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University of Coimbra, INESC Coimbra,

Department of Electrical and Computer Engineering,
Rua Sı́lvio Lima, Polo 2,

3030-290 Coimbra, Portugal
{teresa,lucia}@deec.uc.pt

Abstract—The control plane in software-defined networking
(SDN) is composed by a logically centralized set of controllers
which acts as the brain of the SDN network. These controllers
need to be connected through east/westbound interfaces in order
to have a synchronized view of the network and therefore it is
a key issue to guarantee the intercontroller connectivity for a
proper network behaviour.

In the present work, the problem of controller placement
under QoS constraints with the additional requirement of having
the intercontroller connectivity with a given availability at
minimum cost is addressed as a bi-objective problem. This
problem is NP-complete and to tackle it a heuristic approach
is proposed based on the problem decomposition into sub-
problems. In a previous heuristic to solve a less general problem,
a similar strategy was followed based on the assumption that
a Steiner tree connecting the controllers is the set of links that
should be upgraded to achieve the required availability. In this
paper a more general sub-graph is considered for intercontroller
availability improvement, and an additional optimization level
is also considered to address this more general problem.

To assess the performance of the proposed heuristic a baseline
heuristic to serve as a benchmark is also proposed.

Index Terms—SDN, controller placement, availability, heuris-
tics, integer linear programming, bi-objective

I. INTRODUCTION

Since SDN has an important role in several network
technologies including 5G, the control plane availability is of
key importance for the proper functioning of the network [1].
An inherent problem in SDN is known as the controller
placement problem (CPP), which consists in determining how
many controllers are needed and where to place them in the
network. This problem was formally introduced in [2] and
has been extensively studied in the literature.

Having only one controller can lead to resilience issues,
since the single point of failure in the network is the con-
troller. Moreover, in large networks, the controller can quickly
be overloaded and/or the latencies between the data plane
switches and the controller can be quite large, leading to
scalability issues. Deploying multiple controllers as a logi-
cally centralized set, improves resilience and scalability but
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also raises some challenges. While increasing the number of
controllers helps decrease switch-controller latencies, one of
the challenges is that deploying a large number of controllers
can lead to important intercontroller communication overhead
[1], [3]. Therefore, in several works, maximum delay values
have been imposed between the switches and controllers and
between also the controllers themselves, to ensure acceptable
control plane performance [4]–[6].

Intercontroller communication is ensured by an
east/westbound interface, allowing the controllers to
have a full and detailed view of the topology. Since
the controllers are responsible for the management and
decision making in the SDN network, it is essential to
guarantee intercontroller availability requirements. In [7],
a “five-nines” availability, which is typically required in
recent communication networks [8], is guaranteed for the
southbound, i.e., between the switches and the controllers
that manage them.

In our previous work [6], we proposed a heuristic to
solve the NP-complete optimization problem of finding the
controller placement under delay constraints, and finding a
Steiner tree to be the sub-graph, whose links can be upgraded
to have improved availability at a given cost, in order to
achieve availability targets. We considered intercontroller
“five-nines” availability requirements with path redundancy:
for each pair of controllers, the pair of primary and backup
paths must ensure that the end-to-end availability is at least
0.99999. In [9], we also studied a similar problem, but
the availability targets were between the controllers and the
switches they manage. In that work, the sub-graph was a
spanning tree which made the problem easier to formulate
and solve.

Although path redundancy does increase end-to-end avail-
ability [10], it may not be sufficient to ensure the desired
availability alone [11]. In [7], the authors show that each
switch has to connect to 2 or 3 controllers to achieve the
desired availability. This is the motivation to consider a sub-
graph which is based on the spine concept, proposed in [12].
The links of this sub-graph can undergo an upgrade in which
its availability is increased, and that can be achieved either
by reducing the mean time to repair (e.g. allocating closer
maintenance centers) or by making the link more robust so



that the mean time between failures is increased (e.g. by
burying an aerial cable).

In [13], the authors address a CPP variant for resilience
against single link failures between the controllers. They also
consider a Steiner tree for the intercontroller communication
paths, but in their case they do not consider intercontroller
delay constraints, nor do they deal with availability guaran-
tees. Finally, in [14] a multi-objective optimization problem
concerning both controller placement and path availability is
presented. They consider the availability for the paths between
switches and controllers, whereas we consider between the
controllers themselves. Moreover, the problem of selecting
links to have enhanced availability is not considered.

In this paper, the problem of controller placement under
QoS constraints with the additional requirement of having the
intercontroller connectivity with a given availability at mini-
mum cost is addressed as bi-objective optimization problem.
This optimization problem is NP-complete, meaning that ex-
act methods become computationally prohibitive. Therefore,
a heuristic approach is proposed based on the one presented
in [6], breaking the problem down into its constituent sub-
problems. The problem addressed in [6] is a particular case
of the present problem addressed herein, and was based on
the assumption that a Steiner tree connecting the controllers
is the set of links that should be upgraded to achieve the
required availability. In this paper, a more general sub-graph
is considered for intercontroller availability improvement, and
a second level optimization is proposed for link availability
update, to further improve the intercontroller availability
update cost.

Furthermore, to assess the performance of the proposed
heuristic and because a benchmark heuristic does not exist in
the literature, a baseline heuristic is also put forward.

This paper is organized as follows. In Section II, the
addressed global problem is formulated as a bi-objective
optimization problem. In Section III, the heuristic strategy is
presented in its different aspects: in Subsection III-A the CPP
under delay constraints is formulated; in Subsection III-B the
intercontroller availability improvement is presented; in Sub-
section III-C the two-level optimization model for availability
update is formulated; and in Subsection III-D the bi-objective
heuristic is proposed. In Section IV, a baseline heuristic is
presented to serve as a benchmark for performance evaluation.
In Section V, the computational results are discussed showing
the gains obtained with the bi-objective heuristic, and in
Section VI the conclusions are presented.

II. A BI-OBJECTIVE OPTIMIZATION PROBLEM

The controller placement and intercontroller availability
optimization problem is the CPP together with the problem of
link selection for availability update, among the links involved
in the connections between controllers, in order to guarantee
the desired availability at minimum cost. Additionally, the
connections between the controllers must also satisfy delay
constraints, as well as between the switches and the con-
trollers managing them. This problem can be formulated as

a bi-objective optimization problem, because the minimum
number of controllers may not lead to the minimum cost
solution for the intercontroller availability update. Therefore,
instead of a global optimum, a set of non-dominated solutions
will be obtained, that represents the trade-off between the
number of controllers and the update cost, so that the decision
maker can choose which solution is most appropriate for each
case.

Consider that the SDN data plane is represented by a graph
G = (N,E), where N is the set of nodes and E is the set
of links. Each link is represented by its end nodes {i, j}.

Assume that there are K different discrete levels for
availability update. Each link {i, j} can be updated to level k
with cost c̆kij . Then, the problem of jointly minimizing the
number of controllers and the cost of intercontroller avail-
ability update can be defined as:

Problem P:

min
∑
i∈N

yi (1)

min

K∑
k=1

∑
{i,j}∈E

c̆kij z̆
k
ij (2)

s.t.

Delay constraints

Flow continuity constraints

Intercontroller availability constraints

where
yi binary variable that is 1 if a controller is placed in node

i ∈ N , and 0 otherwise;
z̆kij binary variable that is 1 if link {i, j} ∈ E is updated to

level k, and 0 otherwise.
The CPP is known to be NP-hard [2] and the link availabil-

ity update problem at a minimum cost is NP-complete [15],
which results in the addressed optimization problem being
NP-complete. Therefore, it cannot be solved in practice by
exact methods. Next, a heuristic approach is proposed.

III. HEURISTIC STRATEGY

To tackle the bi-objective optimization problem presented
in the previous section, a heuristic strategy is herein presented
based on breaking down the problem into its constituent sub-
problems: (i) the CPP under switch-controller and intercon-
troller delay constraints; (ii) the assumption of a sub-graph
for intercontroller availability improvement, where a primary
and a backup path can be defined; (iii) the link availability op-
timization at minimum cost, under intercontroller availability
guarantees.

A. Controller Placement Problem

The CPP is one of the main sub-problems in the optimiza-
tion problem. It addresses how many controllers should be
placed in the network and where they are placed. An in-band
control plane is assumed, where each switch is connected to
a controller.



Each link {i, j} ∈ E has an associated length `ij and an
associated delay. The delay between two nodes i and j is
proportional to the length of the path connecting them and
is denoted by dij [2]. A maximum delay Dsc is imposed
between each switch and the controller that manages it.
Moreover, a maximum delay Dcc is also imposed between
any two controllers. Since switch-controller communication
is more frequent than intercontroller communication, it is
assumed that Dsc < Dcc [4].

The ILP model to solve the CPP is given by:

min
∑
i∈N

yi (3)

s.t. ∑
j∈N :dij≤Dsc

yj ≥ 1 i ∈ N (4)

yi + yj ≤ 1 i, j ∈ N : dij > Dcc (5)
yi ∈ {0, 1} i ∈ N (6)

The objective function (3) aims to minimize the number
of controllers (one of the objectives of the main optimization
problem). Constraints (4) guarantee that for any node i ∈ N ,
there is a controller placed with a delay of at most Dsc from
it. Constraints (5) guarantee that the delay between any two
controllers is at most Dcc. Finally, constraints (6) are the
variable domain constraints.

Note that the minimum number of controllers is condi-
tioned by Dsc, while Dcc conditions the maximum number
of controllers that can be placed in the network.

B. Intercontroller Availability Improvement

Once the controller placements are obtained, it is possible
to consider a sub-graph S connecting the controllers which
can be obtained in different ways as explained ahead. The
availability of the links belonging S can be updated to
guarantee the availability requirements at minimum cost.

To increase availability between controllers, a primary path
and a node-disjoint backup path are guaranteed between each
pair of controllers. Consider SP ⊂ S and SB ⊂ S as
the sub-graphs that support the primary and backup paths,
respectively, where S = SP ∪ SB . It is noted that SP ∩ SB
may not be empty. The primary paths must have a delay of
at most Dcc routed over SP (the delay constraint is relaxed
for the backup paths).

An availability minimum of Λ is required for the inter-
controller connections, i.e., the intercontroller availabilities
achieved by the pair of primary and backup paths must be at
least Λ. This is not always possible by using path protection
alone. Therefore, we consider that the availability of the links
belonging S can be updated at a given cost.

Consider that each link {i, j} ∈ E has a default distance-
based availability a0

ij , which depends on the link length `ij ,
the mean time to repair (MTTR) and the mean time between
failures (MTBF) (details in [6]). The availability of a path is
given by the product of the availabilities of the elements of
the path (i.e., of the links and nodes belonging to the path).

In the present work, the nodes are assumed to not fail, i.e.,
the node availabilities are equal to one.

Consider that each link of SP (for the primary paths
between the controllers) can be upgraded to K different
levels of increased availability, where for each level the link
unavailability is decreased by a factor ε ∈ (0, 1). This can
be achieved by decreasing the MTTR (e.g. allocating closer
maintenance centers), or increasing the MTBF (e.g. making
the link more robust). The availability of link {i, j} ∈ SP
in level k can be given as an expression dependent of level
k − 1:

akij = ak−1
ij + ε

(
1− ak−1

ij

)
k = 1, ...,K. (7)

The cost for upgrading the link availability to level k (in
relation to the default link availability) is given by [15], [16]:

ckij = −`ij · ln

(
1− akij
1− a0

ij

)
k = 1, ...,K (8)

The cost function translates an exponential increase as the
link availability is upgraded to the next level.

Analogously, consider that each link of SB (for the backup
paths between the controllers) can be downgraded to have
decreased availability, where the unavailability is increased
by ε (in this case, only one level of downgrade is assumed).
This can happen by increasing the MTTR (e.g. when moving
maintenance centers closer to the links of SP , these centers
can be further away from the links of SB).

The decreased availability of link {i, j} ∈ SB is given by:

âij = a0
ij − ε

(
1− a0

ij

)
(9)

with a (negative) cost given by:

ĉij = −`ij · ln

(
1− âij
1− a0

ij

)
(10)

The reason why we consider the downgrade of links of
SB as part of the intercontroller availability improvement is
explained in the next Subsection.

C. Link Availability Optimization

The problem of updating the link availabilities of sub-
graph S is solved with a two-level optimization model,
minimizing the cost of the intercontroller availability update,
while guaranteeing the required availability of Λ. Consider
C as the set of controllers. For each pair c1, c2 ∈ C, denote
the primary path availability as Apc1c2 and the backup path
availability as Abc1c2 . Then, the availability of the pair of paths
should be at least Λ, i.e., 1 − (1 − Apc1c2)(1 − Abc1c2) ≥ Λ.
This is achieved by upgrading some of the links of SP .

Consider Ab0c1c2 the default availability of the backup path
between controllers c1 and c2, given by the default availabil-
ities of the links belonging to the path. Then, the necessary
primary path availability Apc1c2 to achieve Λ is given by
Apc1c2 = (Λ−Ab0c1c2)/(1−Ab0c1c2).

Denote the primary path between c1 and c2 as pc1c2 .
Consider the following decision variables:



zkij binary variable that is 1 if link {i, j} ∈ SP is upgraded
to level k = 0, ...,K, and 0 otherwise. Note that k = 0
means that the link is not upgraded.

The first level ILP model is given by:

min

K∑
k=1

∑
{i,j}∈SP

ckijz
k
ij (11)

s.t.
K∑
k=0

zkij = 1 {i, j} ∈ SP (12)

K∑
k=0

∑
{i,j}∈pc1c2

zkij ln(akij) ≥ ln(Apc1c2) c1, c2 ∈ C (13)

zkij ∈ {0, 1} {i, j} ∈ SP , k = 0, ...,K (14)

The objective function (11) aims to minimize the upgrade
cost of SP . Constraints (12) guarantee that each link of SP
is in only one level k = 0, ...,K.

Constraints (13) guarantee that the links of each primary
path pc1c2 are upgraded to achieve the necessary availabil-
ity Apc1c2 . The constraints are not linear, but can be linearized
with logarithms. Finally, constraints (14) are the variable
domain constraints.

Consider the solution obtained by the first level ILP model.
Denote νSP as the value of the objective function and a′ij
as the availability of link {i, j} ∈ SP in the solution.
Denote Ap′c1c2 as the primary path availabilities recomputed
considering the updated link availabilities a′ij .

Any link availability over-provisioning obtained in the
first level ILP model, can be adjusted in the second level
ILP model. Consider Abc1c2 as the necessary backup path
availabilities given by:

Abc1c2 =
Λ−Ap′c1c2
1−Ap′c1c2

(15)

Denote the backup path between c1 and c2 as bc1c2 .
Consider the following decision variables:
ẑij binary variable that is 1 if link {i, j} ∈ SB\SP is

downgraded, and 0 otherwise.
The second level ILP model is given by

min
∑

{i,j}∈SB\Sp

ĉij ẑij (16)

s.t.

ẑij = 0 {i, j} ∈ SB ∩ SP (17)∑
{i,j}∈bc1c2

[
(1− ẑij) ln(a′ij) + ẑij ln(âij)

]
≥ ln(Abc1c2)

c1, c2 ∈ C (18)
ẑij ∈ {0, 1} {i, j} ∈ SB (19)

The objective function (16) is the minimization of the
downgrade of the links of SB\SP . The final link availability
update cost is thus the sum of the obtained cost in (16)
and νSP .

Constraints (17) guarantee that only the links from SB\SP
can be downgraded (not those of SB ∩ SP ).

Constraints (18) guarantee that the links of each backup
path are downgraded while still satisfying the necessary
availability Abc1c2 . These constraints have been linearized
using logarithms, similarly to constraints (13). Constraints
(19) are the variable domain constraints.

D. Bi-Objective Heuristic
Next, the global heuristic for the bi-objective problem is

presented. Its pseudo-code is shown in Algorithm 1.
The “best” solutions for the bi-objective problem are the

non-dominated solutions w.r.t. to the number of controllers
and the link availability update cost. A solution with C con-
trollers and link update cost µ, is said to be non-dominated,
if any solution with a lower cost than µ has more than C
controllers, and any solution with less than C controllers has
a higher cost than µ.

Algorithm 1: Pseudo-code for bi-objective heuristic
1 VCP ← ∅;
2 Sols← ∅;
3 while continue = true do
4 CP ← CPP (Dsc, Dcc)\VCP ;
5 if CP = ∅ then
6 continue← false;
7 else
8 Determine S = SP ∪ SB for CP set;
9 for c1, c2 ∈ CP do

10 Compute backup path availability Ab0
c1,c2

;
11 Ap

c1c2 ← (Λ−Ab0
c1c2

)/(1−Ab0
c1c2

);

12 (µ,L(SP ))← 1stlevelILP(SP , {Ap
c1c2});

13 if L(SP ) 6= ∅ then
14 if µ = 0 then
15 continue← false;
16 else
17 for c1, c2 ∈ CP do
18 Recompute primary path availability Ap′

c1c2 ;
19 Ab

c1c2
← (Λ−Ap′

c1c2 )/(1−Ap′
c1c2 );

20 (µ′,L(SB))← 2ndlevelILP(SB , {Ab
c1c2
});

21 µ← µ+ µ′

22 Sols← Sols ∪ CP;

23 VCP ← VCP ∪ CP ;

The heuristic exploits the fact that different controller
placements provide different sub-graphs S (even if the sub-
graphs are of the same type, for example, Steiner trees) and,
different sub-graphs provide different link availability update
solutions. A different set of controller placements can be
obtained by removing the previous solutions from the search
space of the CPP, and finding a new CPP solution for which a
new cost for the link availability problem should be obtained.

The heuristic starts by solving the CPP with the ILP model
defined by (3)-(6) (step 4). The visited set of controller
placements VCP , i.e., the set of already obtained controller
placements is empty, as well as the set of solutions Sols
(steps 1 and 2).

After the controller placement CP has been obtained, the
heuristic determines sub-graphs SP for the intercontroller



primary paths and SB for the respective backup paths (step 8).
In the computational results (Section V), two sub-graphs
were considered: S1 where SP1 is the set of intercontroller
shortest paths; and S2 where SP2 is the minimum distance
intercontroller Steiner tree. Sub-graph SP1 is obtained using
Dijkstra’s algorithm, while SP2 is obtained heuristically with
Takahashi’s algorithm [17] where the terminal nodes are the
controllers. For both cases, SB is the set of minimum distance
shortest node-disjoint paths to the respective primary ones,
obtained with a modification of Dijkstra’s algorithm. For
subgraph S2, if any primary path has a delay greater than Dcc

over the Steiner tree, S2 is discarded (omitted in the pseudo-
code for clarity) for that CP set.

Then for each considered sub-graph S, the availability
of the backup path Ab0c1c2 between controllers c1 and c2
is computed, assuming the default link availabilities a0

ij

(step 10). The necessary primary path availabilities Apc1c2 are
then computed, considering Ab0c1c2 , in order to achieve the
target path pair availability of at least Λ (step 11).

The 1st level ILP defined by (11)-(14) is then solved
considering Apc1c2 , and the set of links L(SP ) of SP can
be upgraded with a given cost µ (step 12). If the problem is
infeasible, i.e., L(SP ) = ∅, the CP set is discarded.

Otherwise, if the upgrade cost µ is zero, the “ideal” solution
has been achieved and the heuristic stops (steps 14 and 15).
This is a valid stopping criteria, since the CPP starts with the
minimum number of controllers and generates increasingly
larger sets of controllers. Since the optimal solutions are
non-dominated for the number of controllers and the cost,
no solution with an equal or greater number of controllers
can dominate the one with µ = 0. Also, since no link has
been upgraded, the 2nd level ILP is not needed. Before the
heuristic stops, the “ideal” solution is added to the set of
obtained solutions Sols with cost µ = 0 (step 22).

If µ > 0, then the 2nd level ILP defined by (16)-(19)
is solved (step 20). To do so, the primary path availabili-
ties Ap′c1c2 are recomputed considering the upgraded solution
L(SP ) (step 18). Then, the necessary backup path availabili-
ties Abc1c2 are computed, assuming Ap′c1c2 to ensure the target
path pair availability of at least Λ (step 19). The CP set is
then added to the set of obtained solutions Sols with the
cost µ obtained in step 21.

Finally, the CP set is added to the set of visited CPP
solutions VCP , to eliminate it from the search space in step 4,
when generating a new controller placement. This is done by
adding a set of constraints to the ILP model (3)-(6). Consider
that the controller placement set is {ρ1, ..., ρC}, where C
is the minimum number of controllers. Then the additional
constraint is given by:

yρ1 + · · ·+ yρC ≤ C − 1 (20)

Such a constraint is added for each new controller placement
set with C controllers. Eventually, no more C controller
placements satisfying Dsc and Dcc is possible, and so a new

controller placement with C ′ = C+1 controllers is generated.
In this case, the following constraint is added:∑

i∈N
yi ≥ C ′ (21)

replacing all constraints of type (20). After that, new con-
straints of that type will be added with C ′ controllers.
When the ILP model returns infeasible, it means that all the
controller placements satisfying Dsc and Dcc were obtained,
and so the heuristic stops (steps 5 and 6).

In the end, the set Sols holds all the solutions obtained and
the non-dominated ones are chosen (the term ‘non-dominated’
is used here loosely in the sense that they are the non-
dominated solutions of set Sols, but there can exist other
solutions for the same problem that dominate the obtained
solutions, but are not found by the heuristic.).

Consider Fig. 1, where the two non-dominated solutions
for the given topology are shown. The sub-graph considered
was S2, i.e., SP is the intercontroller minimum distance
Steiner tree. The controller nodes are represented with red
outer circles and the Steiner tree links are represented in red,
with the thickness of its links being proportional to the level
of upgrade. The downgraded links of SB are shown in blue.

C = 4 µ = 619.93

C = 5 µ = 450.70

Fig. 1. Non-dominated solutions for the spain network with given Dsc and
Dcc values, using S2 for link availability update

Note that the top solution has C = 4 controllers and a
cost of µ = 619.93, resulting from upgrading 3 links of the
Steiner tree to level k = 1, 1 link to level k = 2 and 1 link to
level k = 3, and downgrading 6 links. The bottom solution
has C = 5 controllers and a cost of µ = 450.70, resulting
from upgrading 2 links of the Steiner tree to level k = 1 and
1 link to level k = 3 (and one link is not upgraded, k = 0),
and downgrading 5 links.



IV. BENCHMARK FOR PERFORMANCE EVALUATION

A benchmark heuristic does not exist in the literature for
the optimization problem addressed in this paper. Therefore,
to assess the performance of the proposed heuristic (which
is also compared to the one in [6]), a baseline heuristic is
put forward to serve as a benchmark. The rationale for the
baseline heuristic is to forgo ILP models, except for obtaining
the minimum number of controllers Cmin (which is an input
parameter for this heuristic), defined ahead. The pseudo-code
is shown in Algorithm 2.

The CPP is solved without resorting to ILP models. To do
so, two approaches based on the k-center algorithm [18] were
developed: the greedy approach and the modified k-center
approach (modified to account for Dcc).

For a fixed root node ρ and a given C, the greedy approach
places the first controller c1 in node ρ. The second controller
c2 is placed at the node furthest away from ρ, but within
the maximum delay Dcc. The third controller c3 is placed at
the furthest node from c1 and c2, within the maximum delay
of Dcc from both of them. The process is repeated until C
controllers have been placed in the network.

The (modified) k-center approach starts by considering ρ
as a candidate node for the first controller c1. The cluster C`1
is the set of nodes within Dsc from ρ. If there exists a node
c∗ ∈ C`1 such that any node u ∈ C`1 is within Dsc from c∗

and such that the average delay from c∗ to all nodes in C`1 is
less than that of ρ, then c∗ is the next candidate node for c1
and the cluster C`1 is updated. The process is repeated until
no such node c∗ is found. Then, the first controller node is
set.

The candidate node for the second controller c2 is chosen
to be the node furthest away from C`1, but within Dcc from
c1. The cluster C`2 is obtained as the set of nodes within Dsc

from c2. If c∗ exists within C`2, such that any node u ∈ C`2
is within Dsc from c∗ and such that the average delay from c∗

to all nodes in C`2 is less than that of c2, then it becomes the
next candidate for c2 and cluster C`2 is updated. The process
is repeated until no such node c∗ exists within C`2, and so
the second controller node is set.

Then, the third controller candidate c3 is chosen as the
node furthest away from clusters C`1 ∪ C`2, but within Dcc

from c1 and c2. The cluster C`3 is obtained and the process
is repeated until C controller nodes have been set.

In both approaches, if there exists a node i ∈ N such that
the closest controller has a delay greater than Dsc from i, the
controller set is considered invalid.

The baseline heuristic starts by considering the first root
node ρ ∈ N (step 2) and solves the CPP using the greedy ap-
proach (step 5) and the minimum number of controllers Cmin

(step 4). If the controller placement set CP is invalid, then the
number of controllers is incremented (step 10), since the set
may become valid if more controllers are placed. However, if
C ≥ Cmin + 2, then the CP has the potential of being poorly
chosen and it does not pay off to set more controllers, as the
cost in the update problem will become very large.

Algorithm 2: Pseudo-code for benchmark heuristic
1 Sols← ∅;
2 for ρ = 1...n do
3 continue← true;
4 C ← Cmin;
5 CPPtype← greedy;
6 while continue = true do
7 CP ← CPPtype(ρ, C);
8 if CP = ∅ then
9 if C < Cmin + 2 then

10 C ← C + 1;
11 else
12 if CPPtype = greedy then
13 C ← Cmin;
14 CPPtype← k-center;
15 else
16 continue← false;

17 else
18 Determine SP as a Steiner tree and SB for CP;
19 for c1, c2 ∈ CP do
20 Compute backup path availability Ab0

c1,c2
;

21 Ap
c1c2 ← (Λ−Ab0

c1c2
)/(1−Ab0

c1c2
);

22 (µ,L(SP ))← 1stlevel(SP , {Ap
c1c2});

23 if L(SP ) 6= ∅ then
24 Sols← Sols ∪ CP;
25 C ← C + 1;
26 else
27 if C < Cmin + 2 then
28 C ← C + 1;
29 else
30 if CPPtype = greedy then
31 C ← Cmin;
32 CPPtype← k-center;
33 else
34 continue← false;

The heuristic goes back to Cmin controllers, now using
the k-center approach (steps 13 and 14). If CP is invalid
and C ≥ Cmin + 2, then the heuristic chooses another root
node ρ (step 16 which goes to step 2). Otherwise, if in any
CPP approach the CP set is valid, the intercontroller Steiner
tree is determined (step 18), using Takahashi’s algorithm. If
any primary path does not satisfy Dcc over the Steiner tree,
the tree is invalid and the CPP solution is discarded (omitted
in the pseudo-code for clarity).

Otherwise, the backup path availabilities assuming default
link availabilities are determined (step 20), and the necessary
primary path availabilities are computed (step 21). The link
availability update problem (step 22) is solved in a greedy
manner. At first, all Steiner tree links are not upgraded, i.e,
the links are in level k = 0. Then, each pair of controllers such
that the pair of primary and backup paths does not achieve an
end-to-end availability of at least Λ, are identified in set C<Λ.
We then identify the link {i, j}∗ occurring most frequently
in the primary paths of C<Λ (since upgrading this link will
enhance the availability of more than one pair of controllers);
if there is more than one, we choose the longest link (since
we are considering distance-based availabilities). Then {i, j}∗
is upgraded to k = 1. The end-to-end availabilities of C<Λ



are recalculated and the set is updated.
While C<Λ 6= ∅, we identify the link {i, j}∗ occurring most

frequently in the primary paths of C<Λ such that its upgrade
level k is less than K; if there is more than one, we choose
the link with lowest level of upgrade k; if there is more than
one, we choose the longest link. Then, {i, j}∗ is upgraded to
the next level from which it is currently in. The process is
repeated until C<Λ = ∅, meaning that the target availability of
at least Λ has been achieved between all pairs of controllers.
The solution is added to Sols (step 24) and the number of
controllers is incremented (step 25).

If {i, j}∗ does not exist but C<Λ 6= ∅, this means that
all the primary path links in C<Λ are already upgraded to the
maximum level k = K. In this case, the problem is infeasible
(for the used Steiner tree), meaning that the target end-to-end
availability is not achievable, and the current CPP solution is
discarded as invalid. The heuristic proceeds as when the CP
set is invalid (steps (27)-(34)).

The heuristic stops in the following conditions: (i) if all
nodes have served as root nodes (step 2); (ii) if for a given
value C ′ a solution with zero cost has been found, then the
following CPP solutions only need to be obtained for C < C ′,
since no solution C ≥ C ′ can have a cost lower than the
‘ideal’ zero cost. From the set of solutions in Sols, we choose
non-dominated ones.

V. COMPUTATIONAL RESULTS

To evaluate the performance of the bi-objective heuristic
and compare it with the one in [6] and the benchmark
heuristic, the following networks were considered: polska and
cost266 networks from SNDlib [19], and the spain network
from [20]. The topological characteristics of the networks are
summarized in Table I, which shows the number of nodes,
the number of edges, the average node degree and the graph
diameter (longest shortest path between any two nodes) for
each network.

TABLE I
TOPOLOGICAL CHARACTERISTICS OF THE NETWORKS

Network #nodes #links avg deg Dg [km]
polska 12 18 3.00 811
spain 14 22 3.14 1034

cost266 37 57 3.08 4032

All heuristics and procedures were implemented in C/C++,
using the CPLEX 12.9 Callable libraries for solving the ILP
models. All results were obtained on an Intel Core i7 laptop
with 8 GB of RAM, running at 2.9 GHz. The maximum
delay values Dsc and Dcc are given as percentages of the
graph diameter Dg [2], [4], [5], and were considered to be
35%, 40%, 45% for Dsc, and 65%, 70%, 75% for Dcc, for
all networks (to be equal for all networks and consistent with
our previous works [6], [9]). For all heuristics, the sub-graph
S2 such that SP2 is a Steiner tree between the controllers
was considered, since it is in principal the minimum cost
sub-graph connecting the controllers (as it has no cycles). In

the bi-objective heuristic, sub-graph S1 such that SP1 is the
set of intercontroller shortest paths was also considered.

For all the networks, the intercontroller availability guaran-
tee value was considered to be ‘five-nines’, i.e., Λ = 0.99999.
To obtain the desired availability levels, K = 4 levels of
link availability upgrade for SP were considered with a link
unavailability reduction factor of ε = 0.5 per level. In the bi-
objective heuristic, the second level ILP for link availability
update for SB considers one level of downgrade.

The computational results are shown in Tables II, III
and IV for polska, spain and cost266, respectively. In all
tables, the results are shown for the benchmark heuristic, the
heuristic in [6], and the proposed bi-objective heuristic. Each
problem instance is defined by the network topology and the
given Dsc and Dcc values.

Since the heuristics cannot guarantee optimality, the term
‘non-dominated solutions’ is used to refer to the non-
dominated solutions in set Sols of the respective heuristic.
This means a non-dominated solution of one heuristic can
be dominated by a solution of another heuristic. Therefore,
each value of C shown in the tables, starting with Cmin,
corresponds to a non-dominated solution of at least one
heuristic. For each non-dominated solution, the cost is shown,
as well as, the total number of upgraded links (column
‘#upg’), the number of links upgraded to each level k =
1, 2, 3, 4 (columns ‘k’). Finally, the last column shows the
computational runtime in seconds (column ‘t(s)’). For the
proposed heuristic the number of downgraded links in SB
(second level of link availability optimization) is also shown
(column ‘#dng’).

The runtimes for the heuristic in [6] are smaller than re-
ported before, since there was an error in the implementation
of the stopping criteria, and so the runtimes reported in [6]
were unnecessarily high for spain and especially for cost266.

In Table II for the polska network, only the proposed
heuristic found a solution for Dsc = 35% and Dcc ≤ 70%,
because the Steiner tree sub-graph SP2 cannot guarantee the
Dcc delay for all the intercontroller primary paths, while SP1

always exists and guarantees that the intercontroller primary
paths have delays within Dcc. For Dsc = 35% and Dcc =
75%, the greedy algorithm for the availability upgrade in the
benchmark heuristic, did not succeed in finding a solution that
guarantees the minimum intercontroller availability. The other
two heuristics found the ideal optimum of zero cost with the
minimum number Cmin = 3 of controllers. The same ideal
optimum was found by all heuristics, for all the instances
with Dsc = 40% and for the instance with Dsc = 45% and
Dcc = 65%. For Dcc ≥ 70%, the value of Cmin is 2 and
a non-zero cost solution exists. The two heuristics found the
same cost solution which is lower than the cost found by the
benchmark. The solution with 3 controllers continues to have
zero cost in these instances. Note that when C = 2, the sub-
graphs S1 and S2 are the same. Note that the runtimes are
very small for the three heuristics, but slightly higher for the
proposed heuristic.

In Table III for the spain network, the proposed heuristic



TABLE II
COMPUTATIONAL RESULTS FOR POLSKA

Instance Benchmark Heuristic [6] Proposed Heuristic

Dsc Dcc C cost #upg k t(s) cost #upg k t(s) cost #upg k #dng t(s)1 2 3 4 1 2 3 4 1 2 3 4

35%
65% 3 - - - - - - - - - - - - - - 0 0 0 0 0 0 0 0.02
70% 3 - - - - - - - - - - - - - - 0 0 0 0 0 0 0 0.67
75% 3 - - - - - - - 0 0 0 0 0 0 0.02 0 0 0 0 0 0 0 1.76

40%
65% 3 0 0 0 0 0 0 0.03 0 0 0 0 0 0 0.01 0 0 0 0 0 0 0 0.15
70% 3 0 0 0 0 0 0 0.02 0 0 0 0 0 0 0.06 0 0 0 0 0 0 0 0.15
75% 3 0 0 0 0 0 0 0.02 0 0 0 0 0 0 0.08 0 0 0 0 0 0 0 0.28

45%

65% 3 0 0 0 0 0 0 0.03 0 0 0 0 0 0 0.21 0 0 0 0 0 0 0 0.40

70% 2 300.39 2 2 0 0 0 0.08 274.86 2 2 0 0 0 0.12 274.86 2 2 0 0 0 0 0.513 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

75% 2 - - - - - - 0.05 274.86 2 2 0 0 0 0.12 274.86 2 2 0 0 0 0 0.303 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

TABLE III
COMPUTATIONAL RESULTS FOR SPAIN

Instance Benchmark Heuristic [6] Proposed Heuristic

Dsc Dcc C cost #upg k t(s) cost #upg k t(s) cost #upg k #dng t(s)1 2 3 4 1 2 3 4 1 2 3 4

35%

65% 5 - - - - - - - - - - - - - - 532.65 5 5 0 0 0 3 0.24

70% 4 1640.37 5 2 2 0 1 0.07 1212.31 5 3 1 1 0 0.52 619.93 5 3 1 1 0 6 1.795 - - - - - - 850.49 3 2 0 1 0 450.70 3 2 0 1 0 5

75% 4 1640.37 5 2 2 0 1 0.10 1212.31 5 3 1 1 0 0.91 619.93 5 3 1 1 0 6 3.545 - - - - - - 850.49 3 2 0 1 0 450.70 3 2 0 1 0 5

40%

65% 5 - - - - - - - - - - - - - - 532.65 5 5 0 0 0 3 0.23

70% 4 1640.37 5 2 2 0 1 0.02 999.52 3 1 1 1 0 0.64 388.89 3 1 1 1 0 6 1.895 - - - - - - 850.49 3 2 0 1 0 - - - - - - -

75% 4 1640.37 5 2 2 0 1 0.03 999.52 3 1 1 1 0 1.09 388.89 3 1 1 1 0 6 3.965 - - - - - - 850.49 3 2 0 1 0 - - - - - - -

45%
65% 3 850.88 4 3 1 0 0 0.06 0 0 0 0 0 0 0.01 0 0 0 0 0 0 0 0.53
70% 3 999.21 4 2 2 0 0 0.03 0 0 0 0 0 0 0.01 0 0 0 0 0 0 0 1.35
75% 3 999.21 4 2 2 0 0 0.06 0 0 0 0 0 0 0.01 0 0 0 0 0 0 0 1.98

found solutions for Dsc = 35%, 40% and Dcc = 65% with
5 controllers, while the other heuristics did not, because the
Steiner trees of sub-graph SP2 cannot guarantee the Dcc delay
between all pairs of controllers for those instances. For the
other instances, the heuristic in [6] found solutions with lower
cost than the benchmark, and the proposed heuristic found
solutions with even lower cost. Note that for Dsc = 40%
and Dcc ≥ 70%, the proposed heuristic found the best
solution with the lowest cost of 388.89 and Cmin = 4
controllers. This solution corresponds to the sub-graph S2

for the same controller placement found by the heuristic
in [6] with cost 999.52, where a total of 3 links where
upgraded. In the proposed heuristic, an additional 6 links
were downgraded, decreasing the cost to 388.89. In fact, this
solution dominates all solutions found being the best solution
obtained in these cases, since it is the solution with lowest
cost for Cmin. Both heuristics found the optimal solution of
zero cost with Cmin = 3 for all instances with Dsc = 45%,
while the benchmark obtained solutions with non-zero cost.
The runtimes remain very small for the three heuristics, but
continue to be slightly higher for the proposed heuristic.

In Table IV for the cost266 network, the benchmark cannot
find a solution for the instances with Dsc = 35% (the
greedy algorithm for availability upgrade fails to produce
a valid solution). For the other instances, the benchmark
finds solutions with cost higher than the other two heuristics.

The proposed heuristic finds solutions as good or better
than the one in [6]. Note that when C = 2, downgrade of
link availability is not possible, meaning that the upgraded
links do not translate in over-provisioning of intercontroller
availability. This is also observed for Dsc = 45% with C = 3
controllers.

It was observed that most non-dominated solutions in the
proposed heuristic result from using the sub-graph S2. How-
ever, when delays are too restrictive, an intercontroller Steiner
tree such that Dcc is satisfied for each pair of controllers
may not be possible, and so, S2 may not exist. Nevertheless,
S1 always exists, making this sub-graph preferable in these
situations. Although the runtimes for the proposed heuristic
are the highest among the three approaches, they are still quite
competitive.

VI. CONCLUSIONS

The bi-objective optimization problem for joint controller
placement and link availability update, under delay and
availability constraints was presented. Since the problem is
NP-complete, a bi-objective heuristic approach was proposed
based on breaking down the problem into its constituent sub-
problems. A previous heuristic to solve a particular case of the
optimization problem was used to compare with the proposed
approach. Moreover, a benchmark was also proposed to
evaluate the performance of both heuristics. We note that



TABLE IV
COMPUTATIONAL RESULTS FOR COST266

Instance Benchmark Heuristic [6] Proposed Heuristic

Dsc Dcc C cost #upg k t(s) cost #upg k t(s) cost #upg k #dng t(s)1 2 3 4 1 2 3 4 1 2 3 4

35%
65% 3 - - - - - - - 5658.47 7 0 0 1 6 4.66 5262.50 7 0 0 1 6 3 6.384 5317.30 7 0 0 3 4 4031.01 7 0 0 3 4 9
70% 3 - - - - - - - 5658.47 7 0 0 1 6 3.33 5262.50 7 0 0 1 6 3 4.84
75% 3 - - - - - - - 5658.47 7 0 0 1 6 3.56 5262.50 7 0 0 1 6 3 5.47

40%

65% 2 4195.39 4 0 0 2 2 0.12 4136.10 4 0 0 1 3 2.23 4136.10 4 0 0 1 3 0 3.783 - - - - - - 4032.84 6 0 0 4 2 3615.04 6 0 0 4 2 4

70% 2 4195.39 4 0 0 2 2 0.12 4136.10 4 0 0 1 3 2.49 4136.10 4 0 0 1 3 0 3.853 - - - - - - 4032.84 6 0 0 4 2 3615.04 6 0 0 4 2 4

75% 2 4195.39 4 0 0 2 2 0.12 4136.10 4 0 0 1 3 2.46 4136.10 4 0 0 1 3 0 3.673 - - - - - - 4032.84 6 0 0 4 2 3615.04 6 0 0 4 2 4

45%

65% 2 2446.46 4 0 0 4 0 0.14 1402.71 3 0 2 1 0 2.14 1402.71 3 0 2 1 0 0 3.59

70% 2 2446.46 4 0 0 4 0 0.70 1402.71 3 0 2 1 0 2.61 1402.71 3 0 2 1 0 0 3.963 - - - - - - 1352.36 3 0 2 1 0 1352.36 3 0 2 1 0 0

75% 2 2446.46 4 0 0 4 0 0.071 1402.71 3 0 2 1 0 3.57 1402.71 3 0 2 1 0 0 5.043 - - - - - - 1352.36 3 0 2 1 0 1352.36 3 0 2 1 0 0

there are no available algorithms in the literature to tackle this
problem, except [6] and [9], since it has not been addressed
by other authors. However, we have considered existing
algorithms for the subproblems, which were integrated into
our benchmark heuristic (namely Takahashi’s algorithm and
the k-center algorithm).

In the proposed bi-objective heuristic, two sub-graphs for
link availability improvement were considered and an ad-
ditional optimization level was formulated to improve the
intercontroller availability update cost. The computational
results show that the proposed heuristic is able to obtain
as good or better solutions than the previous heuristic and
benchmark, with negligible runtime increase. It was observed
that most non-dominated solutions found by the proposed
heuristic results from using the sub-graph S2 for availability
improvement. However, an intercontroller Steiner tree may
not always be viable when the required delay is too low. By
contrast, S1 will always be viable, making it the alternative
strategy for this situation.
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