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Predicting and avoiding an injury is a challenging task. By exploiting data mining 
techniques, this paper aims to identify existing relationships between modifiable 
and non-modifiable risk factors, with the final goal of predicting non-contact 
injuries. Twenty-three young soccer players were monitored during an entire 
season, with a total of fifty-seven non-contact injuries identified. Anthropometric 
data were collected, and the maturity offset was calculated for each player. To 
quantify internal training/match load and recovery status of the players, we daily 
employed the session-RPE method and the total quality recovery (TQR) scale. 
Cumulative workloads and the acute: chronic workload ratio (ACWR) were 
calculated. To explore the relationship between the various risk factors and the 
onset of non-contact injuries, we performed a classification tree analysis. The 
classification tree model exhibited an acceptable discrimination (AUC=0.76), after 
receiver operating characteristic curve (ROC) analysis. A low state of recovery, a 
rapid increase in the training load, cumulative workload, and maturity offset were 
recognized by the data mining algorithm as the most important injury risk factors. 
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Analyzing the injury risk factors to help prevent injuries in young soccer players has become a 
popular area of research in recent years. This increased interest arises from the need to prevent 
injuries, and therefore, avoid the side effects associated with them. In this regard, talent 
development stagnation (Richardson, Clarsen, Verhagen, & Stubbe, 2017), time-loss from sport 
participation and long-term sequelae (Timpka, Risto, & Björmsjö, 2008), as well as economic 
impact on the health-care system (Marshall, Lopatina, Lacny, & Emery, 2016), have been 
investigated. Notably, Polinder et al. (2016) estimated an annual cost of € 413 million in the 
Netherlands as a result of sport injuries, mainly caused by football/soccer due to the high 
incidence (30%).  
Predicting and avoiding a potential injury is a challenging task. Indeed, an injury is a complex 
multifactorial process determined by the interaction of different modifiable (e.g. strength, 
flexibility) and non-modifiable (e.g. age, gender) factors (Bahr & Holme, 2003). By 
investigating the impact of non-modifiable factors on injury risk in young soccer players, 
Venturelli et al. (2011) identified an association between height and muscular strains. Kofotolis 
(2014) found an increase in ankle sprains with increasing age, while Johnson et al. (2020) 
observed a higher injury rate related to the peak height velocity (PHV) period. On the other hand, 
among the modifiable risk factors, different aspects  have been investigated as the impact of 
neuromuscular control (Ko, Rosen, & Brown, 2018; Read, Oliver, De Ste Croix, Myer, & Lloyd, 
2018) and strength level (De Ridder, Witvrouw, Dolphens, Roosen, & Van Ginckel, 2017). 
However, as observed by Meeuwisse et al. (2007), the interaction of all these factors is not 
sufficient to induce the onset of an injury. Indeed, according to the recent dynamic model 
proposed by Windt & Gabbett (2017) the workload represents the main vehicle that increases 
the athletes’ susceptibility to injury.  
To date, several studies have already analyzed the impact of workload on injury risk in soccer 
(Bacon & Mauger, 2017; Bowen, Gross, Gimpel, & Li, 2017; Brink et al., 2010), reporting 
different methods to monitor external (e.g. GPS) and internal (e.g. heart rate, perceived exertion) 
loads (Impellizzeri, Rampinini, Coutts, Sassi, & Marcora, 2004). According to the UEFA Elite 
Club Injury Study (McCall, Dupont, & Ekstrand, 2016), internal load markers were recognized 
to be relevant in identifying alarm bells related to the risk of injuries. By investigating these 
parameters in young soccer player, Brink et al. (2010) found an association between the session-
rating of perceived exertion (S-RPE), monotony, and strain with traumatic injuries. Furthermore, 
in the same investigation, poor recovery values explained the raised injury predisposition. 
Similarly, Watson et al. (2017) reported that the injury risk increased with a high weekly and 
monthly training load. Besides, the acute: chronic workload ratio (ACWR), despite it has 
recently been questioned (Impellizzeri et al., 2021), was recognized in several studies as a valid 
tool in detecting dangerous conditions related to the onset of injuries (Andrade et al., 2020; 
Gabbett, 2016).  
A detailed analysis of studies investigating modifiable and non-modifiable injury risk factors 
shows two main drawbacks: (1) these studies often adopt linear models. This is in contrast with 
the nature of injuries, which are the result of the complex non-linear interaction between many 
different conditions (Bittencourt et al., 2016; Bourdon et al., 2017); (2) these investigations are 
often limited in identifying an association between workload, modifiable and non-modifiable 
factors, and the onset of injuries. However, as pointed out by Fanchini et al. (2018), association 
is a concept that must not be confused with the ability of prediction, for which it is not possible 
to rely on the conventional linear statistical models (e.g., multivariate linear regression). 
Predictive analytics (i.e., the ability to forecast future outcomes based on historical data) requires 
more recent data mining technologies and techniques. The reason behind the use of data mining 
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techniques is linked to the nature of sport injuries. In fact, an injury is a multifactorial 
phenomenon and data mining allows to identify non-trivial, non-linear and unsuspected relations 
in the data (Montella, de Oña, Mauriello, Riccardi, & Silvestro, 2020). Moreover, differently 
from traditional statistical models which use probability theory to make inferences about 
population parameters of interest (Johnson, Borkowf, & Albert, 2007), the main goal of data 
mining is to build predictive models (Bhardwaj & Pal, 2012).  
To the best of our knowledge, only few recent studies have adopted predictive analytics for 
injuries in soccer. Rossi et al. (2018) adopted machine learning techniques to predict non-contact 
injuries in twenty-six professional soccer players. Ayala et al. (2019), relying on pre-season 
psychological and neuromuscular measures, developed learning models to predict hamstring 
injuries in professional soccer. Similarly, Oliver et al. (2020) and Rommers et al. (2020), 
collected pre-season neuromuscular measures to identify young soccer players at risk of injury. 
Thus, there is still a lack of knowledge regarding the impact of the training load on injury risk 
in young soccer players, who may be exposed to a different predisposition to injury compared 
to adult players due to growth processes (Vänttinen, Blomqvist, Nyman, & Häkkinen, 2011) and 
to different intensity and volume of training. For this reason, the results found in an adult 
population cannot be generalized to young athletes.  
Therefore, the main purposes of the current study were to exploit data mining techniques in order 
to predict non-contact injuries in young soccer players, to identify the complex interactions 
between training load markers, modifiable and non-modifiable factors, and to shift from a 
unidimensional to a multidimensional approach. 

Twenty-three U14 male soccer players (mean ± SD: age 13.5 ± 0.26 years, body mass 51.3 ± 8.5 
kg, height 164 ± 7,3 cm) belonging to the same team were monitored during an entire season 
(2018/2019). Participants trained 3 days per week and competed once a week in an U14 sub-
elite championship. A total of 119 trainings and 30 matches were monitored. The approval for 
data collection was obtained from the club as player’s data were routinely collected over the 
course of the season (Winter & Maughan, 2009). The study was conducted in accordance with 
the Declaration of Helsinki (2013) and approved by the local research ethics committee of the 
University of Rome “Foro Italico” (code CARD 64/2020). 

 

The team’s physical therapist and strength and conditioning coach, supervised by the team’s 
physician, provided an injury standardized data collection. To avoid variations in injuries 
definitions and methodologies, which can determine significant differences in results, the data 
collection followed the indications of the "consensus statement on injury definitions and data 
collection procedures in studies of football (soccer) injuries" (Fuller et al., 2006). According to 
this model, an injury was registered if the player was unable to take full part in future soccer 
training or match play. For the purpose of this study, only non-contact injuries were included in 
the data mining model, excluding contact injuries, which by their nature are not predictable. A 
descriptive analysis of injuries in relation to type and severity has been provided in Figure 1. 
Regarding their severity, injuries were classified as follows: slight (0 day); minimal (1-3 days); 
mild (4-7 days), moderate (8-28 days), severe (>28 days) and career-ending injuries. 
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Figure 1. Injury type and severity of injuries. Severity of injuries; Slight (0 day), Minimal (1-3 days), Mild (4-7 

days), Moderate (8-28 days), Severe (>28 days). 

 

Players’ standing and sitting height were measured through a fixed stadiometer (SECA 213, 
measuring range 20–205 cm, SECA Germany), while body mass was measured through a 
portable balance (SECA 762, Germany).  
The Mirwald et al. (2002) algorithm was adopted to predict years from the peak height velocity 
(PHV), defined as maturity offset (R=0.94, and SEE=0.59). The present study employed the 
following male specific equation (Mirwald et al., 2002):  

 

 

(1)  

                                         

The session-RPE method (S-RPE) (Foster et al., 2001) was adopted to quantify players’ training 
and match loads. S-RPE scores were calculated by multiplying the duration of each training or 
match for every single player by the rate of perceived exertion (RPE) value quantified through 
the CR-10 Borg’s scale modified by Foster et al. (2001). The weekly load (WL) was obtained 
by adding the loads of all training sessions and matches over the course of a week, while 
cumulative loads were calculated for 2, 3, and 4 weeks (WL2, WL3, WL4). Moreover, monotony 
(the mean daily load divided by the standard deviation of the load over one week) and strain 
(weekly load multiplied by monotony) were estimated (Foster, 1998; Foster et al., 2001). The 
acute: chronic workload ratio (ACWR) was determined by dividing the weekly workload (acute 
load) by the average weekly workload over the previous 4 weeks (chronic load) (Gabbett, 2016; 
Malone et al., 2017). Evidence supporting an association between ACWR and injury is 
inconsistent and controversial (Impellizzeri et al., 2021), however, the debate on the usefulness 
of this parameter is still open (Seshadri et al., 2021; Zouhal, Boullosa, Ramirez-Campillo, Ali, 
& Granacher, 2021). Therefore, the ACWR was considered in the current study pending further 
studies that may definitively clarify the role of this parameter.   
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Players’ perceived recovery status was estimated adopting the modified 10-point total quality 
recovery (TQR) scale (Gjaka, Tschan, Francioni, Tishkuaj, & Tessitore, 2016; Sansone, Tschan, 
Foster, & Tessitore, 2020) before each training and match. Athletes quantified the recovery 
status considering their psychophysical cues (i.e. mood states and muscle soreness), as suggested 
by the authors of the scale (Kenttä & Hassmén, 1998). 

The injury incidence was calculated as the number of injuries per 1000h of play exposure. 
Furthermore, training injury incidence and match injury incidence were calculated separately. 

The classification and regression tree model (CART) was built to predict whether a player would 
get injured during the next training session based on training loads data (RPE, S-RPE, WL, WL2, 
WL3, WL4, Monotony, Strain ACWR), recovery status (TQR) and his biological characteristics 
(maturity offset, height and body mass). Therefore, all these features were inserted in the model 
as predictors and modelled on the binomial target variables, NO-INJURY (NI) and NON-
CONTACT INJURY (NCI).  
IBM SPSS Modeler 18.1 software was employed to develop the CART and to evaluate the 
performance of the model. 

Standard pre-processing techniques were adopted to optimize the performance of the learning 
model. As first step, a data cleaning process was performed. Tuples reporting anomalies or errors 
were deleted and missing training loads data (0.6%) were replaced by the mean value of the 
player’s corresponding parameter. All training load features were re-scaled adopting z-score 
transformation. Differently, a discretization process was employed for maturity offset, height, 
and weight parameters in order to find meaningful intervals (low, medium, high). Particularly, a 
fixed-width binning method was adopted, and three different bins (b1, b2, b3) were created. The 
following thresholds were identified: 

• Maturity offset: (b1: -1.3 ≤ maturity offset < -0.55 years, b2: -0.55 ≤ maturity offset < 
0.19 years, b3: 0.19 ≤ maturity offset ≤ 0.95 years). 

• Height: (b1: 146 ≤ height < 156 cm, b2: 156 ≤ height < 166 cm, b3: 166 ≤ height ≤ 176 
cm). 

• Body mass: (b1: 34 ≤ body mass < 46 kg, b2: 46 ≤ body mass < 58 kg, b3: 58 ≤ body 
mass ≤ 70 kg). 

These methods ensure that each feature equally contributes to the learning process (D. Singh & 
Singh, 2020). As previously reported, CART decision tree algorithm was employed in the 
current study. Decision tree-based models generally do not require a re-scaling process. 
However, it might help with data manipulation and when it is needed to compare the 
performance with other algorithms. Therefore, re-scaling was adopted in the current study 
although not necessary to increase CART performance.  
At this stage, to evaluate data mining algorithm performance, the dataset was split in training set 
and test set. A total of 2501 observations formed the dataset, 70% of them made up the training 
set and 30% the test set. However, the dataset was highly imbalanced since the class NI was the 
most represented condition (98%). Class imbalance refers to the condition when one class is less 
represented than the other (Kuhn & Johnson, 2013). An imbalanced dataset, as in our case, can 
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impair the predictive ability of the data mining model (Kuhn & Johnson, 2013). As suggested in 
previous studies (Carey et al., 2018; Ruddy et al., 2018), to cope class imbalance,  synthetic 
over-sampling techniques (SMOTE) were applied to training set. The SMOTE technique 
generates randomly new examples of the minority class allowing to rebalance the dataset 
(Chawla, 2005). The SMOTE technique was applied only on the training set, while the test set 
was separated to preserve the original samples.  
Finally, to improve prediction performance of the model and to have a better understanding of 
data, a feature selection was performed. Particularly, a filter method based on the use of 
Pearson’s correlation coefficient was employed in the current study (Chandrashekar & Sahin, 
2014).  

A wide range of algorithms were developed in data mining field. Support Vector Machine 
(SVM), Neural Networks (NN) and ensemble learning methods such as Random Forests (RF) 
became popular in binary classification tasks due to their ability to identify non-linear patterns 
(Cortez & Embrechts, 2013). Despite their accurate predictions, these algorithms are generally 
considered black-box models due to their inability to be easily understood by humans (Bourdon 
et al., 2017; Cortez & Embrechts, 2013). Considering the importance of providing practical 
implications in sports science field (Bourdon et al., 2017), CART decision tree algorithm was 
selected for the specific purpose of the current study. Indeed, CART decision tree presents 
several advantages: (1) it can be used for binomial and multinomial classification (2) it can 
handle both numerical and categorical data, and (3) as discussed in previous studies (S. Singh & 
Gupta, 2014), CART provides an easy interpretability of the outcome model from a human 
perspective.  
All data pre-processing steps performed before the CART algorithm setting were presented in 
Figure 2.  
 

 
Figure 2. Data pre-processing steps 
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A tree is a directed acyclic graph whose undirected version is still acyclic. A tree is called a 
binary tree if each node has at most two outgoing edges (an edge is a link from a node, called 
parent node, to another node, called child node). In a binary tree, the children of a parent are 
referred to as the left children and the right children. The root node is the only node in the tree 
that has no incoming edges. A node with no children is called a leaf node. 
Classification tree is a nonlinear and nonparametric supervised learning technique for predictive 
analytics used in statistics, data mining, and machine learning. Our study particularly focused 
on the framework of the CART algorithm (Breiman, Friedman, Stone, & Olshen, 1984), using 
the Gini index as node impurity measure.  
In our study, we adopted two criteria to stop the growth of the tree: (1) minimum decrease in the 
impurity equal to 0.0001; and (2) maximum number of levels of the tree equal to eight. 
Moreover, pruning technique was employed to avoid overfitting. Considering the imbalanced 
dataset, a cost-sensitive leaning approach was employed. The cost matrix for cost-sensitive 
classifier was set to C  where a false positive had a cost of 1.5 and a false negative had 
a cost of 1. This setting was selected to minimize false positives.  
The hyperparameters used within the CART model were summarized in table 1. 

 

Table 1. Hyperparameters tuning 

 

To measure the performance of the data mining model, sensitivity and specificity were 
calculated. Sensitivity (true positive rate) measures the ability of the model to correctly detect 
the positive condition (NCI). It was calculated as follows: Sensitivity= [true positive / (true 
positive + false negative)] x 100. Instead, Specificity (true negative rate) measures the ability of 
the model to correctly detect the negative condition (NI). It was calculated as follows: Specificity 
= [true negative / (true negative + false positive)] x 100.  
Moreover, once the classification tree model was provided, a ROC analysis was adopted to 
evaluate its predictive accuracy. Through this method, a graphical plot was produced, where the 
sensitivity on the vertical axis against the specificity on the horizontal axis were represented. 
When ROC curve was created, the area under the curve (AUC) was calculated to estimate the 
classification accuracy of the model. According to Hosmer Jr et al. (2013), an AUC of 0.5 
suggests no discrimination, between 0.51 and 0.69 is considered poor discrimination, 0.70-0.79 
is acceptable, 0.8 to 0.9 is considered excellent, and more than 0.9 outstanding. 

MODEL HYPERPARAMETERS 

CART  

1. Maximum Tree Depth: 8 
2. Overfitting prevention: pruning technique 

3. Misclassification costs:  C  

4. Impurity Measure: Gini 
5. Minimum change in impurity: 0.0001 
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A total of 57 non-contact injuries were recorded during the entire soccer season. An overall 
injury incidence of 14.5 per 1000 h was revealed, with a training injury incidence of 12.3 and a 
match injury incidence of 29.5 per 1000 playing hours.  More than half of injuries (67%) were 
classified as muscle strains. Further information regarding injury type and severity are presented 
in Figure 1.  
A classification tree analysis was adopted to predict the onset of injuries. After the feature 
selection process, the following independent injury risk factors were included in our model: 
height, body mass, maturity offset, RPE, strain, WL2, WL3, WL4, ACWR and TQR.  
The model’s sensitivity was 70% and its specificity was 79%. The outcomes produced by the 
CART algorithm tested on the test set were presented in the confusion matrix (Table 2). After 
the ROC analysis, the model exhibited an AUC of 0.76, showing an acceptable discrimination.  
 

Table 2. Confusion Matrix of INJURY classification 

 
TP=true positive 
FP=false positive 
FN=false negative 
TN=true negative 
 

The CART classification tree produced 23 nodes, of which 12 terminal nodes. To facilitate the 
understanding of the decision tree model, the values, which were previously re-scaled adopting 
z-score transformation or clustered through the binning procedure, were reconverted into their 
original value. The CART tree, modelled on the training set data, was presented in Figure 3. Red 
color was used to display the NI condition, while blue color the NCI condition. The first split 
based on the recovery status (TQR). A TQR higher than 8 AU (node 2) produced a greater 
proportion of the NI condition (NI=80.2%). The node 2 further split in relation to WL3. WL3 
lower than 2532 AU, associated with a strain lower than 909.68 AU (node 9), produced only NI 
conditions. 
Instead, node 1 split according to ACWR. An ACWR lower than 0.76 reduced the probability 
of the NCI condition. Node 4 also split in relation to WL3. A WL3 lower than 5455 AU together 
with a WL4 higher than 3740 AU increased the prevalence of the NCI condition (node 12, 
NCI=74.73%). Instead, node 16 further split according to maturity offset. Of the 115 
observations present inside the node 17 (maturity offset < -0.55), 56.5% were represented by the 
condition NI. Differently, of the 1186 observations inside the node 18, 79.59% were represented 
by the condition NCI. Both nodes (17, 18) produced terminal nodes based on the TQR values. 
Variable importance analysis (Figure 4) identified TQR as the most important variable. 

 PREDICTED CLASS 

INJURY NO-INJURY 

A
C

TU
A

L 
C

LA
SS

 INJURY 14 (TP) 6 (FN) 

NO-INJURY 154 (FP) 587 (TN) 
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Figure 3. CART classification tree model. TQR=total quality recovery; ACWR= acute: chronic workload ratio; 
WL=weekly workload; WL3= cumulative workload of the previous 3 weeks; WL4= cumulative 
workload of the previous 4 weeks 
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Figure 4. Variable importance for the dependent variable INJURY. TQR=total quality recovery; ACWR= acute: 
chronic workload ratio; WL2= cumulative workload of the previous 2 weeks; WL3= cumulative 
workload of the previous 3 weeks; WL4= cumulative workload of the previous 4 weeks. 

 

The data mining techniques applied in this study have proven to be effective in predicting with 
acceptable accuracy the onset of non-contact injuries in young soccer players. Particularly, our 
model revealed how recovery status, internal load markers, modifiable (height, body mass) and 
non-modifiable factors (maturity status), interacting each other, can modify the predisposition 
to risk of injuries. Among the wide range of data mining algorithms, the CART was selected. 
Although other algorithms such as k-nearest neighbors (KNN) or extreme gradient boosting 
(XGBoost) showed a good predictive ability in previous studies (Rommers et al., 2020; Vallance, 
Sutton-Charani, Imoussaten, Montmain, & Perrey, 2020), they are often considered as black-
box models. The reason of this fact is linked to their difficulties of interpretation and their 
inability to provide information regarding the interaction between the different features (Cortez 
& Embrechts, 2013).   
The main purpose of this study was not only to predict non-contact injuries in young soccer 
players, but also to identify the complex interactions between training load markers, modifiable 
and non-modifiable factors adopting a data mining approach. Therefore, the CART algorithm 
was implemented to support coaches and physical trainers in understanding the mechanism 
underlying the risk of injury. Being able to predict injuries in young athletes would allow to limit 
the side effects associated with them (e.g., talent development stagnation, health care costs, long-
term sequelae). Furthermore, identifying the mechanism underlying them would help sport 
practitioners in properly managing the weekly training load and in promoting adequate 
prevention strategies.  
The model implemented in our study exhibited an acceptable discrimination (AUC=0.76) 
according to Hosmer Jr et al. (2013) classification. The AUC value is in line with previous 
studies (Rossi et al., 2018). Moreover, the sensitivity and specificity found in the current study 
(70% and 79%) were similar to the results (77% and 84%) reported by Ayala et al. (2019). 
However, it is necessary to specify that these authors conducted their studies on different 
populations, using different parameters and adopting different algorithms. 
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The classification tree model built in the current study produced two branches starting from the 
recovery status (Figure 3), that was recognized as the most relevant feature after variable 
importance analysis (Figure 4). When the TQR value was higher than 8 AU, a higher proportion 
of the NI condition (80.2%) was identified by the model. However, when the high recovery 
status was accompanied by a lower WL3 (<2532 AU) and higher strain values (>909.68 AU), 
the risk of injury increased, as witnessed by the higher proportion of the NCI condition 
(NCI=83.72%). In accordance with previous studies, a higher cumulative workload may be 
protective against injury (Malone et al., 2017). Indeed, a higher workload over a chronic period 
may induce positive physical adaptation, reducing the influence of fatigue and consequently the 
risk of injury (Hulin et al., 2014). In line with these findings, also in the current study, when a 
low cumulative workload was associated to a higher strain, the probability of injury increased. 
The players’ low ‘fitness’ level (chronic load) exhibited in this study (node 5) might not be 
sufficient to cope with a high strain (Delecroix, Mccall, Dawson, Berthoin, & Dupont, 2019), 
determining higher predisposition to injury (node 10).  
Moving to the other branch, a TQR score lower than 8.0 AU produced a higher proportion of the 
NCI condition (NCI=58.46%). Indeed, an imbalance between recovery status and training load 
may represent a dangerous condition in terms of injury risk, as previously highlighted by Kenttä 
& Hassmén (1998). However, according to Wang et al. (2020), the probability of non-contact 
injury drastically reduced with an ACWR lower than 0.76 (node 3). Differently, an ACWR 
higher than 0.76 (node 4) produced a greater proportion of the NCI condition (63.80%). 
Nevertheless, the threshold value found in the current study by the classification tree model 
(0.76) is lower compared to the ‘danger zone’ (>1.5) identified by Gabbett (2016). This may be 
explained by the individual characteristics of the athletes (e.g., chronological age, biological age, 
years of training) which may lead to a different individual training loads tolerance. Although the 
usefulness of the ACWR was recently questioned (Impellizzeri et al., 2021), several studies 
identified an association between this parameter and the risk of non-contact injuries (Fanchini et 
al., 2018; McCall, Dupont, & Ekstrand, 2018). However, despite the association, the poor 
ACWR predictive ability revealed by these studies may be related to the fact that this parameter 
was studied within unidimensional or linear approaches. As previously stated, an injury is a 
complex non-linear multifactorial phenomenon, therefore, as other training load markers, 
ACWR could provide relevant information if inserted inside a multidimensional approach as 
that of data mining. The role of this parameter in a complex multidimensional approach is outside 
the scope of this paper, and we leave it as a future work.  
Continuing the interpretation of the classification tree model, node 4 further split according to 
WL3. Also in this case, a higher WL3 (>5455 AU) reduced the probability of non-contact injury 
(NCI=83.70%). Nevertheless, a higher proportion of the NCI condition (NCI=81.25%) was 
identified if a higher WL3 was associated with extremely intense training sessions (node 14, 
RPE>8 AU). Similarly, a RPE higher than 2 AU (node 16) increased the probability of NCI if 
associated with a WL4 greater than 3740 AU (NCI=76.40%). As previously reported, high 
cumulative workload may prevent the risk of non-contact injuries. However, these results also 
highlight that injury risk may increase when high loads are maintained for a long period (Jaspers 
et al., 2018). We could speculate that high cumulative loads raise the state of fatigue in young 
players, making them more prone to injury. Consequently, fatigued athletes, subjected to 
strenuous exercise (high RPE values), may exhibit higher predisposition to injury. Therefore, a 
daily, weekly, and monthly training load monitoring is essential to promptly identify alarm bells 
related to the risk of non-contact injury. 
In addition, node 16 further split in relation to maturity offset, showing a higher proportion of 
the NCI condition for players characterized by values greater than -0.55 (node 18). The predicted 
maturity offset, defined as the years before or after PHV (Mirwald et al., 2002), is a useful non-
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invasive somatic indicator that predicts the time during which the athletes will experience their 
adolescent growth spurt (Malina, Bouchard, & Bar-Or, 2004). Particularly, the 6 months before 
and after PHV (maturity offset ranging from -0.5 to +0.5) have been identified as a critical period 
for the onset of injuries in young soccer players (Bult, Barendrecht, & Tak, 2018; van der Sluis 
et al., 2014). During this time, known also as the period of ‘adolescent awkwardness’ 
(Philippaerts et al., 2006), young athletes experience a decline in performance and motor control. 
The alteration in motor coordination combined with a rapid growth in muscle-, tendon-, 
ligament- and bone-structures may increase the risk of injuries. The classification tree model 
developed in the current study confirms these results: the players entering in the PHV period 
(maturity offset >-0.55) exhibited a greater probability of non-contact injuries compared to less 
mature players. Continuing the tree model discussion, it is worthy to note how both node 17 and 
node 18 split according to the TQR score. Interestingly, low TQR values determined a dangerous 
condition for less mature players (node 19), while TQR scores higher than 4 AU increased 
probability of NCI in more mature players. These results allow us to further emphasize the 
concept that players, characterized by different biological status, may exhibit contrasting 
physiological responses to training and show a different predisposition to injury (Towlson et al., 
2020). The other features (e.g., height, body mass, WL2, WL4), as displayed in Figure 4, were 
not considered relevant within the prediction model. 
In summary, our classification tree model confirmed that: (1) a poor recovery status (node 1) 
may increase the risk of injuries, (2) a ‘spike’ in the training load (node 4), as well as an 
inadequate training stimulus (low chronic training load), may increase the susceptibility to injury 
(node 5 and node 7), (3) maturity status may influence the predisposition to non-contact injuries, 
particularly in more mature players (node 18), (4) strenuous exercise may increase susceptibility 
to injury (node 14). Therefore, the classification tree model allowed to overcome the concept of 
association, to increase the ability to predict injuries (Fanchini et al., 2018),  and to move from 
a unidimensional to a multidimensional approach.  
Although the CART revealed acceptable discrimination and allowed to understand the complex 
interactions between features, the application of the model within a real context needs some 
considerations. First of all, the model was able to correctly predict 14 of the 20 non-contact 
injuries included in the test set, but at the same time it produced a high number of false positives 
(low precision), as shown in Table 2. Although from a clinical point of view the false negatives 
may produce a worse health impact (Petticrew, Sowden, Lister-Sharp, & Wright, 2000), at the 
same time a high number of false positives may lead a coach to ‘stop’ a young player several 
times, increasing the time-loss from sport participation.  
Moreover, the CART was tested on a sample of only twenty-three U14 young soccer players and 
PHV, a specific biological indicator for adolescent athletes, was employed in the model. 
Therefore, the results may not be generalized to older soccer players. Future studies should 
strengthen the model increasing the sample size, involving players of different ages and in 
multiple seasons, in order to improve the predictive ability of the model.  
Predicting an injury with high accuracy continues to be a complex task due to its multifactorial 
nature. Despite the limitations previously reported, the following study allowed to investigate 
the complex interactions between workload, modifiable and non-modifiable risk factors, and to 
move from a unidimensional to a multidimensional approach.  

The classification tree model developed in the present study was able to predict with acceptable 
discrimination non-contact injuries in young soccer players. Data mining allowed to investigate 
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how workload, modifiable and non-modifiable risk factors, interacting with each other, modify 
predisposition to injuries. The model could be used to identify players at risk of injury and 
consequently to promote prevention strategies. However, to further improve our prediction 
results, as future work we aim to collect more parameters (e.g., external load, heart rate and sleep 
quality data), and to increase sample size. Moreover, we aim to acquire more training data 
(during multiple seasons), for example by exploiting the various semantic technologies proposed 
in the computer science literature (Cima, 2017; Cima, Lenzerini, & Poggi, 2017), which allow 
obtaining high-quality data without (or, with little) manual intervention. 

The authors would like to thank the club Pro Calcio Tor Sapienza (including contact persons, 
medical staff, coaching staff, and all players) for their participation in the study. 
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