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A B S T R A C T

In this paper, the characterisation of the elastic shear buckling behaviour of simply supported plates diagonally
stiffened excluding the influence of direct stresses is made. Two broad numerical parametric studies consisting
of linear buckling analysis by the finite element method are performed, covering the entire practical range of
critical parameters like the aspect ratio and the stiffener’s mechanical properties. In the first parametric study,
attention is given to the influence of each parameter in the elastic critical shear stress. For that reason, a beam
FE is chosen to model the stiffener, allowing the variation of each parameter individually. As it is systematically
disregarded in previous studies, particular attention is given to the effect of the stiffener’s torsional rigidity.
The numerical models used in the second parametric study consist of full-shell FE, and the results are used to
perform regression analysis that ultimately allowed to proposed two mathematical models for the analytical
calculation of the elastic shear buckling coefficient: for open stiffeners over the compression diagonal and
for closed cross-section stiffeners over the compression diagonal. The proposed mathematical models present
excellent accuracy.
1. Introduction

The main driving force behind the design of steel I-girders is the
maximisation of its resistance to direct stresses. For this reason, I-
girders usually present thick flanges ‘connected’ by thin webs. How-
ever, the final design of some segments of continuous plate girders
may be governed by other loading situations: for example, segments
near internal supports where the highest hogging bending moment
interacts with the highest shear force. In fact, in this situation, the
final dimensions of the plate girders are the outcome of the design to
direct stresses (mainly at the flanges), shear stresses at the web, and
the interaction of direct stresses with shear stresses. In what concerns
the shear stresses specifically, the collapse mode is associated with
the shear buckling phenomena where the buckling of the web occurs
due to the presence of a diagonal compression field arising over the
compressive principal stress direction. For that reason, the thickness
of the web governs the shear resistance of the plate girder. To cope
with high shear forces leading to unreasonable thick webs, stiffening
the web is the most appropriate solution to keep an economical design.
Classical stiffening options are transverse and longitudinal stiffeners:
the former helps control shear buckling by reducing the web panel’s
length, decreasing its slenderness, while the latter lessens the effects
of shear buckling by providing an additional second moment of area.
The third option to stiff the web consists of adding a diagonal stiffener
between transverse stiffeners. This option has been disregarded in
practice, mainly due to the lack of an official standardised method,
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and in research where it has received considerably less attention when
compared to the ‘classical’ stiffening solutions.

The present paper explores the effect of considering diagonal stiff-
ening in the elastic shear buckling behaviour of simply supported thin
steel web plates under pure shear. This is performed by putting the
stiffener’s relative flexural and torsional stiffness and the panel’s aspect
ratio into evidence (where a is the length of the plate, b is the width of
the plate, and 𝛼 = 𝑎∕𝑏 is called the aspect ratio of the plate).

2. Literature review

2.1. Unstiffened rectangular plates under shear stresses

In 1891 [1], Bryan studied the buckling behaviour of simply sup-
ported rectangular plates under uniaxial compression. Since then, the
stability behaviour of flat plates has been the focus of many authors’
work. In the field of plates under pure shear stresses, using the energy
method, Timoshenko, in 1915 [2], was the first to give a solution to
the linear stability problem of an unstiffened rectangular plate under
uniform shear stresses. Many authors followed Timoshenko’s work and
provided solutions for plates with varying aspect ratios and different
support conditions; a complete survey of those works and a description
for each contribution is given by Bleich [3] until 1952. Later works
worthy of being referenced are those from Cook & Rockey [4] and
Bulson [5]. From these works, the following simplified solutions to
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compute the elastic critical stress (see Eq. (1)) are highlighted (where
𝑘𝜏 is the elastic shear buckling coefficient and 𝛼 is the plate’s aspect
atio) (see Eqs. (1)–(5))

𝑐𝑟 = 𝑘𝜏 ⋅
𝜋2 ⋅ 𝐸

12
(

1 − 𝜈2
) ⋅

( 𝑡
𝑏

)2 (1)
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(5)

2.2. Stiffened rectangular plates under shear stresses

Concerning longitudinally stiffened plates under shear, the work of
Crate & Lo [6] is a pioneer one giving the ‘exact’ solution for the elastic
critical stress of long web panels with one centric longitudinal stiffener.
The mathematical solution is given function to the out-of-the-web bend-
ing relative flexural rigidity 𝛾, defined as the ratio (E⋅I 𝑠)/(ℎ𝑤⋅D). D is
the plate’s flexural stiffness (D = E⋅ 𝑡𝑤3/(12 ⋅ (1 − 𝜈2))), 𝐼𝑠 is the second

oment of area of the stiffener alone in respect to the middle plane of
he web panel and 𝑡𝑤 is the thickness of the web panel. Höglund [7]
roposed expression (6) to approximate these ‘exact’ solutions.

𝜏 = 5.34 + 1.36 3
√

𝛾 (6)

It is worth mentioning that the solutions given by Crate & Lo
and, consequently, the expression proposed by Höglund is valid for
long plates where the longitudinal edges are simply supported. For
shorter plates (i.e., when transverse rigid stiffeners are closely spaced),
Höglund [7] and Beg [8], respectively, proposed the following ex-
pressions through curve fitting numerical results obtained previously
in [9]:

𝑘𝜏 = 5.34 + 4
𝛼2

+
3.45𝛾

3
4

𝛼2
(7)

𝑘𝜏 = 4.1 +
6.3 + 0.05𝛾

𝛼2
+ 1.44 3

√

𝛾 (8)

According to [8], Beg’s equation is more accurate for stiffened plates
with 1 or 2 stiffeners and 𝛼 < 3; for any other case (more than three
tiffeners; and 1 or 2 stiffeners with 𝛼 > 3) Höglund’s expression

presents better results provided it is limited inferiorly by Eq. (6).
These expressions are the basis of the design expressions present

in some standards, namely, Eqs. (9) and (10), given in prEN1993-1-
5:2020 [10] to compute the elastic critical shear stress of longitudinally
stiffened steel web panels. These expressions are obtained by reducing
the stiffener’s second moment of area in expressions (7) and (8) by 1/3.
The justification for this is given in [7] and in [8]. It relates to the fact
that stiffened plates show lower post-buckling strength reserve and, to
keep using the same shear resistance reduction curve as for unstiffened
plates (in light of the ease-of-use of standards), the second moment of
area must be reduced. This justification is mainly valid for girders with
heavy flanges, where its contribution to shear resistance is overesti-
mated [11]. Additionally, in the case of closed cross-section stiffeners, it
2

has been shown that the 1/3 reduction is not necessary [11–16] (mainly
because expressions (9) and (10) do not consider the beneficial effect
provided by the torsional stiffness; therefore a correction coefficient of
𝛽𝑠 = 3 is included). Finally, according to the prEN1993-1-5:2020 [10],
the definition of the cross-section of the stiffener includes adjacent parts
of the web plate (see Fig. 1(a) for open cross-section and Fig. 1(b) for
closed cross-section stiffeners).
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(10)

Concerning diagonally stiffened plates, Dubas & Gehri [17] indicate
fixed values for the elastic critical buckling factor for simply supported
square web panels depending on the direction of the stiffener: 𝑘𝜏 = 30
over the compression diagonal and 𝑘𝜏 = 11.4 over the tension diagonal.
Within the scope of diagonally stiffened plates, Dubas & Gehri also
give an (incomplete) list of contributions up to 1984. Recently, Yuan
et al. [18] provided a complete list of contributions, where the work
of Yonezawa et al. [19] is highlighted as the authors provide with
formulae to compute the elastic critical shear stress of simply supported
web panels stiffened over the compression and tension diagonal (see
Eqs. (11)–(14))

𝑘𝜏 = 11.9 + 10.1
𝛼

+ 10.9
𝛼2

For simply supported rectangular plates

in all edges stiffened over the

compression diagonal

(11)

𝑘𝜏 = 14.7 + 11.5
𝛼

+ 15.8
𝛼2

For rectangular plates clamped in all

edges stiffened over the compression

diagonal

(12)

𝑘𝜏 = 17.2 − 22.5
𝛼

+ 16.7
𝛼2

For simply supported rectangular plates

in all edges stiffened over the tension

diagonal

(13)

𝑘𝜏 = 24.7 − 32.4
𝛼

+ 25
𝛼2

For rectangular plates clamped in all

edges stiffened over the tension diagonal
(14)

Nevertheless, the values proposed by Dubas & Gehri and the expres-
sions by Yonezawa et al. present obvious limitations for practical
applications, and none of the authors provide a way to include the
relative flexural or torsional stiffness of the stiffener.

Yuan et al. [18] proposed a set of expressions suitable for stainless
steel web panels stiffened over the compression diagonal and framed
by upper and lower flanges and vertical stiffeners (i.e., the edge’s
level of rotational restraint lies between the simply supported and
rotationally fixed assumptions). From a regression analysis using nu-
merically obtained results, the authors proposed expression (15). The
main advancement of this expression is that it includes the effect of
the stiffener’s relative flexural stiffness (where the calculation of the
stiffener’s second moment of area includes adjacent parts of the web
plate equal to 11 ⋅ 𝜀 ⋅ 𝑡 and done about the middle plane of the web
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Fig. 1. Definition of stiffener’s geometry for design purposes acc. to prEN1993-1-5:2020 [10].
Fig. 2. Representation of the mesh for a web panel characterised by 𝛼 = 1.5 where the
tiffener is over the compressed diagonal.
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The expression proposed by Yuan et al. represents a non-negligible
improvement. However, it still disregards the significant effects of the
stiffener’s torsional rigidity, which is non-negligible in closed cross-
section stiffeners. Furthermore, it is not suitable for simply supported
web panels (common assumption used in standardised design methods).

As far as the authors’ knowledge reaches, the most up-to-date work
is from Glassman et al. [20]. The authors explore the effectiveness
3

of diagonal stiffening concerning buckling and post-buckling strength
reserve for ambient and elevated temperatures.

3. Numerical model

3.1. General considerations

All numerical simulations consisted of linear buckling analyses
(LBA) and were performed using ABAQUS FEA software [21]. All
models analysed in this study are diagonally stiffened flat thin steel
(𝐸 = 210 000 N/mm2) plates under pure shear. Therefore, as all plates
have two dimensions much larger than the thickness, a shell FE is
chosen (see more details in 3.2). Two models were utilised: shell
FE (Section 5) and shell FE coupled with beam FE for the stiffener
(Section 4).

To have complete control of the mechanical properties avoiding
at the same time material duplication (see full description in 3.3),
beam FE model the diagonal stiffener. In this way, it is possible,
for instance, to study the effect of increasing the flexural stiffness of
the stiffener without increasing its relative torsional stiffness. On the
other hand, real engineering applications commonly use the stiffener
welded only on one side of the panel. Consequently, an eccentricity
arises whose effect is more accurately covered by shell FE models. One
final remark should be made concerning the different behaviour of
the stiffeners depending on how it is modelled: where shell FE models
the stiffener, local buckling modes associated with the stiffener may
appear, introducing a bias in the numerical results; to avoid this bias,
all models are post-processed by a python script which identifies those
which present a first buckling mode including local deformations on
the stiffener excluding them from the analysis made in Section 5.

3.2. Mesh

As already highlighted, as the numerical models under analysis
represent thin web panels with two dimensions much larger than the
thickness, it is acceptable to use a 2D finite element. In this case, the
models use a general-purpose S4R shell element. This element has a
finite-membrane-strain formulation with four nodes with 6 DOF each,
making it suitable for structural problems where in-plane compression
and bending appear together with out-of-plane deformations. The main
goal of mesh refinement is to obtain converged results. Thus, the more
refined the mesh, the better the numerical result is, but the more time is
spent during the analysis. An ideal mesh leads to converged numerical
results while keeping the run-time of the numerical analysis under an
‘acceptable’ timeframe. After a mesh convergence study (on the elastic
buckling load) for all models, a mesh consisting of 65 FE over the
plate’s depth led to accurate (i.e., converged) results in a satisfactory
amount of time. As it will be further detailed, the stiffener was modelled
by beam FE, more specifically B33 beam FE coupled with shell FE.
This type of beam FE is 2-noded with a cubic interpolation scheme
indicating that it is accurate for distributed loading along the beam.
They allow axial, bending, and torsional deformation. Fig. 2 shows the
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Fig. 3. Representation of model partitions, loading application and boundary conditions.
Fig. 4. Effect of 𝛾z in the elastic critical shear buckling coefficients: (a) stiffener over the compression diagonal and (b) stiffener over the tension diagonal.
Fig. 5. 3D plot of 𝑘𝜏 results for (a) 𝛾z = 0 and 𝛾z = 250 and stiffener over the compression diagonal and (b) 𝛾z = 0 and 𝛾z = 250 and stiffener over the tension diagonal.
resulting mesh for a web panel characterised by 𝛼 = 1.5 and stiffener
over the compressed diagonal.

3.3. Loading and support conditions

All numerical models of the web panels are under pure shear
modelled by line loads applied over the plate’s edges (Fig. 3). Regarding
4

the modelling of the stiffener, it consists of a beam FE coupled with
shell FE along the diagonal of the plate. Because the stiffener bends
along the diagonal of the plate, its out-of-plane displacements are not
constant, and, therefore, a rigid motion constraint over the entire length
of the stiffener cannot be employed. Thus, beam FE endowed with the
stiffener’s mechanical properties are coupled with the shell FE and the
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Fig. 6. 2D plot of 𝛼-k𝜏 curves for the entire range of 𝛾z with (a) stiffener over the compression diagonal and (b) stiffener over the tension diagonal.
plate’s diagonal (compression and tension) and at its middle plane.
Finally, this way of modelling the stiffeners does not allow for the
consideration of stiffeners with slender cross-sections, i.e., prone to
local buckling, as the beam FE cannot capture the drop in the stiffness
of the locally buckled stiffener.

4. Parametric study

4.1. Scope

Classically, in parametric studies involving simply supported un-
stiffened panels under pure shear, the aspect ratio range is limited to
5

long panels (𝛼 ≥ 1) as the shear buckling coefficients for shorter panels
may be obtained by using the values of a corresponding panel with
aspect ratio 1/𝛼 where the roles of the width and length are switched.
However, in this study, the definition of a stiffener relative flexural
stiffness uses the width of the plate, and it is not possible to switch
over the roles of width and length. For this reason, the aspect ratio
varies from 0.5 to 2 (with a step of 0.1) (in fact, the stiffening of the
web along its compression diagonal only makes sense in regions where
the shear force is high; this happens in regions near internal supports
of continuous beams where values of the web plate aspect ratio are
typically under 2).
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Fig. 7. 2D plot of 𝛾y-k𝜏 curves for (a) 𝛾z = 0 and 𝛾z = 250 and stiffener over the compression diagonal and (b) 𝛾z = 0 and 𝛾z = 250 and stiffener over the tension diagonal.
Concerning the stiffeners, the following mechanical properties are
set as parameters: relative flexural rigidity around the strong axis (𝐼𝑦,𝑠
computed with reference to the middle plane of the web panel), see
Eq. (16); relative flexural rigidity around the weak axis (𝐼𝑧,𝑠 computed
with reference to the centre of mass of the stiffener alone), see Eq. (17);
and relative torsional rigidity (𝐼𝑇 ,𝑠 computed with reference to the
centre of mass of the stiffener alone), see Eq. (18).

𝛾𝑦 =
𝐸 ⋅ 𝐼𝑦,𝑠 (16)

ℎ𝑤 ⋅𝐷

6

𝛾𝑧 =
𝐸 ⋅ 𝐼𝑧,𝑠
ℎ𝑤 ⋅𝐷

(17)

𝜙𝑥 =
𝐺 ⋅ 𝐼𝑇 ,𝑠
ℎ𝑤 ⋅𝐷

(18)

Table 1 shows the practical range of the above-defined mechanical
properties of stiffeners. This table results from a literature survey for
open- and closed-section stiffeners. Due to the scarcity of examples
found with stiffeners deployed diagonally over the web panel, the sur-
vey includes plates longitudinally stiffened. Furthermore, the presented
values were recalculated assuming the geometric values of the stiffener
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Fig. 8. Observed increment in the elastic critical shear buckling coefficients (effect of adding diagonal stiffener): (a) stiffener over the compression diagonal and (b) stiffener over
the tension diagonal.
Fig. 9. Observed increment in the elastic critical shear buckling coefficients (isolated
effect of stiffener’s weak axis rigidity) when the stiffener is placed over the compression
diagonal.

Table 1
Survey on the range of mechanical properties of the stiffeners.

Open-section stiffeners 𝛾𝑦 𝛾𝑧 𝜙𝑥

Dubas & Tschampeer [22] 308.9 0.3 0.475
Graciano & Lagerqvist [23] 129.8 0.1 0.196
Loaiza et al. [24] 57.8–61.4 0.022–0.073 0.034–0.107
Loaiza et al. [25] 12.6–2396.9 0.015–3.7 0.023–5.384
Markovic & Kovacevic [26] 29.8 0.4 0.559
Yonezawa et al. [19] 15.9 0.17 0.225
Yuan et al. [18] 15.5 0.1 0.077
Beg et al. [27] 85.3 0.19 0.28

Closed-section stiffeners 𝛾𝑦 𝛾𝑧 𝜙𝑥

Carretero & Lebet [28] 128.4–416.9 46.1–55.7 41.0–138.3
Kulhmann et al. [29] 95.2 48.2 42.7
Dubas & Tschampeer [22] 172 62.6 51.9
Graciano & Lagerqvist [23] 6.5–939.3 1.4–233.1 1.6–252.1
Loaiza et al. [24] 51.7–782.8 12.1–194.2 13.1–210.1
Pavlovic et al. [30] 26.6–146.5 13.2–41.3 10.8–39.5
Seitz [31] 324.1–679.3 78.7–221.7 85.4–194.4
Sinur & Beg [32] 105.3 75.5 58.1
Biscaya et al. [33] 108.1 60.3 51.2

alone and to the middle plane of the plate according to the above
equations.

Table 2 defines the parametric range making use of the informa-
tion given in Table 1. It comprises three sets of analyses, totalising
7

Table 2
Values of the relative mechanical properties of the stiffeners used in the parametric
study.

Parameter Range

Plate’s aspect ratio, 𝛼 {0.5; 0.6 0.7; 0.8; 0.9; 1.0; 1.1; 1.2; 1.3; 1.4;
1.5; 1.6; 1.7; 1.8; 1.9; 2.0}

Stiffener’s relative flexural
rigidity around the strong axis, 𝛾𝑦

{0; 1; 2.5; 5; 7.5; 10; 20; 30; 40; 50; 75; 100;
150; 200; 250; 300; 350; 400; 450; 500; 550;
600; 650; 700; 750; 800; 850; 900; 1000; 1250;
1500}

Stiffener’s relative flexural
rigidity around the weak axis, 𝛾𝑧

{0; 0.01; 0.1; 0.5; 1; 5; 10; 50; 100; 150; 200;
250}

Stiffener’s relative torsional
rigidity, 𝜙𝑥

{0; 0.01; 0.1; 0.5; 1; 5; 10; 50; 100; 150; 200;
250}

17 856 linear buckling analyses. These sets are defined as follows (see
numerical results in Section 4.2):

• Set 1 = {𝛼} × {𝛾𝑦} × {𝛾𝑧} × {𝜙𝑥 = 0}
• Set 2 = {𝛼} × {𝛾𝑦} × {𝛾𝑧 = 0} × {𝜙𝑥}
• Set 3 = {𝛼} × {𝛾𝑦} × {𝛾𝑧 = 250} × {𝜙𝑥}

4.2. Results and discussion

4.2.1. Preliminary remarks
This study comprises an extensive parametric range where elastic

shear buckling coefficients for diagonally stiffened plates are calcu-
lated, varying the aspect ratio and three parameters related to the
mechanical properties of the stiffener, making the problem a five-
dimensional one. For that reason, it is not possible to simply display
the results in 2D or 3D plots. The choice was made to separate each
analysis into two: a first one plotting the numerical results against
the aspect ratio, the stiffener’s flexural rigidity around the strong axis,
and the stiffener’s flexural rigidity around the weak axis (where the
stiffener’s torsional rigidity is set to zero); and a second one plotting
the numerical results against the aspect ratio, the stiffener’s flexural
rigidity around the strong axis, and the stiffener’s torsional rigidity
(where the stiffener’s rigidity around the weak axis is set to its upper
and lower bounds). Therefore, the parametric study assumes the panel’s
aspect ratio and the stiffener’s flexural rigidity around the strong axis as
critical parameters. In contrast, the effect of the remaining parameters
is brought into evidence by allowing visualisation of upper and lower
bounds.
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Fig. 10. 1st Eigenmodes observed for plates with several aspect ratios where the stiffener is characterised by 𝛾𝑦 = 1, 10 & 1500 and 𝛾𝑧 = 250.
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As a general trend throughout the following sections, as expected
nd confirming what has already been concluded by other authors,
lacing the stiffener over the diagonal in compression returns consis-
ently higher values of shear buckling coefficients when comparing the
ame analysis with the stiffener set over the tension diagonal.

.2.2. Effect of the stiffener’s flexural rigidity around the weak axis
Fig. 4 shows the evolution of the elastic shear buckling coefficient

ith increasing values of the stiffener’s weak axis rigidity (and for fixed
alues of strong axis rigidity, 𝛾y = 1500). It is evident that only when
he stiffener is placed over the compressed diagonal a tangible effect
s obtained for the elastic shear buckling coefficients. This apparent
rend is observable for other values of 𝛾y, as proven in the following
aragraphs.

For a more general analysis, Fig. 5 plots the results for the elastic
hear buckling coefficients against the aspect ratio and the stiffener’s
trong axis rigidity and the lowest and highest values of 𝛾𝑧 (0 and 250).
he resulting plot is a lower and upper bound scatter containing all
ossible results for stiffeners (neglecting the torsional rigidity, 𝜙𝑥 ≈ 0).

To enable the reading of the information provided by Fig. 5, Figs. 6
nd 7 give 2D plots: in Fig. 6, the 𝛼-𝑘𝜏 curves are plotted considering
𝑦 = 0, 𝛾𝑦 = 10, 𝛾𝑦 = 100, and 𝛾𝑦 = 1500 for both cases of stiffener
onfiguration (over the compression and tension diagonals); in Fig. 7
𝑦-k𝜏 curves are shown for 𝛼 = 0.5, 1 and 2. As expected, an increasing
alue of the stiffener’s flexural rigidity around the weak axis results in a
on-negligible increment in the value of the shear buckling coefficients
8

ithin the entire range of the aspect ratio. This trend is significantly
tronger when the stiffener is over the compression diagonal.

Concerning the effect of adding a diagonal stiffener, the maximum
ncrement obtained is 502% (for 𝛼 = 1.1, 𝛾y = 1500 and 𝛾z = 250) when
he stiffener is placed over the compression diagonal and 51% (for 𝛼 =
𝛾y = 1500 and 𝛾z = 250) when placed over the tension diagonal (Fig. 8).

By observing Fig. 8, it is possible to state that the effect of adding a
diagonal stiffener is more pronounced for values of aspect ratio around
1.0 (square panels) when placed over the compression diagonal. On the
other hand, when placed over the tension diagonal, this effect shifts to
panels with a lower or higher aspect ratio. In both cases, the highest
values of increment are seen for models where 𝛾y = 1500.

Placing the stiffener over the compression diagonal, and taking into
consideration solely the effect of varying its weak axis rigidity (from
𝛾z = 0 to 250), the increment in the elastic critical shear stress is 83%
(for 𝛼 = 1.1, 𝛾y = 1500 and 𝛾z = 250) (Fig. 9). On the other hand, placing
the stiffener over the tension diagonal has an almost negligible effect
(∼8%).

Fig. 10 shows the buckling modes of some of the tested models.
Specifically, it presents the buckling modes of models with a low aspect
ratio (𝛼 = 0.5), aspect ratio equal to 1, and high aspect ratio (𝛼 = 2) for
values of 𝛾y equal to 1, 10, and 1500.

It is observed that, for stiffeners over the compression diagonal,
nodal lines do not appear while the stiffener is weak. This mechanical
behaviour occurs because the diagonal in compression is unstable
by nature, and an effective stabilising effect provided by a stiffener
is only attained when it is strong enough, i.e. when it possesses a
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Fig. 11. 2D plot of 𝛾𝒚 -k𝜏 curves for: (a) 𝛾𝒛 = 0 and 𝛾𝒛 = 250 where 𝜑𝒙 = 0 and 𝜑𝒙 = 250 and stiffener over the compression diagonal and (b) 𝛾𝒛 = 0 and 𝛾𝒛 = 250 where 𝜑𝒙 =
0 and 𝜑𝒙 = 250 and stiffener over the tension diagonal.
Fig. 12. Observed increment in the elastic critical shear buckling coefficients (effect of considering the stiffener’s torsional rigidity): (a) 𝛾𝑧 = 0 and 𝛾𝑧 = 250 and stiffener over
the compression diagonal and (b) 𝛾𝑧 = 0 and 𝛾𝑧 = 250 and stiffener over the tension diagonal.
sufficiently high critical stress to prevent the web from shear buckling.
This stabilisation effect starts for values of 𝛾y around 10. On the other
hand, the diagonal in tension tends to be stable by nature, and a
nodal line appears even for very weak stiffeners. In this case, the
effect of a strong stiffener is only shifting the position of the nodal
line forcing it to be coincident with the stiffener itself. This effect is
less pronounced for panels with 𝛼 around one and absent for panels
9

with 𝛼 = 1, mechanically explaining the fact why the increment in
Fig. 8(b) is higher for panels with 𝛼 = 0.5 and 𝛼 = 2 than for panels
where 𝛼 is close to 1. Moreover, as already mentioned in Section 4.1,
had the panels been unstiffened and only those with 𝛼 > 1 would
be necessary to calculate the elastic shear buckling coefficient for the
entire parametric range. The very similar buckling shapes of panels
with 𝛼 = 0.5 and 𝛼 = 2 (see Fig. 10) make the corroboration of this
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Fig. 13. Observed increment in the elastic critical shear buckling coefficients (isolated effect of stiffener’s torsional rigidity): (a) 𝛾𝑧 = 0 and 𝛾𝑧 = 250 and stiffener over the
compression diagonal and (b) 𝛾𝑧 = 0 and 𝛾𝑧 = 250 and stiffener over the tension diagonal.
statement. This is the reason why in Fig. 8, the increment for panels
at both ends of the parametric range of aspect ratio is almost the
same (conclusion highlighted by the black dashed line in Fig. 8(b)).
On the other hand, placing the stiffener over the compression diagonal
has the maximum increment for aspect ratios around 1 (Fig. 9(a)).
The mechanical explanation for this fact is that 45º is the angle that
maximises the force transferred to the stiffener.

4.2.3. Effect of the stiffener’s torsional rigidity
The information provided throughout Figs. 4-10 is related to models

neglecting the stiffener’s torsional rigidity (it is intentionally set to zero
in the beam FE properties). Nevertheless, the torsional rigidity is always
present (even for stiffeners with open cross-sections, however small it
may be). As an example, Fig. 11 shows the effect of considering the
stiffener’s torsional rigidity (considered with the highest value assumed
in the parametric range, i.e., (𝜑𝑥 = 250), in the shear buckling stress of

square panel. The stiffener’s torsional stiffness increases with a non-
egligible impact when the stiffener is placed over the compression or
he tension diagonal, as shown in these charts.

Fig. 12 quantifies the impact that taking the stiffener’s torsional
igidity into account has. It is seen an increment of 530% (for 𝛼 = 1.1,
𝛾𝑦 = 1500, 𝛾𝑧 = 250 and 𝜑𝑥 = 250) when the stiffener is placed over the
compression diagonal and 130% (𝛼 = 1.0–1.1 𝛾𝑦 = 30–1500, 𝛾𝑧 = 0 &
50 and 𝜑𝑥 = 100–250) when placed over the tension diagonal.

Looking solely at the effect of varying the stiffener’s torsional rigid-
ty (from 𝜑𝑥 = 0 to 250), Fig. 13 shows an increment of 16%–17% when
laced over the compression diagonal and 79%–89% over the tension
iagonal.
10
5. Formulae for shear buckling coefficients

5.1. Preliminary remarks

In light of proposing formulae to calculate shear buckling coeffi-
cients of diagonally stiffened plates, it is reasonable to consider prac-
tical dimensions for the stiffeners. Furthermore, current engineering
practice places the stiffeners over one side of the web plate (unsymmet-
ric layout). In opposition to longitudinally stiffened plates, this creates
an eccentricity of the shear loading in respect to the centre of mass
of the structural model. Consequently, a destabilising bending moment
arises, leading to a lower critical shear load when compared to a model
where the stiffener (equal second moment of area in respect to the
plate’s middle surface) is symmetrically placed. Fig. 14 illustrates this
phenomenon.

Therefore, two additional sets of analyses consisting of shell FE
models were defined (8618 analyses for open stiffeners over com-
pression diagonal (set 4) and 10 061 analyses for closed cross-section
stiffeners over the compression diagonal (set 5). These models consider
the stiffener placed at one side (unsymmetric layout). The ranges of
these two additional sets are plotted in Fig. 15 (for all aspect ratios
given in Table 2) and compared to the values retrieved from the survey
(Table 1). The proposed models in Section 5 were fitted using the data
of these sets.
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Fig. 14. Symmetric vs. unsymmetric layout of stiffeners (where 𝒆𝒔 is the eccentricity between the mass centre and stress resultant).
Fig. 15. Parametric domains of (a) set 4 (open stiffeners) and (b) set 5 (closed cross-section stiffeners).
5.2. Proposed formulae for simply supported panels

Looking at square panels where the stiffeners are effective (i.e., high
values of 𝛾𝑦), the values obtained when neglecting 𝛾𝑧 are 𝑘𝜏,𝑐,𝐹𝐸𝑀 =
32.56 and 𝑘𝜏,𝑡,𝐹𝐸𝑀 = 11.6 which are very close to those proposed
in [17]. However, within the remaining parametric scope, as the val-
ues presented in [17] are too far apart from the numerical results,
they are not appropriate for design purposes. Additionally, looking at
Figs. 6(a), 7(a), and 11(a), it is possible to conclude that for simply
supported panels stiffened over the compression diagonal, current for-
mulae present non-negligible deviations from the numerical results.
Eq. (11) by Yonezawa et al. [19] is only able to accurately capture
11
the elastic critical stress in models where the relative flexural rigidity
around the weak axis is ignored (𝛾z = 0). In Yuan et al. [18] curve, it
is acknowledged that the primary source of deviations comes from the
fact that the level of restraint assumed for the edges lies between the
simply supported and the rotationally fixed assumptions. In contrast,
the results obtained from the numerical analyses are based on a simply
supported assumption (as previously described).

On the other hand, panels stiffened over the tension diagonal
Eq. (13) proposed by Yonezawa et al. [19] give accurate results when
the stiffener’s torsional stiffness is low, as it is patent in Figs. 6(b)
and 7(b). However, analysing Fig. 11(b), it is possible to conclude
that adding torsional stiffness to the stiffener produces a non-negligible
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Table 3
Statistical parameters of the proposed formulae.

No. of analysis R2 Mean Co.V. (%) Max. Abs. error (%)

Open stiffeners over the compression diagonal 8618 0.9994 0.9996 1.12 6.64
Closed stiffeners over the compression diagonal 10 063 0.9990 1.0004 1.51 9.37
effect on the elastic critical stress. Therefore, the need for improved
formulae lies only on the side of panels stiffened over the compres-
sion diagonal and panels stiffened over the tension diagonal where
the stiffener possesses non-negligible torsional stiffness, i.e., closed
cross-section stiffeners. However, as previously concluded, placing the
stiffener over the tension diagonal is considerably less effective than
putting it over the compression diagonal, reason why no formula is
proposed for this case.

After testing several mathematical models, the one which returned
the best results and, therefore, used to fit the data generated in sets 4
and 5 is defined by Eq. (19). Based on previous authors work, and on
the results from Section 4, it was decided to perform the fitting for four
subsets: for 𝛼 < 1 ∧ 𝛾𝑦 < 12(1 − 𝜈2), 𝛼 ≥ 1 ∧ 𝛾𝑦 < 12(1 − 𝜈2), 𝛼 < 1
∧ 𝛾𝑦 ≥ 12(1 − 𝜈2) and 𝛼 ≥ 1 ∧ 𝛾𝑦 ≥ 12(1 − 𝜈2). The choice of having
two ranges split for 𝛾𝑦 = 12(1 − 𝜈2) (≈10.92 for steel) comes from the
analysis made to Fig. 10, where the buckling mode changes for values
around 10.

𝑘𝜏 = 𝑐1 +
𝑐2
𝛼

+
𝑐3
𝛼2

+
𝑐4
3
√

𝛾𝑦
+

𝑐5
3
√

𝛾𝑧
+

𝑐6
3
√

𝜙𝑥
+ 𝑐7 ⋅ 𝛼

𝑐8 ⋅ 𝛾𝑦
𝑐9 ⋅ 𝛾𝑧

𝑐10 (19)

The 𝑐𝑖 parameters were obtained for each subset employing the
indFit function implemented in Mathematica [34], yielding Eqs. (20)
nd (21), respectively, for open and closed cross-section stiffeners over
he compression diagonal. To match the proposed model with existing
ormulae for unstiffened panels, 𝑐1 and 𝑐2 were fixed for 𝛼 < 1 ∧ 𝛾𝑦 <

12(1 − 𝜈2) (𝑐1 = 4 and 𝑐2 = 5.34) and for 𝛼 ≥ 1 ∧ 𝛾𝑦 < 12(1 − 𝜈2)
(𝑐1 = 5.34 and 𝑐2 = 4 for 𝛼 ≥ 1). Additionally, in what concerns open
stiffeners over the compression diagonal, 𝑐10 was set to zero translating
the negligible influence of 𝜙𝑥 in the results.
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The statistical characterisation of the fits made by Eqs. (20) and
(21) is made by assessing the value of R-square, mean, coefficient
of variation and maximum absolute error, all given in Table 3. It
is possible to conclude that both fits present an excellent level of
agreement with numerical results.

6. Conclusions

This paper provides a thorough investigation of the elastic shear
buckling behaviour of simply supported diagonally stiffened plates.
The main goals were to define the buckling behaviour of diagonally
stiffened plates and propose reliable formulae to predict the elastic
critical stress. This investigation comprised more than 36 535 linear
buckling analyses divided into two types of FE models.

The first set of models uses shell FE to model the plate and beam
FE to model the diagonal stiffener, which is symmetrically placed in
respect to the plate’s middle plane. The main conclusion of the numer-
ical results is that the elastic buckling behaviour strongly depends on
the mechanical characteristics of the stiffener. Specifically, it is worth
highlighting the following:

• Placing the stiffener over the compression diagonal is more ef-
fective than placing it over the tension diagonal: increments in
the elastic critical stress over 500% for open stiffeners over the
compression diagonal against increments around 50% for open
stiffeners over the tension diagonal.

• Varying the stiffener’s weak axis rigidity has a strong impact on
the elastic critical stress when it is over the compression diagonal
(increment around 80%);

• Varying the stiffener’s torsional rigidity and its strong and weak
axis rigidity impact elastic critical stress substantially, whether
the stiffener is over the compression or tension diagonal (incre-
ments equal to 530% and 130%, respectively). The isolated effect
of varying the stiffener’s torsional rigidity alone is an increment
of 16%–17% when placed over the compression diagonal and
79%–89% when placed over the tension diagonal.

The second set of analyses uses shell FE to model the stiffener placed
over the compression diagonal at one side of the plate (unsymmetrical
layout). The 𝑐𝑖 parameters in Eq. (19) are fitted from a nonlinear
regression analysis using the numerical results (more than 18 600).
Finally, two models for the elastic shear buckling coefficients were
proposed: Eq. (20) for open stiffeners and Eq. (21) for closed cross-
section stiffeners. The statistical parameters were calculated, showing
that the proposed formulae represent reliable and accurate models to
predict diagonal stiffened plates’ elastic shear buckling coefficients.

Finally, this paper is intended to be the first out of three that the
authors hope will contribute to the design of diagonally stiffened plates.
The papers which will follow will be concerned with experimental
results and numerical calibration of models and with the calibration
of the formulae to compute the ultimate resistance. The present paper
is the first step to the design of diagonally stiffened plates, where
formulae to compute the elastic critical shear stress is provided and thus
allowing to compute the slenderness of the stiffened plate, a parameter
required in most of the currently available design procedures
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