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Abstract 

The homeodomain transcription factor Nkx2-1 plays fundamental roles in the development of the 

ventral subpallium. As for the majority of NK-2 class of transcription factors, Nkx2-1 function 

mainly in controlling cell-fate decisions in progenitor cells, such as interpreting Sonic Hedgehog 

(Shh) graded signalling in early patterning events and conferring subtype-specific properties to 

medial ganglionic eminence (MGE) and preoptic area (POA) precursors. During development, the 

MGE is simultaneously the source for several telencephalic cell types, such as cortical and striatal 

interneurons, but interestingly, the expression of Nkx2-1 is only maintained in the striatal 

population. This evidence suggests a possible function for Nkx2-1 in controlling the migration 

and/or differentiation of postmitotic striatal interneurons; however the contribution of this 

transcription factor at this level has not been characterized. 

Using experimental manipulations and mouse genetics, we demonstrated a new postmitotic 

function for the cell-fate determinant Nkx2-1 in controlling neuronal migration in the developing 

telencephalon. Downregulation of Nkx2-1 expression in MGE-derived postmitotic cells is 

necessary for the migration of interneurons to the cortex, whereas maintenance of Nkx2-1 

expression is required for interneuron migration to the striatum. The sorting of MGE-derived 

cortical and striatal interneurons is mediated by the differential expression of receptors for the 

class 3 semaphorins, neuropilins, which are expressed only by cortical migrating interneurons in 

order to prevent their accumulation in the developing striatum. We showed that Nkx2-1 regulates 

the segregation of MGE-derived interneurons by controlling the neuropilin/semaphorin interactions; 

Nkx2-1 overexpression leaves migrating interneurons insensible to a source of Sema3A/3F and 

reduces the expression of Neuropilin-2 (Nrp2), the binding receptor for Sema3F. Furthermore, 

Nkx2-1 exerts this role by direct binding to Nrp2 regulatory elements in MGE cells and interaction 

with this sequence is sufficient to repress transcription in vitro through a mechanism that requires 

the Nkx2-1 homeodomain (HD) motif. These results demonstrate that Nkx2-1 postmitotic 

expression controls the migration of MGE-derived interneurons by direct repression of the Nrp2 

guidance receptor, a transcriptional strategy of guidance selectivity operating in many other 

migrating neurons. 

Furthermore, we provide evidence that, apart from the neuropilin/semaphorin interactions, the 

precise migration of interneurons to the developing striatum is regulated by additional guidance 

systems. We demonstrated that a population of MGE-derived interneurons co-expresses Nkx2-1 

and ErbB4, and relies in an ErbB4-dependent signalling to specifically accumulate in the striatum. 

Furthermore, Nkx2-1-expressing interneurons are actively prevented from invading the developing 

cortex by a yet unidentified chemorepulsive activity and we believe that the cooperative action of 
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these signalling systems will ultimately determine the directionality of striatal migrating 

interneurons. In addition, these results suggest that postmitotic Nkx2-1 is a fundamental factor in 

conferring guidance specificity to striatal migrating interneurons and open the possibility for 

additional downstream target effector genes. 
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Sumário 

O factor de transcrição Nkx2-1 desempenha funções fundamentais durante o desenvolvimento do 

telencéfalo ventral. Como a maior parte dos factores de transcrição pertencentes à classe NK-2, o 

Nkx2-1 controla processos de decisão e especificação celular em células progenitoras. Em 

particular, é responsável por interpretar a via de sinalização do morfogénio “Sonic Hedgehog” 

(Shh) e pela indução de várias propriedades que conferem identidade às células progenitoras da 

eminência ganglionar medial (“MGE”) e da área pré-óptica anterior (“POA”). Durante o 

desenvolvimento, as células progenitoras da eminência ganglionar medial originam 

simultaneamente diversos tipos de neurónios, como os interneurónios do córtex e do estriado e, 

curiosamente, a expressão deste factor de transcrição mantém-se apenas na população 

diferenciada de interneurónios do estriado. Esta evidência sugere que o Nkx2-1 poderá controlar 

a migração ou diferenciação dos interneurónios do estriado; contudo, a contribuição deste factor 

de transcrição para estes processos não estava caracterizada. 

Neste estudo identificámos uma nova função para o factor de transcrição Nkx2-1 no controlo da 

migração de interneurónios durante o desenvolvimento embrionário do telencéfalo. A realização 

de estudos funcionais e o uso de murganhos transgénicos permitiu-nos demonstrar que os 

interneurónios corticais necessitam de deixar de expressar Nkx2-1 para migrarem para o córtex e, 

por outro lado, a migração dos interneurónios do estriado requer a expressão contínua deste 

factor de transcrição. A segregação destas duas populações de interneurónios originados na 

“MGE” tinha sido previamente atribuída à expressão diferencial de receptores para as 

semaforinas da classe 3, moléculas repulsivas existentes no estriado. Estes receptores, as 

neuropilinas, expressa-se apenas pelos interneurónios corticais em migração e previnem a sua 

entrada no estriado. Os nossos resultados permitiram-nos inferir que Nkx2-1 regula a segregação 

destas populações de interneurónios através do controlo das interacções neuropilina/semaforina; 

a sobre-expressão de Nkx2-1 tornou os interneurónios derivados da MGE insensíveis a uma fonte 

externa de semaforinas e reduziu a expressão de Neuropilina-2 (Nrp2), o receptor de ligação para 

a semaforina 3F. Nkx2-1 exerce esta função por união directa a elementos reguladores do gene 

de Nrp2 em células da “MGE” e a interacção com esta sequência é suficiente para reprimir a 

transcrição in vitro por um mecanismo que envolve o homeodomínio (HD) de Nkx2-1. Estes 

resultados demonstram que Nkx2-1 controla a migração de interneurónios provenientes da “MGE” 

através de repressão directa do receptor Nrp2, uma estratégia de controlo de direcção de 

movimento adoptada por vários tipos de neurónios em migração. 

O trabalho apresentado nesta dissertação sugere que, para além das interacções 

neuropilina/semaforina, a migração de interneurónios do estriado é regulada por outros sistemas 
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de sinalização. Observámos que uma população de interneurónios originados na “MGE” expressa 

o factor de transcrição Nkx2-1 e o receptor ErbB4, e que estes interneurónios usam uma via de 

sinalização dependente de ErbB4 para migrar para o estriado. Estudos funcionais indicaram 

também que a sobre-expressão de Nkx2-1 incapacita os interneurónios de invadirem o córtex, 

possivelmente devido à presença de uma actividade repulsiva nesta região cuja identidade é 

desconhecida. Estes resultados permitem concluir que a direcção de migração dos interneurónios 

do estriado é regulada pela acção conjunta de várias vias de sinalização e que o factor de 

transcrição Nkx2-1 desempenha um papel fundamental no movimento dos interneurónios do 

estriado. 
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Chapter 1. Introduction 

The forebrain comprises an intricate set of structures that are required for some of the most 

complex and evolved functions of the mammalian brain including homeostasis, learning and 

behaviour. This complexity is in part achieved by an array of migratory movements that take place 

after initial specification of neuronal progenitors. Thus, several neuronal types are originated at 

relatively long distances from their final position within the forebrain and undergo extensive 

migratory programmes to reach their destiny. In the past, a lot of attention was devoted to the 

study of extrinsic molecules that shape the directionality of migrating neurons whereas nowadays 

the big challenge is to understand the cell-autonomous mechanisms that ultimately control the 

responsiveness of migrating cells to the environment. During central nervous system (CNS) 

development cell-fate decisions are mainly induced by the action of transcription factors, proteins 

that bind to promoter or enhancer regions1 of the genome and interact to active or repress the 

transcription of a particular gene. Furthermore, the involvement of these proteins in controlling 

several aspects of the differentiation of committed neurons, such as neuronal migration and axon 

guidance (Guthrie, 2007; Polleux et al., 2007), is starting to emerge.  

1.1. The NK-2 homeodomain transcription factors  

There are several families of transcription factors grouped together by the structural similarities of 

their deoxyribonucleic acid (DNA)-binding sites and mechanism of action (Gilbert, 2003). The 

Homedomain gene superfamily encodes transcription regulatory proteins that act at critical points 

in development and ontogeny and are characterized by a 180-nucleotide sequence, the 

homeobox, encoding a structurally conserved DNA-binding motif known as the homeodomain 

(HD) (McGinnis and Krumlauf, 1992; Shashikant et al., 1991). The homeobox was originally 

described in Drosophila Homeotic (Hox) genes, which are critical in the establishment of body 

axes during embryogenesis. A remarkable number of homeobox genes have mammalian 

homologues with conserved developmental functions and biochemical properties (Banerjee-Basu 

and Baxevanis, 2001; Garber et al., 1983; Scott et al., 1983).  

By screening a Drosophila DNA library with degenerated homeodomain oligonucleotides, Kim and 

Nirenberg identified in 1989 four new homeobox genes, which they termed NK1 to NK4 (Kim and 

                                                        
1 Promoters are the sites where the Ribonucleic Acid (RNA) Polymerase binds to the Deoxyribonucleic acid 
(DNA) to initiate transcription and are typically located around 30 base pairs upstream from the transcription 
initiation site. Enhancers are DNA sequences that control the efficiency and rate of transcription by either 
activating or repressing (silencers) the utilization of the promoter. These sequences can be located at great 
distance and either upstream or downstream of the promoter. 
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Nirenberg, 1989). Burglin subsequently classified the encoded proteins into two homeodomain 

protein classes, NK-1 (containing the NK1 protein) and NK-2 (containing the NK2, NK3 and NK4 

proteins) (Burglin, 1993). In the fly, NK-2 genes control cell-type specification and morphogenesis 

of organs from all three germ layers and have become known by descriptors of their mutant 

phenotypes. For instance, NK2-vnd (ventral nervous system defective) controls the specification of 

the ventral neuronal tissue. NK4/tin (tinmamn) is implicated in the segregation of cardiac and 

visceral muscle potentiality in the nascent fly mesoderm, whereas NK3-bap (bagpipe) appears to 

be downstream of tin in the visceral lineage (Azpiazu and Frasch, 1993; Bodmer, 1993; Bodmer et 

al., 1990; Jiminez, 1995). Additional NK-1 and NK-2 genes have been isolated from diverse phyla 

and evolutionary duplication events have generated a number of NK genes belonging to different 

classes and subfamilies (Harvey, 1996). For instance, the mouse Nkx5-1, Nkx5-2 and Nkx5-3 

genes (also named H6 homeo box gene [Hmx] 2, 3 and 4, respectively) have no direct 

homologous in Drosophila and therefore constitute, most likely, a related but separated class 

(Bober et al., 1994; Yoshiura et al., 1998). 

In vertebrates, NK genes have also been shown to participate in cell specification and 

morphogenetic events. Nkx2-1 (also known as thyroid transcription factor-1 [TTF-1] and thyroid-

specific enhancer binding protein [T/EBP]) was the first vertebrate NK-2 member to be cloned and 

is expressed in the developing thyroid, lung and forebrain where it controls the transcription of 

tissue-specific genes (Guazzi et al., 1990; Lazzaro et al., 1991; Mizuno et al., 1991). The murine 

Nkx2 genes can be subdivided according to the structural homology and particular amino acid 

groupings within the homeodomain of NK-2 related genes. Nkx2-1, Nkx2-2, Nkx2-4 and Nkx2-9 

form one subgroup that is similar to NK2. In contrast, Nkx2-3, Nkx2-5 and Nkx2-6 show high 

similarity to the Drosophila NK3 and NK4 genes (Figure 1), although it is not clear whether these 

differences reflect functional 

properties or merely distinctive 

evolutionary pathways (Harvey, 

1996; Lints et al., 1993; Pabst et 

al., 1998). Significantly, 

members of the first group are 

mainly expressed in ectoderm- 

and endoderm-derived organs, 

including neural ectoderm, 

whereas members of the 

second group are predominantly 

expressed in mesodermally-

derived organs. 
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Mouse NK-2 homologues seem to play similar roles than their Drosophila counterparts. For 

instance, both vnd and the murine Nkx2-1 and Nkx2-2 homologues control ventral nervous system 

specification, whereas Nkx2-5, the presumably mouse homologue to Drosophila NK4, is 

expressed in heart progenitor cells and controls the development of the mammalian heart (Briscoe 

et al., 1999; Harvey, 1996; Jiminez, 1995; Kimura et al., 1996; Lints et al., 1993; Pabst et al., 1998; 

Sussel et al., 1999).  

Nkx-related proteins with highly divergent homeodomain sequences [55 to 78% homology as 

compared to the 68 to 95% homology in NK-like proteins (Lints et al., 1993)] have also been 

identified. The Drosophila NK3 homologous Nkx3-1 is expressed in the adult prostate epithelial 

cells controlling the differentiation of these cells and the Nkx3-2/Bapx1 (bagpipe homeobox 

homologue 1) is expressed in the splanchnic mesoderm and embryonic skeleton (Bieberich et al., 

1996; Tribioli et al., 1997). The Nkx6 subfamily members Nkx6-1, Nkx6-2/Gtx (Glial and testis 

specific homeobox gene) and Nkx6-3 are expressed during gastro-intestinal tract and central 

nervous system development and present a closer relationship to the Nkx3 group than to the Nkx2 

members (Alanentalo et al., 2006; Komuro et al., 1993; Rudnick et al., 1994) (Figure 1). 

1.1.1. NK-2 structural and functional domains  

Transcription factors can activate gene transcription by remodelling the chromatin or by facilitating 

the binding of the RNA Polymerase II to the promoter, or alternatively can inhibit transcription 

through their interaction with histone deacetylase enzymes2 (Gilbert, 2003). The activity of 

transcription factors is usually mediated by three distinct functional motifs: (1) a DNA-binding 

domain that recognizes a particular DNA sequence; (2) a trans-activating domain that activates or 

suppresses transcription; and (3) a protein-protein interaction domain that allows the modulation of 

its activity by other factors (Gilbert, 2003). NK-2 transcription factors have been described to 

activate and repress transcription. While proteins like Nkx6-1 are able to simultaneously perform 

both tasks, the functional analysis of NK-2 proteins is only beginning to reveal its molecular 

mechanism of action (Chen and Schwartz, 1995; De Felice et al., 1995; Iype et al., 2004; Mirmira 

et al., 2000; Muhr et al., 2001; Watada et al., 2000). 

The homeodomain consists of approximately 60 amino acids that fold into a stable three-α-helices 

bundle preceded by a flexible amino (N)-terminal arm (Figure 2). Analysis of the three-dimensional 

structure of individual protein-DNA complexes, directed mutagenesis and biochemical studies 

have collectively shed light into the mechanisms of sequence-specific DNA binding by 

                                                        
2 Histone acetyltransferases and histone deacetylases enzymes are responsible for the addition or removal, 
respectively, of acetyl groups to the histones of the nucleosome. Acetylation destabilizes the nucleosome 
which facilitates transcription whereas removal of acetyl groups from the histones stabilizes this and prevents 
the recognition of promoters. 
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homeodomains (Ades and Sauer, 1995; Gehring et al., 1994; Gruschus et al., 1997; Wolberger, 

1996). The homeodomain binds DNA predominantly through interactions between helix 3 (the 

recognition helix) and the major groove where base-specific contacts made by positions 47, 50, 51 

and 54 are believed to be the main determinants in binding specificity. Residues at positions 2, 3, 

5-8 on the N-terminal arm have also been shown to influence binding specificity of homeodomains 

through minor groove interactions (Damante and Di Lauro, 1991; Damante et al., 1996; Ekker et 

al., 1994; Fraenkel et al., 1998; Laughon, 1991) (Figure 2). Although there is a common DNA-

binding structural framework, specific sequence variations between homeodomains lead to 

different nucleotide recognition preferences among protein classes and members. NK-2 proteins 

present a conserved tyrosine (Y) in the position 54 of the homeodomain that makes crucial 

contacts with the 5’-CAAG-3’ core of the NK-2 recognition site following its binding to the DNA. A 

tyrosine to methionine (M) replacement (Y54M) in this position is sufficient to switch the binding 

specificity towards Antennapedia-type homeodomain proteins that preferentially bind 5’-TAAT-3’ 

core sequences. Moreover, this point mutation inactivates the ability of the NK-2 homeodomain to 

repress downstream target genes in Drosophila (Damante et al., 1996; Gruschus et al., 1997; 

Koizumi et al., 2003; Tsao et al., 1994; Viglino et al., 1993). Another critical residue of the NK-2 

homeodomain is the alanine (A) in position 35; replacement of this residue by a threonine (T) is 

associated with the lethal vnd phenotype in Drosophila, presumably due to a pronounce decrease 

in the binding affinity of NK-2 to its DNA target sequences (Jiminez, 1995; Xiang et al., 1998). 

Finally, there is variation in the preference for DNA sequences outside the 5’-CAAG-3’ recognition 

core among the different NK-2 members. In the case of Nkx2-1, it was found that it preferentially 

binds 5’-CCACTG/CAAGTG-3’ sequences in the regulatory elements of thyroid and hypothalamus 

target genes (Bohinski et al., 1994; Damante et al., 1994; Francis-Lang et al., 1992; Lee et al., 

2001; Mastronardi et al., 2006).  

The homeodomain not only binds DNA, but also mediates protein-protein interactions through 

which it may influence its activity (Svingen and Tonissen, 2006; Wolberger, 1996). Nevertheless, 

for the majority of homeodomin proteins such as Nkx2-1, the combinatorial molecular code present 

in the contacting residues of the homeodomain appears to be the primary force behind its binding 

specificity (Damante et al., 1994; Damante et al., 1996; Svingen and Tonissen, 2006). 

Consistently, a recent high-throughput analysis suggests that a large proportion of the in vivo 

binding events involve the monomeric homeodomain preferences that can be predicted from the 

primary amino acid sequence (Berger et al., 2008; Noyes et al., 2008). Thus, homeodomain 

protein-protein interactions are more likely implicated in modulating transcriptional activity, for 

instance, by recruiting other transcription factors. In lung epithelial cells, the Winged 

Helix/Forkhead box A1 (FOXA1) transcription factor has been shown to interact with the Nkx2-1 

homeodomain, blocking its binding to the surfactant protein C promoter (Minoo et al., 2007). In 

addition, the homeodomain activity can be regulated by post-translational modifications, such as 

acetylation (Yang et al., 2004).  
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In addition to the homeodomain, two other peptide domains are conserved within most NK-2 

proteins (Figure 2). The short TN domain (Tinmam motif) is located in the N-terminus of the protein 

and presents sequence similarity to the core region of the engrailed homology-1 (eh1) domain 

present in the transcription repressor Engrailed (En) (Smith and Jaynes, 1996). The TN domain 

has been proposed to form transcriptional repression complexes by interacting with members of 

the Groucho/Transducin-like enhancer of split (Gro/TLE) family and this mechanism underlies the 

repressive activity of Nkx2 and Nkx6 proteins during neural patterning events in the ventral neural 

tube (Mirmira et al., 2000; Muhr et al., 2001). The NK2-specific domain (NK2-SD), specific for NK-

2 proteins, is separated from the carboxy (C)-terminal end of the homeodomain by a short linker 

and possesses a hydrophobic core sequence that constitutes a putative protein-protein interface 

(Bodmer, 1993; Lints et al., 1993; Price et al., 1992) (Figure 2). NK2-SD does not seem to be 

required for binding specificity. Instead, this domain appears to function as an intramolecular 

inhibitor of a C-terminus transcriptional activator domain (De Felice et al., 1995; Guazzi et al., 

1990; Iype et al., 2004; Watada et al., 2000). In addition to the presumably C-terminus activator 

domain, an amino terminal portion was also reported to mediate the transcriptional activation of 

some NK-proteins, although the in vivo functional relevance of this activity requires further 

elucidation (Chen and Schwartz, 1995; De Felice et al., 1995). 

1.1.2. Nkx transcription factors in mouse CNS development  

In the vertebrate CNS, Nkx proteins are expressed within the medial neural plate and ventral 

neural tube in distinct dorso-ventral (DV) and antero-posterior (AP) domains. Multiple lines of 

evidence have shown that Sonic hedgehog (Shh) signalling activates the expression of Nkx genes 

throughout the CNS (Alanentalo et al., 2006; Dale et al., 1997; Ericson et al., 1995; Kohtz et al., 

1998; Pabst et al., 2000; Qiu et al., 1998; Shimamura and Rubenstein, 1997). In addition, some 
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Nkx proteins may contribute to maintaining their expression by directly acting on their own 

regulatory regions (Chu et al., 1998; Iype et al., 2004; Saunders et al., 1998). Nkx proteins 

typically function before cell cycle exit by coupling spatial patterning to ventral-fate specification. In 

the spinal cord, members of the Nkx family respond to graded Shh signalling by instructing 

progenitor cells to adopt specific identities while repressing the fates of neighbouring cells (Briscoe 

et al., 2000; Briscoe et al., 1999; Muhr et al., 2001; Sander et al., 2000). For instance, Nkx2-2 

establishes the ventral-most progenitor cell domain in the spinal cord (V3 interneuron progenitor 

domain, p3) by cross-repressing the expression of the homeodomain transcription factor Paired-

box 6 (Pax6). In the absence of Nkx2-2, neuronal progenitors undergo a ventral-to-dorsal 

transformation, generating motor neurons (pMN) instead of V3 interneuron progenitors (Briscoe et 

al., 2000; Briscoe et al., 1999). Within each ventral progenitor domain, Nkx proteins initiate a 

cascade of transcriptional interactions that will ultimately determine the identity of specific classes 

of postmitotic neurons. In the motor neuron progenitor domain (pMN), for example, Nkx6-1 and 

Nkx6-2 instruct the generation of motor neurons by activating the expression of the basic helix-

loop-helix (bHLH)3 transcription factor Oligodendrocyte lineage 2 (Olig2), which then promotes the 

expression of motor neuron subtype-specific determinants (Briscoe et al., 2000; Novitch et al., 

2001; Sander et al., 2000; Shirasaki and Pfaff, 2002; Vallstedt et al., 2001).  

The expression of Nkx proteins is maintained in certain populations of postmitotic neurons, which 

suggests that these transcription factors also play a role in regulating neuronal subtype-specific 

and differentiation programs. In the spinal cord, the postmitotic expression of Nkx6-1 defines motor 

neuron pools within the lateral motor column (LMC) and regulates muscle nerve trajectories and 

target specificity towards individual limb muscles (De Marco Garcia and Jessell, 2008). In the 

forebrain, Nkx2-1 determines the specification of hypothalamic progenitor cells and the 

persistence of Nkx2-1 expression in hypothalamic differentiated neurons controls the precise 

expression of puberty and sexual development regulatory genes (Kimura et al., 1996; Lee et al., 

2001; Mastronardi et al., 2006)  

1.2. Nkx2-1 function in the ventral telencephalon  

Early in development (around Embryonic day [E] 8.5 in mouse), the anterior neural plate gives rise 

to the prosencephalon (or embryonic forebrain) that consists of the diencephalon and 

telencephalic vesicles (Marín et al., 2000; Rubenstein et al., 1998) (Figure 3). The telencephalon 

comprises two major regions: the pallium (roof) and the subpallium (base). The pallium is 

organized into four main radial subdivisions (medial, dorsal, lateral and ventral pallium), originating 

cortical structures, such as the cerebral cortex and hippocampus from the dorsal and medial 

pallium, respectively, and nuclear structures, such as the cortical amygdala and claustrum from 

                                                        
3 A class of transcription factors characterized by the presence of two α-helices separated by a loop; the 
helices mediate dimerization and the adjacent basic region is required for DNA binding. 
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the lateral and ventral pallium, respectively. The subpallium consists of three primary subdivisions 

that extent medially into the septum: the striatal domain, derived from lateral ganglionic eminence 

(LGE) progenitor cells, the pallidal domain, derived from medial ganglionic eminence (MGE) 

progenitor cells, and the telencephalic stalk domain, containing the anterior entopeduncular and 

preoptic areas (AEP and POA) (Marín and Rubenstein, 2002; Puelles et al., 2000; Puelles et al., 

1999). Recent work has included the AEP within the ventral aspect of the MGE (Flames et al., 

2007) (Figure 3).  

 

Expression of Nkx2-1 is restricted to the ventral-most domains of the forebrain, including the 

ventral telencephalon and the hypothalamus (Guazzi et al., 1990; Price et al., 1992; Shimamura et 

al., 1995). In the telencephalon, Nkx2-1 is expressed from the eleven somites stage in progenitor 
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cells of the MGE, POA and septal anlage where it plays a fundamental role in interpreting 

patterning signals and imposing a specification and differentiation code. The contribution of Nkx2-1 

for these developmental processes will be further detailed in the following sections.  

1.2.1. Patterning the dorsoventral axis of the subpallium  

As in other regions of the CNS, the generation of distinct progenitor domains along the 

dorsoventral axis of the subpallium is induced by the activity of morphogenes4 that impose the 

acquisition of specific cell types through the activation of transcription factors (Marín and 

Rubenstein, 2002). Shh is initially secreted from the prechordal mesoderm and induces its own 

expression in the overlying ventral-most region of the telencephalon, including the proliferative 

region of the POA and the mantle of the MGE (Ericson et al., 1995; Shimamura et al., 1995). Shh 

expression in the telencephalon forms a reciprocal gradient with the repressor form of the Gli35 

zinc finger transcription factor (Gli3R) and promotes ventral identity in part by inhibiting the 

dorsalizing activity of Gli3R (Rallu et al., 2002). In addition, several lines of evidence suggest that 

activation of fibroblast growth factor 8 (FGF8) by Shh and repression of bone morphogenetic 

protein (BMP) signalling are also required for the establishment of ventral identity in the 

telencephalon (Anderson et al., 2002; Hebert and Fishell, 2008; Lupo et al., 2006; Storm et al., 

2006). The combinatorial activity of these molecules induces the expression of subpallial-specific 

genes, such as the transcription factors Distal-less homeobox 1 and 2 (Dlx1, Dlx2), Genomic 

screened homeobox 2 (Gsh2) and the basic helix-loop-helix Mammalian archaete-schute 

homologue 1 (Mash1). Some other genes, such as Nkx2-1, are only induced in the ventral-most 

domains of the subpallium (Dale et al., 1997; Ericson et al., 1995; Gunhaga et al., 2000; Kohtz et 

al., 1998; Pera and Kessel, 1997; Rallu et al., 2002; Shimamura and Rubenstein, 1997) (Figure 4). 

Interestingly, Shh and Nkx2-1 are expressed in overlapping domains in the ventral telencephalon 

and these genes appear to cross-activate each other (Jeong et al., 2006; Sussel et al., 1999; Xu et 

al., 2005).  

Cross-regulatory interactions between transcription factors sharpen the boundaries between 

progenitor domains and contribute for the establishment of regional identity along the subpallium 

(Figure 4). Gsh2 controls the specification of the LGE in part by repressing the expression of 

cortical specification genes in the subpallium (Toresson et al., 2000; Yun et al., 2001). For 

instance, analysis of mouse mutants for Gsh2 and Pax6 demonstrate that their mutual antagonism 

is required for the positioning of the pallial-subpallial boundary at the interface between the LGE 

and the ventral pallium (Toresson et al., 2000; Yun et al., 2001). Gsh2 also cooperates with Nkx2-

                                                        
4 Secreted factors that can induce different cell fates in a concentration-dependent manner by forming a 
gradient.  
5 Transducers of the Shh signalling pathway displaying both activator and repressor activities located 
respectively in the C-terminus and N-terminus of the protein. Gli transcription factors contain zinc fingers, a 
protein motif in which a cysteine or cysteine-histidines residues coordinate a zinc ion. This module can 
operate both in DNA-recognition and protein-protein interactions. 
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1 in the acquisition of ventral identities in the subpallium, as evidenced by the severe patterning 

defects observed in Nkx2-1-/-;Gsh2-/- double mutants (Corbin et al., 2003). Furthermore, genetic 

evidence suggests that Pax6 and Nkx2-1 antagonize each other to establish the boundary 

between the LGE and MGE; in Pax6 mutants the expression of Nkx2-1 expands dorsally into the 

LGE whereas in the absence of Nkx2-1 the expression of Pax6 and other LGE-specific genes 

extends ventrally (Chapouton et al., 1999; Stoykova et al., 2000; Sussel et al., 1999). Although 

Pax6 was shown to repress Nkx genes in the hindbrain and spinal cord (Briscoe et al., 2000; 

Briscoe et al., 1999), it is not clear whether these transcription factors cross-repress each other 

directly or through Shh/Gli3R signalling in the telencephalon (Corbin et al., 2003; Chiang et al., 

1996; Sussel et al., 1999; Xu et al., 2005).  

 

Shh signalling regulates several processes during telencephalic development. At early stages 

(E8.5-E11.5), Shh is fundamental for ventral telencephalic patterning (Chiang et al., 1996; Fuccillo 

et al., 2004), while loss of Shh neuronal expression at later time points (E12.5) does not affect the 

expression of ventrally restricted genes (Xu et al., 2005). At these stages, Shh function is required 

to preserve the identity of MGE precursors by sustaining the expression of key transcription 
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factors, such as Nkx2-1 and Nkx6-2, contributing thereby to the expansion of these progenitor 

pools (Machold et al., 2003; Xu et al., 2005). In this context, Shh acts through a Gli3R-independent 

mechanism (Gulacsi and Anderson, 2006).  

1.2.2. Specification and differentiation of ventral subpallial cells 

Nkx2-1 is required for the specification of MGE and POA precursors and determines the 

acquisition of cell-specific properties of their derivatives (Corbin et al., 2003; Kimura et al., 1996; 

Sussel et al., 1999). In the absence of Nkx2-1 function, MGE and POA progenitors (except the 

most ventral aspect of the POA) are re-specified to a dorsal fate similar to that of LGE progenitors, 

a phenotype resembling the ventral-to-dorsal transformation previously described for the 

Drosophila NK2/vnd mutant or Nkx2-2-deficient neurons in the spinal cord (Briscoe et al., 1999; 

Chu et al., 1998; McDonald et al., 1998; Weiss et al., 1998). In Nkx2-1 mutant mice, genes 

normally expressed in the MGE and POA progenitor domains, such as the LIM-homeobox6 

transcription factors Lhx6 and Lhx7 (Grigoriou et al., 1998; Wanaka et al., 1997), are absent. 

Concurrently, LGE- (e.g. Pax6 and the POU-homeodomain transcription factor Octamer binding 

protein 6 [Oct6]) and CGE-specific genes (e.g. COUP transcription factor 2 [Coup-TFII]) are 

induced in the mutant MGE/POA region, suggesting that Nkx2-1 both specifies a ventral 

telencephalic fate and inhibits a LGE/CGE phenotype (Butt et al., 2008; Corbin et al., 2003; Sussel 

et al., 1999). Analysis of the ventral telencephalon of E18.5 Nkx2-1-/- mice revealed a pallidal to 

striatal transformation. In these mice, neuronal populations derived from MGE/POA precursors 

(such as globus pallidus or basal forebrain cholinergic projection neurons7) are missing (Figure 

5A), and LGE-derived striatal projection neurons occupy a much larger region of the subpallium 

than in wild type mice (Butt et al., 2008; Kimura et al., 1996; Sussel et al., 1999).  

Whereas cortical projection neurons derive from the pallium, there is compelling evidence that the 

majority of cortical gamma-aminobutyric acid (GABA)-producing (GABAergic) interneurons8 are 

originated in the subpallium and reach the cortex in several migratory streams (Anderson et al., 

1997; De Carlos et al., 1996; Fogarty et al., 2007; Lavdas et al., 1999; Sussel et al., 1999; 

Tamamaki et al., 1997; Wichterle et al., 1999; Wichterle et al., 2001). In Dlx1/2 double mutant 

embryos, which show abnormal differentiation of late born subpallial cells, there is a dramatic 

reduction (around 75%) in the number of neocortical GABAergic interneurons (Anderson et al., 

1997). In agreement with a subpallial origin for cortical interneurons, Nkx2-1 mutants also display 

                                                        
6 Homeodomain transcription factors that contain two tandem zinc finger protein motifs (LIM domain) 
implicated in protein-protein interactions. 
7 Neurons that send axons outside their local environment. In the subpallium, pallidal and striatal projection 
neurons use gamma-aminobutyric acid (GABA) as the main neurotransmitter whereas the basal forebrain 
cholinergic neurons use acetylcholine (Ach). In the pallium, projection neurons use glutamate as the main 
neurotransmitter. 
8 Neurons that establish synaptic contacts with nearby neurons. The most common type of telencephalic 
interneurons uses GABA as neurotransmitter and is located in the cortex and striatum. In the striatum, there 
is an additional interneuronal population that contains Ach. 
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a severe reduction (around 50%) in the number of cortical GABAergic interneurons, suggesting 

that many of these indeed derived from MGE and/or POA progenitors that require Nkx2-1 for its 

specification (Butt et al., 2008; Kimura et al., 1996; Sussel et al., 1999). In addition, GABAergic 

and cholinergic striatal interneurons are missing in Nkx2-1 mutant mice (Butt et al., 2008; Kimura 

et al., 1996; Marín et al., 2000; Sussel et al., 1999), demonstrating that striatal interneurons do not 

derive from LGE precursors (that give rise to striatal projection neurons) but instead originate from 

Nkx2-1-expressing progenitor cells. Altogether, these results demonstrate that subpallial Nkx2-1-

expressing precursors in the MGE/POA generate many cortical and most striatal interneurons that 

subsequently migrate to their corresponding target territories (Wichterle et al., 2001) (Figure 5A). 

 

What types of cortical and striatal interneurons require Nkx2-1 function? Telencephalic GABAergic 

interneurons constitute a heterogeneous group of cells with different morphological, 

electrophysiological and molecular (i.e. expression of neuropeptides, calcium binding proteins, 

ionic channels, transcription factors, etc.) characteristics [for a recent update on interneuron 

terminology, see (Ascoli et al., 2008)]. However, the majority of cortical and striatal GABAergic 

interneurons can be classified in three large groups based on the non-overlapping expression of 

the calcium binding proteins Parvalbumin (PV), Calretinin (CR) and the neuropeptide Somatostatin 

(SST) (Gonchar and Burkhalter, 1997; Kubota and Kawaguchi, 1994) (Figure 6). Interneurons 

expressing STT and neuropeptide Y (NPY, an interneuronal population that largely overlaps with 

SST) were almost absent in the cortex and striatum of Nkx2-1 mutant mice (Anderson et al., 

2001), suggesting that at least this large group of interneurons requires Nkx2-1 function. Although 

the requirement of Nkx2-1 for the specification of PV positive interneurons was not determined in 
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the initial analysis of Nkx2-1 mutants due to the late onset of the expression of this protein 

(Alcántara et al., 1996), both in vitro and in vivo evidence have shown that Nkx2-1 is also required 

for the specification of this group of interneurons (Butt et al., 2008; Wonders et al., 2008; Xu et al., 

2004). By contrast, several lines of evidence demonstrate that CR positive interneurons do not 

required Nkx2-1 for their development (Butt et al., 2008; Marín et al., 2000; Sussel et al., 1999; Xu 

et al., 2004). Remarkably, a recent analysis of Nkx2-1 conditional mutants has shown that loss of 

Nkx2-1 leads to a large increase in the number of CR positive cortical interneurons at the expense 

of PV and SST populations (Butt et al., 2008), reinforcing the view that a ventral-to-dorsal 

transformation of progenitor fates occurs in these mutants. In summary, these genetic 

experiments, along with fate-mapping (Fogarty et al., 2007; Miyoshi et al., 2007; Xu et al., 2008) 

and transplantation experiments (Anderson et al., 2002; Butt et al., 2005; Flames et al., 2007; Nery 

et al., 2002; Valcanis and Tan, 

2003; Wichterle et al., 2001; 

Xu et al., 2004), have shown 

that Nkx2-1-expressing 

precursors from the MGE are 

the main source of PV and 

SST positive interneurons 

whereas CR-expressing 

bipolar cortical interneurons 

are mainly derived from the 

Gsh2-positive and Nkx2-1-

negative dorsal aspect of the 

caudal ganglionic eminence 

(CGE) (Figure 6). 

 

Nkx2-1 is also required for the specification of distinct populations of striatal interneurons. Analysis 

of Nkx2-1-Cre;ROSA-YFP transgenic mice revealed that the majority of GABAergic (all PV- and 

most SST/NPY- expressing interneurons) and all cholinergic striatal interneurons derive from 

Nkx2-1-expressing progenitors (Figure 5A). In contrast to MGE-derived cortical interneurons, 

however, striatal interneurons maintain Nkx2-1 expression until postnatal stages (Marín et al., 

2000; Xu et al., 2008). Analysis of E18.5 Nkx2-1-/- and postnatal Olig2-Cre;Nkx2-1Fl/Fl mutant mice 

revealed that interneurons are either absent or severely reduced in the striatum of these animals 

(Butt et al., 2008; Marín et al., 2000), which suggests that Nkx2-1 is required for the specification 

of virtually all striatal interneurons. The only exception to this rule appears to be some SST- and 

CR- expressing populations. The fact that Nkx2-1 removal causes a more dramatic phenotype in 

the striatum than in the cortex, along with the observation that Nkx2-1 expression is maintained in 
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the majority of postmitotic striatal but not cortical interneurons (Figure 5B), suggests that Nkx2-1 

could be additionally required for the migration or differentiation of striatal interneurons. 

Experimental evidence therefore suggests that Nkx2-1 acts as a master molecular switch that 

simultaneously induces MGE/POA and represses LGE/CGE genetic programmes at different 

developmental points. Which mechanisms are orchestrated by Nkx2-1 to achieve these goals? In 

the spinal cord, the combinatorial expression of members of the LIM-homeodomain family of 

transcription factors controls neuronal-subtype specification (Shirasaki and Pfaff, 2002). Similarly, 

the LIM homeodomain transcription factors Lhx6 and Lhx7 are expressed in MGE/POA-derived 

postmitotic cells and appear to be the main effectors of Nkx2-1 in the specification and 

differentiation of subpallial cells (Grigoriou et al., 1998; Sussel et al., 1999; Zhao et al., 2003) 

(Figure 5B). Nkx2-1 protein directly activates the transcription of Lhx6 in MGE-derived cells and 

this transcription factor acts downstream of Nkx2-1 in the acquisition of PV and SST subtype-

specific properties (Du et al., 2008; Fogarty et al., 2007; Lavdas et al., 1999; Liodis et al., 2007; 

Zhao et al., 2008). Lhx6 mutant mice show a dramatic reduction in the number of both PV- and 

SST- expressing striatal and cortical interneurons. Moreover, ectopic expression of Lhx6 in Nkx2-1 

mutant mice can rescue the generation of PV and SST positive interneurons (Du et al., 2008; 

Liodis et al., 2007). However, in contrast to Nkx2-1 loss-of-function, there is no obvious increase in 

the number of CR- or VIP- expressing interneurons in Lhx6 mutant mice, suggesting that the 

repression of CGE-like properties is not mediated by Lhx6 (Butt et al., 2008; Liodis et al., 2007; 

Zhao et al., 2008). Lhx6 regulate additional aspects in the differentiation of MGE-derived 

GABAergic cells, although it does not seem to be required for the acquisition of the GABAergic 

phenotype (Alifragis et al., 2004; Liodis et al., 2007; Marín et al., 2000). For example, Lhx6 

appears to be required for the migration and final allocation of interneurons into the appropriate 

cortical layers (Lavdas et al., 1999). Lhx6 may mediate these functions by regulating the 

expression of receptors that have been previously implicated in controlling the migration of cortical 

interneurons, such as the tyrosine kinase9 receptor for Neuregulin-1 (NRG1), erythroblastic 

leukemia viral oncogene homolog 4 (ErbB4), and the chemokine receptor CXC chemokine 

receptor 4 (CXCR4) (Flames et al., 2004; Li et al., 2008; Lopez-Bendito et al., 2008; Stumm et al., 

2003; Zhao et al., 2008). 

Lhx7 is expressed by ventral MGE/POA subventricular zone cells and in many derivatives 

restricted to the subpallium such as striatal cholinergic interneurons (Fragkouli et al., 2005; Zhao 

et al., 2003). Thus, in contrast to Lhx6, Lhx7 is not expressed in migrating cortical interneurons. 

Lhx7 presumably lies downstream of Nkx2-1 in inducing cholinergic fate, since Lhx7 mutant mice 

lack most cholinergic neurons throughout the ventral telencephalon, including striatal interneurons 

and projection neurons of the basal forebrain (Fragkouli et al., 2005; Mori et al., 2004; Zhao et al., 

                                                        
9 A family of membrane receptors containing an intracellular domain that catalyses the phosphorylation by 
adenosine triphosphate (ATP) of specific tyrosine residues on target proteins.  
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2003) (Figure 5B). The presence of some cholinergic neurons in Lhx7 mutant mice and the 

expression of this transcription factor in some non-cholinergic neurons in the basal telencephalon 

suggest that Lhx7 is not sufficient to induce the cholinergic phenotype in all neurons and, similar to 

the spinal cord, might cooperate with other LIM transcription factors (e.g. Isl LIM homeobox 1 

[isl1]) to induce this phenotype in the subpallium (Pfaff et al., 1996; Wang and Liu, 2001).  

1.3. Migration of MGE-derived interneurons  

In contrast to projection neurons, which use radial migration to reach their final destination, MGE-

derived cortical and striatal interneurons migrate tangentially to their corresponding target 

territories by following specific guidance cues. Tangentially migrating neurons appears to respond 

to some of the same molecules that control guidance of growing axons (Tessier-Lavigne and 

Goodman, 1996) and display a typical morphology that includes a branched leading process 

(Marín et al., 2006). MGE-derived interneurons adopt preferentially two migratory routes in the 

developing telencephalon; at early developmental stages (E12.5), interneurons migrate superficial 

to the striatal mantle whereas and at later time points (E13.5-E15.5) these cells, together with 

CGE-derived cortical interneurons, adopt a deep route of migration (Butt et al., 2005; Marín and 

Rubenstein, 2001; Miyoshi et al., 2007). In general, the migration of MGE-derived interneurons is 

regulated by the action of two types of factors: those that stimulate their movement (motogenic 

factors; molecules that promote cell motility without giving directionality) and those that direct cells 

through appropriate pathways towards the corresponding targets (guidance factors) (Figure 7).  

1.3.1. Motogenic factors  

MGE-derived cells have an outstanding cell-autonomous migratory capability that is maintained 

even when cultured in vitro in an artificial matrix (collagen or matrigel10) or after transplantation into 

an adult mouse brain (Nery et al., 2002; Wichterle et al., 1999). In addition, several molecules 

expressed in the route of MGE-derived cells have been suggested to further enhance their 

migration (Figure 7A). For example, several lines of evidence suggest that hepatocyte growth 

factor (HGF) promote the migration of MGE-derived cells (Powell et al., 2001). Tangential 

migration of MGE-derived cells is also strongly stimulated by brain derived nerve factor (BDNF), 

neurothrophin 4 (NT4) and glial-derived neurothropic factor (GDNF) (Polleux et al., 2002; Pozas 

and Ibañez, 2005). The activity of GDNF in MGE cells is partially mediated by the mitogen-

activated protein (MAP) kinase signalling, whereas BDNF seem to act trough phosphoinositide-3-

kinase (PI3K), a signalling cascade that regulates the activity of the cytoskeleton by modulating 

                                                        
10 The trade name for a gelatinous protein mixture obtained from Engelbreth-Holm-Swarm mice sarcoma, 
which is mainly composed by extracellular matrix proteins such as laminin, collagem type IV and entactin. 
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the balance of activation of proteins from the Ras homolog gene family (Rho) of GTPases11 (Marín 

et al., 2006; Polleux et al., 2002; Pozas and Ibañez, 2005). CXCL12, a member of the CXC 

subfamily of chemokines (also known as stromal cell-derived factor-1, SDF-1) was also reported to 

exert a strong motogenic activity over CXCR4-expressing MGE-derived cells. This activity, 

however, seems to be required primarily for the tangential dispersion of interneurons after they 

have arrived to the cortex (Li et al., 2008; Lopez-Bendito et al., 2008; Stumm et al., 2003). 

 

1.3.2. Guidance factors 

Guidance requires the patterned expression of attractive or repellent molecules within the 

substrate and the graded expression of diffusible molecules secreted by distance sources (Butler 

and Tear, 2007). The response of a migrating neuron to the external guidance cues depends on 

the complement of receptors it expresses. Guidance receptors act either through the activation of 

second messenger systems that direct local rearrangement of the cytoskeleton and promote 

growth towards or away from the target or by mediating differential adhesion (Butler and Tear, 

2007). Most of the described guidance molecules can be either attractive or repulsive depending 

on the status of the receiving neuron; different receptor complexes at the membrane and the 

recent history of second-messenger activation in the cytosol (e.g. levels of cyclic adenosine 

monophosphate [cAMP]) can provide alternative responses to the same cue (Dickson, 2002; Song 
                                                        
11 A family of small signalling proteins with hydrolase activity (bind and hydrolyse guanosine triphosphate 
[GTP]), which regulate downstream proteins involved in numerous processes, such as actin dynamics.  
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et al., 1998).  

Several signalling systems that confer directionality to the migration of MGE-derived interneurons 

have also been described (Figure 7A). The general direction of migration for MGE-derived 

interneurons –ventral to dorsal– appears to be established by the simultaneous activity of 

chemorepulsive and chemoattractive factors produced by the POA and cortex, respectively (Marín 

et al., 2003; Wichterle et al., 2003). Some studies have suggested that repulsion of interneurons 

from the subpallium is mediated by Slits (Zhu et al., 1999), a family of large extracellular matrix 

proteins that possess chemorepulsive activity for growing axons and migrating cells in a variety of 

systems (Brose and Tessier-Lavigne, 2000). However, the chemorepulsive activity found in the 

POA is still present in mice deficient for both Slit1 and Slit2, the Slit members expressed in the 

subpallium (Marín et al., 2003). Netrin1 has also been implicated in repelling striatal projection 

neurons from the LGE (Hamasaki et al., 2001), but mice simultaneously lacking Slit1, Slit2 and 

Netrin1 have normal numbers of cortical interneurons at birth (Marín et al., 2003). Thus, the nature 

of the interneuron chemorepellent located in the POA remains to be identified (Figure 7A). 

Cortical chemoattraction of MGE-derived migrating interneurons appears to be mediated, at least 

in part, by NRG1 (Flames et al., 2004) (Figure 7A). Neuregulins (NRG1-4) are a family of proteins 

containing an epidermal growth factor (EGF)-like motif that activates membrane-associated 

tyrosine kinases related to the EGF receptor (also known as ErbB1). The EGF-like domain of NRG 

elicits ErbB receptor dimerization, tyrosine phosphorylation and the activation of downstream 

signalling pathways. NRG1 directly binds to the EGF motif of ErbB3 and ErbB4 receptors, which 

alone or in combination with ErbB2 mediate the large range of functions attributed to this factor 

during the development of the nervous system (Buonanno and Fischbach, 2001; Falls, 2003). 

Unlike ErbB2 and ErbB3, which appear to require heterodimerization, ligand-induced 

homodimerizarion of ErbB4 has been reported to be functionally competent in some systems 

(Plowman et al., 1993). The Nrg1 gene is subjected to differential promoter usage and alternative 

splicing giving rise to three major classes of proteins; types I and II comprise secreted isoforms 

that contain an extracellular immunoglobulin (Ig)-like domain (NRG1-Ig) whereas type III contain 

an extracellular cysteine-rich domains (CRD) and are membrane-bounded (Buonanno and 

Fischbach, 2001; Falls, 2003). In the developing telencephalon, Nrg1-CRD is strongly expressed 

throughout the LGE, from the subventricular zone to the striatal mantle, whereas Nrg1-Ig is 

expressed in a lateral to medial gradient in the cortex (Flames et al., 2004) (Figure 7A). Nrg1-CRD 

and Nrg-Ig isoforms constitute, respectively, a subpallial permissive corridor and a strong cortical 

chemoattractive signal for a population of MGE-derived migrating interneurons expressing the 

ErbB4 receptor (Flames et al., 2004; Yau et al., 2003). Perturbing ErbB4 function abolishes the 

cortical attraction and produces a reduction in the number of MGE-derived interneurons 

tangentially migrating to the cortex at developmental stages and a deficit in GABAergic 

interneurons in the postnatal cortex (Flames et al., 2004). The requirement of attractive signals for 
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the guidance of MGE-derived striatal interneurons has not been reported. 

Guidance molecules are also required for the segregation of MGE-derived cells to different 

telencephalic structures. Thus, sorting of interneurons destined for the cerebral cortex or striatum 

appears to be mediated by Neuropilin/classIII-Semaphorin interactions (Marín et al., 2001; 

Tamamaki et al., 2003) (Figure 7A). Semaphorins (Sema) are members of a large, highly 

conserved family of molecular signals that were initially identified through their role in axon 

guidance (Kolodkin et al., 1993; Luo et al., 1993), and later implicated in regulating cell motility and 

attachment in vascular growth, immune system and tumour progression (Kruger et al., 2005; 

Tamagnone and Comoglio, 2004). All semaphorins contain a conserved sema domain and have 

been grouped on the basis of their structural elements and amino-acid similarity; the invertebrate 

classes 1 and 2; the vertebrate classes 3 to 7 and the final group is encoded by viruses. Except for 

the class 2, 3 and the viral semaphorins that are secreted, proteins from all other classes are 

membrane-bound. Plexins (type A to D) are the predominant family of semaphorin receptors and 

can function as both ligand-binding and as signalling receptor, mediating many biological functions 

of semaphorins through regulating integrins and controlling the activation of Rho-family GTPases 

(Kruger et al., 2005). Most plexin-semaphorins interactions are mediated through the sema 

domain of both proteins, except for class 3 semaphorins, where most members require neuropilins 

as essential semaphoring-binding co-receptors to signal through class-A plexins. Neuropilins 

contain a short intracellular domain that lack intrinsic enzymatic activity and mediate the repulsive 

actions of class 3 semaphorins in axons (Gu et al., 2005; He and Tessier-Lavigne, 1997; Kolodkin 

et al., 1997). However, class 3 semaphorins can also be interpreted as attractive signals 

depending on the receptor complexes expressed by neurons (Castellani et al., 2002; Chauvet et 

al., 2007). In the developing telencephalon, Neuropilin1 (Nrp1) and Neuropilin2 (Nrp2) are 

expressed by interneurons that migrate to the cortex but not by interneurons that invade the 

developing striatum. Expression of neuropilins allows migrating cortical interneurons to respond to 

a chemorepulsive activity in the striatal mantle, of which the class 3 semaphorins (Sema3A and 

Sema3F) are components (Figure 7B). In contrast, lack of neuropilin expression by striatal 

interneurons is fundamental for the invasion of their target territory (Marín et al., 2001). Thus, loss 

of Nrp1 or Nrp2 function increases the number of interneurons migrating to the striatum and 

decrease the number reaching the cerebral cortex, which leads to a final increase in the number of 

NPY-expressing interneurons in the adult striatum (Marín et al., 2001). So, the final destination of 

MGE-derived tangentially migrating interneurons (striatum or cortex) is determined by the 

expression of the class 3 semaphorin receptors Nrp1 and Nrp2. The mechanisms that control the 

selective expression of these receptors by MGE-derived cortical but not striatal interneurons and 

which ultimately determine the sorting of these populations are currently unknown. 
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1.3.3. What mechanisms control the selective expression of guidance 

receptors? 

During development, axons are instructed to navigate to their corresponding target areas by 

simultaneously integrating multiple extracellular signals along the pathway (Tessier-Lavigne and 

Goodman, 1996). The precise guidance of each neuronal population is achieved by the selective 

perception of environmental cues; migrating axons continuously adapt their response by 

modulating the expression of guidance receptors and their intracellular signaling cascades. A key 

mechanism regulating selectivity in axon guidance decisions is transcriptional regulation in 

postmitotic neurons (Butler and Tear, 2007; Polleux et al., 2007; Shirasaki and Pfaff, 2002). In the 

vertebrate spinal cord, for example, the combinatorial activities of different LIM-homeodomain 

transcription factors confer motor neuron subtypes with the ability to select distinct axonal 

pathways and final targets (Kania et al., 2000; Sharma et al., 2000; Sharma et al., 1998; Shirasaki 

et al., 2006; Thaler et al., 2004). Studies over the past few years have begun to identify possible 

downstream guidance effectors regulated by these transcription factors. In spinal motor neurons, 

Lim1 determines the trajectory of motor axons emerging from the lateral aspect of the lateral motor 

column (LMCl) by promoting the expression of the Eph receptor tyrosine kinase A4 (EphA4) in 

these cells. This allows LMCl neurons to select a dorsal trajectory avoiding the ventral limb, which 

expresses the chemorepellent factor EphrinA5 (Kania and Jessell, 2003). Similar mechanisms 

appear to control the expression of guidance receptors in other axonal tracts, such as the 

thalamocortical and retinal projections (Butler and Tear, 2007; Polleux et al., 2007; Shirasaki and 

Pfaff, 2002). In the retina, for instance, the zinc finger protein of the cerebellum 2 (Zic2) 

transcription factor determines the ipsilateral projection of ventro-temporal retinal ganglion cells by 

regulating the expression of EphB1, the receptor for the chemorepulsive cue EphrinB2 expressed 

in the optic chiasm (Garcia-Frigola et al., 2008; Lee et al., 2008; Williams et al., 2004). Although it 

remains to be elucidated whether transcription factors directly or indirectly regulate the expression 

of guidance receptors in all of these processes, recent evidence in spinal commissural neurons 

strongly suggests that direct transcriptional regulation operates during axon guidance (Wilson et 

al., 2008).  

The migration of MGE-migrating cortical and striatal neurons to their corresponding target 

territories is subjected to several levels of regulation, ranging from the common activity of 

motogenic factors to the selective action of environmental guidance cues (Marín and Rubenstein, 

2003). The molecular mechanisms controlling neuronal migration have multiple similarities with 

those described for axon guidance. For instance, migrating neurons and growing axons are 

instructed towards their final destination by the same guidance molecules (Bagri et al., 2002; Bagri 

and Tessier-Lavigne, 2002; Brose and Tessier-Lavigne, 2000) and are able to respond to distinct 

cues by the differential expression of specific guidance receptors (Dickson, 2002). In axon 

guidance, transcriptional regulation is one of the key mechanisms controlling the repertoire of 
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receptors expressed by each neuron. Is transcriptional regulation also relevant for neuronal 

migration? There is increasing evidence that transcription factors also modulate neuronal 

migration and guidance decisions in the developing mouse brain. However, the precise 

contribution of such regulators for the migration and sorting of MGE-derived interneurons is 

currently unknown.  

1.4. Aims 

The homeodomain transcription factor Nkx2-1 plays fundamental roles in the development of the 

ventral subpallium. For example, Nkx2-1 interprets Shh signalling and instructs specific cell-fates 

in MGE-derived cells. During development, the MGE is simultaneously the source for several 

telencephalic cell types, such as cortical and striatal interneurons. Interestingly, the expression of 

Nkx2-1 is only maintained in the striatal population, suggesting a possible function for this 

transcription factor in controlling the migration and differentiation of these cells. Strikingly, the 

precise sorting of these two MGE-derived populations relies in the differential expression of 

receptors for the class 3 semaphorins and transcription regulation has been proposed to be the 

main mechanism controlling target selectivity in axon guidance. Preliminary experiments of Nkx2-1 

gain-of-function in organotypic embryonic slices suggested a potential role for Nkx2-1 in controlling 

target decisions of MGE-derived interneurons (O. Marín, unpublished observations). With this 

scenario in mind, the major aim of this study was to investigate the functional relevance of Nkx2-1 

postmitotic expression for the migration of MGE-derived striatal interneurons. To achieve this goal, 

we proposed to investigate:  

 

1. The implication of Nkx2-1 postmitotic expression in controlling the sorting of MGE-derived 

cortical and striatal interneurons by modulating the Sema/Nrp signalling. 

 

2. The involvement of Nkx2-1 in mediating the responsiveness of MGE-derived striatal 

interneurons to additional environmental cues required for their migration. 
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SUMMARY

The homeodomain transcription factor Nkx2-1 plays
key roles in the developing telencephalon, where it
regulates the identity of progenitor cells in the medial
ganglionic eminence (MGE) and mediates the speci-
fication of several classes of GABAergic and cholin-
ergic neurons. Here, we have investigated the post-
mitotic function of Nkx2-1 in the migration of
interneurons originating in the MGE. Experimental
manipulations and mouse genetics show that down-
regulation of Nkx2-1 expression in postmitotic cells
is necessary for the migration of interneurons to the
cortex, whereas maintenance of Nkx2-1 expression
is required for interneuron migration to the striatum.
Nkx2-1 exerts this role in the migration of MGE-
derived interneurons by directly regulating the ex-
pression of a guidance receptor, Neuropilin-2, which
enables interneurons to invade the developing stria-
tum. Our results demonstrate a role for the cell-fate
determinant Nkx2-1 in regulating neuronal migration
by direct transcriptional regulation of guidance
receptors in postmitotic cells.

INTRODUCTION

During development of the nervous system, migrating neurons

and axons are guided to their final destination by the coordinated

activity of multiple extracellular cues that act on specific mem-

brane receptors to steer their movement in the right direction

(Dickson, 2002; Tessier-Lavigne and Goodman, 1996). Because

neuronal guidance typically involves a complex set of instruc-

tions even in the simplest organisms, adoption of a specific

program of migration requires that neurons respond to guidance

cues in a highly regulated pattern, both in time and space. Tran-

scriptional regulation is a key determinant in this process, as it

ultimately represents one of the primary mechanisms controlling
the repertoire of receptors expressed by neurons (Butler and

Tear, 2007; Polleux et al., 2007).

Transcription factors regulating neuronal fate specification

typically function before the last division of progenitor cells, while

guidance decisions are made at later stages of development

(Jessell, 2000). Thus, it is likely that transcription factors ex-

pressed in postmitotic neurons are responsible for activating

specific migration and axon guidance programs. In the verte-

brate spinal cord, for example, the expression of a specific com-

bination of transcription factors in postmitotic motoneurons

appears to encode their axon trajectory and final targeting (Kania

et al., 2000; Sharma et al., 1998, 2000; Thaler et al., 2004). Inter-

estingly, some of the same transcription factors that regulate

axon guidance also play a major role in the early specification

of different neuronal pools, suggesting that the same transcrip-

tion factors may carry on different functions depending on the

cellular context (De Marco Garcia and Jessell, 2008; Müller

et al., 2003; Shirasaki and Pfaff, 2002). In addition to demonstrat-

ing the function of transcription factors in the regulation of axon

guidance, studies over the past few years have begun to identify

possible candidate genes that would function as downstream

effectors of these factors. For example, it has been suggested

that Lim1 expression in LMC neurons may regulate the expres-

sion of the receptor tyrosine kinase EphA4, which is essential

for the final targeting of their axonal projections to the limb mes-

enchyma (Kania and Jessell, 2003). Similarly, the role of the

transcription factor Zic2 in regulating midline crossing by retinal

axons appears to involve the regulation of another member of the

Eph family, EphB1 (Garcı́a-Frigola et al., 2008; Lee et al., 2008;

Williams et al., 2004).

Since migrating neurons and growing axons are instructed to-

ward their final destination by similar guidance molecules (Bagri

and Tessier-Lavigne, 2002; Brose and Tessier-Lavigne, 2000), it

seems conceivable that equivalent mechanisms regulate the

expression of guidance receptors in both migrating neurons

and axons. However, the function of specific transcription fac-

tors in the migration and positioning of neurons is still very limited

(McEvilly et al., 2002; Sugitani et al., 2002; Ge et al., 2006; Hand

et al., 2005; Le et al., 2007). In the developing telencephalon, the
Neuron 59, 733–745, September 11, 2008 ª2008 Elsevier Inc. 733
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Figure 1. Cortical Interneurons Downregulate Nkx2-1 Protein Expression after Leaving the MGE Progenitor Zone

(A) Coronal section through the brain of an E13.5 mouse embryo showing Nkx2-1 protein expression in the medial ganglionic eminence (MGE), striatum (Str),

globus pallidus (GP), preoptic area (POA), and septum (Se).

(B and C) Higher-magnification images of the areas boxed in (A).

(D–E0) MGE ventricular zone (VZ) from an E13.5 embryo depicting MGE cells stained with Nkx2-1 and propidium iodine (PI) (D and D0) and MGE progenitors

stained S-phase marker BrdU and Nkx2-1 (E and E0).

(F–H) Expression of Nkx2-1 protein in GFP-expressing cells after transplantation of GFP-expressing progenitors in the MGE. As illustrated in the schematic

diagram (F0 ) and the high-magnification images (G and H), the majority of migrating cells had undetectable levels of Nkx2-1 (green dots), many cells expressed

low levels of Nkx2-1 (yellow dots with green circle), and a small number of cells expressed high levels of Nkx2-1 protein (yellow dots). The numbers depicted in the

schematic (F0) describe the location of cells shown in (G) and (H).

H, hippocampus; LGE, lateral ganglionic eminence; LV, lateral ventricle; NCx, neocortex. Asterisk, transplant. Scale bars = 200 mm (A and F), 50 mm (B, C, G, and

H), and 10 mm (D–E0).
medial ganglionic eminence (MGE) is the origin of interneurons

that migrate tangentially to the striatum and cerebral cortex (Lav-

das et al., 1999; Marı́n et al., 2000; Sussel et al., 1999; Wichterle

et al., 1999, 2001). We have previously shown that sorting of

striatal and cortical interneurons to their respective target territo-

ries depends on neuropilin/semaphorin interactions (Marı́n et al.,

2001). Here, we have investigated the transcriptional mecha-

nisms regulating this process. We found that downregulation

of postmitotic Nkx2-1 expression is a necessary event for the

migration of interneurons to the cortex, whereas Nkx2-1 expres-

sion is required for interneuron migration to the striatum. Forced

Nkx2-1 expression in MGE-derived cells prevents interneuron

migration to the cortex, whereas loss of Nkx2-1 function reduces

the number of interneurons that accumulate in the striatum.

Nkx2-1 exerts this role in the migration of MGE-derived interneu-

rons by directly regulating the expression of Neuropilin-2 (Nrp2),

the receptor of Semaphorin-3F (Sema3F). Our results demon-
734 Neuron 59, 733–745, September 11, 2008 ª2008 Elsevier Inc.
strate that direct transcriptional regulation of guidance receptors

in postmitotic neurons is an essential mechanism in neuronal

migration.

RESULTS

Interneurons Migrating to the Cortex Rapidly
Downregulate Nkx2-1 Expression
Nkx2-1 is one of the earliest genes expressed in the mouse fore-

brain (Sussel et al., 1999). At embryonic day (E) 13.5, the peak of

interneuron generation in the mouse, Nkx2-1 is strongly ex-

pressed by cells in several progenitor domains of the subpallium,

including the MGE, the preoptic area, and part of the septum,

whereas it is absent from the lateral ganglionic eminence (Fig-

ure 1A). At this stage, Nkx2-1 expression was also observed in

many postmitotic neurons derived from the MGE, such as striatal

interneurons (Figures 1A and 1C; Marı́n et al., 2000). In contrast,
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Nkx2-1 expression was not detected in cortical interneurons at

this or any other embryonic stages (Figures 1A and 1B and

data not shown), even though many of them originate in the

MGE (Lavdas et al., 1999; Sussel et al., 1999; Wichterle et al.,

1999, 2001). There are two possible hypotheses that would ex-

plain the differential expression of Nkx2-1 in postmitotic striatal

and cortical interneurons. One possibility is that MGE progeni-

tors producing cortical interneurons never express Nkx2-1. Al-

ternatively, Nkx2-1 might be expressed by MGE progenitors giv-

ing rise to both striatal and cortical interneurons, but this latter

population would rapidly downregulate Nkx2-1 expression

soon after leaving the MGE. To test these alternative hypothe-

ses, we first quantified the percentage of cells expressing

Nkx2-1 located within 100 mm of the ventricle in the MGE of

E13.5 embryos. Virtually all cells present in the ventricular zone

(VZ) of the MGE expressed Nkx2-1 at this stage (Figures 1D

and 1D0; 99.2% ± 0.4% of propidium iodine cells, average ±

SEM). We next quantified the number of progenitor cells ex-

pressing Nkx2-1 in the VZ of the MGE in E13.5 embryos. In

agreement with previous reports (Xu et al., 2005), we found

that almost every cell in the MGE that incorporated the S-phase

marker BrdU at this stage also expressed Nkx2-1 (Figures 1E

and 1E0; 96.9% ± 1.1% of BrdU cells, average ± SEM), reinforc-

ing the view that all MGE progenitors express this transcription

factor.

To specifically test whether MGE-derived interneurons down-

regulate Nkx2-1 expression while migrating toward the cortex,

we performed experiments in which a piece of E13.5 MGE VZ

from a green fluorescence protein (GFP)-expressing transgenic

mouse brain was transplanted into the same region of wild-

type host slices. After 18 hr in culture, we analyzed the expres-

sion of Nkx2-1 in GFP migrating cells (Figures 1F and 1F0;

n = 3 experiments, 132 GFP cells analyzed). The majority of

GFP-expressing cells derived from the transplant were found

in a corridor deep to the striatal mantle through which most inter-

neurons reach the cortex (Flames et al., 2004), and they did not

contain detectable levels of Nkx2-1 protein (Figures 1F0 and 1G;

67.0% ± 14.3% of GFP cells, average ± SEM). About 22% of the

GFP-expressing cells were also located in the corridor and con-

tained traces of Nkx2-1 (Figures 1F0 and 1G; 22.2% ± 14.8% of

GFP cells, average ± SEM), suggesting that these cells might be

undergoing downregulation of this protein. Finally, a small pro-

portion of GFP-expressing cells was located in the ventrolateral

aspect of the prospective striatum and expressed high levels of

Nkx2-1 protein (Figures 1F0 and 1H; 10.9% ± 4.3% of GFP cells,

average ± SEM). These experiments suggest that MGE-derived

interneurons migrating toward the cortex rapidly downregulate

the expression of Nkx2-1 after leaving the MGE, whereas those

interneurons migrating to the striatum maintain the expression of

this transcription factor.

Nkx2-1 Expression Prevents the Migration
of MGE-Derived Cells toward the Cortex
Our previous observations raised the intriguing possibility that

downregulation of Nkx2-1 in MGE-derived interneurons might

be necessary to acquire a cortical migratory fate. To test this hy-

pothesis, we forced the expression of Nkx2-1 in MGE progenitor

cells through focal electroporation in E13.5 slices (Figure 2A). In
control experiments, Gfp-expressing cells migrated to the cortex

following their normal route (>90 cells per cortex in 22/22 slices;

Figures 2C and 2H), and only a minority of cells was found in the

striatum. In contrast, in slices coelectroporated with Gfp and

Nkx2-1, the majority of MGE-derived cells accumulated in the

basal ganglia, and only occasional cells were found in the cortex

(<20 cells per cortex in 22/22 slices; Figures 2D and 2H). To ex-

clude the possibility that overexpression of Nkx2-1 prevents

interneuron migration rather than changing their direction, we

electroporated small MGE explants with either Gfp alone or

Gfp and Nkx2-1 and cultured them in three-dimensional Matrigel

matrices. After 36 hr in culture, cells were found to migrate a sim-

ilar distance in the two experimental conditions (data not shown;

seealso Figures6B and 6D), suggesting that expressionof Nkx2-1

in postmitotic interneurons does not impair cell migration but

appears to specifically disrupt their target selection.

Nkx2-1 belongs to the NK-2 class of homeodomain (HD) tran-

scription factors (Harvey, 1996). In addition to the HD, two other

peptide domains are conserved within the NK-2 class of tran-

scription factors. The short TN domain (Tinmam motif), located

at the N-terminal region, has been suggested to underlie the

function of the NK-2 proteins as repressors during neural pat-

terning events in the ventral neural tube (Muhr et al., 2001). The

function of the NK-2 specific domain (NK-2-SD) is not fully

understood. In Nkx2-2, NK-2-SD has been shown to act as an

intra-molecular inhibitor of a transcriptional activator domain

located at the C terminus of the protein (Watada et al., 2000).

To investigate the mechanism through which Nkx2-1 may regu-

late the migration of MGE-derived cells, we performed a struc-

ture-function analysis in organotypic slices. We first evaluated

the role of the TN motif by electroporating a truncated form of

Nkx2-1 missing the first 20 amino acids (Nkx2-1DTN; Figure 2B).

Analysis of slices electroporated with Gfp and Nkx2-1DTN re-

vealed that MGE-derived cells also failed to reach the cortex in

the absence of the TN motif (<20 cells per cortex in 17/17 slices;

Figures 2E and 2H). To investigate if a putative C terminus acti-

vator domain plays a role in the migration of MGE-derived cells,

we used a truncated form of Nkx2-1 missing four amino acids of

the NK-2-SD domain and the remaining C-terminal of the protein

(Nkx2-1DCt; Figure 2B). Analysis of slices electroporated with Gfp

and Nkx2-1DCt showed that MGE-derived cells also failed to

reach the cortex in the absence of the C terminus activator do-

main and an intact NK-SD motif (<20 cells per cortex in 11/11

slices; Figures 2F and 2H). Finally, we assessed the role of the

HD in this process by performing a single amino acid substitution

in the position 35 of the Nkx2-1 HD (Nkx2-1A35T; Figure 2B). This

mutated form of Nkx2-1 binds to DNA target sequences with

50-fold less affinity than wild-type Nkx2-1 (Xiang et al., 1998).

Analysis of slices electroporated with Gfp and Nkx2-1A35T re-

vealed that MGE-derived cells expressing this construct were

able to migrate toward the cortex like in control slices (>90 cells

per cortex in 14/15 slices; Figures 2G and 2H). Similar results

were obtained when a different point mutation in the HD

(Nkx2-1Y54M) was used (>90 cells per cortex in 18/19 slices;

data not shown). Of note, the A35T replacement does not appear

to decrease the stability of the protein (which would have

explained the absence of a phenotype), since Gfp/Nkx2-1A35T-

expressing cells migrating toward the cortex have detectable
Neuron 59, 733–745, September 11, 2008 ª2008 Elsevier Inc. 735
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levels of Nkx2-1 (see Figure S1 available online). Altogether,

these experiments revealed that the mechanism through which

Nkx2-1 prevents MGE-derived cells from migrating toward the

cortex requires an intact HD and does not rely on interactions in-

volving the TN and the C terminus activator/SD domains.

Loss of Postmitotic Nkx2-1 Function Decreases
the Number of Striatal Interneurons
If Nkx2-1 regulates the sorting of cortical and striatal interneu-

rons, loss of Nkx2-1 function in postmitotic cells should lead to

a reduction in the number of MGE-derived cells that accumulate

in the striatum. To test this hypothesis, we bred mice carrying

floxed alleles of the Nkx2-1 locus (Kusakabe et al., 2006) with

transgenic mice in which Cre recombinase is expressed under

the control of Lhx6 (Fogarty et al., 2007), a LIM-HD transcription

factor expressed by MGE-derived neurons that drives recombi-

nation almost exclusively in postmitotic cells (Figure S2). To ver-

Figure 2. Nkx2-1 Overexpression in MGE-

Derived Interneurons Prevents Their Migra-

tion to the Cortex

(A and B) Schematic diagrams of the focal electro-

poration experiment and the Nkx2-1 (372 amino

acids) constructs used in these experiments.

(C–G) Migration of MGE-derived cells electropo-

rated with Gfp (C) or with Gfp and Nkx2-1 (D),

Nkx2-1DTN (E), Nkx2-1DCt (F), or Nkx2-1A35T (G).

Arrowheads point to cells that have reached the

cortex. Dotted lines indicate the limits of the

organotypic slices.

(H) Schematic representation of the migratory

routes adopted by MGE-derived cells electropo-

rated with Gfp and Gfp + Nkx2-1A35T (green arrow)

or with Gfp Nkx2-1, Nkx2-1DTN, or Nkx2-1DCt

(black dotted arrow).

GP, globus pallidus; H, hippocampus; HD, home-

odomain; LGE, lateral ganglionic eminence; MGE,

medial ganglionic eminence; NCx, neocortex; NK-

2-SD, NK-2 specific domain; PCx, piriform cortex;

POA, preoptic area; Str, striatum; TN, Tinman

motif. Scale bar = 200 mm.

ify the efficiency and specificity of recom-

bination, we analyzed the distribution of

cells expressing Nkx2-1 protein in the

subpallium of E15.5 control and Lhx6-

Cre;Nkx2-1Fl/Fl mutant embryos. As ex-

pected, we found that expression of

Nkx2-1 in the MGE VZ was not affected

whereas the number of Nkx2-1 express-

ing cells throughout the subpallial mantle,

including the developing striatum, was

dramatically reduced in Lhx6-Cre;

Nkx2-1Fl/Fl mutant embryos (Figure S3).

The presence of Nkx2-1 mRNA in some

striatal cells suggests that either they

have yet to recombine the two Nkx2-1 al-

leles or that a fraction of striatal interneu-

rons may not express Lhx6 or, at least,

the Lhx6-Cre transgene (Figure S3).

To assess the impact of postmitotic loss of Nkx2-1 function in

the development of striatal interneurons, we analyzed the expres-

sion of several markers for striatal interneurons, such as Lhx6,

Lhx7 (also known as Lhx8), Er81 and Somatostatin (Sst) (Kawagu-

chi et al., 1995; Marı́n et al., 2000; Stenman et al., 2003). We found

that the striatum of E15.5 Lhx6-Cre;Nkx2-1Fl/Fl mutant embryos

contained significantly fewer Lhx6-, Lhx7-, Er81- and Sst-ex-

pressing neurons than controls (n = 3; Figure 3). We next analyzed

the distribution of interneurons in the striatum of postnatal day 25

control and Lhx6-Cre;Nkx2-1Fl/Fl mutant mice. Quantification of

the number of neurons expressing choline acetyltranferase

(ChAT), parvalbumin (PV) and SST, markers of the three main

classes of mature striatal interneurons (Kawaguchi et al., 1995),

revealed that the striatum of P25 Lhx6-Cre;Nkx2-1Fl/Fl mutant

mice contained significantly fewer ChAT- and PV-expressing in-

terneurons than controls (n = 3; Figures 4A–4F), while the number

of SST-expressing cells did not differ (n = 3; Figures 4G–4I).
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The previous results were consistent with the hypothesis that

loss of Nkx2-1 function prevents the migration of MGE-derived

interneurons to the striatum. There were, however, alternative

possibilities to explain these results. For example, loss of

Nkx2-1 could lead to increased cell death in striatal interneurons.

Quantification of the density of apoptotic cells (marked by

cleaved Caspase3 expression) revealed no differences in the

MGE and striatum of E13.5 control and Lhx6-Cre;Nkx2-1Fl/Fl mu-

tant embryos (n = 3; MGE, 77.2% ± 3.3% [control] and 70.2% ±

4.4% [mutant]; striatum, 49.0% ± 0.7% [control] and 45.5 ±

5.7% [mutant]; average ± SEM). Similar results were observed

at E12.5 and E14.5 (data not shown), suggesting that this was

not the case.

Nkx2-1 could also be required to induce or maintain the ex-

pression of striatal interneuron markers, and so the observed de-

crease in the number of striatal interneurons could merely reflect

a failure in the expression of those genes. This seems unlikely,

Figure 3. Reduced Numbers of Striatal

Interneurons after Postmitotic Loss of

Nkx2-1 Function

(A, B, D, E, G, H, J, and K) Coronal sections

through the telencephalon of E15.5 control (A, D,

G, and J) and Lhx6-Cre;Nkx2-1Fl/Fl mutant (B, E,

H, and K) embryos showing Lhx6 (A and B), Lhx7

(D and E), Er81 (G and H), and Sst (J and K)

mRNA expression.

(C, F, I, and L) Quantification of the number of

Lhx6, Lhx7, Er81, and Sst-expressing cells in the

striatum of E15.5 control and Lhx6-Cre;Nkx2-1Fl/Fl

mutant embryos. Histograms show average ±

SEM 1083.96 ± 23.47 (Lhx6 control); 862.07 ±

49.01 (Lhx6 mutant); 452.32 ± 21.78 (Lhx7 control);

212.02 ± 18.68 (Lhx7 mutant); 601.60 ± 12.74 (Er81

control); 397.05 ± 23.84 (Er81 mutant); 579.03 ±

39.17 (Sst control); 432.18 ± 20.03 (Sst mutant).

***p < 0.001, **p < 0.01, and *p < 0.05, t test.

ec, external capsule; Str, striatum. Scale bar =

100 mm.

because similar numbers of Lhx6 and

Lhx7-expressingcellswere foundthrough-

out the telencephalon outside the striatum

in control and mutant mice (Figure S4).

However, to completely rule out this pos-

sibility, we performed two additional se-

ries of experiments. First, we bred

a Cre-reporter line (Rosa-LoxP-STOP-

LoxP-YFP, also known as Rosa-EYFP

mice; Srinivas et al., 2001) into the mu-

tant background to obtain Lhx6-

Cre;Nkx2-1Fl/+;Rosa-YFP (control) and

Lhx6-Cre;Nkx2-1Fl/Fl;Rosa-YFP (mutant)

embryos. In these mice, Cre-mediated

recombination in Lhx6-expressing cells

leads to their permanent labeling with

EYFP through the ubiquitous Rosa pro-

moter. Consistent with the hypothesis

that MGE-derived interneurons fail to mi-

grate to the striatum in the absence of Nkx2-1, the striatum of

Lhx6-Cre;Nkx2-1Fl/Fl;Rosa-YFP mutants at P0 contained fewer

YFP cells than controls (n = 3; Figures 5A–5C). This deficit was

readily detectable as early as E13.5 (n = 3; Figures S5).

In a second series of experiments, we directly assessed the

migration of MGE-derived interneurons by focally electroporat-

ing a plasmid encoding Gfp (Figure 5D). In control experiments,

the ratio between the number of Gfp-expressing cells in an equal

volume of cortex and striatum was approximately 3:1 (n = 6

slices; Figures 5E and 5G). In contrast, in slices obtained from

Lhx6-Cre;Nkx2-1Fl/Fl mutant embryos, this proportion increased

to approximately 7:1 due to a reduction in the number of

Gfp-cells that migrated to the striatum, while the number of cor-

tical Gfp-cells remained similar to controls (n = 6 slices; Figures

5F and 5G). In conclusion, our experiments demonstrate that

postmitotic Nkx2-1 function is required for the migration of

MGE-derived interneurons to the developing striatum.
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Nkx2-1 Expression in Postmitotic Cells
Suppresses Sema3A/3F-Mediated Repulsion
of MGE-Derived Interneurons
Nkx2-1 might control the sorting of MGE-derived cortical and

striatal interneurons through regulating the expression of spe-

cific receptors for guidance factors in those cells. Our previous

work has shown that Neuropilin-1 (Nrp1) and Neuropilin-2

(Nrp2), the binding receptors for the repulsive molecules Sema-

phorin 3A (Sema3A) and Semaphorin 3F (Sema3F), respectively,

are expressed by MGE-derived cortical interneurons, but not by

striatal interneurons (Marı́n et al., 2001). Because the developing

striatum expresses both Sema3A and Sema3F, expression of

Nrp1 and Nrp2 in cortical interneurons prevents their entry into

the striatum, channeling them toward the cortex (Marı́n et al.,

2001). We thus hypothesized that postmitotic Nkx2-1 may par-

ticipate in the sorting of cortical and striatal interneurons by

regulating the expression of the receptors for Sema3A and/or

Sema3F. To test this idea, we electroporated E13.5 MGE ex-

plants with plasmids encoding Gfp or Nkx2-1-IRES-Gfp and cul-

tured them along with aggregates of COS cells expressing either

DsRed or DsRed and Sema3A/3F in Matrigel matrices (Fig-

ure 6A). As expected from our previous work (Marı́n et al.,

2001), we found that Sema3A/3F exerted a potent chemorepul-

sive effect over Gfp-expressing MGE-derived cells (n = 12; Fig-

ures 6B, 6C, and 6H). In contrast, Sema3A/3F-expressing COS

cells did not repel MGE-derived cells expressing Nkx2-1 (n = 12;

Figures 6D, 6E, and 6H). To determine if the Nkx2-1 HD me-

Figure 4. Loss of Nkx2-1 Function De-

creases the Number of Interneurons in the

Postnatal Striatum

(A, B, D, E, G, and H) Coronal sections through the

striatum of P25 control (A, D, and G) and Lhx6-

Cre;Nkx2-1Fl/Fl mutant (B, E, and H) mice showing

ChAT (A and B), PV (D and E), and SST (G and H)

expression.

(C, F, and I) Quantification of the number of ChAT,

PV, and SST-expressing cells in the striatum of

P25 control and Lhx6-Cre;Nkx2-1Fl/Fl mutant

mice. Histograms show average ± SEM 39.42 ±

2.26 (ChAT control); 10.94 ± 1.04 (ChAT mutant);

46.32 ± 4.52 (PV control); 14.71 ± 1.77 (PV mutant);

48.23 ± 1.65 (SST control); 41.73 ± 2.81 (SST

mutant). ***p < 0.001 and **p < 0.01, t test.

CPu, caudate putamen. Scale bar = 100 mm.

diates the suppression of Sema3A/3F-

mediated chemorepulsion, we con-

fronted Nkx2-1A35T-electroporated MGE

explants with COS cells aggregates. As

in controls, MGE-derived cells expressing

the HD mutation Nkx2-1A35T were re-

pelled by COS cells expressing

Sema3A/3F (n = 11; Figures 6F, 6G, and

6H). In sum, these results demonstrate

that expression of Nkx2-1 in migrating

MGE-derived cells renders them insensi-

tive to Sema3A/3F chemorepulsion through an Nkx2-1 HD-de-

pendent mechanism.

Nkx2-1 Represses Nrp2 Expression in Migrating
MGE-Derived Interneurons
The previous results are consistent with the hypothesis that

Nkx2-1 represses the expression of receptors for Sema3A

and/or Sema3F in MGE-derived migrating neurons. To directly

test this, we developed an in vitro assay in which we could

specifically isolate RNA from migrating MGE-derived neurons

(Figure 7A). MGE explants were electroporated with Gfp or

Nkx2-1-IRES-Gfp plasmids and migrating cells were collected

after 48 hr in culture. A limitation of this experimental approach

is that although the population of cells is highly enriched in migra-

tory neurons, the proportion of electroporated cells was rela-

tively low (�30%; Figures 7B–7C0). Despite this caveat, gene

expression analysis using semiquantitative RT-PCR revealed

a dramatic increase in the expression of Nkx2-1 in migrating

MGE-derived cells expressing Nkx2-1-IRES-Gfp compared to

those expressing the control plasmid (n = 3, Figure 7D). Com-

pared to controls, we also detected a mild reduction in the ex-

pression of Nrp1 and a prominent decrease in the expression of

Nrp2 transcripts in migrating neurons expressing Nkx2-1-IRES-

Gfp (Figure 7D). In contrast, we did not detect significant differ-

ences in the expression of PlexinA3 and PlexinA4 (Figure 7D),

signaling components of the receptor complexes for Sema3A

and Sema3F (Yaron et al., 2005). Similarly, the expression of
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Figure 5. Tracing Experiments Reveal Less

Interneurons Invading the Striatum after

Postmitotic Loss of Nkx2-1 Function

(A and B) Coronal sections through the striatum of

P0 Lhx6-Cre;Nkx2-1Fl/+;Rosa-YFP control (A) and

Lhx6-Cre;Nkx2-1Fl/Fl;Rosa-YFP mutant (B) mice

showing YFP expression. YFP is also detected in

scattered blood vessels, as previously reported

(Fogarty et al., 2007).

(C) Quantification of the number of YFP-express-

ing cells in the striatum of P0 Lhx6-Cre;Nkx2-1Fl/+;

Rosa-YFP control and Lhx6-Cre;Nkx2-1Fl/Fl;Rosa-

YFP mutant mice. Histograms show average ±

SEM 889.31 ± 79.03 (YFP control); 664.12 ±

58.40 (YFP mutant). * p < 0.05, t test.

(D) Schematic diagram of the focal electroporation

experiment. The number of Gfp-expressing cells

was counted in a fixed volume of the cortex and

striatum (black boxes) and the ratio between these

populations was determined for each slice.

(E and F) Migration of MGE-derived cells in E13.5

Lhx6-Cre;Nkx2-1Fl/+ control (E) and Lhx6-

Cre;Nkx2-1Fl/Fl mutant (F) slices. Occasionally,

Gfp-expressing cells accumulated in the piriform

cortex of mutant slices. Dotted lines indicate the

limits of the organotypic slices.

(G) Ratio of Gfp-expressing cells in the quantified

region of the cortex and striatum for each

individual E13.5 Lhx6-Cre;Nkx2-1Fl/+ control and

Lhx6-Cre;Nkx2-1Fl/Fl mutant slices. Average ±

SEM 2.55 ± 0.41 (control); 6.80 ± 1.22 (mutant).

***p < 0.001, t test. Number of Gfp-expressing cells in the striatum (30.38 ± 4.03, control; 12.20 ± 3.80, mutant. ***p < 0.001, t test) and cortex (76.80 ± 12.76,

control; 84.20 ± 21.20, mutant) of electroporated slices.

CPu, caudate putamen; H, hippocampus; LGE, lateral ganglionic eminence; MGE, medial ganglionic eminence; NCx, neocortex; PCx, piriform cortex; Str,

striatum. Scale bar = 100 mm (A and B) and 200 mm (E and F).
the GABA synthesizing enzyme Gad67 or the transcription factor

Lhx6, both present in cortical and striatal interneurons, did not

differ between Gfp- and Nkx2-1-IRES-Gfp-expressing cells.

We next used quantitative RT-PCR to precisely determine the in-

fluence of Nkx2-1 in the transcription of Nrp1 and Nrp2 in migrat-

ing MGE-derived cells. In these experiments, we could confirm

that Nrp2 expression was reduced in Nkx2-1-IRES-Gfp-ex-

pressing MGE-derived cells (n = 6; Figure 7E). In contrast, al-

though we consistently found reduced levels of Nrp1 expression

in Nkx2-1-IRES-Gfp-expressing MGE-derived cells compared to

controls, these differences were not statistically significant

(n = 6; Figure 7E). Together with our previous findings of reduced

sensitivity to semaphorin signaling, these results strongly sug-

gest a role for Nkx2-1 in the transcriptional repression of, at least,

the Nrp2 receptor.

Nkx2-1 Directly Represses the Transcription of Nrp2

Nkx2-1 could inhibit the expression of Nrp2 in MGE-derived

migrating interneurons by directly interacting with the Nrp2 pro-

moter. To test this, we first examined whether Nkx2-1 protein di-

rectly binds to Nrp2 regulatory sequences in vivo. A phylogenetic

footprinting analysis of the 20 kb sequence upstream from the

Nrp2 transcription initiation site reveal two putative Nrp2 regula-

tory regions containing two adjacent Nkx2-1 binding sequences

(Francis-Lang et al., 1992), which we designated as Nrp2-re-

gion2 (from �21375 bp 50-CTTGC-30 to �21086 bp 50-GTGCT-30)
and Nrp2-region1 (from �327 bp 50-CCGGA-30 to �68 bp

50-GGGGA-30; Figures 8A and S6). Chromatin immunoprecipita-

tion (ChIP) analyses demonstrated that Nkx2-1 binds to the

Nrp2-region1 in E13.5 MGE-derived cells, while it does not

seem to complex with the Nrp2-region2 (n = 3; Figures 8B and

8C). To demonstrate that Nkx2-1 represses the expression of

Nrp2 through regulatory sequences located in the Nrp2-region1,

we cloned this 260 bp DNA fragment upstream of a luciferase re-

porter plasmid containing a c-fos minimal promoter (Figure 8D).

Cotransfection of HEK293 cells with the reporter plasmid and

full-length Nkx2-1 produced a significant transcriptional repres-

sion of luciferase activity (n = 5; Figure 8D). In contrast, the

mutated Nkx2-1A35T did not repress luciferase gene expression

(Figure 8D). These results indicate that Nkx2-1 transcriptional

repression of Nrp2 requires the direct binding of Nkx2-1 to, at

least, the Nrp2-region1 regulatory sequence, and that the

integrity of the Nkx2-1 HD motif is essential for this activity.

DISCUSSION

During development, neurons are instructed to migrate and pro-

ject to specific regions of the brain in a process that is tightly reg-

ulated by a variety of guidance cues. A fundamental question that

remains to be clarified is how distinct neuronal populations re-

spond selectively to guidance. Transcription factors are thought

to play a major role in regulating the differential expression of
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guidance receptors during cell migration and axon guidance

(Butler and Tear, 2007; Guthrie, 2007; Polleux et al., 2007), but

it is presently unclear how they exert their influence. Using gain

and loss-of-function approaches, our results demonstrate that

the Nkx2-1 transcription factor is uniquely required for the differ-

ential migration of cortical and striatal GABAergic interneurons.

Postmitotic interneurons expressing Nkx2-1 become insensitive

to semaphorin signaling and migrate toward the striatum,

Figure 6. Postmitotic Nkx2-1 Expression Suppresses

Sema3A/3F-Mediated Repulsion in MGE-Derived

Interneurons

(A) Schematic diagram of the experimental paradigm used in

MGE/COS coculture confrontation assays. E13.5 slices were

focally electroporated with Gfp, Nkx2-1-IRES-Gfp or Gfp +

Nkx2-1A35T. MGE explants were dissected from the electropo-

rated region, confronted to DsRed or DsRed + Sema3A/

3F-transfected COS cell aggregates and cultured in Matrigel

matrices.

(B–G) Migration of Gfp (B and C), Nkx2-1-IRES-Gfp (D and E),

and Gfp + Nkx2-1A35T (F and G) electroporated MGE-derived

cells in response to mock-transfected (B, D, and F) or

Sema3A/3F-transfected (C, E, and G) COS cells aggregates.

(H) Quantification of co-culture confrontation assays. P and D,

proximal and distal quadrants, respectively. Histograms show

average ± SEM 1.13 ± 0.12 (Gfp MGE cells, mock-COS cells);

0.40 ± 0.05 (Gfp MGE cells, Sema3A/3F- COS cells); 1.11 ±

0.12 (Nkx2-1IRES-Gfp MGE cells, mock-COS cells); 0.97 ±

0.16 (Nkx2-1IRES-Gfp MGE cells, Sema3A/3F -COS cells);

1.10 ± 0.12 (Gfp + Nkx2-1A35T MGE cells, mock-COS cells);

0.52 ± 0.17 (Gfp + Nkx2-1A35T MGE cells, Sema3A/3F-COS

cells). ***p < 0.001, t test.

MGE, medial ganglionic eminence; NCx, neocortex. Scale

bar = 50 mm.

whereas those that lack Nkx2-1 expression migrate

to the cortex. ChIP and luciferase assays revealed

that Nkx2-1 fulfills this function, at least in part, by

directly repressing the expression of Nrp2, a recep-

tor for class III semaphorins. Our results therefore

demonstrate that postmitotic transcriptional mech-

anisms play an important role in neuronal migration

by directly regulating the repertoire of guidance

receptors expressed by migrating neurons.

Transcriptional Control of Telencephalic
Interneuron Migration
The MGE gives rise to many cortical GABAergic

interneurons while concurrently generating most

striatal interneurons (Lavdas et al., 1999; Marı́n

et al., 2000; Sussel et al., 1999; Wichterle et al.,

1999), but the mechanisms controlling the segrega-

tion of these two neuronal populations remain

poorly understood. We have previously shown

that Nrp1 and Nrp2, the binding receptors for the

striatal repulsive molecules Sema3A and Sema3F

(Bagri and Tessier-Lavigne, 2002; Kruger et al.,

2005), respectively, are expressed by MGE-derived

cortical interneurons and absent from MGE-derived

striatal interneurons (Marı́n et al., 2001). Loss of

neuropilin function increases the number of interneurons migrat-

ing to the striatum and simultaneously decreases the number of

cells reaching the cortex. Since the final destination of tangen-

tially migrating interneurons (striatum or cortex) is determined

by the expression of semaphorin receptors, we have investigated

the nature of the factors controlling this process.

Our experiments demonstrate that postmitotic Nkx2-1

controls the segregation of MGE-derived cells by regulating
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Figure 7. Nkx2-1 Represses Neuropilin-2

Expression in MGE-Derived Cells

(A) Schematic diagram of the experimental para-

digm used to isolate RNA from migrating MGE-

derived cells.

(B–C0) A Gfp-electroporated MGE explant stained

with DAPI after 48 hr in culture, before (B and B0)

and after (C and C0 ) removing the explant core,

which contains progenitor cells.

(D) Semiquantitative RT-PCR analysis comparing

gene expression in Gfp- and Nkx2-1-electropo-

rated MGE-derived cells. Negative (�, all reagents

except cDNA) and positive (+, E14.5 MGE cDNA)

controls were included in each run. Amplicon

and molecular marker (M) base pairs (bp) are

shown at the left and right sides of the panels,

respectively. The Lhx6 gene has two transcripts:

Lhx6 or Lhx6.1a (408 bp) and Lhx6.1b (306 bp).

GAPDH was used as loading control.

(E) Quantitative RT-PCR analysis for Neuropilin-1

and Neuropilin-2 expression in Gfp- and Nkx2-1-

electroporated MGE-derived cells. Histograms

show average ± SEM 1.00 ± 0.25 (Gfp cells,

Nrp1); 0.89 ± 0.11 (Nkx2-1 cells, Nrp1); 1.00 ±

0.19 (Gfp cells, Nrp2); 0.46 ± 0.29 (Nkx2-1 cells,

Nrp2). *p < 0.05, t test.

MGE, medial ganglionic eminence; NCx, neocor-

tex. Scale bar = 50 mm.
neuropilin/semaphorin interactions. The maintenance or down-

regulation of Nkx2-1 expression in migrating cells is linked to

their final destination: striatal interneurons maintain Nkx2-1 ex-

pression, whereas cortical cells rapidly downregulate Nkx2-1

mRNA, and protein. Moreover, when MGE-derived cells were

forced to express Nkx2-1, they failed to reach the cortex and

accumulated in the basal telencephalon. In contrast, loss of

postmitotic Nkx2-1 function resulted in a reduction in the number

of MGE-derived interneurons that populate the striatum. There

are two possible caveats in the latter experiment. First, the timing

of Cre recombination leaves a very short period between the loss

of Nkx2-1 expression (which happens almost exclusively in cells

negative for Ki67; Figure S2) and the selection of a target

territory. Thus, by the time interneurons lose Nkx2-1 in Lhx6-

Cre;Nkx2-1Fl/Fl mutant embryos, many may have already arrived

to the striatum. Second, Lhx6 or the Lhx6-Cre transgene are not

expressed by all striatal interneurons, and therefore some of

them maintain Nkx2-1 expression (Figure S3). Despite these

limitations, many MGE-derived interneurons failed to reach the

striatum in the absence of Nkx2-1 postmitotic function, suggest-

ing that Nkx2-1 is an important regulator of this process. One

question that remains unresolved is the destiny of Nkx2-1-defi-

cient striatal interneurons. Quantification of the number of

Lhx6-expressing interneurons in the cortex of E15.5 control

and Nkx2-1 conditional mutant embryos revealed no differences

(n = 3; Figure S7). However, since cortical interneurons greatly

outnumber striatal interneurons, it is very unlikely that rerouting
of some striatal cells to the cortex could be easily perceived.

Alternatively, loss of Nkx2-1 function may not be enough to redi-

rect all interneurons to the cortex and many cells could have dis-

perse through other subpallial regions, avoiding the striatum.

Consistent with view, Lhx7-expressing cells were never observed

in the cortex of Lhx6;Nkx2.1Fl/Fl mutant embryos (data not shown).

Expression of Nkx2-1 rendered MGE-migrating cells insensi-

tive to the Sema3A/3F chemorepulsion. This result directly impli-

cates Nkx2-1 function in suppressing the responsiveness of

MGE-derived cells to semaphorin signaling. Nkx2-1 suppresses

the response of MGE-derived cells to class III semaphorins by

directly controlling the expression of, at least, Nrp2. Nkx2-1 di-

rectly binds in vivo to a region of the Nrp2 promoter containing

two Nkx2-1-specific binding sites located in close proximity

(�151 base pairs). The interaction of Nkx2-1 with this short

sequence was sufficient to repress transcription in vitro, reinforc-

ing the notion that Nkx2-1 directly suppresses the expression of

Nrp2 in migrating MGE-derived interneurons. Nkx2-1 regulates

the transcription of othergenes by interacting with clustered bind-

ing sites (Bohinski et al., 1994), and since this transcription factor

binds DNA as a monomer, these repeated consensus sequences

might represent a unique arrangement for Nkx2-1 binding-site

recognition. Our experiments failed to show a conclusive relation-

ship between Nkx2-1 and Nrp1. It should be noted, however, that

the relatively low efficiency of Nkx2-1 overexpression in postmi-

totic migrating interneurons (�30%) might have precluded the

identification of additional targets genes, such as Nrp1.
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Figure 8. Nkx2-1 Binds the Neuropilin-2

Promotor In Vivo and Regulates Its Expres-

sion

(A) Putative Nkx2-1 DNA binding sites (red and

black boxes indicate 8/9 and 6-base pairs [bp]

consensus sequences, respectively) in Nrp2-re-

gion2 (from�21375 bp 50-CTTGC-30 to �21086 bp

50-GTGCT-30) and Nrp2-region1 (from �327 bp

50-CCGGA-30 to �68 bp 50-GGGGA-30 ) of the

Neuropilin-2 locus.

(B) ChIP assays were performed using E13.5 MGE

cells and a non-specific rabbit anti-IgG (Rb IgG) or

a polyclonal antibody against Nkx2-1. Input chro-

matin represents 1% of the total chromatin. Neg-

ative (�, all reagents except DNA) and positive

(+, E13.5 mouse genomic DNA) controls were in-

cluded in each run. Nrp2-region 2 and Nrp2-re-

gion 1 amplicon size (bp) are indicated.

(C) The intensity of each PCR band was quantified

and normalized against the input band. Histo-

grams show average ± SEM For Nrp2-region2:

0.29 ± 0.17 (Rb IgG) and 0.07 ± 0.06 (Nkx2-1).

For Nrp2-region1: 0.06 ± 0.02 (Rb IgG) and 0.52 ±

0.06 (Nkx2-1). **p < 0.01, t test.

(D) A luciferase reporter plasmid containing the

Nrp2-region1 sequence upstream of the c-fos

minimal promoter driving luciferase (pGL3-Nrp2-

cfos-Luc) was cotransfected with either mock,

Nkx2-1, or Nkx2-1A35T expression vectors. For

each condition, the relative luciferase activity cor-

responds to the ratio of normalized activities from

the promoter-luciferase (pGL3-Nrp2-cfos-Luc)

and empty-luciferase (pGL3-cfos-Luc) reporter

vectors. Histograms show average ± SEM 1.00 ±

0.09 (control), 0.64 ± 0.07 (Nkx2-1), and 0.89 ±

0.13 (Nkx2-1A35T). **p < 0.01, *p < 0.05, one-way

ANOVA followed by Tukey’s post test.
Nkx2-1 transcriptional activity depends on the interactions of

its HD motif with specific DNA target sequences (Harvey,

1996; Damante et al., 1994). Other highly conserved domains

of the protein, such as the TN motif and the NK-2-specific do-

main (SD), could further modulate Nkx2-1 transcriptional activity

(Muhr et al., 2001; Watada et al., 2000). Our experiments demon-

strate that Nkx2-1 regulates the segregation of MGE-derived

cells through transcriptional interactions involving specific resi-

dues of the HD (Ala35 and Tyr45). These amino acid residues

are needed to suppress the responsiveness to semaphorins

and are involved in the interactions between Nkx2-1 and the

Nrp2 regulatory sequence. In contrast, neither the TN nor the C

terminus/SD domains appear to regulate the migration of

MGE-derived cells to the cortex. Apart from binding to specific

DNA sequences, the Nkx2-1 HD has been shown to regulate

transcriptional activity by interacting with other transcription

factors or through posttranslational modifications (Minoo et al.,

2007; Yang et al., 2004). Thus, in addition to conferring binding

specificity to the Nrp2-region1 promoter, it is possible that spe-

cific amino acid residues of the Nkx2-1 HD establish additional

interactions that mediate the repression of Nrp2 expression in

MGE-derived migrating cells.

The transcriptional regulation of telencephalic interneuron

migration is likely to involve additional factors. For example,

the Dlx1/2 transcription factors appear also to repress Nrp2 in
742 Neuron 59, 733–745, September 11, 2008 ª2008 Elsevier Inc.
the developing forebrain (Le et al., 2007), although the functional

consequences of this regulation for the migration of MGE-

derived cells have not been examined. In addition to neuropilin/

semaphorin interactions, it is likely that Nkx2-1 may control other

guidance systems in MGE-derived neurons. Of note, migrating

neurons expressing Nkx2-1 do not simply migrate through the

striatum as they fail to sense semaphorins, but indeed they

seem to be attracted to that location. This result suggests that

the striatum may also contain an attractive factor for MGE-

derived interneurons, although the molecular nature of this activ-

ity remains unknown. Alternatively, Nkx2-1 may confer striatal

interneurons with sensitivity for a cortical chemorepulsive cue,

which will prevent migrating MGE-derived interneurons express-

ing Nkx2-1 from entering the cortex.

A question that remains to be elucidated is the mechanism

regulating the postmitotic expression of Nkx2-1 in migrating

MGE-derived neurons. Sonic hedgehog (Shh) signaling induces

and maintains Nkx2-1 expression in MGE progenitors during

development (Ericson et al., 1995; Shimamura et al., 1995; Xu

et al., 2005) and supports the expansion of progenitors through

neurogenesis (Machold et al., 2003). However, the analysis of

Dlx5/6Cre;SmoFl/Fl conditional mutant mice suggests that Shh

does not control the expression of Nkx2-1 in striatal postmitotic

interneurons (Xu et al., 2005). Future work should address this

issue, as it seems critical for understanding how appropriate
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numbers of different inhibitory populations are generated during

development.

Multiple Roles for Nkx2-1 in the Development
of Telencephalic Interneurons
Previous studies have revealed that Nkx2-1 is critical for the de-

velopment of the mammalian subpallium. The emerging idea,

however, is that Nkx2-1 plays diverse roles in closely related cells

depending on their relative stage of differentiation. During early

patterning of the telencephalon, Nkx2-1 regulates the specifica-

tion of the MGE and preoptic area (POA) progenitor cells (Corbin

et al., 2003; Sussel et al., 1999). In the absence of Nkx2-1 func-

tion, the MGE and POA progenitors are respecified to a more

dorsal fate, similar to that of LGE progenitors. This transformation

leads to a dramatic reduction in the number of cells derived from

those structures, such as GABAergic cortical and striatal inter-

neurons, as well as projection neurons of the globus pallidus

and other basal forebrain structures (Sussel et al., 1999). More-

over, conditional deletion of Nkx2-1 in the telencephalon demon-

strates that this transcription factor is required for the specifica-

tion of parvalbumin and somatostatin cortical interneuron

subtypes (Butt et al., 2008 [this issue of Neuron]).

In addition to its master role in ventral subpallial identity, Nkx2-1

also instructs the selection of specific fates by controlling the

expression of differentiation genes in subpallial-derived neurons,

such as the LIM-HD transcription factors Lhx6 and Lhx7 (Sussel

et al., 1999). As shown for Lhx6, Nkx2-1 appears to control the

expression of these genes through direct transcriptional regula-

tion (Du et al., 2008). Lhx6 and Lhx7 are essential regulators of

the fate of several types of GABAergic and cholinergic neurons

derived from Nkx2-1-expressing progenitors (Fragkouli et al.,

2005; Mori et al., 2004; Wonders and Anderson, 2006; Zhao

et al., 1999), reinforcing the idea that Nkx2-1 expression prior

to cell cycle exit influences the fate of MGE-derived cells.

Our results demonstrate that Nkx2-1 plays an additional role in

postmitotic MGE-derived cells by controlling the repertoire of

guidance receptors expressed by migrating interneurons. As

for the induction of the cell-fate determinant Lhx6 (Du et al.,

2008), the postmitotic function of Nkx2-1 in neuronal migration

is achieved through the direct transcriptional repression of

a guidance receptor, Nrp2. Thus, the cellular context in which

Nkx2-1 operates at different stages of differentiation greatly in-

fluences the functional outcome of its transcriptional activity.

The mechanisms conferring Nkx2-1 with time and context-

dependent transcriptional specificity remain to be elucidated.

EXPERIMENTAL PROCEDURES

Mouse Lines

Wild-type mice and GFP-expressing transgenic mice (Hadjantonakis et al.,

2002) maintained in a CD1 background were used for expression analysis

and tissue culture experiments. Lhx6-Cre (Fogarty et al., 2007), Rosa-EYFP

(Srinivas et al., 2001) and Nkx2-1Fl/Fl (Kusakabe et al., 2006) mice were main-

tained in a mixed C57Bl/6 3 129/SvJ x CBA background. Animals were kept

under Spanish, UK, and EU regulation.

DNA Constructs

A cDNA encoding Nkx2-1 (accession number NM_009385) was used. The

truncated constructs Nkx2-1DTN-IRES-Gfp (deletion [D] of amino acids 1–20)
and Nkx2-1DCt (D amino acids 271–372) were generated by PCR. The single-

amino acid substitutions Nkx2-1A35T and Nkx2-1Y54M were prepared using

the QuickChange II XL Kit (Stratagene). All constructs (Gfp, Nkx2-1-IRES-

Gfp, Nkx2-1DTN-IRES-Gfp, Nkx2-1DCt, Nkx2-1A35T, and Nkx2-1Y54M) were

inserted into the pCAGGS chicken b-actin promoter expression vector.

In Vitro Focal Electroporation

E13.5 organotypic coronal slice cultures from wild-type or Gfp transgenic

embryos were obtained as described previously (Anderson et al., 1997). Ex-

pression vectors were electroporated at a concentration of 1 mg/ml and mixed

in a 0.9/1.5 ratio when coelectroporated. Expression vectors were focally in-

jected into the MGE, and embryonic slice cultures were electroporated as pre-

viously described (Flames et al., 2004).

In Situ Hybridization and Immunohistochemistry

For in situ hybridization, brains were fixed overnight in 4% paraformaldehyde in

PBS (PFA). Twenty micrometer frozen sections were hybridized with digoxige-

nin-labeled probes as described before (Flames et al., 2007). Immunohisto-

chemistry was performed on culture slices, MGE explants in Matrigel pads,

or 20 mm cryostat sections. Slices, explants, and embryos were fixed in 4%

PFA at 4�C from 2–6 hr. The following primary antibodies were used: rat anti-

BrdU (1/100, Accurate), chicken anti-GFP (1/1000, Aves Labs), rabbit anti-

Nkx2-1 (1/2000, Biopat), rabbit anti-PV (1/3000, Swant), goat anti-ChAT

(1/100, Chemicon), rat anti-SST (1/200, Chemicon), rabbit anti-cleaved Cas-

pase3 (1/150, Cell Signaling), and rabbit anti- Ki67 (1/500, Novocastra). The fol-

lowing secondary antibodies were used: donkey anti-rat 488, goat anti-chicken

488, donkey anti-rabbit 555, donkey anti-goat 555 (Molecular Probes), and don-

key anti-rat Cy3 (Jackson Laboratories). The immunofluorescence detection of

EYFP was performed using an anti-GFP antibody. DAPI (Sigma) and propidium

iodine (Molecular Probes) were used for fluorescent nuclear counterstaining.

Quantification

For the quantification of interneurons in E13.5, E15.5, P0, and P25 control and

Lhx6-Cre;Nkx2-1Fl/Fl mutant brains, the outline of the striatum or cortex at ros-

tral, intermediate, and caudal levels was delineated in 20 or 60 mm sections,

different interneuron markers (Lhx6, Lhx7, Er81, Sst, ChAT, PV, and SST) or

YFP-expressing cells were counted for three different brains from each geno-

type, and the cell density (number of cells per mm2) was calculated. In the

transplantation experiments, the intensity of Nkx2-1 fluorescence in Gfp-ex-

pressing cells was quantified and classified into high or low levels when pre-

senting >90% or <30%, respectively, of the Nkx2-1 fluorescence intensity

found in MGE progenitors (considered as 100%).

MGE Explants Cultures

MGE explants were dissected out from organotypic slices after electropora-

tion. For gene-expression analysis, MGE explants were cultured on glass cov-

erslips coated with poly-L-Lysine and laminin in Neurobasal medium contain-

ing 0.3% methylcellulose (Sigma). In coculture experiments, MGE explants

were confronted with COS7 cells aggregates expressing DsRed alone or

DsRed and Sema3A/3F in Matrigel matrix (Beckton-Dickinson) as described

previously (Flames et al., 2004). Sema3A and Sema3F cDNA sequences

used have been described elsewhere (Marı́n et al., 2001). For quantification,

each explant was divided into four quadrants, the number of Gfp-expressing

cells was quantified in the proximal and distal quadrant (in relation to the

COS7 cells) and the proximal/distal ratio was calculated.

Semiquantitative and Quantitative RT-PCR

Total RNA from MGE-derived cells was extracted with TRIzol according to the

manufacturer’s instructions (Invitrogen). RNA (150 ng) was treated with DNaseI

RNase-free (Fermentas) for 30 min at 37�C prior to reverse transcription into

single-stranded cDNA using SuperScriptII Reverse Transcriptase and

Oligo(dT)12-18 primers (Invitrogen) for 1 hr at 42�C. For semiquantitative PCR,

2 ml of cDNA, the appropriate primers (Figure S8), and recombinant Taq

DNA polymerase (Invitrogen) were used. For Nrp1 and Nrp2, a preamplification

PCR step (multiplex) was performed using 10 ml of cDNA and a primer mix

containing GAPDH, Nrp1, and Nrp2 multiplex primers. PCR products were an-

alyzed by electrophoresis on a 2% agarose gel. Quantitative (q) PCR was
Neuron 59, 733–745, September 11, 2008 ª2008 Elsevier Inc. 743



Neuron

Nkx2-1 Function in Interneuron Migration
carried out in an Applied Biosystems 7300 real-time PCR unit using the Plati-

num SYBR Green qPCR Supermix UDG with ROX (Invitrogen), 5 ml of cDNA,

and the appropriate primers (Figure S8). Each independent sample was as-

sayed in duplicate. Gene expression levels were normalized using GAPDH.

Phylogenetic Footprinting Analysis

In silico analysis of the predicted 50 flanking region of the Mus musculus Nrp2

locus (accession number NT_039170) was performed using Vista and Univer-

sity of California Santa Cruz (UCSC) Genome Browsers. Putative Nkx2-1 bind-

ing sites match between six and nine nucleotides the described Nkx2-1

consensus sequence 50-CCACTC/GAAGTG-30.

Chromatin Immunoprecipitation Assay

ChIP assay was performed using the EZ ChIP Kit (Upstate) according to the

manufacturer’s instructions. Briefly, mouse E13.5 MGE cells (1–2 3 107)

were crosslinked with 1% PFA for 25 min at room temperature. Sonication

of cells in SDS lysis buffer on ice (Bioruptor, Diagenode; 200W potency; 40 s

on, 20 s off; 5 3 5 min) generated soluble chromatin fragments between 150

and 400 bp. Chromatin was immunoprecipitated with 5–6 mg of rabbit

anti-Nkx2-1 (Biopat) and rabbit anti-immunoglobulin G (IgG) antibodies. Im-

munoprecipitated DNA sequences were analyzed by PCR using primer pairs

spanning the Nrp2-region2 and Nrp2-region1 (Figure S6). PCR products

were analyzed by electrophoresis on a 2% agarose gel.

Promoter Luciferase Assay

HEK293 cells were cotransfected with 200 ng of a luciferase reporter plasmid

(pGL3-cfos-Luc or pGL3-Nrp2-cfos-Luc), 8 ng of CMVbgal, and 200 ng of an

empty (mock), full-length Nkx2-1, or Nkx2-1A35T expression vector using Fu-

gene reagent (Roche). After 1 day in culture, cells were collected and assayed

for luciferase and b-galactosidase activity using the Luciferase Reporter Assay

System (Promega) according to the manufacturer’s instructions. Each inde-

pendent sample was assayed in duplicate and luciferase activities were

normalized using b-galactosidase activity.

SUPPLEMENTAL DATA

The Supplemental Data include eight figures and can be found with this article

online at http://www.neuron.org/cgi/content/full/59/5/733/DC1/.
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Figure S1. MGE-Derived Cells Electroporated with Gfp and Nkx2-1A35T Migrate to the Cortex 
and Express Nkx2-1 Protein 
(A and A’) Expression of GFP and Nkx2-1, respectively, in MGE-derived cells electroporated 
with Gfp + Nkx2-1A35T in organotypic slices. Dotted lines indicate the limits of the section. 
(B and B’) Higher magnification of the area boxed in (A) showing a cell derived from the MGE 
and electroporated with Gfp and Nkx2-1A35T. This cell is entering the cortex and expresses a 
form of Nkx2-1 that is recognized by the polyclonal antibody raised against this protein. 
GP, globus pallidus; LGE, lateral ganglionic eminence; MGE, medial ganglionic eminence; 
NCx, neocortex; Str, striatum. 
Scale bars equal 200 µm (A and A’) and 20 µm (B’ and B’). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 

 
 
 
 
Figure S2. Recombination Driven by the Lhx6-Cre Transgenic Line Is Restricted Almost 
Exclusively to Postmitotic Cells 
(A–A’’) Coronal sections through the MGE of an E12.5 Lhx6-Cre;Nkx2-1Fl/+;Rosa-YFP embryo 
showing that almost all YFP-expressing cells are located in the subventricular zone and do not 
co-label for the progenitor marker Ki67. YFP is also detected in scattered blood vessels, as 
previously reported (Fogarty et al., 2007). 
(B) Higher magnification of the area boxed in (A’’) depicting YFP-expressing cells that are 
negative (open arrowhead) or positive (white arrowhead) for Ki67 expression. 
VZ, ventricular zone; SVZ, subventricular zone. 
Scale bars equal 50 µm (A, A’ and A’’) and 20 µm (B). 
 
 
 
 
 
 
 
 
 



 
 
 
 
Figure S3. Nkx2-1 Expression in Control and Lhx6-Cre;Nkx2-1Fl/Fl Mutant Embryos  
(A–D) Coronal sections through the telencephalon of E15.5 control (A and C) and Lhx6-
Cre;Nkx2-1Fl/Fl mutant (B and D) embryos showing Nkx2-1 protein (A and B) and mRNA (C 
and D) expression. 
ec, external capsule; LGE, lateral ganglionic eminence; MGE, medial ganglionic eminence; Str, 
striatum. 
Scale bar equals 100 µm. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 

Figure S4. Lhx6 and Lhx7 mRNA Expression Is Unchanged in the Ventral Telencephalon of 
Lhx6-Cre;Nkx2-1Fl/Fl Mutant Embryos  
(A–D) Coronal sections through the telencephalon of E15.5 control (A and C) and Lhx6-
Cre;Nkx2-1Fl/Fl mutant (B and D) embryos showing Lhx6 (A and B) and Lhx7 (C and D) mRNA 
expression. 
DB, diagonal band; MGE, medial ganglionic eminence; Se, septum; OT, olfactory tubercle. 
Scale bar equals 100 µm. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
Figure S5. Tracing Experiments Reveal a Reduction in the Number of Interneurons that Invade 
the Embryonic Striatum upon Loss of Nkx2-1 Function 
(A and B) Coronal sections through the telencephalon of E13.5 Lhx6-Cre;Nkx2-1Fl/+;Rosa-YFP 
control (A) and Lhx6-Cre;Nkx2-1Fl/Fl;Rosa-YFP mutant (B) embryos showing YFP expression. 
Dotted lines indicate the limits of the developing striatum. YFP is also detected in scattered 
blood vessels, as previously reported (Fogarty et al., 2007). 

(C) Quantification of the number of YFP-expressing cells in the striatum of E13.5 Lhx6-
Cre;Nkx2-1Fl/+;Rosa-YFP control and Lhx6-Cre;Nkx2-1Fl/Fl;Rosa-YFP mutant embryos. 
Histograms show average ± s.e.m. 2488.03 ± 134.24 (YFP control); 2043.78 ± 55.54 
(YFP mutant). * p < 0.05, t-test. 
LGE, lateral ganglionic eminence; MGE, medial ganglionic eminence; NCx, neocortex; Str, 
striatum. 
Scale bar equals 100 µm. 
 
 
 
 
 
 
 



 
 
 

 
 
 

Figure S6. Putative Promoter Regions for Mus musculus Neuropilin-2 
Nrp2 regulatory sequences (Genbank AF022855), designated Nrp2-region2 (chr1: 62.617.785- 
62.618.074) and Nrp2-region1 (chr1: 62.638.833- 62.639.09), containing Nkx2-1 consensus 
sequences (red letters in bold and italic for 8/9 base pairs sequences and black letters in bold and 
italic for a 6 base sequence). The oligonucleotide primers used for PCR detection of the ChIP 
assays are shown in bold and underlined. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
Figure S7. Lhx6 mRNA Expression Is Unchanged in the Cortex of Lhx6-Cre;Nkx2-1Fl/Fl Mutant 
Embryos  
(A and B) Coronal sections through the telencephalon of E15.5 control (A) and Lhx6-Cre;Nkx2-
1Fl/Fl mutant (B) embryos showing Lhx6 mRNA expression. 

(C) Quantification of the number of Lhx6-expressing cells in the cortex of E15.5 control 
and Lhx6-Cre;Nkx2-1Fl/Fl mutant embryos. Histograms show average ± s.e.m. 2004.43 ± 
170.50 (Lhx6 control); 1855.71 ± 35.33 (Lhx6 mutant). 
NCx, neocortex. 
Scale bar equals 100 µm. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 

 

Figure S8. List of Primers Used in Semi-quantitative and Quantitative RT-PCR Experiments  
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3.1. Summary 
In the developing telencephalon, the medial ganglionic eminence (MGE) gives rise to many 

cortical and virtually all striatal interneurons. While the molecular mechanisms controlling the 

migration of interneurons to the cortex have been extensively studied, very little is known about the 

nature of the signals that guide interneurons to the striatum. Here we report that the coordinated 

action of ErbB4 signalling and a cortical repulsive activity control the migration of MGE-derived 

striatal cells. Our results also suggest that the responsiveness of MGE-derived striatal 

interneurons to those cues is at least in part controlled by the postmitotic action of the Nkx2-1 

transcription factor. 

3.2. Introduction 

During the development of the telencephalon, the MGE is the source of several neuronal 

populations, including striatal and cortical interneurons (Lavdas et al., 1999; Marín et al., 2001; 

Sussel et al., 1999; Wichterle et al., 1999; Wichterle et al., 2001). The mechanisms controlling the 

migration of cortical interneurons have been extensively studied over the past years, and they 

seem to involve the simultaneous activity of several chemorepulsive and chemoattractive factors 

(Flames et al., 2004; Marín et al., 2003; Marín et al., 2001; Wichterle et al., 2003). Initially, MGE-

derived interneurons avoid migrating in ventral direction due to the existence of a currently 

uncharacterized chemorepulsive activity in the preoptic area (Marín et al., 2003). Subsequently, 

expression of neuropilin receptors in migrating cortical interneurons instructs them to avoid the 

developing striatum, which is enriched in two chemorepulsive molecules, Sema3A and Sema3F 

(Marín et al., 2001). Different isoforms of the Neuregulin-1 gene (Nrg1) contribute to the migration 

of MGE-derived cortical interneurons via the ErbB4 receptor (Flames et al., 2004). MGE-derived 

interneurons migrate to the cortex through a narrow corridor deep to the striatal mantle that 

expresses a membrane-bound isoform of Neuregulin-1 (CRD-Nrg1), and this molecule constitutes 

a very permissive substrate for these cells (Flames et al., 2004). In addition, the secreted isoform 

of Nrg1 (Ig-Nrg1) is expressed in the developing cortex and exerts a long-range chemoattractive 

effect over MGE-derived cortical interneurons (Flames et al., 2004). Other factors, such as glial-

derived neurotrophic factor (GDNF) and hepatocyte growth factor (HGF) also seem to influence 

the migration of cortical interneurons by promoting their migration (Powell et al., 2001; Pozas and 

Ibañez, 2005). 

In contrast to our extensive knowledge on the mechanisms directing the migration of cortical 

interneurons, our understanding of the events controlling the targeting of interneuron to the 

developing striatum is very limited. We have recently shown that Nkx2-1, a transcription factor 

required for the specification of MGE progenitor cells (Butt et al., 2008; Sussel et al., 1999), is also 
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involved in regulating the migration of striatal interneurons (Nobrega-Pereira et al., 2008). Virtually 

all MGE progenitor cells express Nkx2-1, but its expression is differentially regulated in striatal and 

cortical interneurons. While most MGE-derived striatal interneurons maintain Nkx2-1 expression 

postmitotically, expression of this gene is downregulated in migrating cortical interneurons (Marín 

et al., 2000; Nobrega-Pereira et al., 2008). Loss of Nkx2-1 in postmitotic MGE-derived cells 

decreases the number of interneurons migrating to the striatum (Nobrega-Pereira et al., 2008), 

which suggest that Nkx2-1 controls at least some of the genetic programmes required for the 

correct guidance of these neurons. For example, postmitotic Nkx2-1 directly represses the 

expression of semaphorin receptors, which renders striatal interneurons insensitive to 

semaphorins expressed in the developing striatum (Nobrega-Pereira et al., 2008).  

In this study, we analyzed further the function of Nkx2-1 in the migration of striatal interneurons. 

We found that MGE-derived striatal cells express the ErbB4 receptor and partially rely in ErbB4-

mediated interactions to precisely migrate to the developing striatum. In addition, Nkx2-1 leaves 

MGE-derived cells susceptible to a yet unidentified chemorepulsive activity present in the 

developing cortex. These results reveal the implication of several guidance signals in controlling 

the migration of MGE-derived striatal cells and the involvement of the Nkx2-1 transcription factor in 

modulating the responsiveness of striatal interneurons to those cues. 

3.3. Results  

We have previously shown that forced expression of Nkx2-1 in all MGE-derived neurons prevents 

migration of interneurons to the cortex, while migration to the striatum is greatly enhanced 

(Nobrega-Pereira et al., 2008) (Figure S1). Nkx2-1 seems to facilitate interneuron migration to the 

striatum by repressing the expression of receptors for semaphorins (Nobrega-Pereira et al., 2008), 

which during normal development prevent cortical interneurons from invading this territory (Marín 

et al., 2001). However, the observation that Nkx2-1-expressing interneurons accumulate in the 

striatum rather than passing through in their way to the cortex also suggests that: (i) striatal 

projection neurons produce a chemoattractant for Nkx2-1-expressing interneurons, and/or (ii) the 

cortex releases a chemorepellent activity for Nkx2-1-expressing interneurons. 

3.3.1. ErbB4-dependent signalling is required for the migration of MGE-

derived interneurons to the striatum 

CRD-Nrg1, the membrane bound isoform of Nrg1, is strongly expressed in the developing striatum 

at the time of cortical and striatal interneuron migration (Flames et al., 2004; Figure 1A and 1B). 

This suggests that, in addition to regulating the migration of cortical interneurons through the LGE 

corridor, Nrg1 may also guide MGE-derived striatal interneurons to their target. To test this 

hypothesis, we first analyzed the expression of the Nrg1 receptor ErbB4 in migrating striatal 



 
Chapter 3. Results 

 

35 
 

interneurons. At embryonic stage (E) 13.5, ErbB4 transcripts were found in cells migrating to the 

cortex and in the developing striatum (Figure 1C). Because ErbB4 expression in the striatum may 

correspond to cells passing through this structure rather than immature striatal interneurons, we 

next examined the expression of ErbB4 protein in MGE-derived interneurons migrating in vitro. To 

unequivocally identified striatal interneurons emanating from the MGE, we used antibodies against 

Nkx2-1, a transcription factor that is expressed in most migrating striatal interneurons, but not in 

cortical interneurons (Marín et al., 2000; Nobrega-Pereira et al., 2008). Double labelling staining 

demonstrated that migrating striatal interneurons express the ErbB4 receptor (Figure 1D and D’). 

Expression of ErbB4 in migrating striatal interneurons is consistent with the hypothesis that these 

neurons rely on Nrg1/ErbB4 signalling to target the striatum. To begin to test this hypothesis, we 

asked whether ErbB4 signalling is required for interneurons to migrate to the striatum. Because 

the proportion of MGE-derived cells that migrate to the striatum is very low compared to the 

number of cortical interneurons under normal circumstances (Nobrega-Pereira et al., 2008), we 

artificially increased the number of interneurons migrating to the striatum by forcing Nkx2-1 

expression in all MGE-derived cells, and asked whether the accumulation of Nkx2-1-expressing 

interneurons in the striatum requires ErbB4 function. To this aim, we focally electroporated a 

plasmid encoding Nkx2-1-IRES-Gfp in the MGE of embryonic organotypic slices obtained from 

control or ErbB4-/-HER4heart mutant embryos (Figure 2A). In these mice, expression of human 

ErbB4 (HER4) under a cardiac-specific myosin promoter avoids the embryonic lethality caused by 

loss of ErbB4 function in the myocardium (Tidcombe et al., 2003). Consistent with previous results 

(Nobrega-Pereira et al., 2008), the majority of Nkx2-1-expressing MGE-derived cells accumulate in 

the developing striatum in wild types slices (n = 4 slices; Figure 2B). In ErbB4-/-HER4heart 

organotypic slices, however, Nkx2-1-expressing cells were still confined to the subpallium, but 

fewer reached the striatum and instead accumulated throughout the MGE subventricular zone and 

mantle (n = 4 slices; Figure 2C; number of Gfp-expressing cells in the striatum [average ± SEM]: 

58.88 ± 2.12 [control] and 21.50 ± 3.00 [mutant], *** p < 0.001, t test). To discard the possibility 

that ErbB4 function is required for interneuron migration and not just guidance, we cultured wild 

type and ErbB4-/-HER4heart MGE explants that were previously electroporated with Gfp. We found 

that MGE-derived Gfp-expressing cells lacking ErbB4 migrate similar distances that control cells 

(Figure S2), suggesting that loss of ErbB4 function does not impair cell migration. Finally, we 

analyzed the distribution of interneurons in the striatum of ErbB4-/-HER4heart mutant mice. We 

found that the striatum of E15.5 ErbB4-/-HER4heart mutant embryos contained fewer Nkx2-1-

expressing neurons than controls (n = 3; Figure 2D-F). Altogether, these results suggest that the 

correct allocation of MGE-derived striatal interneurons partly relies on ErbB4 signalling through a 

mechanism that it is likely to involve CRD-Nrg1 chemoattraction. 
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3.3.2. The cortex contains a chemorepulsive activity for striatal interneurons  

The cerebral cortex contains high levels of expression of secretable forms of Nrg1, such as Ig-

Nrg1 (Flames et al., 2004), which contribute to direct cortical interneurons to their final target. 

Since striatal interneurons also express ErbB4 receptors, additional mechanisms might exists to 

prevent striatal interneurons from populating the cortex. To start testing this possibility, we 

transplanted small E13.5 MGE explants from green fluorescence protein (GFP)-expressing 

embryos (MGEGFP) into the cortex of telencephalic slices obtained from isochronic wild type mouse 

embryos (Figure 3A). After 36 h in culture, many MGE-derived GFP-expressing cells were found 

through the cortex. However, virtually none of the GFP cells that invaded the cortex expressed 

Nkx2-1 (n = 5; Figure 3B and 3B’; 1.2 ± 0.5% of GFP/Nkx2-1 cells, average ± SEM). These 

findings suggested two possibilities: (i) the cortex contains an activity that represses the 

expression of Nkx2-1 in MGE-derived neurons, and/or (ii) striatal interneurons (Nkx2-1-expressing 

MGE-derived cells) cannot migrate into the cortex. To test this, we repeated the previous 

experiments after placing a small piece of striatal tissue in the cortex of host slices (Figure 3C). 

Under those circumstances, many MGE-derived GFP cells expressing Nkx2-1 left the explants 

and invade the ectopic striatum, where they accumulated (n = 8; Figure 3D and 3D’; 24.0 ± 6.2% 

of GFP/Nkx2-1 cells, average ± SEM). Thus, striatal interneurons can migrate in close proximity to 

cortical tissue, but they preferentially accumulate in the striatum rather than invading the cortex. 

The previous experiments suggested that the cortex might contain a non-permissive or repulsive 

activity for striatal interneurons. To directly test this hypothesis, we focally electroporated a 

plasmid encoding for Nkx2-1 in the MGE of E13.5 organotypic slices and then placed small MGE-

electroporated transplants in the cortex (Figure 3E). In control experiments, many Gfp-expressing 

cells migrated out of the MGE explant and colonized the entire developing cortex (Figure 3F). In 

contrast, expression of Nkx2-1 prevented MGE-derived cells to invade the cortex (n = 7; Figure 

3G; number of cells in cortex [average ± SEM]: 23.6 ± 1.4 [GFP] and 6.6 ± 0.9 [GFP/Nkx2-1], *** p 

< 0.001, t test). These results demonstrate that MGE-derived Nkx2-1-expressing cells, putative 

striatal interneurons, are not able to invade the cortex, suggesting that this transcription factor may 

render MGE-derived cells receptive to a repulsive or non-permissive activity present in the 

developing cortex. 

3.4. Discussion 

Our results suggest that the migration of striatal interneurons is regulated through the combination 

of both chemoattractive and chemorepulsive signals, similar to what it has been described for 

cortical interneurons (Marín and Rubenstein, 2003). The migration of MGE-derived striatal cells 

partially relies in ErbB4/Nrg1 interactions. Some MGE-derived Nkx2-1-expressing cells express 

the Nrg1 receptor ErbB4, suggesting that only a fraction of striatal interneurons use Nrg1/ErbB4 
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signalling to migrate to the striatum. In the postnatal brain, ErbB4 is expressed primarily in 

Parvalbumin-expressing interneurons in the striatum (Fox and Kornblum, 2005; Yau et al., 2003), 

suggesting that only this population may require ErbB4 for their migration. Consistently, loss of 

ErbB4 function decreases the number of Nkx2-1-expressing neurons that migrate towards the 

striatum, but the reduction in the total number of striatal interneurons is not very prominent. This 

suggests that, in addition to Nrg1, additional chemoattractive cues might be required for the 

migration and final allocation of striatal interneurons. Alternatively, ErbB4 function might be 

required for the proliferation of MGE precursors (Ghashghaei et al., 2006), which may directly 

influence the final pool of migrating neurons. This possibility should be addressed in future 

experiments. 

ErbB4 receptor is expressed and required for the migration of both MGE-derived cortical and 

striatal interneurons, raising the possibility that its expression in MGE and POA cells is controlled 

by the cell-fate determinant Nkx2-1. Previous studies have shown that that Nkx2-1 binds and 

activates in vitro the promoter of ErbB2, a closely related member of the ErbB family of receptors 

(Lee et al., 2001). Consistent with this possibility, we found that electroporation of Nkx2-1 in 

organotypic slices could lead to the induction of ErbB4 expression in MGE-derived cells (8/17 

slices; Figure S3) but not in LGE-derived cells or in Nkx2-1-/- tissue (data not shown). These results 

suggest that Nkx2-1 can activate the expression of ErbB4 in MGE cells but its action seems to be 

conditioned by additional factors. It has been recently shown that expression of ErbB4 is lost in 

Lhx6 mutant mice exclusively in MGE-derived cells migrating to the cortex, but it is maintained 

throughout the subpallium (Zhao et al., 2008). Since Lhx6 is a direct target of Nkx2-1 (Du et al., 

2008), this LIM transcription factor could be acting downstream of Nkx2-1 to maintain ErbB4 

activation in MGE-derived cells after they down-regulate Nkx2-1 expression postmitotically.  

Our experiments demonstrate that MGE-derived striatal interneurons may only invade the 

developing cortex if they down-regulate the expression of Nkx2-1. When transplanted into the 

cortex, MGE-derived Nkx2-1-expressing cells fail to leave the explants, even though expression of 

Nkx2-1 does not perturb the migratory potential of these cells (Nobrega-Pereira et al., 2008). This 

suggests that Nkx2-1 makes these cells susceptible to a yet unidentified cortical repulsive activity. 

It is tempting to speculate that the Slit/Robo signalling pathway could mediate this cortical 

repulsive activity. In the developing telencephalon, the Slit1 and 2 diffusible molecules are 

expressed across the midline and in restricted laminar patterns in the cortex or in the prospective 

hippocampus, respectively (Bagri et al., 2002; Marillat et al., 2001; Zhu et al., 1999), whereas the 

Slit receptors Robo1/2 are expressed by some MGE-derived cells (data not shown; Andrews et al., 

2006; Bagri et al., 2002). Slit proteins have been implicated in controlling the positioning of 

neuronal populations, such as the cholinergic basal magnocellular complex, across the midline of 

the ventral telencephalon (Marín et al., 2003). In addition, in Slit1/2 double mutant mice there is a 

reduction in the number of NPY-expressing GABAergic interneurons in the dorsolateral striatum 
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(Marín et al., 2003), suggesting a possible involvement of this signalling in controlling the migration 

of striatal interneurons. Future experiments will test the possible role of this signalling pathway in 

controlling the migration of striatal interneurons. Altogether, our results shed light into the 

molecular mechanisms that regulate the migration of striatal interneurons and ultimately contribute 

for the correct wiring of the telencephalon. 

3.5. Experimental Procedures 

Mouse lines. Wild-type mice, GFP-expressing transgenic mice (Hadjantonakis et al., 2002) and 

Nkx2-1 mutant mice (Kimura et al., 1996) maintained in a CD1 background were used for 

expression analysis and tissue culture experiments. HER4heart transgenic mice (Tidcombe et al., 

2003), which express a human ErbB4 (HER4) cDNA under the control of the cardiac-specific α-

HMC (myosin heavy chain) promoter, were mated to ErbB4 heterozygous mice (Gassmann et al., 

1995) to generate ErbB4+/+HER4heart and ErbB4-/-HER4heart littermate mice and these animals were 

maintained in a mixed C57Bl/6 x 129/SvJ x CBA background. Animals were kept under Spanish 

and EU regulation. 

In vitro focal electroporation. A cDNA encoding Nkx2-1 (accession number NM_009385) was 

used. All constructs (Gfp, Nkx2-1 and Nkx2-1-IRES-Gfp) were inserted into the pCAGGS chicken 

β-actin promoter expression vector. Expression vectors were electroporated at a concentration of 

1 µg/µl and mixed in a 0.9/1.5 ratio when co-electroporated. Expression vectors were focally 

injected into the MGE and embryonic slice cultures were electroporated as previously described 

(Flames et al., 2004).  

Slice and MGE explants culture. E13.5 organotypic coronal slice cultures from wild-type or GFP 

transgenic embryos were obtained as described previously (Anderson et al., 1997). Slice 

transplantation was performed immediately after the preparation of the organotypic slices, and the 

slices returned to the incubator for the appropriate time. MGE explants were dissected out from 

organotypic slices after electroporation and placed in the cortex of the host slice in transplantation 

experiments. For gene-expression analysis, immunofluorescence detection and migratory 

performance, MGE explants were cultured on glass coverslips coated with poly-L-Lysine and 

laminin in Neurobasal medium containing 0.4% methylcellulose (Sigma) or in three-dimensional 

matrigel® matrices. 

In situ hybridization and immunohistochemistry. For in situ hybridization, brains were fixed 

overnight in 4% paraformaldehyde in PBS (PFA). Twenty µm frozen sections and 250 µm de-

hydrated organotypic slices were hybridized with digoxigenin-labeled probes as described before 

(Flames et al., 2007). Immunohistochemistry was performed on: 20 µm cryostat sections, 60 µm 

vibrotome re-sectioned organotypic slices, MGE explants in matrigel® pads and MGE explants in 
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Poly-L-Lysine and Laminin substrates. Slices, explants and embryos were fixed in 4% PFA at 4ºC 

from 2-6 h. The following primary antibodies were used: chicken anti-GFP (1/1000, Aves Labs), 

rabbit anti-Nkx2-1 (1/2000, Biopat), and rabbit anti-ErbB4 (1/300, a gift from Dr. Cary Lai). The 

following secondary antibodies were used: goat anti-chicken 488, donkey anti-rabbit 555, donkey 

anti-rabbit 488 (Molecular Probes) and donkey anti-rabbit Cy3-conjugated Fab fragment (Jackson 

Laboratories). For the ErbB4/Nkx2-1 double staining, sections were first processed for the rabbit 

anti-ErbB4 immunofluorescence using anti-rabbit Cy3-conjugated Fab fragment as secondary 

antibody, fixed in 4%PFA-4%Sucrose for 10 min, and then processed for the rabbit anti-Nkx2-1 

staining. DAPI (Sigma) was used for fluorescent nuclear counterstaining.  

Quantification. For the quantification of interneurons in E15.5 control and ErbB4-/-HER4heart mutant 

brains, the outline of the striatum at rostral and caudal levels was delineated in 20 µm sections, 

Nkx2-1-expressing cells were counted for three different brains from each genotype and the cell 

density (number of cells per mm2) was calculated. In the slice over-expression experiments, 60 µm 

vibratome re-sectioned organotypic slices were used to count the number of Gfp-expressing cells 

in a fixed volume of the striatum for control and ErbB4-/- HER4heart mutant slices. For the MGEGFP 

transplants into the cortex or cortex and striatum, the percentage of Nkx2-1/Gfp-expressing cells 

was counted for a fixed volume of tissue adjacent to the ectopic MGE explant. For the MGE-

electroporated transplants into the cortex, the number of Gfp-expressing cells was counted in a 

fixed volume of cortical tissue adjacent to the ectopic MGE explant. 
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Figure1. The ErbB4 receptor is expressed in MGE-derived cortical and striatal migrating 

interneurons.  

(A-C) Coronal sections through the telencephalon of E13.5 embryos depicting Nrg1-CRD (A) and 

Sema3F (B) mRNA expression in the developing striatum. (C) ErbB4 mRNA expression is 

detected in cells migrating towards the cortex (NCx; solid arrowheads) and passing through or 

accumulating in the striatum (Str; open arrowheads).  

(D and D’) MGE-derived cells stained with DAPI and ErbB4 after 12h in culture (D) where the 

majority is Nkx2-1-negative (D’, solid arrowheads) and a few co-label for Nkx2-1 (D’, open 

arrowheads). Of note, not all Nkx2-1 positive cells stained for ErbB4.  

LGE, lateral ganglionic eminence; MGE, medial ganglionic eminence; Th, thalamus.  

Scale bars = 200 µm (A, B and C) and 10 µm (D and D'). 
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Figure 2. ErbB4 is required for the migration of MGE-derived interneurons to the striatum.  

(A) Schematic diagram of the focal electroporation experiment.  

(B and C) Migration of MGE-derived cells over-expressing Nkx2-1-IRES-Gfp in E13.5 control (B) 

and ErbB4-/-HER4heart mutant (C) re-sectioned slices.  

(D and E) Coronal sections through the telencephalon of E15.5 control (D) and ErbB4-/-HER4heart 

mutant (E) embryos showing Nkx2-1 protein expression.  

(F) Quantification of the number of Nkx2-1-expressing cells in the caudal striatum of E15.5 control 

and ErbB4-/-HER4heart mutant embryos. Histograms show average ± SEM 771.46 ± 45.05 (Nkx2-1 

control); 643.49 ± 76.77 (Nkx2-1 mutant). * p < 0.05, t test.  

Dotted lines indicate the limits of the slices.  

ec, external capsule; GP, globus pallidus; H, hippocampus; LGE, lateral ganglionic eminence; 

MGE, medial ganglionic eminence; NCx, neocortex; Str, striatum. 

Scale bars = 200 µm (B and C) and 100 µm (D and E).  
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Figure 3. Downregulation of Nkx2-1 in MGE-derived interneurons is a necessary event for cortical 

invasion.  

(A, C, E) Schematic of the slice transplantation paradigms used.  

(B and B’) MGEect -derived GFP migrating cells in the cortex of E13.5 wild-type host slices are 

Nkx2-1 negative.  

(D and D’) MGEect -derived GFP migrating cells only co-label for Nkx2-1 (arrowheads) in the 

striatal explants and not in the cortex of E13.5 wild-type host slices.  

(F and F’) Migration of MGEect -derived cells electroporated with Gfp (F) or with Gfp and Nkx2-1 

(G).  

Dotted lines indicate the limits of the organotypic slices.  

MGE, medial ganglionic eminence; MGEect, ectopic medial ganglionic eminence; NCx, neocortex; 

Str, striatum.  

Scale bars = 50 µm (B and D) and 200 µm (F and G). 
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Figure S1. Nkx2-1 overexpression prevents the migration of MGE-derived interneurons to the 

cortex. 

(A) Schematic diagram of the experimental paradigm used.  

(B and C) Migration of MGE-derived cells over-expressing Gfp (B) or Nkx2-1-IRES-Gfp (C) in 

E13.5 organotypic slices. 

Dotted lines indicate the limits of the organotypic slices.  

H, hippocampus; LGE, lateral ganglionic eminence; MGE, medial ganglionic eminence; NCx, 

neocortex; PCx, piriform cortex; Str, striatum. 

Scale bar = 200 µm. 
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Figure S2. Loss of ErbB4 function does not impair the migration of MGE-derived cells in vitro.  

(A) Schematic diagram of the experimental paradigm used. E13.5 organotypic slices were focally 

electroporated with Gfp, MGE explants were dissected from the electroporated region and cultured 

in matrigel matrices.  

(B and C) Migration of MGE-derived cells over-expressing Gfp in E13.5 control (B) and ErbB4-/-

HER4heart mutant (C) explants cultured in vitro. 

MGE, medial ganglionic eminence; NCx, neocortex.  

Scale bar = 50 µm. 
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Figure S3. A potential role for Nkx2-1 in activating ErbB4 expression in MGE cells.  

(A) Schematic diagram of the focal electroporation experiment. After 36h, the slices were 

processed for ErbB4 transcript detection by in situ hybridization.  

(B and B’) Migration of MGE-derived cells electroporated with Nkx2-1-IRES-Gfp (B) and ErbB4 

mRNA expression in the same organotypic slice (B’). Dotted lines indicate the limits of the 

organotypic slices and arrowheads point to Nkx2-1-IRES-Gfp-expressing cells that seem to co-

label for ErbB4.  

H, hippocampus; LGE, lateral ganglionic eminence; MGE, medial ganglionic eminence; NCx, 

neocortex; Str, striatum.  

Scale bar = 200 µm. 
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Chapter 4. General Discussion  

During development of the telencephalon, newborn neurons migrate away from the germinal 

zones to populate specific regions. To achieve their correct targeting, neurons integrate multiple 

external signals that will determine their final location. So, guidance selectivity is ultimately 

achieved by the specific set of receptors and effectors expressed by each neuronal population. 

Transcriptional regulation has been pointed as the main mechanism regulating this process but, 

for most cases, is presently unclear how transcription factors exert their influence. 

Identifying the extrinsic and intrinsic molecular mechanisms that confer directionality and guidance 

specificity to subpallial migrating interneurons is fundamental to understand the correct assembly 

and wiring of the telencephalon. A large class of neuropathological conditions (e.g. epilepsy, 

autism, Rett syndrome) collectively known as “interneuronopathies” may arise from impairment in 

the tangential migration of cortical GABAergic interneurons (Kato and Dobyns, 2005). Mutations in 

subpallial transcription factors have been linked to these pathologies both in humans and animal 

models (Butt et al., 2008; Cobos et al., 2005; Hamilton et al., 2005; Horike et al., 2005; Kato, 2006; 

Kato and Dobyns, 2005; Nawara et al., 2006). For instance, removal of both alleles of the Nkx2-1 

gene specifically in subpallial progenitors leads to profound behavioural abnormalities in juvenile 

animals, in which the occurrence of visible seizures is associated with prolonged abnormal 

bursting activity in the cortex (Butt et al., 2008). These behavioural abnormalities correlate with a 

dramatic reduction in the number of MGE-derived GABAergic interneurons in the cortex (Butt et 

al., 2008), similar to what it has been described in other mutants with reduced number of forebrain 

GABAergic interneurons (Cobos et al., 2006; Colombo et al., 2007; Kitamura et al., 2002; Powell 

et al., 2003). These studies highlight the crucial contribution of specific transcription factors in the 

development of the telencephalon, suggesting that in-depth analysis of their function will contribute 

to increase our knowledge on the mechanisms that shape a functional brain. 

4.1. Transcriptional control of neuronal migration in the 

developing telencephalon 

Neurons can migrate either along the radial axis, interacting with the radial glial scaffold, or 

disperse tangentially in a plane orthogonal to radial glial cells along the antero-posterior or medio-

lateral axis (Hatten, 1999). Thus, neuronal migration is subjected to several levels of regulation, 

ranging from the selective action of environmental guidance cues to the establishment of 

interactions with specific substrates (Hatten, 2002; Marín and Rubenstein, 2003). Guidance 

molecules controlling neuronal migration have multiple similarities with those described for axon 
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guidance where transcriptional regulation has been shown to control the repertoire of receptors 

expressed by each neuron (Butler and Tear, 2007; Polleux et al., 2007). Apart from the research 

reported here, there is increasing evidence that transcriptional regulation plays an important role in 

tangential and radial migration in the developing telencephalon. 

4.1.1. Transcription factors in the migration of telencephalic interneurons 

The MGE is a proliferative structure located in the subpallium that gives rise, among other 

neuronal populations, to interneurons that migrate tangentially to the striatum and cerebral cortex 

(Lavdas et al., 1999; Marín et al., 2000; Sussel et al., 1999; Wichterle et al., 1999; Wichterle et al., 

2001). Since MGE-derived interneurons undergo extensive migration to reach their target 

territories (Marin and Rubenstein, 2001), they represent a good model to study the contribution of 

extrinsic and intrinsic determinants in controlling this remarkably complex process. Previously it 

was shown that Neuropilin-1 (Nrp1) and Neuropilin-2 (Nrp2), the binding receptors for the striatal 

repulsive molecules Semaphorin-3A (Sema3A) and Semaphorin-3F (Sema3F), respectively, are 

expressed by MGE-derived cortical and absent from MGE-derived striatal interneurons, mediating 

thereby the segregation of these populations (Marín et al., 2001). Therefore, one of our aims was 

to investigate the upstream regulators controlling neuropilin/semaphorin interactions in MGE-

derived migrating interneurons. 

Using experimental manipulations and mouse genetics, we provide evidence that the 

homeodomain transcription factor Nkx2-1 modulates the selective responsiveness of MGE-derived 

interneurons to class 3 Semaphorins (Figure 8A). All MGE progenitor cells express Nkx2-1, which 

plays a crucial role in their specification (Butt et al., 2008; Sussel et al., 1999). Interestingly, Nkx2-

1 expression is maintained in MGE-derived postmitotic striatal interneurons but is downregulated 

by cortical migrating cells (Marín et al., 2000; Nobrega-Pereira et al., 2008) (Figure 8A). Our data 

indicate that forced expression of Nkx2-1 in MGE-derived cells prevented the migration of 

interneurons to the cortex. Conversely, conditional deletion of Nkx2-1 in MGE-derived postmitotic 

cells resulted in a reduction in the number of striatal interneurons at developmental and postnatal 

stages. We could demonstrate that Nkx2-1 mediates the sorting of these interneuronal populations 

by negatively regulating their sensitivity to class 3 Semaphorins; MGE-migrating cells expressing 

Nkx2-1 are no longer repelled by a source of semaphorins and exhibit a significant reduction in the 

expression of Nrp2. Moreover, Nkx2-1 directly binds to the Nrp2 locus in MGE cells and interaction 

with this sequence is sufficient to repress transcription in vitro, suggesting a direct and cell-

autonomous role for Nkx2-1 in controlling the expression of the Nrp2 guidance receptor in MGE-

derived cells (Figure 8A). Our data reveal that the segregation of MGE-derived interneurons 

largely depends on Nkx2-1 postmitotic function, however, and as discussed previously (Nobrega-

Pereira et al., 2008), the factors controlling Nkx2-1 expression at this level are unknown but seem 

to be Shh-independent. The Nkx6-1 transcription factor is able to maintain the expression of its 
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own gene in pancreatic β-cells (Iype et al., 2004); similarly Nkx2-1 could mediate a positive 

feedback loop to sustain its own expression in postmitotic striatal interneurons.  

 

Our experiments showed that Nkx2-1 does not seem to significantly affect the expression of 

additional components of the Sema3A/3F signalling, such as the Nrp1 binding receptor and the 

PlexinA3/A4 signalling-receptors, components of the Sema3A/3F signalling in perypheric neurons 

(Yaron et al., 2005). Although PlexinA3/A4 are expressed in MGE-derived interneurons (Nobrega-

Pereira et al., 2008), the association of these receptors with Nrp1/2 co-receptors has not been 
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demonstrated in these neurons. The factors controlling the activation of Nrp receptors in MGE-

derived cortical migrating interneurons are currently unknown. Since Nkx2-1 is expressed in 

virtually all MGE precursors (Nobrega-Pereira et al., 2008) and Nrp1/2 expression is largely 

confined to postmitotic MGE-derived cells (Marín et al., 2001), it is tempting to speculate that 

Nkx2-1 could additionally contribute to prevent the premature expression of Nrp2 in progenitor 

cells, which otherwise could result in abnormal neuronal migration. The postmitotic maintenance of 

Nkx2-1 only in striatal neurons will ensure the Nrp2 repressive state whereas the fast 

downregulation of Nkx2-1 in cortical interneurons will relieve this repression and enable cortical 

migrating neurons from avoiding the striatal territory. All our functional experiments tested the 

contribution of Nkx2-1 postmitotic function and the role of this transcription factor at the progenitor 

level was not the scope of this study. Nevertheless, our ChIP and luciferase assays reveal that 

Nkx2-1 is able to bind and repress Nrp2 transcription in MGE cells and in vitro, respectively, 

leaving this possibility open. In this context, the Dlx1 and Dlx2 homeodomain transcription factors 

have been described as potential negative regulators of Nrp2 expression in MGE cells; Dlx1 and 

Dlx2 bind to a specific region of the Nrp2 locus in vivo and interaction with this sequence promotes 

repression in vitro (Le et al., 2007). Since these factors are expressed by subpallial progenitor 

cells and in both cortical and striatal migrating interneurons (Eisenstat et al., 1999), the functional 

relevance of this interaction for the segregation of MGE-derived cells is unlikely and rather 

suggests a regulation at the level of progenitors. 

The Dlx1/2 transcription factors also play a prominent role in the migration of MGE-derived 

interneurons but appear to control different target effectors. The analysis of Dlx1/2 double mutants 

revealed severe defects in the differentiation and tangential migration of subpallial-derived 

GABAergic interneurons (Anderson et al., 1997; Marín et al., 2000; Pleasure et al., 2000). Dlx1/2-

deficient MGE cells have increased expression of several cytoskeleton regulators, such as 

microtubule-associated protein 2 (MAP2), growth associated protein 43 (GAP43) and p-21 

activated kinase 3 (PAK3), which may in turn cause their premature differentiation and block their 

migration (Cobos et al., 2007). PAK3 is a downstream effector of the Rho family of GTPases 

(Bokoch, 2003) and is primarily expressed in post-migratory MGE-derived cells in which it controls 

the growth of axons and dendrites. The premature expression of PAK3 in migratory MGE-derived 

cells causes excessive neurite length, which in turns block their normal movement (Cobos et al., 

2007). Thus, Dlx1/2 transcription factors promote tangential migration, in part, through negatively 

regulating the neurite differentiation program in migratory neurons (Figure 8A). In addition, a 

recent study reported that Dlx2 is required to activate the GABAergic enhancer element of 

Aristaless related homeobox (Arx) (Colasante et al., 2008), a transcription factor previously 

implicated in the migration of subpallial-derived interneurons (Bonneau et al., 2002; Colombo et 

al., 2007; Kitamura et al., 2002). This factor is a key mediator of Dlx-dependent migration, since 

Arx over-expression in Dlx1/2 mutant embryonic slices is able to partially rescue the migration of 

subpallial interneurons in these mutants (Colasante et al., 2008) (Figure 8A). 
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4.1.2. The migration of cortical projection neurons is transcriptionally 

regulated 

Cortical projection neurons are born from progenitor cells located in the dorsal telencephalon (i.e. 

the pallium) and migrate radially towards the pial surface to form the layers of the developing 

cortex (Kriegstein and Noctor, 2004) (Figure 8B). Regulation of the actomyosin and microtubule 

cytoskeletons, adhesion molecules and non-receptor kinases is believed to regulate the migration 

of cortical projection neurons (Ayala et al., 2007; Marín and Rubenstein, 2003).  

The bHLH transcription factors Neurogenin1 (Ngn1) and Neurogenin2 (Ngn2) are well known for 

their proneural activity in several regions of the CNS, including the pallium (Guillemot, 2007). In 

addition, they have been proposed to potentiate cortical neuronal migration (Figure 8B). For 

instance, Ngn1/2 may enhance cortical cell migration by increasing the expression of p35 and 

doublecortin (Dcx) and diminishing the expression of the GTPase Rho member A (RhoA), key 

modulators of the actin and microtubule cytoskeleton (Ge et al., 2006). Consistent with this notion, 

the migration defects observed in the cortex of Ngn2 mutants can be rescued by reducing the 

function of RhoA (Hand et al., 2005). These genes are likely direct targets of Ngn1 and Ngn2, 

since both factors bind directly to E-box elements (i.e. consensus binding sites for bHLH factors) 

located in the Dcx promoter in cortical neurons and are able to induce and repress, respectively, 

the expression of the Dcx and RhoA promoters in vitro (Ge et al., 2006) (Figure 8B). The Rho-

related GTP-binding protein 2 (Rnd2), another member of the Rho family of small GTPases, is 

transiently expressed by cortical migrating neurons and has been identified as a potential Ngn2 

downstream target in a recent genomic screen (Heng et al., 2008) (Figure 8B). Knockdown and 

overexpression of Rnd2 cause striking defects in the radial migration of projection neurons. In 

particular, deregulation of Rnd2 activity leads to the persistence of an immature multipolar 

morphology, which may prevent the migration of projection neurons (Heng et al., 2008; Nakamura 

et al., 2006). As previously shown for a dominant-negative form of RhoA, weak and transient 

expression of Rnd2 in newborn Ngn2-deficient cortical neurons rescued the morphological and 

migratory abnormalities found in Ngn2 mutants, reinforcing the view that Rnd2 acts as a 

downstream mediator of Ngn2 during cortical migration (Heng et al., 2008). Furthermore, ChIP 

assays suggest that Ngn2 directly regulates Rnd2 expression in newborn cortical projections 

neurons (Heng et al., 2008) (Figure 8B). 

As for axon guidance, increasing evidence suggest that neuronal migration is controlled by the 

precise transcriptional regulation of effector genes that regulate a variety of events, from 

cytoskeleton dynamics to the response to guidance cues. It is also now evident that the same 

transcription factor can regulate several steps during the development of a given neuronal 

population. Understanding the mechanisms that modulate transcriptional selectivity will further 

uncover the action of transcription factors through development.  
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4.2. Nkx2-1 plays several roles in telencephalic development  

Nkx2-1 is expressed in the ventral subpallial progenitor zones and in many postmitotic neurons 

derived from those structures where it controls several developmental events. At early stages, 

Nkx2-1 interprets Shh patterning signal to impose regional specification in the subpallial 

telencephalon, whereas at neurogenic stages Nkx2-1 function determines cell-fate by restricting 

subtype-specific identity on MGE-derived cells (Anderson et al., 2001; Butt et al., 2008; Du et al., 

2008; Marín et al., 2000; Sussel et al., 1999; Xu et al., 2004). Our work reveals a new postmitotic 

function for Nkx2-1 in neuronal migration by controlling the repertoire of guidance receptors 

expressed by MGE-derived interneurons which will determine the selective responsiveness to the 

Sema3A/3F-striatal activity (Nobrega-Pereira et al., 2008). Previous studies reported that deletion 

of Nkx2-1 in differentiated neurons at postnatal stages perturbed hypothalamic-dependent gene 

expression and sexual maturation, without affecting basal ganglia-associated behavioural tasks 

(Mastronardi et al., 2006). This suggests that Nkx2-1 function in the ventral telencephalon is more 

critical during developmental stages (Butt et al., 2008). In agreement, Nkx2-1 is not expressed in 

the adult rat and human pallidal and striatal neurons (Krude et al., 2002) and the neurological 

symptoms (e.g. hypotonia, dyskenesia, and choreoathetosis) associated with Nkx2-1 

heterozygous loss of function mutations in humans and mice are attributed to a failure in basal 

ganglia development (Breedveld et al., 2002; Kleiner-Fisman et al., 2005; Krude et al., 2002; 

Pohlenz et al., 2002). 

Nkx2-1 is required for the specification of virtually all striatal interneurons (Butt et al., 2008; Marín 

et al., 2000; Sussel et al., 1999). Our results, however, suggest that the postmitotic function of this 

transcription factor is restricted to certain subtypes. Removal of Nkx2-1 postmitotic expression 

lead to a dramatic reduction in the number of Cholinergic and Parvalbumin-expressing GABAergic 

interneurons whereas the number of SST/NPY- and CR- positive interneurons was unchanged in 

the striatum of P25 Lhx6-Cre;Nkx2-1Fl/Fl mutant mice (Nobrega-Pereira et al., 2008). These results 

suggest that the later interneuron subtypes use mainly Nkx2-1-independent mechanisms to 

migrate to the striatum; whether this requires the involvement of other transcription factors in 

controlling neuropilin/semaphorin interactions or additional signalling systems remain to be 

investigated. In addition, we have demonstrated that Nkx2-1 postmitotic function directly controls 

neuronal migration, as shown by the decreased number of YFP neurons in the striatum of Lhx6-

Cre;Nkx2-1Fl/Fl;ROSA-YFP mutant mice, and is not required for the specification of MGE-derived 

neurons. In agreement, in the striatum of Lhx6-Cre;Nkx2-1Fl/Fl mutant mice we did not observed an 

increase in other interneuronal subtypes (CR, SST or NPY) at the expense of the depleted ChAT 

and PV populations, and the number of Lhx6- and Lhx7- expressing neurons was unaffected in 

other subpallial regions besides the striatum, or in the cortex (data not shown; Nobrega-Pereira et 

al., 2008). These observations suggest that Nkx2-1 functions in progenitor and postmitotic cells 

through different genetic programmes, which apart from targeting different genes could implicate 
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the use of specific transcriptional mechanisms.  

Identification of Nkx2-1 downstream molecular mechanisms and target effectors is fundamental to 

understand the contribution of this factor in telencephalic development. The research reported 

here provided evidence that Nkx2-1 directly represses the expression of the Nrp2 guidance 

receptor in MGE-derived migrating interneurons. Nkx2-1 binds to two tandem consensus regions 

in the Nrp2 regulatory region located (300 bp) upstream from the transcription initiation site and 

interaction with this sequence is sufficient to repress transcription in vitro. Furthermore, postmitotic 

Nkx2-1 ability to leave MGE-derived cells insensitive to a source of Sema3A/3F and to repress 

Nrp2 transcription in vitro relies in the homeodomain whereas the TN and NK2-SD motifs are not 

required (Nobrega-Pereira et al., 2008). Apart from necessary, it remains to be determined 

whether the homeodomain motif is sufficient to mediate Nkx2-1 postmitotic function, and 

particularly Nrp2 repression, in MGE-derived neurons. To our knowledge, this is the first Nkx2-1 

downstream target gene identified in postmitotic neurons and it will be interesting to investigate if 

an HD-dependent and TN/NK2-SD-independent mechanism constitutes a signature for Nkx2-1 

postmitotic function or if alternatively is gene- and context- specific. For instance, the Ngn2 

transcription factor uses partially distinct transcriptional mechanisms in progenitor or postmitotic 

cells (Ge et al., 2006; Hand et al., 2005) (see also section 4.2.1.). In the developing telencephalon, 

Lhx6 is so far the only proven direct transcriptional target of Nkx2-1 in subpallial-derived neurons 

and transcriptional activation of Lhx6 also requires an intact Nkx2-1 homeodomain (Du et al., 

2008). In this study, we also provide evidence that the ErbB4 receptor is a potential downstream 

target for Nkx2-1 in MGE progenitor cells. The expression of ErbB4 is almost absent in the 

telencephalon of Nkx2-1 mutant mice (data not shown) and overexpression of Nkx2-1 in 

embryonic organotypic slices is able to induce ErbB4 expression in MGE-derived cells. It remains 

to be elucidated whether this interaction occurs though direct or indirect (e.g. Lhx6) transcriptional 

regulation. The ErbB4 receptor has been previously described to mediate Nrg1-chemoattractive 

signalling in MGE-derived cortical migrating interneurons (Flames et al., 2004) and a possible role 

for this receptor in the guidance of striatal interneurons will be discussed later (section 4.3.). 

Is Nkx2-1 the only transcription factor with such transversal function in the developing 

telencephalon? As mentioned earlier, there are other examples of transcription factors that play 

pleiotropic functions in specific neuronal populations (e.g. subpallial Dlx1/2 and pallial Ngn2), and 

as for Nkx2-1, the mechanisms that regulate their complex function are not totally understood. 

4.2.1. Transcription factors as multitasking regulators  

It has been typically assumed that different families of transcription factors control distinct events 

during development, such as the specification of progenitor cells or the differentiation of neuronal 

populations. This prediction, however, turned out to be largely incorrect (Guillemot, 2007). Thus, 

while some transcription factors seem to function primarily in the differentiation of neurons (e.g. 
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LIM-HD transcription factors); many others regulate distinct events at different developmental 

stages (De Marco Garcia and Jessell, 2008; Muller et al., 2003; Shirasaki and Pfaff, 2002). For 

instance, the homeodomain transcription factors Nkx2-1 and Hoxa2 are first required for the early 

specification of specific neuronal populations in the developing telencephalon and hindbrain, 

respectively, and later regulate the migration of the same neurons (Geisen et al., 2008; Nobrega-

Pereira et al., 2008). 

An obvious question that emerges is how time and context-dependent transcriptional selectivity is 

accomplish for a given transcription factor. These proteins are able to recognize and bind to 

specific DNA target sequences through the interaction of its DNA binding motif with unique 

nucleotide sequences present in the regulatory regions of selected genes (Damante et al., 1996). 

In addition, several other mechanisms have been proposed to further modulate transcriptional 

selectivity, including post-translational modifications (e.g. phosphorylation or acetylation) of 

specific amino acid residues in protein- or DNA-binding motifs (Hand et al., 2005; Yang et al., 

2004). Interactions with specific co-regulators have also been described, such as the cooperative 

binding of Mash1 with class III POU domain transcription factors Brain (Brn) to the Delta1 

promoter in cortical neurons (Castro et al., 2006) or the interaction of Hox transcription factors with 

Pbx cofactors (Samad et al., 2004). However, how these mechanisms control the switch in 

transcriptional selectivity is still unclear. Recently, the Ngn1/2 transcription factors have been 

proposed to control neurogenesis and migration of cortical projections neurons through partially 

distinct mechanisms. A Tyrosine (T) to Alanine (A) replacement in the position 241 of the Ngn2 

protein (Y241A-Ngn2) blocks cortical cell migration without changing Ngn2 ability to regulate the 

neurogenic NeuroD promoter, whereas the mutated AQ-Ngn1/2, containing two amino acid 

substitutions in the C-terminus DNA-binding domain, fails to activate the neurogenic transcriptional 

programme but still promotes neuronal migration (Ge et al., 2006; Hand et al., 2005). 

Phosphorylation of the Y241 residue was proposed to mediate the Ngn1/2 migratory promoting 

activity by displacing the CREB binding protein (CBP) co-activator, which in turn interacts with the 

RhoA and Dcx promoters during migration (Figure 8B). In contrast, Ngn1/2 proneural function 

does not seem to heavily rely on CBP function and instead requires binding to E-box elements. In 

any case, Ngn1/2 function in neuronal migration also depends on their binding to E-box elements 

(Ge et al., 2006; Hand et al., 2005; Heng et al., 2008), suggesting that the segregation of the 

migratory and proneural functions of Ngn1/2 is not exclusively regulated by these mechanisms. In 

sum, even for the same developmental process, transcription factors use a combination of 

strategies to recognize and modulate the expression of different effector genes. 
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4.3. Additional guidance systems in the migration of striatal 

interneurons  

The migration of neurons to the corresponding target territory is achieved by the coordinated 

action of extrinsic signalling systems that channel migrating cells along the appropriate paths into 

their final destiny. Several guidance activities have been demonstrated to control the migration of 

MGE-derived interneurons to the cortex (Flames et al., 2004; Marín et al., 2000; Marín et al., 

2003). However, evidence from previous reports and this study suggest that the migration of Nkx2-

1- expressing striatal interneurons is mainly controlled by neuropilin/semaphorin interactions 

(Marín et al., 2001; Nobrega-Pereira et al., 2008). Analysis of Nrp2 mutant mice and Nkx2-1 gain-

of-function in organotypic slices revealed than desensitization to the Sema3F striatal repulsive 

activity not only prevented the migration of MGE-derived interneurons to the cortex but also lead to 

a specific accumulation of these cells in the striatum (Marín et al., 2001; Nobrega-Pereira et al., 

2008). This evidence suggests that additional guidance molecules could contribute for the final 

directionality of striatal interneurons and we decided to investigate the possible activity and identity 

of these signalling systems. 

Our results indicate that a population of Nkx2-1-positive migrating neurons express the ErbB4 

receptor and the specific accumulation of Nkx2-1-expressing interneurons in the developing 

striatum is reduced in the absence of this receptor. As previously discussed (see 3.3.1.), 

membrane-bound forms of Nrg1 (CRD-Nrg1) are expressed in the striatal mantle and could trigger 

the ErbB4-signalling in Nkx2-1-migrating interneurons by exerting an attractive/permissive activity 

or acting as a “stop” signal for differentiation. The direct action of Nrg1-CRD in the migration of 

striatal interneurons was not tested and the requirement of the ErbB4-signalling for the 

proliferation and survival of MGE precursors also remain to be clarified. Furthermore, using 

experimental embryology techniques we could demonstrate that MGE-derived striatal interneurons 

are able to invade the cortical territory if down-regulating Nkx2-1 and forced expression of this 

transcription factor prevents cortical invasion. These results suggest that Nkx2-1-expressing 

migrating interneurons are actively prevented from invading the cortex although the identity of this 

signalling is currently unknown (see 3.3.2).  

Overall, these results propose that striatal migrating interneurons integrate multiple external 

signals that specifically direct these cells to the striatum and prevent their accumulation in other 

forebrain structures (e.g. cortex). Thus, previous reports demonstrate that MGE-derived striatal 

interneurons do not express the binding receptors for the Sema3A/3F-repulsive activity (Nrp1/2off) 

present in the developing striatum, allowing the invasion of this territory (Marín et al., 2001). In this 

study, we demonstrate that a population of striatal migrating interneurons express the ErbB4 

receptor (Nrp1/2off; ErbB4on) which mediates the targeting to the striatum hypothetically through 

Nrg1-CRD attractive/permissive interactions. Furthermore, striatal interneurons (Nrp1/2off; ErbB4on; 
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receptor Xon) are actively prevented from invading the Nrg1- expressing developing cortex (Flames 

et al., 2004) due to the presence of a yet unidentified cortical repulsive activity. Since the action of 

these signalling systems has been tested in Nkx2-1-expressing striatal interneurons, it is tempting 

to speculate that, as for the Nrp2 receptor (Nobrega-Pereira et al., 2008), Nkx2-1 could also be 

controlling the responsiveness to the proposed striatal attractive and cortical repulsive activities by 

regulating the expression of their receptors. Thus, similarly to the neuropilin/semaphorin 

interactions, cortical and striatal interneurons will have different responsiveness to the presumably 

cortical repulsive activity, suggesting a role for the postmitotic Nkx2-1 in conferring sensitivity 

specifically to striatal neurons. On the other hand, the ErbB4-dependent signalling operates in both 

cortical (Flames et al., 2004) and striatal interneurons, which suggest a role for Nkx2-1 in MGE 

precursors. 
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Chapter 5. Conclusions 

1- Transcriptional regulation is one of the fundamental mechanisms controlling guidance decisions 

in navigating neurons. In this study, we found that Nkx2-1 mediates the sorting of MGE-derived 

cortical and striatal interneurons by direct transcriptional repression of the Neuropilin-2 guidance 

receptor, which enables striatal interneurons to invade the semaphorin-expressing striatal mantle 

and cortical interneurons to avoid this territory. 

 

2- We describe a new postmitotic function for the cell-fate determinant Nkx2-1 in controlling the 

migration of MGE-derived interneurons. The multitasking potential of Nkx2-1 is not a feature 

unique to this protein and appears to be shared by many other transcription factors during 

telencephalic development, although the precise regulation of this complex action is still not 

understood.  

 

3- The migration of MGE-derived interneurons to the striatum appears to be controlled by the 

coordinated activity of several environmental activities. Nkx2-1 is a fundamental intrinsic factor in 

mediating the responsiveness of striatal interneurons to those molecules. 
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