CA, USA. Pure cultures were
routinely maintained at 4 ◦C on Yeast Peptone Dextrose (YPD) slants, containing glucose
(20 g/L), peptone (10 g/L), yeast extract (5 g/L) and agar (20 g/L), and the stocks were
stored at −80 ◦C with glycerol (40% v/v).

2.2. Fermentation Media

In this study, the chemically defined Grape juice Medium (GJM) used was similar
in composition to typical grape juice previously described elsewhere [46], with some
modifications. Three different levels of initial yeast assimilable nitrogen (YAN) and sugar
content were used in the experimental design (Table 1). YAN was supplied as a mixture of
amino acids and ammonium in a proportion of 60:40%, at final concentrations of 100, 300,
or 500 mg/L. Ammonium was supplied as di-ammonium phosphate (DAP). The carbon
and energy source was composed of an equimolar mixture of glucose and fructose (1:1) at
final concentrations of 150, 225, or 300 g/L.

Table 1. Factor ranges and levels considered in the experimental design (CCD), expressed both in
terms of coded and original values.

Level Sugar (g/L) YAN (mg/L) Temperature (◦C) H. guilliermondii
(CFU/mL)

−1 150 100 10 0

0 225 300 20 5 × 105

1 300 500 30 1 × 106

2.3. Fermentation Trials

For all experiments, starter cultures were prepared by pre-growing the yeasts overnight
in 100 mL shake flasks containing 70 mL of YPD with pH adjusted to 3.5 with KOH 10 M.
The flasks were incubated overnight at 25 ◦C in an orbital shaker set at 150 rpm. These
starter cultures of S. cerevisiae and H. guilliermondii were used for the inoculation of GJM
at the cell count considered for each experimental run. Inoculation strategy consisted of
an unchanging cell count of 5 × 105 CFU/mL for S. cerevisiae UCD522 and changing cell
counts of H. guilliermondii UTAD222: no inoculation (single culture of S. cerevisiae), 5 × 105,
and 1 × 106 CFU/mL. The fermentations were conducted in 250 mL flasks filled to 2/3 of
their volume fitted with a side-arm port sealed with a rubber septum to allow anaerobic
sampling. To avoid the accumulation of medium in the system, a stylet was inserted in
the needle holder. The flasks were incubated at the appropriate temperatures (10–30 ◦C)
in an orbital shaker set at 120 rpm. Fermentations were monitored daily by weighing the
fermentation flasks on a laboratory scale. Growth parameters and analytical determina-
tions were determined after aseptic sampling using a syringe-type system. The end of
fermentation, corresponding to the time necessary to reach dryness (R100), was determined
assuming that weight loss corresponds to CO2 evolution, which is proportional to sugar
consumption. To this end, fermentations were allowed to proceed until no further weight
loss was observed. Maximum Fermentation Rate (MFR) was determined from the slope
of the linear dependence of the steepest decline in weight (g) at the corresponding time
points (h). After fermentation, the wines were centrifuged (10 min at 5500 rpm, Sigma 3-18K
refrigerated Centrifuge, 37520 Osterode am Harz, Germany) to remove yeast cells and
were kept at −20 ◦C until the analytical determinations were performed. The yeast growth
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was followed by counting the colony-forming units (CFUs) in YPD agar, WL nutrient agar
medium (Wallerstein’s Laboratory), and/or Lysine agar (Oxoid) plates.

2.4. Analysis of Fermentation Metabolites by Liquid Chromatography

The levels of glucose, fructose, ethanol, glycerol and acetic acid were determined
using a high-performance liquid chromatography (HPLC Flexar, PerkinElmer, Shelton, CT,
USA) system equipped with the ion exclusion cation exchange column Aminex HPX-87H
(Bio-Rad Laboratories, Hercules, CA, USA) and refractive index and UV/VIS detectors. The
column was eluted using sulfuric acid (0.005 N) at 60 ◦C and a 0.6 mL/min flow rate. The
samples were filtered through a membrane (Millipore, 0.22 µm pore size) before injecting
6 µL. The components were identified through their relative retention times compared with
the respective standards, using the Chromera Software version 4.1.0; PerkinElmer, Shelton,
CT, USA, 2013.

2.5. Analysis of Volatile Compounds by Gas Chromatography/Mass Spectrometry

At the end of alcoholic fermentation, samples were taken from different fermented
media to be screened for aroma compounds production. Aliphatic higher alcohols (1-
propanol, 2-methyl-1-butanol and 3-methyl-1-butanol) and ethyl acetate were analyzed
as described by Moreira et al. [47] using a Hewlett Packard 5890 gas chromatograph
equipped with a flame ionization detector and connected to a H.P. 3396 Integrator. A
50 µL volume of 4-methyl-2-pentanol at 10 g/L was added to 5 mL of wine as internal
standard. The sample (1 µL) was injected (split, 1:60) into a CP-WAX 57 CB column
(Chrompack) of 50 m × 0.25 mm and 0.2 µm phase thickness. The temperature program
followed was: 40 ◦C (5 min) to 80 ◦C (0 min) at 3 ◦C/min and from 80 ◦C to 200 ◦C (4 min)
at 15 ◦C/min. Injector and detector temperatures were set at 220 ◦C. The carrier gas was
H2 at 1–2 mL/min.

The determination of 2-phenylethanol, acetates of higher alcohols (isoamyl acetate,
2 phenylethyl acetate), and ethyl esters of fatty acids (ethyl butyrate, ethyl hexanoate, ethyl
octanoate, ethyl decanoate and ethyl dodecanoate) was performed in a Hewlett Packard
5890 gas chromatograph, equipped with a flame ionization detector. For that purpose,
50 mL of wine, with 4-decanol at 1.5 mg/L as internal standard, was extracted successively
with 4, 2 and 2 mL of etherhexane (1:1 v/v) for 5 min. The organic phase (1 µL) was injected
(splitless) into a BP21 (SGE) column of 50 m × 0.22 mm and a phase thickness of 0.25 µm.
The temperature program was 40 ◦C (1 min) to 220 ◦C (15 min) at 2 ◦C/min. Injector and
detector temperatures were set at 220 ◦C. The carrier gas used was H2 at 1–2 mL/min.

2.6. Experimental Design

A single block central composite design (CCD) methodology with an α value equal to
1 (α is the distance in coded units from the center of the design space to each star point of
the CCD design) was conducted to investigate the influence of the four experimental factors
on the metabolic profile resulting from the fermentation process. The experimental factors
(input variables) were initial sugar content, initial YAN concentration, temperature of
fermentation and inoculum level of the non-Saccharomyces strain H. guilliermondii UTAD222.
The responses (output variables) comprised: R100, MFR, acetic acid, glycerol, ethanol
as well as several aroma compounds produced, enumerated in Section 2.5. Analysis
of Volatile Compounds by Gas Chromatography/Mass Spectrometry. These responses,
and their determination, were described in the preceding subsections. Being a response
surface type of experimental design, three levels are considered for the experimental factors,
usually referring to coded units as −1, 0, or +1, where −1 corresponds to the low level
of each factor, 1 to the high level, and 0 to the mid-level. The correspondence between
the coded and original levels of the factors is presented in Table 1. The execution of the
trials corresponding to the CCD led to thirty-one experiments (Table 2), including seven
replicates at the central point (experimental runs, 1, 5, 14, 19, 20, 28 and 30). To minimize
the introduction of systematic biases, all experiments were conducted randomly.
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Table 2. Experimental conditions used following the CCD experimental plan. Shaded lines represent
the seven replicates at the center of the experimental domain.

Run Sugars (g/L) YAN (mg/L) Temperature (◦C) H. guilliermondii (CFU/mL)
1 225 300 20 5 × 105

2 150 100 30 0
3 150 500 10 0
4 150 100 10 0
5 225 300 20 5 × 105

6 225 300 30 5 × 105

7 300 500 10 1 × 106

8 300 100 10 1 × 106

9 150 100 30 1 × 106

10 300 500 30 0
11 300 300 20 5 × 105

12 225 300 20 0
13 225 300 10 5 × 105

14 225 300 20 5 × 105

15 225 300 20 1 × 106

16 150 500 30 0
17 150 500 30 1 × 106

18 150 500 10 1 × 106

19 225 300 20 5 × 105

20 225 300 20 5 × 105

21 300 500 30 1 × 106

22 150 300 20 5 × 105

23 300 100 10 0
24 300 100 30 1 × 106

25 225 100 20 5 × 105

26 150 100 10 1 × 106

27 300 500 10 0
28 225 300 20 5 × 105

29 300 100 30 0
30 225 300 20 5 × 105

31 225 500 20 5 × 105

2.7. Data Analysis Workflow

The data obtained were analyzed using a latent variable framework in order to explore
the underlying structure of the response space and model its dependence from the factors
considered in the CCD performed. The analysis was conceived in such a way to unravel
the modular structure of the responses analyzed and their collective dependence upon the
experimental factors. The analysis workflow consisted of three main stages:

Stage 1. Exploratory data analysis (EDA). The results obtained were explored with
several univariate and multivariate visualization tools to analyze the main variation and
association patterns and pinpoint outliers and any potential faulty measurements that need
to be considered in detail. The associations of interest are related not only to the mapping
of inputs to outputs, but also the relationships between all 18 outputs.

Stage 2. Unsupervised machine learning. In this stage, the EDA activity was further
deepened by applying unsupervised machine learning technique to the entire experimental
data set. The multivariate structure of the responses was explored using latent variable
methods, such as Principal Component Analysis (PCA), and the associated diagnosis tools
(scree plot, scores plot, loadings plots, residual analysis, etc.) [48,49].

Then, natural clusters formed by the set of 18 responses were identified using agglom-
erative hierarchical clustering (AHC). The distance metric was the correlation distance, as
the aim was to find blocks (i.e., clusters or groups) of functionally related fermentation
metabolites/conditions. Finally, each identified block was summarized by the linear combi-
nation that most explains its correlation structure. These linear combinations were obtained
by resorting to PCA, which was applied at the cluster level, i.e., to the clusters obtained
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with AHC. As clusters are formed by highly associated variables, it was expected (from the
properties of PCA; see references above) that the first principal component for the cluster-
specific PCA models would explain most of the total variability in the cluster. Therefore, in
this work, we used the first principal component for the PCA model (PC1) in each cluster as
a surrogate of all the variables inside the cluster. The values of PC1, also known as the PC1
scores, summarize the main variation pattern in each cluster and can be used to reconstruct
the original values of the variables; this can be done by simply taking the outer product of
the PC1 scores and PC1 loading vector—an operation called reconstruction.

Stage 3. Supervised machine learning. In this final stage, models were developed for
each cluster to explain the variability of the cluster’s first principal component, the terms of
the experimental factors, and their mutual interactions. As such, we implemented a forward
stepwise variable selection strategy in order to the set of input variables (experimental
factors and their higher-order terms) to be incorporated into the regression model. In brief
terms, the stepwise selection strategy consisted of successively selecting and incorporating
factors (and other higher-order terms), as long as they improved the capability to explain
the behavior of PC1 to an extent that was statistically significant (evaluated with a partial
F-test; reference significance level of 0.05). On the other hand, terms that have already been
selected for incorporation into the model in earlier stages may also be discarded later if
their contribution stops being significant. The procedure stops when there are no variables
whose inclusion or removal from the model will lead to a change in the model’s explanatory
power that is statistically significant. It is important to highlight that the primary goal of
the models obtained in this way is to identify the factors and interactions that are most
significant for explaining the variability of each cluster. This aspect is more important
than the accuracy of their prediction, which may require a larger amount of experience
to improve.

3. Results and Discussion

The main goal of this work was to understand the influence of production factors in
shaping wine fermentation and final composition through the evaluation of the combined ef-
fects of initial sugar and YAN concentrations, fermentation temperature and co-inoculation
with H. guilliermondii UTAD222 on fermentation activity and production of volatile and
non-volatile compounds using a CCD methodology. This encompassed the identifica-
tion of the significant terms involving the input variables on a linear regression model
for predicting the responses. However, the set of responses to be analyzed amounts to
18 chemical compounds and fermentation parameters, and they are neither independent
nor fully correlated. Therefore, classical univariate regression methods, as well as the
more advanced multivariate algorithms, are limited in the analysis they can provide for
the collective behavior of the responses. The responses are expected to exhibit patterns
of modularity and functional affinity, which requires a different analysis workflow than
that usually followed in the literature. In this section, we present the main outcomes of the
three-stage analytical workflow put forward for handling complex systems, such as the
one considered in this work involving mixed-culture fermentations.

3.1. Exploratory Data Analysis

Thirty-one experiments were conducted (Table 2) to evaluate the collective effect of
initial YAN and sugar concentrations, temperature, and inoculation level of H. guilliermondii
UTAD222 on the fermentation dynamics and metabolites produced (Table S1). To provide
an overview of the impact of process conditions on responses, the results obtained were
first analyzed visually.

To visualize the individual relevance of each factor and direction of its impact, in
Figure 1, boxplots are presented indicating, for each of 18 responses and considering
all 31 fermentation conditions, the distribution values for the three levels of each factor.
As illustrated, there were wide variations in the responses as a function of the levels
of the four factors tested, clearly underlining their individual impact on fermentation
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outcome. Fermentation length (R100) and maximum fermentation rate (MFR), considered
in this work as summary quantities to study the influence of the experimental factors
on the fermentation kinetics, were impacted by all factors. The boxplots for R100 and
MFR showed different mean values but overlapping distributions for all fermentation
factors studied. Nevertheless, initial sugar concentration and temperature were the factors
with the strongest effects on fermentation kinetics, demonstrated by the great disparity
in the mean values, and narrow overlapping distributions in the boxplots of their levels.
Accordingly, R100 ranged from 96 to 1896 h, with the highest initial concentrations of sugar
and lowest temperature being associated with longer fermentations, where yeast cells
were unable to consume all sugars (Table S1). Assessing the impact of YAN or inoculum
of H. guilliermondii on fermentation kinetics, it was possible to verify that variations in
their levels resulted in higher differences, mostly with respect to R100 values, suggesting
that the length of fermentation may be governed by an interaction of all the conditions,
particularly of the initial nitrogen content and the presence of the non-Saccharomyces yeast
strain. Similarly, the production of the primary products of alcoholic fermentation, ethanol,
glycerol, and acetic acid also showed a large impact of sugar concentration, demonstrated
in the boxplots with huge variation on the distribution and mean values, contrarily to the
overlapping distributions of the boxplots corresponding to the levels of YAN, temperature
and H. guilliermondii inoculum.

The production of amyl and isoamyl alcohols, along with 2-phenylethanol and the
corresponding acetate, was mostly affected by the YAN levels, reaching higher values at the
lowest level of initial nitrogen (Figure 1, Table S1). The effect of H. guilliermondii UTAD222
inoculation was not so clear, except for 2-phenylethyl acetate, content of which was clearly
increased in co-inoculated fermentations (Table S1), as depicted in the boxplots, where
the highest mean value was observed for level 1 of the H. guilliermondii inoculum, albeit
with a huge variation in the distribution. Likewise, the individual impact of the factors on
ethyl acetate concentration was more evident for inoculum level (Figure 1, Table S1), being
highly variable in the distribution, but with similar mean values at different temperature,
sugar, and YAN levels. The production of isoamyl acetate and ethyl esters was shown to be
positively regulated by all factors at moderate levels (level 0), where higher concentrations
were detected (Figure 1, Table S1). The individual impact of the factors was more obvious
on isoamyl acetate concentration, as demonstrated by the greater differences between the
mean values obtained for the three levels of each factor studied, especially in YAN and
inoculum of H. guilliermondii.

Overall, the large variation observed in the distribution of concentrations of the
metabolites as a function of levels of each factor tested may reflect that the individ-
ual impact could not be measured, suggesting an interaction between the fermentation
conditions in the modulation of these compounds. In this way, this first exploration of
the responses to the different fermentation conditions demonstrated combined correla-
tions/interactions, supporting the inevitability of a more detailed analysis of the function-
ally related response variables.

In the EDA stage, the pairwise association patterns exhibited by the responses were
also analyzed, namely through the matrix of scatterplots (Figure 2) and the color map
of correlations (Figure 3). This last plot summarizes, in a simpler way, the association
patterns depicted in Figure 2, highlighting those that are more significant; however, a
careful analysis of the matrix of scatterplots is recommended to detect possible abnormal
observations and analyze the main patterns of association.
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Figure 1. Boxplots exploring the relationships between the 18 responses and each level (−1, 0 and +1)
of the factors tested: Sugar, YAN, Temperature, and H. guilliermondii UTAD222 inoculum. −1: 150 g/L
Sugars, 100 mg/L YAN, 10 ◦C, 0 cells/mL H. guilliermondii; 0: 225 g/L Sugars, 300 mg/L YAN, 20 ◦C,
5 × 105 cells/mL H. guilliermondii; 1: 300 g/L Sugars, 500 mg/L YAN, 30 ◦C, 1 × 106 cells/mL
H. guilliermondii. Boxplots indicate, for each response, the values by each factor and corresponding
level, showing the mean values (plus symbol) and upper and lower quartiles, with vertical bars
showing the minimum and maximum value, respectively.
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Figure 2. Matrix scatterplot for the 18 responses.
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Both plots revealed aggregated patterns of correlation, corroborating the existence
of modules or blocks of functionally related response variables. This observation justifies
the need to incorporate the modular structure of data in the analysis, particularly in the
development of the predictive models.

3.2. Unsupervised Machine Learning

The analysis of the overall correlation structure of the 18 response variables initiated in
stage 1 was further complemented using Machine Learning techniques in stage 2, namely
PCA. All variables were preliminarily auto scaled (i.e., z-transformed, or transformed
to zero mean and unit standard deviation), in order to focus the analysis strictly on the
correlation structure. Figure 4 presents the results in the form of a score plot (Figure 4a)
and a loading plot (Figure 4b).

1 
 

 

Figure 4. Principal Component Analysis (PCA) analysis of the 18 responses: (a) scores plot and
(b) loadings plot for the first two principal components (PC1 explains 36.3% of the overall variability
and PC2 explain 20.7%).

The former plot contains information about the distributions of values of the responses,
whereas the second one addresses the relationships between the responses. From the score
plot, it is possible to observe that the data are nicely scattered in a two-dimensional plane,
with observation 31 lying further apart from the rest. This observation was scrutinized in
detail and, having found nothing wrong with any of the measurements, it was preserved
in the analysis. From the loading plots, again, clear patterns of associated variables (i.e.,
those falling close together or lying in opposite directions, indicating positive and negative
correlations, respectively) can be observed. This preliminary PCA analysis confirms the
need to further explore the modular structure of the responses and extract the natural blocks
of associated responses. In fact, responses related to the same fundamental phenomenon
tend to present higher levels of mutual association. Therefore, another unsupervised ma-
chine methodology was applied, namely an agglomerative hierarchical variable-clustering
approach (AHC), in order to unravel the natural blocks or clusters of variables. This
methodology was implemented using a correlation-based distance measure for identifying
the natural modules (clusters). The clustering results are presented in Figure 5.

The groups identified by applying AHC are shown in the dendrogram presented in
Figure 5 with different colors (see also the first two columns of Table 3 for the composition
of each cluster). In this plot, the shorter the agglomeration distances (i.e., the branches
connecting the variables), the more similar they are. In one case, one cluster is formed
by a single variable, which exhibits a rather unique behavior (ethyl acetate). In the next
stage of the workflow, the clusters identified were analyzed individually and models were
developed for each of them to infer the respective critical experimental factors.
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Figure 5. Dendrogram for AHC using a correlation-based distance for detecting modules of
associated variables.

3.3. Supervised Machine Learning

In the third stage of the data analysis workflow, the clusters of variables identified
were first analyzed using PCA models, and the first component was retained to represent
the collective variation of the cluster variables. Due to the PCA properties, PC1 is indeed
the linear combination of variables showing the highest explanatory power, and therefore
is the best candidate for this purpose, within the family of linear combinations. This cluster-
specific PCA analysis is summarized in Table 3, where the PC1 loadings (3rd column; the
loading coefficients are useful for interpreting trends in the PC1 scores as well as the model
derived from it) are indicated, along with the amount of original variation that each PC
is able to explain (4th column; we are particularly interested on the amount of variation
explained by PC1, which is given by the first value, shown in bold).

Predictive models were derived for explaining the PC1 score for each cluster, using
forward stepwise variable selection for multiple linear regression. This approach is ade-
quate, as predictors (experimental factors and their higher-order terms) are not correlated
due to the experimental design followed. The results for the cluster-specific models are
presented in columns 5 to 9 of Table 3. More specifically: column 5 presents the coefficient
of determination of the estimated model (R2); column 6, the terms that were selected to
incorporate the model by the forward stepwise variable selection strategy; column 7, the
associated beta coefficients (i.e., the coefficients for the auto-scaled variables); column 8, the
standard error for the estimated beta coefficients; and finally, column 9 presents the p-values
for the significance test to each coefficient (the lower the p-values, the more significant the
associated coefficient is).

It is noteworthy that, while each model is predicting the PC1 score, it is also predicting
the original values of the responses as well, as they are easily obtained from the predictors’
scores through the outer product with the PC1 loadings (shown in the 3rd column of Table 3).
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Table 3. Summary of results: modeling using main effects, 2nd-order interactions and quadratic
terms.

Cluster
Id

Cluster
Composition

Loadings
PC1

PCA—CumSum
of Explain
Variance

Model
R2

Selected
Regressors

Beta
Coefficient Std. Err p-Value

1
Ethyl acetate 1 100.0000 0.6409 I 0.7592 0.1132 2.81 × 10−7

N × I −0.2088 0.0930 0.0329

2

R100 −0.7071 83.6559 0.9588 S −0.6569 0.0547 2.21 × 10−11

MFR 0.7071 100.0000 N 0.4962 0.0547 4.72 × 10−9

T 0.8519 0.0547 1.05 × 10−13

I −0.1458 0.0547 0.0139

N × T 0.1663 0.0450 0.0012

S2 −0.2045 0.0966 0.0452

N2 −0.2727 0. 0966 0.0096

3

Ethyl hexanoate 0.3857 78.5281 0.5956 N 0.8544 0.2818 0.0052

Ethyl dodecanoate 0.3494 91.6550 S2 −1.9078 0.3371 4.58 × 10−6

Isoamyl acetate 0.4000 96.2827

Ethyl octanoate 0.4157 99.0158

Ethyl decanoate 0.4122 99.8665

1-propanol 0.3231 99.9728

Ethyl butanoate 0.3492 100.0000

4

Ethanol 0.5446 73.0421 0.9380 S 1.3519 0.0723 1.32× 10−16

Acetic acid 0.6202 91.5613 I −0.2347 0.0723 0.0032

Glycerol 0.5646 100.000 N × T −0.2327 0.0594 5.76 × 10−4

S2 0.3637 0.0864 2.71 × 10−4

5

2-Phenylethanol 0.3658 69.2298 0.5323 N −1.0532 0.2449 1.99 × 10−4

Phenylethyl acetate 0.3737 86.7186 T 0.6838 0.2449 0.0095

1-butanol 0.4725 96.9133 S × I 0.4231 0.2012 0.0450

Amyl alcohol 0.5063 99.4044

Isoamyl alcohol 0.4969 100.0000

S—initial sugar content; N—initial YAN concentration; T—temperature of fermentation; I—inoculum level of the
non-Saccharomyces strain H. guilliermondii UTAD222.

The results of the modeling using main effects, 2nd-order interactions, and quadratic
terms depicted in Table 3 confirm the wide variations observed in the exploratory analysis
section (Figure 1), emphasizing the significant impact of the factors on the fermentation
process. Some models present very good prediction accuracies (R2 > 0.9), while others show
lower explanation power (0.53–0.64). The lower R2 could be due to experimental variation
inherent to the biological nature of yeast fermentations or to analytical random sources of
variability that are intrinsic to volatile aroma compounds analysis, such as their volatility,
or to the interference of other factor(s) that were not accounted in our experimental model
in the production of these compounds. Nevertheless, these lower R2 values do not pose
any fundamental obstacle in the present study, which is focused on understanding how
the four experimental factors affect the responses, for which the statistical significance of
the effects in the model, rather than the R2, is the most relevant analysis outcome. In the
remainder of this section, we comment on the effects of the experimental factors on families
of compounds, based on the results of the cluster-specific models. The main factors driving
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the variability of most clusters can be identified (all models were statistically significant),
and clusters 1, 2 and 4 were well predicted.

Overall, analyzing the models derived for all clusters, it is possible to observe that YAN
concentration was the factor with the greatest effect on many yeast-derived compounds
and/or on fermentation parameters. Its main (or linear) effect was always positive (clusters
#2 and #3), except for higher alcohols, 2-phenylethanol and its corresponding acetate ester
(cluster #5). This result corroborates the recognized pivotal role of nitrogen on governing
yeast growth and fermentative activity [15,50], as well as on the modulation of volatile
compounds released in wine [51–53]. The effect of fermentation temperature was positive
both on fermentation rate and on the production of 2-phenylethanol and 2-phenylethyl
acetate (clusters #2 and #5). Sugar content and the inoculum level of H. guilliermondii
showed moderate to significant effects, either positive or negative, depending on the cluster
under analysis.

The model resulted in a single cluster for ethyl acetate, cluster #1, the concentration
of which was most significantly modulated by the inoculum level (p-value = 2.81 × 10−7),
with results in line with several other studies that indicate that non-Saccharomyces yeast
strains are proficient in ester production [7,17,23,25,54]. Additionally, it was possible to
verify a negative interaction between inoculum level and initial YAN content in grape must,
underlining that the presence of H. guilliermondii promotes an increase in ethyl acetate,
particularly at lower YAN concentrations (Table S1), suggesting that the overproduction of
ethyl acetate in co-fermentations with H. guilliermondii can be prevented by the modulation
of the initial nitrogen content. Fermentation parameters MFR and R100, included in
cluster #2, were significantly impacted by linear effects of all factors, as well as by the
interaction of YAN and temperature and quadratic effects of sugar and YAN (Table 3).
In line with the results depicted in Figure 1, the rate and duration of fermentation were
significantly affected by temperature (p-value = 1.05 × 10−13), followed by the initial sugar
concentration (p-value = 2.21 × 10−11), initial YAN concentration (p-value = 4.72 × 10−9)
and inoculum level (p-value = 0.0139). Accordingly, the fermentation length was longer
in the trials conducted at lower temperature (10 ◦C). Additionally, the negative effect of
initial sugar levels on fermentation, either in MFR or in R100, was demonstrated in the
fermentation profiles (Figure S1), where the highest initial concentrations of sugar led to
longer fermentations, where yeast cells were unable to consume all sugars. The negative
quadratic effect of YAN on fermentation length is in line with previous observations by our
and other research groups reporting an inverse correlation between nitrogen concentration
and the fermentation length, maximum fermentation rate, and final biomass [15,50,55–58].
Regarding maximal fermentation rate, it was positively affected by initial YAN content,
with the highest values being observed for fermentations conducted at high temperature
and high YAN concentrations, with the lowest levels of sugar (Table 1, Figure S1D). Indeed,
it has been reported that yeast nitrogen requirements are reliant on the amount of sugars
present; the higher the initial sugar concentration, the more nitrogen will be needed to
complete sugar fermentation [59]. On the other hand, higher fermentation rates have been
associated with high nitrogen conditions due to the higher final yeast cell biomass [15],
which is in line with our results (Figures S1 and S2). Additionally, it should be mentioned
that co-inoculation with H. guilliermondii presented a negative effect, which was highly
dependent on nitrogen levels and extremes of temperature; this is in line with the improved
ability of Hanseniaspora spp. To survive and persist in fermentation at lower temperatures,
as their susceptibility to ethanol is attenuated under such conditions [35]. Accordingly,
yeast growth profiles (Figure S2) show that H. guilliermondii UTAD222 sustained a higher
number of viable cells during fermentations at lower temperatures. On the contrary,
runs 16 and 17, corresponding to extreme conditions (150 g/L of sugar, 500 mg/L YAN,
30 ◦C; Figure S1D), resulted in short fermentation periods (96 h), in which the presence
of H. guilliermondii had no effect. Interestingly, in these experiments, the effectiveness of
temperature in decreasing H. guilliermondii cell viability was not clear (Figure S2D), as high
cell concentrations were sustained. This observation is probably due to the high tolerance
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to ethanol of the H. guilliermondii strain used in this study, up to 9% [17]. Moreover, its
presence slightly improved fermentation efficiency, as can be seen for run 17, probably
due to the high carbon/nitrogen ratio in the medium, which prevented the potential
competition for nutrients by both strains.

As shown in Figure S1, for central point conditions, all fermentations were finished
after 216 h, whereby the presence of H. guilliermondii did not interfere with the fermentation
length, irrespective of the inoculum level (Figure S1C). This observation is somehow
surprising, since previous experiments conducted under similar temperature conditions,
with nitrogen conditions within the range used in this study, and with the same yeast
strains [17] showed a negative effect of H. guilliermondii co-inoculation on the fermentative
activity of S. cerevisiae UCD522. This conflicting result could be due to differences in culture
media composition, since in this work a synthetic grape juice medium was used and in the
previous study the fermentations were conducted with a natural grape juice.

Ethyl esters and isoamyl acetate, along with 1-propanol, included in cluster #3, were
shown to be significantly dependent on YAN (p-value = 0.0052) and on the quadratic effect
of initial sugar levels (p-value = 4.58 × 10−6). Contrary to the well-established inverse
relationship between nitrogen concentration and production of alcohols, propanol levels
were positively affected by nitrogen (Table S1), in line with results obtained by others [53,60].
In particular, Mouret et al. [60] identified this compound to be both a metabolic marker of
intracellular nitrogen availability and a quantitative marker of assimilable nitrogen levels.

Additionally, the production of isoamyl acetate and several ethyl esters mirrored the
recognized positive association with the initial nitrogen content [17,50,61]. Surprisingly, no
effect of the inoculum level resulted from the model, which is in contrast to the recognized
role of non-Saccharomyces wine yeasts as good producers of esters (reviewed in [25]). Indeed,
Barbosa et al. [23], using a transcriptomic-based approach, showed that the expression of
genes of S. cerevisiae involved in the biosynthesis of these compounds is higher when in
co-culture with H. guilliermondii, suggesting that the presence of this non-Saccharomyces
strain contributes to greater production of ethyl esters.

Analyzing the model for cluster #4, it is possible to verify that the production of the
primary products of alcoholic fermentation, ethanol, glycerol and acetic acid, which have
an important contribution to the aroma perception of wine [62], showed a significantly
high positive effect of sugar, either in single (p-value = 1.32 × 10−16) or quadratic term
(p-value = 2.71 × 10−4), and negative effects of the interaction of the nitrogen concentration
with temperature (p-value = 5.76 × 10−4) and of inoculum level (p-value = 0.0032).

As previously mentioned, most fermentations conducted with 300 g/L of sugars
stopped prematurely (Table 2), leaving residual sugars in the medium and attaining final
ethanol concentrations ranging from 12.5 to 17.7% (v/v). On the other hand, the final
concentrations of ethanol varied from 8.4 to 8.7% and from 12.4 to 13.5% (v/v) in the
fermentations conducted with 150 or 225 g/L of initial sugar, respectively. Additionally,
the highest ethanol levels were obtained using the highest nitrogen levels and the lowest
temperature, in line with results obtained in runs 7 and 27 (300 g/L of sugars, 500 mg/L
YAN, 10 ◦C). These observations might explain the significant quadratic effect of initial
sugar levels (p-value = 2.71 × 10−4) and the interaction of nitrogen level and temperature
(p-value = 5.76 × 10−4) on ethanol production. The negative effect of co-inoculation with
H. guilliermondii (Table 3) should also be highlighted: a decrease in ethanol produced was
noticed when the medium was co-inoculated (run 7—17.2%) compared with S. cerevisiae
in single culture (run 27—17.7%) (Table S1); this result is in agreement with previous
observations of ethanol reduction in wines produced from mixed-culture fermentations
with non-Saccharomyces and with S. cerevisiae (reviewed in [40]).

Additionally, glycerol and acetic acid concentrations were found to be directly related
to sugar concentration; the higher the sugar concentration, the greater the amount of acetic
acid and glycerol produced. The direct relationship between acetic acid formation and sugar
concentration was clearly demonstrated by Erasmus et al. [63] with a range of sugar amounts of
20–50% using seven commercial wine yeast strains. For all combinations tested, the maximum
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levels of glycerol were achieved in run 29 (300 g/L of sugars, 100 mg/L YAN, 30 ◦C), whereas
the lowest were obtained in run 17 (150 g/L of sugars, 500 mg/L YAN, 30 ◦C). The higher
glycerol production observed in fermentations conducted with higher sugar content was
expected, because its major involvement in yeast cell redox homeostasis during fermentation,
as well as in the metabolic stress response to osmolarity, is well known [64].

On the contrary, the production of these metabolites was negatively affected by the
interaction of temperature and YAN available, and by co-inoculation with H. guilliermondii
(Table 3). Concentrations of glycerol and acetic acid were significantly reduced at lower
temperatures, but the magnitude of this effect was found to depend on the amount of YAN
present, as demonstrated by the negative effect of the interaction of YAN and temperature
(Table 3). As shown in Table S1, the lowest glycerol concentration was produced at high
YAN content (run 17), while the lowest acetic acid level was attained at moderate YAN
concentrations (run 22), probably due to the different fermentation temperatures, 30 and
20 ◦C, respectively. Our results suggest a positive interaction between YAN concentra-
tion and the temperature variation on the amount of yeast primary products of alcoholic
fermentation, in agreement with those reported by Mouret et al. [60]. Interestingly, the
inoculum of H. guilliermondii was found to contribute to control/reduce acetic acid pro-
duction by S. cerevisiae in mixed-culture fermentations (Table S1), contrary to what has
been observed in other studies [7,65–67]. Even though a desirable increase of acetate esters
in mixed fermentations of Macabeo and synthetic must with H. uvarum/S. cerevisiae was
reported, the high concentration of acetic acid hampered the industrial application of the
mixed starter [66]. Accordingly, in the fermentations conducted with 150 g/L of sugar, the
amount of acetic acid produced ranged from 0.34 to 0.47 g/L in mixed-culture or from
0.50 to 0.62 g/L in single-culture S. cerevisiae fermentations. Similarly, reports with other
non-Saccharomyces species, namely Kluyveromyces lactis [68], Torulaspora delbrueckii [69] and
Candida zemplinina [70], have also shown the same potential for reducing acetic acid levels
in co-inoculation regimes with S. cerevisiae strains. Production of glycerol according to our
model is, in contrast to previous results [23], significantly influenced by co-inoculation
with H. guilliermondii (p-value = 0.0032) and modulated by the interaction of YAN levels
and temperature of fermentation (p-value = 5.76 ×10−4). The effect of non-Saccharomyces
yeasts on the reduction of ethanol and glycerol contents in wine, extensively reported,
was analyzed in a recent review with respect to inoculum timing and rate, as well as
aeration conditions [40].

Regarding the model for cluster #5, it is possible to observe that the production of higher
alcohols and 2-phenylethyl acetate were significantly impacted by linear effects of YAN and
temperature, as well as by the interaction of sugar and inoculum (Table 3). These compounds
with positive impact on the aroma of wine, showed a significantly high negative effect of YAN
(p-value = 1.99 × 10−4), proved by the higher production in media with low YAN content
(Table S1) and in line with previous studies that pointed nitrogen availability as the main
fermentation parameter affecting the kinetics of higher alcohol synthesis [50,53,60]. Moreover,
the model for this cluster underlined the importance of fermentation temperature in the
modulation of the synthesis of these volatile compounds, as shown by the positive linear
effect of the temperature (p-value = 0.0095), which translated into high contents of higher
alcohols and 2-phenylethyl acetate in the experiments conducted at the highest temperature
(Table S1). In particular, the wines obtained in runs 9 and 24 were those with the highest
content of 2-phenylethyl acetate and most of the higher alcohols. The positive effect of
temperature detected herein has already been studied and demonstrated by others using
commercial S. cerevisiae strains [53,60], or using two non-Saccharomyces yeasts, H. uvarum and
C. membranefaciens, with the sequential inoculation with S. cerevisiae on Malbec must [4].

It is noteworthy that the production of higher alcohols and 2-phenylethyl acetate
differed according to sugar availability, and it was dependent on the inoculum level
(Tables 3 and S1), as demonstrated by the positive effect of the interaction between sugar
availability and co-inoculation with H. guilliermondii (p-value = 0.0450). The increase of
fruity acetate esters, in particular 2-phenylethyl acetate, has been the main target of mixed
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starters designed with Hanseniaspora species, as also reported by others when using H.
guilliermondii and H. vineae strains in mixed culture with S. cerevisiae [17,54,71]. In our study,
the positive effect of the interaction between sugar and inoculum level was clearly seen in
the highest content of 2-phenylethyl acetate detected in run 24 (Table S1), in which sugar
and inoculum of H. guilliermondii were at the highest loads.

4. Conclusions

The analysis conducted in this study is the first of its kind to offer a comprehensive
analysis of S. cerevisiae fermentation kinetics and chemical composition landscape under
different environmentally relevant fermentation conditions in terms of nitrogen and sugar
contents, temperature, and inoculum level of non-Saccharomyces yeast strains. The main
purpose was to systematically determine the relevant factors and interactions between the
studied winemaking parameters and fermentation chemical compounds. Even though
the optimization of metabolite production was not established as a research goal, the
polynomial regression models developed enabled the estimation of optimal values, but
the resulting data were not subjected to confirmatory fermentation analysis. With the data
analysis workflow designed for this study, we were able to clearly identify and handle
the clustering structure of results and summarizing it in an efficient way using cluster
specific PCA models. The main factors driving the variability of the clusters were identified,
particularly for the well predicted clusters 1, 2 and 4, demonstrating that the presence of
H. guilliermondii UTAD222, even though presenting a negative impact on fermentation rate
and length, contributed to the increase of ethyl acetate and to the decrease in acetic acid
and ethanol levels. The results generated using supervised and unsupervised machine
learning techniques also suggest that it is possible to increase the aromatic and fermentative
potential of H. guilliermondii UTAD222 by modulating temperature and the availability of
nitrogen and/or sugars in the medium, which would directly affect the final concentrations
of certain volatile compounds. Overall, this study gathered knowledge to guide the rational
development of mixed blends that can be used to a specific wine style as a function of
fermentation conditions.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/microorganisms10010107/s1, Figure S1: Fermentation profiles in selected experimental
conditions: (A) 150 g/L of sugar, 100 mg/L YAN, 10 ◦C; (B) 300 g/L of sugar, 100 mg/L YAN, 10 ◦C;
(C) 225 g/L of sugar, 300 mg/L YAN, 20 ◦C (Center conditions); (D) 150 g/L of sugar, 500 mg/L
YAN, 30 ◦C; (E)—300 g/L of sugar, 500 mg/L YAN, 30 ◦C, inoculated with S. cerevisiae UCD522 in
single (red) or in mixed-culture with H. guilliermondii UTAD222 (green), Figure S2: Yeast growth
profiles in selected experimental conditions, inoculated with S. cerevisiae UCD522 in single (red) or in
mixed-culture with H. guilliermondii UTAD222 (green). (A) 150 g/L of sugar, 100 mg/L YAN, 10 ◦C;
(B) 300 g/L of sugar, 100 mg/L YAN, 10 ◦C; (C) 225 g/L of sugar, 300 mg/L YAN, 20 ◦C (Center
conditions); (D) 150 g/L of sugar, 500 mg/L YAN, 30 ◦C; (E) 300 g/L of sugar, 500 mg/L YAN, 30 ◦C.
Table S1: Values of fermentation parameters and concentrations of metabolites produced, under the
thirty-one experiments.
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