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Abstract

In the last few decades the accessibility and importance of digital texts
have been increasing exponentially. They are now present in almost every
aspect of modern life. Text classification is therefore an active research area
motivated by many real-world applications. Even so, handling the overload
of digital texts still involves some inherent challenges, in particular the high-
dimensionality and high-scale of the data necessary to represent the texts,
the difficulty of introducing tangible human knowledge into the learning task
and the subjectivity of classification.

In this thesis we propose new and efficient techniques for handling some of
these challenges, based on an inductive inference system. We describe inves-
tigations into the applications to text classification of kernel-based learning
machines and establish a knowledge integration framework to deal with those
difficulties.

One key source of knowledge in text classification is unlabeled texts,
usually much less expensive and easier to gather than labeled ones. We
investigate several margin-based methods to retrieve and use this potential.
We show that the proposed enhancements integrate new knowledge into the
learning procedures and show improvements over the baseline performances.

Kernel methods, viz. support vector machines (SVMs) and relevance vec-
tor machines (RVMs), constitute state-of-the-art learning algorithms. While
SVMs rely on the Structural Risk Minimization principle to effectively reduce
the training error, RVMs offer a fully probabilistic framework that provides
sparse models. The concepts of kernels and the kernel trick permit their suc-
cessful application to practically any given application. We have proposed a
combination of both SVMs and RVMs in a hybrid setting, where the RVM
confidence is used to determine the SVMs’ examples, outperforming both

baseline learning machines.



Several scaling strategies for kernel methods were investigated. We have
proposed three different approaches. First we use a similitude measure to
remove unnecessary documents from the training set. Second, we apply a
divide-and-conquer strategy based on incremental, boosting and ensemble
techniques that not only improves performance, but also speeds up proce-
dures. Finally, we have successfully deployed the whole text classification
system in a cluster distributed environment, obtaining significant speedups.

The techniques developed in this thesis deal with some of the most im-
portant challenges in text classification and use different approaches, such
as active learning, ensembles and cluster environments. Experimental re-
sults show a general classification performance improvement, along with a
reduction of processing time that can be crucial in real applications.

We finish the thesis by proposing and discussing a framework for text
classification systems that includes the contributions made with this thesis,

opening windows to further research in the field.

KEYWORDS: Text Classification, Support Vector Machines, Relevance
Vector Machines, Inductive Learning, Active Learning, Ensembles, Distributed

Learning Systems.



Resumo

Nas tltimas décadas a disponibilidade e importancia dos textos em for-
mato digital tem vindo a aumentar exponencialmente, encontrando-se neste
momento presentes em quase todos os aspectos da vida moderna. A classi-
ficacdo de textos é deste modo uma area activa de investigacao, justificada
por muitas aplicagdes reais. Ainda assim, lidar com a sobrecarga de tex-
tos em formato digital envolve desafios inerentes, nomeadamente as elevadas
dimensionalidade e escala, necessarias para representar os textos, a dificul-
dade de introduzir conhecimento humano no processo de aprendizagem e a
subjectividade da classificacao.

Nesta tese propomos novas técnicas para lidar de um modo eficiente com
tais desafios com base num sistema de inferéncia indutiva. Descrevemos a
aplicacdo de maquinas baseadas em kernels a classificagdo automatica de
documentos e estabelecemos uma framework que integra conhecimento de
forma a melhorar o desempenho do sistema.

Uma fonte importante de conhecimento em classificagdo de texto sdo
0s textos nao classificados, normalmente menos onerosos e mais simples de
obter do que os ja classificados. Investigamos varios métodos baseados na
margem de classificacdo e fazemos uso do seu potencial. Mostramos que os
melhoramentos propostos integram novo conhecimento nos procedimentos de
aprendizagem e apresentam melhorias em relagao ao desempenho de base.

Métodos baseados em kernels, nomeadamente méquinas de vectores de
suporte (SVMs) e méaquinas de vectores relevantes (RVMs), sdo algoritmos
estado-da-arte. Enquanto as SVMs usam o principio da Minimiza¢do do
Risco FEstrutural para reduzir eficazmente o erro de treino, as RVMs sao
completamente probabilisticas, promovendo a esparsidade dos modelos. Os
conceitos de kernel e de kernel trick permitem a sua aplicacdo a quase todas

as aplicacoes. Foi proposta uma combinacdo de SVMs e RVMs numa con-



figuracao hibrida, onde a confianca de classificacao das RVMs é usada para
determinar os exemplos a classificar pelas SVMs. Esta configuragdo supera
ambas as maquinas de aprendizagem quando usadas isoladamente.

Foram investigadas varias estratégias com métodos baseados em kernels
para escalar os problemas de classificagdo de texto. Trés novas abordagens
foram propostas: primeiro usamos uma medida de similitude para remover
documentos desnecessarios do conjunto de treino; segundo, aplicamos uma
estratégia de dividir para reinar baseada em técnicas incrementais, técnicas
de boosting e aplicacao de ensembles que, ndo s6 acelera 0s processos, como
melhora o seu desempenho; finalmente distribuimos eficazmente todo o sis-
tema de classificacdo de texto num ambiente de cluster, obtendo speedups
significativos.

As técnicas desenvolvidas no ambito desta tese lidam com alguns dos
desafios mais importantes da classificacdo de textos usando abordagens vari-
adas, tais como aprendizagem activa, ensembles e ambientes distribuidos.
Os resultados experimentais mostram uma melhoria geral do desempenho de
classificagdo e, simultaneamente, uma reducao do tempo de processamento
que pode tornar-se crucial em aplicagoes reais.

Terminamos a tese apresentando as conclusdes do trabalho desenvolvido
e discutindo uma framework para sistemas de classificagao de texto que inclui
as contribuigoes atingidas com esta tese e linhas para investigacao futura na

area.

PALAVRAS-CHAVE: Classificacao de texto, Maquinas de Vectores de
Suporte, Maquinas de Vectores Relevantes, Aprendizagem indutiva, Apren-

dizagem Activa, Ensembles.



Acknowledgments

I would like to express my most deep gratitude to Professor Bernardete
Ribeiro. She has always been an enthusiastic advisor, providing insight,
encouragement, and a broad perspective.

I would also like to acknowledge Professor Andrej Dobnikar and Dr.
Uros Lotri¢, for the fruitful cooperation and discussions in distributed text
classification systems, that greatly contributed for this work. I extend my
warmest thanks to Professor Andrew Sung for the discussions and support.

Many different people provided help, support, and input that brought
this thesis to fruition. This work would not have been possible without
the support of the School of Technology and Management (ESTG) of the
Polytechnic Institute of Leiria (IPLeiria), and the effort of all my colleagues,
that enabled me to focus on this task. I also wish to thank the Center
of Informatics and Systems (CISUC) of the Informatics Department of the
Science and Technologies Faculty of the University of Coimbra, for the means
provided during my research activities. Finally, I also express my gratitude to
the Portuguese Science and Technology Foundation (FCT), for the financial
support during this period.

To my friends and family, for their love and support during uneasy times;
to my husband, Nuno, for always giving me the faith and confidence to endure

and enjoy it all; and to my son, Miguel, for his constant joy and affection.

Coimbra, November 2008
Catarina Helena Branco Simoes da Silva






Em memdria do meu pai.

“A felicidade € como a pluma
Que o vento vai levando pelo ar
Voa tao leve

Mas tem a vida breve

Precisa que haja vento sem parar.”

in “A felicidade”, Vinicius de Moraes

Ao Miguel, a minha pluma e ao Nuno, o meu vento.






Contents

Contents
List of Figures
List of Tables

1 Introduction

1.1 Motivation of the thesis . . . . . . . . .. ... ... .. ...
1.2 Challenges and contributions of the thesis . . ... ... ...
1.3 Outline of the thesis . . . . . . . . . . . ... .. .. ....

Background on text classification
2.1 Imtroduction . . . . .. .. .. ..o
2.2 Problem setting . . . . ... .. oL Lo o
2.3 Applications of text classification . . . . .. ... .. ... ..
2.3.1 Document organization . ... ... ... ... ...
2.3.2 Text filtering . . . . .. . ... ...
2.3.3 Word sense disambiguation . . ... ..........
2.3.4 Other applications . . . . . ... ... ... ... ...
2.4 Document representation. . . . . . . ...
2.5 Pre-processing text . . . . . ... ..o oL
2.5.1 Featureselection . . ... ... ... ... .......
2.5.2 Feature extraction . ... ... ... ... .. .....
2.6 Classifiers . . . . . . . .. . e
2.6.1 Rocchio’smethod . . . . . . . ... ... ...
2.6.2 Decision treesand rules . . . . .. ... ... ... ..
263 NaiveBayes. ... ... ... ... ... ... .. ..
2.6.4 K-nearest neighbor . . . . . ... ...

© o ot G



2.6.5 Neural networks . . .. . .. .. .. ... .. ..., 27

2.6.6 Kernel-based learning machines . . . . . . ... .. .. 29
2.6.7 Committees . . . . . . .. ... 30
2.6.8 Activelearning . . . . ... ... oL L. 33
2.6.9 Other methods . . ... ... ... ... ........ 34
2.7 Evaluation . . . . ... ... 34
2.7.1 Performance criteria . . . . . .. .. ... ... ... 35
2.7.2 Document corpora . . . . .. ... ... 38
2.8 Evaluation of pre-processing methods . . . . . .. ... .. .. 41
2.9 Conclusion. . . . . . ... 44
Kernel machines for text classification 47
3.1 Imtroduction . . . . . . ... ... 47
3.2 Kernel methods . . . . . . ... ... . oo, 47
3.3 Support vector machines . . . . . .. ... ... L. 48
3.3.1 Linear hard-margin SVMs . . . . . ... ... ..... 50
3.3.2 Soft-margin SVMs . . . ... ... ... ... 53
3.3.3 Nonlinear SVMs . . . . ... ... ... ... ... 55
3.4 Relevance vector machines . . . . . . ... ... 56
3.4.1 Bayesian approaches . . . . ... ... ... 57
342 RVMapproach . . ... ... ... ... ....... 58
3.5 Baseline kernel machines performances . . . . . . ... .. .. 62
3.5.1 SVM performance . . ... ... .. ... ....... 62
3.5.2 RVM performance ... ... .............. 64
3.5.3 Discussion . . . . ... .o o 67
3.6 Conclusion. . . . . ... ... 68
Enhancing SVMs for text classification 69
4.1 Introduction . . . . . . . .. ... 69
4.2 Incorporating unlabeled data . . . . .. ... ... ... ... 70
4.2.1 Background knowledge and active learning . . . . . . . 72
4.2.2 Experimental results . . . . . ... ..o 74
4.2.3 Combining both approaches . . . . . . ... ... ... 78
424 Analysisofresults . ... .. ... ... ... ... 79
4.3 Using multiple classifiers . . . . . . .. ... ... 0. 82
43.1 SVMensembles . . . . . ... ... ... ... ... 84
4.3.2 Experimental results and analysis . . . . . . ... ... 85

i



4.4 Conclusion. . . . . . . e

Scaling RVMs for text classification

5.1

Introduction . . . . . . . . ... .o

5.2 Scale reduction approaches . . . . . .. ... ... ... ....

5.3

5.2.1
5.2.2

Active learning . . . . . ... oL oL

Similitude measure . . . . . . . ... .. ... ..

Divide-and-conquer approaches . . . . . .. .. ... .. ...

5.3.1
5.3.2
5.3.3
5.34

Incremental RVM . . . . . . . . ... ... ... ...
RVM Boosting . . . .. .. .. ... ...
RVM Ensemble . . . . . . . . . ... ... ...

Analysisof results . . . .. .. ... .. ... .. ...

54 Hybrid RVM-SVM approach . . . . ... ... ... ......

5.5 Conclusion . . . . . . . ...

Distributing text classification

6.1

Introduction . . . . . . . . ... L.

6.2 Related work . . . . . . . . . . ... ...

6.2.1 Distributed computing platforms . . .. .. ... ...
6.2.2 Distributed applications . . . . . ... ... ... ...
6.3 Deployment in the distributed environment . . .. ... ...
6.3.1 Task scheduling and direct acyclic graphs . . . . . ..
6.3.2 DAG design in a distributed environment . . . .. ..
6.3.3 Distributed environment for the experimental setup . .
6.3.4 Model of the environment . . . . ... ... ... ...
6.4 Design of distributed scheduling schemes . . . . . . . .. ...
6.4.1 Dataflow in text classification . . . . .. .. ... ...
6.4.2 Optimization of scheduling schemes . . . . . . . .. ..
6.5 Experimental results . . . .. ... ... ... 000,
6.5.1 Processing time . . . . . . . .. ...
6.5.2 Classification performance . . . . . . . ... ... ...
6.5.3 Discussion of results . . . ... ... ... ...
6.6 Conclusion. . . . . . ... . . e
Conclusions
7.1 Introduction . . . . . . .. . ..

7.2 Discussion . . . . . . . . e e

iii

91
91
92
93
97
100
100
102
106
107
110
113

117
117
118
119
120
122
122
123
126
127
128
129
130
137
137
142
143
145



7.3 Conclusions . . . . . . . . . e 150

74 Future Work . . . . . ... 152

A REUTERS-21578 155
A1l Introduction . . . . . . . . . .. .. 155
A2 History . . . . . . .. 155
A3 Formatting . ... ... ... 156
A4 The REUTERS tag . . . . . . . . . . .. .. ... ... .... 157
A.5 Document-internal tags . . . . ... ... ... ... L. 159
A6 Categories . . . . . . ... 161
A.7 Using Reuters-21578 for text categorization research . . . . . 162
A.7.1 The modified Lewis ("ModLewis") split . . ... ... 162

A.8 The modified Apte ("ModApte") split . . . ... ... .... 163
A9 Stopwords . . . . . ... 165

B RCV1 - Reuters Corpus Volume I 167
B.1 Introduction . . . . . . . .. .. ... ... .. 167
B.2 Thedocuments . . ... .. .. ... ... .. .. ... ... 168
B.3 Thecategories. . . . . . . . .. . ... 169
B.3.1 Topiccodes . . . . . . . .. ... 169

B.3.2 Codingpolicy . . . . . . ... oo 170

B4 Stopwords . . . .. ... .. 170

C Published materials 173
C.1 Journal papers . . . . . . . . . .o 173
C.2 Conference papers . . . . . . . oo v vt i e 173
C.3 Reports . . . . . . . . 176
Bibliography 177

iv



List of Figures

21
2.2
2.3
24
2.5
2.6

3.1
3.2
3.3
34
3.5

4.1
4.2

5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8

6.1
6.2

Text classification overview. . . . . .. .. .. ... ...... 12
Term frequency representation of a text document. . . . . . . 16

Term by document matrix representing a document collection. 17

Feedforward neural network with one hidden layer. . . . . . . 28
Reuters-21578 document. . . . . . ... ... 40
Evaluation of pre-processing methods with ROC graph. . .. 44

Possible hyperplanes separating positive and negative examples. 50
SVM optimal separating hyperplane and separating margin, p. 51

Nonlinearly separable training set projection. . . . ... . .. 55
RVM two-class classification example. . . . . ... ... ... 62
Quadratic model of RVM training times. . . . . . . . ... .. 65
Unlabeled examples classified by an SVM model. . . . . . .. 73

ROC graph for the baseline SVM inductive classifiers, back-

ground knowledge, active learning and combined approaches. 81

Quadratic model of RVMs training times. . . . ... ... .. 92
ROC curves for RVMs with similitude measure. . . . . . . .. 100
Divide-and-conquer RVM approaches. . . . ... ... .. .. 101
ROC curves for divide-and-conquer RVM - Acquisitons. . . . 108
ROC curves for divide-and-conquer RVM - Trade. . . . . . . . 109
Two-level hierarchical RVM-SVM hybrid model. . . . . . . .. 110
F1 performance comparison of hybrid RVM-SVM levels. . . . 112
F1 performance comparison of hybrid RVM-SVM with SVM

and RVM baselines. . . . . .. ... .. ... .......... 113
Example of task distribution. . . . . ... ... .00, 125
Time to transfer data in Condor and Alchemi. . . . . . . . .. 127



6.3 Computation time dependence on input file size. . . . . . ..
6.4 Text classification dataflow represented using a DAG. . . . . .
6.5 Model of execution times vs. number of processors. . . . . . .
6.6 Text classification DAG for the SVM model (Reuters-21578).
6.7 Text classification DAG for the SVM model (RCV1). . . . ..
6.8 Text classification DAG for the RVM model (Reuters-21578).
6.9 Processing times for SVMs and RVMs with optimized DAGs.
6.10 Processing times for ensemble models with optimized DAGs. .

7.1 Framework for text classification. . . . . . . . . . .. .. ...

7.2 Text classification context. . . . . . . ... ..o,
A.1 Example of a Reuters-21578 document. . . . . . . ... .. ..

B.1 Example of a RCV1 document. . . . ... ... ........

vi



List of Tables

2.1 Contingency table for binary classification. . . . . . . . . . .. 36
2.2 Performance measures for binary classification. . . . . .. .. 36
2.3 Positive documents for Reuters-21578 categories. . . . . . . . 39
2.4 Positive documents for RCV1 categories. . . . . .. ... ... 41
2.5 Testing conditions of pre-processing methods. . . . . .. ... 42
2.6 Performances for different pre-processing methods. . . . . . . 42
2.7 FP and FN for different pre-processing methods. . . .. ... 43
3.1 Performances for SVM with Reuters-21578. . . .. ... ... 63
3.2 Performances for SVM with RCV1. . . . .. ... ... .. .. 64
3.3 Performances for RVM with Reuters-21578. . . . . ... ... 66
3.4 Performances for RVM with RCV1. . . . .. ... ... ... . 67
3.5 Comparison of baseline SVM and RVM performances. . ... 68
4.1 Baseline SVM performances with Reuters-21578. . . . . . .. 75
4.2 Background knowledge performances with Reuters-21578. . . 76
4.3 Active learning performances with Reuters-21578. . . . . . . . 77
4.4 Combined background knowledge and active learning perfor-
mances with Reuters-21578. . . . . .. ... .. ..., 78
4.5 F1 average performance for the baseline and unlabeled ap-
proaches with Reuters-21578 ModApte and Small splits. . . . 79
4.6 Comparison of the proposed approaches with TSVM using
Reuters-21578 ModApte Split. . . . . . .. . .. .. ... ... 80
4.7 TFalse positive rate and true positive rate for the unlabeled
approaches with Reuters-21578 ModApte and Small splits. . . 80
4.8 F1 performance for SVM ensemble base classifiers. . . . . . . 86
4.9 Combinations of SVM base classifiers on ensembles. . . . . . . 86
4.10 F1 performances for SVM ensembles (A-F). . ... ... ... 87

vii



4.11 F1 performances for SVM ensembles (G-K). . . . ... .. .. 87
4.12 Ordered F1 performances of the SVM ensembles. . . . . . .. 88

4.13 Average false positives and false negatives for SVM ensembles. 89

5.1 Performances for RVM active learning with linear kernel. . . . 96
5.2 Performances for RVM active learning with cosine kernel. . . 97
5.3 Summary of RVM active learning averaged results. . . . . . . 97
5.4 Performances for RVM using a similitude measure. . . . . . . 99
5.5 Performances for incremental RVM learning. . . . . . . . . .. 102
5.6 F1 performance for RVM boosting. . . . . .. ... ... ... 106
5.7 F1 performance for RVM ensemble. . . . . ... ... ..... 107
5.8 F1 performance for divide-and-conquer RVM approaches. . . 108
5.9 Performances for hybrid RVM-SVM with different ranges. . . 111
6.1 Processing times using SVM models for Reuters-21578. . . . . 138
6.2 Speedups obtained for Condor and Alchemi. . . . . . . . ... 140
6.3 Efficiencies obtained with Condor and Alchemi. . . . . .. .. 141
6.4 F1 performance summary results. . . . . . .. .. ... ... 142
A1 Category types in Reuters-21578. . . . . . .. .. ... .. .. 161
A2 ModLewis split. . . . . . . . .. ... 163
A.3 Used documents on ModLewis split. . .. ........... 163
A4 ModAptesplit. . . . . . . ... 164
A5 Used documents on ModApte split. . . . . . . .. ... . ... 165
B.1 Positive documents for RCV1 categories. . . . . . ... .. .. 169

viii



Acronyms

ARD
AUC
BEP
BOW
DAG
DF
DNF
EM
ERM
FN, ¢
FNR
FP, b
FPR
HTC
IDF
K-NN
KDA
KPCA
LDA
LR
LSI
MeSH
NASA
NB
NE
NLP
NN
OSH

Automatic Relevance Determination
Area Under the Curve
Break-Even Point
Bag-Of-Words

Direct Acyclic Graph
Document Frequency
Disjunctive Normal Form
Expectation-Maximization
Empirical Risk Minimization
False Negative

False Negative Rate

False Positive

False Positive Rate

High Throughput Computing
Inverse Document Frequency
K-Nearest Neighbour

Kernel Discriminant Analysis
Kernel - PCA

Linear Discriminant Analysis
Logistic Regression

Latent Semantic Indexing
Medical Subject Headings
National Aeronautics and Space Administration
Naive Bayes

Named-entities

Natural Language Processing
Neural Network

Optimal Separating Hyperplane

1



P
PCA
POS
QBC
R
RBF
RCV1
ROC
RV
RVM
SETI
SGML
SRM
SV
SVM
TF
TFIDF
TN, d
TP, a
TSVM

VC-dimension

Precision

Principal Components Analysis
Part-of-speech

Query-By-Committee

Recall

Radial Basis Function

Reuters Corpus Volume 1

Receiver Operating Characteristic
Relevance Vector

Relevance Vector Machine

Search for ExtraTerrestrial Intelligence
Standard Generalized Markup Language
Structural Risk Minimization

Support Vector

Support Vector Machine

Term Frequency

Term Frequency - Inverse Document Frequency
True Negative

True Positive

Transductive SVM

Vapnik-Chervonenkis dimension



Notation

Number of elements in a set

Ly — norm

Integer part of .

Transpose

Lagrange multipler in SVMs optimization
Precision hyperparameter in RVMs optimization
Set (vector) of «

Category

Set of categories

Regularization parameter in SVMs

bias

Document

Set of documents

Distribution function

van Rijsbergen’s measure

Hypothesis

Hypothesis space

Independent and identically distributed
Kernel functions

Parameters for Rocchio’s method
Negative examples, not belonging to a category
Order of

Number of computing nodes

Probability

Probability function

Conditional probability

Design matrix

Positive examples, belonging to a category

3



Set of RVs

RV

Query

Hessian matrix

Separating margin of SVMs

Complexity parameters for phases in distributed environment

Similitude measure between documents d; and d;
Sigmoid function

Target

Time to complete a task

Unlabeled document

Set of unlabeled documents

Set of features (words or terms), dictionary

Word or term

Value representing word wy, in a document d;
Weight of term wy, for a given model

Weight of term wy, in document d; for a given model
Weight of term wy, in query ¢

Set of weights that define a model

Output of a model



Introduction

1.1 Motivation of the thesis

Text classification is becoming a crucial task to analysts in different areas. In
the last few decades the production of textual documents in digital form has
increased exponentially. Their applications range from web pages to scientific
documents, including emails, news and books. Searching for a digital text
in Google is already more than a reality, it is a commonplace. In the near
future, with the advent of intelligent text classification methods, people will
have even more access to a large variety of enhanced digital text services,

viz. filtering, searching and filing.

Intelligent text classification methods, which rely heavily on machine
learning algorithms, have the potential to supersede existing information
retrieval techniques and provide superior facilities that will save time and
money for users and companies, while providing a vital tool for dealing with

the profusion of digital texts they are faced with.

From the above, it is easy to conclude that the huge importance of digital

texts and that their automatic classification should be emphasized.

Despite the widespread use of digital texts, handling them is inherently
difficult - the large amount of data necessary to represent them and the sub-
jectivity of classification. This thesis describes investigation into the appli-
cations to text classification of kernel-based learning machines and suggests

a framework of techniques to deal with those difficulties.

5



6 CHAPTER 1. INTRODUCTION

1.2 Challenges and contributions of the thesis

Automatic text classification is nowadays an effervescent field of research.
The overload of digital texts made available by new communication scenar-
ios, notably the Internet, must be properly managed. Many scientific and
industrial fields generate enormous amounts of text data, such as news wires,
microarray gene data or web pages. This trend seems to be spreading and
there is no end in sight (Pérez et al., 2007).

Users are overwhelmed with the amount of information and thus need
efficient, reliable and mostly intelligible text classification methods that they
can relate to and understand. Another great challenge is the available know-
ledge that can be integrated, by users and engineers, in processing, learning
and evaluation procedures.

From an academic point of view, putting together a probabilistic formula-
tion with the integration of the underlying knowledge of the problem at hand
can also present as an immense challenge. Acknowledging there is no free
lunch (Wolpert & Macready, 2005), i.e. that any two algorithms are equiv-
alent when their performance is averaged across all possible problems, one
can investigate the use of several methods to tackle such high dimensional
problems.

From an engineering perspective, dealing with the curse of dimensionality
of text representations and learning is an interesting problem.

The work presented in this thesis promotes the importance of the chal-
lenges mentioned above. Besides the survey of state-of-the art research in
text classification, the most relevant original contributions of this thesis are

related to the challenges described above, thus:

e Empirical evaluation of text pre-processing methods

We have undertaken an empirical study to compare the influence and
relative importance of standard pre-processing dimensionality reduc-
tion methods in text classification performance. Low frequency word
removal, stopword removal and stemming were tested and stopword
removal was found to be the most useful technique to apply, yielding
the best performing classifiers in all tested conditions. Stemming also
plays an important role, especially in the precision of the classifiers.
While stopword removal significantly alters the content of input data,

stemming only alters its shape, i.e. the reduction of information is not
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significant. We can therefore say that stemming is more relevant in
terms of efficiency of the learning machine (there is less redundancy
in data). Low frequency word removal has little influence on classi-
fication performance matters, but it can reduce training complexity
by decreasing the number of features. A general conclusion is that
the evaluated dimensionality reduction techniques can strengthen the
classifier performance (Silva & Ribeiro, 2003a; Silva & Ribeiro, 2003b).

e Knowledge integration in SVMs

We have investigated the introduction of unlabeled data in the support
vector machine (SVM) learning stage and the potential of using several
learning machines organized in a committee. We have presented two
margin-based approaches to introduce unlabeled document information
into the learning stage: background knowledge and active learning. We
have also proposed an SVM ensemble with a two-step learning strat-
egy using the separating margin as a differentiating factor in positive

classifications.

Both the proposed enhancements to SVMs in text classification inte-
grate new knowledge in the learning procedures and show improve-
ments over the baseline SVMs. The separating margin played a crucial
role in both techniques and can be used in further enhancements (Silva
& Ribeiro, 2004a; Silva & Ribeiro, 2005; Silva & Ribeiro, 2006d; Silva
& Ribeiro, 2007b).

¢ Reducing the dimensionality of RVMs

Due to the poor scaling capabilities of the relevance vector machine
(RVM) algorithm when faced with high-dimensional data sets, like
text classification training sets, it is crucial to limit the training set
dimension to a minimum. We have examined ways to reduce the
dimensionality, viz. active learning and similitude measure between
terms. We introduced an active learning RVM method based on the
kernel trick. Using a kernel distance metric, we have defined a higher-
dimensional space where active examples were selected. Complexity
escalation was controlled, since the number of added documents was
fixed and the kernel trick provides a simple strategy to determine those
active documents. To reduce the number documents in the training set,

we presented a two-step RVM : the first stage selects which training
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documents go to the next level, using a similitude measure between
documents, based on the co-occurrence of words; and the second step
gathers all remaining documents and infers an RVM classifier. While
maintaining the RVMs’ sparseness, we still show competitive accuracy,
as long as training examples are carefully established (Silva & Ribeiro,
2006¢; Silva & Ribeiro, 2007a).

Divide-and-conquer RVM approaches

To keep pursuing the scalability of RVMs, we have focused on three
divide-and-conquer RVM methods: incremental, boosting and ensem-
ble strategies. These methods rely on a selection of small working
chunks from the training set and then explore different combining
strategies that permit the use of all training examples in RVM ex-
pansion to large datasets. We demonstrated that it is possible to make
use of RVM'’s advantages, such as predictive distributions for testing
instances and sparse solutions, while maintaining and even improving
the classification performance. The proposed methods adapt RVMs to
large scale text sets, maintaining their probabilistic Bayesian nature
and providing sparse solutions (Silva & Ribeiro, 2006a; Silva et al.,
2007; Silva & Ribeiro, 2007c; Silva & Ribeiro, 2008).

Hybrid SVM-RVM

SVMs and RVMs constitute two state-of-the-art learning machines that
are currently the focus of cutting-edge research. SVMs present ac-
curacy and complexity preponderance, but are surpassed by RVMs
when probabilistic outputs or kernel selection come into the discus-
sion. We have proposed a two-level hierarchical hybrid SVM-RVM
model to combine the best of both learning machines. The first level
of the proposed model uses an RVM to determine the less confident
classified examples and the second level uses an SVM to learn and
classify the tougher examples. The hierarchical approach outperforms
both baseline learning machines (Silva & Ribeiro, 2006f).

Deployment in distributed environments

In cooperation with researchers from the Laboratory of Adaptive Sys-
tems and Parallel Processing of the University of Ljubljana, Slovenia,

we have deployed text classification in distributed environments. This
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work was carried out both in a cluster in the University of Ljubljana,
Slovenia, and in the Center for Informatics and Systems of the Univer-
sity of Coimbra, Portugal. The proposed deployment employs a com-
bination of the text classification task (and data) decomposition, con-
figuration evaluation through the modeling of the design phases, and a
high performance distributed computing model. We have shown that it
is not only possible, but also advantageous to deploy text classification
in a cluster environment, notwithstanding using available middleware
distributed platforms and existing sequential code (Lotri¢ et al., 2005;
Silva et al., 2005b; Silva & Ribeiro, 2006¢; Silva et al., 2008).

e Text classification framework

In the last chapter of the thesis, we propose and discuss a framework
for text classification systems that includes the above contributions of

the work, opening windows to further research in the field.

1.3 Outline of the thesis

This thesis is organized into seven chapters and three appendices. The cur-
rent chapter introduces the research work described in this document.

Chapter 2 presents some background material on text classification. In
particular we review document corpora, representations, reduction methods,
classifiers, and evaluation techniques.

In Chapter 3 the concept of kernel methods is detailed, and the founda-
tions of two paradigmatic techniques: support vector machines and relevance
vector machines are presented. Both are introduced in a text classification
perspective, along with results and comparisons of their application to bench-
mark corpora.

In Chapter 4 we develop and explore learning techniques that integrate
knowledge in the classification task to improve the performance of support
vector machines (SVMs) in text classification applications.

In Chapter 5 we turn our attention to relevance vector machines (RVMs)
and their application to text classification. We propose different approaches
to tackle RVMs’ scaling problems. In particular we examine techniques that
reduce the dimensionality of the problem and introduce incremental, boost-
ing and ensemble divide-and-conquer strategies. Finally, a hybrid RVM-SVM

combination is presented, which substantially improves baseline results.
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In Chapter 6 we describe the deployment of text classification in cluster
environments, using a distributed system to optimize the procedures.

Finally, the thesis is concluded in Chapter 7 with a review of the proposed
framework and suggestions for further research.



Background on text
classification

2.1 Introduction

In this chapter we review background material for studying text classifica-
tion problems, and introduce the notation used throughout the work. Af-
ter describing the problem, we present a summary of typical applications
and start introducing document representation issues followed by commonly
used pre-processing steps, including dimensionality reduction. Next, we
briefly present the state-of-the-art classifiers for text classification with cur-
rent achievements, followed by some widely accepted performance evaluation
metrics and benchmarks.

To determine the influence and relative importance of pre-processing
methods in text classification performance we have undertaken an empir-
ical study to compare dimensionality reduction techniques, using standard
learning machines and benchmarks. Results and analysis of this study are
reported and finally we present the conclusions on the relative success of the

several pre-processing, learning and evaluation approaches.

2.2 Problem setting

The text classification task consists of learning models for a given set of
classes and applying these models to new unseen documents for class as-
signment. It is mainly a supervised classification task, where a training set
consisting of documents with previously assigned classes is provided, and a

testing set is used to evaluate the models. Text classification is illustrated in

11
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Figure 2.1, including the pre-processing steps (document representation and
space reduction/feature extraction) and the learning/evaluation procedure
(support vector machines, neural networks, genetic algorithms, etc.). Great
relevance has been rightfully given to learning procedures in text classifi-
cation. However, there must be a pre-processing stage before the learning
process, and this usually represents up to 80% of both time and compu-
tational efforts. Pre-processing alters the input space used to represent the
documents that are ultimately included in the training and testing sets, used

by machine learning algorithms to learn classifiers, which then are evaluated.

Text Classification

Deployment < Models
Pre-Processing Learning Evaluation
Documeqt SVM
Representation | processed NNs Accuracy
Raw > GA Models Recall
A N ..
Texts ”"| Space Reduction > Rules g Pre;llsmn
Document Texts KNN
Collection Linear e
Feature Extraction Probabilistic

Figure 2.1: Text classification overview.

Text classification may be formalized as the task of approximating the
unknown target function f : D x C — {—1,1} that corresponds to how
documents would be classified by an authoritative expert. The function
[ is the text classifier, C = {c1,c2,...,¢j,...,¢|} is a predefined set of
categories and D is a set of documents. Each document is represented using
the set of features, usually words, W = {w1,wa, ..., Wk, ..., w)y|}, with each
one as a vector d; = (w1, w;2, - - -, Wik, - - - , Wy)yy|), where wy, describes each
feature’s representation for that specific document. When f(d;,¢;) =1, d;
is a positive example or member of category c;, whilst when f(d;,¢;) = —1
it is a negative example of c;.

Text classification can be a subjective problem, since the label(s) or cat-
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egory(ies) that an expert can attribute to a document may vary with the
purpose of the classification and personal experience. For instance, a news
article on the crash of a sports team’s stocks due to unfair government policy
can be classified under Sports, or under Politics, or under Markets, or under
any combination of the three. The purpose of a machine learning approach
is to capture this subjectivity by examining the documents classified by the
expert under C.

Text classification is usually a binary problem, as mentioned earlier, but
there are also multiclass approaches. Depending on the application, text
classification may be either a single-label task (i.e. exactly one ¢; € C must
be assigned to each d; € D), or a multi-label task (i.e. any number between
0 and |C| of categories may be assigned to each document d; € D). How-
ever, most multi-label, multiclass tasks, like the ones used as benchmarks
throughout this work, are usually tackled as |C| independent binary classi-
fication problems under {c;,¢;}, for j = 1,...,|C|. In this case, a classifier
for C is thus actually composed of |C| one-against-all binary classifiers.

In the rest of this thesis we use classification and categorization syn-
onymously. Similarly, the terms class, label, or category are used inter-
changeably, as well as word, term, example or feature, and dataset, corpus

or collection.

2.3 Applications of text classification

Text classification applications are spreading rapidly due to an ever-increa-
sing amount of digital textual data. Algorithms are faced with large amounts
of text data to organize in a given set of categories. Documents can take
several forms, e.g. web pages, emails, newswire or scientific articles. In this

section we introduce a sample of the most significant applications.

2.3.1 Document organization

The general problem of document organization is the one of classifying or
filing a set of text documents into a set of categories.

A typical example is the classification of news stories in a news agency
(Hotho et al., 2005). In publishing houses, like the international Reuters or
Portuguese Lusa, a large number of news stories arrive each day. It is of

utmost importance that there is at least a semi-automated system that tags
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these documents within a set of predefined categories. The challenges include

the online nature of the system and the variation in the set of categories.

Another example is patent analysis, where submissions of new patent
applications are increasing. The task is to determine if a given patent is
unique or if it has already been stated. The challenges are the large number
of patents that already exist, the longer than usual size of documents and the,
sometimes deliberately, technical, non-standard, and abstruse vocabulary

used by applicants (Larkey, 1999).

2.3.2 Text filtering

Text filtering includes applications in which a set of texts should be filtered
out before reaching a user or application. Both the structures of such texts
and the motives for filtering them vary widely.

The best known example is anti-spam filtering for e-mails (Androut-
sopoulos et al., 2000). At a user’s personal computer or at a centralized
server, a spam filter should identify and filter out (or at least mark) the
unsolicited e-mail. Usually, machine learning techniques to analyze e-mail
elements, i.e. subject, sender and message, cooperate with hand-crafted rules

and black lists!, for each e-mail element.

Another growing application is filters of unsuitable content. Mostly these
filters are employed for children’s safe use of the internet, but more can be

found each day on Internet service providers to filter illegal sites.

2.3.3 Word sense disambiguation

Word sense disambiguation is to determine the sense of a particular ambigu-
ous word occurrence, viz. to disambiguate both polysemous and homony-
mous words. For instance, the word chip may have (at least) two different
senses in English, as in the processor chip (an electronic device in computers)
or potato chip (a very popular snack). It may be seen as a text classification
task, where we view the contexts of occurrence as documents and the senses

of interpretation as categories (Gale et al., 1992).

LA black list is a list of items of e-mail elements that is checked for every e-mail. Any
e-mail containing one of those items is classified as spam.
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2.3.4 Other applications

We have briefly reviewed some important applications of TC. The boundaries
between the different classes of applications listed here are blurred, and some
may be considered special cases of others.

Other noteworthy applications of text classification, but less relevant to
the subject of this thesis, include authorship attribution, hierarchical cate-
gorization of web pages, speech categorization, image categorization using

captions and automated essay grading.

2.4 Document representation

Typically, text documents are unstructured data. Before learning, one must
transform them into a representation that is suitable for computing.

Once the features in the documents, usually words or terms, are ex-
tracted, each document is represented in a vector space, also known as the
bag-of-words (BOW), widely used in information retrieval (Baeza-Yates &
Ribeiro-Neto, 1999). This representation method is equivalent to an at-
tribute value representation used in machine learning (Mitchell, 1996). Each
dimension of this space represents a single feature, whose importance in the
document corresponds to the exact distance from the origin. Documents are
thus points (vectors) in a [W|-dimensional vector space, where |WV| denotes
the dimension of the vocabulary or dictionary, W = {w1, w2, ..., Wk, ..., Wy},
with unique terms or features, wy, as components.

Representation of features is very important as it constitutes the basis for
most classification algorithms. Every document is represented as a vector
d; = (wi1,wi2, ..., Wik, - .., wiy|), where w;, describes each feature, word
in the dictionary, for the document. Algorithms work on these document
vectors and the classification task aims at distinguishing documents of one
class from the others, so there must be significant differences in the vectors
of different documents (Godbole, 2006).

The simplest representation uses the binary event model, where if a fea-
ture wy, € W appears in document d;, then the k" component wyy, is 1,
otherwise it is 0. This representation can be replaced by the number of
times the word occurs in the document (TF - term frequency), T'F(wy), il-
lustrated in Figure 2.2, or some variation of its value, thereby ignoring the

sequence in which words occur. Since the TF representation can bias the
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Subject: New courseedition

Date: Mon, 3 Nov 2003 12:07:02 0100 oo
From: xxx@xxx.com 14
Dear friends, 1| people

10
As referred last September, regarding the course, if 0]
registrations, a new edition would take places#dT this year. )
Until now, 17 people have already regist€red to a new coufse edition, and o
new registrations are predictable”Moreover, most previous editions | 1 | participants
participants found the course very interesting and valuable to their work. | 4 | edition

1 | interesting

Best Regards.

Figure 2.2: Term frequency representation of a text document.

document vector towards features with more occurrences, the TF represen-
tation can be modified by the significance or rarity with which the feature
wy, occurs in all documents of the corpus. The document frequency (DF) of
a word, DF(wy,), is the number of documents in the collection in which the
word wy, occurs. The inverse document frequency or IDF (wy) is
IDF(wy) = %, (2.1)
where |D| is the number of documents in the collection. The IDF(wy) of
a term wy, decreases with the number of documents it appears in (Cooley,
1999). Vector components are weighted according to the IDF'(wy) of the
corresponding term. Usually some monotonous function of the IDF(wy),
such as the logarithm or the square root, is used instead of the IDF'(wy)
itself, to avoid amplifying the importance of multiple occurrence of terms
(Sebastiani, 1999). This is known as the TFIDF representation system de-
fined by (2.2) and it will be used throughout this work, unless otherwise
stated.
TFIDF(wg) = TF(wy) x log(IDF (wy)). (2.2)

Finally, we map all documents in the collection to a matrix called the term

by document matrix representing the feature space (see Figure 2.3).

Each row of the matrix corresponds to a document. The columns of the
matrix correspond to the unique terms in the document collection. Each

intersection (w;y) represents the TFIDF weight of term wy in document d;.
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Figure 2.3: Term by document matrix representing a document collection.

2.5 Pre-processing text

Once the representation of texts has been defined, the high dimension of the
feature or term space may pose some problems for most learning machines
used in text classification. These problems occur not only for computational
reasons, but also due to overfitting, i.e. tuning the classifier to contingent
characteristics of the data set. When a classifier is overfitting, it is able to
classify the data on which it has been trained, but is unable to generalize
to previously unseen data. Therefore, a number of pre-processing steps are
required before a learning machine can infer a classifier. They are usually
referred to as dimensionality reduction methods, since their goal is to reduce
the size of the vector space, controlling the computational time involved,
whilst maintaining or improving performance. However, removing terms can
be harmful and care must be taken, since potentially useful information may

be removed.

These techniques can be divided into two types: feature selection and
feature extraction. When using selection methods, the idea is to determine
a reduced set of the available terms (or their representation) in a document.
On the other hand, extraction methods aim at generating a new set of terms
from the original terms that constitute the document. Regardless of the
approach used, there are a number of issues to be considered, in particular,
the time spent in reduction, the information that may be lost, the learning

time reduction and the classification improvement. A reduction technique
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should only be applied if the combined evaluation of these issues is positive.
In this section we look at dimensionality reduction techniques used in text
classification algorithms. Later in this chapter we will present an empirical

comparison of the most representative methods.

2.5.1 Feature selection

Feature selection methods aim at choosing from the available set of terms a
smaller set that more efficiently represents the documents. Feature selection
is not needed for all classification algorithms as some classifiers are capable of
feature selection themselves. However for other classifiers feature selection
is mandatory, since a large number of irrelevant features can significantly
impair classifier accuracy.

Selection methods can be divided into filter methods and wrapper me-

thods, and they will be explored in the rest of this section.

Filter methods

The filtering approach is the simpler alternative, and it is based on keeping
the terms that receive a higher score according to a function that measures
the relative importance of a term (Sebastiani, 2002).

Every document d; contains all the words, spaces, markups, and tags
which occur in it. In a straightforward approach, a term is any space-sepa-
rated word in a document.? Taking any news article or random page from
the web, not all the words in the document are useful for text classification.
Some applications, including web search, rely heavily on the markup or link
structure of documents, but text classification tasks usually consider only
the text portions of the page.

Stopword removal can be considered a basic filter method. Stopwords
are non-informative words, such as articles, prepositions and conjunctions
that appear in the documents. A stopword list is usually built with words
that should be filtered in the document representation process. In this case,
the filter function will return a positive value (for instance) only if a word
does not belong to the stopword list. Words that are to be included in the
stopword list are language and task dependent. Besides the obvious reduc-

tion in the number of features, there may be another potential advantage

2This is a valid definition for Portuguese and English texts, but not for languages using
composite nouns, like German or Finnish.
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associated with stopword removal, since some stopwords can mislead the
learning machine in defining non-existent correlations between documents.
The standard stopword list used for English language is the SMART list®.

Another simple but efficient technique is to consider the document fre-
quency of a term. Only terms that occur in the highest number of documents
are retained, with terms that appear in very few documents being filtered
out, and terms that occur only a small number of times being removed (Apté
et al., 1994a; Yang & Pedersen, 1997; Dumais et al., 1998; Li & Jain, 1998).

Other more sophisticated filter feature selection typically employs some
statistical measures over the training corpus and ranks features in order of
their amount of information (correlation) with respect to the class labels of
the classification task at hand. The typical measures used to rank feature
lists are information gain (Lewis & Ringuette, 1994; Moulinier et al., 1996;
Yang & Pedersen, 1997; Mladenié¢, 1998), mutual information with the class
label (Yang & Pedersen, 1997; Dumais et al., 1998; Ruiz & Srinivasan, 1999),
x2 (Schiitze et al., 1995; Yang & Liu, 1999), and other such measures (Al-Ani
& Deriche, 2002).

After the feature set has been ranked, only the top few features are
retained (typically in the order of hundreds or a few thousand). Typical

large text corpora contain tens to hundreds of thousands of unique features.

Wrapper methods

The wrapper approach is more demanding computationally. The feature sub-
set is selected using the same learning algorithm that will be used for learning
the classifier (Mladeni¢, 1998). Using this technique the feature subset se-
lection algorithm exists as a wrapper around the induction algorithm (John
et al., 1994). The feature selection algorithm conducts a search for a good
subset using the induction algorithm itself as part of the evaluation function.

In the wrapper approach the reduced term set is generated by either
adding or removing a term. Each new set is tested on a validation set using
the chosen learning algorithm. The best performing set is elected, resulting
in a training set tuned with the learning machine.

The major drawback of wrapper methods, when applied to high-dimen-
sional feature spaces like text classification, is its the computational com-

plexity that makes them cost-prohibitive for standard applications.

3ftp:/ /ftp.cs.cornell.edu/pub/smart /english.stop
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Natural language processing

In the approaches described so far, the bag-of-words (BOW) model was al-
ways considered as starting point. However, there have been some attempts
to move forward from the BOW model. A fruitful field of research is natural
language processing (NLP).

Using the BOW model, words like 'New’ and "York’ will occur as separate
features instead of the intuitive single feature 'New York’. A lot of natural
language processing (NLP) research is devoted to detecting such phrases
or named-entities (NE) in text documents (Zhou et al., 2004) (Wu et al.,
1992). This is a first step in moving from the BOW model to more intelligent
models for feature selection in documents. Part-of-speech (POS) tagging is
also employed to generate POS n-grams as other useful features (Wagner
et al., 2007). All these NLP derived feature sets have been used in text
classification but surprisingly none have been found to significantly improve
the simple BOW model (Godbole, 2006).

2.5.2 Feature extraction

Feature extraction methods aim at generating a new set of (synthetic) terms
from the original terms that constitute the document. The rationale for using
synthetic (rather than naturally occurring) terms is that, due to the pervasive
problems of polysemy, homonymy, and synonymy, the original terms may
not be optimal dimensions for document content representation (Sebastiani,
2002).

To extract terms, one first has to devise a method to extract the new
terms from the old ones, and then convert the initial document representation
using the new synthetic terms. Two types of feature extraction can be used

in text classification: term clustering, and latent semantic indexing.

Term clustering

Term clustering aims at grouping (or clustering) terms with high similitude,
usually according to some semantic point of view, and then replacing the
terms in the cluster by a unified representative term, e.g. the cluster centroid.

The simplest technique that can be cast into this category is stemming,
where a word stem is derived from the occurrence of a word by removing

case and inflection information. For example “viewer” “view”, and “preview”
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are all contracted to the same stem “view”. Stemming does not significantly
alter the information included in document representation, but it does avoid
feature expansion. The Porter stemmer (Porter, 1980) for English is freely
available in many forms and widely used in text classification.

Initial attempts at term clustering include the reciprocal nearest neighbor
clustering (Lewis, 1992a), consisting of creating clusters of two terms that
are the most alike according to some measure of similarity. More recently,
supervised term clustering has been pursued, by (Baker & McCallum, 1998)
for example, with their distributional clustering method, where clusters are
used together with those terms that tend to indicate the presence of the
same category, or group of categories. In this case, the elected classifier was

the naive Bayes classifier (see Section 2.6.3).

Latent semantic indexing

Latent semantic indexing (LSI) (Deerwester et al., 1990) comes from in-
formation retrieval research to address problems derived from the use of
synonymous, and polysemous words in documents.

LST takes advantage of implicit higher-order structure in the association
of terms with documents, i.e. their semantic structure, in order to improve
the detection of relevant documents. The technique used is singular-value
decomposition, in which a large term by document matrix is decomposed
into a set of orthogonal factors from which the original matrix can be ap-
proximated by linear combination. In other words, LSI compresses document
vectors into vectors of a lower-dimensional space whose dimensions are ob-
tained as combinations of the original dimensions by looking at their patterns
of co-occurrence.

In text classification this technique is applied by deriving the mapping
function from the training set and then applying it to training and testing
documents alike.

A drawback of LSI, though, is that if an original term is particularly
good in itself at discriminating a category, that discrimination power may
be lost in the new vector space (Sebastiani, 2002). Another issue is that
the new dimensions representing the documents, unlike other dimensionality
reduction techniques described so far, are not intuitively interpretable.

However, LSI works well in bringing out the latent semantic structure

of the vocabulary used in the corpus. In fact, if there is a large number
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of terms which all contribute a small amount of critical information, then
the combination of evidence is a major problem for a term-based classifier
(Schiitze et al., 1995). LSI is able to correctly classify a document even if
the exact expected words are not present, but have a pattern of co-occurence
with words that do in fact appear in the document.

2.6 Classifiers

Initial classifiers in the 1980s consisted of using knowledge engineering tech-
niques to manually build an expert system capable of making text classifi-
cation decisions. Such an expert system would typically consist of a set of
manually defined logical rules.

In the 1990s, successful machine learning approaches were introduced,
using a general inductive procedure to automatically build a classifier for
a category by observing the characteristics of a set of documents that had
previously been classified manually by a human expert. This is supervised
learning, where the engineering effort goes towards the construction not of
a specific classifier, but of a way to automatically build a classifier from
labeled examples (Sebastiani, 2002). Many different types of supervised
learners have been used in text classification, including probabilistic naive
Bayesian methods (Dumais et al., 1998), Bayesian networks (Tzeras & Hart-
mann, 1993), decision trees (Lewis & Catlett, 1994), decision rules (Cohen,
1995), neural networks, incremental or batch methods for learning linear
classifiers, example-based methods (Mitchell, 1996), classifier ensembles (in-
cluding boosting methods (Freund & Schapire, 1996)), and support vector
machines (Vapnik, 1995).

Training methods for machine learning classifiers are often characterized
as being generative or discriminative. Generative classifiers learn a model of
the joint probability, P(d;,c;), of the input document d; and the class label
c;j, make their predictions by using Bayes’ rule to calculate the conditional
probability P(c;|d;), and then pick the most likely label ¢;. In contrast,
discriminative classifiers do not have a probability framework and can thus
be interpreted as modeling the posterior P(c;|d;) directly, thus providing an
approximation. It has often been argued that for many application domains,
discriminative classifiers achieve higher testing set accuracy than generative

classifiers (Vapnik, 1998). Nonetheless, generative classifiers also have several
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advantages, like methods for handling missing data, and they often perform
better for small training set sizes. Specifically, it has been shown that a sim-
ple generative classifier (naive Bayes) outperforms its conditionally-trained,
discriminative counterpart (logistic regression) when the amount of available
labeled training data is small (Ng & Jordan, 2002).

Generative methods include naive Bayes, Latent Dirichlet Allocation,
the Aspect model, and BayesANIL. Discriminative methods are typified by
support vector machines (SVM), logistic regression (LR), decision trees and
ensembles (like AdaBoost).

We now present a short overview of learning methods for text classi-
fication, namely Rocchio’s method, decision trees and rules, naive Bayes,
k-nearest neighbor, neural networks, kernel-based machines and also com-
mittee based techniques and active learning methods.

The foundations of kernel-based machines, i.e. support vector machines
(SVMs) and relevance vector machines (RVMs), are left for the next chapter
since they constitute the starting point of the techniques proposed in this

thesis.

2.6.1 Rocchio’s method

Rocchio’s method (Rocchio, 1971) is a classic method for document routing
or filtering that originated from information retrieval tradition, initially used
for expanding user queries on the basis of relevance judgments. It is used
for inducing linear, profile-style classifiers, i.e. linear classifiers that consist
of an explicit profile (or prototypical document) of the category. This has
obvious advantages in terms of interpretability, because a profile of this type
can be readily understood by a human.

This method relies on an adaptation to text classification of the well-
known Rocchio formula for relevance feedback in the vector-space model.
This adaptation was first proposed in (Hull, 1994), and has been used by
many authors since then (Sebastiani, 2002) either as the main subject of
research (Joachims, 1997; Schapire et al., 1998), baseline classifier (Cohen &
Singer, 1999; Joachims, 1998; Lewis et al., 1996; Schapire & Singer, 2000) or
member of a classifier committee (Larkey & Croft, 1996).

Using this method, each term wy, is assigned a weight wy, that combines

the term weight in the original query ¢ with the weights of both judged
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relevant (Pos) and irrelevant (Neg) documents for the category:

Wik Wik
=\ E — g — 2.3
WE qu—i-ﬂA [Pos| ’YA |Neg|’ (2.3)
i€Pos i€Neg

where w;, is the weight or representation of term wj in document d;, Pos
are the training documents belonging to the category, whereas Neg are the
training documents not belonging to the category and |.| represents the num-
ber of elements of the set. In the context of text classification there is no
initial query, so the term weight in the original query, wg, is not considered,
setting A\ = 0 (Dumais et al., 1998). [ and - are control parameters that
allow setting the relative importance of positive and negative examples.

A classifier built using Rocchio’s method rewards the closeness of a test-
ing document to the centroid of the positive training examples, and its dis-
tance from the centroid of the negative training examples. The role of neg-
ative examples is usually deemphasized, by setting 5 to a high value and ~
to a low one (Sebastiani, 2002). This method is quite easy to implement,
and is also quite efficient, since learning a classifier basically comes down to
averaging weights. In terms of effectiveness, however, a drawback is that if
the documents in the category tend to occur in disjoint clusters (e.g., a set
of documents labeled with Biology category and dealing with either Animals
or Vegetables), such a classifier may miss most of them, as the centroid of
these documents may fall completely outside these two clusters. More gen-
erally, Rocchio’s classifiers, like all linear classifiers, have the disadvantage

of dividing the space of documents linearly.

2.6.2 Decision trees and rules

Inductive rule learners and decision tree learners are the most important
examples of symbolic (nonnumeric) algorithms, which are usually praised
for their ease of interpretability by humans.

The internal nodes of a decision tree for text classification are labeled
by words or terms. The branches departing from each node are labeled by
tests on the weight that the term has in the testing document. The leaves
represent the categories according to the branches followed. To classify a
testing document d;, starting from the root of the decision tree, each term
weight in the document is tested to determine which branch to follow, until

a leaf node is reached. The category label of this leaf node is then assigned
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to the document d;.

To construct a decision tree, a divide and conquer strategy is usually
followed by selecting a term wy, partitioning the training set into classes of
documents that have the same value (or range of values) for wy, and placing
each such class in a separate subtree. The process is recursively repeated
on the subtrees until each leaf of the tree so generated contains the training
examples assigned to the same category, which is then chosen as the label
for the leaf (Sebastiani, 2002). To determine which term wy, is used to make
the partition an information gain or entropy criterion is generally applied.
However, a complete tree built by this method may be prone to overfitting,
as some branches may be too specific to the training data. Most decision
tree learning methods thus include a method for growing the tree and one for
pruning it, that is, for removing the overly specific branches. Decision tree
text classifiers have been used either as the main classification tool (Lewis
& Catlett, 1994; Lewis & Ringuette, 1994), or as baseline classifiers (Cohen
& Singer, 1999; Joachims, 1998), or as members of classifier committees (Li
& Jain, 1998; Schapire & Singer, 2000; Weiss et al., 1999).

Decision trees and decision rules are similar in that both can encode
any Boolean function. A decision rule classifier built by an inductive rule
learning method consists of a DNF (Disjunctive Normal Form) rule, that
is, of a conditional rule with a premise in DNF. The literals in the premise
denote the presence (nonnegated keyword) or absence (negated keyword) of
the keyword in the testing document d;, while the clause head denotes the

decision to classify d; under the category.

An advantage of DNF rule learners is that they tend to generate more
compact classifiers than decision trees learners. Rule learning methods usu-
ally attempt to select from all the possible covering rules (i.e. rules that
correctly classify all the training examples) the one that minimizes some cri-
terion. While decision trees are typically built by a top-down strategy, DNF

rules are often built in a bottom-up fashion.

To create a set of decision rules, each training document d; is consid-
ered as a complex clause with reference to the presence or absence of every
word or term, leading to the conclusion of a category or its negation, accord-
ing to whether d; is a positive or negative example of the category. This
complex representation is highly prone to overfitting, which is generally mit-

igated with simplifications (e.g., removing premises from clauses, or merging
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clauses) that maximize its compactness, while at the same time not affect-
ing the covering property of the classifier. Furthermore, at the end of this
process, a pruning phase similar in spirit to that employed in decision trees
is applied, where the ability to correctly classify all the training examples is

traded for more generality.

DNF rule learners vary widely in terms of the methods, heuristics and cri-
teria employed for generalization and pruning. Among the DNF rule learners
that have been applied to text classification are CHARADE (Moulinier &
Ganascia, 1996), DL-ESC (Li & Yamanishi, 1999), RIPPER (Cohen, 1995;
Cohen & Hirsh, 1998; Cohen & Singer, 1999), SCAR (Moulinier et al., 1996),
and SWAP-1 (Apté et al., 1994a).

2.6.3 Naive Bayes

Naive Bayes is a probabilistic classifier that determines the category of a doc-
ument using the probability of a document d; = (wj1, wia, ..., Wik, . .., Wiv)
belonging to category c;, P(cj|d;). To determine this probability, Bayes’

theorem is applied
P(c;)P(dilc;)

P(ejld) = =5,

(2.4)

where P(d;) represents the probability that a randomly picked document
has vector d; as its representation and P(c;) is the probability that a ran-
domly picked document belongs to category c;. The estimation of P(d;|c;)
and P(d;) is troublesome, since the number of possible document vectors d;
is very large. This latter however does not differ between categories and can
be neglected, since it can be interpreted only as a scale factor. To compute
P(d;|cj), this classifier makes the naive assumption behind its denomina-
tion, i.e. that any two features of the document vector are, when viewed as
random variables, statistically independent of each other (Sebastiani, 2002),

or, mathematically:
Wi

P(dsle;) = [ [ P(wikley)- (2.5)
k=1
Applying these two simplifications we get

W
P(cjldi) = P(c;) [ ] P(wirley). (2.6)
k=1
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An estimate of P(c;) can be calculated from the fraction of training docu-
ments that is assigned to class c;.

Despite the fact that the naive assumption of independence is gener-
ally not true for word or features appearing in documents, the naive Bayes
classifier is surprisingly effective (Aas & Eikvil, 1999).

2.6.4 K-nearest neighbor

K-nearest neighbor (k-NN) is an example-based classifier, i.e. it does not
build an explicit, declarative representation of the category c;, but relies on
the category labels attached to the training documents similar to the testing
document. Methods of this type have thus been called lazy learners, since
they defer the decision on how to generalize beyond the training data until
each new query instance is encountered (Mitchell, 1996). Consequently k-
NN does not have an offline training phase. The main computation is the
online scoring of training documents, given a testing document, in order to
find the k nearest neighbors.

To classify an unknown document d;, the k-NN algorithm (Duda & Hart,
1993) ranks the document’s neighbors among the training document vectors,
and uses the class label of the k& most similar neighbors to predict the class
of the testing document. The classes of these neighbors are weighted using
the similarity of each neighbor to d;, where the similarity may be measured
by, for example, the Euclidean distance or the cosine between the two doc-
ument vectors. Note that k-NN, unlike linear classifiers, does not divide
the document space linearly, and hence does not suffer from the problems
discussed in Section 2.6.1. However, k-NN’s most important drawback is its
inefficiency at classification time: while, for example, with a linear classifier
only a dot product needs to be computed to classify a testing document,
k-NN requires the entire training set to be ranked for similarity with the
testing document, which is much more expensive. This is a drawback of lazy
learning methods, since they do not have a true training phase and thus

defer all the computation to classification time.

2.6.5 Neural networks

Neural networks (NNs) have wide appeal for many researchers due to their
closeness to the structure of the brain, a characteristic not shared by other

classifiers. In an analogy to the brain, an entity made up of interconnected
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neurons, NNs are made up of interconnected processing elements called units,
which respond in parallel to a set of input signals given to each. The unit
is the equivalent of its brain counterpart, the neuron, and the connections
resemble the synapses that occur between biological neurons.

An NN text classifier is a network of units, where the input units represent
words or terms, the output unit(s) represent the category or categories of
interest, and the weights on the edges connecting units represent dependence
relations (Sebastiani, 2002).

Figure 2.4 depicts the most usual setting: a feedforward neural network
with one hidden layer. When a new testing document d; is to be classified,
its terms, or their representations, are loaded into the NN through the input
units, then they are fed forward through the different layers, where they are
weighted, summed and, before being fed to the next layer, they go through

a normally non-linear activation function f.
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Figure 2.4: Feedforward neural network with one hidden layer.

The value of the output unit(s) determines the categorization decision(s).
A typical way of training NNs is backpropagation, whereby the term weights
of a training document are loaded into the input units, as just described, and
if a misclassification occurs the error is backpropagated so as to change the
parameters of the network and eliminate or reduce the error. More details
on NNs and backpropagation can be found in (Haykin, 2000).

Several authors have studied the application of both linear and non-linear
NN in text classification. A recurrent problem is the huge number of inputs,
which is usually overcome with elaborated feature selection methods as in
(Ng et al., 1997), and sometimes using thesauri as in (Dagan et al., 1997).

Other types of linear NN classifiers implementing a form of logistic re-

gression have also been proposed and tested in (Schiitze et al., 1995; Wiener
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et al., 1995), showing interesting alternatives. Hierarchical approaches like
(Ruiz & Srinivasan, 2002) also show promising results.

Nounlinear NNs supposedly have the capacity to learn higher-order inter-
actions between terms. However, comparative experiments relating nonlinear
NNs to their linear counterparts have been performed, and the former have
yielded either no improvement (Schiitze et al., 1995) or very small improve-
ments (Wiener et al., 1995) over the latter (Sebastiani, 2002). A feasible
rationale for this result is the fact that text classification is most often a

linearly separable problem, despite its high dimensionality.

2.6.6 Kernel-based learning machines

Kernel-based learning machines or kernel methods are state-of-the-art learn-
ing machines for text classification and constitute the main focus of this
thesis. Chapter 3 will therefore describe the kernel machines used, viz. sup-
port vector machines (SVMs) (Vapnik, 1995) and relevance vector machines
(RVMs) (Tipping, 2001). Nevertheless, a short introduction is given here, to
make this brief review of classifiers more complete.

Kernel-based learning machines approach the classification problem by
mapping the data into a high-dimensional feature space, where each coor-
dinate corresponds to one feature of the data items, transforming the data
into a set of points in a Euclidean space. In that space, a variety of methods
can be used to find relations in the data. Since the mapping can be quite
general (not necessarily linear, for example), the relations found this way are
accordingly very general. This approach is called the kernel trick.

Kernel-based learning machines owe their name to the use of kernel func-
tions, that enable them to operate in the feature space without ever com-
puting the coordinates of the data in that space, but instead by simply
computing the inner products between the images of all pairs of data in
the feature space. This operation is often computationally cheaper than the
explicit computation of the coordinates.

Algorithms capable of operating with kernels include SVMs, RVMs, ker-
nel discriminant analysis (KDA), kernel canonical correlation analysis, ker-
nel principal components analysis (KPCA), kernel ridge regression, spectral
clustering, along with many others.

SVMs were introduced in text classification by (Joachims, 1998) and have
subsequently been used by several others (Dumais et al., 1998; Kwok, 1998;
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Drucker et al., 1999; Yang & Liu, 1999; Dumais & Chen, 2000).
To the extent of our knowledge, RVMs were not applied to text classifi-

cation before the work presented in this thesis.

2.6.7 Committees

Ensemble based systems (also known under various other names, such as
multiple classifier systems, committee of classifiers, or mixture of experts)
have shown favorable results compared to those of single-expert systems for
a broad range of applications requiring automated decision making under a
variety of scenarios.

In matters of great importance that have financial, medical, or other
implications, we often seek a second opinion before making a decision, some-
times more. In doing so, we analyze each one, and combine them using some
implicit process to reach a final decision that is apparently the best informed
one. This process of consulting several experts before making a final decision
is perhaps second nature to us; yet, the extensive benefits of such a process
in classification systems is still being discovered by the computational intel-
ligence community (Polikar, 2006). In (Kuncheva, 2004), a sample of the
vast literature on classifier combination can be found, on both the theory
and implementation of ensemble based classifiers.

There are several theoretical and practical reasons why we may prefer an

ensemble system (Polikar, 2006):

e Statistical reasons: Good performance in training data does not guar-
antee good generalization performance. Classifiers with similar train-
ing performances may have different generalization capabilities. In
such situations, combining the outputs of several classifiers may reduce
the risk of selecting a poorly performing classifier. The ensemble may
not surpass the best individual classifier, but will reduce the overall

risk of making a particularly poor selection;

e Large volumes of data: In some applications the amount of data to be
analyzed can be too large to be handled effectively by a single classifier;
partitioning the data into smaller subsets, training different classifiers
with different partitions of data, and combining their outputs can often

be a more efficient approach;
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e Too little data: Ensemble systems can also be used to address exactly
the opposite problem of having too little data. Data are the support of
a good classifier. When there is no adequate training data, resampling
techniques can be used to define random subsets of the available data,
each of which can be used to train a different classifier, creating the

ensemble. These approaches have also proven to be very effective;

e Divide and conquer: When the problem at hand is too complex for a
single classifier to solve, i.e. when the decision boundary that separates
data from different classes lies outside the space of functions that can
be implemented by the chosen classifier model, using several classifiers
can be helpful. A decision based on the majority voting of a sufficient
number of such classifiers can easily learn a more complex boundary

and this approach can be cast as a divide-and-conquer technique;

e Data fusion: When data is obtained from different sources, where the
nature of features are different (heterogeneous features), a single clas-
sifier cannot be used to learn the information contained in all of the
data. In this case an ensemble based approach can be used to merge
the data.

Classifier committees or ensembles are based on the idea that, given a
task that requires expert knowledge, k experts may perform better than one,
if their individual judgments are appropriately combined. A classifier com-
mittee is then characterized by (i) a choice of k classifiers, and (ii) a choice
of a combination function (Sebastiani, 2002), usually denominated voting
algorithm. The classifiers should be as independent as possible to guarantee
a large number of inductions on the data. To this end, the representation of
texts can be different, but it is quite usual for the classifiers or at least their
parameters to be diverse.

The simplest voting algorithm is the majority voting one, where each
base classifier (expert) votes on the class the document should belong to and
the majority wins (in two-class problems an odd number of classifiers should
be used). A straightforward evolution is the weighted linear combination,
where each classifier has different weight in the final decision. In this case
the weights can be fixed or adaptive.

In fact, voting algorithms can be divided into two types: those that adap-

tively change the distribution of the training set based on the performance of
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previous classifiers and those that do not. Boosting is the standard example
of the first type and bagging of the second type, hence a brief overview of

boosting and bagging comes next.

Boosting

Boosting is a machine learning meta-algorithm for performing supervised
learning. Boosting is based on the question: can a set of weak learners create
a single strong learner? A weak learner is defined as a classifier which is only
slightly correlated with the true classification. In contrast, a strong learner
is a classifier that is arbitrarily well-correlated with the true classification.
The main idea of boosting is thus to generate many relatively weak classifi-
cation rules and to combine them into a single highly accurate classification
rule (Schapire & Singer, 2000). The boosting algorithm assigns different im-
portance weights to different training examples. The algorithm proceeds by
incrementally assigning increasing significance to examples which are hard
to classify, while easier training examples get lower weights. This weight
strategy is the basis of the weak learners evaluation. The final combined
hypothesis classifies a new testing example by computing the prediction of

each of the weak hypotheses and taking a vote on these predictions.

For text classification, AdaBoost (Freund & Schapire, 1996) is the stan-
dard boosting algorithm. It starts with a set of input-target pairs, i.e. train-
ing documents with associated labels usually defined by a human expert.
Initially the importance weights of the examples are uniformly distributed.
Then the AdaBoost algorithm repeatedly retrieves weak hypotheses and these
are evaluated and used to determine the final hypothesis. On each iteration,
using the set of importance weights determined in the previous iteration,
the hypothesis error is computed and the weight or importance of that weak
classifier, is determined, assigning larger weights to good classifiers, i.e. clas-
sifiers with low error, whereas lower weights (even with negative values) are

assigned for bad classifiers.

As boosting is a state-of-the-art method for text classification, we will re-
turn to this topic in later chapters, investigating its effectiveness and possible

enhancements.
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Bagging

Bootstrap aggregating (bagging) is a meta-algorithm to improve classifica-
tion and regression models in terms of stability and classification accuracy.
Bagging also reduces variance and helps to avoid overfitting. Although this
method is usually applied to decision tree models, it can be used with any
type of model. The bagging algorithm (Breiman, 1996) votes on classifiers
generated by different bootstrap samples (replicates). A bootstrap sample
is generated by uniformly sampling m instances from the training set with
replacement (Efron & Tibshirani, 1993). Several bootstrap samples are gen-
erated and a classifier is built from each bootstrap sample. A final classifier
is built from the individual bootstrap classifiers, defining its output as the
class predicted most often by its sub-classifiers.

For a given bootstrap sample, an instance in the training set has prob-
ability 1 — (1 — %)m of being selected at least once in the m times in-
stances randomly selected from the training set. For large m, this is about
1-— % = 63.2%, which means that each bootstrap sample contains only about
63.2% unique instances from the training set (Sebastiani, 2002). This per-
turbation causes different classifiers to be built if the inducer is unstable
(e.g., neural networks, decision trees) and the performance can improve if
the induced classifiers are good and not correlated; however, bagging may
slightly degrade the performance of stable algorithms (e.g., k-NN) because
effectively smaller training sets are used for training each classifier (Bauer &
Kohavi, 1999).

2.6.8 Active learning

Active learning in its most general sense refers to any form of learning wherein
the learning algorithm has some degree of control over the examples on which
it is trained (Liere & Tadepalli, 1997). There are situations in which unla-
beled data is abundant but labeling data is expensive or the learning machine
is not able to deal with the deluge of training examples, for algorithmic or
computational reasons. In such scenarios, the learning algorithm can ac-
tively ask the supervisor for labels. As the learner chooses the examples, the
number of examples to learn a concept can often be much lower than the
number required in normal supervised learning. However, with this approach
there is a risk that the algorithm might focus on unimportant or even invalid

examples.
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There have been some promising results in the active learning area. In
(Cohn et al., 1994), the theory for an active learning method called selective
sampling is presented and then applied to some small to moderate sized
problems as a demonstration of its the viability.

Lewis and Gale developed a method called uncertainty sampling, which is
conceptually similar to selective sampling, but which is specifically meant for
use in text classification. Their method selects for labeling those documents
whose membership is most unclear by using an approximation based on
Bayes’ rule, certain independence assumptions, and logistic regression (Le-
wis & Gale, 1994).

While approaches and results vary, these and other studies have con-
cluded that active learning greatly improves learning efficiency by reducing
the number of labeled examples used (Dagan & Engelson, 1995; Freund et al.,
1993). Therefore we will focus on active learning and its application to text

classification in the next chapters of this thesis.

2.6.9 Other methods

Throughout this section we have made an effort to present an overview of
the learning approaches proposed in the text classification literature. Nev-
ertheless, we believe it is not possible to give a complete survey, despite the
helpful references, not only because the spatial context of this thesis does not
allow it, but also because some approaches are hybrid systems that are not
covered by any specific umbrella. Among these, the ones most worth men-
tioning are those based on Bayesian inference networks (Dumais et al., 1998;
Tzeras & Hartmann, 1993), genetic algorithms (Clack et al., 1997; Masand,
1994), maximum entropy modeling (Manning & Schiitze, 1999), and fuzzy
rules (Hayes & Weinstein, 1990).

2.7 Evaluation

The common metric of interest in evaluating classifiers is the accuracy, i.e.
what fraction of documents belonging to known classes are correctly assigned
to those classes. The standard way of doing this is to take a labeled portion of
the corpus as the training data, and use the remaining fraction of labeled data
as testing data. The procedure is to use training data for model learning and

evaluating the performance in the testing data - the known labels of testing
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data are hidden and compared against label predictions from the system.

Standard benchmark corpora have predefined training/testing splits to
allow of approaches. Otherwise, a typical training/testing split of a labeled
corpus is the ratio 70 : 30. Sometimes a part of labeled data (called validation
data) is also held aside for tuning purposes. The system is first trained on
training data, and then tuned on the validation data, before being tested
against the testing data. A typical ratio for training, validation, and testing
data is 60 : 20 : 20.

Experiments are often repeated with different random splits into training,
validation, and testing datasets. Usually the corpus is randomly split and
evaluated from 5 to 30 times and the mean and variance of the criteria are
reported. Techniques like cross-validation and k-fold validation help guard
against randomness in particular data splits and allow sounder results. K-
fold validation involves splitting the data in k parts, and using (k — 1) parts
for training and the remaining part for testing. This is repeated k times,
considering all possible testing sets one at a time. Average results of k runs
are reported. Refer to Haykin (Haykin, 2000) for details on cross-validation.

When comparing two algorithms, experiments are performed multiple
times and statistical tests like the paired t-test can be used to qualitatively
judge whether one algorithm is better than the other.

In the rest of this section, we introduce performance criteria for evaluat-
ing text classification performance along with some commonly used bench-

mark corpora.

2.7.1 Performance criteria

The text classification problem is usually broken into several one-against-all
binary classification problems, as mentioned earlier. Multi-class approaches
are also subject of research, but the results achieved are yet not comparable
to binary approaches.

In order to evaluate a text classification binary decision task we first
define a contingency matrix representing the possible outcomes of the classi-
fication, as shown in Table 2.1. When an example is positive (Positive Class)
it can be assigned a positive or a negative label by the classifier, resulting in
a True Positive (a) or a False Negative (c) respectively. When an example
is negative (Negative Class) it can also be assigned a positive or a negative

label by the classifier, resulting this time in a False Positive (b) or a True
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Negative (d) respectively. Several measures have been defined based on this

contingency table. Table 2.2 shows the most relevant with their formulas.

Table 2.1: Contingency table for binary classification.

Positive Class Negative Class
Assigned Positive a b
(TP - True Positives)  (FP - False Positives)
Assigned Negative ¢ d

(FN - False Negatives) (TN - True Negatives)

Table 2.2: Performance measures for binary classification.

Measure Formula
Accuracy #&d
Error Rate %
Precision (P) o+
Recall (R) / Sensitivity/ TP rate s
Specificity / TN rate %
FP rate brd
FN rate e

None of the measures is perfect or even appropriate for every problem.
For example, recall, if used alone might show deceptive results, e.g., a sys-
tem that classifies all testing examples as belonging to a given category will
show perfect recall, since measure ¢ (False Negatives) in Table 2.1 will be
zero, making recall (;%;) reach its maximum. Accuracy (1-Error Rate), on
the other hand works well if the number of positive and negative examples is
balanced, but in extreme conditions it might be deceptive too. If the number
of negative examples is overwhelming compared with the positive examples,
as in text classification, then a system that assigns no documents to a cate-
gory, i.e. classifies all as negative examples of that category, will obtain an
accuracy value close to 1.

For text classification, precision and recall are usually preferred. How-
ever, they provide partial views on errors and are to some extent comple-
mentary, since precision puts emphasis on false positives and recall draws

attention to false negatives. As a result, measures that combine precision
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and recall are often employed, such as the break-even point (BEP) and the
F[3 measure. BEP was proposed by Lewis (Lewis et al., 1996) and is de-
fined as the point at which recall equals precision. van Rijsbergen’s F'(3
measure (van Rijsbergen, 1979) combines recall (R) and precision (P) into
a single score:

_(B*+1)PxR (3% +1)a

Fo="mpyr ~ (62 +Da+b+ g% @7

F0 is the same as Precision, F'oo is the same as Recall. Intermediate values
between 0 and oo correspond to different weights assigned to recall and
precision. The most common values assigned to ( are 0.5 (recall is half as
important as precision), 1.0 (recall and precision are equally important) and
2.0 (recall is twice as important as precision). Drawing our attention to
Table 2.1 and Equation (2.7), if TP, FP and FN are all 0, F'§3 is defined
as 1 (this occurs when a classifier assigns no documents to the category and
there are no related documents in the collection).

As pointed out by (Schapire & Singer, 2000), the BEP has some draw-
backs. Usually the value of the BEP has to be interpolated. If the values of
recall and precision are too far apart then the BEP will show values that are
not achievable by the system. Also the point where recall equals precision
is not informative and not necessarily desirable from the user’s perspective
(Ruiz & Srinivasan, 1999). van Rijsbergen’s F'3 measure is the best suited
metric, but still has the drawback that it might be difficult for the user to
define the relative importance of recall and precision. Usually F1 is used,

representing a harmonic mean of precision and recall, (2.8).

_2><P><R

F1= 2.8
P+ R (28)

In general, the F1 performance (or the performance of any other measure)
is reported as an average value for all the categories of a given corpus. There
are two ways of computing this average: macro-average, and micro-average.
With macro-average, the F1 value is computed for each category and these
are averaged to get the final macro-averaged F1. With micro-average, we first
obtain the global values for every class for the true positive, true negative,
false positive, and false negative measures and then compute the micro-
averaged F1 value using micro-recall and micro-precision (computed with

these global values). In this work the results are determined using macro-
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averaging, unless otherwise stated.

ROC (receiver operating characteristic) curves are two-dimensional graphs
that offer a visual comparison of binary classifiers. ROC curves plot the TP
rate on the y axis vs. FP rate on the z axis (see Table 2.2), by varying the
threshold of decision between positive and negative classifications. Taking
as example an output decision range in [—1, 1], the threshold is usually set to
zero, i.e. testing examples with outputs less than zero are classified as nega-
tive, and the rest are classified as positive. However, to build a ROC curve
this threshold is varied step-wise from -1 to 1 and, for each cut-off point, the
TP rate and FP rate are calculated and plotted, defining the curve. A ROC
curve depicts relative trade-offs between benefits (true positives) and costs
(false positives) (Fawcett, 2004). The purpose is to develop classifiers with
high a TP rate and low FP rate, i.e. on the northwest corner of a ROC curve.
Additionally, the AUC (area under the curve) of a ROC can also be used
to quantify and compare the performance of classifiers. If instead of varying
the threshold (or cut-off point), we use a single value, the curve gives way

to a point, constituting an alternative to one-to-one classifier comparisons.

2.7.2 Document corpora

Standard text benchmark datasets, also referred to as corpora or collections,
are used in text classification research for evaluation. These corpora are high-
dimensional sets of documents, manually classified for business or research
purposes, constituting multi-class, multi-labeled problems, i.e. there are
more than two classes and each document can be classified in several classes.
The text classification problem is usually divided into several one-against-all
binary problems, one for each class, and some form of averaging is used to
achieve a final performance (see Section 2.7.1). In this section we review
some of the common benchmark datasets we have used in our work. Their
complete characteristics are left for the appendixes.

Reuters-21578

The Reuters-21578 Text Categorization Test collection? is the most popularly
used benchmark text dataset. It contains over 100 classes distributed in a

set of SGML? files. It is a financial corpus of news articles averaging 200

“http:/ /www.daviddlewis.com /resources/testcollections/reuters21578/
Standard Generalized Markup Language
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words each. The dataset is a multi-class multi-labeled dataset and it is a
very heterogeneous corpus, since the number of documents assigned to each
category is very variable. There are documents not assigned to any of the
categories and others assigned to more than 10 categories. On the other hand
the number of documents assigned to each category is not homogeneous
either. There are categories with only one assigned document and others

with thousands of assigned documents.

Table 2.3: Positive documents for Reuters-21578 categories.
Category Training Testing

Earn 2,715 1,044
Acquisitions 1,547 680
Money-fx 496 161
Grain 395 138
Crude 358 176
Trade 346 113
Interest 313 121
Ship 186 89
Wheat 194 66
Corn 164 52

Various researchers have used many standard subsets of this dataset. The
standard ModApte split, described in Appendix A, was adopted in this work,
using 75% of the articles (9603 items) for training and 25% (3,299 items) for
testing. In particular people have used only the most populous ten classes
with at least a minimum specified number of training documents, i.e. the
classes earn, acquisitions, money-fx, grain, crude, trade, interest, ship, wheat
and corn, presented in Table 2.3 with the corresponding number of positive
training and testing examples. These 10 categories are widely accepted as
a benchmark, since 75% of the documents belong to at least one of them.
Figure 2.5 presents an example of a document in the collection. Detailed

information about Reuters-21578 corpus can be found in Appendix A.

Reuters corpus volume I

The Reuters corpus volume 1 (RCV1) is an archive of 806,791 English lan-
guage news documents. The documents are similar to the Reuters-21578

Shttp://trec.nist.gov/data/reuters/reuters.html
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<REUTERS TOPICS="YES" LEWISSPLIT="TRAIN" CGISPLIT="TRAINING-SET"
OLDID="5552" NEWID="9">

<DATE>26-FEB-1987 15:17:11.20</DATE>
<TOPICS><D>earn</D></TOPICS>
<PLACES><D>usa</D></PLACES>

<PEOPLE></PEOPLE>

<ORGS></ORGS>

<EXCHANGES></EXCHANGES>

<COMPANIES></COMPANIES>

<UNKNOWN>

&H#5;&#5;&H#5;F

&#22;8#22;&%1;£0762&#31 ;reute

r £ BC-CHAMPION-PRODUCTS-&1t;CH 02-26 0067</UNKNOWN>

<TEXT>&#2;
<TITLE>CHAMPION PRODUCTS &1t;CH> APPROVES STOCK SPLIT</TITLE>
<DATELINE> ROCHESTER, N.Y., Feb 26 - </DATELINE><BODY>Champion

Products Inc said its

board of directors approved a two-for-one stock split of its

common shares for shareholders of record as of April 1, 1987.
The company also said its board voted to recommend to

shareholders at the annual meeting April 23 an increase in the

authorized capital stock from five mln to 25 mln shares.

Reuter

&#3;</BODY></TEXT>

</REUTERS>

Figure 2.5: Reuters-21578 document.

document presented in Figure 2.5. Despite its popularity, Reuters-21578
presents a number of disadvantages, particularly that of overall size (only
21,578 documents). By contrast, RCV1 is 35 times larger. Reuters-21578
covers only a fraction of a year, with somewhat inconsistent coverage of that
time period, whereas RCV1 covers a complete year of editorial output, al-
lowing the investigation of temporal issues. In addition, RCV1 was created
from a news archive product (i.e. a database) rather than a raw newswire
feed, which helps to ensure consistency (fewer duplicates, corrections, brief
alerts, etc.). However, one advantage of the older collection is that a great
deal of effort has been applied to identify suitable training/testing splits for
various applications, particularly those of text categorization and machine
learning. In fact, Reuters-21578 constitutes a benchmark for algorithm com-
parison within the research community, while work on the new corpus is still
developing.

Categories for RCV1 are hierarchically organized into four top-level nodes:
Corporate/Industrial (CCAT), Economics (ECAT), Government/ Social (G-
CAT) and Markets (MCAT). There are 103 categories actually assigned to
the data. In the second column of Table 2.4 (Documents) the total number of
positive documents for the ten most populated classes of RCV1 is given. For
training, RCV1 defines 22,370 documents that should be used. For testing

we selected the first 50,000 documents not used for training. Table 2.4 also
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Table 2.4: Positive documents for RCV1 categories.
Category Documents Training Testing
CCAT 381,327 10,416 23,077
GCAT 239,267 2,050 5,180
MCAT 204,820 5,154 11,110

C15 151,785 3122 7454
ECAT 119,920 3,162 7,539
M14 85,440 1,799 4,887
C151 81,890 515 698
C152 73,092 1,088 435
GPOL 56,878 1,627 3,756
M13 53,634 1,095 2,613

presents the effective number of positive documents used for training and
testing. Detailed information about RCV1 corpus can be found in Lewis’

paramount article (Lewis et al., 2004) and in Appendix B.

2.8 Empirical evaluation of pre-processing methods

To further assess the influence and relative importance of pre-processing me-
thods on text classification performance, we have undertaken an empirical
study to promote their comparison. This study used the Reuters-21578 col-
lection with the ModApte split. The experiments were carried out using
the SVM classifier. These choices of benchmark corpus and classifier corre-
spond to the most widely used benchmark and the state-of-the art classifier
in text classification, thus permitting the deduction of significant results.
In order to fulfill the objectives described, three pre-processing methods for

dimensionality reduction were considered, namely:

e Low frequency word removal: whether or not words that appeared in

fewer than three documents are removed;

e Stopword removal: the removal or not of words in the SMART stop-

word list;
e Stemming: whether Porter stemming was applied or not.

Table 2.5 presents the possible combinations of the tested dimensional-

ity reduction methods. Table 2.6 presents macro-averaged results for ac-
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curacy, precision, recall and F1, achieved for the defined combinations of
pre-processing methods (Silva & Ribeiro, 2003b) (Silva & Ribeiro, 2007b).

Table 2.5: Testing conditions of pre-processing methods.
Test Low freq.words Stopwords Stemming

A No No No
B No No Yes
C No Yes No
D No Yes Yes
E Yes No No
F Yes No Yes
G Yes Yes No
H Yes Yes Yes

Table 2.6: Performances for different pre-processing methods.

Test Accuracy Precision Recall F1

A 96.98% 83.96%  55.66% 65.59%
97.01% 84.23%  55.92% 66.14%
96.54% 84.06% 62.81% 71.26%
97.30% 83.95%  62.54% 71.09%
97.00% 84.93%  58.05% 67.74%
97.05% 85.06%  56.05% 66.27%
97.32% 85.06%  63.06% 71.75%
97.31% 85.91%  62.54% T1.77%

TomEgoaw

Comparing the results it is clear that, there are only slight differences
where accuracy and precision are concerned. This leads to the assertion
that the pre-processing methods tested do not greatly influence these values.
However, in text classification tasks, recall values are usually more sensitive
due to the distribution of positive and negative examples. Usually the num-
ber of examples is large, but the number of positive examples is small (less
than 5% in Reuters-21578 case). Hence, if a learning machine classifies all
documents as not belonging to a category, it will still have a large accuracy,
making the false negatives an issue to be considered. Table 2.7 shows the
average number of false negatives and false positives for each combination of

pre-processing methods. As expected, the false positive values do not show
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Table 2.7: False Positives and False Negatives for different pre-processing
methods.

Test False Positives False Negatives

A 22.9 62.9
B 224 62.5
C 23.3 55.0
D 22.2 54.6
E 22.6 62.6
F 21.8 62.2
G 23.0 53.3
H 22.0 54.5

great divergence, while false negative exhibit substantial differences. The
worst (highest) false negative values correspond to situations where stop-
word removal was not carried out, especially tests A, B, but also tests F
and F', suggesting that preserving those words can be harmful to recall val-

ues in text classification.

Comparing G and H, which respectively correspond to tests without and
with stemming, one can also conclude that stemming is not of major im-
portance for recall values, but it can play an important role in precision
matters. While stopword removal significantly alters the content of input
data, stemming only alters its shape, i.e. the reduction of information is not
significant. We can therefore say that stemming relate to the efficiency of

the learning machine (there is less redundancy in the data).

Figure 2.6 presents the ROC graph with one point for each of the com-
binations of pre-processing methods, maintaining the decision threshold or
cut-off point half-way between positive and negative examples. For an out-
put decision range in [—1, 1] the threshold was set to zero. Notice that the

axes are not equally ranged, permitting an easy comparison of approaches.

Analyzing this graph, it can be verified that testing conditions C,D,G,
and H, where stopword removal was performed, are definitely better than the
rest. These results confirmed that stopword removal removes information

that could mislead the learning machine, compromising the performance.
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0.65 @G

0.625 —— H
. D A - No pre-processing methods

B- Stemming
C - Stopwords

0.60 —— D - Stopwords, Stemming

True Positive Rate

E - Low frequency words
F - Low frequency words,Stemming
0575 - G - Low frequency words, Stopwords

H - Low frequency words, Stopwords, Stemming

®E
O @s YN

0.55 } } }

0 0.005 0.01 0.015 0.02

False Positive Rate

Figure 2.6: Evaluation of pre-processing methods with ROC graph.

2.9 Conclusion

This chapter has introduced the background to text classification tasks, viz.
representation, pre-processing, learning and evaluation issues.

Text classification is a high-dimensional learning problem that can poten-
tially enhance performance if the correct dimensionality reduction techniques
are applied. Even though these pre-processing steps are not the core of this
work, they constitute a vital component of a text classification system. As
such, we have undertaken an empirical study to promote the comparison, de-
termine the influence, and relative importance of dimensionality reduction
methods on text classification performance.

In our study, three standard dimensionality reduction techniques were
tested: low frequency word removal, stopword removal and stemming. It
was possible to draw several conclusions.

Stopword removal was found to be the most significant technique applied,
yielding the best performing classifiers in all tested conditions.

Stemming also plays an important role, especially for precision of the
classifiers. While stopword removal alters significantly the contents of input
data, stemming only alters its shape, i.e. the reduction of information is not
significant. We can therefore say that stemming is more relevant in terms of

efficiency of the learning machine (there is less redundancy in data).
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Low frequency word removal has little influence in classification perfor-
mance matters, but it can reduce training complexity by decreasing the
number of features.

A general conclusion is that the evaluated dimensionality reduction tech-
niques can strengthen the classifier performance.

Support vector machines (SVMs) were used in the presented evaluation.
Other learning techniques were mentioned and, while most of them still
retain their popularity, it is fair to say that in recent years SVM (Joachims,
2001) and boosting (Schapire & Singer, 2000) have been the two dominant
learning methods in text classification (Sebastiani, 2006). The next chapter
refers to some of these issues and presents a more detailed discussion on the

subject of kernel-based learning machines for text classification.
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Kernel machines for text
classification

3.1 Introduction

In this chapter we detail the concept of kernel methods and present the
foundations of two paradigmatic techniques: support vector machines and
relevance vector machines. Both are introduced in a text classification per-
spective and then we conclude with results and comparisons of their appli-

cation to benchmark corpora.

3.2 Kernel methods

The concept of kernels was brought to the machine learning scenario by
(Boser et al., 1992), introducing the technique of support vector machines
(SVMs). Since then there has been considerable interest in this topic (Schol-
kopf et al., 1999; Scholkopf & Smola, 2002; Shawe-Taylor & Cristianini,
2004). Kernel methods are properly motivated theoretically and exhibit good
generalization performance on many real-life data sets, including in their ap-
plication to text classification (Joachims, 2001; Tong & Koller, 2001). The
most popular kernel methods are support vector machines (SVMs) (Vapnik,
1995; Scholkopf, 1997; Vapnik, 1998) and the recently introduced relevance
vector machines (RVMs) (Tipping, 2001; Bishop & Tipping, 2003). Kernel
approaches are mostly binary while, as noted in Chapter 2, text classification
applications are usually multi-label, multiclass problems. However, a text

classification problem with a set of |C| categories, C = {c1,c2,...,¢;j,..., €|},

47



48 CHAPTER 3. KERNEL MACHINES FOR TEXT CLASSIFICATION

like the ones used as benchmarks throughout this work (see section 2.7.2),
is usually tackled as |C| independent binary classification problems under
{¢j, ¢}, for j = 1,...,|C|. In this case, a classifier for C is thus actually
composed of |C| one-against-all binary classifiers.

In the following sections we will detail two of the most accepted kernel
methods, namely SVMs and RVMs, treating both as solutions to a binary
problem of classifying a set of documents D = {d,d2,...,d;,...,dp} into
two possible target classes: {c;,¢;}.

Kernel methods can be cast into a class of pattern recognition techniques
in which the training data points, or at least a subset of them, are kept and
used also during the prediction phase. Moreover, many linear parametric
models can be transformed into an equivalent dual representation in which
the predictions are based on a linear combination of a kernel function evalu-
ated at the training data points (Bishop, 2006). For models which are based
on fixed nonlinear feature space mapping, ¢(d), the kernel function is given
by the relation

k(dy,d2) = ¢(d1)" ¢(d2), (3.1)

making the kernel a symmetric function of its arguments so that k(d;,ds) =
k(d2,d;) (Bishop, 2006). The simplest example of a kernel function is the
linear kernel, obtained by considering the identity mapping for the feature
space in (3.1), so that ¢(d) = d, in which case k(d;,ds) = d¥ d,.

The concept of a kernel formulated as an inner product in a feature space
allows us to build interesting extensions of many well known algorithms by
making use of the kernel trick, also known as kernel substitution. The general
idea is that, if we have an algorithm formulated in such a way that the input
document d enters only in the form of scalar products, then we can replace
the scalar product with some other choice of kernel. For instance, the tech-
nique of kernel substitution can be applied to principal component analysis
(PCA) in order to develop a nonlinear version of PCA, KPCA (kernel-PCA)
(Scholkopf et al., 1998).

3.3 Support vector machines

SVMs were introduced by Vapnik (Vapnik, 1995) based on the structural risk
minimization (SRM) principle, as an alternative to the traditional empirical

risk minimization (ERM) principle. The main idea is to find a hypothesis h
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from a hypothesis space H for which one can guarantee the lowest probability

of error Err(h). Given a training set of n examples:
(di,t1),. .-, (dn,tn),d; € RNt € {—1,+1}, (3.2)

SRM connects the true error of a hypothesis & with the error on the training

set, ETrypqin, and with the complexity of the hypothesis (3.3):

vin(1) —ln(n)).

n

Err(h) < Errgqin(h) + O ( (3.3)
This upper bound holds with a probability of at least 1—7. v denotes the VC-
dimension! (Vapnik, 1998), which is a property of the hypothesis space H
and indicates its expressiveness. This bound reflects the tradeoff between the
complexity of the hypothesis space and the training error (Joachims, 2001),
i.e a simple hypothesis space will not approximate the desired functions,
resulting in high training and true errors. On the other hand, a too-rich
hypothesis space, i.e. with large VC-dimension, will result in overfitting.
This problem arises because, although a small training error will occur, the
second term in the right-hand side of (3.3) will be large. Hence, it is crucial
to determine the hypothesis space with the sufficient complexity. In SRM
this is achieved by defining a nested structure of hypothesis spaces H;, so

that their respective VC-dimension v; increases:
H CHyCHsC---CH;C... and Vi:v;<wvj1 (3.4)

This structure is apriori defined to find the index for which (3.3) is minimum.
To build this structure the number of features is restricted. SVMs learn linear

threshold functions of the type:

+1 ifwd+b>0
h(d) = sign(w.d +b) = (3.5)

—1 otherwise,

where w = (w1, wa,...,wy)? are linear parameters (weights) of the model
and b is the bias. Linear threshold functions with N features have a VC-

dimension of N+1 (Vapnik, 1998).

'Vapnik-Chervonenkis dimension
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3.3.1 Linear hard-margin SVMs

In the simplest SVM formulation, a training set can be separated by at least
one hyperplane, i.e. data are linearly separable and a linear model can be

used:
y(d) = w'd +b. (3.6)

In this case, SVMs are called linear hard-margin and there is a weight vector
w’ and a threshold b’ that correctly define the model. Basically there is a
function of the form (3.6) that satisfies y(d;) > 0 for documents with ¢; = 1
and y(d;) < 0 for points having ¢; = —1, so that for each training document
(di ts)

tiy(d;) = ti(w'.d; +b') > 0. (3.7)

As a rule there can be multiple hyperplanes that allow such separation with-
out error (see Figure 3.1), and the SVM determines the one with largest
margin p, i.e. furthest from the hyperplane to the closest training examples.
The examples closer to the hyperplane are called support vectors (SVs) and
have an exact distance of p to the hyperplane. Figure 3.2 depicts an optimal

separating hyperplane and four SVs.

Figure 3.1: Possible hyperplanes separating positive and negative training
examples.

The perpendicular distance of a point from a hyperplane defined by
y(d) = 0, where y(d) takes the form of (3.6), is given by ly(d)] (Bishop,

Izl
2006). As we are only interested in solutions for which all documents are

correctly classified, so that ¢;y(d;) > 0, the distance of a document d; to the



3.3. SUPPORT VECTOR MACHINES 51

Support
Vectors

Figure 3.2: SVM optimal separating hyperplane and separating margin, p.

decision surface is given by

= T (3.8)

The margin is then given by the perpendicular distance to the closest point
d; of the data set, and we wish to optimize the parameters w and b in order
to maximize this distance. Thus, the maximum margin solution is found by

solving

rg max m’LTL T .
ag a{H T [ti(w d+b)]} (3.9)

Using a canonical representation of the decision hyperplane, all data points
satisfy
ti(wld; +b)>1. i=1,....n (3.10)

When the above equality holds, the constraints are said to be active for that
data point, while for the rest the constraints are inactive. There will be
always at least one active constraint, since there will always be a closest
point, and once the margin has been maximized, there will be at least two
active constraints. Then, the optimization problem consists of maximizing
|w||~1, which is equivalent to minimizing ||w]||?, and so we have to solve the

(primal) optimization problem:

minimize: —w.w,
2 (3.11)
subject to: Vi, : ¢; [w.d; +b] > 1
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These constraints establish that all training examples should lie on the cor-
rect side of the hyperplane. Using the value of 1 on the right-hand side of

the inequalities enforces a certain distance from the hyperplane:

p=—1, (3.12)
[l

where ||w|| denotes the Ly-norm of w. Therefore minimizing w.w is equiv-

alent to maximizing the margin. The weight vector w and the threshold b

describe the optimal (maximum margin) hyperplane.

Vapnik (Vapnik, 1995) showed there is a relation between the margin
and the VC-dimension. Considering the hyperplanes h(d) = sign(w.d + b)
in an N-dimensional space as a hypothesis, if all examples d; are contained

in a hyper-circle of diameter R, it is required that, for examples d;:
abs(w.d; +b) > 1 (3.13)

and then this set of hyperplanes has a VC-dimension, v, bounded by:

v < min ([};—;] ,N> +1, (3.14)

where [c] is the integer part of ¢. Thus, the VC-dimension is lower the
larger the margin. Moreover, the VC-dimension of the maximum margin
hyperplane does not necessarily depend on the number of features, but on the
Euclidean length ||w|| of the weight vector optimized by the SVM. Intuitively
this means that the true error of a separating maximum margin hyperplane
is close to the training error even in high-dimensional spaces, as long as it

has a small weight vector.

The primal constrained optimization problem (3.11) is numerically diffi-
cult to handle. Therefore, one introduces Lagrange multipliers, «; > 0, with

one multiplier for each of the constraints in (3.11), obtaining the Lagrangian

function .
1
L(w,b,a) = 5||w||2 — ;ai[ti(wTdi +b) — 1], (3.15)
1=
where a = (ay,...,a,)". Note the minus sign in front of the Lagrangian

multiplier term, because we are minimizing with respect to w and b, and

maximizing with respect to a. Setting the derivatives of L(w,b, ) with
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respect to w and b to zero, we obtain the following two conditions:

w = Zaitidi, (316)
i=1

0=> ajt;. (3.17)
=1

Eliminating w and b from L(w,b, ) gives the dual representation of the

maximum margin problem

n n n
1
maximize: E &= 5 E E titjogo(d;.dy)

i=1 i=1 j=1

& 3.18
subject to: Ztiai =0 ( )

i=1
Vie[l.n]:0<q

The matrix Q with Q;; = t;t;(d;.d;) is commonly referred to as the
Hessian matrix. The result of the optimization process is a vector of La-
grangian coefficients a = (g, ..., ;)7 for which the dual problem (3.18) is
optimized. These coefficients can then be used to construct the hyperplane,
solving the primal optimization problem (3.11) just by linearly combining
training examples (3.19).

wd= <Z Oéitidi> d= Z Oéiti(did) and b= tSV — w.dsv
i=1 i=1

(3.19)
Only support vectors (SVs) have a non-zero «; coefficient. To determine b
from (3.18) and (3.19), an arbitrary support dsy vector with its class label
tgy can be used.

3.3.2 Soft-margin SVMs

Hard-margin SVMs fail when the training documents are not linearly sep-
arable, since there is no solution to the optimization problems (3.11) and
(3.18). Even though most text-classification problems are linearly separable,
it might still be preferable to allow some errors in the training data, as in-
dicated by the structural risk minimization (Vapnik, 1998; Joachims, 2001).
This is the rationale of the soft-margin SVMs. They minimize the weight
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vector, like the hard-margin SVMs, but they simultaneously minimize the
number of training errors by the introduction of slack variables, ;. The

primal optimization problem of (3.11) is now reformulated as

PR | g
minimize: w.w +C Z &,
1=1
subject to: Vi, : t; [w.d; +b0] > 1—¢;

?:1 1€ > 0.

(3.20)

If a training example is wrongly classified by the SVM model, the corre-
sponding & will be greater than 1. Therefore Y . | & constitutes an upper
bound on the number of training errors. The factor C in (3.20) is a parame-
ter that allows the tradeoff between training error and model complexity. A
small value of C' will increase the training errors, while a large C will lead
to behavior similar to that of a hard-margin SVM.

Again, this primal problem is transformed in its dual counterpart, for
computational reasons. The dual problem is similar to the hard-limit SVM

(3.18), except for the C upper bound on the Lagrange multipliers «;:

n n n
1
maximize: E &= 5 E g titjogo(d;.dy)

i=1 i=1 j=1

& 3.21
subject to: thﬂi =0 ( )

i=1
Vie[l.n]:0<a; <C

As before, all training examples with «; > 0 are called support vectors.
To differentiate between those with 0 < «; < C' and those with a; = C, the
former are called unbounded SVs and the latter are called bounded SVs.

From the solution of (3.21) the classification rule can be computed ex-

actly, as in the hard-margin SVM:

wd= <Z Oéitidi> d= Z Oéiti(did) and b= tSV - w.dsv
i=1 i=1
(3.22)

The only additional restriction is that the SV (dgv,tsy) for calculating b
has to be an unbounded SV.
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3.3.3 Nonlinear SVMs

So far in this section, we have only discussed SVMs for linear classification
rules. Linear classifiers are inappropriate for many real-world problems, since
the problems have inherently nonlinear structure. A remarkable property of
SVMs is that they can easily be transformed into nonlinear learners (Boser
et al., 1992). The attribute document vectors d are mapped into a high-
dimensional feature space X’'. Despite the fact that the classification rule
is linear in X, it is nonlinear when projected into the original input space.
The following example with a document d = (wy, w2), with only two input
attributes wy and we (words or terms) illustrates this. Let us choose

O(d) = (w1, w2)") = (w}, w3, V2wiws, V2w, V2wy, 1) (3.23)

as the nonlinear mapping. Although it is not possible to linearly separate the
examples in 3.3a), they become linearly separable in 3.3b), after the mapping

with ®(d) into the higher dimensional feature space (Joachims, 2001).

wy wy *
+
' +
Vo4 !
\ i
\ +  F/
\ /
\ 1
.+ ) +
\ ! +
\ /
\ /
\\+ + // +
N ,
,
- > >
wy w?
.
a) b)

Figure 3.3: a) Nonlinearly separable training set in (wq,ws); b) Projection
of the same set onto (w?,ws), where the set becomes linearly separable.

In general, such a mapping ®(d) is inefficient to compute. There is a
special property of SVMs that handles this problem. During both training
and testing, it is sufficient to be able to compute dot-products in feature
space, i.e. ®(d;).®(d;). For special mappings ®(d) such dot-products can
be computed very efficiently using kernel functions K(dj,dz). If a function
K(dj,d2) satisfies Mercer’s Theorem, i.e. it is a continuous symmetric kernel
of a positive integer operator, it is guaranteed to compute the inner product

of the vectors d; and ds after they have been mapped into a new space by
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some nonlinear mapping ® (Vapnik, 1995):
®(d;).(ds) = K(dy,do) (3.24)

Depending on the choice of kernel function, SVMs can learn polynomial
classifiers (3.25), radial basis function (RBF) classifiers (3.26) or two-layer

sigmoid neural networks (3.27).

Kpory(di,d2) = (di.dg +1)? (3.25)
KRBF(dla d2) = exp (—’y(dl - d2)2) (326)
Kigmoia(di1,dz2) = tanh (s(d;.d2) + ¢) (3.27)

The kernel K,oy(d1,d2) = (di.d2 + 1)2 corresponds to the mapping in
Equation (3.23). To use a kernel function, one simply substitutes every oc-
currence of the inner product in equations (3.21) and (3.22) with the desired

kernel function.

3.4 Relevance vector machines

Relevance vector machines (RVMs) are a Bayesian treatment of the SVM pre-
diction model. However, RVMs are not a Bayesian treatment of the SVMs
methodology, but use kernels as simply defining a set of basis functions,
rather than as a definition of a dot-product in some space (Bishop, 2006).
SVMs are state-of-the-art learning algorithms for classification, and have se-
veral desirable properties, such as fitting functions in high-dimensional fea-
ture spaces, sparsity and good generalization performance by margin maxi-
mization (Scholkopf et al., 1999). RVMs seem to have overcome some of the
SVMs’ disadvantages, notably (Tipping, 2001):

e Although relatively sparse, SVM make unnecessary use of basis func-
tions since the number of SVs required typically grows linearly with the
size of the training set. Some form of post-processing is often required

to reduce computational complexity;

e Predictions are not probabilistic. In regression the SVM outputs a

point estimate and in classification a ’hard’ binary decision. Ideally we
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want to estimate the conditional distribution in order to capture the

uncertainty in our prediction.

e It is necessary to estimate the error/margin tradeoff parameter C (and
in regression the insensitivity parameter e too). This generally en-
tails a cross-validation procedure, which is wasteful of both data and

computation.
e The kernel function must satisfy the Mercer condition.

Relevance vector machines (RVMs) constitute a viable alternative to
SVMs. Their advantages rise due to the ability to yield a decision func-
tion that is much sparser than SVM, slightly penalizing its classification
performance. This can lead to a significant reduction in the computational
complexity of the decision function, thereby making it more suitable for
real-time applications (Wei et al., 2005).

RVMs were proposed by Tipping (Tipping, 2001) as a Bayesian proba-

bilistic framework for learning models of the type
y(d) =) widi(d) = w’ ®(d), (3.28)
i=1

where the output is a linearly-weighted sum of n, generally nonlinear and
fixed, basis functions ®(d) = (¢;(d), p2(d),...,¢,(d))T. Functions of the
type (3.28) are analyzed by adjusting the weights w = (w1,ws, ..., wy)T that
are linear parameters of the model, for which the learning process estimates
adequate values.

We shall now introduce the Bayesian approaches, and then the RVM

approach.

3.4.1 Bayesian approaches

The basis of all Bayesian approaches is Bayes’ theorem:

p(d[t)p(t)
p(d) 7

where t is the target and d is the input document. This theorem states that

p(tld) = (3.29)

some prior probability p(t) can be transformed into a posterior probability

p(t|d), by incorporating evidence provided by the observed data p(d|t).
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When adapted to learning algorithms, Bayes’ theorem can be used to

determine model parameters:

p(t|w)p(w)
plwlt) = D2 3.30
(wit) = P2 (3.30)
where w = (wy,wa,...,wy,)! are the model parameters and t is again the

target. In this form, it allows us to evaluate the uncertainty in w after we
have observed t, in the form of the posterior probability p(w|t). The quantity
p(t|w)p(t|w) on the right hand side of (3.30) is evaluated for the observed
dataset (with targets t) and can be viewed as a function of the parameter
vector w, in which case it is called the likelihood function. It expresses how
probable the observed data is for different settings of the parameter vector

w. Given this definition of likelihood, we can state Bayes’ theorem as
posterior o likelihood x prior, (3.31)

where all of these quantities are viewed as functions of w (Bishop, 2006).
The denominator of (3.30) is the normalization constant, which ensures that
the posterior distribution on the left-hand side is a valid probability density

and integrates to one.

3.4.2 RVM approach

Relevance vector machines’ (RVMs’) key feature is that as well as offer-
ing good generalization performance, the inferred predictors are remarkably
sparse in that they contain few non-zero w; parameters. Most parameters
are automatically set to zero during the learning process, giving a proce-
dure that is extremely effective at discerning those basis functions which are
relevant for making good predictions (Tipping, 2001).

Specifically, a fully probabilistic framework is adopted by introducing a
prior over the model weights. Each weight w; is determined by a hyperpa-
rameter «;, whose most probable values are iteratively estimated from the
data. Sparsity is achieved because, in practice, the posterior distributions
of many of the weights are sharply (in fact infinitely) peaked around zero.
Those training vectors associated with the remaining non-zero weights are
the relevance vectors (RVs), in deference to the principle of automatic rele-

vance determination (ARD) which motivates the approach (MacKay, 1994).
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RVMs were initially introduced for regression problems, but the formu-
lation for classification follows an essentially identical framework. Consider

a training set with n documents d and a binary target variable ¢
(di1,t1),..., (dn,tn),d; € RN t; € {0,1}. (3.32)

For two-class classification, it is desired to predict the posterior probability
of membership of one of the classes given the input document d. We follow
statistical convention and generalize the linear model (3.6) by applying the
logistic sigmoid link function o(y) =1/(1 +e_y) to y(d):

y(d,w) = a(gwmd) ra) (33)

where w = (wo, ...,wp)T are the weights (the bias was integrated into the

weight vector as wy), ¢;(d) = k(d,d;) with k(-,-) representing the kernel

function and d; an example (or a relevance vector) from the training set.
Furthermore, adopting the Bernoulli distribution for P(t¢|d), the likeli-

hood can be written as:
p(tld) = [ [ o{(y(ds; )} [1 — o{y(di; )}, (3.34)
i=1

where, following from the probabilistic specification, the targets t; € {0,1}2.

Under the RVM framework, priors are introduced over the weight vec-
tor w, obtaining a model by applying an ARD (Automatic Relevance De-
termination) prior p(w|a) = Hf\i LN (wil0,a;1), where o, is the precision
hyperparameter of the i** parameter w;. Note that now we have M =n + 1
hyperparameters, one for each input and another for the bias. It should also
be emphasized that this analysis is valid for arbitrary choices of basis func-
tions, i.e. there is no restriction (as there was for SVMs) of using positive
definite kernels or to use the same kernel for all instances.

In the regression case, the weights are analytically integrated out, and
both the weight posterior p(w|t, &) and the marginal likelihood p(t|a) have
closed-form expressions. However, for classification this is not possible, and

so the following approximation procedure is adopted, as used by (MacKay,

*Note that this is the reason for the difference between the values of the targets in
SVMs (3.2) and RVMs (3.32).
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1992), based on Laplace’s method:

1. For the current, fixed, values of «, the most probable weights wjy;p
are found, giving the location of the mode of the posterior distribu-
tion. Since p(w|t, &) o p(t|w)p(w|a), this is equivalent to finding the

maximum, over w, of

n

In{p(tlw)p(w|a)} = Z[tl Iny,+(1—t)In(1—y,)]— %wTAw, (3.35)
i=1

with y; = o{y(d;;w)} and A = diag(a;). This can be done using
iterative-reweighted least squares (IRLS) (Bishop, 2006).

2. For IRLS, one needs the gradient vector and Hessian matrix of the log
posterior distribution (Bishop & Tipping, 2003), obtained by deriving
(3.35),

Vinp(wlt,a) = ®T(t —y) — Aw, (3.36)

Viinp(wlt,a) = —(@TB® + A), (3.37)

where B is an n x n diagonal matrix with elements b; = y;(1—v;), y =

(Y1,-.-,Yn)? and ® is the design matrix with elements ®;; = ¢;(d;).

This is then negated and inverted to give the covariance X for a Gaus-

sian approximation to the posterior over weights centered at wysp.

3. The mode of the resulting approximation to the posterior distribution
corresponding to the mean of the Gaussian approximation, is obtained
setting (3.36) to zero, giving the mean and covariance of the Laplace

approximation in the form

wyp =A"1®T(t —y) (3.38)

> = ("B +A)L (3.39)

We now can use this Laplace approximation to evaluate the marginal
likelihood. Evaluating an integral using the Laplace approximation,
we have (Bishop, 2006)
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pltlo = / p(t]w)p(w]or)dw

~ p(tlwarp)p(warp|a) (2m) /2|12,

(3.40)

If we substitute p(t|wyrp) and p(wysp|a) and then set the derivative
of the marginal likelihood with respect to «; equal to zero, we obtain
(Bishop, 2006)

1 1
2(12‘ 2

1

2

Defining v; = 1 — a;%;; and rearranging then gives

new 77/
Qi = (wonir)? (3.42)

which is identical to the regression updating formula.

In a batch-learning approach, all training examples will be considered
as relevance vectors at the initial stage and the remaining vectors will be
pruned after re-evaluation of a in each iteration. In other words, every «;
has a finite value at the beginning of the iteration, and the Hessian matrix
to be computed in each estimation loop has a size of (n+1) x (n+1). Since
the inversion of Hessian matrices is involved in the learning algorithm, the
overall training complexity is O(n?®). This implies that if the initial sample
size is huge, the learning algorithm may take a long time to converge, as will

be confirmed in Chapter 5.

The idea of what a relevance vector (RV) is can be gleaned from Fig. 3.4,
which shows a two-dimensional RVM classification example with four RVs.
Informally, RVMs try to describe the decision surface as simply as possi-
ble by selecting the RVs as typical instances. On the other hand, Support
Vector Machines describe the decision surface by selecting as support vec-
tors (SVs) the borderline and missclassified instances (Johansson & Nugues,

2005), usually resulting in a larger set of vectors to define a model.
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Figure 3.4: RVM two-class classification example with four relevance vectors.

3.5 Baseline kernel machines performances with bench-

mark corpora

In this section we present the baseline classification results for the kernel-
based machines introduced in this chapter. Performances are evaluated in
both the Reuters datasets presented in Section 2.7.2, Reuters-21578 and
RCV1.

3.5.1 SVM performance

SVMs were tested using the SVMlight software®, first with the default pa-
rameters and then doubling the importance of the least represented class,
i.e. the positive class. Tables 3.1 and 3.2 display the performance results for
both datasets (see Section 2.7.1 for insight on the performance measures).
These results were obtained using the ten most populated categories for both
datasets (see Appendixes A and B). To provide a complexity measure of the

resulting models, the number of support vectors (SVs) is also presented.

Analyzing the performance measures, it is easy to conclude that accu-
racy values offer a deceptive notion of correctness of the resulting models,
when compared with other measures. For instance, for the corn category in
Reuters-21578, even though an accuracy of 99.12% is reached, only 58.33%

3http:/ /svmlight.joachims.org/
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of the 52 positive testing documents are detected (see Table 2.3 for informa-
tion on the number positive examples in Reuters-21578 categories). Another
effect that can be observed is that more positive documents in a category

result in more complex models, i.e. more SVs.

Table 3.1: Performances for SVM with Reuters-21578.

Default parameters

Category SVs  Accuracy Precision Recall F1
Earn 1,632  95.92% 93.53%  95.50%  94.50%
Acquisitions 1,751 94.93% 93.09%  85.15% 88.94%
Money-fx 908 96.13% 71.43%  52.80% 60.72%

Grain 771 97.96% 92.55%  63.04% 75.00%
Crude 693 97.04% 84.85%  63.64% 72.73%
Trade 647 97.64% 79.49%  54.87% 64.92%
Interest 742 97.15% 77.03%  47.11%  58.46%
Ship 500 98.45% 89.36%  51.85% 65.62%
Wheat 487 98.77% 84.44%  57.58% 68.47%
Corn 484 99.08% 93.33%  53.85% 68.29%

Average  861.50 97.31% 85.91%  62.24% T1.77%

Doubled importance of errors on the positive class

Category SVs  Accuracy Precision Recall F1
Earn 1,000  98.58% 97.81%  98.47% 98.14%
Acquisitions 1,249  97.96% 96.81%  94.44%  95.59%
Money-fx 645 97.45% 76.30%  73.06%  74.64%

Grain 645 98.54% 97.96% 71.64% 82.76%
Crude 517 98.32% 90.20%  80.12% 84.87%
Trade 501 97.74% 76.60%  64.29%  69.90%
Interest 945 98.32% 82.92%  68.00% 74.73%
Ship 500 98.54% 94.12%  56.47% 70.59 %
Wheat 420 98.94% 84.91% 68.18% 75.63%
Corn 394 99.12% 87.50%  58.33% 70.00%

Average  641.60 98.35% 88.51%  73.29%  79.68%

Comparing the performances in Reuters-21578 and RCV1, it can be ar-
gued that the RCV1 corpus is more difficult to classify, since the SVM models
have many more SVs for similar training set sizes. While the average num-
ber of SVs for Reuters-21578 is between 600 and 900, for RCV1 the average
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number of SVs is between 3,000 and 5,000.
Moreover, the F1 averaged performance is around 10% lower (71.77% to

61.91% and 79.68% to 69.43%).

Table 3.2: Performances for SVM with RCV1.
Default parameters

Category SVs Accuracy Precision Recall F1
CCAT 6,919 93.02% 93.33%  92.24%  92.78%
GCAT 3,893 92.96% 78.26% 4437 %  56.63%
MCAT 4,466 95.28% 93.67 % 87.94%  90.72%

C15 3,974 91.81% 9246 %  58.85%  71.92%
ECAT 4,723 93.31% 88.00 % 65.30% 74.97%
M14 3,060 95.57% 90.49% 60.33 % 72.39%
C151 1,148 96.90% 66.74% 9.10%  16.01%
C152 2,422 97.23% 20.67% 2.96% 5.18%
GPOL 2,252 95.94% 78.28% 61.34 % 68.78 %
M13 2,126 96.69% 87.24%  58.01% 69.69 %
Average 3,498.3 94.87T% 78.91%  54.04% 61.91%

Doubled importance of errors on the positive class

Category SVs Accuracy Precision  Recall F1
CCAT 6,791 92.52% 9041%  94.17%  92.25%
GCAT 4,942 92.72% 68.39%  57.32 % 62.37%
MCAT 4,878 95.59%  89.70 %  93.08%  91.36%

C15 5,144 94.43% 9353 % 67.719%  78.61%
ECAT 5,657 93.76%  82.85% 77.55% 80.11%
M14 3,141 96.11% 90.53%  69.04 % 78.34%
C151 1,855 98.78% 59.44%  39.57%  47.51%
C152 3,961 95.59% 3.78% 16.22%  6.13%
GPOL 2,959 96.31% 76.87% 7342 % 75.11 %
M13 2,840 97.89% 87.49%  78.03% 82.49 %
Average 4,216.8 95.37% 74.30%  66.62%  69.43%

3.5.2 RVM performance

RVMs were tested using Tipping’s software?. Given the RVMs’ Bayesian

roots, all training set documents must be evaluated at once, and this results

“http:/ /www.miketipping.com /index.php?page=rvm
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in scalability issues. Making the learning faster and computationally less
demanding is therefore an ongoing research area.

We carried out a set of experiments to determine how many documents
to use in RVM training. Figure 3.5 is a quadratic model for the computing
time fitted to our experimental data, obtained using the text classification

benchmark Reuters-21578, for different training set sizes.
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Figure 3.5: Quadratic model of RVM training times on Reuters-21578.

Observing this model conclusions can be drawn on the importance of
limiting the training set size to indispensable items. Thus, in the RVMs
baseline results we have used just 1,000 or 2,000 training documents, instead
of the full ModApte split training set used by SVMs.

Tables 3.3 and 3.4 show performance measures (see Section 2.7.1) for
RVMs on Reuters-21578 and RCV1 corpora respectively.

These results were obtained using the ten most populated categories for
both datasets (see Appendixes A and B). To provide a complexity measure
of the resulting models relevance vectors (RVs) are also presented.

Analyzing the performance measures, there are some common points with
SVMs, in particular that accuracy values are deceptive when compared with
other measures, and that more positive documents in a category result in

more complex models, i.e. more RVs.
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Comparing the performances in Reuters-21578 and RCV1, again RCV1
appears more complex with an average F1 15.91% lower, for the models

trained with 2,000 documents.

Table 3.3: Performances for RVM with Reuters-21578.
1,000 training documents

Category RVs Accuracy Precision Recall F1
Earn 24 96.64% 93.43%  98.08% 95.70%
Acquisitions 26 94.02% 90.66%  83.05% 86.69%
Money-fx 19 95.95% 74.19%  32.62% 45.32 %

Grain 22 97.23% 69.86%  76.12% 72.86%
Crude 16 96.24% 73.02%  57.14% 64.11%
Trade 19 96.24% 56.72%  33.93% 42.46%
Interest 16 96.75% 58.73%  37.00% 45.40 %
Ship 15 97.48% 80.77%  24.71% 37.84%
Wheat 19 98.54% 68.06 % 74.24% 71.01%
Corn 15 98.65 % 60.78%  64.58% 62.63%

Average 19.10 96.78% 72.62%  58.15%  62.40%

2,000 training documents

Category RVs Accuracy Precision Recall F1
Earn 35 98.10% 97.24%  97.80% 97.52%
Acquisitions 49 96.13% 93.66%  89.58% 91.57%
Money-fx 35 96.28% 70.10%  48.23% 57.14 %

Grain 28 97.74% 77.69%  75.37% 76.52%
Crude 28 96.61% 73.61%  65.84% 69.51%
Trade 39 96.32% 56.04%  45.54% 50.25%
Interest 35 97.34% 68.00% 51.00% 58.29 %

Ship 26 98.21% 80.00% 56.47% 66.21%
Wheat 19 98.72% 70.67 %  80.30%  75.18%
Corn 27 99.87 % 68.09%  66.67% 67.37%

Average  32.10 97.43% 75.51%  67.68% 70.95%

Moreover, RCV1 has more RVs per model; for Reuters-21578 the average
number of RVs is between 19 and 32, whereas for RCV1 the average number
of RVs is between 37 and 62. Note that, disregarding this difference between
datasets, the number of RVs in RVMs is much smaller than the number
of SVs in SVMs, which shows the lesser overall model complexity, making

RVMs suitable for real online applications.
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Table 3.4: Performances for RVM with RCV1.
1,000 training documents

Category RVs  Accuracy Precision Recall F1
CCAT 68 80.18 % 75.26%  85.00 % 79.83%
GCAT 63 88.42% 42.50 % 33.47%  37.45%
MCAT 51 87.49% 73.25 % 68.87 %  70.99%

C15 42 90.89% 69.17 %  70.16%  69.66%
ECAT 45 85.66% 52.70 %  47.50%  49.97%
M14 38 9114 % 6756 % 18.03 % 28.46%
C151 14 98.25% 24719 %  12.61% 16.71%
C152 11 99.02% 13.51 % 2.30% 3.93%
GPOL 23 93.98 % 64.27%  44.78 % 52.79%
M13 22 95.53% 5730 % 56.45 % 56.87 %
Average 37.70 91.06% 54.03%  43.92%  46.67%

2,000 training documents

Category RVs  Accuracy Precision Recall F1
CCAT 106 84.04 % 81.66% 84.35 %  82.99%
GCAT 81 88.71% 43.56 % 30.42%  35.83%
MCAT 92 89.46% 76.17 % 76.62 % 76.36%

C15 64 92.55% 72.26 % 81.19%  76.47%
ECAT 88 87.98% 60.01 % 60.86% 60.43%
M14 64 9761 % 2627 % 39.26 % 31.48%
C151 28 92.76% 66.30 %  52.69% 58.21%
C152 17 98.84% 8.67 % 3.45% 4.93%
GPOL 52 93.95 % 61.11% 53.54 % 55.07%
M13 41 96.48% 66.45 % 65.79 % 66.12 %
Average 62.50 92.24% 56.24%  54.82%  55.04%

3.5.3 Discussion

67

Table 3.5 presents a summary of average default baseline measures for both
datasets and kernel-based machines. Reuters-21578 and RCV1 exhibit sim-
ilar trends for both SVMs and RVMs. SVMs have a better F1 classification

performance, but have much more complex models. The performance gains

for SVMs range between around 1% and 7%, while the number of vectors is

26 to 56 times higher. Therefore, one can say there is a compromise between
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Table 3.5: Comparison of baseline SVM and RVM performances.
Reuters-21578 RCV1
Vectors F1 Vectors F1
SVM  861.50 71.77% 3498.3 61.91%
RVM 3210 70.95%  62.50 55.04%

performance and complexity that can favor either SVMs or RVMs, depend-
ing on the application and objectives. Note also that RVMs were trained
with only 2,000 documents, i.e. around 30% of the available training set,
and that more computational power should result in better performances.

Moreover, RVMs offer other advantages, especially probabilistic outputs.

3.6 Conclusion

This chapter has described the kernel-based learning machines used through-
out this work. We started by introducing the concept of kernel methods and
went on to describe in more detail the foundations of support vector machines
and relevance vector machines in a text classification perspective.

Kernel methods constitute state-of-the-art learning algorithms. The con-
cepts of kernels and the kernel trick permit their successful application to
practically any given application. For text classification, support vector ma-
chines (SVMs), making use of the Structural Risk Minimization principle,
effectively reduce the training error, bounding the real error obtained when
facing new unseen examples. Moreover, SVMs scale independently of the
dimensionality of the feature space, since the separating margin defines the
complexity.

On the other hand, relevance vector machines (RVMs) offer good gen-
eralization performance, together with a fully probabilistic framework that
provides sparse models.

To compare the two kernel approaches, baseline classification results in
two accepted text classification benchmark corpora were presented and ana-
lyzed, allowing for future reference in subsequent chapters. Performance-wise
SVMs consistently presented better classification results. Conversely, RVMs
were found to have sparser models with probabilistic outputs, which can

become relevant in real-world applications.



Enhancing SVMs for text
classification

4.1 Introduction

In the previous chapter we introduced kernel-based techniques and their
baseline application to text classification. In this chapter we develop and
explore learning techniques that integrate knowledge in the classification
task to improve the performance of support vector machines (SVMs) in text

classification applications.

We investigate the introduction of unlabeled data in the learning stage.
With the deluge of digital text data, unlabeled texts are ubiquitous. Whether
it is the Internet, email servers, database files or plain file systems, the sources
for digital texts are countless. However, such texts are usually unlabeled, and
their labeling is mostly manual and costly. Therefore, a research field on the
study and use of these unlabeled texts has been emerging. We further inves-
tigate the potential of using several learning machines organized in a com-
mittee. Knowing that there is no unique classifier that suits all situations,
we focus on exploiting the diversity of classifiers to enhance performance.
Both approaches are evaluated using the SVM light package' as base soft-
ware (with modifications and improvements to reflect the contributions) in

real world benchmark data sets.

"http://svmlight.joachims.org/
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4.2 Incorporating unlabeled data

Supervised leaning algorithms for text classification, like SVMs, usually re-
quire a large number of labeled documents to achieve a satisfactory per-
formance. However, labeling documents to create a training set is time
consuming and costly, since human labor is usually needed. This section
demonstrates that supervised learning algorithms that use a small num-
ber of labeled examples and many inexpensive unlabeled examples, usually
termed as partially supervised learning methods, can create competitive text
classifiers.

In general, unlabeled examples are much less expensive and easier to
gather than labeled ones. This is particularly true for text classification
tasks involving online data sources, such as web pages, email or news stories,
where large amounts of texts are readily available. Labeling examples can
also be usefully limited in applications like email routing, SPAM filtering or
web page labeling, saving time and money for users and companies, while
providing a vital tool for dealing with the avalanche of digital texts they are
faced with.

The unlabeled texts can frequently be collected automatically, so it is
feasible to collect a large set of unlabeled examples. If unlabeled examples
can be integrated into supervised learning, then building text classification
systems will be significantly faster, less expensive and more effective. Con-
sider the following example to give some insight into how unlabeled data can
be useful. Suppose we are interested in recognizing web pages about con-
ferences. We are given just a few conference and non-conference web pages,
along with a large number of pages that are unlabeled. By looking at just
the labeled data, we determine that pages containing the word paper tend
to be about conferences. If we use this fact to estimate the classification of
the many unlabeled web pages, we might find that the word deadline occurs
frequently in the documents that are classified in the positive class. This co-
occurrence of the words paper and deadline over the large set of unlabeled
training data can provide useful information to construct a more accurate
classifier that considers both paper and deadline as indicators of positive ex-
amples. To successfully integrate information of unlabeled examples in the
learning task, several research techniques have been pursued.

In (Nigam et al., 2000) an algorithm for learning from labeled and un-

labeled documents based on the combination of expectation maximization
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and naive Bayes classifier is proposed where, after an initial model is derived,
the probabilistic labels of unlabeled examples are used iteratively until a new

model is reached.

(Tong & Koller, 2001) introduce an algorithm for performing active learn-
ing with support vector machines, defining the version space as the set of
possible consistent hyperplanes that separate the data in the induced feature
space, and taking advantage of the duality between the parameter space and
feature space. Empirically they show that at each iteration the version space
is reduced, thus reducing the need for labeled instances in both the standard

inductive and transductive settings.

In (Liu et al., 2003) the problem of building text classifiers using positive
and unlabeled examples is addressed. The key feature of this problem is that
there are no negative examples. The authors propose a biased formulation
of the SVM, where the number of unlabeled examples classified as positive is

minimized, while constraining the positive examples to be correctly classified.

(Zhang & Oles, 2000) focus on a statistical point of view of using unla-
beled data for classification, assuming there is a correct model of the underly-
ing distribution, and apply the methodology to partially supervised learning
and active learning settings. The authors use a probabilistic framework, us-
ing the logistic model as an approximate probability model for SVMs with
Fisher information. It is concluded that, using this setting, SVMs are ap-
propriate for active learning, but not for partially supervised learning, since
unlabeled data points are likely to cause large changes in parameter estima-

tion once the label is determined.

(Konig & Brill, 2006) describe a way to reduce the labeling effort, while
retaining accuracy, by constructing a hybrid classifier that utilizes human
reasoning on automatically discovered text patterns to complement machine
learning. Using a standard sentiment-classification dataset and real customer
feedback data, it is demonstrated that the technique results in significant re-
duction of the human effort required to obtain a given classification accuracy.
Moreover, the hybrid text classifier also results in a significant boost in ac-
curacy over machine-learning based classifiers when a comparable amount of
labeled data is used.

In (Zhou et al., 2005) a general framework for learning from labeled
and unlabeled data on a directed graph is proposed. The structure of the

graph includes the directionality of the edges and it can be utilized as a
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spectral clustering method for directed graphs, which generalizes the spectral
clustering approach for undirected graphs.

(Szummer, 2002) presents a comprehensive study on the use of learn-
ing from partially labeled data. The author introduces three approaches
to the problem: a kernel classifier that can be interpreted as a discrim-
inative kernel density estimator, trained via the expectation-maximization
(EM) algorithm; a Markov random walk representation that exploits clusters
and low-dimensional structure in the data; and a nonparametric information
regularization technique based on minimizing information about labels on
regions covering the domain.

Specifically for SVMs there is a transductive setting, introduced by (Vap-
nik, 1998; Joachims, 1999). Transductive support vector machines (TSVMs)
take into account a particular testing set and try to minimize missclassifica-
tions of just those particular examples. Given that TSVMs are a straightfor-
ward improvement of SVMs, they will also be used for baseline comparison
in the strategies pointed out below.

We propose two ways to integrate knowledge into the learning task by
incorporating unlabeled data in the training set using SVMs and their pris-
tine characteristic: the separating margin. In the next section we will detail

our approaches, followed by results and analysis.

4.2.1 Background knowledge and active learning

In this section we propose and compare two techniques that include know-
ledge in the learning task by incorporating unlabeled examples, viz. back-
ground knowledge and active learning. As for other unlabeled approaches,
the underlying idea is that the information contained in unlabeled docu-
ments can help to improve the classification performance. Both techniques
are margin-based partially labeled approaches, i.e. the significance is put
on the separating margin of SVMs and both labeled and unlabeled data are
used.

The separating margin, defined by the optimal separating hyperplane
(OSH) and the nearest training examples (see Section 3.3, Figure 3.2), is
determinant in SVMs and basically defines their performance. When clas-
sifying unlabeled examples with an SVM model, the support vectors (SVs)
and associated weights are used to determine on which side of the OSH the

unlabeled examples fall. Figure 4.1 depicts a two-dimensional example where
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four unlabeled documents, represented by black dots, are classified. As can
be gleaned from the figure, not all unlabeled documents are positioned at
the same distance from the OSH. Two are close to the margin (represented
with a small margin label) and other two are farther away (represented with

a large margin label).

Large margin

Large margin

Figure 4.1: Unlabeled examples (black dots) classified by an SVM model
with small and large margins.

For both the proposed approaches, first an SVM model is induced and
applied to all examples (labeled and unlabeled). Then, the two approaches
add examples from the unlabeled/testing set to the training set. The ap-
proaches differ in the way the incorporated examples are chosen and in the

number of examples added.
Background knowledge

After the classification of unlabeled examples by the initial SVM model, the
background knowledge approach incorporates in the training set new exam-
ples that are classified farther from the OSH (see Figure 4.1). The rationale
is that these examples have a high probability (high confidence) of being well
classified, and can thus be interpreted as information underlying the initial
problem. The procedure is as follows: examples (only the features, not the
label) from the unlabeled set are directly incorporated into the training set
as classified by the baseline inductive SVM, i.e. a document d; will be chosen
if Equation (4.1) holds.
2

d; P = T > Al, (4.1)
vl
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where p; represents the margin with which an unlabeled document d; is
classified, w represents the associated weights and A; is a task dependent
parameter. These examples will increase the information about the back-
ground of the particular category, and that is the reason why we have called
this approach background knowledge. The SVM model is then retrained
with the training set enlarged by the newly added examples, using as target

the classification suggested by the initial SVM model.

Active learning

As with the previous approach, initially the SVM model classifies all unla-
beled examples. Then, the active learning approach selects a set of examples
that the supervisor is asked to classify in an active learning setting. The
examples are chosen from the examples with the smaller margin (see Fig-
ure 4.1), which offer more doubts in their classification by the initial SVM
model. Thus, an example d; will be selected for active learning if Equation
(4.2) holds.

2
di:pp=—"7-< Ao, (4.2)
[lwl]

where p; represents the margin with which an unlabeled document d; is
classified, w represents the associated weights and As is a task dependent
parameter. This number of documents selected cannot be large, since the
supervisor will be asked to classify them manually. Therefore, in addition
to the above constraint, an application and user dependent threshold should
also be set. After being correctly classified, the selected documents are in-
tegrated into the training set with the correct classification given by the
supervisor, and the SVM is retrained. This approach can be regarded as a
form of active learning, where the information that an example can intro-
duce in the classification task is considered to be inversely proportional to

its classification margin.

4.2.2 Experimental results

The use of both unlabeled examples approaches was evaluated in the Reuters-
21578 benchmark data set with the ModApte split. The use of unlabeled
examples is more important when few labeled examples are present. The-
refore, in addition to the ModApte split, a Small split was also defined to

reproduce a real situation in which a user would be asked to provide the
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examples. In the Small split, the testing set is the same for the sake of
comparison, but the training set is defined for each category by randomly
selecting 10 positive and 10 negative examples of the category. The baseline
of comparison will be the results obtained with the SVM in the inductive set-
ting presented in Chapter 3, and duly repeated in Table 4.1 for the ModApte
and Small splits. The unlabeled set was defined as the testing set.

Table 4.1: Baseline SVM performances with Reuters-21578.
ModApte Split
Category SVs  Accuracy Precision Recall F1
Earn 1,632  95.92% 93.53%  95.50% 94.50%

Acquisitions 1,751 94.93% 93.09%  85.15% 88.94%
Money-fx 908 96.13% 71.43%  52.80% 60.72%

Grain 771 97.96% 92.55%  63.04% 75.00%
Crude 693 97.04% 84.85%  63.64% 72.73%
Trade 647 97.64% 79.49%  54.8T% 64.92%
Interest 742 97.15% 77.03%  47.11% 58.46%
Ship 500 98.45% 89.36% 51.85% 65.62%
Wheat 487 98.77% 84.44%  57.58% 68.47%
Corn 484 99.08% 93.33%  53.85% 68.29%

Average  861.50 97.31% 85.91%  62.24% T71.77%

Small Split

Category SVs  Accuracy Precision Recall F1
Earn 19 90.32% 90.26%  82.57% 86.24%
Acquisitions 19 49.77% 32.07%  98.24% 48.35%
Money-fx 18 38.33% 811%  95.65% 14.95%

Grain 20 81.31% 16.06%  67.39% 25.94%
Crude 18 70.50% 15.52%  84.66% 26.23%
Trade 18 79.41% 15.50%  93.81% 26.60%
Interest 18 54.10% 8.02%  93.39% 14.77%
Ship 19 32.31% 3.90% 96.30% 7.50%
Wheat 19 95.49% 29.61% 68.18% 41.29%
Corn 20 98.20% 52.00%  25.00% 33.77%

Average 18.80 68.97% 27.11%  80.52% 32.56%
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Background knowledge results

The background knowledge approach has a parameter A; (see Equation
(4.1)) to be defined. Empirically we considered A; = 0.6, representing 60%
of confidence. Table 4.2 presents the background knowledge approach results
with both training/testing splits. Analyzing F1 values, there is a slight
improvement (from 71.77% to 72.50%) for the ModApte split, but not for
the Small split, where there is a decrease (from 32.56% to 20.82%). For
this approach to be successful the baseline classifier should not be too weak,

since it will be responsible for classifying the unlabeled examples. That is

Table 4.2: Background knowledge performances with Reuters-21578.
ModApte Split

Category SVs  Accuracy Precision Recall F1
Earn 1,651 95.85% 93.27%  95.59%  94.42%
Acquisitions 1,800  95.04% 92.71% 86.03  89.25%
Money-fx 928 96.13% 71.07%  53.42% 60.99%

Grain 802 98.03% 92.711%  64.49% 76.07%
Crude 697 97.18% 85.29%  65.91% 74.36%
Trade 661 97.68% 79.75%  55.75%  65.62%
Interest 744 97.22% 76.92%  49.59%  60.30%
Ship 505 98.49% 89.58%  53.09% 66.67%
Wheat 490 98.77% 82.98%  59.09%  69.03%
Corn 505 99.08% 93.33%  53.85% 68.29%

Average  878.30 97.35% 85.76%  63.68%  72.50%

Small Split

Category SVs  Accuracy Precision Recall F1
Earn 42 90.14% 82.43%  93.01% 87.40%
Acquisitions 92 40.65% 28.63%  99.12%  44.43%
Money-fx 44 25.31% 6.83% 96.27% 12.76%

Grain 23 37.35% 6.74% 92.75% 12.57%
Crude 31 37.63% 8.87% 97.73%  16.26%
Trade 36 21.89% 4.81% 99.12% 9.17%
Interest 33 22.74% 5.11% 97.52%  9.71%
Ship 86 30.83% 3.82% 90.30% 7.35%
Wheat 24 5.03% 2.39% 100.00% 4.67%
Corn 23 9.43% 1.98% 100.00%  3.88%

Average 43.50 32.10% 15.16%  97.18% 20.82%
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not the case with Small split. With only 20 examples, the initial classifier is

not accurate enough to determine new training examples.

Active learning results

The threshold As for active learning in Equation (4.2) was empirically de-
fined as 0.5. Table 4.3 presents the results obtained for both training/testing
splits. As already mentioned, in addition to this constraint the number of
documents selected to be classified by the supervisor was limited to a maxi-
mum of 40. The improvement is more relevant (improvement of 37%, from
32.56% to 44.61%) in the Small split than the ModApte split, a predictable

Table 4.3: Active learning performances with Reuters-21578.
ModApte Split

Category SVs  Accuracy Precision Recall F1
Earn 1,662  96.27% 94.00%  95.98% 94.98%
Acquisitions 1,788  95.28% 94.03%  85.74% 89.69%
Money-fx 947 96.59% 76.67%  57.14% 65.48%

Grain 791 98.28% 94.95%  68.12% 79.33%
Crude 719 97.43% 88.72%  67.05% 76.38%
Trade 676 98.20% 83.70%  68.14% 75.12%
Interest T 97.64% 84.62%  54.55% 66.34%
Ship 545 98.84% 92.86%  64.20% 75.92%
Wheat 482 99.19% 90.57%  72.73% 80.68%
Corn 937 99.44% 97.37%  71.15% 82.22%

Average 89240 97.72% 89.75%  70.48% 78.61%

Small Split

Category SVs  Accuracy Precision Recall F1
Earn 54 92.64% 86.78%  94.35% 90.41%
Acquisitions 56 57.76% 35.92%  97.50% 52.50%
Money-fx 56 93.95% 48.15%  88.82% 62.45%

Grain 55 66.42% 12.01%  93.48% 21.29%
Crude 54 57.48% 11.83%  90.91% 20.94%
Trade 55 95.04% 43.81%  87.61% 58.41%
Interest 53 75.99% 13.71%  87.60% 23.71%
Ship 47 70.47% 8.62%  97.53% 15.84%
Wheat 52 95.39% 3243% 90.91% 47.81%
Corn 56 97.92% 4521%  63.46% 52.80%

Average 53.80  80.31% 33.85%  89.22% 44.61%
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outcome, since the training set was substantially increased (20 initial ex-
amples plus 40 examples actively chosen to be classified by the supervisor).
Regarding the ModApte split the active approach improves 10% of the base-
line results (from 71.77% to 78.61%).

4.2.3 Combining both approaches

Table 4.4 presents the performances resulting from the combination of the
two approaches for both training/testing splits. The combination of both
techniques was expected to take advantage of their benefits. In these cir-

cumstances, the training sets (ModApte and Small) were enriched with

Table 4.4: Combined background knowledge and active learning perfor-

mances with Reuters-21578.
ModApte Split

Category SVs  Accuracy Precision Recall F1
Earn 1,682  96.30% 94.00%  96.07%  95.02%
Acquisitions 1,836  95.46% 93.52%  87.06% 90.17%
Money-fx 961 96.69% 77.24%  59.01% 66.91%

Grain 806 98.28% 94.95%  68.12% 79.33%
Crude 721 97.71% 89.36%  71.59%  79.49%
Trade 690 98.20% 83.70%  68.14% 75.12%
Interest 780 97.61% 83.54%  54.55% 66.00 %

Ship 547 98.98% 91.94% 70.37% 79.72 %
Wheat 491 99.26% 90.91%  75.76% 82.65 %
Corn 937 99.44% 97.37%  71.15% 82.22%

Average  905.10 97.79% 89.65%  72.18% 79.66%

Small Split

Category SVs  Accuracy Precision Recall F1
Earn 61 92.50% 87.13%  93.39%  90.15%
Acquisitions 105 44.84% 30.10%  98.68% 46.13%
Money-fx 78 34.25% 7.73%  96.89% 14.32%

Grain 57 54.17% 9.07% 93.48% 16.54%
Crude 67 51.14% 10.55%  92.05% 18.93%
Trade 70 90.50% 28.25%  90.27% 43.03%
Interest 65 47.45% 7.07%  93.39% 23.711%
Ship 130 34.60% 4.08% 97.53% 7.83 %
Wheat 56 93.59% 25.42%  90.91% 39.73 %
Corn 59 98.13% 49.18%  57.69% 53.46%

Average 74.80  64.12% 25.86%  90.43% 34.29%
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items classified both by the baseline SVM (background knowledge) and by
the user (active learning). The combined approach performs better with
ModApte split. It surpasses the baseline results (71.77%) around 11%, reach-
ing 79.66%. The combined approach with Small split presents poorer results
than the single active learning approach, 34.29% compared with 44.61%, con-
firming that the baseline classifier is too weak to be used as a background

knowledge incorporator.

4.2.4 Analysis of results

Table 4.5 presents a summary of the F1 average performance for the base-
line and unlabeled approaches with both training/testing splits. The active
learning approach offers enhancements for both splits, while the background
knowledge technique should only be applied when the baseline classifier has a

reasonably acceptable performance, which only happens for ModApte split.

Table 4.5: F1 average performance for the baseline and unlabeled approaches
with Reuters-21578 ModApte and Small splits.
Baseline Background  Active Combined
SVM Knowledge Learning Approaches
ModApte 71.77% 72.50% 78.61% 79.66%
Small 32.56% 20.82% 44.61% 34.29%

Following the comparison with the baseline SVMs, we now present a com-
parison with Transductive SVM (TSVM) (Vapnik, 1998; Joachims, 1999).
Table 4.6 presents the comparison of Background Knowledge, Active Learn-
ing and their combination, presented in this work (Silva & Ribeiro, 2004a).

Analyzing Table 4.6, it can be concluded that the proposed approaches
are an improvement over TSVM, and thus constitute a valid learning ap-
proach.

To graphically compare the proposed approaches, a ROC graph was con-
structed using the true positive rates and false positive rates in Table 4.7,
and this is presented in Figure 4.2. As can be gathered from the ROC graph,
the Small split consistently shows a better true positive rate, gained at the
expense of an also larger false positive rate. This difference appears due to
the balanced training set that models a real user-provided set of classified

examples. For the ModApte split, all settings present a very precise behavior
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Table 4.6: Comparison of the proposed approaches with TSVM using

Reuters-21578 ModApte Split.
Transductive Background  Active Combined

Category SVM Knowledge Learning approaches
Earn 94.46% 94.42% 94.98% 95.02%
Acquisitions 89.38% 89.69% 98.24% 90.17%
Money-fx 70.22% 60.99% 65.48% 66.91%
Grain 78.49% 76.07% 79.33% 79.33%
Crude 75.63% 74.36% 76.38% 79.49%
Trade 69.88% 65.62% 75.12% 75.12%
Interest 76.28% 60.30% 66.34% 66.00%
Ship 79.49% 66.67% 75.92% 79.72%
Wheat 78.96% 69.03% 80.68% 82.65%
Corn 67.24% 68.29% 82.22% 82.22%
Average 78.00% 78.61% 80.52% 79.66%

Table 4.7: False positive rate (FPR) and true positive rate (TPR) for the
unlabeled approaches with Reuters-21578 ModApte and Small splits.
Baseline Background Active Combined
SVM Knowledge Learning Approaches
FPR TPR FPR TPR FPR TPR FPR TPR
ModApte 0.01 063 0.01 064 0.01 0.70 0.01 0.72
Small 033 0.81 073 097 021 0.89 039 0.90

(low false positive rate), and the combined approach presents the best true
positive rate (Silva & Ribeiro, 2007D).

Finally, for a straight comparison of the two proposed approaches, we
defined the following criteria (Silva & Ribeiro, 2004b; Silva & Ribeiro, 2005):

1. User interaction: while the background knowledge is automated,
active learning needs some user interaction, since the selected items

must be classified by the supervisor;

2. Correctness of training set: background knowledge does not guar-
antee its correctness, since the added examples are classified by the
inductive SVM, whereas for active learning all examples in the train-

ing set are (correctly) classified by the supervisor;
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Figure 4.2: ROC graph for the baseline SVM inductive classifiers (black cir-
cles), background knowledge (black squares), active learning (black triangles)
and combined approaches (plus signs).

3. Computational time: there is no significant difference in the com-
putational time taken, although the background knowledge approach
can take longer, because the examples are automatically classified and

there is no limit on the number of examples added;

4. Performance: active learning has greater potential, since the infor-
mation added is more reliable, but there are limitations on the number

of items the supervisor can tolerate/is able to classify.

We have presented two approaches to introduce unlabeled documents
information into the learning procedure. The results show the potential
enhancements achievable by both methods.

The background knowledge method has the advantage of being com-
pletely automated. However, it should not be used with small training sets,
i.e. with too weak initial classifiers. When this is not the case it can intro-

duce an improvement. The proposed margin-based active learning method
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has potential to substantially improve performance when small training sets
are available. This conclusion is very important in text mining tasks, since
usually there is a small number of classified examples and a huge number of

unlabeled ones.

4.3 Using multiple classifiers

There are circumstances in which the outputs of all algorithms solving a
particular type of problem are statistically identical. A way of describing
this situation, introduced in (Schaffer, 1994) for machine learning and in
(Wolpert & Macready, 1995) in connection with the problems of search and
optimization, is to say that there is no free lunch. In a particular problem,
different algorithms may yield different results, but over all problems, they
are indistinguishable. It follows that if an algorithm achieves superior results
in some problems, it must pay with inferiority on other problems. More
formally, there is no free lunch when the probability distribution on problem
instances is such that all problem solvers have identically distributed results.
Consequently it would be of little use to optimize a classifier to a specific
problem, since there would be no guarantee of generalizing its capabilities,
or as stated in plain language by Wolpert and Macready themselves, “any
two algorithms are equivalent when their performance is averaged across all
possible problems” (Wolpert & Macready, 2005). Using several classifiers is
therefore appropriate, when it is possible to take advantage of each classifier’s
benefits and avoid the errors.

Given a machine learning problem, if we have some knowledge of the
problem background, we may be able to exploit and integrate that knowledge
in the selection or parameterization of the algorithms. This knowledge inte-
gration can therefore enhance the performance on that particular problem.
Ensembles of learning machines, introduced in Section 2.6.7, are an excellent
technique to exploit this knowledge integration by the use of multiple dif-
ferent classifiers. Diversity can be assured in several ways, particularly via
different training sets, different training parameters, different types of clas-
sifiers or different features in the data representation. Moreover, different

combinations of the diverse classifiers can be used (Polikar, 2006).

The simplest way to combine diverse classifiers in text classification is

majority voting, where the outputs of the k classifiers are joined together,
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and the classification decision that reaches the half the votes plus one is
considered as output (Li & Jain, 1998; Liere & Tadepalli, 1997). This method
is particularly suited to the case in which the committee is composed of
binary classifiers, like SVMs.

Another combination method is weighted linear combination. The out-
put is the sum of the decision functions produced by the k classifiers. The
weighting of each classifier reflects its expected relative effectiveness, and is

usually optimized on a validation set (Larkey & Croft, 1996).

Another technique is dynamic classifier selection, where the most effective
classifier on the validation examples closer to the testing document at hand

is selected, and its judgment adopted by the committee (Li & Jain, 1998).

Yet another method is adaptive classifier combination. In this case the
judgments of all the classifiers in the committee are added together, but their
individual contribution is weighted by their effectiveness in the validation

examples most similar to the testing document at hand (Li & Jain, 1998).

Classifier committees have had mixed results in text classification so far
(Sebastiani, 2002). (Larkey & Croft, 1996) have used combinations of Roc-
chio method, naive Bayes, and k-NN, all together or in pairwise combina-
tions, using weighted linear combination. In their experiments the combina-
tion of any two classifiers outperformed the best individual classifier (k-NN),
and the combination of the three classifiers improved on all three pairwise

combinations.

(Li & Jain, 1998) have tested a committee formed of (various combina-
tions of) a naive Bayes classifier, an example-based classifier, a decision tree
classifier, and a classifier built by means of their own subspace method. To
combine these classifiers they used majority voting, dynamic classifier se-
lection and adaptive classifier combination. The best results were achieved
with the adaptive classifier combination.

Based on AdaBoost (Freund & Schapire, 1996), BoosTexter (Schapire &
Singer, 2000) constitutes a state-of-the-art algorithm for text classification.
BoosTexter is a general purpose machine learning program based on boosting
for building a classifier from text and/or attribute-value data. Boosting is
deployed with very simple classifiers; specifically the weak hypotheses have

the same basic form as a one-level decision tree. The test at the root of
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this tree is a simple check for the presence or absence of a term in the given
document.

All words and pairs of adjacent words are potential terms. Based only
on the outcome of this test, the weak hypothesis outputs the predictions and
confidences that each label is associated with the document. And then, a
boosting process similar to AdaBoost takes place (see Section 2.6.7).

In the next section we will propose an ensemble strategy with SVMs as
base classifiers and then present and analyze the results obtained for the
Reuters-21578 benchmark.

4.3.1 SVM ensembles

In this section we will present the ensemble structure designed for the text
classification problem. Owur goal is to improve classification performance,
which is possible when the base classifiers show different patterns of errors,
since the errors made by one of them can be compensated by the correct
output of others.

As noted throughout this thesis, SVMs and ensemble methods exhibit
state-of-the-art results in text classification. Therefore is it more than rea-
sonable to try to join these two strategies to enhance performance. Since
SVMs can handle large training sets and there is a reduced number of pos-
itive examples in the training set, data partitioning techniques would pe-
nalize performance and were therefore not considered. To create the base
SVM classifiers, we have explored different learning parameters. As SVMs
are strong classifiers, and the number of learning parameters is reduced, we
have defined four settings for the ensemble base classifiers, using the SVM

light software package:

SV M;: Linear kernel with default parameters;

SV Ms: RBF kernel with default parameters;

SV Mj: Linear kernel with the trade-off between training error and

margin set to 100;

SV My: Linear kernel with the cost-factor, by which training errors on

positive examples outweigh errors on negative examples set to 2.
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This choice of base classifiers was not random. The SV M, despite being
the simplest and fastest classifier, gives competitive results. The rationale for
this result is that text classification problems, although highly dimensional,
are nevertheless essentially linearly separable. As for SVMs, the complex-
ity depends on the margin and not on the dimensionality, baseline SVMs
have per se acceptable performance. RBF kernel SVMs are a more complex
classifier, but for some specific applications constitute a major improvement
over linear SVMs. Regarding SV M3, the trade-off between training error
and margin was increased to 100 to try to control the errors. With respect
to SV My, the false positives were the main concern in this setting, since
their weight was doubled when compared with false positives.

The four SVM base classifiers were combined using the two step method
proposed and described next. In the following equations, the classification
margin with which an SV M, model, s € {1,2,3,4}, classifies a testing doc-

ument d;, is represented by ps;.

Step 1 Give more weight to the positive classifications. Since there are few
positive examples in the data set, the false negative rate is more critical and
this step tackles this problem. The classification margin, (ps;), of classifier

SV My in a testing document d;, is updated according to (4.3)

Veef1,234) tf psi >0 then

(4.3)
psi = K x p(SV Ms).

Step 2 Use the SVM presenting the largest margin, which implies more
confidence in the result. For each testing example, the output classification
of the ensemble learning machine, y.,s, will be given by the output of the
base SVM (ys+,s* € {1,2,3,4}) with the maximum margin for each testing
document d; (4.4):

Yens := Ys+  with s°: pgr; = max(psi), s € {1,2,3,4} (4.4)

4.3.2 Experimental results and analysis

The four base SVM classifiers were initially tested separately. Table 4.8

presents the F1 macro-averaged performances for the Reuters-21578 bench-
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mark data set’s ten most frequent categories, and Table 4.9 presents their

possible combinations in the proposed ensemble setup.

Table 4.8: F1 performance for SVM ensemble base classifiers.
Category SVM, SVMy SVMs; SVM,
Earn 98.14% 98.09% 98.14% 97.91%
Acquisitions  95.59% 95.43% 95.69%  95.75%
Money-fx  74.64% 75.81% 75.18% 77.35%
Grain 82.76% 82.76% 85.23% 85.71%
Crude 84.87% 84.87% 84.44% 87.12%
Trade 69.57% 72.12% 69.27% 74.21%
Interest 74.73% 7541% 75.68% 76.68%
Ship 70.59% 71.53% 76.39% 79.19%
Wheat 75.63% 75.44% 78.69% 83.72%
Corn 70.00% 68.42% 74.70% 76.19%
Average  79.65% 79.99% 81.34% 83.38%

Table 4.9: Combinations of SVM base classifiers on ensembles.
SVM, SVM, SVMs SVM

A No No Yes Yes
B No Yes No Yes
C No Yes Yes No
D No Yes Yes Yes
E Yes No No Yes
F Yes No Yes No
G Yes No Yes Yes
H Yes Yes No No
I Yes Yes No Yes
J Yes Yes Yes No
K Yes Yes Yes Yes

The average base performances range between 79.65% and 83.38%. The
linear base classifier presents the lower performance, while the classifier that
emphasizes false negative errors (SV My) has the best results. Notice that
in the less represented categories, such as ship, wheat and corn, the im-
provement is more noticeable. This is probably because these categories
have very few positive examples, and the struggle against false negatives is

more critical (Silva & Ribeiro, 2006¢c). Regarding the proposed settings for
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combinations, for instance, A refers to an ensemble using only SV M3 and

SV M,. Note that of the 2* possible combinations we left out those that used

only one or none base classifier, since they can not be considered ensembles,

given that they correspond to the base classifiers or no classifier at all. In
the next results, the constant K in Equation (4.3) was empirically set to
100. Tables 4.10 and 4.11 present the F1 macro-averaged performances for

each combination of base classifiers in the ensembles for the Reuters-21578

ten most frequent categories.

Table 4.10: F1 performances for SVM ensembles (A-F).

Category A

B

C

D

E

F

Earn 97.91%
Acquisitions  95.75%
Money-fx  77.24%
Grain 85.71%
Crude 87.12%
Trade 73.87%
Interest 76.68%
Ship 79.19%
Wheat 83.72%
Corn 76.19%

98.10%
95.69%
76.49%
85.71%
84.44%
71.09%
75.68%
76.39%
78.69%
74.70%

97.91%
95.75%
77.78%
86.18%
87.12%
75.00%
76.68%
79.19%
83.72%
76.19%

97.91 %
95.75 %
77.24 %
86.18 %
8712 %
74.67 %
76.68 %
79.19 %
83.72 %
76.19 %

98.10%
95.77%
76.06%
85.71%
84.44%
69.86%
75.68%
76.39%
78.05%
77.65%

97.91%
95.75%
77.51%
86.18%
87.12%
74.21%
76.68%
79.19%
83.72%
79.07%

Average  83.34%

81.70%

83.55%

83.47 %

81.77%

83.73%

Table 4.11: F1 performances for SVM ensembles (G-K).

Category

Earn 97.91%
Acquisitions  95.75%
Money-fx  77.24%
Grain 86.18%
Crude 87.12%
Trade 73.87%
Interest 76.68%
Ship 79.19%
Wheat 83.72%
Corn 79.07%

98.09 %
95.44 %
75.99 %
82.76 %
85.25 %
71.70 %
75.41 %
71.53 %
75.63 %
70.00 %

98.10%
95.69%
76.49%
85.71%
84.44%
71.36%
75.68%
76.39%
78.05%
77.65%

97.91%
95.75%
77.51%
86.18%
87.12%
75.00%
76.68%
79.19%
83.72%
79.07%

97.91%
95.75%
77.24%
86.18%
87.12%
74.67%
76.68%
79.19%
83.72%
79.07%

Average  83.67%

80.18 %

81.96%

83.81%

83.75 %
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It is observed that the best stand-alone result SV My with 83.38% (see
Table 4.8) was surpassed by 6 (C, D, F, G, J, K) of the 11 possible com-
binations. In spite of having only four ensemble base classifiers, generated
by different SVM parameterization, we have a positive outcome, since we
have almost effortlessly improved the overall performance, i.e. from Table
4.1 for the ModApte split, the improvement is from 71.77% to 83.81%. To
better analyze the ensemble combination, Table 4.12 presents the 11 settings
ordered by F1 performance. One remarkable fact is that the best base classi-
fier is not present in the best ensemble setting, but is, on the contrary, more
present in some of the worst ones. A possible reasoning is that diversity is
more important than individual performance. SV M3 seems to have a crucial
importance, i.e. seems to be the most different of the other base classifiers,
since it is present in all the top settings. More generally, settings with three
or four classifiers perform better, which indicates the generation of more base

classifiers.

Table 4.12: Ordered F1 performances of the SVM ensembles.
SVM, SVMy SVMs SV>My F1

J Yes Yes Yes No 83.81%
K  Yes Yes Yes Yes  83.75%
F Yes No Yes No 83.73%
G  Yes No Yes Yes  83.67%
C No Yes Yes No 83.55%
D No Yes Yes Yes  83.47%
A No No Yes Yes  83.34%
I Yes Yes No Yes  81.96%
E  Yes No No Yes 81.77%
B No Yes No Yes 81.70%
H  Yes Yes No No 80.18%

Focusing on the two best settings (J and K), Table 4.13, which shows
the false positive and false negative macro-averaged values for each combi-
nation of classifiers tested, can aid the understanding of their ordering. The
difference is not so much in the false negative values (as might be expected),
but in the false positive values. The reason for this is related to the first
step of the proposed ensemble algorithm which gives more weight to positive
classifications, transferring the focus from false negatives to false positives,

and thereby improving the breakeven point (Silva & Ribeiro, 2006d).
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Table 4.13: Average false positives (FP) and false negatives (FN) for SVM
ensembles.

FP FN
A 1940 2230
B 16.30 26.90
C 19.20 22.00
D 19.50 22.00
E 16.30 27.00
F 19.20 22.00
G 1940 22.00
H 14.70 30.00
I 16.50 26.60
J 19.30 21.80
K 19,50 21.80

4.4 Conclusion

This chapter discussed and proposed techniques to enhance the classifica-
tion of text using SVMs. Specifically, we investigated the incorporation of
unlabeled data and the use of multiple learning machines.

We have presented two margin-based approaches to introduce unlabeled
documents information into the learning stage: background knowledge and
active learning. The background knowledge method has the advantage of
being completely automated. However, it should not be used with small
training sets, i.e. with too weak initial classifiers. When this is not the
case it can lead to improvement. The proposed margin-based active learn-
ing method has potential to substantially improve performance when small
training sets are available. This conclusion is very important in text mining
tasks, since usually there are a small number of classified examples and a
huge number of unlabeled ones. The enhancements achieved by both me-
thods amount to encouraging results.

Concerning the use of multiple classifiers, we have proposed an SVM en-
semble with a two-step learning strategy using the separating margin as a
differentiating factor in positive classifications. First, the positive classifi-
cations given by the base classifiers were enhanced and then the maximum
margin classifier was used for each example. This strategy proved to be ro-

bust and led to the conclusion that diversity in the base classifier is a more
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important factor than individual performance.

Both the proposed enhancements to SVMs in text classification integrate
new knowledge into the learning procedures and show improvements over
the baseline SVMs, presented in the previous chapter. The way the SVM
separating margin played a crucial role in the described techniques and how
it can be used in further enhancements should be emphasized. Eventually it
ough be possible to infer probabilistic information that would approximate

SVMs to relevance vector machines. This is discussed in the next chapter.



Scaling RVMs for text
classification

5.1 Introduction

In the previous chapter we investigated learning techniques to improve sup-
port vector machines’ (SVMs) performance in text classification. We turn
our attention in this chapter to relevance vector machines (RVMs) and their
application to text classification. RVMSs’ probabilistic Bayesian nature allows
both predictive distributions on testing instances and model-based selection
that yields a parsimonious solution. However, scaling up the algorithm is not
viable in most digital information processing applications. As was noted in
Chapter 3, RVMs suffer from poor scaling capabilities when faced with high-
dimensional data sets with a large number of examples, like text classification
training sets. Figure 5.1 depicts a quadratic model for the computing time
fitted to our experimental data, obtained using the text classification bench-
mark Reuters-21578, with different training set sizes. Observing this model,
one can see the importance of limiting the training set size to a minimum.
Given RVMs’ Bayesian roots, all training set documents must be evalu-
ated in the first iteration, and only then are unnecessary documents pruned
out. Therefore, unlike SVMs, it is difficult to use decomposition methods
that would make the learning faster and computationally less demanding.
Hence, efforts to applying RVMs to large scale sets have met with limited

success in the past, due to computational constraints. Nevertheless, RVMs

1This figure has already been presented in Chapter 3, Figure 3.5, but is repeated here
to facilitate the understanding.
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Figure 5.1: Quadratic model of RVMs training times on Reuters-21578
benchmark corpus.

have interesting properties, like sparsity and probabilistic outputs, that mo-
tivate further investigation to surpass their scalability issues when applied to
text classification. We propose different approaches to tackle these scaling
problems. First, we focus on techniques that reduce the scale of the problem
by selecting the learning instances with active learning and determining the
learning examples with a similitude measure. Second, we introduce a set
of divide-and-conquer strategies to cope with the high-dimensional feature
space, with incremental, boosting and ensemble RVM methods being put for-
ward. Finally, a hybrid RVM-SVM combination is presented, substantially

improving baseline results.

5.2 Scale reduction approaches

The straightforward approach for solving scalability problems is to try to
reduce the number of examples. Here, we investigate first how to reduce
the number of training documents using an active learning strategy, and
second how to determine the most relevant examples with a similitude-based
technique.

Several studies have looked at active learning for text classification. Le-
wis and Gale examine uncertainty sampling and relevance sampling (Lewis

& Gale, 1994). These pool-based techniques select queries based on only
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a single classifier instead of a committee. Liere and Tadepalli (Liere &
Tadepalli, 1997) use committees of Winnow learners for active text learn-
ing. They select documents for which two randomly selected committee
members disagree on the class label. Nigam and MacCallum show that EM
(Expectation-Maximization) with unlabeled data reduces text classification
error by one-third (McCallum & Nigam, 1998).

Active learning methods can be grouped according to the active instances
selection strategy: committee-based and certainty-based. The first group,
Query-By-Committee (QBC) determines the active examples combining the
outputs of a set of committee members. In the QBC approach most effort
is made to determine samples where members disagree the most as the po-
tentially more informative ones (McCallum & Nigam, 1998). The second
group, on the contrary, tries to determine the most uncertain cases and in-
dicate them as active ones to be labeled. In certainty-based methods, the
certainty measure depends on the learning method used. In (Schohn &
Cohn, 2000), a method for active learning is suggested, exploiting the sam-
ples that are orthogonal to the space spanned by the training set in order
provide the classifier with information about dimensions not yet explored.
Furthermore, in (Tong & Koller, 2001) the authors introduce a method that
considers the examples which better split the current version of the space

into equal parts, making them more informative for the model.

5.2.1 Active learning

We propose a general RVM active learning technique and test it for text clas-
sification. This framework is intended to tackle two major difficulties pre-
vailing in most supervised learning tasks: the overload of data, prohibitive of
manual labeling, and the growing complexity of machine learning algorithms,
specifically of RVMs.

Optimally, an active learner selects those documents which, when la-
beled and incorporated into training, minimize classification error over the
distribution of future documents. When determining and adding new active
elements to the training set, complexity increases in two directions: first
within the active search algorithm for new training elements, and second
with the size of the training set.

In RVMs, relevance vectors (RVs) and weights define the model (see Sec-

tion 3.4). RVs can be viewed as cluster centers, i.e. paradigmatic instances
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of the data (see Figure 3.4). According to this interpretation, the most in-
formative unlabeled examples are potentially those farther away from any
of the existing RV of the model, given a measure of distance. To define
these examples, we propose a kernel approach that defines a design matrix
W, assessing the distances between the existing RVs and the set of unlabeled
examples available. Given an initial RVM model (3.33), induced using a set
of input-output labeled training documents (dy,#,),...(d;, ;) € RM x {£1},
resulting in a number r of RVs, @, (41, ..., ¢r) € RM and also unlabeled data
U, (uy,...,uy) € RM the distance between an RV, ¢;, and an unlabeled

document, u;, is defined as
Vij = k(pi, u5), (5.1)

where k represents the kernel used to define a higher dimension space where
points can be compared. For a generic kernel function, ®, ¥;; is the dot

product
Vij = (2(pi), ©(uy)). (5.2)

Assuming a linear kernel, ¥;; is simplified
Wij = (i, uy). (5.3)

We also use a cosine kernel, where the dot product is normalized by the norm

Uy = (‘Pi,uj> ‘ (5.4)
| i |l uj |

The resulting design matrix ¥ is

k(p1,u1) k(p1,uz) ke, us) k(1 up)
k(pz,u1) k(pz,uz) k(pz2,u3) k(p2,up)

o (5.5)
_k(goraul) k(SOT’UQ) k(‘PT’u3) k(‘PT’uh)_

For a linear kernel the design matrix is simplified

Yiinear = ¢ - U'. (56)
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And for a cosine kernel the formulation is

p.U
W osine = T T .
el U] G

After the design matrix is constructed, it remains to be determined which
unlabeled examples are potentially more informative, i.e. which ones are
farther away from any current RV. The procedure is easily implemented as
follows. First, the closest RV to any given unlabeled document is determined

taking the minimum value of each column of the design matrix

min(k(p;,ur)) min(k(ep;,u2)) ... min(k(e;,up))| - (5.8)

Second, L unlabeled examples with larger minimum distance to an RV (the L
larger values in (5.8)) are chosen and added to the training set, constituting
what will hereunder be termed as the added active learning examples. Al-
though this procedure might incur the choice of some outliers, it still ensures

that relevant facets of the underlying data are not neglected.

Experimental results and analysis

Experimental results with RVM active learning use at most 2,000 documents
in the baseline training set, i.e. tests with 500, 1,000 and 2,000 instances
were pursued. Settings using more training examples were not attainable
in reasonable computational time, since CPU times increase supra-linearly.
The remaining training examples were considered as unlabeled. Both in
baseline models and after new active examples were added, the RVMs were
trained with linear kernels.

To test the active learning strategy, the design matrix was constructed
with linear (5.3) and with cosine (5.4) kernels. The number of active exam-
ples added ranged from 200 to 300. Tables 5.1 and 5.2 present the detailed
performances for the proposed RVM active learning technique with 2,000
base documents for linear and cosine kernels respectively.

We focus our attention on F1 values for classification performance and on
the number of relevance vectors (RVs) for solution complexity. For the two
tested similitude measures, the complexity is comparable, given the number
of RVs in each setting (40.40 and 37.10 average number of RVs). The classifi-
cation performance is slightly better for the linear kernel, due to its superior

recall values.
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Table 5.1: Performances for RVM active learning with linear kernel.
Category RVs Accuracy Precision Recall F1
Earn 46 95.51% 95.45%  84.91%  89.88%
Acquisitions 59 98.18% 97.15%  98.08% 97.62%
Money-fx 48 96.57% 67.67%  63.83% 65.69%

Grain 32 97.88% 78.36%  78.36%  78.36%
Crude 40 96.54% 72.92%  65.22%  68.85%
Trade 52 96.64% 58.06%  64.29% 61.02%
Interest 44 96.72% 54.46%  61.00% 57.55 %
Ship 32 97.70% 67.74%  49.41% 57.14%
Wheat 22 98.83% 71.79 % 84.85% 77.78%
Corn 29 99.02 % 71.43%  72.92% 72.16%

Average 4040 97.36% 73.50%  72.29% 72.60%

To further evaluate the active learning framework, we compare it with an
active learning scheme based on the random selection of unlabeled examples,
i.e. we randomly choose from the unlabeled set, U, the active examples to
add to the baseline training set. Table 5.3 shows the averaged performance
results for the proposed active learning strategy with linear and cosine ker-
nels, for the random active learning scheme and for the baseline RVM for
settings using 500, 1,000 and 2,000 documents.

The analysis presented for the 2,000 documents setting is still valid for
the other two settings, and the performance, as expected, improves with the
size of the training set. The enhancement with the active learning strategy
is more significant for smaller baseline training sets, with a 10% average im-
provement, when compared with larger training sets, where an improvement

of around 2% was observed.

Baseline results are generally outperformed by all active learning settings
tested, even by random selection, which was found to yield the poorest ac-
tive learning results. In fact, random selection of the active examples is very
unstable, making it difficult to determine when it would be advantageous. Al-
though average random values are similar to baseline performance, individual
results per category exhibit a strong variation, especially the less represented
ones. For instance interest and corn present a reduction of performance for
random selection, from 62.63% to 59.18% and 45.40% to 44.97% respectively,
despite the expansion of the training set (Silva & Ribeiro, 2007a). This is
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Table 5.2: Performances for RVM active learning with cosine kernel.
Category RVs Accuracy Precision Recall F1
Earn 46 97.74% 96.94%  97.13% 97.03%
Acquisitions 67 95.37% 93.29%  86.47% 89.75%
Money-fx 41 96.64% 73.33%  54.61% 62.60 %

Grain 29 97.81% 84.26%  67.91% 75.21%
Crude 38 96.68% 74.65%  65.84% 69.97%
Trade 43 96.57% 59.57%  50.00% 54.37%
Interest 37 97.19% 63.53%  54.00% 58.38 %

Ship 28 98.10% 90.24%  43.53%  58.73%
Wheat 20 99.12% 82.81 % 80.30% 81.54%
Corn 22 99.27 % 73.68%  73.68% 73.68%

Average  37.10 97.45% 79.23%  67.35% 72.13%

Table 5.3: Summary of RVM active learning averaged results.
Active Learning
Baseline Random Cosine Kernel Linear Kernel
F1 RV F1 RV F1 RV F1 RV
500 53.91% 13 60.20% 16 54.21% 15 63.13% 21
1,000 62.40% 19 62.80% 20 63.75% 25 67.14% 26
2,000 70.95% 32 71.57% 34 7213% 37 72.60% 40

avoided in the proposed kernel-based technique.

Overall, the linear kernel distance metric presents the best performances
without penalizing complexity. Cosine kernels most likely introduce a de-
gree of complexity in the distance metric unsuitable for text classification

problems that, despite their high dimensionality, are usually linear.

5.2.2 Similitude measure

Another possibility for scale reduction is to find similarities between docu-
ments that allow the reduction of the training set. In this section we propose
a similitude measure to determine which documents are considered redun-
dant and can be removed from the training set.

We provide a new approach, which consists of a two-step RVM classifier,

able to achieve a competitive processing time, using all available training
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elements and improving RVM classification performance.
The first stage selects which training documents should be used in the
next level. For each pair of documents {d;,d;} a similitude measure S;j,

based on the co-occurrence of words, is calculated according to:

S;j=0;
for each word
if word is not in both documents {d;,d;}
Sij = Sij + A;
else
if word is in only one of the documents {d;,d;}
Sij = Sij — B;
else S;; = 5i; +C;

This similitude measure captures the similarities and dissimilarities be-
tween documents, using the co-occurrence patterns of words. When a word
either occurs or does not occur simultaneously in both documents, the simil-
itude is strengthened. On the other hand, when a given word occurs in only
one of the documents, the similitude is weakened. A and C reflect similitude
between the documents, due to co-absence and co-occurrence, respectively.
B reflects the occurrence of a word in only one of the documents, i.e. a dif-
ference that diminishes the similitude measure. Empirically and intuitively
A was set to 1, B was set to 5 and C was set to 10. The intrinsic idea is that
the most important similitude is found when a term appears in both docu-
ments (C = 10). The fact that a term does not appear in neither document
is positive, but not as relevant (A = 1) and when a term occurs in only one

of the documents lies somewhere in-between (B = 5).

Experimental results and analysis

To make this method computationally effective, we did not apply it just
once to the whole collection, but to chunks of 500 documents. This proce-
dure not only makes the process swifter, but also parallelizable, making the
classification system scalable.

The result of processing each chunk is thus a set of pairs of similar doc-
uments (considered similar when above an empirically defined threshold of

S;; >100), after removing the similar redundant documents. If two docu-
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ments d; and d; are similar, the document with fewer words is removed. A
further protection is imposed on not removed documents: they may not be
removed later, since they were already responsible for the elimination of one
document. The second step of the method gathers all the remaining docu-
ments from all the chunks of 500 documents and infers an RVM classifier.
Table 5.4 summarizes the results obtained for this two-step RVM classifier.

Table 5.4: Performances for RVM using a similitude measure to select train-
ing documents.

Category Documents RVs  Accuracy Precision Recall F1

Earn 2724 48 96.02% 97.66%  91.76% 94.62%
Acquisitions 2804 45 94.71% 93.68%  83.05% 88.05%
Money-fx 2762 52 95.84% 58.18%  68.09%  62.75%
Grain 2809 34 98.25% 85.25%  77.61% 81.25%
Crude 2804 42 97.05% 73.53%  77.64% 75.53%
Trade 2801 35 97.05% 63.25%  66.07% 64.63%
Interest 2846 38 97.23% 64.29%  54.00% 58.70 %
Ship 2855 39 98.07% 72.86%  60.00% 65.81%
Wheat 2793 15 99.27% 81.08 % 90.91% 85.71%
Corn 2791 28 98.87 % 66.67%  70.83% 68.69%
Average 2798.90 37.60  97.24% 75.64%  74.00% 74.57%

For each category it includes the number of documents used, the resulting
number of RVs and the classification performance metrics. Comparing these
results with the baseline RVM in Table 3.3 we can observe the improvement
from 70.95% to 74.57% in F1 values, while the sparsity is not heavily penal-
ized (32.10 to 37.60 average RVs), despite the much larger training set used
with the proposed two-step RVM approach.

In Figure 5.2 we show the ROC curves for the baseline RVM trained
with 2,000 documents and for the RVM trained with the proposed two-step
method, both for the Reuters-21578 trade category. It substantiates the
better performance of the proposed RVM classifier over the baseline RVM,
since the baseline curve is always under the two-step RVM approach curve.
In addition, the AUC (Area Under the ROC Curve) values also confirm this
result, exhibiting an improvement from 0.9196 to 0.9266.
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Figure 5.2: ROC curves for RVMs with similitude measure for trade category.

5.3 Divide-and-conquer approaches

In this section we propose and investigate three divide-and-conquer methods
to scale up RVMs to high-dimensional text data sets (see Figure 5.3). Re-
sults of RVMs obtained using the limited number of examples computation-
ally feasible are already competitive, but there is potential to improve the
performance if more training examples can be used.

The proposed set of divide-and-conquer approaches employs decomposi-
tion techniques to promote the definition of smaller working sets that permit
the use of all training examples. The rationale is that, by exploring incremen-
tal, ensemble and boosting strategies, it is possible to improve classification
performance taking advantage of the large training set available. Figure 5.3
is a schematic representation of the three methods we will detail in the next

sections.

5.3.1 Incremental RVM

We start by proposing an incremental approach to scale RVMs, where the

final training set is incrementally constructed. The dataset is divided into
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Figure 5.3: a) Incremental RVM; b) RVM Boosting ; ¢) RVM Ensemble.

evenly sized smaller subsets (or chunks). Each chunk is then trained indepen-
dently, possibly in parallel, resulting in a set of RVM models. The relevance
vectors yielded by each model are gathered and constitute the training set
of a new RVM model, which will be the final incremental RVM.

Figure 5.3 a) illustrates the procedure of the proposed incremental RVM
technique. The size of each chunk and the number of chunks should be
determined according to the available computational power. Note that, given
the independence of the initial models, if there is a distributed platform with
available resources, the procedure can be speeded up. Moreover, this method
essentially scales linearly with the number of chunks, thus taking advantage

of the entire training set.

Table 5.5 shows the incremental RVM results for chunks of 1,000 and
2,000 documents. Larger chunks were not considered since their computa-

tional burden would jeopardize algorithm scalability.

Comparing the incremental RVM average results with the average base-
line (see Table 3.3), there is a classification performance improvement of
between 3% and 5%, due to fewer false negatives, causing an improvement
in recall values (Silva & Ribeiro, 2006a; Silva & Ribeiro, 2008). Note that, in
text classification applications, recall values, associated with false negatives,

are extremely important because of the small number of positive examples.
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Concerning solution complexity, the incremental approaches have slightly
more RVs, i.e. there is a difference of 10 and 4 RVs for the 1,000 and 2,000

baseline training documents settings respectively.

Table 5.5: Performances for incremental RVM learning.
Chunks of 1,000 documents

Category RVs Accuracy Precision Recall F1
Earn 33 95.08% 95.04%  91.86% 93.42%
Acquisitions 43 94.31% 88.35%  87.25% 87.79%
Money-fx 27 95.99% 59.75%  67.38% 63.33%

Grain 37 97.59% 73.94%  78.36% 76.09%
Crude 23 95.81% 68.55%  52.80% 59.65%
Trade 20 96.83% 60.68%  63.39% 62.01%
Interest 31 95.99% 47.02%  79.00% 58.96 %

Ship 25 96.61% 46.15%  56.47%  50.79%
Wheat 22 98.03% 56.25 % 81.82% 66.67%
Corn 24 98.40 % 53.33%  66.67%  59.26%

Average  28.50 96.46% 64.91% 72.50% 67.80%

Chunks of 2,000 documents

Category RVs Accuracy Precision Recall F1
Earn 41 97.48% 95.01%  98.56% 96.76%
Acquisitions 55 95.92% 92.48%  89.89% 91.17%
Money-fx 39 96.46% 62.09%  80.14% 69.97%

Grain 35 97.59% 73.61%  79.10% 76.26%
Crude 38 96.46% 69.51%  70.81% 70.15%
Trade 44 96.75% 57.72%  76.79%  65.90%
Interest 31 97.19% 64.94%  50.00% 56.50 %
Ship 40 97.99% 66.30% 71.76% 68.93%
Wheat 15 98.87% 74.65 %  80.30% 77.37%
Corn 28 98.58 % 57.89%  68.75% 62.86%

Average  36.60 97.33% 71.42%  76.61% 73.59%

5.3.2 RVM Boosting

This section presents a boosting method applied to RVMs and text classi-
fication. The main idea of boosting is to generate a lot of relatively weak
classification rules and to combine them into a single highly accurate classi-

fication rule (Schapire & Singer, 2000). First, we will introduce the standard
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algorithm, and afterwards our proposed RVM boosting method.

The boosting algorithm assigns different importance weights to different
training examples. The algorithm proceeds by incrementally increasing the
significance of the examples which are hard to classify, while easier training
examples get lower weights. This weighting strategy is the basis of the weak
learners evaluation. The final combined hypothesis classifies a new testing
example by computing the prediction of each of the weak hypothesis and
taking a vote on these predictions. Algorithm 1 presents the AdaBoost
Algorithm (Freund & Schapire, 1996).

Algorithm 1 AdaBoost algorithm.

Input:
N training labeled examples < (d1,t1), ..., (dn,tn) >, t; € {—1,+1}
integer T specifying the number of iterations
Initialize X;(i) = &
for s=1,2,...,T do
Call weak learner and get weak hypothesis hg
Calculate the error of hg: €5 =3, (d,)¢, Xs(1)

Set &5 = 1in (1;_355)

Update distribution:

Xy (i) = Xl e titeC)
= X0 o if hy(dy) =t
= XE—S) x e if he(d;) # t;

where Z, is a normalization factor.

end for

Output: the final hypothesis:
hyin(d) = sign (1.1 8,hs(d) ) -

The algorithm starts with N input-target pairs < (di,%1), ..., (dn,tn) >,
where d; is a training example and ¢; € {—1,+1} is the associated label,
usually defined by a human expert. Initially the importance weights of the
examples are uniformly distributed (X;(i) = % ). Then, the AdaBoost algo-
rithm repeatedly retrieves weak hypotheses that are evaluated and used to
determine the final hypothesis. On iteration s, using the set of importance
weights determined on iteration s — 1, the hypothesis error is computed and

d, which corresponds to the weight or importance of that weak classifier, is
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determined. The expression for § assigns larger weights to good classifiers,
i.e., classifiers with low error, whereas lower weights (even with negative val-
ues) are assigned to bad classifiers. Although RVMs may not be considered
weak learners, we show that the boosting concept can be applied to avoid
RVM scaling problems. Figure 5.3 b) illustrates the innovations performed
on the AdaBoost procedure and Algorithm 2 shows the changes made to
obtain the RVM boosting algorithm.

Algorithm 2 RVM boosting algorithm.
Input:
N training labeled examples < (di,t1), ..., (dn,tn) >, t; € {—1,+1}
Npoost boosting labeled examples:
< (dN+17tN+1)7 ) (dN+Nboost7tN+Nboost) >, where t; € {_17+1}
integers NC' and T specifying the number of classifiers and iterations
Initialize X;(i) = Nbiost
for s=1,2,...,7 do
c=smod NC

if ¢ =0 then
c=NC
end if

Call weak learner and get weak hypothesis h.
Calculate the error of hs: €5 =3 ., (a,)2t, Xs(2)

Set 8, = in (122
Update distribution:
. XS(Z) e—0stihs(z;)
Xsp1(t) = = —
= 50 om0 if ho(dy) = t;
= XE—EZ) X 655, if hc(dl) 7& t;

where Z; is a normalization factor.

end for

Output: the final hypothesis:
hpin(d) = sign (1, 0,he(d))

The main idea in our RVM boosting is to use all the training examples, by
sampling them into small working sets, making each classifier much weaker
than it would be if trained with all available training examples. If enough

models are generated, all distinctive aspects of the class can be captured and
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represented in the final classifier. By dividing the huge data set into smaller
tractable chunks, the computational load usually associated with training
RVMs is mitigated. Moreover, due to the independence of the not so weak
RVM classifiers, it is possible to distribute the computational burden within

a cluster or other distributed environment.

First, instead of using the training set for training and for boosting, a
separate boosting set was defined. The training set is used to learn the base
RVM models, while the boosting set is used to define the weights of the

classifiers and the documents.

Second, considering that the RVM classifiers are in fact not so weak clas-
sifiers, as the AdaBoost assumes, the same set of classifiers was presented
repeatedly to the boosting algorithm, i.e. the number of iterations is not
equal to the number of classifiers, but it is proportional to it. This way
for each model the boosting algorithm was run several times updating the
weights iteratively. Considering different training and boosting sets is justi-
fiable in large scale problems, since there are enough examples. Also, when
the training sets are large and sparse, convergence problems may occur by
boosting the classifier with the same set. These convergence problems can
lead to the algorithm being unable to determine which are the harder exam-
ples, i.e. those having greater weight in the classifier evaluation, given that

using the same learning and boosting sets may result in insufficient diversity.

To test the RVM Boosting approach, 20 classifiers were trained by ran-
domly sampling 2,000 documents from the training set. For each classifier,
the rest of the training set was used for boosting. Tests were performed
with 20, 40 and 60 iterations, i.e. each of the 20 classifiers was used to up-
date the weights 1, 2 or 3 times (more runs were tried with no significant
improvement). Table 5.6 shows the F1 performance results for the three

settings.

Comparing RVM boosting results with the baseline RVM performance
(see Table 3.3), we observe an improvement of 7% (Silva et al., 2007). Com-
paring the three proposed settings, there is a small but consistent improve-
ment when each classifier is repeatedly presented to the RVM boosting al-
gorithm.
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Table 5.6: F1 performance for RVM boosting learning with 20 classifiers of
2,000 examples.
Category 20 iterations 40 iterations 60 iterations

Earn 97.40% 97.26% 97.35%
Acquisitions 92.05% 91.95% 91.87%
Money-fx 66.84% 64.39% 64.39%
Grain 83.27% 83.27% 83.27%
Crude 73.87% 75.00% 75.00%
Trade 66.03% 66.99% 66.99%
Interest 65.14% 65.91% 65.91%
Ship 70.75% 70.75% 70.75%
Wheat 85.08% 84.81 % 84.21%
Corn 71.26 % 71.26% 71.26%
Average 76.77% 76.99% 77.39%

5.3.3 RVM Ensemble

When a scalability problem occurs, as with RVMs, ensemble strategies should
also be considered as possible solutions. An ensemble can solve a number
of learning problems, particularly parameter tuning, testing set definition
and cross-validation. The idea of combining multiple classifiers is based on
the observation that achieving overall optimal performance is not necessar-
ily consistent with obtaining the best performance for an individual (base)
classifier. The rationale is that it might be easier to optimize the design of
a combination of relatively simple classifiers than to optimize the design of
a single complex classifier.

We propose an RVM ensemble strategy, represented in Figure 5.3 ¢). It
starts by constructing several smaller evenly sized training sets, randomly
sampled from the entire available training set. The size and number of the
training sets depend on the available computational power, but more training
examples usually result in more diversity and better performance. Then, a
model is learned from each training set. These models will constitute the
ensemble individual classifiers. After this learning phase, a majority voting
scheme is implemented to determine the ensemble output decision, taking
as output value the average value of the classifiers that corroborated the
majority decision.

To define the ensemble, 40 classifiers were trained by randomly choosing
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2,000 examples from the training set. Table 5.7 presents, for each category
of Reuters-21578, the best performing element of the ensemble (Maximum),
the mean of the 40 elements (Mean) and finally the result of the ensemble
majority voting scheme (Ensemble). For instance, for the earn category the
best of the 40 models achieved an F1 of 96.77%, the F1 average of the 40
models was 96.12% and the ensemble majority voting scheme resulted in
a classification performance of 97.69%. Analyzing these values, we can see
that the ensemble strategy outperforms the average result as expected, and
also the best of the individual base classifiers. Comparing the baseline RVM
performance (see Table 3.3), we observe an improvement of around 9% (Silva
& Ribeiro, 2006b; Silva & Ribeiro, 2007c).

Table 5.7: F1 performance for RVM ensemble learning with 40 classifiers of
2,000 examples.
Category Maximum Average Ensemble
Earn 96.77% 96.12%  97.69%
Acquisitions  90.36%  88.84% = 94.97%
Money-fx 68.29% 60.54% 71.81%

Grain 84.83% 79.16% 81.62%
Crude 75.08% 70.13% 78.34%
Trade 66.67% 62.46% 70.25%
Interest 67.02% 62.10%  70.47%
Ship 66.67% 60.43% 77.99%
Wheat 85.71% 80.83 % 81.48%
Corn 70.83 % 64.06% 66.67%

Average 77.22% 72.46% 79.13%

5.3.4 Analysis of results

In this section we analyze and compare the three divide-and-conquer strate-
gies proposed for scaling RVMs (see Figure 5.3) - the incremental, boosting
and ensemble approaches. The three methods are distinguished mostly by
the way they combine the chosen training chunks. After the detailed results
presented in the previous sections, Table 5.8 summarizes the macro-averaged
F1 results of the three proposed RVM scaling methods together with baseline
results for the Reuters-21578 benchmark dataset. The trend of increasing

performance is: Baseline, Incremental, Boosting, Ensemble.
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Table 5.8: F1 performance for divide-and-conquer RVM approaches.
Baseline Incremental Boosting Ensemble
70.95% 73.93% 77.30% 79.13%

-

o
©

- |

e o
N @
1

o
(o2}
L

<
'S
1

True Positive Rate (TP/(TP+FN))
o o
w o
1 1

0.2 Acq Baseline 2000; AUC: 0.9792 |1
— — = Acq Incremental 2000; AUC: 0.9764
0.1 Acq Boosting 2000; AUC: 0.9802 |4
Acq Ensemble 2000; AUC: 0.9809
0 N N

0.2 0.4 0.6 0.8 1
False Positive Rate (FP/(TN+FP))

o

Figure 5.4: ROC curves for RVMs with divide-and-conquer strategies for
acquisitions (Acq) category.

Figures 5.4 and 5.5 present ROC curves for the acquisitions and trade
categories from Reuters-21578, including the area under the curve (legend
in the bottom right corner), depicted both for the baseline results and for
the three methods proposed. The ROC curves are generally consistent with
F1 results, showing that the proposed techniques, especially boosting and
ensemble, improve classification performance compared with baseline results.

The incremental approach, using RVs gathered from models trained with
subsets of the training set, shows the first evidence that using the entire
training information can be useful, improving the average performance by 2%
to 3%. This average improvement is small, so in some specific situations, it
may not improve, owing to the nature of this learning machines. RVMs try to
discover typical, paradigmatic instances in the whole dataset, and when using

subsets, the final relevance vectors may not always be consistent with the
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Figure 5.5: ROC curves for RVMs with divide-and-conquer strategies for
trade category.

training set. The boosting approach, that ranks the classifiers according to
their performance on harder-to-classify examples, allows a 6% to 7% surplus,
constituting an important improvement. The ensemble approach presents
the higher performance improvement (9% to 12%), by using majority voting.
This result strengthens the no free lunch theorem (Wolpert & Macready,
2005), corroborating that there is no individual better classifier, but the
effort should be put into combining different models to achieve a better

generalization capability.

The proposed incremental approach presents the poorest results of the
three strategies, most likely because it ignores the dependence on the whole
scenario of data exhibited by the relevance vectors. Comparing boosting and
ensemble strategies, a considerable difference is the use of the probabilistic
RVMs’ output. While boosting uses the original method for ranking the
classifiers, the ensemble approach takes as output value the average value
of the classifiers that corroborated the majority decision. This constitutes a
leading edge that allows the ensemble to achieve a slight improvement over

boosting.
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5.4 Hybrid RVM-SVM approach

Support Vector Machines (SVMs) and Relevance Vector Machines (RVMs)
are two state-of-the-art learning machines that are currently the focus of
cutting-edge research. SVMs offer better accuracy and complexity, but are
surpassed by RVMs when it comes to probabilistic outputs or kernel selection.

We propose a two-level hierarchical hybrid SVM-RVM model to combine
the best of both learning machines. The first level of the proposed model uses
an RVM to determine the less confident classified examples and the second
level uses an SVM to learn and classify the tougher examples. The hier-
archical approach outperforms both baseline learning machines. Figure 5.6
depicts the proposed two-level hierarchical hybrid model in the training and

in the testing settings.

Training Testing
training examples testing examples
RVM1| ... RVMn best RVM
" " hard-to-classify
easy
examples examples
hard-to-classify examples SVM
A4
SVM classified examples

Figure 5.6: Two-level hierarchical RVM-SVM hybrid model.

The first level of the two-level hierarchical approach uses the probabilistic
nature of several RVM models to determine which examples will be retained
and which will be transferred to the second level. To cope with RVM scala-
bility problems, the training set was divided into chunks of 1,000 examples
and an RVM model was induced for each chunk. By interpreting the RVM
probabilistic output classification as a confidence measure, we defined a sym-
metrical interval centered on the origin ([—range,range]), where the RVM
presented lower confidence. This interval or range was inspired by the logistic
function, p(t = 1|d) = 1+€il?p(*chRV1\/1(d))
is the target and fry s is the RVM classifier function. Thus, training exam-

, where d represents the document, ¢
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ples that fall in the area under the logistic curve are selected to be labeled
as hard-to-classify examples. These examples classified within the defined
range will constitute the training set of the second level SVM, which has
presented the best standalone results so far. Testing procedure is similar
to the training phase. Table 5.9 presents the performances for the hybrid
RVM-SVM using different confidence intervals.

The confidence intervals were determined according to the logistic func-
tion and range from [—5,5] to [—15,15] (other values with poorer perfor-

mances were also tested). A testing example is first classified by the RVM

Table 5.9: Performances for hybrid RVM-SVM with different ranges.

Range=5 Range=7
Category 15t level 277 level Total 1% level 277 level Total
Earn 98.30%  99.14% 98.43% 98.65%  91.01% 97.41%

Acquisitions  94.01%  87.82% 92.48% 94.85%  92.07%  93.86%
Money-fx 42.22%  84.21%  49.54% 46.67%  74.75%  68.22%
Grain 77.78%  83.76% 80.66% 84.97%  80.00%  83.00%
Crude 4731%  84.95% 72.40% 83.72%  76.84%  79.74%
Trade 62.96%  79.75% 75.58% T71.79%  T74.03%  72.64%
Interest 69.06%  76.00% 72.83% 70.97% T77.86% 75.65%
Ship 49.06%  82.35% 69.57% 57.14%  78.90% 73.61%
Wheat 79.37%  80.00 % 79.66% 78.57%  T7.42% T7.97%
Corn 73.68 % 68.97% 72.09% 68.57% 76.92% 73.56%

Average 69.37%  82.69% 76.32% 75.59%  79.97%  79.66%

Range=10 Range=15
Category 15t level 2" level Total 1% level 277 level Total
Earn 99.03%  94.47% 97.82% 99.26%  96.22%  97.77%

Acquisitions  95.82%  93.01% 94.38% 97.52%  94.49%  95.34%
Money-fx 80.46%  73.27% 75.43% 50.00%  75.18%  74.47%
Grain 87.88%  82.35% 85.26% 91.67%  83.87%  86.85%
Crude 77.55%  81.68% 81.03% 95.38%  78.40%  81.90%
Trade 66.67%  74.37% 73.73% 87.50%  74.64%  75.56%
Interest 86.15%  70.77% 75.90% 91.89%  70.87%  75.00%
Ship 81.25%  76.92% 77.85% 70.59%  81.20%  80.00%
Wheat 83.72% 81.01 % 81.97% 80.00%  80.77%  80.65%
Corn 8333 % T7347% T7.65% 82.35%  81.16%  81.40%

Average 84.19%  80.13% 82.10% 84.62%  81.69%  82.89%
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model that exhibited most confidence in the training phase, i.e., with fewer
examples being transferred to the second level. If it is classified outside the
interval [—range,range] the testing phase ends, otherwise the second level
SVM will be responsible for its classification. As the range value increases,
less and simpler examples will be classified by the first level RVM, meanwhile
more and harder examples will be classified by the second level SVM.
Figure 5.7 allows a graphical comparison of the F1 performances obtained
for the tested range intervals independently for the first (RVM) and second
(SVM) levels. For small ranges, the second level SVM performs better than
the first level RVM. However, as the range increases, positions are changed
and the first level RVM becomes superior. As the range value increases, fewer
and simpler examples will be classified by the first level RVM, meanwhile
more and harder examples will be classified by the second level SVM. Thus,
the first and second levels cannot be directly compared, since each only
provides partial classifications and only their merging will provide complete

classification performance.

First and Second Level Performance
100

90

8O [ i

F1 (%)

70

60
1st Level —+—
2nd Level ====--

50
[-5,5] [-7,7] [-10,10] [-15,15]
Range

Figure 5.7: F1 performance comparison of hybrid RVM-SVM first and second
levels.

Figure 5.8 summarizes all the results achieved with the two-level hier-
archical model. It shows the average F1 performances for different range
values for the two-level hierarchical hybrid SVM-RVM classification model,
together with the F1 values (constant with respect to the range) for RVM
and SVM baseline classifiers. F1 average values show an improvement over

baseline SVMs and RVMs, made possible by the hierarchical association of
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both learning machines. While the best baseline results, achieved by SVMs,
were 78.99% the best hierarchical result is 82.89%, achieved with the range
[—15,15].

The larger the range considered, the larger the percentage of testing
examples classified by the second level. Four range settings were tested,
covering the possible splits of testing examples between the two levels. The
percentages of testing examples classified by the second level SVM were 8%,
18%, 46% and 73% for ranges [—5, 5], [-7,7], [-10,10] and [—15, 15] respec-
tively. As the number of examples in the second level grows, SVM perfor-
mance degrades, since more examples and more difficult-to-classify examples
are assigned to it (Silva & Ribeiro, 2006f).

Two-step Hierarchical Model Performance

100

90
_ 80 P———
2
o
70
...................................... [OOSR
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SVM ==-t¢=m
RVM s
50
[-5,5] [-7,7] [-10,10] [-15,15]
Range

Figure 5.8: F1 performance comparison of hybrid RVM-SVM with two-level
hierarchical model and SVM and RVM baselines.

5.5 Conclusion

This chapter has introduced several techniques to scale RVMs to applications
with large data sets, such as text classification. We first investigated ways to
reduce the size of the problem, viz. active learning and similitude measure
between terms. Then we focused on three divide-and-conquer methods, viz.
incremental, boosting and ensemble strategies. Finally, we proposed a hybrid
RVM-SVM approach to deal with the scale of text classification problems.
Concerning active learning, we introduced an active learning RVM method

based on the kernel trick. The underlying idea is to define a working space



114 CHAPTER 5. SCALING RVMS FOR TEXT CLASSIFICATION

between the relevance vectors (RVs) initially obtained in a small labeled data
set and the new unlabeled examples, where the most informative instances
are chosen. Using a kernel distance metric, a higher-dimensional space can
be defined where the selection can take place. The proposed active learning
method not only surmounts the problem of overload of unlabeled examples
available in learning tasks like text classification, but also overcomes the
scalability problems posed by RVM learning machines and selects an opti-
mized working set of training documents. Improvements of 2% to 10% over
baseline performance were achieved, without severely affecting the size of the
problem. Complexity escalation was controlled, since the number of added
documents was fixed and the best method of the experiments, the linear

kernel, provides a simple strategy to determine those active documents.

We have also studied methods to reduce the number of documents in the
training set to cope with the large scale of the problem. We presented a
two-step RVM that is able to manage large datasets in the setting of text
classification. The first stage selects which training documents go to the
next level, using a similitude measure between documents, based on the co-
occurrence of words. The second step of the method gathers all remaining
documents from all the chunks of documents and infers an RVM classifier.
The approach tends to maintain the sparse solutions given by RVMs, while
improving classification performance by around 4%, with some penalization
on training time. However, the number of RVs is kept remarkably small,
making the recall phase much faster than with SVMs. These values show
that RVMs can show competitive accuracy while maintaining their capacity
for sparseness, as long as training examples are carefully established.

Concerning divide-and-conquer approaches, in this chapter we proposed
a set of methods where decomposition techniques promote the definition of
smaller working sets that permit the use of all training examples in RVM
expansion to large datasets. We demonstrated that, by exploring incremen-
tal, ensemble and boosting strategies, it is possible to make use of RVMs’
advantages, such as predictive distributions for testing instances and sparse
solutions, while maintaining and even improving the classification perfor-
mance. The resulting models allow the use of information from the entire
training set, yielding significant improvement (9%) over baseline RVM per-
formance. The outlined methods rely on a selection of small working chunks

from the training set and then explore different combining strategies. By
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dividing the huge data set into smaller tractable chunks, the computational
load usually associated with training RVMs is mitigated. Moreover, due to
the independence of the RVM classifiers, it is possible to distribute the com-
putational burden within a cluster or other distributed environment, as will
be addressed in the following chapter.

Finally, we exploited a two-level hierarchical hybrid SVM-RVM model to
combine the best of both SVMs and RVMs. The first level exploits RVMs’
probabilistic nature to define the second-level training set, where SVMs’ ac-
curacy properties are utilized. Experimental results show that the proposed
model has the potential to outperform existing approaches, presenting im-

provements of around 12% over RVMs and around 3% over SVMs.

This chapter has demonstrated the potential of RVMs in text classifica-
tion tasks, when appropriate scaling strategies are put forward. We have
shown that the combination of RVMs and SVMs can be extremely beneficial

to text classification performances.
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Distributing text
classification in grid
environments

6.1 Introduction

In the previous chapters we looked at several ways to improve the perfor-
mance of support vector machines (SVMs) and relevance vector machines
(RVMs) in text classification applications.

In this chapter we describe the deployment of text classification in cluster
environments, using a distributed environment to optimize the procedures.
This work was carried out both in a cluster in the University of Ljubljana,
Slovenia, and in the Center for Informatics and Systems of the University of
Coimbra, Portugal. Researchers from Slovenia successfully cooperated with
this effort (Silva et al., 2005a; Lotri¢ et al., 2005; Silva et al., 2005b).

Most data mining problems are nowadays faced with two great challenges.
First, the volume of digital data available is growing massively in almost all
application areas. Second, state-of-the-art learning machines are becoming
increasingly demanding in terms of computing power. We establish a high-
performance distributed computing environment model where the learning
techniques proposed in the previous chapters are efficiently deployed and
tested in large scale corpora.

Nowadays we have to deal with an overwhelming amount of data. New
communication scenarios, notably the Internet, have appeared and deliver
large units of textual information, which must be properly managed. The

many scientific and industrial fields generate enormous amounts of text data,
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such as news wires, microarray gene data or web pages. On the other hand,
centralized solutions to machine learning and data mining problems are not
suitable for most current enterprises, considering that data sources are often
distributed and the complexity of tasks and techniques is increasing. In fact,
an important challenge for cutting-edge research in machine learning is in-
tegrating knowledge and learning, i.e. knowledge discovery has moved on to
the incorporation of knowledge into the learning process. The high complex-
ity of such methods (Eyheramendy et al., 2003) and the high dimensionality
of text and its representation have generated interest in distributing text
classification. The challenge, therefore, is to tackle the synergies made pos-
sible by linking content, knowledge and learning so as to make content and
knowledge abundant, accessible, interactive and usable over time (European
Commission, 2007).

Efforts made towards distributing several tasks in cluster and grid en-
vironments have met with some success, as is shown in Section 6.2. These
applications have greatly benefited from the availability of inactive compu-
tational resources over long periods of time, not only on the Internet, but
more especially in educational institutions and companies.

We propose the deployment of text classification tasks on two distributed
platforms in a cluster environment, using code developed for a sequential im-
plementation (Silva et al., 2005b; Lotri¢ et al., 2005). A direct acyclic graph
(DAG) is used to define the tasks and dependencies, and a model is built
to describe the task executions and determine the graph optimizations. We
start by speeding up text classification by distribution and, then we deploy
more complex and demanding knowledge-integrating learning techniques,
such as Bayesian methods and ensemble approaches. Testing is carried out
on the standard Reuters-21578 corpus (see Section 2.7.2 and Appendix A)
and on the 35 times larger RCV1 corpus (see Section 2.7.2 and Appendix
B).

6.2 Related work

Many earlier studies have looked at distributed approaches to data mining
applications. Most of them require a distributed computing platform which
supports the deployment of data mining procedures. Regrettably, often such

approaches are application specific and not easy to compare directly.
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6.2.1 Distributed computing platforms

TeraGrid! was one of the first projects in the area of grid-based know-
ledge discovery. It is an open scientific discovery infrastructure combining
leadership-class resources at eleven sites in the United States of America to
create an integrated, lasting computing resource. Using high-performance
network connections, the TeraGrid integrates high-performance computers,
data resources and tools, and high-end experimental facilities. TeraGrid re-
sources currently include more than 750 teraflops of computing capability
and more than 30 petabytes of online and archival data storage, with rapid
access and retrieval over high-performance networks.

The Algorithm Development and Mining System (ADaM)? was devel-
oped by the Information Technology and Systems Center at the University
of Alabama in Huntsville. It is used to apply data mining technologies to
remotely-sensed and other scientific data. The mining and image processing
toolkits consist of interoperable components that can be linked together in a
variety of ways for application to diverse problem domains. ADaM has over
100 components that can be configured to create customized mining pro-
cesses. Pre-processing and analysis utilities help users to apply data mining
to their specific problems. New components can easily be added to adapt the
system to different science problems. ADaM is the first data mining platform
to execute on the NASA (National Aeronautics and Space Administration)
Information Power Grid.

NaCTeM? (The National Centre for Text Mining) is the first publicly-
funded text mining centre in the world. They provide text mining services in
response to the requirements of the United Kingdom academic community.
The goal of this project is to investigate needs and to develop an infras-
tructure that will enable various text mining applications to work in the
grid environment. This topic includes research into the roles of text mining
for the Semantic Web and the Semantic grid, and vice versa (Sarnovsky &
Butka, 2007).

SETI@home* is a scientific experiment that uses Internet-connected com-
puters in the search for extraterrestrial intelligence (SETI). Anyone can par-

ticipate by running a free program that downloads and analyzes radio tele-

Yhttp: //www.teragrid.org/
http://datamining.itsc.uah.edu/adam/
3http://www.nactem.ac.uk/

*http:/ /setiathome.berkeley.edu/
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scope data.

The Globus Toolkit® is an open source software toolkit used for building
computational grids and grid-based applications, letting people share com-
puting power, databases, and other tools securely online across corporate,
institutional, and geographic boundaries without sacrificing local autonomy.
The toolkit includes software services and libraries for resource monitoring,
discovery, and management, plus security and file management. The Globus
Toolkit has grown through an open-source strategy similar to the Linux op-
erating systems, and distinct from proprietary attempts at resource-sharing
software. This encourages broader, more rapid adoption and leads to greater
technical innovation, as the open-source community provides continual en-

hancements to the product.

In this work we use two freely available general purpose middleware plat-
forms for grid computing: Condor® and Alchemi’. The goal of the Condor
project is to develop, implement, deploy, and evaluate mechanisms and poli-
cies that support High Throughput Computing (HTC) on large collections
of distributed computing resources. Condor consists of a set of software
tools that enable engineers to increase their computing throughput. It is
supported by many platforms, including Linux and Windows XP. Condor’s
task is to automatically schedule and deploy jobs specified by users and sum-
marize the results. The applications deployed through Condor should have
a console (command line) interface.

Alchemi, on the other hand, consists of a set of libraries and tools enabling
grid computing on the Microsoft .NET platform. It supports a traditional
approach to scheduling jobs (like Condor) and a more native approach to the
Microsoft .NET platform, enabling multi-threaded programming to be ex-
tended from one computer to the computing grid. An advantage of Alchemi

is native support for graphical user interface applications.

6.2.2 Distributed applications

Efforts at distributing several tasks in cluster and grid environments have
met with some success. In (Abdalhaq et al., 2006) a fire prediction problem

is tackled, accelerating and enhancing predictions. In (Kus, 2006) a paral-

Shttp://www.globus.org/toolkit
Shttp://www.cs.wisc.edu/condor
"http://www.alchemi.net
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lel evolutionary algorithm applied in an Alchemi framework optimizes the
speedup of a two-stage forging anvils system. In (Melab et al., 2006) large-
size combinatorial bioinspired algorithms are deployed in a pool of resources
using a Condor grid-enabled framework to select features in a near-infrared
spectroscopic data mining system.

Text mining applications have also seen an initial effort to take advantage
of the available distributed environment resources. In (Yu et al., 2005) a
framework for text mining is proposed and implemented on a web platform.
The framework includes a core network, a router, grid members and grid
groups. It proceeds by considering four main phases of text mining, viz.,
text collection phase, feature extraction phase, structure analyzing phase
and text classification, which are deployed using a defined protocol between
the framework elements.

(Sarnovsky & Butka, 2007) give a theoretical description of processing
textual documents and their classification or clustering, describing their pro-
cessing, testing and evaluation of experimental results in a grid environment.
In addition, the authors find possible ways of improving the results of classi-
fication and clustering problems. The learning algorithms used were decision
trees, self-organizing maps and the centroid clustering algorithm k-means.
The deployment was achieved with available distributed software systems,
such as JBOWL® (Java Bag-Of-Words Library) and GRIDMINER?.

In (Mei et al., 2006; Zhang et al., 2007) a framework is used to provide
all the computational facilities needed to solve a text categorization prob-
lem, which is decomposed in two stages: construct the text classifier and
classify new texts. The tasks are dealt with using web services, segmenting
the classification task into five sub services: Text Representation, Feature
Extraction, Calculation Features Weight, Training Service and Threshold

Value Selection.

We note two important drawbacks of the methods presented in this sec-
tion. First, they constitute frameworks where several different applications
can be deployed. Although this has the benefit of flexibility, a certain effort
is usually needed to customize the platform to respond to the text classifi-
cation application. Second, they focus on parallelizing and distributing the

learning algorithm, relegating the text classification process to a minor role.

8http://sourceforge.net/projects/jbowl
http://www.gridminer.org/
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Even though the parallelization and distribution of algorithms is very inter-
esting and can yield considerable gains, it is again a generic approach that
can greatly improve if the specific application is considered. Therefore, we
propose a framework that allows the deployment of text classification in a
generic distributed environment, with no constraints on the environment or
platform employed. We use kernel-based learning algorithms, state-of-the-
art in text classification (Sebastiani, 2002), but other supervised learning
techniques could be used. Furthermore, we show how is it both possible and
advantageous to deploy text classification in a cluster environment, notwith-
standing the use of available middleware distributed platforms and existing
sequential code. This kind of effort is rarely made, and to the best of our

knowledge this is one of the first, if not the first, for text classification.

6.3 Deployment in the distributed environment

Parallelization of tasks is nowadays one of most popular ways to minimize
the execution time on one hand, and on the other, to increase the accuracy
of the solution in a given amount of time. The efforts towards parallelization
have increased with the availability of middleware platforms, capable of ex-
ploiting inactive computational resources in institutions, which are enabling
parallelization techniques by using existing sequential code. A methodology
for describing task scheduling and for deploying tasks in distributed envi-
ronments is given below. Later, the distributed environment used in our
experiments is presented together with a simple mathematical model which

adequately describes it.

6.3.1 Task scheduling and direct acyclic graphs

An important issue in distributed computer systems is task scheduling (Blaze-
wicz et al., 2001). The scheduling scheme, composed of many tasks, is com-
monly represented by a direct acyclic graph or DAG, with nodes representing
tasks, and arrows between them representing task dependencies and underly-
ing dataflow. More precisely, any task connected to some other (dependent)
task should be completed before another task can be started. Scheduling of
tasks in grid environments is usually regulated through a central manager,
which ensures the correct execution of DAGs.

It is also common in loosely coupled distributed environments for the
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central manager to take care of communication between tasks, which is ac-
complished by transferring files from and to the manager. Execution of each
task thus consists of transferring input and executable files from the manager
to an executing node, running executable files on that node and transferring
the task’s output files from the executing node back to the manager. In the
case of a dependent task, the manager takes care of information exchange
by setting the output files of preceding tasks as input files for the dependent
task. Data are usually exchanged by middleware native mechanisms. When
large chunks of data are to be exchanged, a shared file system hosted on the

central manager is preferred.

6.3.2 DAG design in a distributed environment

DAGs can be efficiently optimized by following the generally adopted method-
ology of Ian Foster (Quinn, 2003) which will be carried out in a distributed
environment (see Section 6.3.3). There are four design steps: partitioning,
communication, agglomeration and mapping. The focus of the first two is
to find as much parallelism as possible, while the latter two consider the
capabilities of the underlying environment.

In the partitioning step, the data and the computation of a task are
divided into small parts that can be computed in parallel. To assure the
scalability of the task, divisions where the number of small parts increases
with problem size, are preferred. When an objective is to use sequential code
in parallel design, the data partitioning is more feasible.

Communication between tasks, which is not needed in sequential designs,
represents the overhead of parallel designs. In centralized task scheduling
systems the only possible communication is point-to-point distribution and
collection of files at the start and completion of tasks, respectively. In this
case all communication goes through the manager, which can become a bot-
tleneck.

In the agglomeration step, the parts identified in previous steps are
grouped into agglomerated tasks in order to improve performance. Group-
ing should be performed so as to maintain the scalability of the design. Two
aspects should be considered to avoid expensive communication. The first
is to group the previously identified parts of each task in order to optimize
communication; this is preferably achieved by sending the same executables

and supporting files to each task. The second is to merge consecutive tasks



124 CHAPTER 6. DISTRIBUTING TEXT CLASSIFICATION

to avoid expensive communication with the master. This is only possible
when a certain task needs only intermediary files produced by the preced-
ing task. It is very important to evenly balance the load around computing
nodes by creating agglomerated tasks with roughly the same computational
and communication complexity.

The mapping step assigns tasks to the computing nodes. When data de-
composition is in question, the agglomerated tasks usually have very similar
complexity, meaning the computational load is balanced among tasks. A
good strategy in this case is to create as many agglomerated tasks as there
are available processors.

In applications where communication takes a significant portion of to-
tal execution time, special attention should be given to the optimization of
scheduling schemes in terms of the number of processors used for each task.
To avoid time-consuming experimentation, a model of the distributed sys-
tem can be built, following certain assumptions on the communication and
computation phases of the process.

The execution of a task can be split into three phases:

1. the distribution of subtasks to the computing nodes;
2. the computation itself;
3. the result collection.

According to this split, the total time needed to complete a set of subtasks

can be expressed as

Ttotal(p, 51,52, 53) = 7_d.istribute(pa 51) + Tcompute (p, 52) + Teollect (pa 53) > (6]-)

with p representing the number of concurrently available computing nodes
and sq, s2 and s3 being complexity parameters for the distribution, com-
putation and collection phases, respectively. In many cases, as in the text
classification presented later, the size of files can be used as a complexity pa-
rameter, since it satisfactorily reflects the complexity of corresponding tasks.
In order to minimize the total execution time of a task, Equation (6.1) should
be minimized with respect to the number of acquired nodes p and can differ
from task to task in the same DAG.

In the further analysis it is assumed that the computing nodes are ho-

mogeneous, exhibiting the same computing and communication capacity.
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According to the grid-based environment presented it is necessary to ensure
that each subtask gets its own copy of the executable files and the supporting
files of size Sere. However, each subtask only needs a proportional part of
input files s;,. Our model simply assumes that the connections between the
master and each of the computing nodes are established sequentially, where-
upon the file transfer is performed in parallel. Therefore, the distribution

time can be modeled as
S
Tdistribute(pa 51) = Tdata(sl) +p- 7_serviv:e(sl) y 81 = Sege T+ % . (62)

When the input data is split in even partitions, the contribution of the

computation phase to the total time becomes
Sin
Tcompute(p7 32) =T (32) , S22 = — (63)

with T'(-) representing the task dependency.
In the collection phase we can expect that each of the p subtasks con-
tributes approximately the same to the total output file s,u:. Thus, the

collection time can be expressed as

Sout
7'collect(p, 33) = Tdata(s?)) + Tservice(s?)) , S3= ;gu . (64)
Figure 6.1 shows an example of a task distribution to one node (p = 1)
and to four nodes (p = 4). For comparison, the computing time of a task in
a centralized environment (stand-alone machine) of equal capacity is given

to emphasize the communication costs.

task started on a computing node
(no communication)

task submitted to p=1 node,
no speedup

task submitted to p=4 nodes,
speedup = ta/tc

time

‘ legend: D service executables I data I computation

Figure 6.1: Example of task distribution. Service time 7gervice is modeled as
constant and the computation phase is linearly dependent on the file size.
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The main goal of the methodology proposed in this section is to optimize
the DAG to obtain significant speedups in data mining tasks. Guidelines that
can be followed are now given to help systematize the procedure, despite the

fact that they constitute a simplification and so omit many details:

e Time consuming tasks (bottlenecks) should be identified, parallelized

and distributed (partitioning);

e The number of subtasks for a task is defined both by an evaluation of
the task complexity (building a model) and by the number of available

processors (communication and mapping);

e Partitioning can be accomplished functionally or by data splitting and,
depending on the constraints of the specific application, additional
processes that join partial results may be needed (partitioning and

communication);

e When dependent tasks exchange large files not needed subsequently,

they should be joined (communication and agglomeration);

e When tasks need few computational resources and have the same input

files, they can be joined (agglomeration, communication and mapping).

6.3.3 Distributed environment for the experimental setup

The grid environment used in the experiments consists of a cluster of 16
machines with 3 GHz Pentium 4 processors and 1 GB RAM each. The com-
puters are connected over a 1Gb local area network through a fast Ethernet
switch. Desktop computers outside the cluster can join the pool over a 100
Mb local area network. Two freely available middleware platforms for grid
computing are set up in the cluster: Condor'® and Alchemi''. One of the
machines is the master of the cluster and runs Linux. Besides standard ser-
vices, e.g. http and ftp, it also serves as the Condor manager. The remaining
15 machines are computing nodes dedicated to job execution and running
Windows. In the case of Alchemi a maximum of 14 computing nodes can be

used, since one node has to serve as the Alchemi manager.

Ohttp://www.cs.wisc.edu,/condor
"http://www.alchemi.net
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6.3.4 Model of the environment

To effectively deploy a text classification task in a distributed environment,
we first need to construct a model of the environment, analyzing the tasks
and determining a procedure to represent them. Each task is thus divided
in its fractions, namely distribution, execution and collection times so that
a generic model can be inferred.

Optimization of scheduling schemes depends on the underlying architec-
ture of the distributed environment, therefore it is of vital importance to
consider the communication as well as computation costs. To estimate the
communication costs an experiment consisting of a set of sequential tasks
mostly involved in file transfer was performed. The dependency between the
execution time of the transfer tasks and the actual file sizes is represented in
Figure 6.2a) for Condor and in Figure 6.2b) for Alchemi.
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Figure 6.2: Time to transfer data in a) Condor and b) Alchemi middleware.
In the latter, pure data transfer was measured separately (gray color). Mea-
surements are represented by circles and the model equation by solid lines.

According to the behavior of the middleware platforms, pure file transfer
was treated separately from all other essential processes involved in com-
munication, such as middleware service processes, submission process and

network latency, resulting in an overall time for a task in the experiment

Tcommunication (S) = Ttransfer (3) + 7-service(s) s (65)

where s represents the file size, Tiransfer 18 the time needed for file transfer and
Tservice Telates to all other processes. As can be seen in Figure 6.2a), omitting

the random spikes caused by Condor not responding due to its services,
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results in a linear relation composed of pure data transfer Tanster(5) = Cp s,
Cr = 2.2 MB/s and constant service requirements Tservice(s) = Cs, Cs =
16.4 s.

According to the tests on Alchemi, presented in Figure 6.2b), a linear
model is also used for the file transfer T anster(s) = A;l s, Ap = 1.59 MB/s.
Other processes exhibit quadratic dependency, Tservice(s) = Aso + Ag1 s +
Ago s? with Agyg = 0.69 s, Ag1 = 0.16 s/MB and Agy = 0.043 s/MB?, mainly
due to the poor memory management when preparing files for transfer.

In addition, the computing complexity of the tasks can be easily esti-
mated by running programs on a stand-alone computer. For example, the
tasks involved in text classification manifest linear or power-law dependence

on the input data size, as shown in Figure 6.3.
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Figure 6.3: Computation time dependence on input file size for a) acquisition
task and b) dictionary task. Measurements are designated with circles and
the models with solid lines. The model for the first is 7'(s) = 0.131+0.054 s,
and for the second T'(s) = 21.3 s%/2.

6.4 Design of distributed text classification schedul-

ing schemes

Text classification consists of many consecutive pre-processing, training and
testing tasks, as explained in Chapter 2. To efficiently port a sequential algo-
rithm to a distributed environment, it is important to be aware of dataflow
between its tasks. This dataflow for text processing tasks is described next.
Then, based on the dataflow and the concepts of the design methodology
described in the previous section, text classification tasks are distributed in

the given environment.
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6.4.1 Dataflow in text classification

In a sequential implementation, each task is carried out by stand-alone exe-
cutable code, capable of processing predefined input files and storing results
in corresponding output files. However, when a distributed deployment is
intended, dependencies between tasks must be identified. Analysing a text
classification flow, we can define the following subtasks, graphically repre-
sented with a DAG in Figure 6.4.

A. Acquisition task, which scans the input files to retrieve the documents,
identify them with their topics (classes) and their role (training or test-
ing). Reuters-21578 dataset is organized in eleven input files, whereas
RCV1 dataset has ten input files. Hence, the initial task, denoted with
letter A, is composed of eleven (or ten) subtasks A0 - A10 (A0 - A9),
where each is processing one of the input files. To organize data for
further processing, the partial outputs from individual runs are gath-
ered. Depending on the arguments the executable code can separately
gather training topics in subtask A’0, testing topics in subtask A’l,
training documents in subtask A’2 and testing documents in subtask
A’3. Whilst the first two are only needed in training and testing, the
latter two are further pre-processed.

B. Task B parses, i.e. applies stemming and removes stopwords from the
files representing training and testing documents. Therefore, task B
can be treated as two subtasks, B0 and B1, using the same executable
code but different input files, one containing training and the other

testing documents.

C. In the dictionary task the distinctive words from parsed training and
testing documents are indexed and their document frequency is calcu-
lated.

D. Words appearing in less than a definable threshold number of docu-
ments are removed (cleaned) from the obtained dictionary.

E. Afterwards, document-word matrix representation is obtained from
parsed training and testing documents based on the cleaned dictio-

nary. The values in matrices are also linearly scaled to avoid overflow
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or underflow in the learning machines. The task is divided into two
subtasks, EQ responsible for training documents and El1 for testing

documents.

F. Training and testing sets are constructed according to the specifications
of publicly available benchmark corpora splits. Each line in a training
or testing set represents one document with as many inputs as there
are words in the cleaned dictionary and one output, identifying the
document as belonging or not to the given category. Whilst inputs
are taken from the document-word matrix representation of testing
and training documents, the outputs are obtained from training and
testing topics resulting from tasks A’0 and A’l. The classification into
ten categories results in ten training sets (F0 - F9) and ten testing sets
(F10 - F19) being prepared.

G. Finally, models for classification into ten predefined categories are
built. The training algorithm is run ten times, one for each category
in a binary classification scheme (one-against-all), suggesting that the
adjustment of model free parameters is treated as a training subtask
GO - GI.

H. Similarly, the ten models are tested in ten subtasks HO - H9 of the
testing task. Each subtask reveals the performance and generaliza-
tion capabilities of one of the models obtained in the previous task on

corresponding testing set.

When a new document is presented to the system and there is no need
to update the classification models, only the files and subtasks indicated by

the colored bottom part are involved in processing (see Figure 6.4).

6.4.2 Optimization of scheduling schemes

The text classification dataflow given in Figure 6.4 itself already has an un-
derlying parallelism of subtask execution on distributed nodes. But this dis-
tribution is far from optimum. To better join an application and a distributed

environment the procedure described in Section 6.3.2 can be followed.
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Figure 6.4: Text classification dataflow represented using a DAG with arrows
identifying task dependencies with underlying file exchange. Dashed lines
indicate optional input file and subtask. When a new input document is
presented to the system and there is no need to update the models, only the
files and the subtasks with a colored bottom part are involved in processing.

Bearing in mind our approach of using sequential code to the greatest
possible extent, the tasks identified in the previous section represent the most
detailed partitioning in terms of computation. Fortunately, the dataflow
itself indicates data partitioning in tasks A, B, E, F, G and H. One of the
most critical tasks in text classification is task C (followed by D), which has
to gather all partial results to build a global dictionary and as such represents
a significant bottleneck. Below, the explanation of DAG optimization is split
into two parts due to the two main learning machines, SVMs and RVMs. In
both cases, the designs of DAGs for the two datasets, R21578 and RCV1,
are further detailed. Afterwards, the optimization of ensembles of learning

machines on the given datasets is discussed.

training and

testing



132 CHAPTER 6. DISTRIBUTING TEXT CLASSIFICATION

SVMs in a distributed environment

We start to optimize the initial DAG deployment using SVM models. Task
A (acquisition) can be partitioned into as many subtasks as there are doc-
uments in a given dataset. In the case of Reuters-21578 dataset, the split
would lead to as many as 21,578 subtasks. Furthermore, parsing in task
B can work on subtasks consisting of an arbitrary number of documents.
Building a dictionary of words in task C is very time-consuming and needs
to be parallelized. Instead of gathering the documents before task C, we can
create dictionaries of documents in an arbitrary number of subtasks together
with their partial document frequencies, and afterwards combine them into
a global dictionary. These modifications require undemanding programming
of the procedure for gathering of partial dictionaries.

Tasks A, B and C exchange many intermediate files that are not needed
in other tasks. By agglomerating them into a joined ABC task, the over-
all file transfer is significantly reduced. By considering the computation and
communication costs in the process of data agglomeration, the optimal num-
ber of subtasks can be obtained. To avoid time-consuming experimentation,
the model of the environment presented was used to determine the suitable
number of subtasks, resulting in the dependency shown by the solid line in
Figure 6.5.
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Figure 6.5: Model of execution times vs. number of processors for text
classification tasks.

According to the model, the optimal number of subtasks in Condor mid-
dleware is four. However, the natural organization of the dataset into 11 files

led us to five subtasks, without heavily degrading computing performance.
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More precisely, by assigning three smallest input files to one subtask and
pairs of remaining files to the other four subtasks, subtasks of balanced com-
plexity were obtained. Task ABC is followed by a new gathering task, which
is split into five subtasks exhibiting functional and data parallelization. And
so, subtasks A’0 and A’1 still gather training and testing topics, whilst tasks
B’0 and B’1 combine parsed training and testing documents, respectively.
There is also a joined task C’D that is used for combining partial dictio-
naries and their document frequencies into the global dictionary and further
cleaning it. In this case, the functional agglomeration was performed to re-
duce unneeded file transfer. Following a similar approach we obtained an
optimal number of eleven subtasks for Alchemi. However, for easier compar-
ison of the DAG execution in different middleware environments, the Condor

settings were also used for Alchemi.

The task of building training and testing sets (F) with SVMs creates large
intermediate files for each category, only needed by the subsequent training
(G) or testing (H) tasks. For that reason, new joined tasks (FG and FH)

were created, reducing overall file transfer.

Similar to the procedure used with the ABC tasks, the processing times of
FG and FH tasks were evaluated to determine a suitable number of subtasks,
resulting in the dependency shown in Figure 6.5 by dashed and dotted lines,
respectively. In both cases the optimal number of FG and FH subtasks for
Condor is two, each one taking care of building or testing five classification
models. As a result of these modifications, we finally reached the refined
DAG shown in Figure 6.6.

By following the described optimization procedure, for the 35-times larger
RCV1 dataset and the same learning machines, a rather different partitioning
of tasks was obtained. For the ABC task, instead of five subtasks, ten
subtasks are suggested and for the FH task, five subtasks are found.

As the gathered training and testing sets are much larger than for the
Reuters-21578 dataset, task E was identified as a bottleneck, so additional
steps were taken to permit its distribution. More precisely, the dictionary
gathering was reprogrammed to take into account the parsed training and
testing documents, and a new gathering task was programmed considering
document-matrix representation peculiarities. Furthermore, in the case of
the RCV1 dataset there are far more testing documents than training doc-

uments, suggesting a split of subtask E1 into many smaller subtasks, which
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Figure 6.6: Text classification DAG for the SVM model with the Reuters-
21578 dataset.

require a new gathering task, E1’. Taking into account the proposed split and

gathering required, the model suggests using ten subtasks E10-E19. Figure
6.7 shows the DAG achieved for SVM learning.

preprocessing

training and

testing

Figure 6.7: Text classification DAG for the SVM model with the RCV1
dataset.

RVMs in a distributed environment

Besides the SVM classification models, RVM classification models were also
used for classification of the datasets. Since the datasets are the same, there
are no changes in the pre-processing tasks.

Contrary to SVMs, the learning times for RVMs are much longer. Using
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all available training documents for the RCV1 dataset is not computationally
feasible. Therefore, to achieve comparable computational complexity of the
training task in both datasets, training sets with 2,000 training documents
were defined.

Additional reorganization of training and testing tasks is necessary, since
the software package used '? requires the simultaneous input of training and
testing sets. Thus a joined training and testing task, named FGH, is defined
for RVMs. Since the computation largely prevails over communication, it
is reasonable to arrange subtasks in such a way that each of them handles
training and testing of one of the ten classification models. The refined DAG
for Reuters-21578 is given in Figure 6.8. In the case of the RCV1 dataset,
the training and testing parts of the DAG remain unchanged, whereas the
initial pre-processing part is replaced by the one given in Figure 6.7, with
the task E1’ connecting to the FGH subtasks instead of subtask E1.

i preprocessing

training and
testing

Figure 6.8: Text classification DAG for the RVM model with the Reuters-
21578 dataset.

Ensembles of learning machines

Along with kernel-based machines, ensemble techniques present state-of-the-
art results in several applications, including text classification (Sebastiani,
2002), which was corroborated by the previous two chapters. Therefore, they
were chosen for implementation in the distributed environment to improve
classification performances. In fact, with an ensemble structure, profiting
from a distributed environment setup and available computing cycles, clas-

sification performance can be improved without penalizing processing time.

2http: //www.miketipping.com /index.php?page=rvm
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We will next outline the ensemble strategies undertaken for SVMs and
RVMs. For both, the elected voting algorithm is majority voting, where
each base classifier votes on the class the document should belong to and
the majority wins. The differences between SVM and RVM ensembles lie in
the choice of the k experts that are constrained by the learning algorithms.
While the SVM ensemble is created using different learning parameters, the

RVM ensemble is defined using data partitioning.

SVM Ensemble The purpose of this approach was to develop homoge-
neous ensembles, as detailed in Chapter 4, i.e. using the same learning
algorithm. SVMs are sufficiently scalable to use all training examples for
each model (which is not true for RVMs). As indicated in Section 4.3.1, we
explore different parameters for SVMs 13, resulting in four different learning
machines: (i) linear default kernel, (ii) RBF kernel, (iii) linear kernel with
trade-off between training error and margin set to 100, and (iv) linear kernel
with the cost-factor, by which training errors in positive examples outweigh
errors in negative examples, set to 2.

To adapt the optimized DAG presented in Figure 6.6, the learning and
evaluation components had to be altered. The training and testing tasks
(FG and FH) were thus quadrupled to represent the four different learning
machines that constitute the ensemble. Moreover, after these tasks, a new
dependent ensemble task (I) was created to implement the majority voting
among the SVM classifiers.

RVM Ensemble RVMs have the drawback of low scalability. As men-
tioned in Chapter 5, for the baseline RVM setting, training sets of up to
2,000 examples can be learned in reasonable computing time. For the dis-
tributed approach followed in this chapter we have therefore devised an RVM
ensemble strategy that could take advantage of the predominance of training
examples in our text classification benchmarks. The size and number of the
training sets used in the RVM ensemble modeling depend on the available
computational power, but the more training examples used usually results in
more diversity and better performance. We have constructed seven smaller
evenly sized training sets, each consisting of 1000 randomly disjointed sample

documents from the available training set. Then, from each training set a

3http://svmlight.joachims.org/
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model is learned, and these models constitute the ensemble individual classi-
fiers. After this learning phase, a majority voting scheme is implemented in
the testing phase to determine the ensemble output decision, taking as out-
put value the average value of the classifiers that corroborated the majority
decision.

As with the SVM ensemble, the changes on the DAG presented in Figure
6.8 lie mainly in the learning and testing tasks (GH) to accommodate the
seven models for each category, and in adding an extra ensemble phase that

depends directly on the testing tasks.

6.5 Experimental results

This section presents the results obtained in terms of processing time and
classification performance. The proposed framework for distributed text
classification is tested on the Reuters-21578 and RCV1 datasets with the
SVM and RVM models. The study also includes the ensemble strategies
for the two approaches. Experiments are conducted in both Condor and
Alchemi distributed environments, while a centralized approach is used for
comparison.

Even though the processing times vary slightly in a centralized approach,
differences between runs can be significant in distributed environments. The-
refore, to establish confidence bounds for our tests and thus ensure statistical
significance, each experiment was repeated 30 times, and average results are
presented.

We also present a discussion of results, including the combination of

different learning methods, platforms and datasets.

6.5.1 Processing time

In Table 6.1 we present the processing times for the initial DAG, emerging
directly from dataflow (see Figure 6.4), and the optimized DAGs (see Figures
6.6, 6.7 and 6.8) for Alchemi and Condor using SVM models for Reuters-
21578.

The results for the initial DAG in both Condor and Alchemi platforms
show how a straightforward deployment in a distributed environment can
have adverse effects on processing times, since the distributed text classi-

fication systems approximately double the centralized approach sequential
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Table 6.1: Processing times using SVM models for Reuters-21578 (times in
seconds).

Sequential Condor Alchemi
Initial DAG 516 1,487 1,075
Optimized DAG 516 543 242

time.

In previous sections significant effort has been devoted to the analysis
of the distributed environment model. Based on a clear understanding of
the problems involved, i.e. communication overhead and unbalanced node
complexity, we proposed the refined DAG (Figure 6.6). In this case, an
improved solution is reached, taking full advantage of the computational re-
sources available in the cluster environment. Figure 6.9 shows the processing
times for both datasets using SVM and RVM models with optimized DAGs
in both centralized and distributed environments. To emphasize the cost of
communication the processing times are split into two parts - communica-
tion including middleware service requirements and pure computation. The
small horizontal lines on each bar represent the standard deviations for the

30 runs.

- communication + service |:| computation

Sequential

Condor

Alchemi R21578 + SVM
Sequential |+|

Condor

Alchemi R21578 + RVM
Sequential HH

Condor

Alchemi RCV1 + SVM
Sequential |+|

Condor

Alchemi RCV1 + RVM
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Time[s]

Figure 6.9: Processing times for SVMs and RVMs models with optimized
DAGs.
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The four arrangements exhibit the same trend, regardless of the tested
setting. Alchemi always presents a better processing time than Condor, and
Condor better than the sequential approach. It was expected that the dis-
tributed platforms would exhibit a better performance than the sequential
approach, since they take advantage of a far greater availability of computa-
tional power. Alchemi excels because it is much simpler, having less demand-
ing services, thus dealing with task management more efficiently. The results
are far more expressive for the RCV1 dataset, since it is 35 times larger than

the Reuters-21578, which affects both communication and execution.

- communication + service |:| computation

Sequential
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Figure 6.10: Processing times for ensemble models with optimized DAGs.

For the ensemble strategies, as Figure 6.10 shows, similar trends to the
single learning machine approach are observed. As the learning burden is
much larger, the effect of communication and service requirements is less
pronounced, leading to more significant improvement in processing times.
The standard deviations resulting from the 30 experiments agree with the
previous results.

There is however a difference when comparing SVMs and RVMs process-
ing times for Figures 6.9 and 6.10. For the ensemble setting, the RVM is the
more time-consuming learning machine, as was expected, since RVMs are
known to have scaling issues (see Chapter 5).

One of the frequently used measures for a distributed system evaluation

is speedup, defined as the ratio between processing times in the sequential
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approach and the distributed platforms,

Sequential processing time

Speedup = (6.6)

Parallel processing time

The speedups for Condor and Alchemi compared with the sequential setting

in the several arrangements are presented in Table 6.2.

Table 6.2: Speedups obtained for Condor and Alchemi with both datasets.
SVM SVM Ensemble
Condor Alchemi Condor Alchemi
R21578 0.95 2.13 0.97 1.29
RCV1 2.51 4.54 2.19 3.16

RVM RVM Ensemble

Condor Alchemi Condor Alchemi
R21578 3.04 3.25 3.13 3.57
RCV1 2.91 3.97 3.90 4.89

As could be predicted from the processing times, there is generally an im-
provement in speedup with the deployment in the distributed environment.
Alchemi yields a better speedup than Condor in most settings, since Condor
is more concerned with high execution burdens, whereas Alchemi deals bet-
ter with frequent file transfer, as observed for text classification applications.
Compared with SVMs, RVMs also present a greater potential for paralleliza-
tion, explaining their better performance in distributed environments. Given
that RCV1 is much larger than Reuters-21578, its speedup also tends to be
larger.

For SVMs, the difference between Condor and Alchemi speedups is more
evident, almost doubling (from 0.95 to 2.13 and 2.51 to 4.54) for the SVM
baseline setting and increasing by 50% (from 0.97 to 1.29 and 2.19 to 3.16)
for the SVM ensemble setting.

RVMs show more potential for speedup, with speedups around 3 in the
RVM baseline setting and between 3 and 5 in the RVM ensemble setting.
Differences between Condor and Alchemi for RVMs are minor in both the
RVM baseline (from 3.04 to 3.25 and 2.91 to 3.07) and the RVM ensemble
(from 3.13 to 3.57 and 3.90 to 4.89) settings.
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Generally, speedups are more pronounced for the RCV1 dataset and for
the ensemble approach. As these are the most demanding settings in terms
of computing power, this outcome was expected. Considering the number
of processors available and that a very complex and not fully parallelizable
problem was undertaken, the resulting speedups represent a real improve-
ment in pursuit of the initial goal, i.e., to deploy a complex text classification
task efficiently in a cluster environment.

In addition to speedup, efficiency is commonly used in order to measure

utilization of processors. Given as

Sequential processing time Speedup

Efficiency = =
Processors used x Parallel processing time  Processors used

(6.7)
it indicates the fraction of time the processors are used for a given compu-
tation. In the DAGs presented the number of processors used is changing
dynamically from task to task. In this situation the worst case efficiency
can be calculated by using the maximal number of processors simultane-
ously involved in the computation. Of course, this reflects a poor utilization
of processors in a distributed system. However, the released processors can
be employed in some other applications. The efficiencies of the presented

designs are summarized in Table 6.3.

Table 6.3: Efficiencies obtained with Condor and Alchemi setups on both
datasets with maximal number of used processors indicated in parenthesis.
SVM SVM Ensemble
Condor  Alchemi  Condor  Alchemi
R21578 0.19 (5) 0.43 (5) 0.19 (5) 0.26 (5)
RCV1 0.25(10) 0.45 (10) 0.22 (10) 0.32 (10)

RVM RVM Ensemble
Condor  Alchemi  Condor  Alchemi
R21578 0.30 (10) 0.32 (10) 045 (7) 0.51 (7)
RCV1 0.29 (10) 0.40 (10) 0.39 (10) 0.49 (10)

In all cases the efficiency of parallel designs under Alchemi is higher
than under Condor which indicates that Alchemi has more efficient task

management, including middleware service requirements and file transfer.
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It can also be seen that the efficiencies in the larger RCV1 dataset com-
pared with the smaller R21578 dataset are largely maintained at the same
level or even improved upon when more processors are used. This indicates
the scalability of the suggested text classification solutions. Since the number
of processors in DAG processing changes dynamically from task to task, and
since the DAGs are specially optimized for each dataset, a deeper analysis

is not really feasible.
6.5.2 Classification performance

In Table 6.4 the summary of F'l classification results is presented. Con-

cerning classification performance, the comparison of the SVM and RVM

Table 6.4: F'1 performance results for both datasets and learning machines.
Reuters-21578

SVM  SVM Ensemble RVM RVM Ensemble

Earn 98.14% 97.91% 97.52% 97.03%
Acquisitions  95.59% 95.75% 91.57% 93.59%
Money-fx  74.64% 77.24% 57.14% 69.62%
Grain 82.76% 86.18% 76.52% 80.30%
Crude 84.87% 87.12% 69.51% 70.86%
Trade 69.90% 74.67% 50.27% 68.57%
Interest 74.73% 76.68% 58.29% 62.92%
Ship 70.59% 79.19% 66.21% 62.77%
Wheat 75.63% 83.72% 75.18% 77.17%
Corn 70.00% 79.17% 67.37% 66.67%
Average 79.68% 83.75% 70.96% 69.45%
RCV1

SVM  SVM Ensemble RVM  RVM Ensemble
CCAT 92.78% 92.27% 82.99% 81.55%
GCAT 56.63% 62.40% 35.83 % 40.86%
MCAT 90.72% 91.40 % 76.36% 77.78%
C15 71.92% 78.66 % 76.47% 75.13%
ECAT 74.97% 80.11 % 60.43% 65.68%
M14 72.39% 78.33% 58.72 % 71.43%
C151 16.01% 47.43% 31.48% 32.95%
C152 5.18% 6.13% 4.93% 3.07%
GPOL 68.78% 75.24% 57.07 % 64.37 %
M13 69.69% 85.52% 66.12% 75.02 %

Average  61.91% 69.45% 49.64% 58.78%
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approaches per se has already been presented in previous chapters. Here we
show a comparison of approaches. SVMs generally provide better average F1
performance results than RVMs for the same datasets. In (Joachims, 2001;
Tong & Koller, 2001) detailed studies on SVMs applied to text classification
can be found. Baseline results presented here concur with these studies. For
RVMs, the published research is usually not baseline but the result of specific
algorithms optimizations, such as in reference (Eyheramendy et al., 2003).
As can be seen in Table 6.4, the average performance differs by around 10%
(79.68% to 70.96% for Reuters-21578 and 61.91% to 49.64% for RCV1). It
must be stressed, however, that an RVM uses only a fraction of the training
examples owing to computational constraints.

The ensemble strategy in most cases improves the classification perfor-
mance compared with a single learning machine (see Table 6.4), while main-
taining relative performance (around 10% difference from 83.75% to 69.45%
for Reuters-21578 and from 69.45% to 58.78% for RCV1). The four ensemble
SVM machines were built by varying parameters over all training samples,
while the same learning parameters and different training samples were used
for all RVM machines. Considering that SVM and RVM present state-of-
the-art results for text classification, their improvement with the ensemble

strategy constitutes progress in terms of classification performance.

6.5.3 Discussion of results

In this chapter we have proposed an architecture for the seamless deployment
of data mining tasks in any given distributed environment, using state-of-
the-art learning algorithms and making it possible to speedup pre-processing,
learning and evaluation processes.

To exploit the proposed techniques, we used a high-dimensional chal-
lenging problem of text classification, where there are tens of thousands of
learning documents and each document can also have thousands of features.
To cope with this complexity, we use the kernel-based learning machines em-
ployed throughout this thesis, i.e. SVMs and RVMs. SVMs, while exhibiting
extraordinary generalization capabilities, also scale linearly with the training
set. On the other hand, RVMs are capable of introducing Bayesian priors
which, using a priori knowledge, make the model generalize well and incor-
porate our preferences into the learning algorithm. Furthermore, we used

ensembles of kernel-based machines to improve classification performances.
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Therefore, our results relate to both processing time and classification per-

formance.

The speedup of a text classification problem depends on the size of
datasets, on the complexity of classification algorithms and on the deploy-
ment in the distributed environment. Generally, the processing times are

improved with the deployment in the distributed environment.

Comparing the speedups between the distributed middleware platforms
Condor and Alchemi, we can conclude that for Alchemi the distributed ap-
proach reduces the processing time more significantly. Alchemi is internally
much simpler, having less demanding services, and so deals better with task
management, which is especially pronounced in frequent handling of tasks
when file transfer prevails over the execution burden. One of its advantages
in terms of better task management is the support and adaptation to only
one operating system (i.e. Windows with .NET framework). On the other
hand Condor has to take care of different operating systems and different
architectures increasing service requirements which are probable reasons for
occasional internal delays. The importance of selecting the right platform
is also demonstrated in Table 6.2. Despite of the fact that direct acyclic
graphs optimized for Condor were used on both platforms, Alchemi outper-
forms Condor. In terms of learning algorithms, RVMs, when compared with
SVMs, also show better potential for parallelization. This result was foresee-
able since RVMs have noticeably larger computational burdens and were in
fact parallelized using data partitioning of the inputs. In addition, ensemble
strategies overload the cluster environment with processing demands result-
ing from the several models they must build, therefore constituting a great

source of parallelism. Hence, ensemble techniques offer the larger speedups.

As illustrated in Table 6.2, the speedups are more noteworthy for larger
datasets, like RCV1. This is mainly due to the fact that the computation
in the nodes prevails over the communication between them. In the case
of smaller datasets like Reuters-21578, acquaintance with the problem and
its distribution are more important to improving the performance, which is
shown in Table 6.1.

Analyzing the F'1 classification performance results presented in Table
6.4, it is evident that SVMs generally perform better than RVMs, proba-
bly because of the RVMs’ scaling problems that do not allow the use of all

training examples. Comparing baseline kernel-based machines with ensem-
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ble strategies is, as expected from previous chapters, favorable to ensemble
strategies, reinforcing the idea that no single classifier is always best. In
SVM this improvement is achieved through classifier diversity, a fundamen-
tal characteristic of ensembles, while for RVM the profit is accomplished by
subsampling the training set.

6.6 Conclusion

In this chapter we developed a new architecture for deploying text mining
in a cluster computing environment. The proposed framework employs a
combination of the text classification task (and data) decomposition, config-
uration evaluation through the modeling of the design phases, and the high
performance distributed computing model. The main features of the kernel-
based learning machines, upgraded with the ensemble strategies, make it
possible to create models for text data mining and knowledge-discovery in
texts which are generally used aliases for the process of extracting relevant
and non-trivial information from text. In this way, we were able to integrate
content, knowledge and learning, which is of growing importance as an ef-
fective answer to the challenge posed by the deluge of information available
in digital form.

We have described a methodology to deploy a data mining problem in a
generic distributed environment, indicating possible optimization steps. The
proposed technique is based on four steps: partitioning, communication, ag-
glomeration and mapping. In addition, a direct acyclic graph (DAG) is used
to define the tasks and dependencies, and a model is built to describe the
task executions and determine the direct acyclic graph optimizations. The
latter are based on a simple mathematical model of the distributed environ-
ment which takes into account experimentally obtained communication and
computation costs.

We have shown that it is not only possible, but even advantageous to de-
ploy text classification in a cluster environment, notwithstanding the use of
available middleware distributed platforms and sequential code. Two bench-
mark datasets from Reuters database are used in the experimental work. The
task and the data distributions are performed with Condor and Alchemi plat-
forms. The results are compared with the sequential approach in terms of

speed and performance and we concluded that the Alchemi platform provides
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larger speedups in all tests with different databases and learning models,
while the SVM ensemble classification results outperform other combina-
tions like SVM, RVM, and RVM ensemble. Furthermore, the improvement
in performance achieved by the ensemble strategies has no drawback in terms
of processing time, thanks to its distribution in the cluster environment.



Conclusions

7.1 Introduction

In the previous chapters we looked at a number of novel techniques to tackle a
variety of problems encountered in real-world text classification settings. The
common underlying thread in our work has been the integration of knowledge
in the inference of inductive learning models, resulting in contributions in
the field of machine learning.

We exploited the influence and relative importance of dimensionality
reduction standard pre-processing techniques on text classification perfor-
mance. In addition, we proposed a scaling method to determine relevant
documents based on a similitude measure to face the high-dimensionality of
text datasets.

We developed two methods for knowledge integration in SVMs, namely
background knowledge and active learning, which used the separating margin
as a major player, permitting significant enhancements.

Given the curse of dimensionality associated with text classification, even
after feature selection and dimensionality reduction techniques are applied,
new scaling strategies were proposed that not only improve text classification
performance but also permit its distribution.

Finally, we looked at various ways to deploy complete text classifica-
tion systems in distributed environments, employing a combination of the
text classification task (and data) decomposition, configuration evaluation
through the modeling of the design phases, and a high performance dis-
tributed computing model.

In the next section, we propose and discuss a framework for text classifi-
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cation systems that includes the contributions of this work, opening windows
on the conclusions and future work, addressed in the last two sections of this

chapter.

7.2 Discussion

The main focus of this thesis has been to exploit ways to integrate knowledge
in the inductive learning task, considering all available, sometimes not tan-
gible, knowledge. Our work exploits information offered in many formats,
specifically, unlabeled examples, expert classification of active learning ex-
amples and synergies of knowledge obtained from different classifiers. In this
section, we present a unified view of all our work and propose a framework
for inductive text inference classification systems.

Figure 7.1 illustrates the components of the proposed framework. We
have divided a text classification system into four stages: sources, pre-
processing, learning and evaluation. For each stage we have outlined the

more important techniques, underlining the future research trends.

O 4

4. Evaluation \
eAccuracy
eRecall, Precision
*F1, ROC, AUC
eGraphical visualization
/

3. Learning
eKernel-based machines
eActive learning, Ensembles

Qcaling, Hybrid, Graphical models /

2. Pre-processing

eStopwords, Stemming
eDocument frequency thresholding
eSimilitude measures

Q_SI, Manifold, Kernel alignment J

1. Sources
eDatabases

N /

Figure 7.1: Framework for text classification. Underlined items represent
future research trends.

The sources of texts to classify are numerous and evolving everyday.

Moreover, there is a wide variety of formats and contexts from which a text
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can be supplied. However, databases and the web represented in the first
box in Figure 7.1 cover most possible supplies. In fact, web-based scenarios
are becoming ubiquitous, despite there still being plentiful offline applica-
tions. With the boost in text sources, effort is envisaged that effort will
be needed in the pre-processing step to deal with heterogeneous, structured
and multimodal data. In addition to the representation problems, and given
that text classification is a high dimensional task, whichever point of view
one takes, dimensionality reduction techniques will remain an imperative fo-
cus of research, especially nonlinear approaches like latent semantic indexing
(Deerwester et al., 1990) and manifold learning (Tenenbaum et al., 2000),
as illustrated in the second box in Figure 7.1. Today it is argued that the
pre-processing stage usually accounts for up to 80% of both time and com-
putational efforts, and with the increasing overload of digital texts and text
classification applications, it will stay that way. Research tends to focus on
scaling properties of both data and methods to cope with such huge data sets.
We have pursued a number of efforts to achieve this goal, following paths
that led to the use of distributed environments, an unavoidable landmark in

the text classification scenario.

The third box in the framework (see Figure 7.1) represents the learning
stage, which plays a central role in any text classification system, and was
in fact the main concern of this thesis. The milestones in our research in the
learning stage are Occam’s razor combined with the no free lunch theorem,
i.e the simpler solution is usually better, but there is not a best algorithm for
all situations. To implement these ideas we have proposed techniques that
both undertake simplicity and combine different characteristics of classifiers.
Together, these techniques allow a comprehensive influence on all learning
aspects, namely scaling, active learning, ensembles, knowledge integration

and hybrid systems.

Finally, the framework deals with evaluation, which is still an important
stage of text classification, since it constitutes the interface with the end user
who has to have confidence in the text classification system. Accuracy and
error metrics are nowadays insufficient to deal with text classification evalu-
ation. Combined measures that take into account errors in both positive and
negative examples are a reality. Moreover, techniques that permit graphical
visualization of the performance, of which ROC curves are a paradigmatic

example, are evolving rapidly and thus becoming even more important.
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7.3 Conclusions

In this thesis we have presented a range of novel algorithms for solving real-
world text classification problems arising in different situations. We have
handled diverse perspectives of an inductive inference text classification sys-
tem, and proposed the framework in Figure 7.1. We have relied on widely
accepted benchmark testing data, from Reuters, that permitted a direct
comparison with previously published work. Several evaluations have been
carried out and presented during the course of this thesis. The approaches
we have proposed, outlined in Figure 7.1, obtained significant improvements
and advantages that we will set forth below.

Concerning the pre-processing stage, we have undertaken an empirical
study to compare the influence and relative importance of dimensionality re-
duction standard pre-processing methods in text classification performance.
A general conclusion is that the evaluated dimensionality reduction tech-
niques can strengthen classifier performance.

Regarding the learning stage, we proposed a series of techniques to en-
hance learning performance, and accordingly we reached some important

conclusions:

e Introduction of unlabeled data in SVMs: we introduced a margin-based
method, named background knowledge, which has the advantage of
being completely automated. After the classification of unlabeled ex-
amples by an initial SVM model, the background knowledge approach
incorporates into the training set new examples that are classified with
larger margins. The rationale is that these examples have a high prob-
ability (high confidence) of being well classified, and can thus be in-
terpreted as information underlying the initial problem. However, it
should not be used with small training sets, i.e. with too weak initial

classifiers. When this is not the case it introduces improvements;

e Active learning with SVMs: we proposed a margin-based active learn-
ing method with potential to substantially improve performance when
small training sets are available. This conclusion is very important in
text mining tasks, since usually there are a small number of classified

examples and a huge number of unlabeled ones;
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e Using several SVMs organized in a committee: we proposed an SVM
ensemble with a two-step learning strategy using the separating margin
as differentiating factor in positive classifications. Firstly the positive
classifications given by the base classifiers were enhanced and secondly
the maximum margin classifier was used for each example. This strat-
egy proved to be robust and led to the conclusion that diversity in the

base classifier is a more important factor than individual performance;

e Scaling RVMs by proposing a similitude measure: we presented a two-
step RVM that is able to manage large datasets. The first stage selects
which training documents go to the next level, using a similitude mea-
sure between documents, based on the co-occurrence of words. The
second step of the method gathers all remaining documents from all
the chunks of documents and infers an RVM classifier. The approach
tends to maintain the sparse solutions given by RVMs, while improv-
ing classification performance, with some penalization on training time.
However, the number of RVs is kept remarkably small, making recall
phase much faster than with SVMs;

e Active learning with RVMs: we introduced an active learning RVM
method based on the kernel trick. The underlying idea is to define
a working space between the relevance vectors initially obtained in a
small labeled data set and the new unlabeled examples, where the most
informative instances are chosen. Using a kernel distance metric, a
higher-dimensional space can be defined where the selection can be ac-
complished. The proposed active learning method not only surmounts
the overload of unlabeled examples available in learning tasks like text
classification, but also overcomes the scalability problems posed by
RVM learning machines, selecting an optimized working set of training
documents. Complexity escalation was controlled, since the number of
added documents was fixed and the best method of the experiments,
the linear kernel, provides a simple strategy to determine those active

documents;
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e Divide-and-conquer RVMs: we proposed a set of methods, where de-

composition techniques promote the definition of smaller working sets
that permit the use of all training examples in RVMs expansion to
large datasets. We demonstrated that, by exploring incremental, en-
semble and boosting strategies, it is possible to make use of RVMs
advantages, such as predictive distributions for testing instances and
sparse solutions, while maintaining and even improving the classifica-

tion performance;

Hybrid SVM-RVM: we exploited a two-level hierarchical hybrid SVM-
RVM model to combine the best of SVMs and RVMs. The first level
exploits RVMs probabilistic nature to define the second-level training
set, where advantage is taken of SVMs accuracy properties. Experi-

mental results permit us to conclude that the proposed hybrid model
outperforms baseline SVMs and RVMs;

After this work, we were concerned about the computational feasibility
of such techniques in real-world situations. Therefore, we deployed
text classification in distributed environments, combining task (and
data) decomposition, configuration evaluation through the modeling
of the design phases, and a high performance distributed computing
model. Testing was carried out on a large-dimensional corpus and
the results revealed that the tested techniques can be implemented
in a high-dimensional real-world situation, especially if a distributed

environment is available.

7.4 Future Work

Our work indicates to some interesting possibilities for further research that

we would like to explore. In Figure 7.2 we present a scheme of text classifi-

cation, framing it with potential future work avenues.

Text classification research is faced with different challenges arising from

the vast interest the field is receiving. Below we enumerate the ones we

consider most important:
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Figure 7.2: Text classification context.

1. Structured learning: As text classification and machine learning
techniques continue to evolve and improve, the role of structure in the
data is becoming more and more important. A major driving force
is the explosive growth in the amount of heterogeneous data that is
being collected in the business and scientific world. The widespread
diffusion of kernel methods has allowed several learning algorithms to
abstract data types and be applied to structured objects simply by
plugging in a suitable kernel function for the data type at hand. Yet
research has mainly focused on independent and identically-distributed
(ii.d.) examples. Dealing with inter-related examples that are linked
together in complex graphs or hypergraphs remains a major challenge.
Similarly, multimedia covers for text, like images or videos, are sub-

stantially more difficult problems than standard text classification;

2. Semantic learning: The bag-of-words approach has so far yielded
state-of-the-art results. However, semantic representations constitute
an cincreasingly important component of contemporary text classifica-
tion. Acquiring and representing semantic knowledge can overcome the
shortcommings of the bag-of-words approach by enriching the represen-
tation of documents. Moreover, the introduction of ontology-related

information, based for instance on the wordnet, into kernel-based clas-
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sification systems can establish a background for a better interpretation
of models. The work presented in this thesis revolved around discrim-
inative approaches to learning. Nevertheless, generative approaches,
such as graphical models, are acquiring visible potential. In fact, the
last ten years have witnessed rapid growth in the popularity of graphi-
cal models, most notably Bayesian networks, as a tool for representing,
learning, and computing complex probability distributions. Graphical
models provide an explicit representation of the statistical dependen-
cies between the components of a complex probability model, making

it possible to detect semantic dependencies between words;

Scaling and reducing dimensionality: With the deluge of digital
texts and the increase in classification needs of individual users and
companies, scaling and reducing the dimensionality of text classifica-
tion problems will be essential. Traditional nonlinear techniques like
latent semantic indexing have now acquired a novel interest, and new
reduction techniques, such as manifold learning, that allow graphical
visualization, are increasingly becoming a subject of research and ap-
plication. Furthermore, distributed systems will deserve a great deal
of attention as a possible solutions to speed and scaling problems in

different applications, e.g. search engines;

. Hybrid systems: For performance improvement, we believe that the

most exciting direction for work to take will be hybrid systems, maybe
with some underlying probabilistic setting. Following the no free lunch
theorem, ensemble and collaborative frameworks are bound to be suc-
cessful in terms of performance. The feasibility of such systems can be
accomplished with distributed computing systems, provided that there
is a serious effort to make the distributed platforms closer to data min-

ers and researchers in general.



REUTERS-21578

A.1 Introduction

This chapter is a condensed version of the information available about the
Reuters-21578 collection.

Reuters-21578 text categorization test collection is a resource for research
in information retrieval, machine learning, and other corpus-based research.

The copyright for the text of newswire articles and Reuters annotations in
the Reuters-21578 collection resides with Reuters Ltd. and Carnegie Group,
Inc. that have agreed to allow the free distribution of this data for research
purposes only.

The Reuters-21578, Distribution 1.0 test collection is available from
http://www.daviddlewis.com /resources/testcollections/reuters21578

A.2 History

The documents in the Reuters-21578 collection appeared on the Reuters
newswire in 1987. The documents were assembled and indexed with cate-
gories by personnel from Reuters Ltd. (Sam Dobbins, Mike Topliss, Steve
Weinstein) and Carnegie Group, Inc. (Peggy Andersen, Monica Cellio, Phil
Hayes, Laura Knecht, Irene Nirenburg) in 1987.

In 1990, the documents were made available by Reuters and CGI for re-
search purposes to the Information Retrieval Laboratory (W. Bruce Croft,
Director) of the Computer and Information Science Department at the Uni-
versity of Massachusetts at Amherst. Formatting of the documents and

production of associated data files was done in 1990 by David D. Lewis and
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Stephen Harding at the Information Retrieval Laboratory.
Further formatting and data file production was done in 1991 and 1992

by David D. Lewis and Peter Shoemaker at the Center for Information and
Language Studies, University of Chicago. This version of the data was made
available for anonymous FTP as "Reuters-22173, Distribution 1.0" in Jan-
uary 1993. From 1993 through 1996, Distribution 1.0 was hosted at a suc-
cession of F'TP sites maintained by the Center for Intelligent Information
Retrieval (W. Bruce Croft, Director) of the Computer Science Department
at the University of Massachusetts at Amherst.

At the ACM SIGIR ’96 conference in August, 1996, a group of text
categorization researchers discussed how published results on Reuters-22173
could be made more comparable across studies. It was decided that a new
version of collection should be produced with less ambiguous formatting, and
including documentation carefully spelling out standard methods of using
the collection. The opportunity would also be used to correct a variety of
typographical and other errors in the categorization and formatting of the

collection.

Steve Finch and David D. Lewis did this cleanup of the collection Septem-
ber through November of 1996, relying heavily on Finch’s SGML-tagged ver-
sion of the collection from an earlier study. One result of the re-examination
of the collection was the removal of 595 documents which were exact dupli-
cates (based on identity of timestamps down to the second) of other docu-
ments in the collection. The new collection therefore has only 21,578 docu-

ments, and thus is called the Reuters-21578 collection.

A.3 Formatting

The Reuters-21578 collection is distributed in 22 files. FEach of the first
21 files (reut2-000.sgm through reut2-020.sgm) contain 1000 documents,
while the last (reut2-021.sgm) contains 578 documents.

The files are in SGML format. Rather than going into the details of the
SGML language, it is described how the SGML tags are used to divide each
file, and each document, into sections.

Each of the 22 files begins with a document type declaration line:
<!DOCTYPE lewis SYSTEM ”lewis.DTD”>
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A.4 The REUTERS tag

Each article starts with an "open tag" of the form:

<REUTERS TOPICS=7? LEWISSPLIT=7?? CGISPLIT=7?7? O0OLDID=7?7 NEWID=77>
where the 77 are filled in an appropriate fashion. Each article ends with a
"close tag" of the form:</REUTERS>

In all cases the <REUTERS> and </REUTERS> tags are the only items on
their line.

Each REUTERS tag contains explicit specifications of the values of five
attributes, TOPICS, LEWISSPLIT, CGISPLIT, OLDID, and NEWID. These at-
tributes are meant to identify documents and groups of documents, and have

the following meanings:

1. TOPICS: The possible values are YES, NO and BYPASS:

(a) YES: indicates that in the original data there was at least one en-
try in the TOPICS fields;

(b) NO: indicates that in the original data the story had no entries in
the TOPICS field;

(c) BYPASS: indicates that in the original data the story was marked
with the string BYPASS (or a typographical variant on that string).

This poorly-named attribute unfortunately is the subject of much con-
fusion. It is meant to indicate whether or not the document had
TOPICS categories in the raw Reuters-22173 dataset. The sole use
of this attribute is to defining training set splits similar to those used
in previous research. (See the section on training set splits.) The
TOPICS attribute does not indicate anything about whether or not
the Reuters-21578 document has any TOPICS categories. That can
be determined by actually looking at the TOPICS field. A story with
TOPICS="YES" can have no TOPICS categories, and a story with
TOPICS="NO" can have TOPICS categories.

A reasonable (though not certain) assumption is that for all TOP-
ICS="YES" stories the indexer at least thought about whether the
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story belonged to a valid TOPICS category. Thus, the TOPICS="YES"
stories with no topics can reasonably be considered negative examples
for all 135 valid TOPICS categories.

TOPICS="NQ" stories are more problematic in their interpretation.
Some of them presumedly result because the indexer made an explicit
decision that they did not belong to any of the 135 valid TOPICS
categories. However, there are many cases where it is clear that a
story should belong to one or more TOPICS categories, but for some
reason the category was not assigned. There appear to be certain
time intervals where large numbers of such stories are concentrated,
suggesting that some parts of the data set were simply not indexed, or
not indexed for some categories or category sets. Also, in a few cases,
the indexer clearly meant to assign TOPICS categories, but put them
in the wrong field. These cases have been corrected in the Reuters-
21578 data, yielding stories that have TOPICS categories, but where
TOPICS="NQO", because the the category was not assigned in the raw
version of the data.

"BYPASS" stories clearly were not indexed, and so are useful only for
general distributional information on the language used in the docu-

ments.

2. LEWISSPLIT: The possible values are TRAINING, TEST, and NOT-USED.
TRAINING indicates it was used in the training set in the experiments re-
ported in (Lewis, 1991; Lewis, 1992a; Lewis, 1992b; Lewis & Ringuette,
1994). TEST indicates it was used in the test set for those experiments,

and NOT-USED means it was not used in those experiments.

3. CGISPLIT: The possible values are TRAINING-SET and PUBLISHED-TESTSET
indicating whether the document was in the training set or the test set
for the experiments reported in (Hayes et al., 1990; Hayes & Weinstein,
1990).

4. OLDID: The identification number (ID) the story had in the Reuters-
22173 collection.

5. NEWID: The identification number (ID) the story has in the Reuters-
21578, Distribution 1.0 collection. These IDs are assigned to the stories

in chronological order.
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In addition, some REUTERS tags have a sixth attribute, CSECS, which
can be ignored.
The use of these attributes is critical to allowing comparability between

different studies with the collection.

A.5 Document-internal tags

Just as the <REUTERS> and </REUTERS> tags serve to delimit documents
within a file, other tags are used to delimit elements within a document.
These are discussed in the order in which they typically appear, though the
exact order should not be relied upon in processing. In some cases, additional
tags occur within an element delimited by these top level document-internal
tags. These are discussed in this section as well.

It is specified below whether each open/close tag pair is used exactly once
(ONCE) per a story, or a variable (VARIABLE) number of times (possibly
zero). In many cases the start tag of a pair appears only at the beginning
of a line, with the corresponding end tag always appearing at the end of
the same line. When this is the case, it is indicated it with the notation
"SAMELINE" below, as an aid to those processing the files without SGML

tools.

1. <DATE>, </DATE> [ONCE, SAMELINE]: Encloses the date and time of

the document, possibly followed by some non-date noise material.

2. <MKNOTE>, </MKNOTE> [VARIABLE]: Notes on certain hand corrections

that were done to the original Reuters corpus by Steve Finch.

3. <TOPICS>, </TOPICS> [ONCE, SAMELINE]: Encloses the list of TOP-
ICS categories, if any, for the document. If TOPICS categories are
present, each will be delimited by the tags <D> and </D>.

4. <PLACES>, </PLACES> [ONCE, SAMELINE]: Same as <TOPICS> but for
PLACES categories.

5. <PEOPLE>, </PEOPLE> [ONCE, SAMELINE]: Same as <TOPICS> but for
PEOPLE categories.

6. <ORGS>, </ORGS> [ONCE, SAMELINE]: Same as <TOPICS> but for ORGS

categories.
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<EXCHANGES>, </EXCHANGES> [ONCE, SAMELINE]: Same as <TOPICS>
but for EXCHANGES categories.

<COMPANIES>, </COMPANIES> [ONCE, SAMELINE]: These tags always
appear adjacent to each other, since there are no COMPANIES categories

assigned in the collection.

<UNKNOWN>, </UNKNOWN> [VARIABLE]: These tags bracket control char-
acters and other noisy and/or somewhat mysterious material in the
Reuters stories.

<TEXT>, </TEXT> [ONCE]: There was an attempt to delimit all the
textual material of each story between a pair of these tags. Some
control characters and other "junk" material may also be included.
The whitespace structure of the text has been preserved. The <TEXT>
tag has the following attributes:

(a) TYPE: This has one of three values: NORM, BRIEF, and UNPROC.
NORM is the default value and indicates that the text of the story
had a normal structure. In this case the TEXT tag appears simply
as <TEXT>. The tag appears as <TEXT TYPE="BRIEF"> when the
story is a short one or two line note. The tags appears as <TEXT
TYPE="UNPROC"> when the format of the story is unusual in some
fashion that limited our ability to further structure it.

The following tags optionally delimit elements inside the TEXT

element. Not all stories will have these tags:

(b) <AUTHOR>, </AUTHOR>: Author of the story.

(c) <DATELINE>, </DATELINE>: Location the story originated from,
and day of the year.

(d) <TITLE>, </TITLE>: Title of the story. An attempt to capture
the text of stories with TYPE="BRIEF" within a <TITLE> element.

(e) <BODY>, </BODY>: The main text of the story.
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Type Number -+ 1 occurrence +20 occurrences
EXCHANGES 39 32 7
ORGS 56 32 9
PEOPLE 267 114 15
PLACES 175 147 60
TOPICS 135 120 o7

Table A.1: Category types in Reuters-21578.

A.6 Categories

A test collection for text categorization contains, at minimum, a set of texts
and, for each text, a specification of what categories that text belongs to. For
the Reuters-21578 collection the documents are Reuters newswire stories,
and the categories are five different sets of content related categories, as
shown in table A.1. For each document, a human indexer decided which
categories from which sets that document belonged to.

The TOPICS categories are economic subject categories. Examples include
"coconut", "gold", "inventories", and "money-supply". This set of categories
is the one that has been used in almost all previous research with the Reuters
data.

The EXCHANGES, ORGS, PEOPLE, and PLACES categories correspond to named
entities of the specified type. Examples include "nasdaq" (EXCHANGES),
"gatt" (ORGS), "perez-de-cuellar" (PEOPLE), and "australia" (PLACES). Typ-
ically a document assigned to a category from one of these sets explicitly
includes some form of the category name in the document’s text. (Some-
thing which is usually not true for TOPICS categories.)

Reuters-21578, Distribution 1.0 includes five files (all-exchanges-strings.
lc.txt, all-orgs-strings.lc.txt, all-people-strings.lc.txt, all-places-strings.lc.txt,
and all-topics-strings.lc.txt) which list the names of all legal categories in
each set. A sixth file, cat-descriptions 120396.txt gives some additional
information on the category sets.

Note that a sixth category field, COMPANIES, was present in the original
Reuters materials distributed by Carnegie Group, but no company informa-
tion was actually included in these fields. In the Reuters-21578 collection
this field is always empty.

In the table above it can be seen how many categories appear in at least

1 of the 21,578 documents in the collection, and how many appear at least 20
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of the documents. Many categories appear in no documents, but researchers
are encouraged to include these categories when evaluating the effectiveness
of their categorization system.

Additional details of the documents, categories, and corpus preparation

process appear in (Lewis, 1992a), and at greater length in (Lewis, 1991).

A.7 Using Reuters-21578 for text categorization re-

search

In testing a method for text categorization it is important that knowledge
of the nature of the test data not unduly influence the development of the
system, or the performance obtained will be unrealistically high. One way
of dealing with this is to divide a set of data into two subsets: a training
set and a test set. An experimenter then develops a categorization system
by automated training on the training set only, and/or by human knowledge
engineering based on examination of the training set only. The categorization
system is then tested on the previously unexamined test set.

Effectiveness results can only be compared between studies that the same
training and test set (or that use cross-validation procedures). One problem
with the Reuters-22173 collection was that the ambiguity of formatting and
annotation led different researchers to use different training/test divisions.
This was particularly problematic when researchers attempted to remove
documents that "had no TOPICS", as there were several definitions of what
this meant.

To eliminate these ambiguities from the Reuters-21578 collection, it is
defined exactly which articles are in each of the recommended training sets
and test sets by specifying the values those articles will have on the TOP-
ICS, LEWISSPLIT, and CGISPLIT attributes of the REUTERS tags. It is
strongly encouraged that all studies on Reuters-21578 use one of the following

training test divisions (or use multiple random splits, e.g. cross-validation).

A.7.1 The modified Lewis ("ModLewis") split

This split replaces the 14704/6746 split (723 unused) of the Reuters-22173
collection, which was used in (Lewis, 1991; Lewis, 1992a; Lewis, 1992b; Lewis
& Ringuette, 1994).
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Set LEWISSPLIT TOPICS
Train TRAIN YES ou NO
Test TEST Yes ou NO

Not Used NOT-USED -
Not Used - BYPASS

Table A.2: ModLewis split.

Set Documents
Train 13625
Test 6188
Nou used 1765

Table A.3: Used documents on ModLewis split.

Table A.2 presents the splitting procedure. If LEWISSPLIT is NOT-USED
or TOPICS is BYPASS, a document is not used.

The duplicate documents removed in forming Reuters-21578 are of course
not present. The documents with TOPICS="BYPASS" are not used, since
subsequent analysis strongly indicates that they were not categorized by
the indexers. The 1,765 unused documents should not be tested on and
should not be used for supervised learning. However, they may useful as
additional information on the statistical distribution of words, phrases, and
other features that might used to predict categories.

This split assigns documents from April 7, 1987 and before to the training
set, and documents from April 8, 1987 and after to the test set. Table A.3
presents the number of documents used on ModLewis split.

Given the many changes in going from Reuters-22173 to Reuters-21578,
including correction of many typographical errors in category labels, results
on the ModLewis split cannot be compared with any published results on
the Reuters-22173 collection.

A.8 The modified Apte ("ModApte") split

This replaces the 10645/3672 split (7,856 not used) of the Reuters-22173
collection. It is an approximation to the training and test splits used in
(Apté et al., 1994a) and (Apté et al., 1994b).

Table A.4 presents the split. As with the ModLewis, those documents

removed in forming Reuters-21578 are not present, and BYPASS documents



164 APPENDIX A. REUTERS-21578

Set LEWISSPLIT TOPICS
Train TRAIN YES
Test TEST YES

Not Used NOT-USED YES
Not Used - NO
Not Used - BYPASS

Table A.4: ModApte split.

are not used.

The intent in (Apté et al., 1994a) and (Apté et al., 1994b) to use the
Lewis split, but restrict it to documents with at least one TOPICS categories.
However, but it was not clear exactly what Apte, et al meant by having at
least one TOPICS category (e.g. how was "bypass" treated, whether this was
before or after any fixing of typographical errors, etc.). This interpretation
is encoded in the TOPICS attribute.

As discussed above, some TOPICS="YES" stories have no TOPICS cate-
gories, and a few TOPICS="NO" stories have TOPICS categories. These facts
are irrelevant to the definition of the split.

If you are using a learning algorithm that requires each training document
to have at least TOPICS category, you can screen out the training documents
with no TOPICS categories.

Please do NOT screen out any of the 3,299 documents - that will make
your results incomparable with other studies.

As with ModLewis, it may be desirable to use the 8,676 unused docu-
ments for gathering statistical information about feature distribution.

As with ModLewis, this split assigns documents from April 7, 1987 and
before to the training set, and documents from April 8, 1987 and after to
the test set. The difference is that only documents with at least one TOPICS
category are used. The rationale for this restriction is that while some docu-
ments lack TOPICS categories because no TOPICS apply (i.e. the document
is a true negative example for all TOPICS categories), it appears that others
simply were never assigned TOPICS categories by the indexers. (Unfortu-
nately, the amount of time that has passed since the collection was created
has made it difficult to establish exactly what went on during the indexing.)

Table A.5 presents the number of documents used on ModApte split.

Given the many changes in going from Reuters-22173 to Reuters-21578,

including correction of many typographical errors in category labels, results
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Set Documents
Train 9603
Test 3299
Not used 8676

Table A.5: Used documents on ModApte split.

on the ModApte split cannot be compared with any published results on the
Reuters-22173 collection.

<REUTERS TOPICS="YES" LEWISSPLIT="TRAIN" CGISPLIT="TRAINING-SET"

OLDID="5552" NEWID="9">

<DATE>26-FEB-1987 15:17:11.20</DATE>

<TOPICS><D>earn</D></TOPICS>

<PLACES><D>usa</D></PLACES>

<PEOPLE></PEOPLE>

<ORGS></ORGS>

<EXCHANGES></EXCHANGES>

<COMPANIES></COMPANIES>

<UNKNOWN>

&#5;&#5;&#5;F

&H#22;&#22;&#1;£0762&#31;reute

r £ BC-CHAMPION-PRODUCTS-&1t;CH 02-26 0067</UNKNOWN>

<TEXT>&#2;

<TITLE>CHAMPION PRODUCTS &1lt;CH> APPROVES STOCK SPLIT</TITLE>

<DATELINE> ROCHESTER, N.Y., Feb 26 - </DATELINE><BODY>Champion

Products Inc said its

board of directors approved a two-for-one stock split of its

common shares for shareholders of record as of April 1, 1987.
The company also said its board voted to recommend to

shareholders at the annual meeting April 23 an increase in the

authorized capital stock from five mln to 25 mln shares.

Reuter

&#3;</BODY></TEXT>

</REUTERS>

Figure A.1: Example of a Reuters-21578 document.

A.9 Stopwords

a; about; above; across; after; afterwards; again; against; all; almost; alone;
along; already; also; although; always; am; among; amongst; amoungst;
amount; an; and; another; any; anyhow; anyone; anything; anyway; any-
where; are; around; as; at; back; be; became; because; become; becomes;
becoming; been; before; beforehand; behind; being; below; beside; besides;

between; beyond; bill; both; bottom; but; by; call; can; cannot; cant; co;
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computer; con; could; couldnt; cry; de; describe; detail; do; done; down;
due; during; each; eg; eight; either; eleven; else; elsewhere; empty; enough;
etc; even; ever; every; everyone; everything; everywhere; except; few; fifteen;
fify; fill; find; fire; first; five; for; former; formerly; forty; found; four; from;
front; full; further; get; give; go; had; has; hasnt; have; he; hence; her; here;
hereafter; hereby; herein; hereupon; hers; herself; him; himself; his; how;
however; hundred; i; ie; if; in; inc; indeed; interest; into; is; it; its; itself;
keep; last; latter; latterly; least; less; ltd; made; many; may; me; meanwhile;
might; mill; mine; more; moreover; most; mostly; move; much; must; my;
myself; name; namely; neither; never; nevertheless; next; nine; no; nobody;
none; noone; nor; not; nothing; now; nowhere; of; off; often; on; once; one;
only; onto; or; other; others; otherwise; our; ours; ourselves; out; over; own;
part; per; perhaps; please; put; rather; re; same; see; seem; seemed; seem-
ing; seems; serious; several; she; should; show; side; since; sincere; six; sixty;
s0; some; somehow; someone; something; sometime; sometimes; somewhere;
still; such; system; take; ten; than; that; the; their; them; themselves; then;
thence; there; thereafter; thereby; therefore; therein; thereupon; these; they;
thick; thin; third; this; those; though; three; through; throughout; thru;
thus; to; together; too; top; toward; towards; twelve; twenty; two; un; un-
der; until; up; upon; us; very; via; was; we; well; were; what; whatever;
when; whence; whenever; where; whereafter; whereas; whereby; wherein;
whereupon; wherever; whether; which; while; whither; who; whoever; whole;
whom; whose; why; will; with; within; without; would; yet; you; your; yours;

yourself; yourselves;



RCV1 - Reuters Corpus
Volume 1

B.1 Introduction

This chapter is a rather condensed version of the information available about
the Reuters Corpus Volume I (RCV1) collection. RCV1 is an archive of over
800,000 manually categorized newswire stories using three category sets, that
was recently made available by Reuters Ltd. for research purposes. Use of
this data for research on text categorization requires a detailed understanding
of the real world constraints under which the data was produced. RCV1 as
distributed is simply a collection of newswire stories, not a test collection.
It includes known errors in category assignment, provides lists of category
descriptions that are not consistent with the categories assigned to articles,
and lacks essential documentation on the intended semantics of category
assignment (Rose et al., 2002). Nevertheless it constitutes a valuable research

tool for text, namely for categorization.

Reuters Ltd. has gone through significant restructuring since RCV1 was
produced, and information that in a research setting would have been re-
tained was therefore not recorded. In particular, no formal specification
remains of the coding practices at the time the RCV1 data was produced.
Fortunately, several researchers (Rose et al., 2002; Lewis et al., 2004) have
examined the available information and, by combining related documenta-
tion and interviews with Reuters personnel, have largely reconstructed those

aspects of coding relevant to text categorization research.
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B.2 The documents

Reuters Ltd. is the largest international text and television news agency. Its
editorial division produces some 11,000 stories a day in 23 languages (Lewis
et al., 2004). Stories are both distributed in real time and made available

via online databases and other archival products.

The RCV1 dataset was created from one of those online databases. It
consists of the English language stories produced by Reuters journalists be-
tween August 20, 1996, and August 19, 1997. A researcher can obtain the
data on two CD-ROMs, formatted in XML, by submiting a request to the
National Institute of Science and Technology'. Figure B.1 shows an example
story with some simplification of the markup for brevity, taken from (Lewis
et al., 2004).

RCV1 contains 35 times as many documents (806,791) as the popular
Reuters-21578 collection (see Appendix A), making it one of the largest
available text categorization test collection. Moreover, RCV1 is also more
organized than previous collections. Each document is in a separate file and
has a unique ID, ranging from 2286 to 810597 with some gaps. The ID order
does not correspond to chronological order of the stories, but they have time
stamps that give only the day, not the time, since the stories were taken
from an archival database, not from the original stream sent out over the

newswire.

Both text and metadata are formatted with XML, simplifying their use.
As RCV1 was produced from an archival database, it has fewer alerts, cor-

rections to previous stories, and other peculiarities.

RCV1 contains all or almost all stories of a particular type from an
interval of one year. For temporal studies, this is a major advantage over

Reuters-21578, which had uneven coverage of a fraction of a year.

The corpus has a limited number of duplicates, foreign language doc-
uments, and other similar issues, which can be problematic depending on
the application at hand, but are comparable to to levels seen in operational

settings.

"http:/ /trec.nist.gov/data/reuters/reuters.html
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Table B.1: Positive documents for RCV1 categories.
Category Documents Training Testing
CCAT 381327 10416 23077

GCAT 239267 2050 5180
MCAT 204820 5154 11110
C15 151785 3122 7454
ECAT 119920 3162 7539
M14 85440 1799 4887
C151 81890 515 698
C152 73092 1088 435
GPOL 56878 1627 3756
M13 53634 1095 2613

B.3 The categories

To aid retrieval from database products category codes from three sets (Top-

ics, Industries, and Regions) were assigned to stories.

B.3.1 Topic codes

In the experiments carried out in this thesis categories were taken from
the topic codes, which were assigned to capture the major subjects of a
story. They were organized in four hierarchical groups: CCAT (Corpo-
rate/Industrial), ECAT (Economics), GCAT (Government/Social), and M-
CAT (Markets).

There are 103 categories actually assigned to the data. In the second
column of Table B.1 (Documents) the total number of positive documents
for the ten most populated classes of RCV1 is given. For training, RCV1
defines 22,370 documents that should be used. For testing we selected the
first 50,000 documents not used for training. Table B.1 also presents the
effective number of positive documents used for training and testing.

One can see that this code set shows particular perspective on a data
set. The RCV1 articles span a broad range of content, but the code set only
emphasizes distinctions relevant to Reuters customers. For instance,there
are three different Topic codes for corporate ownership changes, but all of

science and technology is a single category (GSCI) (Lewis et al., 1996).
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Industry codes

Industry codes were assigned based on types of businesses discussed in the
story. They were grouped in 10 subhierarchies,such as I2(METALSAND-
MINERALS) and I5(CONSTRUCTION). The Industry codes make up the

largest of the three code sets, supporting many fine distinctions.

Region codes

Region codes included both geographic locations and economic/political group-

ings. No hierarchical taxonomy was defined.

B.3.2 Coding policy

Explicit policies on code assignment presumedly increase consistency and
usefulness of coding, though coming up with precise policies is difficult.
Reuters guidance for coding included two broad policies, among others. In

(Lewis et al., 2004), these policies are described as:

1. Minimum Code Policy: Each story was required to have at least one

Topic code and one Region code;

2. Hierarchy Policy: Coding was to assign the most specific appropriate
codes from the Topic and Industry sets, as well as (usually automati-
cally) all ancestors of those codes. In contrast to some coding systems,
there was no limit on the number of codes with the same parent that

could be applied.

B.4 Stopwords

For comparison purposes, the same set of stopwords used for Reuters-21578
(see Appendix A) was filtered out from RCV1I.
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<?xml version="1.0" encoding="is0-8859-1" 7>

<newsitem itemid="2330" id="root" date="1996-08-20" xml:lang="en">
<title>USA: Tylan stock jumps; weighs sale of company.</title>
<headline>Tylan stock jumps; weighs sale of company.</headline>
<dateline>SAN DIEGO</dateline>

<text>

<p>The stock of Tylan General Inc. jumped Tuesday after the maker of
process-management equipment said it is exploring the sale of the
company and added that it has already received some inquiries from
potential buyers.</p>

<p>Tylan was up $2.50 to $12.75 in early trading on the Nasdaq market.</p>
<p>The company said it has set up a committee of directors to oversee
the sale and that Goldman, Sachs &amp; Co. has been retained as its
financial adviser.</p>

</text>

<copyright>(c) Reuters Limited 1996</copyright>

<metadata>

<codes class="bip:countries:1.0">

<code code="USA"> </code>

</codes>

<codes class="bip:industries:1.0">

<code code="134420"> </code>

</codes>

<codes class="bip:topics:1.0">

<code code="C15"> </code>

<code code="C152"> </code>

<code code="C18"> </code>

<code code="C181"> </code>

<code code="CCAT"> </code>

</codes>

<dc element="dc.publisher" value="Reuters Holdings Plc"/>

<dc element="dc.date.published" value="1996-08-20"/>

<dc element="dc.source" value="Reuters"/>

<dc element="dc.creator.location" value="SAN DIEGO"/>

<dc element="dc.creator.location.country.name" value="USA"/>

<dc element="dc.source" value="Reuters"/>

</metadata>

</newsitem>

Figure B.1: Example of a RCV1 document.
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J1.

J2.

J3.

J4.

C.2

C1.

Published materials

Journal papers

Silva, C. and Ribeiro, B., “Towards Expanding Relevance Vector
Machines to Large Scale Datasets”, International Journal of Neu-
ral Systems, Vol. 18 (1), pp. 45-58, World Scientific Publishing
Company, February 2008

Silva, C. and Ribeiro, B., “On Text-based Mining with Active Learn-
ing and Background Knowledge using SVM”, Journal of Soft Com-
puting - A Fusion of Foundations, Methodologies and Applications,
Vol. 11(6), pp. 519-530, Springer Verlag, January 2007

Silva, C. and Ribeiro, B., “RVM Ensemble for Text Classification”,
International Journal of Computational Intelligence Research, Vol.
3(1), pp. 31-35, January 2007

Silva, C. and Ribeiro, B., “Rare Class Text Categorization with
SVM Ensemble”, Journal of Electrotechnical Review (Przeglad Elek-
trotechniczny), Vol. 1, pp. 28-31, January 2006

Conference papers

Ribeiro, B., Vieira, A., Duarte, J., Silva, C., Carvalho das Neves,
J., Liu, Q., Sung, A.H., “Bankruptcy Analysis for Credit Risk using
Manifold Learning”, in Proc. of the 15th International Conference
on Neural Information Processing, ICONIP 2008, Auckland, New
Zealand, November 2008
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C2

C3.

C4.

C5.

Cé6.

C7.

Cs8.

APPENDIX C. PUBLISHED MATERIALS

. Silva, C. and Ribeiro, B., “Selecting Examples in Manifold Reduced
Feature Space for Active Learning”, in Proc. of the Seventh Inter-
national Conference on Machine Learning and Applications, IEEE
ICMLA 2008, San Diego, USA, December 2008

Silva, C. and Ribeiro, B., “Text Classification on Embedded Mani-
folds”, in Proc. of the 11th Ibero-American Conference on Artificial
Intelligence, pp. 272-281, IBERAMIA 2008, Lisbon, Portugal, Oc-
tober 2008

Silva, C. and Ribeiro, B. and Lotri¢, U. and Dobnikar, A., “Dis-
tributed Ensemble Learning in Text Classification”, in Proc. of the
International Conference on Enterprise Information Systems, pp.
420-423, ICEIS 2008, Barcelona, Spain, June 2008

Ferreira, R. and Ribeiro, B. and Silva, C. and Liu, Q. and Sung, A.,
“Building Resilient Classifiers for LSB Matching Steganography”,
in Proc. of the IEEE World Congress on Computational Intelli-
gence, International Joint Conference on Neural Networks (IJCNN),
WCCI 2008, Hong Kong, China, June 2008

Silva, C. and Ribeiro, B., “Combining Active Learning and Rel-
evance Vector Machines for Text Classification”, in Proc. of the
IEEE International Conference on Machine Learning Applications,
pp- 130-135, IEEE ICMLA 2007, Cincinnati, Ohio, USA, December
2007

Silva, C. and Ribeiro, B. and Sung, A., “Boosting RVM Classifiers
for Large Data Sets”, in Proc. of the International Conference on
Adaptive and Natural Computing Algorithms, B. Beliczynski et al.
(Eds.), Lecture Notes in Computer Science, Part II, LNCS 4432,
Springer-Verlag Berlin Heidelberg, pp. 228-237, ICANNGA 2007,
Warsaw, Poland, April 2007

Silva, C. and Ribeiro, B., “Two-level Hierarchical Hybrid SVM-RVM
Classification Model”, in Proc. of the IEEE International Confer-
ence on Machine Learning Applications, pp. 89-94, IEEE ICMLA
2006, Orlando, USA, December 2006
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C9.

C10.

C11.

C12.

C13.

C14.

C15.

C16.

Silva, C. and Ribeiro, B., “Scaling Text Classification with Rele-
vance Vector Machines”, in Proc. of the IEEE International Con-
ference on Systems, Man, and Cybernetics, pp. 4186-4191, IEEE
SMCO06, Taipei, Taiwan, October 2006

Silva, C. and Ribeiro, B., “RVM Ensemble for Text Classification”,
ICONIP 2006 - 13th International Conference on Neural Informa-
tion Processing (Poster presentation), Hong Kong, October 2006

Silva, C. and Ribeiro, B., “Automated Learning of RVM for Large
Scale Text Sets: Divide to Conquer”, in Proc. of the 7th Interna-
tional Conference on Intelligent Data Engineering and Automated
Learning (LNCS Proceedings), pp. 878-886, IDEAL 2006, Burgos,
Spain, September 2006

Silva, C. and Ribeiro, B. and Lotri¢, U., “Fast-Decision SVM En-
semble Text Classifier Using Cluster Computing”, in Proc. of the
Third International Conference on Neural, Parallel & Scientific Com-
putations, pp. 253-259, ICNPSC’06, Atlanta, USA, August 2006

Silva, C. and Ribeiro, B., “Expanding Working Set Approaches to
RVM for Text Classification”, Summer School on Neural Networks

- Poster Presentation, Porto, Portugal, July 2006

Silva, C. and Ribeiro, B. and Lotri¢, U., “Speeding-up Text Classi-
fication In a GRID Computing Environment”, in Proc. of the IEEE
International Conference on Machine Learning And Applications,
pp- 113-116, ICMLA 2005, Los Angeles, USA, December 2005

Lotri¢, U. and Ribeiro, B. and Silva, C. and Dobnikar, A., “Modeling
Execution Times of Data Mining Problems in Grid Environments”,
in Proc. of the 14th International Conference on Electrotechnical
and Computer Science Conference, pp. 113-116, ERK 2005, Por-
toroz, Slovenia, September 2005

Silva, C. and Ribeiro, B., “Text Classification from Partially Labeled
Distributed Data”, in Proc. of the 7th International Conference on
Adaptive and Natural Computing Algorithms, pp. 445-448, ICAN-
NGA 2005, Coimbra, Portugal, March 2005
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C21.

C.3

R1.

R2.

APPENDIX C. PUBLISHED MATERIALS

Silva, C. and Ribeiro, B., “Margin-based Active Learning and Back-
ground Knowledge in Text Mining”, in Proc. of the Fourth Inter-
national Conference on Hybrid Intelligent Systems, pp. 8-13, HIS
2004, Kitakyushu, Japan, December 2004

Silva, C. and Ribeiro, B., “Labeled and Unlabeled Data in Text
Categorization”, in Proc. of the IEEE International Joint Confer-
ence on Neural Networks, pp. 2971-2976, IJCNN 2004, Budapest,
Hungary, July 2004

Silva, C. and Ribeiro, B., “The Importance of Stop Word Removal
on Recall Values in Text Categorization”, in Proc. of the IEEE

International Joint Conference on Neural Networks, pp. 1661-1666,
Vol. 3, IJCNN 2003, Portland, USA, July 2003

Silva, C. and Ribeiro, B., “On the Evaluation of Text Processing in
Text Categorization”, in Proc. of the IEEE International Confer-
ence on Machine Learning and Applications, pp. 121-127, ICMLA
2003, Los Angeles, USA, June 2003

Silva, C. and Ribeiro, B., “An Inductive Inference Approach to
Large Scale Text Categorisation”, in Proc. of the 6th International
Conference on Artificial Neural Networks and Genetic Algorithms,
pp. 126-130, ICANNGA 2003, Roanne, France, April 2003

Reports

Silva, C. and Ribeiro, B. and Lotri¢, U. and Dobnikar, A., “Intel-
ligent Data Mining in the GRID Environment - Report 10/2005,
October 2005

Silva, C. and Lotri¢, U. and Ribeiro, B. and Dobnikar, A., “Intel-
ligent Data Mining in the GRID Environment - Report 6/2005,
June 2005
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