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Abstract 

On one side, the topic studied in this thesis is inspired by a recent growing interest in the 

application of curved panels in various engineering fields, especially in the bridge design, and on 

the other side, by the lack of adequate and holistic design rules dealing with these structural 

elements. Consequently, the principal goal of the PhD research work presented herein is to 

develop clear, general and mechanically consistent design rules both for individual curved panels 

subjected to the most fundamental loading cases (i.e. in-plane compression and shear) and for the 

whole box-girder bridge cross-section integrating a curved steel panel in the bottom flange. To 

pursue the set goals, the work is divided into five main tasks, where experimental, numerical, and 

analytical research methods were implemented, accompanied by a statistical assessment of 

generated data. 

Being the key aspect in the stability of thin-walled structures, a great part of the work is 

dedicated to the individual curved panels subjected to axial compression. The findings in the 

thesis reveal some of the substantial advantages of curved panels with respect to the flat ones, 

allowing for considerable savings that could be achieved. Moreover, based on the assessment of 

the available design methods for stiffened curved panels under compression, the method 

developed within the scope of the OUTBURST research project is found to be the most 

appropriate. 

Besides, the thesis explores the buckling and post-buckling behavior of individual curved 

panels subjected to in-plane shear - a subject, which was only scarcely investigated in the past. 

The new expressions for both critical and ultimate shear load of unstiffened curved panels are 

developed, with a similar format to the codified ones for flat plates in EN 1993-1-5:2006. 

Finally, the curved panels integrated into box-girder bridge cross-sections are also studied in 

the thesis, characterizing the entire spectrum of M-V interaction behavior, i.e. from pure bending 

to ‘almost’ pure shear. Moreover, to assess the applicability of the M - V interaction equation 

available in the literature, for these innovative structures, the new bending, and shear resistance 

models are developed. 

 

Keywords: Curved steel panels, Box-girder bridges, Experimental tests, FEM, Compression, 

Shear, M-V interaction, Design rules 
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Resumo 

Por um lado, o assunto estudado nesta tese foi inspirado pelo crescente interesse da aplicação 

de painéis curvos em diversos campos da engenharia, especialmente no dimensionamento de 

pontes. Por outro lado, não existem, até à data, regras de dimensionamento adequadas para este 

tipo de elementos estruturais. Assim sendo, o principal objetivo da tese de doutoramento 

apresentada neste documento foi o desenvolvimento de regras de dimensionamento claras e de 

fácil aplicação, para painéis curvos sujeitos aos casos de carga fundamentais (ex. Compressão no 

plano e corte) assim como para secções em caixão com painéis curvos no banzo inferior 

tipicamente aplicadas em pontes. De modo a conseguir alcançar os objetivos mencionados, o 

trabalho desenvolvido foi dividido em cinco tarefas principais que incluem trabalhos 

experimentais, numéricos e analitícos, acompanhados por estudos estatísticos dos resultados 

obtidos.  

Sendo os esforços de compressão um aspeto chave na estabilidade de placas finas, uma parte 

significativa do trabalho apresentado foi dedicada ao estudo do comportamento de painéis curvos 

sujeitos a cargas axiais de compressão. Os resultados aqui apresentados ilustram as principais 

vantagens do uso deste tipo de painéis quando comparado com painéis planos, tendo-se 

observado que a sua utilização pode levar a poupanças significativas. Para além disso, foi 

demonstrado que o método desenvolvido ao longo do projeto de investigação OUTBURST, 

baseado nas metodologias já existentes para o dimensionamento de painéis curvos com reforços 

a esforços de compressão, é a metodologia mais apropriada para o dimensionamento das 

geometrias de painéis estudados nesta tese.  

Adicionalmente, foi também estudado o comportamento à encurvadura e pós-encurvadura de 

painéis curvos sujeitos a corte no plano. É de realçar que a informação disponivel na literatura 

referente a este tópico é, até à data, bastante escasso. Novas expressões para a determinação da 

carga de corte crítica e carga última de painéis curvos não reforçados foram desenvolvidas, com 

um formato semelhante às existentes nas normas de dimensionamento para painéis planos.  

Por último, o comportamento de secções em caixão com painéis curvos no banzo inferior foi 

estudo, tendo-se obtido a completa caracterização da curva de interação M-V, i.e. o 

comportamento em flexão ‘pura’ até ao comportamento ao corte ‘puro’, para este tipo de secção. 



Resumo   

xii   

De modo a verificar a aplicabilidade da equação da curva de interação M-V correntemente 

utilizada na literatura, novas expressões de resistência à flexão e corte foram desenvolvidos. 

 

Palavras-chave: Painéis curvos em aço estrutural, Secções em caixão, Testes experimentais, 

FEM, Compressão, Corte, Interação M-V, Regras de dimensionamento 
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   CHAPTER 1 

1. Introduction 

1.1 Research relevance and motivation 

Owing to tremendous technological progress in recent years, there is a growing need for more 

challenging architectural and structural solutions in bridge design. To encounter these demands, 

the use of curved steel panels has become a very attractive trend, both for aesthetic and structural 

reasons.  

Such non-conventional bridge designs may be generally divided into three categories: i) bridges 

with longitudinally curved webs (i.e. girders with variable depth along the span), ii) bridges with 

horizontally curved panels (i.e. girders curved in the plan), and iii) bridges with transversally 

curved panes.  

The girders with variable depth along the span are commonly used in bridges, for their 

remarkable structural efficiency in large spans and/or aesthetical reasons. Another possible 

advantage of these bridges may be utilized in urban areas, where not rarely due to major clearance 

constraints, it is required to use profiles with a lower depth. These bridges are characterized by 

the girder webs that change from a rectangular to a tapered shape, which may be achieved either 

by the addition of haunches near the supports or by means of webs that gradually vary their 

depth, thus having a parabolic shape. Among many examples, the railway twin box-girder 

Dangsan bridge in South Korea (Fig. 1.1a) and the roadway multi-girder Westgate bridge in the 

UK (Fig. 1.1b) are highlighted. 
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a) b) 

Fig. 1.1: Bridge decks with variable depth: a) Dangsan Bridge (South Korea, 1999) [1]; and b) Westgate 

Bridge (the UK, 1974) [2] 

 

The need for bridges curved in plan appears predominantly in urban areas, where the 

surrounding buildings present an obstacle in the longitudinal layout of the bridge. Moreover, 

horizontally curved bridges, when carefully integrated with the surrounding context may offer 

various aesthetical benefits. These bridges have been extensively built in Great Britain, two of 

which are presented in Fig. 1.2.  

 

  
a) b) 

Fig. 1.2: Bridges curved in plan: a) Gateshead Millennium Bridge (Newcastle, 2001) [3]; and b) Peace 

Bridge (Londonderry, Northern Ireland, 2011) [4] 

 

While there is a significant number of bridge decks with variable depth along the span, as well 

as the bridge girders curved in plan, there is only a handful of bridge decks with cylindrically 

curved panels in the bottom flange. In fact, according to a comprehensive survey carried out in 

2017 by Reis et al. [5], 18 bridges with curved cross-sectional parts have been recently built, most 

of them in urban environments where again aesthetics play an important role. Two of them are 

highlighted in Fig. 1.3, whereas all the others are addressed later in the document, being relevant 

(and the only) source for the identification of possible cross-section forms and the 

characterization of key parameters of curved bridge decks. 

As it may be noticed, the major difference between these bridge decks and conventional 

trapezoidal box-girder decks is the presence of a transversely curved panel in the bottom flange. 

One might say that the main motive for such solutions is exclusively to enhance its aesthetical 

performance. However, the adoption of a box-girder cross-section integrating a cylindrically 

curved bottom flange proffers an aerodynamic shape that may significantly improve response to 
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undesired dynamic effects caused by wind load, which is particularly convenient in the case of 

the cable-stayed and suspension bridges. Finally, yet importantly, using curved panels in bridge 

decks instead of classical flat ones, considerable gains in resistance may be achieved. Namely, 

with the introduction of curvature, which is the main characteristic of curved panels that 

differentiates substantially their behavior from flat plates, vast gains in resistance can be achieved 

when subject to compression, as shown in recent research and PhD theses dealing with this topic 

(e.g. Tran [8], Martins [9] and Manco [10]). 

 

  
a) b) 

Fig. 1.3: Bridges with curved bottom flange: a) “Lo Passador“ Bridge (Spain, 2011) [6];  

and b) Renault bridge (France, 2009) [7]  

 

One of the main difficulties for the widespread use of curved steel panels in engineering 

practice is the lack of adequate and holistic design standards that are able to assess the buckling 

strength for the entire range of parameters relevant to curved panels, in the same way as it was 

long established for the flat plates. Namely, the scope of the actual design code for plated 

elements EN 1993-1-5 [11] is restricted to flat or nearly flat plates (i.e. Z = b2/(Rt) ≤ 1, where b 

is the width, R is the radius, and t is the thickness of the panel), whereas EN 1993-1-6 [12] is not 

applicable since its scope is limited to cylinder sheets, not covering the design of structures such 

as bridge decks with a cylindrically curved bottom flange.  

Furthermore, in other engineering fields, in which thin curved steel panels have been used in 

the past few decades (e.g. aeronautics, offshore and the naval industry) only recently some new 

design recommendations for shells and curved panels were published, such as DNVGL-RP-C202 

[13], DNVGL-CG-0128 [14] and ABS – Guide for Buckling and Ultimate Strength Assessment 

for Offshore Structures [15]. Nevertheless, these standards provide semi-empirical formulae 

obtained from estimations made using full cylinder models and not necessarily isolated curved 

panels, which may lead to unsafe results, as recently shown by Park et al. [16]. Moreover, in these 

design guidelines, the buckling of a cylindrically curved panel is regarded only as a possible failure 

mode of an orthogonally stiffened cylinder that keeps the boundary conditions of a panel within 

very specific bounds, thus preventing the use of these standards in other engineering applications, 

such as bridges.  

The evident lack of design rules coerces designers to rely on their experience and on the use 

of advanced Finite Element Methods (FEM), which in many cases results in a time-consuming 

design process. Hence, the main motivation for this PhD dissertation is to contribute to the 

development of the first design methodology able to assess the safety level of bridge deck cross-
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sections integrating a cylindrically curved steel panel in the bottom flange and thus to promote 

and encourage the design of these attractive and innovative design solutions.  

Due to the appearance of new application of curved panels over the past years, especially in 

the bridge design, the study of curved panels seems to have gained a new momentum in the 

research community worldwide, as presented in an extensive literature review by Martins et al. 

[17], summarizing the previous studies dealing with this topic. However, none of these works 

provides a robust and physically consistent design method able to deal with different aspects of 

cylindrically curved panels. Principally, most of the studies tackled the problem of curved panels 

subjected only to uniform compression, whereas the other fundamental load arrangements, such 

as shear load, seem to be unreasonably ignored. In addition, despite a great number of numerical 

investigations, only a few experimental programs were reported, mainly focusing on full cylinders 

and aluminum-alloy sheets for monocoque constructions used in aeronautics and ship industry, 

which are different from those encountered in civil engineering (i.e. bridges).  

Confronting and correcting, at last, these deficiencies should be an absolute priority. Within 

the context of overcoming the mentioned void in knowledge, the curved panels are studied in 

this PhD dissertation also as an individual structural element, subjected to loads that may be 

relevant in case of bridge design, such as axial compression, shear load and the combination of 

these two load cases. In addition, it is necessary to take a step forward and to propose accurate 

but also simple and universal design rules that should enable the use of curved panels not only 

in bridge design but also, in other engineering fields.  

The work presented in the thesis is developed within the OUTBURST research project [18], 

a European RFCS project, as well as the national research project ULTIMATEPANEL [19], both 

completely oriented to cylindrically curved steel panels. Therefore, it was possible to perform 

much needed experimental campaigns and to generate new data in a comprehensive way, which 

may be considered as a major contribution of the thesis, distinguishing it from the previous 

studies available in the literature.  

1.2 Objectives and research strategy 

The PhD dissertation portrays the major contributions of the author, who actively participated 

in two research projects. The first, “Curved thin panels for structural application”, with the 

acronym ULTIMATEPANEL, focused mainly on the cylindrically curved steel panels as an 

individual element, whereas the latter with the acronym OUTBURST derived from 

“OpTimization of steel plated BRidges in shape and STrength”, dealt with the curved steel panels 

used for optimized applications in steel and composite bridges.  

Inspired by the mutual goal of both projects, the paramount objective of the PhD research 

work presented herein is to develop a clear design approach both for individual curved panels 

subjected to the most fundamental loading cases (i.e. compression and shear), and for the whole 

box-girder bridge cross-section integrating a curved steel panel in the bottom flange.  

To persue the set goals, the research strategy is to perform a thorough experimental, numerical 

and analytical study, accompanied by a statistical assessment of generated data. The work is 

divided into five main tasks, completed according to the scheme illustrated in Fig. 1.4: 
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i) Task 1: Literature review 

The main objectives of the first task are: 

• Critical assessment of the up-to-date literature regarding the design of cylindrically curved 

panels;  

• Characterization of the most relevant parameters (i.e. geometry, material, geometric 

imperfections, boundary and load cases, etc.) and their influence on the behavior of 

panels; 

• To define limits of application of curved panels in bridges and other engineering fields. 

The findings from Task 1 are crucial for all subsequent tasks since they serve as a benchmark 

to prepare experimental tests and subsequently the framework of the numerical investigation.  

 

Task 1 

Literature review 

   

Task 2.1 Task 3.1 Task 4.1 

Curved panels under uniform 

compression 

(Experimental tests) 

Curved panels under shear 

(Elastic buckling behavior) 

Box-girder cross-section with 

curved bottom flange 

(Experimental tests) 

Task 2.2 Task 3.2 Task 4.2 

Curved panels under uniform 

compression 

(Numerical study) 

Curved panels under shear 

(Ultimate resistance – 

Numerical and Analytical 

studies) 

Box-girder cross-section with 

curved bottom flange 

(Numerical and Analytical 

study) 

   
Task 5 

Proposal for design rules 
 

Fig. 1.4: Research strategy and division of the main tasks 

 

ii) Task 2: Curved panels under uniform compression 

The objective of this task is not to perform another exhaustive numerical study on the 

cylindrically curved panels under compression since that has already been done and reported 

multiple times in the literature. On the contrary, the objective is to generate an adequate database 

of the experimental results, thus overcoming the present deficiencies discovered in Task 1. The 

task is divided into two sub-tasks, Task 2.1 and Task 2.2, where the first is completely dedicated 

to the experimental program, whereas in Task 2.2, some further numerical investigations are 

performed using the model validated against the experimental results.  

Hence, in Task 2.1, as a part of the ULTIMATEPANEL research project, an experimental 

campaign is carried out, in which 32 simply-supported square panels (stiffened and unstiffened) 

are tested under in-plane compression. All the experimental tests are performed at the Civil 
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Engineering Department of the University of Coimbra. In specific, using the recorded test data 

it is aimed: 

• To get insight into the complex buckling behavior of curved steel panels under 

compression, within the applicable geometrical ranges defined in Task 1; 

• To assess the influence of radius (R) and the number of stiffeners (nst) on the ultimate 

resistance and failure mode; 

• To generate the initial imperfections (shapes and amplitudes) measured by Digital 

Image Correlation (DIC), specifying their dependence on the radius of curvature 

and/or number of stiffeners; 

• To critically assess the numerically derived empirical expressions for computation of 

the ultimate resistance of unstiffened and stiffened curved panels available in the 

literature; 

The objective of Task 2.2 is to build a reliable finite element (FE) model, validated against the 

experimental results, acquired in Task 2.1. The goal is to use this model to perform an 

imperfection sensitivity analysis, in which the effect of the imperfection amplitude and shape is 

studied in an attempt to identify a critical imperfection shape (i.e. that in most cases returns the 

lowest ultimate resistance of curved panels), suitable when no information on ‘real’ imperfections 

is available. 

 

iii) Task 3: Curved panels under shear 

The third task investigates the behavior of unstiffened simply supported cylindrically curved 

steel panels subjected to a pure shear load. Moreover, the goal is to develop for the first time a 

simple and reliable methodology for the prediction of the ultimate shear resistance of curved 

panels. In particular, the goal is to expand the existing rules for flat plates to a wide range of the 

curvature parameter and aspect ratios, with various boundary conditions, therefore addressing 

most practical cases of bridge, offshore and aeronautical applications.  

Since the proposed methodology is conceptually similar to the existing one for flat plates, it is 

required first to calculate the shear buckling coefficient kτ for a curved panel. Therefore, the task 

is divided into two subtasks: 

• Task 3.1 – Studies the elastic buckling behavior of curved panels and ultimately gives 

a simple expression to calculate kτ 

• Task 3.2 – Investigates the post-buckling behavior and proposes a method to calculate 

ultimate shear resistance 

 

iv) Task 4: Box-girder bridge cross-section integrating curved bottom flange 

Within this task, the behavior of the entire box-girder bridge cross-section integrating the 

bottom curved panels is investigated. The task is completed according to the following research 

strategy: 

• Task 4.1 – An experimental research program is planned and performed at the Civil 

Engineering Department of the University of Coimbra, in which two bridge deck 
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prototypes are tested as three-point bending tests simulating the bridge behavior near 

the internal support. Such an experimental program was not reported in the literature, 

least of all with the scale that is tested within the OUTBURST research project. The 

experimental tests aim to get insight into the behavior of box-girder bridge deck with 

curved panel in the bottom flange loaded in compression; where near the internal 

support besides bending moment significant shear force develops. Test results serve 

as the benchmark for the forthcoming numerical study in Task 4.2. 

• Task 4.2 – The objective of this sub-task is first to develop a reliable finite element 

model able to predict experimental tests on prototype bridge segments (Task 4.1). 

Subsequently, using the validated model, a numerical investigation is performed, in 

which the influence of various geometrical parameters  on the complex M-V 

interaction behavior of a box girder bridge deck near the intermediate support is 

assessed. 

 

v) Task 5: Proposal of design rules 

Its main ambition is to present proposals and corresponding commentary for design rules 

developed for stiffened and unstiffened curved steel panels integrated into steel bridge cross-

sections. In specific, based on the results generated in Task 2 and Task 3, and following a narrow 

relation to EN 1993-1-5, new bending and shear resisting models are proposed, adapted for box-

girder cross-section with curved bottom flange. Finally, slightly modified M-V interaction 

equation for cross-section safety verification is proposed and statistically assessed against the 

numerical results. In addition, numerical examples are prepared on the level of individual curved 

panels, but also on the level of the whole cross-section, illustrating the proper use of design rules 

developed within the thesis. 

1.3 Organization of the thesis 

The thesis is divided into 9 chapters, organized as follows: 

Chapter 1, Introduction - a general introduction is made, highlighting the relevance of the topic 

and specifying the main objectives of the thesis, as well as the research strategy used for their 

accomplishment. 

Chapter 2, State of the art - the geometry of cylindrically curved panels is first introduced, 

focusing on the dimension ranges commonly encountered in real bridge deck applications. 

Subsequently, a brief recapitulation of the background studies on the cylindrically curved panels 

subjected to uniform compression and/or shear is presented, emphasizing the historical 

references closely related to the work presented in this thesis. Finally, this chapter gives an 

overview of design methodologies available in the literature for the assessment of the resistance 

of curved panels subjected to compression and shear, highlighting their limitations. 

Chapter 3, Cylindrically curved panels under pure compression - an experimental study on cylindrically 

curved steel panels under uniform axial compression is reported and the most relevant test results 

are discussed. In addition, the available procedures for determination of the ultimate compressive 

resistance, described in Chapter 2 are critically assessed against the test results. Finally, using the 
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numerical model validated against the test results, the sensitivity to initial geometric imperfections 

of curved panels is studied. 

Chapter 4, Elastic buckling behavior of curved panels under shear - the influence of several parameters 

on the elastic buckling behavior of simply supported cylindrically curved panels subjected to pure 

shear is numerically investigated. Based on the results of an extensive numerical study shown in 

this chapter, a new formula is proposed for the estimation of the critical shear stress. 

Chapter 5, Ultimate shear load of curved panels – the influence of various geometrical parameters, 

imperfections, and boundary conditions on the post-buckling behavior of unstiffened simply 

supported curved steel panels under shear load is numerically investigated, hence presenting a 

logical continuation of Chapter 4. Moreover, a new set of formulas for the prediction of the 

ultimate shear strength is developed and statistically validated. Finally, the use of the proposed 

methodology is illustrated in two worked examples. 

Chapter 6, Experimental behavior of curved bottom flanges in steel box-girder bridge decks – another 

experimental campaign is reported, however, in this chapter, the study comprises two prototype 

box-girder bridge segments, in scale 1:3 with respect to a real study case. The segments are tested 

as three-point bending tests, with the aim to assess the moment-shear (M - V) interaction near 

the intermediate support. A detailed description of the most relevant data is provided, and the 

main observations (load measurements, displacements, strains, stresses, failure modes) are 

discussed. 

Chapter 7, Numerical simulations on box-girder bridge cross-section integrating curved panels – the M - V 

interaction behavior of a box girder bridge deck, with a curved bottom flange is analyzed, using 

a FEM model built and verified against the experimental results reported in Chapter 6. A 

comprehensive numerical study covers multiple geometrical parameters, varied within the 

common ranges found in bridge applications in Chapter 2. For each geometry, an M-V 

interaction diagram is generated, being the main output used in the following Chapter 8 for the 

statistical evaluation of the existing M-V interaction criterion. 

Chapter 8, Design proposals for bridge cross-sections integrating curved steel panels –the design rules for 

the prediction of the bending and the shear resistance are first developed and validated against 

the results from the previous chapter. Subsequently, both resistance models are implemented in 

the M-V interaction equation, proposed by Jáger et al. [139], whose validity and safety is checked 

against FEM-generated M-V interaction diagrams. Finally, all three design rules, for bending, 

shear, and M-V interaction resistance verification, are statistically assessed against the numerical 

results by calculating the partial factor (γM). 

Chapter 9, Summary and future prospects – finally, the main findings and contributions of this 

work are summarized and some suggestions for future research are indicated. 
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   CHAPTER 2 

2. State of the art 

2.1 Overview 

The interest for the cylindrically curved steel panels has particularly grown in recent years with 

the appearance of innovative applications in bridge design, which explains the fact that the 

number of studies dealing with the curved panels enthusiastically increased. However, given that 

the use of curved panels started first in the area of the aeronautical and aerospace industry as 

early as in the 1930s and 1940s, and somewhat later in the naval industry, the evolution of the 

fundamental theoretical knowledge on the buckling behavior of thin cylindrically curved panels 

has a very long history. Hence, the goal of this chapter is to make a brief recapitulation of the 

studies on the cylindrically curved panels carried out by the scientific community thus far, giving 

more emphasis to the historical references narrowly related to the work presented in this thesis.  

In section 2.2, an introduction is made, in which the most relevant geometrical parameters 

commonly used in the literature for the characterization of cylindrically curved panels are defined. 

Furthermore, in section 2.3, the dimension ranges of curved panels that are potentially used in 

bridge deck applications are identified and compared with the ranges usually encountered in some 

other engineering fields.  

Since the main focus of this dissertation is the use of curved panels in bridge deck cross-

sections, predominantly loaded in compression and shear, the literature revision in section 2.4, 

where the most representative historical references are addressed, is divided into two groups, 

based on the load arrangement – curved panels under uniform compression and curved panels 
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under shear. It is important to stress out the fact that in the case of panels subjected to 

compression, more attention is given to the experimental references, being useful for the 

experimental work presented in the thesis. In addition, some numerical and a few analytical 

references deserve to be mentioned, especially the ones in which a methodology for the 

calculation of the buckling and/or ultimate load is proposed. On the other hand, owing to the 

scarcity of experimental studies on curved panels subjected to shear, the focus is given to the 

most relevant numerical investigations known to the research community.  

Finally, in section 2.5, design methodologies available in the literature for the assessment of the 

resistance of curved panels subjected to compression and shear are presented. Moreover, an 

outlook on the design standards applicable to the design of curved panels are addressed and their 

applicability and limitations are discussed. Ultimately, as there are currently no rules to assess the 

safety level of bridge cross-sections integrating cylindrically curved panels in the lower flange, the 

design rules from EN 1993-1-5 [11] for the conventional trapezoidal box-girders with a flat 

bottom flange are presented, being essential to the methodology developed in the thesis.  

2.2 Geometry of a curved panel 

In order to discuss the structural behavior of a cylindrically curved panel, it is necessary first 

to identify the most relevant geometrical parameters that are used throughout the entire research 

work. Hence, the main geometrical parameters are presented in Fig. 2.1, both for unstiffened and 

stiffened panels. 
 

 
 

a) b) 

Fig. 2.1: Geometry and notation of cylindrically curved panels: a) unstiffened; b) stiffened 

 

Based on the figure, t and R are the thickness and the radius of the panel, a and b are the length 

and width of the panel, β is the sectorial angle defined as the ratio between the width and the 

radius of the panel. In addition, in the case of a stiffened panel, aloc is the length of the subpanel 

that corresponds to the distance between transverse stiffeners, bloc is the width of the subpanel 

that corresponds to the distance between longitudinal stiffeners, whereas tst and hst are the 

thickness and the height of the longitudinal stiffeners, respectively. The thesis is mainly focused 

on the flat stiffeners, however, the trapezoidal stiffeners are also addressed, in an attempt to 

compare these two stiffener typologies commonly encountered in box-girder bridge decks. 
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To define the geometry of a curved panel, it is common to use two non-dimensional 

parameters, the aspect ratio, and the curvature parameter. The aspect ratio α is defined as the 

ratio between the length and width of the panel, according to Eq.(2.1): 

 
a

b
 =   (2.1) 

 

Additionally, using the notation of Fig. 2.1, the non-dimensional curvature parameter Z of a 

curved panel is defined by Eq.(2.2):  

 
2b

Z
Rt

=   (2.2) 

 

Curvature parameter, which was introduced by Batdorf [20], had initially a slightly different 

form that includes the Poisson’s coefficient ν, given by Eq.(2.3), which still may be found in the 

literature.  

 
2

21b

b
Z

Rt
= −   (2.3) 

 

However, numerous authors proved that the parameter given by Eq.(2.2) is a suitable 

parameter to define the mechanical behavior of cylindrically curved panels under axial 

compression, whereas the suitability of this parameter in the case of the shear load is discussed 

in this thesis in chapter 4.  

In the case of steel bridge decks, it is common to have stiffened curved panels in the bottom 

flange (see Fig. 2.1b). Hence, besides the global aspect ratio (α) and the curvature parameter (Z), 

given by Eq.(2.1) and Eq.(2.2), it is necessary to define the local aspect ratio (αloc) and curvature 

parameter (Zloc), given by Eq.(2.4) and Eq.(2.5), respectively, using the width and length of the 

corresponding sub-panel, whereas nst is the number of the longitudinal stiffener. 

 ( 1)loc
loc st

loc

a
n

b
 = = +   (2.4) 

 
2

2( 1)
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loc

st

b Z
Z

Rt n
= =

+
  (2.5) 

2.3 Curved panels in bridge deck cross-sections 

In this section, an overview of the existing bridges integrating curved bottom flanges is 

presented. The majority of the cases (i.e. 18 to be precise) were referred in a survey carried out in 

2017 by Reis et al. [5], while four more cases built in the meantime were subsequently added. 

Based on the gathered data, it is aimed to identify the possible cross-section forms and usual 

structural systems, but also to define, whenever possible, the ranges of geometrical parameters 

(presented in section 2.2) relevant for curved panels used in steel bridges.  

The aforementioned 22 bridges are listed in Table 2.1. Regarding the bridge type, it may be 

noticed that most were built as cable-stayed bridges, but also as arch, bowstring arch, single girder, 

or suspension bridges, as shown in Fig. 2.2 and Fig. 2.3. 
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a) b) 

  
c) d) 

Fig. 2.2: Cable-stayed bridges: a) “Puerta de las Rosas” Bridge; b) Bridge of Strings;  

c) “Serreria” Bridge; and d) PCTCAN Access Bridge (see reference in Table 2.1) 

 

  
a) b) 

  
c) d) 

Fig. 2.3: Various bridge types: a) Arch bridge - “Galindo” River Bridge; b) Single girder - Charles de 

Gaulle Bridge; c) Bow-String arch - River Deba Bridge; and d) Suspension bridge - “Lo Passador” 

Bridge (see reference in Table 2.1) 

 

This deck has been widely used in urban environments mainly as roadway, railway, and 

pedestrian bridges, demonstrating the diversity of such deck solutions.  
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Table 2.1: Bridge decks integrating cylindrically curved steel panels 
 

Name Country Bridge Type Service year Ref. 

Charles de Gaulle Bridge France Single Girder 1996 [21] 

Chaves’ Pedestrian Bridge Portugal Cable-Stayed 1997 [22] 

‘Escaleritas’ Viaduct Spain Cable-Stayed 2006 [23] 

‘Puerta de las Rosas’ Bridge Spain Cable-Stayed 2007 [24] 

Twins Bridge Italy Cable-Stayed 2007 [25] 

PCTCAN Access Bridge Spain Cable-Stayed 2007 [26] 

River Deba Bridge Spain Bow-String 2007 [27] 

“Galindo” River Bridge Spain Arch 2007 [28] 

Ebro River Pedestrian Bridge Spain Cable-Stayed 2008 [29] 

‘Serreria’ Bridge Spain Cable-Stayed 2008 [30] 

Bridge of Strings Israel Cable-Stayed 2008 [31] 

Footbridge ‘De Lichtenlijn’ Belgium Single Girder 2008 [32] 

Stonecutters Bridge China Cable-Stayed 2009 [33] 

Renault Bridge France Single Girder 2009 [7] 

Confluences Bridge France Arch 2010 [34] 

“Lo Passador” Bridge Spain Suspension 2011 [6] 

Ter River Bridge Spain King-post Truss 2015 [35] 

Norgessporten Norway Cable-Stayed 2017 [36] 

New Wear Crossing England Cable-Stayed 2018 [37] 

Mainland – Čiovo Island Bridge Croatia Single Girder 2018 [38] 

”Boekelose” Bridge Holland Single Girder 2019 [39] 

New Genoa Bridge Italy Single Girder 2020 [40] 

 

As for the cross-section forms, multiple solutions may be encountered: i) with the curved 

bottom flange welded to vertical (Fig. 2.4a) or slightly inclined webs (Fig. 2.4b); ii) with the 

straight and inclined webs following the flange curvature (Fig. 2.4c); and iii) with the curved panel 

acting both as web and flange (Fig. 2.4d). 

 

  
a) b) 

  
c) d) 

Fig. 2.4: Bridge cross-section forms: a) Renault Bridge; b) “Serreria” Bridge; c) Footbridge ‘De 

Lichtenlijn’; d) Ter River Bridge (see reference in Table 2.1) 
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Based on the cross-section shape, another division can be made, indispensable for the design 

rules proposed in the thesis. Namely, the division is made based on the ratio between the depth 

f of the curved part of the cross-section and the total height of the cross-section H, as illustrated 

in Fig. 2.5. In other words, in the first case, the distinction between the bottom flange and the 

webs can be clearly made, whereas in the second case the curved panel act simultaneously as both 

web and flange. 

 

  

a) b) 

Fig. 2.5: Cross-section forms: a) f < H; and b) f = H 

 

The ranges of the most relevant geometrical parameters in the surveyed 22 bridges are 

summarized in Table 2.2. 

 

Table 2.2: Ranges of geometrical parameters of curved panels used in bridges 
 

Bridge Z Zloc α αloc b/t 

Charles de Gaulle Bridge 30 - 60 0.6 - 1.2 1.0 7.14 23 - 47 

Chaves’ Pedestrian Bridge  - -  -  -   - 

‘Escaleritas’ Viaduct 21 - 50 0.4 – 1.0 0.73 5.0 23 - 50 

Twins Bridge 82 - 121 9.1 - 13.4 0.95 2.85 56 - 82 

PCTCAN Access Bridge 28 - 56 1.8 - 3.5 0.67 2.67 37.5 - 75 

River Deba Bridge 67 - 134 2.7 - 5.4 1.0 5.0 33 - 66 

‘Puerta de las Rosas’ Bridge 24 - 48 1.5 - 3.0 0.67 2.88 35 - 70 

‘Galindo’ River Bridge 128 - 257 3.1 - 6.3 0.83 5.3 28 - 56 

‘Serreria’ Bridge 95 - 159 3.2 - 5.3 0.76 4.17 24 - 40 

Bridge of Strings  -  -  -  -  - 

Ebro River Pedestrian Bridge 286 - 571 5.8 - 11.7 0.58 4.03 24 - 48 

Footbridge ‘De Lichtenlijn’ 134 - 336 - 0.5 0.5 95 - 237 

Stonecutters Bridge 46 - 85 0.2 - 0.5 0.65 10.0 12.5 - 32 

Renault Bridge 20 - 88 0.8 - 3.2 0.69 7.5 10 - 42 

Confluences Bridge 16 - 26 0.4 - 0.6 1.0 6.67 37.5 - 62.5 

“Lo Passador” Bridge  34 - 69 0.3 - 0.7 0.49 5.0 20 - 40 

Ter River Bridge 70 - 140 0.8 - 1.0 0.54 5.0 27 - 32 

Norgessporten 389 - 580 2.5 - 5.0 0.4 5.0 20 - 30 

New Wear Crossing 70 - 123 6.3 - 11.1 1.35 4.5 34 - 60 

Mainland – Čiovo Island Bridge 88 - 220 2.1 – 5.2 1.03 6.66 20 - 50 

‘Boekelose’ Bridge  -  -  -  -  - 

New Genoa Bridge  -  -  -  -  - 

 

It may be observed that the global curvature parameter reaches a value of almost Z = 600, 

while the global aspect ratio is commonly between α = 0.5 and α = 1.0. Furthermore, owing to 

the variation of the curved panel thickness along the bridge length, the local curvature parameter 
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varies between Zloc = 0 and Zloc = 15. Finally, the local aspect ratio varies in a wide range between 

αloc = 0.5 and αloc = 10.  

In order to compare the local curvature parameter Zloc found in bridges with the other 

engineering fields where the curved panels are used, a similar investigation on the real examples 

in the aerospace and naval industry is carried out. The results are summarized in Fig. 2.6, where 

the Zloc is plotted against the slenderness b/t ratio.  

It may be concluded from the graph that the local curvature parameter rarely exceeds the value 

of Zloc ≤ 40, except for panels used in ship hulls, where it may go up to Zloc = 60 – 70 due to 

smaller radii of curvature R. In the case of bridge decks, relatively thick panels and high radii lead 

to lower values of local curvature parameter. 

 

Fig. 2.6: Ranges of Zloc of a practical interest in: bridges (see Table 2.2), aeroplanes [41] and ship hulls 

([14],[16],[42]-[45]) 

 

2.4 Literature review 

2.4.1 Curved panels under compression 

2.4.1.1 General 

An overview of the existing studies is presented, in which the current knowledge on the 

behavior of curved panels subjected to uniform compression is discussed. In 2018, Martins et al. 

[17] rigorously reviewed the studies on the stability and design of isolated cylindrically curved 

panels under generalized in-plane loading available in the literature. Hence, the objective is not 

to replicate the documented work, but to emphasize the useful findings that are strictly related to 

the topic presented in the thesis. Consequently, the section is divided into three sub-sections: i) 

elastic buckling behavior of curved panels, in which several available expressions for the critical 

load are presented; ii) ultimate resistance of curved panels, where the most relevant numerical 

and analytical studies dealing with the ultimate load of curved panels are summarized; and iii) 

experimental behavior of curved panels that provides an outlook on the experimental results, 

essential for the experimental work performed in this thesis.  
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2.4.1.2 Elastic buckling behavior of curved panels 

The main reason for the substantial use of thin curved steel panels that initiated in the 1930s 

laid in numerous benefits these structural elements proffered, such as efficiency of load-carrying 

performance, high strength to weight ratio, high value from an aesthetic point of view, etc. 

However, due to much lower out-of-plane than in-plane stiffness, curved panels, similar to flat 

plates, showed remarkable susceptibility to local and global instabilities, which seems to have 

gained great attention among the researchers. Although the evolution of theoretical knowledge 

on the buckling behavior of curved panels under pure compression started parallel with the flat 

plates, with Redshaw [46] in 1934, Timoshenko [47] in 1936, and Marguerre [48] in 1937, owing 

to the complexity of the problem, the progress was never as fast as it was in the case of flat plates. 

Namely, only after the elastic critical behavior of flat plates had been completely understood, the 

expression for the calculation of the elastic critical stress of curved panels (σcr) was proposed, and 

it was agreed to have the same base form as the one for the flat plates, given by Eq.(2.6) as 

follows: 
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where b and t are respectively the width and the thickness of the panel, ν is the Poisson’s ratio, 

E is the modulus of elasticity of the material, and kσ is the elastic buckling coefficient. In the case 

of curved panels, Eq.(2.6) is slightly altered by adjusting the elastic buckling coefficient to account 

for the effect of the curvature Z. To prevent any further confusion, in this document, the elastic 

buckling coefficient of curved panels subjected to compression is labelled as kσ,Z, whereas in the 

case of flat plates, the symbol kσ,pl is assigned. 

For a long time, it was believed that cylindrically curved panels are an intermediate case, 

between two extreme cases - flat plates on one side, and full cylinders on the other. Namely, 

according to Gerard & Becker [49], who in 1957 made an review of the up-to-date studies on this 

topic, the behavior of a curved panel subjected to uniaxial compression corresponds to the one 

of a flat plate for small curvature parameters (i.e. Z → 0), and to cylinders for very large curvatures 

(i.e. Z → ∞). Inspired by this theory, several authors, using analytical and semi-analytical methods, 

proposed expressions to determine the elastic buckling coefficient (kσ,Z) for unstiffened simply 

supported cylindrically curved panels. Firstly, Redshaw [46] proposed a method using the 

Rayleigh-Ritz method, which is given by Eq.(2.7) as follows: 
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Soon afterward, Timoshenko [47] proposed another expression, given by Eq.(2.8) that was 

derived using the approximated expressions for the out-of-plane displacement of the panel. Later, 

in 1963, Volmir [50] derived the expression for the elastic buckling coefficient of a simply 

supported curved square panel with all edges constrained using the Galerkin method, which 

completely coincides with the first branch of Eq.(2.8).  
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However, the most known expression and generally most commonly used nowadays is the 

one from Stowell [51], given by Eq.(2.9), which may be understood as a modified Redshaw’s 

formula, yet extended to account for the higher values of curvatures. 
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In addition, it is worth mentioning the solution derived by Batdorf [20] in the form of Fourier 

series for both simply supported and clamped perfect cylindrically curved panels. Namely, the 

author used an equivalent Donnell’s equation to fit theoretical curves to experimental data 

previously obtained, approximating the displacements by trigonometric functions. Besides the 

studies on unstiffened curved panels, Batdorf was among the first authors who studied stiffened 

panels. Namely, Batdorf & Schildrout [52] obtained the theoretical critical stress of a simply 

supported curved rectangular panel with one middle transverse stiffener, whereas 

Schildrout & Stein [53], later on, conducted the first studies on curved panels with one 

longitudinal stiffener. 

Analysing the proposed formulas, it may be noticed that for Z = 0, the buckling coefficient 

converges to the minimum elastic buckling coefficient for simply supported flat plates (i.e. 

kσ,Z = kσ,pl,min = 4.0), whereas for high curvatures Z, the formulae from Redshaw and Timoshenko 

tend to the elastic critical stress of cylinders of revolution. However, many years later, with the 

appearance of numerical tools, a large number of studies have been carried out, assessing the 

validity of the proposed solutions. In 2001, using finite element analyses, Domb & Leigh [54] 

proved that buckling behavior of curved panels is unique and different from both flat plates and 

cylinders. In addition, the authors proposed an improved solution for the buckling coefficient of 

unstiffened panels, given by Eq.(2.10), as follows: 
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where the required coefficients are: co = 0.6021, c1 = 0.005377, c2 = 0.192495,  

c3 = -0.002670, c = 0.4323, and d = 0.9748. 

The proposed expression returns result quite similar to the Stowell’s solution (see Eq.(2.9)), 

confirming that the critical stress of curved panels loaded in compression actually tends to reach 

half of the elastic critical stress of cylinders of revolution. In 2012, Tran [8] reached the same 

conclusion.  
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Nevertheless, in 2013, Martins et al. [55] demonstrated that even the expressions from Stowell 

and Domb & Leigh might lead to significant errors. The authors derived numerically a new set 

of formulas for the buckling coefficient of unstiffened curved panels subjected to various in-

plane loading (i.e. from pure compression to pure in-plane bending). The expression for pure 

compression, relevant for this thesis, is based on the formula from EN 1993-1-5 for the flat 

plates, written in a general format by Eq.(2.11) as: 

 
2

1 2 3
, 2

1 2 3 1
Z

a a Z a Z
k

b b Z b Z


+ +
=

+ + +
  (2.11) 

 

where for 0 < Z ≤ 23, the required coefficient are: a1 = 8.2, a2 = 0.074, a3 = 0.0163, b1 = 1.05, 

b2 = -0.0002, and b3 = 0.0003, whereas for 23 < Z ≤ 100, the coefficients are: a1 = 3.214, 

a2 = 0.5976, a3 = 0.0028, b1 = 0.961, b2 = 0.0104, and b3 = 0. 

However, the proposed expression, although independent from the aspect ratio α, was proven 

to be suitable only for the short panels with the aspect ratio 0.2 < α ≤ 1.0. Moreover, the formula 

is obtained solely through the calibration of numerical results, without real mechanical meaning. 

To overcome these deficiencies, Martins et al. [56] carried out another study in 2016, in which 

energy-based analytical formulations were used to derive a closed-form solution for buckling 

coefficient of unstiffened curved panels under uniaxial compression, given by Eq.(2.12) as:  
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Besides the physical meaning, the new formula was expanded to a wide spectrum of aspect 

ratio (0.2 < α ≤ 4.0). Regarding the coefficient αBC, it may have two values depending on the 

boundary conditions. Namely, although the majority of the referred studies have dealt with the 

simply supported curved panels, it is important to stress that the definition of the simply 

supported boundary conditions is not entirely the same for all the authors. For instance, Stowell 

in his work considered that all the edges of a panel are constrained (i.e. forced to remain straight). 

On the other hand, the first expression by Martins et al., Eq.(2.11), was derived assuming that 

only the curved edges were constrained, whereas the unloaded edges were unconstrained (i.e. 

free-to-wave). Finally, expression (2.12) by Martins et al. allows for both types of simply 

supported boundary conditions: i) the same as Stowell’s, with αBC = 12, and ii) the same as the 

first expression from Martins, with αBC = 9.6. 

In Fig. 2.7, a comparison between the presented expressions is made, where the elastic 

buckling coefficient kσ,Z for unstiffened simply supported curved panels under uniform 

compression is plotted against the curvature parameter Z. The comparison is made for the 

curvature parameter up to Z < 100, being the upper limit in both proposed expressions by 

Martins. Moreover, in order to make the comparison valid in terms of the boundary conditions, 

in Eq.(2.12), the value αBC = 9.6 is adopted. 

As expected, the expressions by Redshaw and Timoshenko indeed lead to a significant 

overestimation (i.e. around 50%) of the buckling strength for higher values of the curvature 
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parameter. However, even the formulas from Stowell and Domb & Leigh seem to give optimistic 

results (i.e. around 15%) when compared with the expressions from Martins.  
 

 

Fig. 2.7: Comparison of the existing formulas for buckling coefficient kσ,Z - unstiffened curved panels 

 

Regarding the elastic buckling behavior of stiffened simply supported curved panels, the 

number of published works is considerably lower than for the unstiffened panels. Namely, 

besides the aforementioned studies from Batdorf & Schildrout [52] and Schildrout & Stein [53], 

in which the curved panels with a single stiffener in the middle of the panel were studied, only 

recently a few numerical parametric studies were carried out, among which those from Park et al. 

[57] in 2008, and from Khedmati & Edalat [58] in 2010, are highlighted. Using the FE analyses, 

the authors investigated the influence of several parameters on the buckling behavior of curved 

stiffened panels; however, no practical method was proposed to determine the critical buckling 

stress.  

More recently, in 2014, Tran et al. [59] performed a comprehensive numerical study, in which, 

among many aspects, the linear buckling of stiffened curved panels under uniform longitudinal 

compression was also addressed. The authors concluded that the increased curvature might have 

a significant influence on the global shape of the buckling mode, increasing the number of half-

waves in the circumferential direction. In addition, it was shown that the main benefit of the 

stiffeners is to prevent the global buckling of the panel, whereas the shape of the stiffeners has 

only a minor effect. The authors proposed design rules for assessing the ultimate resistance of 

curved panels, which is based on the methodology for stiffened flat plates provided in EN 1993-

1-5, hence, requires first the calculation of the elastic buckling stress for stiffened curved panel. 

According to the proposed methodology, the curved stiffened panel should be considered as a 

corresponding flat one, where the critical stress, σcr,c, is evaluated using a standard column-type 

buckling procedure from EN 1993-1-5, whereas the plate-type buckling is neglected. Based on 

this methodology, another similar procedure for the determination of the ultimate resistance of 

stiffened panels was recently proposed within the OUTBURST research project [60]. However, 

in this procedure, besides the elastic critical column buckling stress (σcr,c), the critical shell buckling 

stress is also accounted for (σcr,s). Both procedures (from Tran et al. and from the OUTBURST 
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research project) for the ultimate resistance of curved panels are addressed in the subsequent 

section 2.5, where additionally, the expressions for the critical column and the critical shell 

stresses are provided. 

Although not necessarily related to the work presented in the thesis, it is important to highlight 

that several authors recently studied curved panels with boundary conditions other than simply 

supported in all four edges. For instance, Magnucki & Mackiewicz [61], using the Galerkin 

method to solve Donnell’s equation, proposed in 2006 an analytical model to predict the elastic 

buckling stress for curved panel with three simply supported and one free edge. One year later, 

in 2007, Wilde et al. [62] addressed the same problem proposing a similar analytical solution, 

which gave a good agreement with the solution from the former author, but also with the 

numerical results. In 2011, Eipakchi & Shariati [63] studied the elastic buckling behavior of 

cylindrically curved panels subjected to axial stress with the two opposite sides simply supported 

and the other two edges free. The authors also proposed an analytical solution to find the critical 

stress, based on the perturbation methods. Finally, it is worth mentioning another recent study, 

carried out in 2018 by Andico et al. [64], in which the authors investigated the buckling behavior 

of partially restrained curved panels, stiffened longitudinally by trapezoidal stiffeners, under 

compression, as presented in Fig. 2.8. 
 

 

 
Fig. 2.8: Rotationally restrained curved panel model by Andico et al. [64] 

 

The authors proposed an approximate method to assess the buckling behavior of partially 

restrained curved panels, accounting not only for the curvature effect but also for a reinforcing 

effect due to the rotational stiffness of rigid trapezoidal stiffeners, given by Eq.(2.13) as: 
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where kσ,Z is the elastic buckling coefficient of simply-supported curved panel obtained using 

the expression by Timoshenko & Gere (see Eq.(2.8)), whereas ΦR is the strength increment 

factor that accounts for the reinforcing effect due to the rotational stiffness. The authors 

proposed three possible methods to calculate ΦR: i) the first one derived by using a 4th order 

polynomial function as a shape function; ii) assuming a harmonic function as a shape function; 

iii) a simplified form through regression analysis. The authors compared all three methods against 

the results of a parametric study, where several geometrical parameters were varied, and 
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concluded that the third method returns the results closest to the numerical ones (Δ < 8%). The 

expression for ΦR according to this method is given by Eq.(2.14) as: 
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where D is the flexural stiffness of a plate given by D = Et3/12(1-ν2), whereas κ is obtained as 

κ = Ws kR, where Ws is the sub-panel width, and kR is the rotational restraint stiffness (see Fig. 

2.8). However, as authors claim, further study on a wider range of panel curvature is required 

until a more efficient design formula is obtained. Moreover, the authors used the elastic buckling 

coefficient proposed by Timoshenko & Gere, which was several times proven to be overly 

conservative.  

In conclusion, it should be highlighted that although it was long discovered that the theoretical 

elastic critical stress is not sufficient to predict the ultimate resistance of curved panels, and thus 

has only limited practical importance, it still has a fundamental role in the available design 

methodologies. Namely, in most of the design standards (e.g. EN 1993-1-5, DNV-RP-C202, 

DNVGL-CG-0128, ABS, etc.), in order to calculate the ultimate resistance, it is necessary first to 

calculate the elastic critical stress and subsequently the slenderness of the element. Therefore, the 

study on the elastic buckling behavior of cylindrically curved panels is still essential and gains 

tremendous attention from the research community. The design rules from the previously 

mentioned standards are presented in section 2.5, where all the required steps for the evaluation 

of the ultimate resistance are provided, including the first step – determination of the critical 

stress.  

2.4.1.3 Ultimate compressive resistance of curved panels 

A significant discrepancy between the theoretical critical load and experimental data that was 

identified in the 1940’s and 1950’s, led to the conclusion that in case of cylindrically curved steel 

panels, the theoretical critical buckling load could not be reached and that the concept of initial 

imperfections should be introduced in order to attain the ultimate resistance of the structural 

element. It was soon discovered that an increased imperfection sensitivity characterizes the 

behavior of curved panels due to an unstable post-buckling path, which is not the case with flat 

plates that have a stable one.  

In order to solve the noticed inconsistencies, extensive use of large deflection theory was 

initiated. In 2018, Martins et al. [17] carried out a thorough literature review, summarizing the 

previous studies dealing with the post-buckling behavior of perfect and imperfect curved panels 

under uniform compression. Some of the most relevant and thriving studies (e.g. Levy [65], 

Volmir [66], Tamate & Sekine [67], Chia [68], Breivik [69], and Magnucka-Blandzi & Magnucki 

[70]), were discussed in detail in the most recent work by Manco [10], where their main 

contributions but also their evident limitations were pointed out. In addition, in 2018, Manco et 

al. [71]-[72] proposed a semi-analytical procedure for the prediction of the post-buckling behavior 

of unstiffened and stiffened cylindrically curved steel panels under uniaxial compression, based 

on large deflection theory and calibrated with an extensive parametric study using advanced FE 

models. The authors further proposed closed-form analytical equations based on a single degree-
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of-freedom approximation. Subsequently, the same authors [73] developed an analytical solution 

for the ultimate resistance of uniformly compressed unstiffened curved panels valid for 

constrained in-plane boundary conditions. Due to the complexity of the problem, there are still 

no methodologies that predict the ultimate strength of curved panels based on analytical or semi-

analytical approach, except for the aforementioned study by Manco et al., however, no 

experimental evidence was provided to validate these computational models. 

Hence, most of the studies available in the literature dealing with the ultimate load of curved 

panels are based solely on FEM that started to gain force in the 2000s. Several rigorous parametric 

studies were performed by Maeno et al. [44] in 2004, Park et al. [74] in 2007, and Andico et al. [64] 

in 2018, in which the authors assessed the influence of various parameters on the behavior of 

curved stiffened plates, revealing a strong sensitivity on the shape and amplitude of the initial 

imperfections. Finally, several authors proposed empirical expressions to assess the ultimate 

resistance of unstiffened and stiffened simply supported curved panels subject to compression, 

which is briefly addressed in the following paragraphs. 

In 2012, Tran [8] studied both unstiffened and stiffened curved panels under uniform 

compression, exclusively based on FE analyses, making one of the most remarkable contributions 

in this field. A series of numerical simulations were carried out to characterize the elastic-plastic 

behavior of curved panels, where in specific, the influence of curvature parameter, initial 

imperfections, and stiffeners were identified. Tran proposed two methodologies to determine the 

ultimate resistance of unstiffened simply supported curved panels, one based on the procedure 

given in EN 1993-1-5 (i.e. Ayrton-Perry methodology) and the other based on the procedure 

provided in EN 1993-1-6. The first methodology would be later recalibrated and a slightly 

modified version was presented in Tran et al. [75]. In all the proposed methodologies, curvatures 

were varied between Z = 0 and Z = 100, whereas the aspect ratio was kept constant and equal to 

α = 1, with the width b and the length a equal to 3 m, which might be one of the shortcomings 

of the approach. Regarding the boundary conditions, only simply supported edges, with the 

constrained loaded edges (i.e. forced to remain straight) were considered. Furthermore, the shape 

of the equivalent geometric imperfections was adopted to be affine to the 1st buckling mode, 

obtained from the linear buckling analysis (LBA). The author claims that although not necessarily 

the most unfavorable shape, a 1st buckling mode leads to safe results. Finally, it should be pointed 

out that Tran’s method uses Stowell’s formula (Eq.(2.9)) to obtain the elastic critical stress, which 

may lead to erroneous results as shown later on by Martins et al. [56]. 

Besides the design approaches for the unstiffened panel, Tran [8] was the first author to 

propose the methodology for the stiffened curved panels under uniform compression, which is 

based on the procedure available in EN 1993-1-5 for longitudinally stiffened flat plates, presented 

in section 2.5. Namely, the ultimate resistance is obtained by interpolation of two distinct 

behaviors: a column-type and plate-type behavior. To determine the reduction factor due to plate-

type buckling, the author suggests the same procedure proposed for the unstiffened panels, 

substituting the global curvature Z with corresponding local curvature Zloc (see Eq.(2.5)). On the 

other hand, the reduction factor due to column-type behavior is obtained according to EN 1993-

1-1 [76], assuming the buckling curve C (α = 0.49), whereas the geometrical properties (i.e. the 
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area and inertia) required to obtain critical column stress are evaluated on the gross cross-section 

of the panel (shell and stiffeners) and not on a single strut model.  

In 2014, Tran et al. [59] carried out another study on the linear buckling and the ultimate 

strength of stiffened curved panels, assessing the influence of the coupled effects of curvature 

and stiffening. The authors proposed another simplified design methodology to assess the 

ultimate resistance similar to the previous one, however, neglecting the plate-type behavior. The 

methodology is simple, but it was verified against a relatively narrow range of parameters. 

Namely, the width and the thickness are constant and equal to b = 4.8 m and t = 0.012 m, 

respectively, the number of stiffeners is fixed to be nst = 8, whereas the maximum aspect ratio 

considered in the study is equal to α = 1.25. 

In the same year, using the design of the experiment method, Tran et al. [77] proposed another 

design formula, applicable for both unstiffened and stiffened panels. The approach is based on 

the quasi-Monte Carlo statistical calibration of the variables used as the input data for the 

considered problem. Although the scope of this method is somewhat extended by adding the 

possibility to explicitly account for the aspect ratio, there are still several limitations in this 

approach. First, the formula is valid for a very narrow range of parameters, for instance, 

0.01 ≤ t/b ≤ 0.04, 0.6 ≤ α ≤ 1.6, 0 ≤ b/R ≤ 1, and 0 ≤ Z ≤ 26 for unstiffened panels, and 

0.67 ≤ α ≤ 1.5, 0 ≤ 1/R ≤ 0.1, and 5 ≤ nst ≤ 20 for stiffened panels. Second, the formula is 

validated solely against the numerical results obtained in the previous study, thus encountering the 

same shortcomings already addressed. Finally, the formula is conceptually different from the usual 

standard-like formulism, which may obstruct its applicability in conventional design.  

Martins et al. [78] performed an extensive numerical study in 2014, attempting to overcome 

the limitations discovered in the methods proposed by Tran. Based on the effective width 

concept and on a modification of the reduction curves given in EN 1993–1-5, the author 

proposed a new design formula to assess the ultimate strength of unstiffened short curved panels 

(α ≤ 1.0) under pure compression, but also under pure in-plane bending. The extension of these 

rules to long panels (α > 1.0) was proposed in Martins [9], where the reduction factor for short 

panels should be multiplied by a numerically generated correction factor. 

In 2015, Martins et al. [79] carried out a series of FE analyses, studying the effect of geometric 

imperfection on the ultimate strength of curved panels. In specific, the study comprises ten 

different shapes of geometric imperfections (corresponding to the first ten buckling modes) and 

various imperfection amplitudes. The authors concluded that the first buckling mode might lead 

to unsafe results and that panels with larger curvature are more sensitive to initial geometric 

imperfections. However, the main shortcoming of this study is that the authors considered only 

imperfections affine to the eigenmodes. As it would be concluded later by Manco [10], a perfect 

semi-wave in each direction might result in the ultimate resistance much lower than those given 

by eigenmodes. 

Kim et al. [80] studied in 2014 the unstiffened cylindrically curved panels subject to axial 

compression and lateral load, thus addressing the panels used mainly in ships and offshore 

structures, such as wind towers, bilge circle parts in ship vessels, etc. Using the FE analyses, a 

series of elastic and elastic-plastic large deflection analyses were performed and the effects of 
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curvature, the aspect ratio, the slenderness and the initial imperfections on the buckling and 

ultimate load were identified. In addition, an empirical design formula is proposed to determine 

both the critical load and the ultimate resistance of a panel under a variety of loading conditions 

(i.e. longitudinal and transverse compressive loads, combined biaxial compression, and lateral 

pressure). The expression for the critical load is based on the plasticity correction by Johnson-

Ostenfeld, while the formula for the ultimate resistance has the same general format as the one 

developed in 1975 by Faulkner [81], with the modified coefficients. The proposed approach is 

valid within certain geometrical ranges, namely, for the sectorial angle between 5°≤ β ≤ 30° (see 

Fig. 2.1). Moreover, the formula is proposed based on the analyses of stiffened curved panels, 

where an unstiffened panels is actually a subpanel framed by longitudinal stiffeners, with very 

specific boundary conditions. However, no clear specification on the level of the constraint of 

the loaded and specifically unloaded edges is provided.  

Most recently, in 2018, Park et al. [16] performed a similar study like the one from Kim et al., 

and another improved closed-form expression was proposed to calculate the ultimate strength 

through double-beta forms, widely used in prediction of the ultimate resistance of unstiffened 

flat plates. The authors identified the difficulty in modeling of the boundary conditions of an 

unstiffened panel surrounded by stiffeners, stating that the degree of rotational restraint at the 

plate boundary is neither zero nor infinite, which largely depends on the torsional rigidity of its 

supporting members. Nevertheless, a more conservative one bay model with all four edges simply 

supported was adopted, as presented in Fig. 2.9.  
 

 

Fig. 2.9: The one-bay cylindrically curved panel model used by Park et al. [16] 
 

The proposed formula is valid for a wide range of the aspect ratio (1.0 ≤ α ≤ 5.0), and 

thicknesses (8 mm ≤ t ≤ 40 mm), whereas the width is kept fixed and equal b = 1000 mm. The 

authors compared the formula with the available standard DNV [13] and concluded that the 

existing design rules are excessively conservative, which was confirmed by Martins et al. [9]. 

Unlike the unstiffened panels, there have been only a few studies in which a proposal for the 

assessment of the ultimate resistance of stiffened curved panels is provided. Namely, besides 

those aforementioned approaches by Tran, the study by Seo et al. [82] deserves to be mentioned. 

Namely, relying solely on FE analysis, the influence of various parameters on buckling and the 

ultimate load was characterized, such as curvature, slenderness b/t ratio, as well as three different 
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stiffeners shape. For all the analyses, a double-span & double-bay model was used as shown in 

Fig. 2.10. 
 

 

 

 

Fig. 2.10: Cylindrically curved panel model used by Seo et al. [82] 

 

Based on 400 FE analyses, the author claims that the shape of the stiffener affects only the 

buckling pattern, whereas its influence on the ultimate strength is negligible, adding that flat 

stiffeners commonly result in a collapse induced by stiffeners, whereas T-shaped stiffeners and 

angles lead to local failure of stiffener and global buckling of panel, respectively. In addition, a 

design empirical formula was derived using the least-squares method based on FE analysis results 

obtained for 150 different cases. However, the main drawback of this approach is the fact that it 

could be applied only for the panels with T-shaped longitudinal stiffeners. Moreover, in all 150 

cases, the aspect ratio was kept constant and equal to α = 3.0. Finally, to calculate the ultimate 

resistance, it is required to determine the elastic buckling strength of the curved panel and of the 

corresponding flat plate; however, the expression proposed by Kim et al. [80] for the unstiffened 

curved panels was adopted, without consideration of the stiffener type and/or size on the 

buckling load.  

In two consecutive works published in 2019 by Silvestre et al.[83] and Silvestre&Martins [84], 

the authors applied a semi-analytical technique - Generalised Beam Theory (GBT) to classify (i.e. 

decompse) the buckling modes of curved panels under axial compression, based on well defined 

mechanical behavioral features. In the first study, the authors assessed the influence of different 

deformation modes (global, distortional, local, warping shear, transverse extension) on the 

buckling load of unstiffened and stiffened panel. In the latter, a numerical study was carried out, 

in which post-buckling behaviour of curved panels was investigated. The authors assessed the 

sensitivity to different initial geometrical imperfection shapes, previously determined by GBT, 

providing the equilibrium paths of relevant modal displacement profiles, modal participation 

diagrams and deformed configurations. 

Finally, in 2019, stiffened curved panels were thoroughly studied within the OUTBURST 

research project [60],[85], [86]. One of the most relevant contributions of this work is the use of 

a numerical model calibrated against experimental test results, reported in 2020 by 

Piculin & Može [85]. An extensive parametric study was subsequently carried out using the model 

of stiffened panels with unconstrained longitudinal edges and constrained loaded edges, varying 
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the curvature (0 ≤ Z ≤ 500), the aspect ratio (0.5 ≤ α ≤ 2.0), the size and the type (flat and 

trapezoidal) of stiffeners. The authors stressed the importance of the initial imperfections and 

emphasized the difficulty to identify the most critical mode of geometric imperfection without 

an exhaustive analysis of all eigenmodes. Furthermore, the design method for longitudinally 

stiffened curved plates subjected to axial compression was proposed, using the formalism of 

EN 1993-1-5 for flat plated structures. The ultimate resistances obtained using the proposed 

method showed good agreement with the FEM-based results for a wide range of geometrical 

parameters.  

In conclusion, each of the proposed design methodologies for the prediction of the ultimate 

strength of cylindrically curved panels that are discussed in this section is in detail presented in 

section 2.5, where the design rules from the design standards (i.e. DNV-RP-C202, DNVGL-CG-

0128, ABS) are gathered as well. 

2.4.1.4 Experimental behavior of curved panels loaded in compression 

As indicated in 2.4.1.3, there has been an increased interest for curved panels as of late; 

however, as general impression, experimental evidence is still missing to validate the presented 

analytically and numerically built computational models.  

The early experimental works on curved panels under compression were comprehensively 

summarized first by Gerard [87] in 1958 and later discussed by Thomas [88] in 1974. Namely, 

the majority of the experimental investigations, carried out on both unstiffened [89]-[99] and 

stiffened [100]-[107] curved panels, were reported back in the 1930s and 1940s, where the 

corresponding authors actually intended to compare the experimental results with the most 

recent theoretical findings developed at the time. Some of the most relevant studies are discussed 

in this section.  
 

 

Fig. 2.11: Test specimens from Gall [100] (dimensions in inches) 

 

In 1930, Gall [100] in his PhD thesis carried out 42 axial compression tests on the stiffened 

aluminum curved panels. The geometry of the panels was varied within the practical ranges in 

the field of aeronautics, where the width of all the panels was kept constant 
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(b = 12 in. ≈ 152 mm), whereas three sheet thicknesses (i.e. 0.48 mm, 0.84 mm, 1.32 mm), three 

aspect ratios (i.e. 0.5, 1.0, 1.5) and four radii of curvature (including flat plates) were examined. In 

addition, two types of U-shaped stiffeners were considered, attached to the plate using rivets (see 

Fig. 2.11). The author concluded that, in general, two failure modes might occur, in a manner 

similar to flat plates. In the first, failure by bending of the stiffener and sheet panel normal to the 

plane of the panel occurs, similar to primary failure in columns, characterized by noticeable 

buckling of the sheet between stiffeners (see Fig. 2.12). In the second, local wrinkling of the 

outstanding legs of the stiffener takes place (see Fig. 2.13). 

 

   

Fig. 2.12: Failure mode by bending of the stiffener and sheet panel (from Gall [100]) 

 

  
Fig. 2.13: Local failure of stiffener legs (from Gall [100]) 

 

Finally, Gall concluded that a lower R/t ratio (i.e. more curved panel) leads to increased 

resistance of a panel, regardless of the number of stiffeners, as presented in Fig. 2.14. In the 

figure, ratio of average curved specimen strength (σZ) to average flat specimen strength (σpl) is 

plotted against the level of stiffening expressed in percentage (%).  

It may be seen that for low curved panels (i.e. R/t > 935), the resistance tends to be up to 15% 

lower than the resistance of corresponding flat plates. As the author later explained, this 

unexpected strength reduction was caused by a non-uniform curvature along the panels’ length, 

thus introducing significant load eccentricities and non-uniform load distribution. 

In 1933, using the experimental data from Gall, Lundquist [101] studied three simplified 

procedures available at the time for calculation of the compressive strength of stiffened flat plates 

and verified their applicability for low curvature aluminium panels. The author concluded that 

for curved panels that fail by bending of the stiffener and sheet panel (see Fig. 2.12), which is 

based on a mutual action of panel and stiffener, the effective width method proposed by Theodore 
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von Kármán [108] for flat plates may be used. Namely, according to this method, it is assumed 

that the stiffener together with the adjacent effective width of the panel sheet behaves as a column 

that fails by bending normal to the panel plane. Therefore, the second moment of area, as well 

as the slenderness ratio of combined stiffener and effective panel should be calculated and the 

effective area multiplied by the stress for a considered column. This method was adopted in 

EN 1993-1-5 and it is presented in section 2.5, being a relevant base for the design of stiffened 

curved panels. Moreover, similar to Gall, Lundquist also recommended the use of the design 

rules for flat plates in case of very shallow panels, setting a slightly more rigorous lower limit to 

R/t > 1200. 
 

 
Fig. 2.14: Curved specimen to flat specimen strength ratio (avg.) (adapted from Gall [100]) 

 

Ramberg et al. [103] in 1944 carried out another experimental campaign, in which 21 aluminum 

curved panels, reinforced by four Z-shaped stiffeners attached by rivets (see Fig. 2.15), were 

tested under pure compression. All tested panels have the same aspect ratio α = 0.75 (with 

a = 304.8 mm and b = 406.4 mm), whereas the radii of curvature R and the sheet thickness t were 

varied so that the local curvature (see Eq.(2.5)) covers a range of values up to Zloc = 32.5. 
 

 

 

Fig. 2.15: Test specimens from Ramberg et al. [103] (dimensions in inches) 
 

Several failure modes were identified in the tests by visual inspection: i) local buckling of the 

stiffener (in 15 out of 21 tests); ii) local buckling of sub-panels (two by separation of rivets and 
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one between the stiffeners); iii) global buckling of both stiffeners and sheet panels as one unit (in 

three tests with a thick sheet plate). 

The results of the tests are summarized in Fig. 2.16, where, similar to Fig. 2.14, ratio of average 

curved specimen strength (σZ) to average flat specimen strength (σpl) is plotted against the local 

curvature parameter Zloc. The results show that for shallow panels (Zloc < 10), the effect of 

curvature is more pronounced, leading to a gain in resistance of up to 15% (i.e. 6% in average 

value), whereas, for the higher values of curvature, the ultimate load appears to show descending 

trend with curvature. Becker [87] later emphasized that the higher curvature necessarily induces 

a higher imperfection sensitivity of panels, which to some extent might explain the reduction of 

the ultimate strength, insisting that more tests should be performed before any firm conclusion 

could be drawn. 
 

 
Fig. 2.16: Effect of curvature on compressive strength of stiffened curved panels  

(adapted from Rabmerg [103]) 

 

Some years later, in 1960, Soderquist [106] tested another series of 19 aluminium alloy flat and 

curved stiffened panels under pure compression, with the ranges of geometric parameters 

encountered in the aircraft industry. The principal objective of the study was to investigate the 

curvature effect on the ultimate strength of panels and to reveal the reason for a descending trend 

with increasing curvature reported by Ramberg (see Fig. 2.16), contrary to expectations. The test 

setup is similar to the one by Ramberg; however, several changes were introduced to eliminate 

undesired complications found by the previous author, such as the local instability of stiffeners 

and failure due to rivet separation (see Fig. 2.17).  

Therefore, instead of Z-shaped and U-shaped stiffeners, rather stiff rectangular stiffeners were 

used, whereas the attachment of the stiffeners to the panel was done by means of bolting with 

screws and not by rivets. Finally, in order to secure simple support at the two unloaded edges, 

two stiff angle sections were fitted around it, allowing the edge to slide up and down, as shown 

in Fig. 2.17. Prior to each test, the initial imperfections were measured and recorded for the first 

time, and it was noticed that the differences of the local curvature radii might be significant (up 

to 20%), especially in the zones close to the stiffeners.  
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Fig. 2.17: Test setup from Soderquist [106] (dimensions in inches) 

 

One of the major conclusions of this work is that the ultimate strength cannot be observed 

only as a function of the curvature parameter Z as it was believed before, but also the slenderness 

b/t ratio has to be accounted for. The results of the tests are presented in Fig. 2.18, where again 

average ultimate strength ratio σZ/σpl is plotted against the local curvature parameter Zloc, however, 

the results are sorted according to the b/t ratio. 
 

 

Fig. 2.18: Effect of curvature on compressive strength of stiffened curved panels  

(adapted from Soderquist [106]) 
 

The results show a strong dependence on both the curvature parameter and b/t ratio. Namely, 

the higher the curvature the higher is the gain in the ultimate resistance, regardless of the b/t 

ratio. On the other side, for a constant value of curvature, the ultimate resistance ratio (σZ/σpl) 

increases with decreasing b/t ratio (e.g. for Zloc = 30 and b/t = 142, the ultimate load ratio is 

σZ/σpl = 1.18, whereas, for b/t = 70.6, the value is σZ/σpl = 1.57). In conclusion, in contrast to the 

results from Ramberg, it may be observed that for a certain b/t ratio, the ultimate strength shows 

always a rising trend with increasing curvature. The rate of increase depends on the b/t ratio.  

Despite a significant deviation of experimental results from the expected theoretical results 

and apparent contradiction in results obtained by different authors, only a few experimental 

programs have been reported ever since.  
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In 1998, Featherston & Ruiz [109] carried out a series of tests on unstiffened thin engine fan 

blades made of aluminium. All the tested specimens have a constant thickness and width (i.e. 

t = 0.55 mm and b = 100 mm), whereas three different aspect ratios were considered (i.e. α = 1.0, 

α = 1.5 and α = 2.0) and only two different curvatures (i.e. Z = 56 and Z = 103). Featherston 

[110] extended the scope of the study in 2001, adding another curvature of Z = 181. Although 

the work contains much needed experimental results, all tests were carried out only on 

unstiffened panels subject to the combined action of compression and shear, with very specific 

boundary conditions. Namely, the unloaded straight edges remained unsupported, one curved 

edge was clamped, whereas the opposite curved edge was simply supported.  

Two European research projects, POSICOSS [111] and COCOMAT [112], carried out in 

2006 an experimental study on composite curved panels, with geometry selected to correspond 

to typical dimensions encountered in the aeronautics. Similar to the aforementioned first 

experimental references, the stiffeners were attached to the panel sheets by riveting, leading often 

to failure modes governed by the separation of the composite components or by the failure of 

the rivets. Hence, the experimentally based design rules proposed in these projects have a very 

limited field of practical application, disabling their use in welded structural steel applications. 

In 2007, Cho et al. [113] conducted six compressive tests on longitudinally stiffened curved 

panels with the geometry that corresponds to curved panels used in bilge strakes of container 

ships. Each specimen contains seven (or more) angle bars stiffeners (see Fig. 2.19) that are welded 

to the panel. The radius of curvature R, the thickness t and the width b are varied so that the 

global curvatures ranges from Z = 620 to Z = 1150 and the local curvature from Zloc = 9.0 to 

Zloc = 19. The main drawback of this study is the fact that the geometry of the panels was adapted 

from the marine industry, where mainly short (α = 0.3 – 0.5) and heavily stiffened panels are 

used. The authors compared the experimental results with the numerical ones and a significant 

inconsistency was perceived in both the initial stiffness and the ultimate resistance of the panels 

(10% on average). In conclusion, the authors insist that additional experimental tests are required 

before any conclusion could be drawn.  

 

 
 

Fig. 2.19: Test setup from Cho et al. [113] 

 

Finally, in 2020, Piculin & Može [85] carried out an experimental study within the 

aforementioned OUTBURST research project, in which five stiffened curved plates with 

different geometry and steel grades (S460 and S690) were tested under pure axial compression. 
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The authors investigated the influence of various parameters on the ultimate strength of the 

panels, concluding that the use of higher steel grade negligibly increases the ultimate strength, 

whereas no difference was noticed among the plates with different aspect ratios. In addition, the 

importance of the initial imperfections is highlighted, directly affecting the failure mode of the 

tested specimens, which is, according to the authors, associated with a combination of buckling 

and yield of the material. Although the tests data (i.e. initial geometric imperfection, displacement 

field, strains, failure modes, etc.) were reported in a very comprehensive way, the main drawback 

of the study is relatively small number of tests performed (i.e. 1 per geometry), thus limiting the 

ranges of the studied parameters. Namely, only two curvature parameters (Zloc = 12 and Zloc = 18) 

and two aspect ratios (α = 2.3 and α = 4.6) were accounted for, keeping the number of flat 

stiffeners constant in all tests (i.e. nst = 2).  

Based on this overview of the experimental references, it may be understood that there are 

insufficient experimental results to enhance the validity of the above-mentioned empirical design 

methods. Besides, the majority of the available studies have focused on full cylinders, aluminium 

alloy sheets for monocoque constructions and composite curved panels used in aircraft and 

marine industry, which differ from those encountered in civil engineering (i.e. bridges). Hence, in 

an attempt to get insight into the complex buckling behavior of curved steel panels under 

compression, with geometry that may be encountered in offshore, aeronautics and bridge 

applications, an experimental program was undertaken within the research project 

ULTIMATEPANEL that is described in detail in chapter 3. 

2.4.2 Curved panels under shear 

2.4.2.1 General 

Unlike the curved steel panels under uniform compression, the panels under pure shear have 

been considerably less studied and there are still no practical design rules to estimate the ultimate 

shear resistance. Martins et al. [17] thoroughly reviewed up-to-date studies found in the literature, 

dealing with the stability and design of isolated cylindrically curved panels under shear loading. 

Thus, this section addresses only the most relevant historical references in this filed, useful for 

the work presented in the thesis, discussing the scope of their application and emphasizing the 

main limitations.  

Similar to curved panels under compression, discussed in 2.4.1, this section is divided into two 

sub-sections: i) elastic buckling behavior of curved panels under shear, where available methods 

for the computation of the critical shear load are demonstrated; ii) ultimate shear resistance of 

curved panels, summarizing the most relevant numerical studies dealing with the ultimate load of 

curved panels. To the best of the author’s knowledge, there are no references in which the 

isolated curved panels under shear are experimentally tested.  

2.4.2.2 Elastic buckling behavior of curved panels 

The first attempts to obtain the critical load of curved panels under shear were reported back 

in the 1930s by Leggett [114] and Kromm [115], who studied shallow long simply supported 

panels, proposing the first analytical solution by solving the Dean’s differential equation [116]. In 
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the subsequent studies by Batdorf [117] in 1947 and Schildcrout & Stein [118] in 1949, significant 

progress was made in the critical behavior of curved panels under shear, extending the scope of 

the study to various boundary and loading conditions, for the whole range of curvatures Z. 

Moreover, using Donnell's equations, the authors proposed the expression for the critical shear 

load, similar to the one for the curved panels under compression (see Eq.(2.6)) that has been in 

use in an unchanged form ever since, given by Eq.(2.15) as: 
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where kτ is the shear buckling coefficient that, depending on the panel geometry and boundary 

conditions, may be obtained using NACA design curves (monographs) published by the National 

Advisory Committee for Aeronautics (NACA) [119]-[120]. The monographs provide design 

information in the form of empirical knockdown factors, obtained as lower bounds of 

experimental results available at the time, carried out on the full cylinders subject to torsional 

moment. The monographs for unstiffened curved panels with simply supported and clamped 

edges are presented in Fig. 2.20 and Fig. 2.21, respectively. As it may be observed, the 

monographs give the shear buckling coefficient (kτ) to be used with Eq.(2.15), as a function of 

the curvature parameter Z (defined by Eq.(2.2)), for various aspect ratios (defined by Eq.(2.1)). 

Although the curves have been widely used in aeronautics, there are several limitations that 

hindrance their use in other civil engineering applications. First, the curves cover aspect ratios up 

to α = 3.0, whereas those with a higher aspect ratio are considered as infinitely long (see Fig. 2.20a 

and Fig. 2.21a). On the other hand, only two curves for the so-called wide panels are provided (i.e. 

α = 0.66 and α = 0.5), which in case of simply supported panels are valid for curvatures up to 

Z = 100 and Z = 10, respectively, whereas panels with aspect ratio lower than α = 0.5 are 

considered as cylinders (see Fig. 2.20b and Fig. 2.21b). Finally, it is necessary to emphasize that the 

NACA curves cover simply supported and clamped panels, without a clear specification of the 

in-plane boundary conditions (i.e. in-plane edge constraints). 
 

  
a) b) 

Fig. 2.20: NACA monographs for simply supported panels: a) α > 1 and b) α ≤ 1  

(adapted from Batdorf et al. [120]) 
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a) b) 

Fig. 2.21: NACA monographs for clamped panels: a) α > 1 and b) α ≤ 1  

(adapted from Batdorf et al. [120]) 

 

In 1963, Timoshenko & Gere [121] studied long and perfect curved panels without stiffeners 

under various load arrangements. The authors proposed a simple expression for the shear 

buckling coefficient as a function of the curvature parameter Z, given by Eq.(2.16); however, it 

is valid for long curved panels only (i.e. a >> b).  

 4 25.34 1 0.0145k Z = +   (2.16) 

 

Later, in the 1970s–1990s, several authors summarized the latest studies on isotropic curved 

panels (e.g. Baker et al. [122] and Bismarck-Nasr [123]); however, no significant changes were 

introduced with respect to the NACA curves. In 1998, Nemeth & Starnes [124] revised the 

NACA curves and concluded that the curves are outdated, providing overly conservative results.  

Most recently, with the appearance of FE software packages, the number of studies on the 

buckling behavior of the curved panels under shear seems to have increased. In 2002, 

Domb & Leigh carried out two numerical studies on curved panels, under pure shear [41] and 

under combined action of compression and shear [125], assessing the validity of the available 

analytical techniques, i.e. NACA curves. The authors agreed with Nemeth & Starnes that the 

curves were outdated and proposed a single design curve (see Eq.(2.17)) representing the shear 

buckling coefficient as a function of curvature for panels with aspect ratio greater than α > 4.0, 

thus extending the scope of NACA curves.  
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where the required coefficients are: co = 0.7782, c1 = -0.1088, c2 = 0.2025,  c3 = -0.0037, 

c = 1.4805, and d = 0.6401. 

In 2010, Machaly et al. [126], investigated horizontally curved I-girder web panels and 

proposed a method to predict the shear buckling coefficient, given by Eq.(2.18).  
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In this expression, the coefficient kss, given by Eq.(2.19), is the theoretical buckling coefficient 

of flat plate assuming simply supported boundary condition at flanges; ksf is a coefficient given 

by Eq.(2.20); η is an amplification factor given by Eq.(2.21), where the constants c1 and c2 are 

equal to 0.18 and 0.09, respectively. 
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However, this method is derived by calibration of a relatively small number of numerical 

results (i.e. 100), where the curvature parameter and the aspect ratio were kept within a narrow 

range (i.e. Z = 2–10 and α = 0.5–1).  

Finally, in 2011, Amani et al. [127] carried out a comprehensive numerical study in which the 

theoretical values of buckling coefficient from the NACA curves were compared with the 

numerical results for a very wide range of curvatures (Z = 0–1000) and aspect ratios up to α = 2.5. 

Good agreement with the numerical results was achieved for lower values of curvatures, i.e. up 

to Z = 10. However, in the intermediate range of curvatures (i.e. Z = 10–100) a sudden alteration 

of the buckling modes occurs (i.e. from the symmetric to antisymmetric), which eventually leads 

to a higher deviation from the theoretical results since this phenomenon was not accounted for 

in the original NACA curves.  

Although several authors revised and criticized the NACA monographs, they remained 

practically the only valid method for the prediction of the critical shear load for the unstiffened 

simply supported curved panels. In fact, none of the authors proposed a simple design formula 

to replace the outdated and impractical NACA monographs, at least not for various curvatures 

and aspect ratios, as it may be seen in Table 2.3, where the ranges of the most relevant parameters 

from the aforementioned studies are summarized.  
 

Table 2.3: Ranges of geometrical parameters from the available literature  
 

Author Year Aspect ratio, α Curvature, Z b/t 

NACA [119]-[120] 1947 

0.5 0 - 10 

- 0.66 0 - 100 

1.0 / 1.5 / 2.0 / 3.0 0 - 1000 

Domb & Leigh [41] 2001 ≥ 4.0 0 - 200 46 - 460 

Machaly et al. [126] 2010 0.5 – 1.0 2 - 10 100 - 200 

Amani et al. [127] 2011 0.4 – 2.5 5 / 15 / 50 / 150 333 

 

Nevertheless, the contribution from these studies is essential since the elastic critical load is 

needed to obtain the ultimate shear resistance, which is the principal goal in the design process. 



State of the art 

36 

The most relevant studies on the ultimate resistance of the curved panels subject to a shear load 

are addressed in 2.4.2.3. 

Finally, similar to curved panels under uniform compression, the calculation of the shear 

buckling coefficient and subsequently critical shear stress according to the available standards (e.g. 

EN 1993-1-5, DNV-RP-C202, and DNVGL-CG-0128) is presented in section 2.5, being the 

initial step in the determination of the ultimate shear resistance of curved panels. 

2.4.2.3 Ultimate shear resistance of curved panels 

An overview of the references is presented, in which the post-bucking behavior of unstiffened 

curved panels under shear was investigated. Prior to this, it is necessary to make a brief 

introduction to the behavior of flat panels under pure shear, being a reference case, essential for 

the understanding of the main concepts of the post-buckling behavior of curved panels. 

Many studies have dealt with the post-buckling behavior of flat plates under pure shear, and 

the main findings were well documented and summarized in 1986 by Dubas & Gehri [128]. 

Generally, the response of an isolated plate under shear may be separated into two phases: i) pre-

buckling; ii) post-critical phase. First, before the buckling occurs, the state of pure shear develops, 

in which the uniformly distributed shear stresses in the plate may be decomposed into the 

principal tensile stresses and destabilizing compressive stresses that eventually lead to the 

buckling of the panel. However, owing to this dual stress system and the presence of the tensile 

component, the critical stresses are slightly higher than in the case of pure compression. Once 

the buckling occurs, the main compression stress remains constant, whereas the tensile one 

increases, leading to a stable post-buckling behavior, which is the main characteristic of flat plates. 

Due to this favorable stabilizing mechanism, in the literature known as tension field, significant 

post-buckling reserves can be utilized until the ultimate load is reached. According to 

Dubas & Gehri, the extent of this gain in resistance depends on multiple factors, such as the 

initial geometric and material imperfections, the effect of plasticity, the effect of post-buckling 

stability, etc.  

In contrast to flat plates, the knowledge on the post-critical response of the unstiffened 

cylindrically curved panels subjected to pure shear is still inexcusably scarce. Only recently, with 

the appearance of FE based software packages, several studies have been reported, among which 

the aforementioned studies by Domb & Leigh [41], Featherston [129], Machaly et al. [126], and 

Amani et al. [127] are the most representative.  

Besides the study on the critical shear load (see in 2.4.2.2), Domb & Leigh [41] analysed the 

non-linear post-buckling behavior of curved panels. In specific, the authors assessed the 

imperfection sensitivity of curved panels, stating that ultimate shear load highly depends on the 

shape and amplitude of the initial imperfections. However, no specific design rules were 

proposed for the calculation of the ultimate shear load. In fact, the curvature parameter Z is taken 

into account only for the prediction of the shear buckling coefficient kτ, see Eq.(2.17), whereas 

the subsequent steps for the calculation of the ultimate resistance remain the same as for flat 

plates, provided by EN 1993-1-5. 
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In 2003, Featherston [129] examined the post-critical behavior of a curved panel subjected to 

a combined action of shear and compression, thus expanding the scope of the previous two 

studies from the author (i.e. Featherston & Ruiz [109] and Featherston [110]). In addition to the 

previous two studies, the influence of the initial geometric imperfections on the ultimate load 

was investigated. Namely, the initial imperfections detected by means of Digital Image 

Correlation (DIC) were explicitly included in the numerical models, which led to an acceptably 

good agreement between the numerical and the experimental results. Nevertheless, the authors 

discovered a large portion of uncertainty in FE analysis, emphasizing the importance of an 

adequate modeling of geometric imperfection shape and amplitude. Finally, based on the results 

of an extensive parametric study, the authors concluded that for any combination of curvature Z 

and aspect ratio α modeling of the initial geometric imperfection in the form of the 1st or 2nd 

eigenmode leads to the minimum collapse load in 85% of the studied cases. However, no design 

rules were proposed for the prediction of the ultimate shear load. 

In the same work in which the expression for the shear buckling coefficient was proposed 

(see Eq.(2.18)), Machaly et al. [126] proposed a simplified method for the calculation of the 

ultimate shear load of unstiffened curved panels under shear, which is presented in section 2.5 

with the other available procedures. However, as it was already highlighted, the empirical formula 

is verified using a small sample of numerical results, and it is valid for a very specific geometries 

that are encountered in horizontally curved I-girders (i.e. Z = 2–10 and α = 0.5–1), without a clear 

specification of the in-plane boundary conditions. 

Finally, in the aforementioned study by Amani et al. [127], besides the pre-buckling phase, the 

authors made a step forward and studied the post-critical behavior of unstiffened curved panels 

under shear, within the same ranges of parameters. In particular, two principal objectives of the 

study were: i) to investigate the influence of the key parameters (i.e. curvature parameter Z and 

aspect ratio α) on the post-buckling behavior of a perfect curved panel; ii) to assess the effect of 

the shapes and the amplitudes of the initial imperfections in case of imperfect panels. Therefore, 

a series of geometrical and material nonlinear analysis with imperfection included (GMNIA) were 

carried out, which led to some advances in the knowledge on the behavior of curved panels under 

shear. Namely, moderately curved panels, similar to flat plates, are characterized by a rather stable 

post-critical response and considerable post-buckling capacities. On the other hand, the increased 

curvature leads to a dominant shell-like behavior, with a highly unstable and imperfection 

sensitive post-buckling response. Regarding the imperfection shape, similar to findings from 

Featherston, the authors state that it is sufficient to consider the first eigenmode shape for lower 

and intermediate curvatures, whereas for the higher curvatures, the authors recommend to 

combine the first two or first four modes in order to obtain the lowest resistance. In what 

concerns the imperfection amplitudes, the authors claim that only the initial post-buckling 

response is affected, whereas the ultimate load remains practically unchanged.  

To sum up, although these studies contributed to increased knowledge on the post-critical 

behavior of unstiffened curved panels under pure shear, no clear design rules for the assessment 

of the ultimate shear load were developed, at least not for any desired aspect ratio and curvature 

parameter. Instead, the authors propose two possible methods for the design of cylindrically 

curved panels under shear. In the first (simplified) method, it is necessary to calculate the elastic 
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critical load (analytically or numerically), where the ultimate load is, then, obtained by applying 

empirical reduction factors that account for the imperfections and plasticity. Most of the design 

standards comply with this method; however, as Featherston stated, the main drawback is the 

definition of the reduction factors for various boundary and load conditions. In the second 

method, the ultimate load is directly obtained from a numerical non-linear analysis (GMNIA), in 

which imperfections and plasticity are explicitly introduced in the models. However, owing to 

the lack of standardized geometric imperfection shapes and amplitudes in the way it exists for 

flat plates, an imperfection sensitivity study needs to be carried out each time, which is the main 

restriction of this method. This iterative process of guessing the critical imperfection shape might 

be time-consuming and thus impractical for design purposes.  

Hence, the only available design guidance for the prediction of the ultimate shear resistance 

of shells and curved panels are recently published standards for oil & gas industry structures 

(DNV-RP-202), as well as for marine industry structures (DNVGL-CG-0128) presented in 

section 2.5 with the other available procedures. Nevertheless, in 2018, Martins et al. [17] revised 

and compared these two standards with the numerical results for a wide range of curvature 

parameters and a significant deviation in results was noticed, especially for the lower and 

intermediate values of curvatures. This discrepancy is justified by a lack of data on geometric 

imperfections that were used in the semi-empirical expressions provided in the standards. In 

addition, the standard DNVGLCG-0128 is mainly applicable for ship hull structures with higher 

curvature parameters (R/t ≤ 2500); while for the lower curvatures, the standard unjustifiably 

suggests the use of the design methodology for flat plates, which is a very conservative approach. 

Based on the literature review, there is apparently plenty of space for improvements in this 

field. Thus, one of the principal goals of this thesis is to propose a formulae-wise methodology, 

allowing the computation of the ultimate shear resistance of unstiffened simply supported curved 

panels with various edge in-plane constraints, applicable for curvatures and aspect ratios within 

the ranges that may be of the practical use in offshore, aeronautics and bridge applications. This 

problem is addressed in chapter 4 and chapter 5, where the expressions for the critical shear load 

and ultimate shear load are proposed, respectively.  

2.5 Procedures for the computation of the ultimate resistance of 

curved panels 

In contrast to flat plates, robust and physically consistent design formulations able to deal with 

all the specific features inherent to curved panels are generally not available. Thus, the objective 

of this section is to summarize all design procedures available in the literature to assess the 

ultimate resistance of curved panels. The section is divided into three parts, each of them 

providing the available design rules, relevant for the work covered in this thesis: i) design rules 

for the isolated panels under compression; ii) design rules for the isolated panels under shear 

loading; and iii) design rules for the box-girder bridge cross-section.  

The standard procedures available in EN 1993-1-5 for the determination of the ultimate 

compression and ultimate shear resistance for flat plates are also demonstrated, being an extreme 

case of curved panels (i.e. Z = 0). Regarding the rules for the box-girder cross-section, only the 
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procedure for the trapezoidal box-girder available in EN 1993-1-5 is presented since no proposal 

for the cross-section containing curved bottom flange is still available.  

2.5.1 Design rules for panels in axial compression 

2.5.1.1 Flat plates – EN 1993-1-5:2006 

The design rules for unstiffened and stiffened flat plates, based on the effective width method, are 

provided in section 4 of EN 1993-1-5. In section 10, the standard provides alternatively the 

reduced stress method; however, this procedure is not presented in this thesis.  

The effective width method, which was introduced by von Kármán et al. [108] in 1932, is a 

simplified method for the determination of the ultimate load of a plated element. According to 

this method, after the buckling occurs, the central portion of the plate loses its stiffness, which 

causes a stress redistribution towards the stiffer outstand parts, located along the unloaded 

longitudinal edges. Therefore, after the buckling occurs, the load is carried only by these two 

strips of equal width that together compose so-called effective width, until the ultimate load is 

reached. Although the stress distribution, in reality, is non-linear, von Kármán adopted a linear 

(i.e. uniform) distribution acting only on the effective parts of the cross-section, whereas the 

contribution of the buckled central parts is completely neglected in the cross-section resistance. 

Finally, assuming that the stresses along the effective parts of the plate (beff) at the ultimate limit 

state are equal to the yielding stress (fy), the characteristic compressive resistance of a flat plate, 

NRk, may be derived using Eq.(2.22): 

 
1

Rk eff y eff y y yN A f b tf btf btf


= = = =   (2.22) 

 

where Aeff is cross-section’s effective area,  is the reduction factor and �̅� is the relative 

slenderness parameter, calculated as a function of the elastic critical stress (σcr) by Eq.(2.23) as: 

 


=
y

cr

f
  (2.23) 

 

Although the concept of the effective width method remained the same, the expressions for 

the reduction factor used in the standard have been somewhat modified and updated in time, 

accounting for a wider range of slenderness parameter, and for the influence of the initial 

imperfections. The design rules from EN 1993-1-5 for flat plates are divided into two groups: i) 

unstiffened plate elements (section 4.4 of EN 1993-1-5); and ii) stiffened plate elements (section 

4.5 of EN 1993-1-5). The most relevant steps of these two design procedures are summarized in 

this section. 

i) Unstiffened plate elements: 

In the case of unstiffened plates, characterized by a plate-type buckling (column-type buckling 

might be relevant only for very small values of aspect ratio) the total cross-section effective width 

is obtained as a sum of effective widths of each sub-panel that builds the cross-section. 

Depending on the position of a sub-panel in the cross-section, the effective width formulae (i.e. 
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reduction factor formulae) are defined either by Eq.(2.24) for internal compressed elements or 

by Eq.(2.25) for outstand compressed elements. 
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In these expressions, ψ is the stress ratio (ψ = 1.0 for pure compression), whereas �̅� is the 

relative slenderness parameter, calculated in general by Eq.(2.23), or simplified by Eq.(2.26) as: 

 
,

235

28.4
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ypl

b t

fk
 


= =with   (2.26) 

 

where kσ,pl is the elastic buckling coefficient for flat plates (for uniform compression, kσ,pl = 4.0 

for internal elements and kσ,pl = 0.43 for outstand elements, i.e. stiffeners), whereas bi is the 

corresponding width of each subpanel. 

 

ii) Stiffened plate elements: 

In the case of stiffened plates, the calculation of the ultimate compressive resistance is far 

more complex. The process may be divided into three major steps:  

I. Determination of the local buckling reduction factor loc for each subpanel of width bloc (see 

Fig. 2.1b), using the design rules for unstiffened plate elements (Eq.(2.24) and Eq.(2.25)).  

II.  Determination of the global buckling of the entire stiffened element, which requires the 

calculation of three reduction factors: 

▪ Reduction factor  for plate-type buckling  

▪ Reduction factor χc for column-type buckling  

▪ Final global reduction factor c  

III.  Determination of the effective area of the stiffened plate, using Eq.(2.27) as: 

 , , , , ,c eff c c eff loc i edge effA A b t= +   (2.27) 
 

where c is previously addressed global reduction factor, and Ac,eff,loc presents the effective 

section areas of all the subpanels and stiffeners that are fully or partially in the compression zone, 

excluding the effective parts supported by an adjacent plate element with the width bedge,eff (see 

Fig. 2.22), calculated using Eq.(2.28). 

 , , , ,c eff loc sl eff loc c loc

c

A A b t= +  
 (2.28) 

 

In this expression, Asl,eff presents the sum of the effective sections of all longitudinal stiffeners 

with gross area Asl located in the compression zone, obtained using the rules for the unstiffened 
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plate elements. Finally, bc,loc and loc are the local width and the corresponding reduction factor, 

calculated for each subpanel in compression using the rules for unstiffened elements, except the 

parts bedge,eff (see Fig. 2.22). 

 

 

Fig. 2.22: Effective area of a stiffened plate under uniform compression (EN 1993-1-5 [11]) 

 

In Eq.(2.27), in order to determine the effective area, it is necessary to calculate the final 

reduction factor c by interpolation between χc and , using Eq.(2.29), where the interpolation 

parameter ξ is a function of the elastic critical plate buckling stress (σcr,p) and the elastic critical 

column buckling stress (σcr,c) determined by Eq.(2.30) as: 

 ( ) (2 )c c c     = − − +   (2.29) 
 

 
,

,

1 0 1
cr p

cr c


 


= −  but   (2.30) 

 

A typical (χc - ) interpolation diagram is presented in Fig. 2.23. It is important to emphasize 

that the plate-type behavior prevails only in the case of unstiffened plates, or lightly stiffened 

plates with larger aspect ratios. Therefore, for the aspect ratios that are commonly encountered 

in the engineering applications (i.e. bridges), it is to expect that the column-type buckling is the 

governing instability mode (ξ → 0), regardless of the level of stiffening, meaning that the plate-

type buckling verification may be completely ignored. Finally, it is necessary to determine the 

critical stress and the reduction factor, both for plate-type and column-type behavior. 

 

 

Fig. 2.23: Column-type and plate-type interpolation 
 

▪ Plate-type buckling: 

The reduction factor  for the equivalent orthotropic plate is obtained using the expression 

for the unstiffened plates (see Eq.(2.24) and Eq.(2.25)), where the relative slenderness parameter 

�̅�p is obtained by Eq.(2.31) as: 
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where Ac,eff,loc is defined by Eq.(2.28), Ac is the gross area of the compression zone of the 

stiffened plate, without the parts bedge,eff (see Fig. 2.22) and σcr,p is the elastic critical plate buckling 

stress, determined in accordance with Annex A of EN 1993-1-5. Namely, depending on the 

number of longitudinal stiffeners (i.e. one, two or more), the standard correspondingly provides 

rules for the critical load.  

In the case of a plate with a single longitudinal stiffener in the compression zone, a simplified 

expression for the critical stress is provided, given by Eq.(2.32) as: 
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where Asl,1 is the gross area of the stiffener, Isl,1 is the second moment of area of the stiffener 

about the axis parallel to the plane of plate, a and b are the length and the width of the plate, b1 

and b2 are the distances from the longitudinal (unloaded) edges to the stiffener, so that b = b1 + b2, 

whereas ac is calculated using Eq.(2.33) as: 
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4.33

sl
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I b b
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t b
=   (2.33) 

 

For calculation of Asl,1 and Isl,1, the stiffener should be considered as the gross area not only of 

the stiffener itself, but also of the adjacent parts of the plate, with a portion (3 - ψ)/(5 - ψ) of its 

width b1 and 2/(5 - ψ) of its width b2, which lays at the edge with the highest stress. Subsequently, 

in the case of a plate that is fully in compression (ψ = 1.0), the adjacent parts of the plate are equal 

to 0.5b1 and 0.5b2, respectively.  

If the stiffened plate has two longitudinal stiffeners in the compression zone, the same 

procedure for one stiffener may be applied (see Eq.(2.32)), where the elastic critical plate buckling 

stress should be taken as the lowest of the three possible cases, i.e. with b1 = b1*, b1 = b2*, and 

b1 = B* (see Fig. 2.24). 

First, it is assumed that one of the stiffeners is a rigid support, while the other buckles, which 

corresponds to the first two cases: case 1 (see Fig. 2.24a) with Asl,I and Isl,I and case 2 (see Fig. 

2.24b) with Asl,II and Isl,II. Subsequently, a simultaneous buckling of the two stiffeners is accounted 

for by considering a single lumped stiffener (case 3, see Fig. 2.24c). The substitution of two 

stiffeners into a lumped one is done in two steps. First, its area and its second moment of area 

should be replaced by the sum of that for the individual stiffeners (i.e. Asl,III = Asl,I + Asl,II and 

Isl,III = Isl,I + Isl,II). Second, the position of the lumped stiffener needs to be determined as the 

resultant of the respective forces in the individual stiffeners. In the case of a uniform axial 

compression, the position of the lumped stiffener lays in the middle between two stiffeners.  
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a)  b) c) 

Fig. 2.24: Plates with two stiffeners in compression (EN 1993-1-5 [11]) 

 

Finally, for plates with three or more stiffeners, which standard treats as equivalent orthotropic 

plates, the elastic critical plate buckling stress is calculated by Eq.(2.6), where the elastic buckling 

coefficient kσ,p is obtained using Eq.(2.34). 
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Therefore, the coefficient kσ,p depends on: 

- the aspect ratio α: see Eq.(2.1); 

- the ratio between the flexural stiffness of the entire stiffened plate and that of sheet 

plate alone: γ = Isl/Ip, (Ip = bt3/12(1-ν2); 

- the ratio between the gross area of the stiffeners (i.e. the sum of all stiffeners, without 

adjacent plates) and that of the sheet plate alone: δ = ΣAst/Ap, (Ap = bt); 

- and the ratio between the larger and the smaller edge stress: ψ = σ2/σ1, (ψ = 1.0 for 

uniform compression). 

 

▪ Column-type buckling: 

The column-type behavior is based on a simple assumption that the longitudinal (unloaded) 

edges are not supported so that the critical stress of a plate corresponds to the buckling stress of 

a column. Since the stiffeners are commonly equivalent in practice, the determination of the 

critical stress can be carried out on a representative part, consisting of the stiffener alone and an 

adjacent width of the plate closest to the most compressed edge. The considered column is 

assumed to be compressed on both edges, thus having the buckling length equal to the plate 

length a. 

The reduction factor χc for this instability mode is determined by Eq.(2.35), using the buckling 

curves, provided in clause 6.3.1.2 (1) of EN 1993-1-1 [76] that present the reduction factor as a 

function of the relative slenderness parameter, defined by Eq.(2.36) as: 

 2 2
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where Asl,1,eff and Asl,1 are respectively the effective and the gross cross-sectional area of the 

stiffener with the adjacent parts of the plate sheet, determined in accordance with Fig. 2.22 for 

the plate-type buckling, whereas σcr,c is the elastic critical column buckling stress, determined by 

Eq.(2.37) as the critical stress of the stiffener (σcr,sl) closest to the panel edge with the highest 

compressive stress: 
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where Asl,1 and Isl,1 are respectively the gross area and the second moment of area of the 

stiffener about the axis parallel to the plane of the adjacent plating. 

Finally, in Eq.(2.35), αe presents the equivalent imperfection factor that is obtained by 

Eq.(2.38) as: 
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where α is the imperfection factor (adopted as α = 0.34 for closed cross-section stiffeners and 

α = 0.49 for open cross-section stiffeners), and e is the larger of distances e1 (between the centre 

of gravity of the stiffener alone Gst and the entire stiffener with the adjacent plate Gsl) and e2 

(between the adjacent plating alone Gp and the entire stiffener with the adjacent plate Gsl), 

according to Fig. 2.25. 

 
Fig. 2.25: Definition of distances e1 and e2 

 

Finally, once the effective area Aeff is determined, the design compressive resistance, NRd, is 

calculated according to Eq.(2.39), where γM0 is the partial factor for cross-section checks defined 

by standard (recommended value is γM0 = 1.0). 
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2.5.1.2 Unstiffened curved panels 

As discussed in 2.4.1, several authors proposed the design rules for the assessment of the 

ultimate resistance for the unstiffened curved panels under axial compression. In Table 2.4, the 

design procedures available in the literature are summarized, including the rules prescribed by the 

design standards. 
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Table 2.4: Available design procedures for unstiffened curved panels under compression 
 

Author Ref. Year Range of validity 

Tran [8] 2012 Z ≤ 100; α = 1, simply-supported 

Tran et al. [75] 2012 Z ≤ 100; α = 1, simply-supported 

Tran et al. [77] 2014b 0.01 ≤ t/b ≤ 0.04; 0.6 ≤ α ≤ 1.6; 0 ≤ Z ≤ 26 

Martins et al. [78] 2014 Z ≤ 100; simply-supported 

Kim et al. [80] 2014 5°≤ β ≤ 30°, simply-supported 

Park et al. [16] 2018 1.0 ≤ α ≤ 5.0, 5°≤ β ≤ 45°simply-supported 

DNV-RP-C202 [13] 2017 simply-supported 

DNVGL-0128 [14] 2018 R/t ≤ 2500; simply-supported 

ABS [15] 2018 E/9fy ≤ R/t ≤ 500; simply-supported 

 

▪ Tran (2012): 

The approach provides an expression, Eq.(2.40), for the reduction factor , in a similar format 

as the procedure given in EN 1993-1-6, which is then multiplied by the plastic resistance of the 

panel (Npl = btfy), giving its ultimate strength.  
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where �̅�0 is the squash limit relative slenderness (i.e. the initial plateau length), αZ is the elastic 

imperfection reduction, βZ is the plastic range factor, η is an interaction exponent (η = 1.0), and 

�̅�𝑝 is the slenderness limiting the elastic-plastic domain of the response of cylindrically curved 

panels. The relative slenderness parameter �̅� is obtained using the same general expression as for 

the flat plates (see Eq.(2.23)), where the critical stress σcr is determined by Eq.(2.6), with the elastic 

buckling coefficient, kσ,Z, calculated using Stowell’s expression (see Eq.(2.9)). 
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▪ Tran et al. (2012): 

This design approach is based on the procedure given in EN 1993-1-5 (i.e. Ayrton-Perry 

methodology), and similar to the previous method, the expression (2.47) defines the reduction 

factor  applied to the plastic resistance Npl. 
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where αZ is the elastic imperfection reduction factor, obtained as a function of curvature Z 

according to Table 2.5. 
 

Table 2.5: Definition of αZ (Tran et al. [75]) 
 

Z 0 10 20 30 ≥40 

αZ 0.28 0.38 0.33 0.21 0.13 

 

The relative slenderness parameter �̅� is obtained using respectively Eq.(2.23), Eq.(2.6) and 

Eq.(2.9), as explained in the previous method by the same author. 

 

▪ Tran et al. (2014b): 

This methodology provides Eq.(2.50) for the reduction factor  that is applied to the plastic 

resistance Npl. 
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where the aspect ratio and the curvature are defined by Eq.(2.1) and Eq.(2.2), respectively. 

 

▪ Martins et al. (2014): 

The design rules are divided into two groups since the authors initially derived expressions for 

short curved panels only (α ≤ 1.0), which was subsequently extended to account for long panels 

(α > 1.0). Although the proposed rules allow also for pure in-plane bending (ψ = -1), here are 

presented only those for the uniform axial compression (ψ = 1), relevant for this thesis.  
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i) Short curved panels (α ≤ 1.0): 

The methodology is based on EN 1993–1-5 (i.e. effective width concept) and it requires 

determination of the reduction factor , by Eq.(2.51), which is multiplied by the plastic resistance 

Npl to define the ultimate resistance.  
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where αZ, cZ and SZ are numerically calibrated parameters, defined in Table 2.6, where 

intermediate values are obtained by linear interpolation. 
 

Table 2.6: Definition of αZ, cZ and SZ (Martins et al. [78]) 
 

 αz cz Sz 

Z = 0 1 1 0 

Z = 10 1 1.29 0.06 

Z = 23 1 1.15 -0.04 

Z = 100 0.545 1.7 -0.04 

 

The relative slenderness parameter �̅� is obtained using Eq.(2.23), with the critical stress σcr 

determined by Eq.(2.6), where the elastic buckling coefficient, kσ,Z, is calculated using one of two 

proposals from the author, Eq.(2.11) or Eq.(2.12). 

ii) Long curved panels (α > 1.0): 

The reduction factor  for long panels (α > 1.0) is obtained by Eq.(2.55), where  is the 

reduction factor for short panels (see Eq.(2.51)), and Clong is a numerically generated correction 

factor in function of Z, with the values equal to 1.0, 0.782 and 0.912, for curvatures Z = 1, Z = 30 

and Z = 70 - 100, respectively (intermediate values are obtained by linear interpolation). 

 long longC =   (2.55) 
 

▪ Kim et al. (2014): 

The reduction factor , which is multiplied by the plastic resistance Npl to obtain the ultimate 

resistance, is given by Eq.(2.56) as: 
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where λβ is double slenderness ratio, which in contrast to the previously presented methods, 

may be obtained independently from the critical stress, using Eq.(2.61) as:  

 yfb

t E
 =   (2.61) 

 

▪ Park et al. (2018): 

The ultimate resistance is again obtained by multiplying the reduction factor and the plastic 

resistance, NRk = (Afy), where the expression for the reduction factor , is given by Eq.(2.62) as: 
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with a modified slenderness parameter λβ,Z that accounts for the ratio of the buckling load of 

a flat plate, and that of a curved plate, given by Eq.(2.63) as: 
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where kσ,pl is the elastic buckling coefficient of a flat plate (kσ,pl = 4.0 for uniform compression), 

and kσ,Z is the elastic buckling coefficient of a curved plate. It is important to stress that authors 

suggest the use of linear buckling analysis (LBA) for the determination of kσ,Z, not providing any 

specific expression. Therefore, in this thesis, the expression by Martins (see Eq.(2.11)) is to be 

considered.  
 

▪ DNV-RP-C202 (2017): 

According to this standard, the reduction factor  is obtained using Eq.(2.64), which is 

multiplied by the plastic resistance Npl to obtain the ultimate resistance of simply-supported 

curved panels.  
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The relative slenderness parameter �̅� is obtained using Eq.(2.23), with the critical stress σcr 

determined by Eq.(2.6), where the elastic buckling coefficient, kσ,Z, is calculated according to 

Eq.(2.65) as:  
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where Zb is Batdorf’s curvature parameter, defined by Eq.(2.3). 

 

▪ DNVGL-CG-0128 (2018): 

The standard provides specifications to assess the reduction factor , defined by Eq.(2.66), 

which is multiplied by the plastic resistance Npl to obtain the ultimate resistance of simply-

supported curved panels.  
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The relative slenderness parameter �̅� is obtained by Eq.(2.23), with the critical stress σcr 

determined from Eq.(2.6), where the elastic buckling coefficient, kσ,Z, is calculated according to 

Eq.(2.67) as: 
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▪ ABS (2018): 

According to this standard, the ultimate load is obtained by multiplication of the reduced critical 

stress, σcr,R, by the corresponding area of the cross-section, NRk = σcr,Rbt. Namely, the critical load 

of a perfect curved panel, defined by Eq.(2.6), is reduced by means of knockdown factors to 

account for the influence of the initial imperfection, leading to Eq.(2.68) as: 
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The critical load of a perfect curved panel, σcr, is defined by Eq.(2.6), where the elastic buckling 

coefficient kσ,Z, is obtained by Eq.(2.73) as: 
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2.5.1.3 Stiffened curved panels 

The design rules for the assessment of the ultimate resistance for the stiffened curved panels 

under axial compression are discussed in 2.4.1 and summarized in Table 2.7, where additionally 

the rules prescribed by the design standards are presented. 
 

Table 2.7: Available design procedures for stiffened curved panels under compression 
 

Author Ref. Year Range of validity 

Tran  [8] 2012 Zloc ≤ 100; simply-supported 

Tran et al.  [59] 2014a α ≤ 1.25; simply-supported 

Tran et al.  [77] 2014b 0.67 ≤ α ≤ 1.5; 0 ≤ 1/R ≤ 0.1; 5 ≤ nst ≤ 20 

Seo et al. [82] 2016 0°≤ β ≤ 45°, simply-supported; T-stiffeners 

OUTBURST [85] 2019 Zloc ≤ 100; simply-supported 

DNV-RP-C202 [13] 2017 simply-supported 

ABS [15] 2018 E/9fy ≤ R/t ≤ 500; simply-supported 

 
 

▪ Tran (2012): 

The proposed methodology is based on the procedure available in EN 1993-1-5 for 

longitudinally stiffened flat plates, presented in 2.5.1.1. Hence, the ultimate resistance is obtained 

by multiplying the effective area with the yield strength (i.e. NRk = Aefffy). To obtain the effective 

area, the same three steps as for the flat plates have to be undertaken:  

I. Determination of the local buckling reduction factor loc for each curved subpanel of width 

bloc, in order to obtain Ac,eff,loc (Eq.(2.28)), using the design rules for unstiffened curved panels 
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developed by the same author (Eq.(2.40) or Eq.(2.47)). Fig. 2.26 illustrates the effective area Ac,eff,loc 

accounting for local buckling. 

 

II. Determination of the global buckling of the entire stiffened element, which requires the 

calculation of three reduction factors: i)  for plate-type buckling; ii) χc for column-type buckling 

and iii) c global reduction factor obtained by interpolation of a column-type and plate-type 

buckling. 

 

Fig. 2.26: Effective area of a stiffened curved panel under uniform compression 

 

▪ Plate-type buckling: 

To determine the reduction factor  due to plate-type buckling, the author combined the rules 

for the plate-type behavior of a flat stiffened plate, prescribed by EN 1993-1-5, with the ones for 

unstiffened curved panels, presented in 2.5.1.2. Namely, the relative slenderness �̅� is obtained as 

a function of elastic critical stress for plate-type behavior, by Eq.(2.31) calculated using the 

Stowell’s expression (Eq.(2.9)), where Z corresponds to the global curvature, and kσ,p is calculated 

for a corresponding flat plate, assuming the same width b and the distances between the stiffeners, 

bloc. Subsequently, the reduction factor  is determined using one of two procedures, proposed 

by the authors for the unstiffened panels, Eq.(2.40) or Eq.(2.47), substituting the global curvature 

Z with the corresponding local curvature Zloc in each intermediate step.  

▪ Column-type buckling: 

The reduction factor due to column-type behavior χc is obtained according to the rules for flat 

plates presented, assuming the buckling curve C (α = 0.49), whereas the geometrical properties 

(i.e. the area and inertia) required to obtain critical column stress are evaluated for the entire gross 

cross-section of the panel (shell and stiffeners) and not on a single strut model. This means that 

in equations Eq.(2.36) - Eq.(2.38), the values Asl,1 and Isl,1 should be substituted by Asl and Isl, 

respectively.  

▪ Interpolation between plate-type and column-type buckling: 

To determine the final reduction factor c that accounts for the interaction between two 

instability phenomena, the authors proposed a new expression, given by Eq.(2.74) as:  
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where the interpolation parameter ξ may be determined using the same expression (2.30), 

prescribed by EN 1993-1-5; however, ξ may be lower than 0. 

 

III. Determination of the effective area of the stiffened curved plate, Ac,eff, is done according 

to EN 1993-1-5, using Eq.(2.27). 

 
 

▪ Tran et al. (2014a): 

In this simplified design methodology, the authors neglected the plate-type buckling of a 

stiffened panel, which automatically excludes also the interpolation between the two buckling 

phenomena. Thus, for the assessment of the ultimate resistance, the following steps need to be 

undertaken (similar to the procedure from EN 1993-1-5): 

I. Determination of the local buckling reduction factor loc for each curved subpanel of width 

bloc, in order to obtain Ac,eff,loc (Eq.(2.28)), using the design rules prescribed by EN 1993-1-5, 

neglecting the local curvature (see Eq.(2.24) - Eq.(2.26)).  

 

II. Determination of the reduction factor χc for column-type buckling according to 

Eq.(2.35)-Eq.(2.38), substituting the geometrical properties of a single strut model (Asl,1 and Isl,1) 

by gross cross-section of the entire panel (Asl and Isl), and assuming the buckling curve C 

(α = 0.49). It is necessary to stress that for determination of e in Eq.(2.38), the distances e1 is the 

distance between the centre of gravity of all stiffeners alone Gst (without panel sheet) and the 

entire stiffened panel Gsl, whereas the distance e2 is the distance between the curved panel sheet 

alone Gp and the entire stiffened panel Gsl). 

 

III. Determination of the ultimate (characteristic) resistance NRk by Eq.(2.22), where the 

effective area of the curved stiffened panels is obtained by Eq.(2.27), with c = χc. 

 
 

▪ Tran et al. (2014b): 

The authors proposed a simplified expression (2.75), which directly returns the ultimate 

resistance NRk [in MN], valid within the ranges defined in Table 2.7. 

 

 1 2 3 4 5 617.09 0.47 3.58 4.24 7.32 3.87 4.83RkN X X X X X X= − + + + − +  

(2.75)  7 2 4 2 5 2 6 2 7 3 42.33 1.65 1.72 1.71 0.89 1.33X X X X X X X X X X X+ + − + + +  

 3 5 4 5 4 6 5 6 6 70.76 1.73 0.81 1.18 0.94X X X X X X X X X X− − + − +  

 

where the required parameters Xi are given in Table 2.8, with the corresponding ranges of 

validity of geometric parameters defined in Fig. 2.1. 
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Table 2.8: Definition of parameters Xi  
 

Parameter Xi Range of validity [m] 

X1 = a - 5 4 ≤ a ≤ 6 

X2 = b - 5 4 ≤ b ≤ 6 

X3 = 200t - 3 0.01 ≤ t ≤ 0.02 

X4 = 20/R - 1 0 ≤ 1/R ≤ 0.1 

X5 = 4bloc – 2.2 0.3 ≤ bloc ≤ 0.8 

X6 = 20hst – 3 0.1 ≤ hst ≤ 0.2 

X7 = 200tst – 3 0.01 ≤ tst ≤ 0.02 

 

▪ Seo et al. (2016): 

The ultimate resistance is obtained by multiplying the reduction factor and the plastic 

resistance, NRk = (Afy), where the expression for the reduction factor , is given by Eq.(2.76) as: 
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with a modified relative slenderness parameter λβ,Z that accounts for the ratio of the buckling 

load of a flat plate, and that of a curved plate, given by Eq.(2.77) as: 
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where coefficient CB is adopted from the study on elastic buckling behavior of unstiffened 

curved panels by Kim et al. [80], defined by Eq.(2.78) as:  
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The double slenderness ratio λβ is defined by Eq.(2.61). 

 

▪ OUTBURST (2019): 

The proposed methodology is based on a combination of two design procedures [85]: i) the 

one provided by EN 1993-1-5 for longitudinally stiffened flat plates, presented in 2.5.1.1; and ii) 

the one prescribed in DNV-RP-C202 for stiffened panels, addressed in the following paragraphs. 

In fact, the main three steps (i.e. local buckling, global buckling, and effective area calculation) 
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are adopted from EN 1993-1-5, whereas the procedure for the elastic critical plate-type buckling 

is taken from DNV-RP-C202. Hence, to obtain the ultimate resistance, it is necessary to 

determine the effective area with the yield strength (i.e. NRk = Aefffy), using the same three steps 

as for the flat plates:  

I. Determination of the local buckling reduction factor loc for each curved subpanel of width 

bloc, in order to obtain Ac,eff,loc (see Eq.(2.28) and Fig. 2.26), using the design rules for unstiffened 

curved panels developed by Martins et al. [78] (see Eq.(2.51)). 
 

II. Determination of the global buckling of the entire stiffened element, by calculation of three 

reduction factors: i)  for shell-type buckling; ii) χc for column-type buckling and iii) c global 

reduction factor obtained by interpolation of a column-type and shell-type buckling. 

 

▪ Shell-type buckling: 

To determine the reduction factor  due to shell-type buckling, the author combined the rules 

for the plate-type behavior of a flat stiffened plate, given by EN 1993-1-5, with the ones for 

unstiffened curved panels, proposed by Martins et al. [78].  

The relative slenderness parameter �̅� is obtained using Eq.(2.23) provided that the critical 

stress σcr is equal to the critical shell stress σcr,s, defined for the equivalent orthotropic curved plate 

by Eq.(2.80) in accordance with the expression prescribed in the design standard DNV-RP-C202: 
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where the elastic buckling coefficient, kσ,Za, is calculated by Eq.(2.81)  
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In Eq.(2.83), Isl,1/Ip is the ratio between the second moment of area of the gross cross-section 

of one longitudinal stiffener with the adjacent parts of the plate and that of the plate between 

stiffeners, disregarding curvature (i.e. Ip = bloct
3/12(1-ν2)), while Ast/Ap is the ratio between the 

gross area of one stiffeners (i.e. Ast = hsttst) and that of the sheet plate between the stiffener 

alone(i.e. Ap = bloct). 

Subsequently, the reduction factor  is determined from equations for the unstiffened panels 

proposed by Martins et al. [78] (see Eq.(2.51)), with the global curvature Z, defined by Eq.(2.2). 
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▪ Column-type buckling: 

The reduction factor due to column-type behavior χc is obtained according to the proposal by 

Tran [8]. Namely, in Eq.(2.36) - Eq.(2.38), the values Asl,1 and Isl,1 (i.e. the geometrical properties 

of a single column-strut) should be respectively substituted by Asl and Isl (i.e. the gross properties 

of the whole cross-section).  

In specific, in Eq.(2.36), Ac,eff,loc is the effective cross-sectional area of the whole cross-section 

with due allowance for local curved plate buckling (see Fig. 2.26), whereas, in Eq.(2.38), e is the 

largest distance from the respective centroids of the plating and the stiffeners to the neutral axis 

of the whole cross-section.  

 

▪ Interpolation between shell-type and column-type buckling: 

The final reduction factor c for Z < 100 is obtained by interpolation between χc and , 

according to expressions given by EN 1993-1-5 (see Eq.(2.29) and Eq.(2.30)), whereas for curved 

panels with Z > 100, the shell-type buckling is conservatively neglected (i.e. c = χc).  

 

III. Determination of the effective area of the stiffened curved plate, Ac,eff, is done according 

to EN 1993-1-5, using Eq.(2.27). 

 

▪ DNV-RP-C202 (2017): 

To obtain the ultimate resistance of a simply supported stiffened curved panel, the standard 

prescribes design rules similar to the ones for the unstiffened curved panel. Therefore, the 

reduction factor , which is a function of the relative slenderness parameter �̅�, is obtained using 

the same Eq.(2.64), which is applied to the plastic resistance.  

The relative slenderness parameter �̅� is obtained using Eq.(2.23), provided that the critical 

stress σcr is defined by Eq.(2.84), as: 
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where the elastic buckling coefficient, kσ,Za, is calculated by Eq.(2.85) 
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with Za defined by Eq.(2.82) and γeff obtained by Eq.(2.86). 
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In Eq.(2.86), Isl,1,eff is the second moment of area of longitudinal stiffener including effective 

shell width bloc,eff; Ip is the second moment of area of the plate between stiffeners (i.e. Ip = bloct
3/12(1-
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ν2)); Ast is the gross area of one stiffener (i.e. Ast = hsttst), and Ap,eff is the effective area of sheet plate 

between the stiffener alone(i.e. Ap,eff = bloc,eff t).  

To obtain the effective shell width (bloc,eff), it is necessary to calculate first the reduction factor 

loc that accounts for the local buckling of subpanels (see Fig. 2.26), using expressions (2.64) and 

(2.65), presented among the rules for the unstiffened panels.  

 

▪ ABS (2018): 

The ultimate (characteristic) load NRk for a stiffened panel is obtained by Eq.(2.87). 
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Therefore, the ultimate load depends on: 

- the gross cross-section area: A = bt + nsthsttst (see Fig. 2.1); 

- the gross area of one stiffener including shell width bloc: Asl,1 = bloct + hsttst; 

- the area of longitudinal stiffener including modified effective shell width bloc,eff,m: 

Asl,1,eff,m = bloc,eff,m t + hsttst; 

- the reduced critical stress for the stiffened curved panel: σcr,Rs 

 

The modified effective shell width, bloc,eff,m, is obtained by Eq.(2.88) as:  
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where λs,m is the modified relative slenderness parameter, defined by Eq.(2.89). 
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In this equation, σcr,R,0 is the elastic buckling stress for imperfect curved panel between adjacent 

stringer stiffeners, defined by Eq.(2.69)-Eq.(2.72), whereas the reduced critical stress for the 

stiffened curved panel, σcr,Rs, defined by Eq.(2.90) as: 

 

, ,0 , ,0

,

, ,0

, ,0

0.6

1 0.24 0.6

cr Rs cr Rs y

cr Rs y

y cr Rs y

cr Rs

f

f
f f

 









=  
−  

  

if

if
  (2.90) 

 

with elastic compressive buckling stress of imperfect stiffened shell, σcr,Rs,0, obtained as a sum 

of the elastic critical stress of column (σcr,c) and the elastic critical stress of shell (σcr,s). 

 , ,0 , ,cr Rs cr c cr s  = +   (2.91) 
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In these equations, Ast/Ap is the ratio between the gross area of one stiffeners (i.e. Ast = hsttst) 

and that of the sheet plate between the stiffener alone(i.e. Ap = bloct), whereas Asl,1,eff and Isl,1,eff are 

respectively the area and the second moment of area of stiffener including associated reduced 

effective shell plate width bloc,eff, obtained by Eq.(2.94) as: 
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where λs is the reduced relative slenderness parameter, defined by Eq.(2.95). 
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with σcr,R,0 being the elastic buckling stress for imperfect curved panel between adjacent stringer 

stiffeners, defined by Eq.(2.69)-Eq.(2.72). 

2.5.2 Design rules for panels in shear 

2.5.2.1 Flat plates – EN 1993-1-5:2006 

Numerous design models for the prediction of the ultimate shear resistance of a flat plate (i.e. 

a plate as a web of a girder) are thoroughly summarized by Dubas & Gehri [128]. Owing to the 

lack of a consistent method, applicable for both unstiffened and longitudinally stiffened webs 

and for any aspect ratio, Höglund [130] in 1981 proposed the rotated stress field model, which was 

in this form integrated into the European standard EN 1993-1-5. The model is adapted mainly 

to assess the shear resistance of I-girders, thus, the ultimate shear resistance, Vb,Rd, consists of 

two components: i) contribution from the web (Vbw,Rd) and ii) contribution from flanges (Vbf,Rd). 

However, as the objective is to present a more general solution for the assessment of the shear 

resistance of an isolated simply supported flat plate, which may be compared with the shear 

resistance of an isolated simply supported curved panel studied in this thesis, the contribution 

from the flanges is not considered. Therefore, the ultimate resistance of a flat plate is determined 

according to Eq.(2.96). 
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where b and t correspond respectively to the width (i.e. web height in I-girders) and thickness 

of a flat plate, γM1 is the partial factor for stability checks, whereas χw is the reduction factor for 
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shear buckling. Depending on the axial and flexural stiffness of the surrounding stiffeners, the 

standard distinguishes non-rigid and rigid end posts, thus offering two distinct solutions for the 

determination of the reduction factor, given by Eq.(2.97) and Eq.(2.98), respectively.  
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In these expressions, η is a parameter attributed to strain hardening, defined by the National 

Annexes depending on steel grade and the field of application (η = 1.0 - 1.2), and �̅�w is the relative 

slenderness parameter, defined by Eq.(2.99) as: 
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In the case of the longitudinally stiffened plates, the slenderness has to be calculated for the 

entire stiffened plate, with corresponding elastic buckling coefficient kτ and for the entire width 

b, but should not be lower than the slenderness of each subpanel, considered as an unstiffened 

panel with the appropriated kτ,i and local width bloc,i, see Eq.(2.100). 
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Finally, in Annex A.3 of EN 1993-1-5, the expressions for the hand calculation of the shear 

buckling coefficient kτ are provided, as follows: 
 

i) Unstiffened plate elements: 
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ii) Stiffened plate elements: 

▪ Panels with 1 or 2 longitudinal stiffeners and α < 3.0: 

▪  3
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▪ Panels with 1 or 2 longitudinal stiffeners and α ≥ 3.0, as well as the panels with more than 

two longitudinal stiffeners:  
 

▪  
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Where Isl is the second moment of area of the longitudinal stiffener determined around the z-

z axis with an effective plate width equal to 15εt on each side of the stiffener but not larger than 

a half of the corresponding width bloc between two stiffeners (see Fig. 2.27). For plates with two 

or more longitudinal stiffeners, Isl is obtained simply as the sum of all individual stiffeners 

regardless of being equally spaced or not. 

 

  

a) b) 

Fig. 2.27: Effective cross-section of stiffeners 
 

2.5.2.2 Unstiffened curved panels 

The design rules for the assessment of the ultimate resistance of the unstiffened curved panels 

under shear are discussed in 2.4.2. In Table 2.9, the design procedures available in the literature 

are summarized, including the rules provided by the design standards. 
 

Table 2.9: Available design procedures for unstiffened curved panels under shear 
 

Author Ref. Year Range of validity 

Domb & Leigh [41] 2002 Z ≤ 200; α ≥ 4, simply-supported 

Machaly et al. [126] 2010 0.5 ≤ α ≤ 1.0; 2 ≤ Z ≤ 10, simply-supported 

DNV-RP-C202 [13] 2017 simply-supported 

DNVGL-0128 [14] 2018 R/t ≤ 2500; simply-supported 

 
 

▪ Domb & Leigh (2002): 

To assess the ultimate resistance of a curved panel, the methodology from EN 1993-1-5 

should be applied (i.e. Eq.(2.97) and Eq.(2.99)), where for the determination of the shear buckling 
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coefficient kτ, the expression (2.17) is to be used, developed by the authors to account for the 

curvature Z and initial imperfections.  

 

▪ Machaly et al. (2010): 

The authors proposed a formula that returns the ultimate shear load for a horizontally curved 

I-girder web panel, given by Eq.(2.105) as: 

▪  0.58 (0.7 0.3)
3
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f
V at C= +   (2.105) 

where the coefficient C is the ratio between the ultimate shear load and the shear yield 

strength, and depending on the a/t ratio may be obtained respectively by one of three branches 

in Eq.(2.106) that represent one of three governing failure mechanisms (i.e. yielding, inelastic 

buckling or elastic buckling), where the shear buckling coefficient kτ is determined by Eq.(2.18) 

proposed by the authors. 
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 (2.106) 

 

▪ DNV-RP-C202 (2017): 

Similar to the design methodology used in EN 1993-1-5, to obtain the ultimate shear 

resistance of a simply supported curved panel it is necessary to multiply the shear reduction factor 

χw with the plastic shear resistance, according to Eq.(2.96). The reduction factor χw is obtained 

using Eq.(2.107) as:  
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The relative slenderness parameter �̅�w is obtained using Eq.(2.99), with the critical stress τcr 

determined by Eq.(2.15), where the buckling coefficient, kτ, is calculated from Eq.(2.108) as:  
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where Zb is Batdorf’s curvature parameter, defined by Eq.(2.3). 
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▪ DNVGL-CG-0128 (2018): 

The standard provides specifications to assess the shear reduction factor χw, defined by 

Eq.(2.109), which is applied to the plastic shear resistance to obtain the ultimate resistance of 

simply supported curved panels.  

 

2

1.0 0.4

1.274 0.686 0.4 1.2

0.2
1.2

w

w w w

w

w



  










= −  






if

if

if

 
 (2.109) 

 

The relative slenderness parameter �̅�w is obtained by Eq.(2.99), with the critical stress τcr 

determined from Eq.(2.15), where the elastic buckling coefficient, kτ, is calculated according to 

Eq.(2.110) as:  
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2.5.2.3 Stiffened curved panels 

To the best of author’s knowledge, the only available design rules for the assessment of the 

ultimate shear resistance for the longitudinally stiffened curved panels under shear are reported 

in the design standard DNV-RP-C202 [13]. 

 

▪ DNV-RP-C202 (2017): 

According to the standard, if a stiffened curved panel satisfies the criterion given by 

Eq.(2.111), it may be considered as lightly stiffened, which means that the influence of the stiffeners 

may be neglected and the design rules presented in 2.5.2.2 for the unstiffened panels should be 

used.  

 3
b R

t t
   (2.111) 

 

If this condition is not satisfied, the panel may be considered as stiffened, and the following 

set of rules needs to be applied. Namely, to determine the ultimate resistance of a simply 

supported stiffened curved panel, the standard prescribes an expression to assess the shear 

reduction factor χw, given by Eq.(2.107), which is applied to the plastic resistance. 

The reduction factor χw is a function of the relative slenderness parameter �̅�w, obtained by 

Eq.(2.99), provided that the critical stress τcr is defined by Eq.(2.112), as: 
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where the elastic buckling coefficient, kτa, is calculated by Eq.(2.113) 
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with Za defined by Eq.(2.82) and γw,eff obtained by Eq.(2.114) 
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where, Isl,1,eff is the second moment of area of longitudinal stiffener including effective shell 

width bloc,eff; Ip is the second moment of area of the plate between stiffeners (i.e. Ip = bloct
3/12(1-ν2)).  

Finally, to determine the effective shell width (bloc,eff), it is necessary to calculate first the 

reduction factor χw,loc that accounts for the local shear buckling of subpanels, using Eq.(2.107) and 

Eq.(2.108) from the previous section, among the rules for the unstiffened panels.  

2.5.3 Design rules for trapezoidal box-girder bridge cross-section 

As stated before, one of the main objectives of this PhD thesis is to develop a moment-shear 

(M-V) interaction resistance model for cross-section safety verification of a box-girder bridge 

deck near the intermediate support, with a cylindrically curved panel located in the lower flange. 

Since such model is still not available in the literature for these relatively new bridge decks, the 

strategy is to extend the existing (M-V) interaction resistance model prescribed by EN 1993-1-5, 

applicable for cross-section safety checks of trapezoidal box-girder bridge decks, with a flat 

bottom flange. Therefore, it is necessary first, to introduce the design rules for the M-V safety 

verification of a trapezoidal box-girder, which is briefly presented in this section. 

In general, when subjected to bending moment MEd and shear VEd, the following cross-section 

verifications need to be carried out: 

I. Cross-section bending resistance – Mb,Rd 

II. Cross-section shear resistance – Vbw,Rd 

III. Cross-section M-V interaction resistance (if necessary) 

 

It is necessary to emphasize that besides these safety checks, in the case of a real bridge design, 

several additional verifications need to be performed depending on the load case and considered 

design situation (e.g. patch load verification, interaction between patch loading and bending 

moment, torsion, etc.). However, the scope of this work is strictly dedicated only to ultimate limit 

state (ULS) M-V interaction verification under permanent design situation, i.e. normal use under 

traffic load.  
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2.5.3.1 Bending resistance design model 

According to EN 1993-1-1 [76], a box-girders cross-section subjected to bending moment has 

sufficient bending capacity in the ultimate limit state if the criterion given by Eq.(2.115) is 

satisfied: 
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where MEd is the design bending moment acting on the cross-section, and Mc,Rd is the design 

bending moment resistance, which depending on the cross-section class may be obtained by 

Eq.(2.116). 
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for class 1 and 2 cross-section 

(2.116) for class 3 cross-section 

for class 4 cross-section 

 

where Wpl and Wel, are respectively the plastic and elastic sectional modulus, and Wel,eff is the 

section modulus considering the effective area of the section, fy is the yield strength, and γM0 is 

the partial factor for cross-section checks defined by standard (recommended value is γM0 = 1.0).  

Since the box-girder bridge decks are commonly class 4 cross-sections, being built up from 

very slender stiffened plates, it is required to determine effective section modulus Wel,eff, based on 

the effective width method that is applied to all parts of the cross-section subject to compressive 

stresses. Hence, the determination of the effective cross-section properties is divided into two 

main steps: i) effective cross-section of the stiffened bottom flange and ii) effective cross-section 

of the stiffened web. 
 

i) Effective cross-section of the stiffened bottom flange: 

Since the stiffened bottom flange is under pure compression at the intermediate support, the 

design rules for a simply supported internal plate element are used, presented in 2.5.1.1. It is 

important to remind that prior to the application of these rules; the thickness should be reduced 

to account for the shear lag effect. In this work, the reduction due to shear lag is neglected, 

however, for a more complete description of this procedure, the reader is invited to further 

investigate clause 4.4(3) in EN 1993-1-5. 

 

ii) Effective cross-section of the stiffened web: 

In contrast to the stiffened bottom flange, the web of the box-girder cross-section is under 

bending, with a linear distribution of the axial stresses along the height (upper part in tension), 

meaning that buckling may occur only in its compressed bottom part.  
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Therefore, the first step is to determine the stress distribution in the web, which depends on 

the location of the cenrte of gravity of the cross-section consisting of: i) gross area of the top 

flanges (in tension); ii) gross area of the web and iii) effective area of the bottom (compressed) 

flange calculated in the previous step.  

Once the stress distribution, the web depth and the position of the stiffeners are defined, the 

stress parameter ψ may be determined, which presents the ratio of stresses at both edges of the 

plate (or sub-plate) with the maximum compression stress being in the denominator (i.e. 

ψ = σ/σc,max). Fig. 2.28 illustrates the most relevant notations in an example of 2-stiffened web 

plate, whereas Table 2.10 summarizes the expressions required for the determination of the 

effective properties. 

Based on Fig. 2.28 and Table 2.10, it becomes possible to carry on with the calculation of the 

effective properties of the main web, Aeff, using Eq.(2.27), based on the same two steps that were 

required for the bottom stiffened panel: i) local buckling and ii) global buckling. 
 

 
Fig. 2.28: Geometry and notations of a stiffened web plate in bending 

 

Table 2.10: Definition of the longitudinal stiffeners – gross and effective area 
 

 Gross area width Effective area width Condition for ψi 
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I. Determination of the local buckling reduction factor loc for each subpanel, using the design 

rules for unstiffened plate elements (Eq.(2.24) and Eq.(2.25)), based on the relative slenderness 

parameter given by Eq.(2.26). However, due to a stress gradient (i.e. ψ ≠ 1.0), the elastic buckling 

coefficient is no longer equal to kσ,pl = 4.0 as it was the case with the uniformly compressed 

bottom flange. Depending on the previously calculated stress ratio ψ in Table 2.10, the elastic 

buckling coefficient for internal compressed elements is determined by Eq.(2.117) as: 
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 (2.117) 

 

For the stiffeners, being the outstand elements in uniform compression (ψ = 1.0), the elastic 

bucking coefficient is equal to kσ,pl = 0.43. 

II.  Determination of the global buckling of the entire stiffened web, which requires the 

calculation of three reduction factors: 

▪ Reduction factor  for plate-type buckling  

▪ Reduction factor χc for column-type buckling  

▪ Final global reduction factor c  

All three steps are in detail presented in 2.5.1.1. It is necessary to highlight that the elastic 

critical stress for column-type buckling σcr,c is determined only for the stiffener closest to the 

panel edge with the highest compressive stress, using Eq.(2.37). In addition, all the required gross 

geometrical properties of stiffeners (Asl,1 and Isl,1), as well as the effective properties (Asl,1,eff), are 

determined based on Fig. 2.28 and Table 2.10. 

Finally, the effective section modulus Wel,eff is calculated based on the gross area of the top 

flange (in tension) and the effective area of the bottom flange and webs. 

2.5.3.2 Shear resistance design model 

According to EN 1993-1-5, a box-girders cross-section subjected to shear force has sufficient 

shear capacity at ULS if the criterion given by Eq.(2.118) is satisfied: 

 3
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where VEd is the design shear force (including shear from torque) acting on the cross-section, 

and Vb,Rd is the design shear resistance, which generally may be determined as the sum of the 

dominant web contribution (Vbw,Rd) and flange contribution (Vbf,Rd), given by Eq.(2.119).  
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where hw and tw, are the total height and the thickness of the web, respectively, γM1 is the partial 

factor for stability checks, and η is modification factor defined by the National Annexes 

depending on steel grade and the field of application (η = 1.0 - 1.2). The design model for the 

determination of the web contribution Vbw,Rd is presented in is 2.5.2.1, where hw and tw correspond 

to b and t, respectively. The flange contribution model (Vbf,Rd) is given in clause 5.4(1) in EN 1993-

1-5, however, it is not considered in this study for the box-girder cross-sections. 

Finally, for the shear resistance verification in the case of box-girders with inclined webs, it is 

necessary to recalculate the vertical shear force VEd to a shear force in the inclined plane of one 

main web (i.e. VEd,1 = VEd/2sinβ, with β being the angle of the inclination). 

2.5.3.3 M-V interaction resistance design model 

The theoretical background of the M-V interaction equation is established on the assumption 

that the shear force acting on a girder is carried only by the web as long as the bending moment 

is less than the bending capacity of flanges alone. However, for larger bending moments, e.g. at 

ULS, a part of the bending moment should be also carried by the web, which consequently 

reduces the shear resistance of the girder. In 2017, Jáger et al. [131] carried out a thorough 

literature review on the existing M-V interaction proposals available in the literature. The majority 

of the studies, among which the most representative ones are those by Gerard & Becker [49] in 

1957, by Rockey [132] in 1971 and by Alina & Moosavi [133] in 2009, dealt with the M-V 

interaction behavior of stiffened webs in I-girders.  

In 1961, Basler [134] proposed the first force-based formulation of the M-V interaction 

equation for unstiffened girder web, given by Eq.(2.120) as: 
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where Mf,Rd is the bending resistance of the cross-section considering the effective area of the 

flanges alone, Mpl,Rd is the plastic moment of resistance of the cross-section regardless of its class, 

Vbw,Rd is the shear buckling resistance of the web panel alone, MEd and VEd are the applied design 

bending moment and shear force. The interaction coefficient is equal to β = 2. 

The model proposed by Basler underwent minor alteration before it was eventually adopted 

by several design standards, such as EN 1993-1-5, the Swedish code K18 [135] and EN 1999-1-

1 [136]. Namely, according to these standards, if the shear utilization ratio of webs is exceeded 

by more than 50% (i.e. VEd/Vbw,Rd > 0.5), the combined effects of bending and shear in the web 

of an I or box girder should satisfy Eq. (2.121) 
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with the interaction coefficient equal to β = 2 in EN 1993-1-5, while in the Swedish code K18 

and EN 1999-1-1 the value of β = 1 was adopted. 
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A slightly modified M-V interaction equation may be found in the Slovak standard STN 73 

1401 [137] and the Czech standard ČSN 73 1401 [138], given by Eq.(2.122)  
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where the main difference is that the equation uses the design effective bending moment 

resistance (Mel,eff,Rd) of the cross-section, instead of the plastic moment capacity (Mpl,Rd) while 

keeping the interaction coefficient equal to β = 2. 

Finally, in the aforementioned study by Jáger et al. [131], a comprehensive parametric study 

was carried out to investigate the M-V interaction behavior of unstiffened girder webs and to 

assess the suitability of the proposed expressions for a wide range of geometrical parameters. It 

was found that the interaction coefficient in Eq.(2.122) leads to conservative results for girders 

with the geometry encountered in bridge applications, and thus the authors proposed a new 

interaction coefficient given by Eq.(2.123) as: 
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In 2018, Jáger et al. [139] carried another numerical study, this time on the M-V interaction 

behavior of the stiffened girder webs, and showed that Eq.(2.122) with the interaction coefficient 

given by Eq.(2.123) may be also applied for the stiffened webs of I-girders in the entire range of 

analyzed parameters (Mf,Rd/Mel,eff,Rd = 0.6–1.0). Finally, the proposal from Jáger et al. [139] is 

adopted in prEN 1993-1-5 [140]. 

2.6 Summary 

In this chapter, an introduction to the cylindrically curved steel panels was made and the most 

relevant geometrical parameters that differentiate these elements from flat plates (e.g. curvature 

Z), were identified.  

Moreover, a comprehensive literature review on cylindrically curved panels was presented, 

highlighting some of the most significant experimental, numerical and analytical works related to 

this topic. Particular attention was given to the studies dealing with the curved panels loaded in 

compression and shear, being dominant loads in case of curved panels used as flanges in bridge 

deck cross-sections, as one of the main objectives of this thesis.  

Due to the lack of adequate design standards, the widespread use of cylindrically curved steel 

panels in innovative bridge applications is hindered, which has recently inspired the research 

community to deepen the knowledge on these structural elements. Numerous authors proved 

that with the introduction of curvature the behavior of curved panels starts to differentiate 

positively from flat plates, providing substantial gains in resistance. Several authors even 

proposed numerically based empirical and semi-empirical expressions for determination of the 

ultimate resistance of isolated curved panels, mainly under uniform compression, which are 

gathered in this chapter, highlighting their limitations and ranges of validity.  
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Despite an increased number of numerical studies, the experimental studies on the curved 

panels under compression are still rather scarce, as identified in this chapter. In addition, the tests 

were carried out merely to show qualitatively the influence of curvature, whereas no analytical 

expression for the assessment of the resistance was provided. Hence, an urgent need for more 

experimental results was emphasized, and, in this regard, one of the main objectives of this thesis 

is to make a major contribution in this area, grasping a more solid insight into the experimental 

behavior of curved panels. 

On the other hand, very few studies on the curved panels under shear have been reported in 

the literature and no clear design method for the assessment of the ultimate shear load was 

developed, at least not for any desired aspect ratio and curvature parameter. Thus, the thesis aims 

to propose a methodology, allowing the computation of the ultimate shear resistance of 

unstiffened simply supported curved panels under shear. 

Finally, in this chapter, the procedures available in EN 1993-1-5 for the determination of the 

ultimate compression and shear resistance for flat plates were also demonstrated, being an 

extreme case of curved panels (i.e. Z = 0) and an important basis for the work developed in the 

thesis. Regarding the rules for the box-girder cross-section, only the procedure for the trapezoidal 

box-girder available in EN 1993-1-5 was presented since no proposal for the cross-section 

containing curved bottom flange is still available. The ultimate objective of this thesis, thus, is to 

fill the main gaps identified in the state-of-the-art and more specifically, to contribute to the 

extension of the existing design standards.  
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   CHAPTER 3 

3. Cylindrically curved panels under pure 
compression 

3.1 Overview 

In this chapter, an experimental study on cylindrically curved steel panels is reported, carried 

out within the research project ULTIMATEPANEL. The study comprises 32 compression tests 

on both stiffened and unstiffened simply supported curved panels, with geometry that may be 

encountered in offshore, aeronautics and bridge applications. The aim of the test results is 

principally to get insight into the buckling behavior of cylindrically curved steel panels under 

compression, being one of the dominant loading conditions in box-girder bridge decks close to 

the intermediate support, where the curved panel is integrated into the lower flange of the cross-

section. Thus, this chapter is fully dedicated to the research targets set in Task 2 of the thesis (see 

section 1.2). 

The experimental program is thematically divided into three sections. In section 3.2, a full 

description of the test setup is provided, specifying the geometry and the material properties of 

the specimens measured prior to the tests, but also the instrumentation used for data acquisition 

during the tests. The most relevant test results are described in detail and discussed in section 3.3 

and based on them, an assessment of the available procedures for determination of the ultimate 

resistance (see section 2.5) is made. Subsequently, using the experimental data, a numerical model 
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is built in section 3.4, which is used to investigate the sensitivity to initial geometric imperfections 

of curved panels. 

3.2 Tests setup 

3.2.1 Geometry of test specimens 

In total, 32 full-scale isolated curved panels are tested under axial compression. The specimens 

are square (α = a/b = 1), with the length and the width equal to a = b = 1500 mm and a constant 

thickness equal to t = 4 mm. Four different radii are considered (R = 2.5 m, R = 5.0 m, 

R = 10.0 m and R = 20.0 m), comprising four groups of panels, R2.5, R5, R10, and R20, as 

shown in Fig. 3.1.  

 

 

Fig. 3.1: Four groups of specimens based on radius R – R20, R10, R5 and R2.5 
 

Based on the number of the longitudinal stiffeners (nst), the specimens are divided into four 

sub-groups: unstiffened (S0), with one (S1), two (S2), and three (S3) stiffeners. Fig. 3.2 illustrates 

the cross-section of these four sub-groups. 

 

 

Fig. 3.2: Division of specimens based on the stiffener configuration  
 

As it may be noticed, the stiffeners, which are welded to the curved panel by means of 

continuous fillet welds, are oriented radially, parallel to the generator of the cylindrical panel so 
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that the width of the subpanels (bloc) remains equal. The stiffeners are flat, with the height and the 

thickness constant and equal to hst = 50 mm and tst = 4 mm, respectively.  

Table 3.1 summarizes the geometry of all tested specimens. From this table, it may be noticed 

that there are 16 different geometries, however, two experimental tests (n = 2) are performed for 

each panel, comprising 32 tests in total. The aspect ratios and the curvature parameters (both 

global and local) are obtained using expressions given in section 2.2. The global curvature varies 

between Z = 28 and Z = 225, whereas the local curvature does not exceed the value of Zloc = 56, 

which falls within the common ranges encountered in real applications (see Fig. 2.6). 

 

Table 3.1: Geometry of the specimens 
 

Specimen n R [mm] t [mm] a [m] b [mm] α Z nst hst/tst [mm] αloc Zloc 

R2.5-S0 2 2500 4 1500 1500 1.0 225 0 - - - 

R2.5-S1 2 2500 4 1500 1500 1.0 225 1 50/4 2.0 56 

R2.5-S2 2 2500 4 1500 1500 1.0 225 2 50/4 3.0 25 

R2.5-S3 2 2500 4 1500 1500 1.0 225 3 50/4 4.0 14 

R5-S0 2 5000 4 1500 1500 1.0 112 0 - - - 

R5-S1 2 5000 4 1500 1500 1.0 112 1 50/4 2.0 28 

R5-S2 2 5000 4 1500 1500 1.0 112 2 50/4 3.0 12 

R5-S3 2 5000 4 1500 1500 1.0 112 3 50/4 4.0 7 

R10-S0 2 10000 4 1500 1500 1.0 56 0 - - - 

R10-S1 2 10000 4 1500 1500 1.0 56 1 50/4 2.0 14 

R10-S2 2 10000 4 1500 1500 1.0 56 2 50/4 3.0 6 

R10-S3 2 10000 4 1500 1500 1.0 56 3 50/4 4.0 4 

R20-S0 2 20000 4 1500 1500 1.0 28 0 - - - 

R20-S1 2 20000 4 1500 1500 1.0 28 1 50/4 2.0 7 

R20-S2 2 20000 4 1500 1500 1.0 28 2 50/4 3.0 3 

R20-S3 2 20000 4 1500 1500 1.0 28 3 50/4 4.0 2 
 

3.2.2 Material properties 

All specimens are made of steel grade S355. The mechanical properties of the S355 steel are 

obtained by standard tensile tests according to recommendations prescribed by ASTM E8M 

[141] standard. The tensile coupon tests are carried out at room temperature, at a controlled 

speed of 5 mm/min, using an INSTRON 4026 testing machine for the load application, with 

100 kN load capacity. Strain acquisition is done by an optical extensometer, GOM ARAMIS 5M, 

presented in Fig. 3.3a. The use of such an extensometer requires careful sample preparation. 

Firstly, an opaque white mask is applied at samples’ surface, and then, a uniform splash of black 

paint is added to produce a speckle pattern, which is essential for a high-quality strain 

measurement by digital image correlation (DIC). Fig. 3.3b shows the geometry of a specimen. 
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a) b) 

Fig. 3.3: Tensile coupon test: a) optical extensometer; b) specimen geometry  
 

To assess the level of anisotropy of steel material, the test samples are taken in three different 

angles with the rolling direction RD (i.e. 0°, 45°, and 90°). Three coupon tests are performed for 

each direction (i.e. 9 in total) to assure the results reliability. In Fig. 3.4, true stress (σ) – true strain 

(ε) curves for three different angles with the RD are plotted.  

 

 
Fig. 3.4: Summarized true stress – true strain curves for three considered angles  

 

Based on the results, it is possible to verify the excellent concordance between the curves, 

independently of the direction, confirming the isotropy of the S355 steel. Table 3.2 summarizes 

some of the most relevant mechanical properties, such as the yield strength (fy), the tensile 

strength (fu) and the ultimate strain (εu). 
 

Table 3.2: Mechanical properties of steel S355 
 

Angle fy [MPa] fu [MPa] εu 

0° 444 619 0.17 

45° 433 581 0.175 

90° 438 606 0.18 

 

For the numerical study carried out in section 3.4, the average values of the yield and the 

tensile strength are considered, i.e. fy = 438 MPa and fu = 602 MPa. 
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3.2.3 Test layout 

The test layout is presented in Fig. 3.5. It may be seen that the panels are tested in the vertical 

position, where the axial load is applied by a 90-ton hydraulic jack RCS-1002, placed in the middle 

of a rigid loading beam on the top of the specimen.  

 

 

 

Fig. 3.5: Test layout 

 

The panels are simply supported on all four edges. On the top and the bottom edges of a 

panel, these boundary conditions are ensured by two steel bars (Ø 20 mm) welded to the bottom 

plate and the loading beam (see Fig. 3.6), thus preventing the out-of-plane displacements, but 

allowing rotation of a panel placed in-between two bars. The bars are fabricated to have the same 

radius as a corresponding panel. In addition, narrow cuts (≈ 10 mm) are prepared in the bars at 

the position of the longitudinal stiffeners, as shown in Fig. 3.6. 

Regarding the lateral edges, the simply supported boundary conditions are provided by two 

back-to-back L 50 x 50 x 5 angles (see Fig. 3.6) that allow for the circumferential displacements 

and the rotation around the vertical axis, but prevent the out-of-plane displacement of a panel. 

These angles are continuously connected to the flanges of two vertical UPN 280 profiles by 

means of bolts that enable manual adjustment of the position of the angles, required for the 

various radii of curvature. The width of the loading beam is chosen so it may freely slide during 

the load application in the vertical direction, between the flanges of UPN 280 profiles. The 

stability of UPN 280 profiles in-plane is achieved by two horizontal HEA 200 beams, whereas 

the out-of-plane movements are prevented by two inclined SHS 100 x 100 x 6 bracings, as shown 

in Fig. 3.5. 
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Fig. 3.6: Boundary conditions 

3.2.4 Instrumentation 

The tests are displacement controlled, with monotonously increased displacement 

(0.01 mm/s) up to collapse. To assess the structural response of the curved panels, the following 

data are recorded during the tests: 

▪ Applied axial force 

▪ Vertical and out-of-plane displacements 

▪ Strains in panel 

The axial force applied during the test is recorded by load cell HBM – C6A, with the capacity 

of 2 MN, located below the hydraulic jack, as presented in Fig. 3.7a. Since the maximum stroke 

of the hydraulic jack is 57 mm, several steel plates had to be added below the load cell to ensure 

the required vertical displacement of the specimens. 
 

  

a) b) 

Fig. 3.7: DIC system: a) tripod with two cameras, b) speckle pattern on the outer surface 

 

The displacements and strains during the load application are measured by an optical (non-

contact) ARAMIS Digital Image Correlation (DIC) system (see Fig. 3.7a). To detect the 

deformation and strains of a specimen, ARAMIS uses the triangular algorithm on digital images, 

recorded at user-defined time intervals (e.g. 5 s here) during a deformation event. However, in 

order to obtain high image quality and full-field 3D results, it is necessary, prior to each test, to 
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ensure adequate conditions on the specimens’ surface. Therefore, a non-repetitive isotropic 

pattern of black speckles, with the size of 0.5 - 3 mm, is applied on the white convex surface of 

the panel by canned spray paint method, as shown in Fig. 3.7b. The tripod with two CCD cameras 

is positioned at around 5 m distance from the panel. 

In order to have more confidence in results obtained by the DIC system, for each test, 1 linear 

displacement traducers LVDT (V-1) is used to measure vertical (axial) displacement and another 

5 LVDTs are used to measure horizontal (out-of-plane) displacements, according to the scheme 

in Fig. 3.8. Furthermore, in the first test of each geometry shown in Table 3.1, 16 TML FLA-6-

11 strain gauges SG, positioned according to Fig. 3.9 are used to measure the strain (εz) in the 

axial z-direction (i.e. a direction parallel to the load application).  
 

  
a) b) 

Fig. 3.8: Position of horizontal LVDTs 

 

  
a) b) 

Fig. 3.9: Position of strain gauges 

 

Both LVDTs and SGs are positioned on the inner concave surface of specimens (the side 

with stiffeners), whereas the measurements with the DIC system are made from the front (outer) 

side. 
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3.3 Discussion of the experimental results 

3.3.1 Justification for using the DIC system  

The principal objective of the experimental program is to measure the ultimate compressive 

strength of the curved panels, but also to assess the influence of the geometry on the buckling 

behavior (i.e. failure mode). The displacements and failure modes are recorded using the DIC 

system, whose validity had to be first checked. Therefore, the results of displacements and strains 

recorded by the DIC system are compared against those obtained by other techniques, i.e. LVDTs 

and SGs.  

The comparison of two techniques based on the measured displacement field is presented in 

Fig. 3.10, through an example, in which the applied force F is plotted against the radial (out-of-

plane) displacements ur for specimen R20-S0-1, measured by LVDTs at points H-1, H-2, H-4, 

and H-5, specified in Fig. 3.8. From the figure, it may be observed that a very good 

correspondence between two techniques is obtained, with the maximum difference less than 

1.0% between two measurements, noticed at point H-2. 

 

  

  

Fig. 3.10: Out-of-plane displacements - DIC vs LVDT (R20-S0-1) 

 

In Fig. 3.11, the comparison between the results of strains recorded by two techniques (i.e. 

DIC and SGs) is presented, in which the development of strains with the increase of the applied 

force F is plotted for specimen R20-S1-1 at several points (i.e. SG-1, SG-4, SG-15, and SG-16, 

see Fig. 3.9), where slightly higher strain values are noticed. From the figure, it may be observed 

that a very good agreement is achieved also between the DIC and SGs (i.e. Δmax = 4.6 % at SG-
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4), which gives confidence in the validity of the experimental results and justifies the use of the 

simpler DIC technique. 

 

  

  

Fig. 3.11: Strain measurements - DIC vs LVDT (R20-S1-1) 

Moreover, Fig. 3.11 shows that the value of strains is lower than the yield strain (εu ≈ 0.2%) 

for all measured points, meaning that failure is related to geometric nonlinearity, with the 

response highly affected by the initial imperfections. The same results are obtained in other tested 

specimens, as it may be seen in Annex A (A.1), where the development of strains measured by 

SGs, are presented for 16 tested panels, sorted into four groups based on the radius. Namely, 

before buckling occurs, the strains linearly increase with the force, having an almost constant 

value in all measured points. With a further increase of force, a non-linear response and stiffness 

reduction is noticed in many cases, mainly in case of stiffened panels, which may be associated 

with local buckling of subpanels, with or without the torsional buckling of adjacent longitudinal 

stiffeners. In the post-buckling phase, with a further increase of force until the ultimate force is 

reached (i.e. force at which failure occurs), the strains remained in the elastic region, rarely 

exceeding the value of εz < 0.1%, for all tested panels, which confirms that failure is related to 

geometric nonlinearity. 
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3.3.2 Behavior of curved panels 

3.3.2.1 Force-displacement curves 

The force-displacement curves for all 32 tests are presented in Fig. 3.12, divided into four 

groups based on the radius, aiming to emphasize the influence of curvature and the number of 

stiffeners on the panels’ response. The displacement is measured in the radial direction at the 

middle point H-3 (see Fig. 3.8a).  

 

 

  
a) b) 

  

c) d) 

Fig. 3.12: Force-displacement curves for: a) R20; b) R10; c) R5 and d) R2.5 

 

It is necessary to highlight that it is initially intended to plot force against the axial shortening, 

as it would be a more appropriate comparator for panel stiffness. However, when compared later 

with the numerical results, the vertical displacements, measured by the only LVDT placed next 

to the hydraulic jack, are significantly higher for all the tested 32 panels. The reason for this is 

that the recorded vertical displacements account not only for the axial shortening of the panel 

itself but also for the displacement of the whole test layout (i.e. loading beam, loading plates 

between load cell and loading beam, testing frame beam below the curved panel, etc.). On the 

other hand, the radial (out-of-plane) displacements are measured by the horizontal LVDT, placed 

independently from the test layout. Hence, the results of the radial displacements at the middle 

point are adopted, being the most accurate and unaffected by any external factor. This way any 
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biased conclusion (i.e. underestimation or overestimation of the stiffness) on the behavior of the 

panel is avoided, enabling far more realistic comparison with the FEM results, which is at the 

same time one of the main purposes of the experimental campaign. Consequently, due to the 

lack of reliable end shortening data, the explicit comparison of the axial stiffness of the panels is 

not possible; however, it is also not necessarily the primal goal of the tests. 

Based on Fig. 3.12, several important conclusions may be drawn regarding the behavior of 

curved panels. As expected, the smaller the radius of curvature, while keeping the same cross-

sectional area, the higher is the ultimate resistance. In addition, the decrease in radius increases 

the second moment of area of the cross-section, resulting in a stiffer system with considerably 

reduced radial displacements. However, in the case of panels with higher curvature, i.e. with the 

radii R5 and R2.5 (see Fig. 3.12c and Fig. 3.12d), a significant variation in the behavior of panels 

is noticed. This might be explained by the fact that panels with higher curvatures tend to behave 

like thin shells rather than flat plates, which consequently leads to a significant sensitivity to initial 

imperfections. Therefore, even in the case of two panels with the same geometry, the panels’ 

response may be substantially different, resulting also in a different ultimate resistance. The 

imperfection sensitivity of panels is discussed in sections 3.4. 

Regarding the influence of stiffeners, the higher the number of stiffeners the higher the 

ultimate resistance, due to the increased effective area of the adjacent panel acting alongside the 

stiffener, thus increasing its column strength. However, the addition of such small flat stiffeners 

has only a minor effect on the initial stiffness of curved panels. Namely, the presence of stiffeners 

is observable only in the case of almost flat panels with a radius R20 (see Fig. 3.12a), where the 

stiffeners notably increase the cross-section second moment of area. For smaller radii, it may be 

noticed that the difference in the initial stiffness is almost negligible regardless of the number of 

stiffeners.  

To have a better understanding of the curvature effect on the ultimate strength of panels, ratio 

of average curved specimen strength (σZ) to average flat specimen strength (σpl), calculated 

according to EN 1993-1-5 (see 2.5.1), is plotted against the local curvature parameter Zloc in Fig. 

3.13, sorted based on the bloc/t ratio. 

The figure shows that considerable gains in the ultimate resistance might be achieved with 

increasing curvature (e.g. up to 2.0 - 2.5 times higher than corresponding flat plate), whereas the 

rate of increase depends on the bloc/t ratio. On the other hand, the ultimate resistance ratio (σZ/σpl) 

shows a rising trend with decreasing bloc/t ratio, which coincides with the findings reported by 

Soderquist [106]. For instance, for Zloc = 28 and bloc/t = 375, the ultimate load ratio is equal to 

σZ/σpl = 0.69, whereas, for bloc/t = 187.5 and bloc/t = 125, the values are respectively σZ/σpl = 1.59 

and σZ/σpl = 1.79. Therefore, it may be stated that the higher the curvature and the higher the 

number of longitudinal stiffeners, the use of design rules for flat plates deems to give results that 

are more conservative. The only exception is noticed for unstiffened and 1-stiffened shallow 

panels (i.e. R20-S0 and R20-S1), where the ultimate load ratio is equal to σZ/σpl = 0.69 and 

σZ/σpl = 0.85, respectively, which might have been caused by a non-uniform curvature along the 

panels’ length, thus introducing significant load eccentricities. 
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Fig. 3.13: Effect of curvature on compressive strength of stiffened curved panels  

3.3.2.2 Failure modes 

The failure modes of the tested panels are presented in Fig. 3.14 – Fig. 3.17. The out-of-plane 

displacements (in mm) are recorded using the DIC system, with the negative values 

corresponding to the displacements oriented radially inwards, i.e. towards the generator of the 

cylindrical panel. For stiffened panels, the photos taken from the backside of the panels are added 

to show the location of the failure of stiffeners.  

Analysing the failure modes presented in Fig. 3.14 – Fig. 3.17, it may be noticed that the 

behavior of curved panels is quite complex, characterized by an unstable post-buckling path and 

in most cases by a sudden loss of stability (see Fig. 3.12). This type of behavior corresponds to 

the behavior of thin shells, with the response governed by geometrical nonlinearities, which was 

discussed earlier in this section.  

Although no clear trend in failure modes could be observed, some regularities in response are 

noticed, based merely on the visual observation and qualitative assessment of panels’ deformed 

shapes. Namely, in the case of unstiffened panels (see Fig. 3.14), regardless of the radius of 

curvature, the global plate-type buckling is noticed to occur before any localized buckling is 

detected. On the other hand, in the case of stiffened panels, the response showed a high 

dependence on both the radius of curvature and the number of stiffeners. Therefore, it is 

necessary to observe the back (concave) side of the panel for a better characterization of the 

instability modes, in the same manner as it is defined in EN 1993-1-5 for flat stiffened plates (see 

2.5.1). 

For more curved panels (i.e. R5 and R2.5), the dominant global buckling is noticed, however, 

the number of stiffeners determines whether a column-type or plate-type mode prevails. For 

instance, for 3-stiffened panels R5-S3 and R2.5-S3 (see photos in Fig. 3.17), the global column-

type buckling may be observed, characterized by the buckling of the stiffeners with the effective 

adjacent curved panel, acting as three individual compressed columns (i.e. struts). 
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R20-S0 R10-S0 R5-S0 R2.5-S0 

    

    

Fig. 3.14: Failure mode of curved panels without stiffeners S0 (in mm) 

R20-S1 R10-S1 R5-S1 R2.5-S1 

    

    

    

Fig. 3.15: Failure mode of curved panels with 1 stiffener S1 (in mm)  

R20-S2 R10-S2 R5-S2 R2.5-S2 

    

    

    

Fig. 3.16: Failure mode of curved panels with 2 stiffeners S2 (in mm) 
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R20-S3 R10-S3 R5-S3 R2.5-S3 

    

    

    

Fig. 3.17: Failure mode of curved panels with 3 stiffeners S3 (in mm) 

No membrane effects took place that would lead to the global buckling of the entire curved 

plate together with the stiffeners, which resulted in a low post-buckling reserve and quite a brittle 

failure, as it may be noticed also in Fig. 3.12. On the other hand, in the case of the lightly stiffened 

panel, it is more difficult to distinguish whether global plate-type or global column-type behavior 

prevailed. Most likely, an interaction between these two modes took place.  

Regarding the behavior of shallow panels (i.e. R20 and R10), the local instability modes of 

both sub-panels and stiffeners seem to have become dominant, as it may be observed in Fig. 

3.18, where an example of a panel that underwent a local buckling phenomenon is illustrated. 

The figure shows the radial displacements of panel R20-S2-1, recorded at different values of 

applied force F.  
 

 

Fig. 3.18: Local buckling of a shallow panel R20-S2-1 recorded by the DIC system 
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It may be noticed from the figure, that the local buckling of sub-panels between the stiffeners 

first takes place, characterized by a chessboard pattern (see point 2). With a further increase of 

force (phase 2-4), the panel starts to behave nonlinearly until the ultimate load is reached, caused 

by the local tripping of stiffeners due to a low torsional stiffness of the flat stiffeners (see Fig. 

3.16). Subsequently, after the ultimate load is reached (at point 4), an immediate global buckling 

mode occurs due to the loss of effective stiffening (point 5). 

Finally, based on the presented failure modes, it may be concluded that the curvature 

significantly affects the buckling behavior of the curved panels. Namely, an increase in curvature 

increases the arch effect of curved panels, resulting in a stronger column buckling mechanism 

that differs significantly from that of a stiffened flat plate, which explains also the gains in 

resistance that may be attained. In addition, it is noticed that a higher curvature (e.g. R2.5) in 

general increases the number of half-waves in the circumferential direction, which coincides with 

the observations found in historical experimental reports by Schildrout & Stein [53], and in a 

recent study by Tran et al. [59]. 

The experimental results presented in this section (i.e. the ultimate strength, the radial 

displacement curves, and the failure modes) are essential comparators for the calibration of the 

numerical models, presented later in this chapter. 

3.3.3 Assessment of the existing design methods 

In 2.5.1, the design procedures available in the literature for the assessment of the ultimate 

resistance of unstiffened and stiffened curved panels under axial compression are summarized. 

Most of the proposed expressions are of the empirical nature, derived from extensive numerical 

studies; however, for an adequate validation of these design methods, it is necessary first to 

compare them against the experimental results, which according to 2.4.1 still seem to be 

insufficiently reported in the literature.  

Therefore, the objective of this section and one of the main objectives of this thesis is not to 

repeat another extensive numerical study and to propose a new empirical expression that would 

reproduce the results obtained by the former authors, but on the contrary, to use the presented 

experimental results for a critical assessment of the available design methods. Ultimately, the goal 

of this comparative analysis is to identify the most appropriate method (or methods) that may be 

used for the assessment of the ultimate resistance of curved steel panels as an isolated element, 

but also, for the determination of effective properties of compressed bottom flange in box-girder 

bridge decks, addressed in chapter 7.  

In Table 3.3 - Table 3.6 the ultimate resistances of the 32 experimental tests are summarized 

and compared with the values obtained using existing empirical methods for unstiffened and 

stiffened panels presented in 2.5.1.  
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Table 3.3: Comparison of the ultimate resistance – unstiffened panels (S0) 
 

Experimental tests: Fmax (kN) R20 R10 R5 R2.5 

Test 1 192 380 462 777 

Test 2 216 240 560 755 

Test avg. 204 310 511 766 

Authors: NRk (kN) R20 R10 R5 R2.5 

Tran (2012) [8] 341 391 N/A N/A 

Tran et al. (2012) [75] 343 386 N/A N/A 

Tran et al. (2014b) [77] N/A N/A N/A N/A 

Martins et al. (2014) [78] 267 322 N/A N/A 

Kim et al. (2014) [80] 442 445 458 520 

Park et al. (2018) [16] 460 610 817 1091 

Design standards: NRk (kN) R20 R10 R5 R2.5 

EN 1993-1-5 [11] 285 285 285 285 

DNV-RP-C202 (2017) [13] 35 49 105 269 

DNVGL-0128 (2018) [14] 322 203 400 795 

ABS (2018) [15] N/A N/A N/A N/A 

 
 

Table 3.4: Comparison of the ultimate resistance – 1-stiffened panels (S1) 
 

Experimental tests: Fmax (kN) R20 R10 R5 R2.5 

Test 1 305 500 570 756 

Test 2 347 580 650 633 

Test avg. 326 540 610 695 

Authors: NRk (kN) R20 R10 R5 R2.5 

Tran (2012) [8] 457 481 N/A N/A 

Tran et al. (2014a) [59] 378 431 546 616 

Seo et al. (2016) [82] 105 110 220 409 

OUTBURST (2019) [85] 392 472 588 748 

Design standards: NRk (kN) R20 R10 R5 R2.5 

EN 1993-1-5 [11] 384 384 384 384 

DNV-RP-C202 (2017) [13] 118 181 330 633 

 
 

Table 3.5: Comparison of the ultimate resistance – 2-stiffened panels (S2) 
 

Experimental tests: Fmax (kN) R20 R10 R5 R2.5 

Test 1 627 600 915 864 

Test 2 554 740 866 847 

Test avg. 591 670 891 856 

Authors: NRk (kN) R20 R10 R5 R2.5 

Tran (2012) [8] 608 624 N/A N/A 

Tran et al. (2014a) [59] 449 536 737 945 

Seo et al. (2016) [82] 155 165 344 639 

OUTBURST (2019) [85] 448 544 776 959 

Design standards: NRk (kN) R20 R10 R5 R2.5 

EN 1993-1-5 [11] 478 478 478 478 

DNV-RP-C202 (2017) [13] 204 248 376 671 
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Table 3.6: Comparison of the ultimate resistance – 3-stiffened panels (S3) 
 

Experimental tests: Fmax (kN) R20 R10 R5 R2.5 

Test 1 510 960 938 1165 

Test 2 683 828 978 972 

Test avg. 597 894 958 1069 

Authors: NRk (kN) R20 R10 R5 R2.5 

Tran (2012) [8] 527 786 N/A N/A 

Tran et al. (2014a) [59] 539 635 895 1183 

Seo et al. (2016) [82] 198 228 476 882 

OUTBURST (2019) [85] 534 628 897 1196 

Design standards: NRk (kN) R20 R10 R5 R2.5 

EN 1993-1-5 [11] 563 563 563 563 

DNV-RP-C202 (2017) [13] 322 353 455 726 
 

The geometrical properties of the stiffened curved panels required for the calculation of the 

ultimate resistance according to procedure by Tran (2012) [8], Tran et al. (2014a) [59] and 

OUTBURST (2019) [85], as well as the properties required for the method given by DNV-RP-

C202 (2017) [13] are summarized in Annex A (A.2). The proposal by Tran et al. [77], as well as 

the standard ABS [15], are not applicable for neither unstiffened nor stiffened panels since the 

geometry of tested panels exceeds the ranges of validity given in Table 2.4 and Table 2.7.  

To better assess results shown in the tables, in Fig. 3.19, the calculated ultimate resistances 

(NRk) are normalized to average experimental results (Fmax,avg), with respect to radius R.  

 

  
a) b) 

  
c) d) 

Fig. 3.19: Comparison of results with respect to radius R: a) S0; b) S1; c) S2; d) S3 
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Regarding the unstiffened panels (Fig. 3.19a), a large scatter of the results is noticed that can 

be partly explained by the differences in the software and modeling assumptions made by the 

authors when deriving the various expressions. Moreover, none of the methodologies provide 

satisfactory results for the whole range of curvatures. The results obtained using the design 

standard DNVGL are comparable to the experimental ones for more curved panels (e.g. 

∆max = 3.6 % for R2.5), whereas for the shallow panels (R/t > 2500) the standard recommends 

the rules for flat plates, which leads to considerably conservative results (e.g. ∆max ≈ 60 % for 

R20). Finally, the expressions from and Martins et al. [78] give acceptably good results for shallow 

panels (e.g. ∆max = 3.5 % for R10), however, these expressions are limited to the curvatures up to 

Z < 100, thus cannot be applied to all considered panels. These restrictions are encountered also 

in the expressions form Tran [8] and Tran et al. [75]. 

As for the stiffened panels, in Fig. 3.20, the available design procedures are statistically 

assessed and compared using the coefficient of variation CoV (%), which is calculated for each 

methodology based on the normalized values NRk/Fmax,avg (see Fig. 3.19b - Fig. 3.19d). Namely, 

the coefficient of variation, which is defined as the ratio of the standard deviation to the mean 

value, is a suitable non-dimensional statistical parameter that shows to what extent the data varies 

around mean value. In principle, the lower the CoV the smaller is the difference between the two 

data series, which in this case means that the proposed methodology gives the ultimate resistance 

of stiffened curved panels closer to the ones obtained experimentally. 
 

 

Fig. 3.20: Comparison of the available procedures for stiffened curved panels  

 

Based on this figure, it may be concluded that both the methodology from Tran et al. [59] and 

the one proposed in the OUTBURST project [85] give results comparable with the experimental 

ones, with CoV ≈ 16 % in both cases. On the other hand, the methodology proposed by Seo et 

al. [82] gives considerably conservative results in comparison to the experimental results, with 

CoV ≈ 49 %. 
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Finally, regarding the available design standards, the use of EN 1993-1-5 almost in all cases 

leads to an underestimation of the ultimate resistance (CoV ≈ 28 %), with the exception of the 

shallow unstiffened and lightly stiffened panels, where an overestimation is noticed. A significant 

deviation from the experimental results is also noticed (CoV ≈ 37 %) when the methodology 

prescribed by DNV-RP-C202 is used. This might be explained by the fact that the semi-empirical 

formulae proposed in the standard were derived based on the analyses made on full cylinders and 

not on the individual curved panels. Consequently, the expressions fail to give a good estimate 

of the structural behavior of curved panels, which seems to be particularly noticeable for very 

shallow panels (see Fig. 3.19).  

To summarize, the most adequate methodology cannot be claimed with a high certainty based 

merely on the comparison of results against 32 tested panels since the geometry of panels covers 

only a narrow range of parameters. Therefore, in order to have more reliable conclusions on the 

ultimate resistance of the curved panels, the scope of the experimental study needs to be enlarged, 

by varying not only the curvature parameter but also the slenderness of the panels b/t and the 

aspect ratio α.  

Nevertheless, based on the comparative analysis presented in this section, it may be concluded 

that the expressions proposed by Tran et al. [59] and in the OUTBURST research project [85] 

seem to be the most adequate for the estimation of the ultimate resistance of the stiffened curved 

panels, having conceptually the same format used in the European standard EN 1993-1-5. 

The substantial difference between the two methodologies, however, is in the determination 

of the local buckling of the subpanels between the stiffeners. Namely, in Tran’s proposal, the 

local buckling is determined for a corresponding flat plate, neglecting the local curvature, whereas 

the method proposed in the OUTBURST research project accounts for the local curvature, 

suggesting the use of the expressions developed by Martins et al. [78] for unstiffened curved 

panels. In the case of panels with a low local curvature (i.e. Zloc < 30 in almost all tested stiffened 

panels, see Table 3.1) the influence of the local curvature parameter seems to be less relevant, 

which explains almost identical results obtained by these two methodologies. Therefore, in case 

of bridges, where the local curvature parameter of bottom curved flange rarely exceeds Zloc < 20 

(see Fig. 2.6), technically, both methods may be used. However, for the sake of complicity, the 

expression proposed in the OUTBURST research project is used further in the thesis since it 

allows for higher local curvatures, i.e. up to Zloc = 100, thus may be applied to engineering 

structures other than bridges (e.g. airplanes and ships hulls), where local curvatures may reach 

values up to Zloc < 70. In chapter 8, these two methodologies are to be compared again, however, 

for panels with geometry encountered in bridges. 

3.4 Numerical analysis 

3.4.1 Introduction 

In this section, using as a reference previously presented experimental results, a numerical 

study is carried out in order to further investigate one of the most relevant characteristics of thin 

curved steel panels – significant sensitivity to initial geometric imperfections.  
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As discussed in 2.4.1, multiple authors performed extensive numerical studies, analysing 

mainly the influence of the amplitudes and shapes of the initial imperfections on buckling 

behavior of curved panels and their ultimate compressive resistance. In those studies, among 

which the most relevant are those from Martins et al. [79] and Manco [10], the authors expressed 

an increased difficulty in defining the critical imperfection shape, i.e. the shape that yields the 

lowest resistance of curved panel. Namely, according to Martins, the critical imperfection shape 

may vary significantly depending on the geometry of the panel (curvature and aspect ratio), and 

it is not only the shape or the amplitude that dictates the lowest ultimate resistance, but most 

commonly a certain combination of two, which additionally increases the level of uncertainty.  

Therefore, owing to the lack of adequate recommendations in a standard format, a simplified 

engineering approach is generally accepted, in which the imperfection shapes and amplitudes are 

defined using the prescriptions given by the design standard for flat plates – EN 1993-1-5. Hence, 

the objective of the numerical study presented in this section is to assess the validity of such an 

approach, using the experimental results as the comparator, something that was not done in any 

of the aforementioned numerical studies.  

The numerical analyses are carried out using the FEM software ABAQUS [142], which is 

suitable for the application of the studied approach since it allows a simple implementation of 

the initial imperfections. The most relevant considerations required for the definition of the 

numerical model (e.g. type of analysis, geometry, boundary and loading conditions, material 

properties, finite element (FE) type and size, imperfections, etc.) are described in 3.4.2. 

Subsequently, the model is validated against the experimental results in 3.4.3, whereas the results 

of the study are discussed in 3.4.4. 

3.4.2 Model definition 

3.4.2.1 Type of analyses 

For this study, specifically, two types of analyses are performed: i) Linear elastic bifurcation 

(or eigenvalue) analysis (LBA) and ii) Geometrically and materially nonlinear analysis with 

imperfections included (GMNIA).  

First, to generate the eigenmodes, the LBA is performed for each model, using the Subspace 

algorithm available in ABAQUS. Subsequently, the extracted eigenmodes are used as the shapes 

of the initial geometrical imperfections in a GMNIA, in which the ultimate load of the panels is 

obtained. For that purpose, the arc-length Riks method [143] from the software’s library is used, 

which gives non-linear static equilibrium solutions for unstable structures, where the load level 

and/or the displacement decrease along the loading path, causing energy loss (i.e. negative 

stiffness). 

When GMNIA is performed, it is necessary to define carefully the arc-length parameters in 

order to avoid numerical issues, such as missing bifurcation points, and thus an overestimation 

of the ultimate load. This is particularly important in the case of panels with a higher curvature 

parameter, where the shell-like behavior occurs with a highly unstable post-buckling equilibrium 

path, manifested by a sudden drop in the bearing capacity (i.e. snap-through buckling). To 
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overcome this problem, a constrained small arc-length is defined, with an adequate size of the 

initial and the maximum increment.  

Finally, according to EN 1993-1-5, the ultimate resistance of a panel is obtained as the 

maximum load factor on the load-deformation curve. However, it is necessary to observe 

carefully the load-displacement curves since the arc-length routine may, in some cases, decide to 

follow the primary loading path as the post-buckling path instead of opting for the new secondary 

path at the bifurcation point, thus, missing the true bifurcation load. For more details regarding 

the problems that may be encountered in arc-length procedures of unstable structures, the reader 

is invited to see also the book by Crisfield [144], published in 1997. 

3.4.2.2 Geometry 

In total, 16 different numerical models are built, with the geometry that corresponds to 16 

tested panels, defined in 3.2.1. 

3.4.2.3 Applied material model 

The material properties of steel S355 assigned to the curved panels in the numerical 

simulations are based on the simplified true stress-strain relations determined by tensile coupon 

tests in 3.2.2. The simplified elastic-plastic material model, with a modulus of elasticity equal to 

E = 210 GPa, a Poisson’s coefficient equal to ν = 0.3, and linear strain hardening is presented in 

Fig. 3.21, together with the true stress-strain relation obtained as an average of tensile test results 

for three rolling directions (see Fig. 3.4). These two models are compared and a negligible 

difference in panels response is noticed (Δ < 0.5 %). 
 

 

Fig. 3.21: Material model used in FEM analyses 
 

3.4.2.4 Load and boundary conditions 

To define the load and the boundary conditions, a cylindrical coordinate system is adopted 

with the origin at point O, as indicated in Fig. 3.22. The displacement field is defined by uz, uφ 

and ur that correspond to longitudinal, circumferential and radial directions, respectively. 
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To achieve the boundary conditions that correspond to the experimental tests, the radial 

displacements are prevented along all four edges (i.e. ur = 0), except for the stiffeners. In addition, 

the longitudinal displacements are prevented at the bottom edge of panels (CD), including 

stiffeners (i.e. uz = 0). Finally, to obtain simply supported boundary conditions, the 

circumferential displacements are prevented at points E and F (i.e. uφ = 0). 
 

 
Fig. 3.22: Numerical model 

 

The in-plane compressive load, qc, is uniformly distributed along the top edge (see AB in Fig. 

3.22), including the edges of stiffeners, thus simulating the contact between the loading beam and 

the specimen realized in the experimental tests. 

3.4.2.5 Finite element type and size 

Numerical models are discretized by four-node shell elements (S4R) with the reduced 

integration and 6 DOF per node, as a finite element commonly used for the discretization of thin 

plates and shell structures (e.g. Cho et al. [113], Seo et al. [82], Manco [10], etc.).  

Since all modeled panels have aspect ratio equal to α = 1.0, it is opted for squared FE, i.e. with 

approximately equal dimensions in both directions. Moreover, it is aimed to have an integer 

number of FE between stiffeners, to match the node of the stiffeners with the node of the panel. 

Finally, the size of an element of 25 x 25 mm2 (i.e. 3600 FE in total) is adopted based on the 

results from a mesh convergence study, performed for two unstiffened panels with a different 

radius of curvature (R20-S0 and R2.5-S0), as indicated in Fig. 3.23. The ultimate resistance (Fmax) 

is obtained using the Riks’ method, where for the sake of this mesh convergence study only, the 
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shape of the imperfection affine to the first buckling mode with an amplitude equal to b/200 is 

considered. 

 

Fig. 3.23: Mesh convergence study using finite element S4R  

 

Since several authors (e.g. [75], [109]) used S8R finite element in their studies, a comparison 

between S4R and S8R is made, using as an example the same two panels with the adopted mesh 

size of 25 x 25 mm2. In the case of R20-S0, the ultimate resistance with S8R finite elements is 

1.14% lower (i.e. 249.8 kN), whereas the computation time is 2.5 times higher. In the case of a 

more curved panel, R2.5-S0, the difference in ultimate resistance is 1.06% (496 kN), whereas the 

difference in the computation time is even higher (3.5 times). Hence, the finite element S4R is 

adopted in this study as it gives accurate results and reduces considerably the CPU time.  

Finally, in the case of stiffened panels, 5 finite elements along the web are adopted, in total 

300 FE per stiffener. 

3.4.2.6 Applied initial imperfections  

It has been long acknowledged that the structural response of curved steel panels is directly 

influenced by the presence of the initial imperfections, being thin elements with increased 

susceptibility to instability phenomena. Therefore, the modeling of imperfections requires 

particular attention, which is the main topic of this study.  

Since the information on the real material and geometrical imperfections is generally not 

available, numerous studies in the field of stability analysis of shells have attempted to propose a 

simple alternative approach, applicable for design purposes. One of the most widely accepted 

approach, implemented later in the European standard, is the one introduced by Koiter [145], 

according to which the imperfections are assumed as a pattern of fictive initial deflections (i.e. 

equivalent imperfections) applied perpendicularly to the middle surface of the shell. One of the 

main advantages of this approach is that the equivalent imperfections account for geometric 

imperfections but also structural ones (i.e. residual stresses, load eccentricity, etc.), which are often 

difficult to be measured.  

Therefore, for this study, the concept of equivalent imperfections is also adopted, using the 

well-established recommendations from Annex C.5 of EN 1993-1-5 for the modeling of 
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imperfections in the case of flat plates. This assumption is justified to some extent by the fact 

that the fabrication of curved and flat panels is quite similar, leading to approximately similar 

fabrication tolerances.  

According to Annex C.5 of EN 1993-1-5, for the stiffened panels, it is recommended to use 

the shape of the initial imperfections affine to the critical buckling shape, i.e. the one leading to 

the lowest resistance. Based on the possible eigenmodes, the standard recognizes three distinct 

imperfections – local, global and stiffener imperfection, presented in Fig. 3.24, with 

corresponding amplitudes δ0. 

 

 
a) 

 
b) 

 
c) 

Fig. 3.24: Types of imperfections: a) global; b) local-subpanel; c) local-stiffener 

 

In ABAQUS, the imperfections are implemented using the keyword *IMPERFECTION, 

referring it to the corresponding LBA results and attributing the desired amplitude. Namely, the 

shape of the imperfections is obtained from a linear combination of the relevant buckling modes 

of each panel, using linear eigenvalue analysis (LBA), performed on a perfect structure. The 

imperfections (Δur) are introduced in a piecewise manner through a perturbation of radial 

translational DOF for each node (N), given in a general form by Eq.(3.1) as: 

 0,
N N

r i i

i

u   =   (3.1) 
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where ϕi is the shape of the ith buckling mode and δ0,i is the corresponding scale factor (i.e. 

imperfection amplitude), which according to Annex C.5 of EN 1993-1-5 should be adopted in 

accordance with the Fig. 3.24 for a leading imperfection, whereas the remaining ones may have 

their values reduced to 70 %.  

Finally, it is necessary to highlight that the presented equivalent imperfections are used for the 

assessment of the imperfection sensitivity in 3.4.4, which is the paramount objective of this 

numerical study. However, in order to calibrate a numerical model that accurately reproduces the 

experimental results, and thus to validate its geometry, material properties, boundary conditions, 

loads, size and type of FE, it is necessary in 3.4.3 to model the imperfections as realistic as possible 

and not the fictive simplified imperfections prescribed by standard.  

Since the DIC system used in the experimental tests is found to be impractical for the 

detection of the local imperfections, as it registers only the relative movements of the surface 

point with respect to a user-defined reference plane, an assumption is made. Namely, soon after 

the axial load is applied, due to the eccentricity of the load in the zones where the out-of-plane 

imperfections are present, an additional bending moment appears, tending to increase further 

this deformation. Only now, using the DIC system, it is possible in some cases to detect the 

location and the pattern of the imperfections on the panel surface, as it corresponds to an ’initial’ 

deformed shape. Subsequently, in ABAQUS, an adequate buckling mode (or a linear combination 

of several modes) is chosen to correspond to this ’initial’ deformed shape of a panel measured 

by the DIC.  

Regarding the amplitudes, the values defined by standard (see Fig. 3.24) correspond to design 

values that were established to lead to safe estimates of the design resistance [146]. Therefore, 

once the imperfection shape is defined, the amplitudes are then varied within a lower bound and 

an upper bound (e.g. b/150 - b/750 for the global imperfections, and bloc/150 - bloc/750 for the 

local imperfections), until good convergence is achieved, i.e. until results matched with the 

experimental ones. Since the measurements with the DIC system are made from the front 

(radially outer) side of specimens, it is not possible to detect the initial stiffener imperfections 

(see Fig. 3.24c), thus these local imperfections are not considered for the calibration. 

3.4.3 Calibration of the FE model 

The numerical models are calibrated against the experimental results shown in section 3.3, 

based on three main comparators: i) the ultimate strength (Fmax); ii) the radial displacement curve 

at the middle of the panel (point G, in Fig. 3.22); iii) the collapse shape (Fig. 3.14 – Fig. 3.17). 

The calibration is done for each of 16 models, where the biggest challenge is modeling of the 

initial imperfections that correspond to the real ones (see in 3.4.2.6). To understand better how 

the results of the DIC are used for the modeling of imperfections, an example is presented for 

panel R10-S2-2. 

The initial deformed shape recorded at low values of applied force (in this case F/Fmax ≈ 0.3), 

as well as the collapse mode are presented in Fig. 3.25 and Fig. 3.26, respectively. 
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  a)  b)  

Fig. 3.25: Local initial imperfection pattern: a) DIC; b) FEM 

 

 

 

   

 

  a)  b)  

Fig. 3.26: Collapse shape-front side: a) DIC; b) FEM 

 

From these figures, it may be noticed that the panel initially deforms locally, with a chessboard 

pattern, whereas the collapse of the panel corresponds to a radially outward deflection. Hence, 

in the numerical model, the global buckling mode, oriented radially outward (30th buckling mode 

in this case) is assumed to be the governing one, accompanied by the local buckling mode with a 

similar chessboard pattern (1st in this case, see Fig. 3.25b). Additionally, in order to have the 

failure mode as close as the one captured by the DIC system, it is necessary in this case to 

combine the first mode with the local 3rd mode. The collapse shapes are compared in Fig. 3.26, 

and it may be noticed that good agreement is achieved. In Fig. 3.27, the force-radial displacement 

curves for both R10-S2-1 and R10-S2-2 are presented. 

 

Fig. 3.27: Force-radial displacement curves for R10-S2-1 and R10-S2-2 

 

As it may be noticed, a quite good correspondence is obtained, with the maximum difference 

in the ultimate strength of Δmax ≈ 2.7%. For both cases, the same imperfection shapes are 

considered, however, in the case of R10-S2-1, slightly higher imperfection amplitudes are used 

(see Table 3.7), which explains also the major difference between two experimental tests, 
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performed on two panels with an identical geometry, with the same material and under the same 

load and boundary conditions.  

The same calibration procedure is repeated for all panels. In Fig. 3.28, some of the most 

relevant results are summarized for several examples, in which both the collapse shapes and the 

force-displacement curves obtained numerically are compared with the experimental results for 

various radii of curvature and number of stiffeners.  
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Fig. 3.28: Comparison of experimental and FEM results (front view) 

 

Finally, since comparison against the results obtained by the DIC system is possible only from 

the front side, for some cases of stiffened panels, a better comparison is achieved using the 

photos, taken from the backside of the specimen after the collapse occurred, as presented in 

Annex A (A.3). 

The same procedure is repeated for each panel, and in most cases, it is proven very accurate 

and simple to apply. However, in a few cases, it is not quite possible to detect any local 

deformation by the DIC at the lower values of force (i.e. F/Fmax < 0.5), which is found to be the 

biggest limitation of this methodology. Furthermore, in several cases, it is a huge challenge to 

replicate the desired imperfection pattern by combining different eigenmodes. In particular, in 

the case of stiffened panels, the global eigenmode seems to be difficult to attain by LBA, as in 

some cases it appears only after tens of eigenmodes.  

Based on the presented calibration process, several important preliminary conclusions are 

drawn: 

• The shape of imperfections highly influences both the collapse shape and the ultimate 

resistance of curved panels, which is particularly emphasized in the case of panels with 

higher curvatures. Therefore, a sensitivity analysis is conducted in 3.4.4, where several 

models of imperfections are considered;  

• In most cases, the leading global imperfection accompanied by local imperfections (one 

or more) lead to the results that correspond to the real behavior obtained experimentally; 

• In the case of unstiffened panels, it is sufficient to model only a global panel imperfection, 

whereas, in the case of stiffened panels, the leading global mode had to be combined with 

the accompanying local imperfections;  

• Regarding the global modes, it is relatively easy to find them in the case of unstiffened 

panels, being affine to the 1st buckling mode. However, in the case of stiffened panels, 

the global modes are commonly higher-order buckling modes (e.g. 30th in the case of R10-

S2-2); 

• As for the local imperfections, in those cases where it is possible to determine a buckling 

mode that corresponds to an ‘initial’ deformed shape recorded by DIC, as shown in Fig. 

3.25, the numerical results are in excellent agreement with the experimental ones 

(Δmax < 5%). However, in those cases where it is not possible, the local imperfections are 



CHAPTER 3 

97 

modeled iteratively as one (or as a combination of several local buckling modes) until 

satisfactory results are achieved;  

• The imperfections used for the calibration are summarized in Table 3.7, where for each 

case the buckling mode(s) and the corresponding amplitudes are provided. In some cases, 

where a huge difference between the two tests is noticed (e.g. R20-S2-1 and R20-S2-2), 

the calibration is done separately for each case. 

 

Table 3.7: Equivalent imperfections used for the calibration of numerical models 
 

Panel Imperfection: Eigenmode (amplitude) 

R20-S0 1st (7.5mm) + 2nd (2mm) + 4th (2mm) 

R20-S1 10th (7.5mm) + 1st (0.5mm) + 4th (5mm) 

R20-S2-1 27th (7.5mm) + 1st (5mm)  

R20-S2-2 17th (7.5mm)  

R20-S3-1 22nd (10mm) + 27th (7.5mm) + 1st (1.5mm) 

R20-S3-2 22nd (4.5mm) + 27th (4.5mm) + 1st (0.2mm) 

R10-S0 13th (4mm) 

R10-S1-1 12th (3mm) 

R10-S1-2 12th (1mm) + 3rd (1mm) 

R10-S2-1 30th (12.5mm) + 1st (12.5mm) + 3rd (12.5mm) 

R10-S2-2 30th (3.75mm) + 1st (1.75mm) + 3rd (1.75mm) 

R10-S3-1 31st (3.75mm) + 1st (1.3125mm) + 4th (1.3125mm) 

R10-S3-2 31nd (5mm) + 1st (5mm) + 2nd (5mm) 

R5-S0 1st (1mm) + 2nd (1mm) 

R5-S1-1 4th (3.75mm) 

R5-S1-2 44th (10mm) 

R5-S2-1 8th (7.5mm) 

R5-S2-2 8th (3.75mm) 

R5-S3-1 2nd (6mm) +19th (3.5mm) 

R5-S3-2 19th (3.75mm) 

R2.5-S0 1st (2mm) 

R2.5-S1-1 2nd (3.75mm) 

R2.5-S1-2 1st (3mm) + 2nd (3.75mm) 

R2.5-S2-1 5th (10mm) + 1st (2.5mm)  

R2.5-S2-2 5th (7.5mm) 

R2.5-S3-1 14th (4mm) + 1st (4mm) + 2nd (4mm) 

 

In conclusion, a good agreement is obtained between the experimental and numerical results 

in all cases, in terms of both the failure mode and ultimate resistance, with a maximum difference 

of Δmax = 12.5 %. This may be partly attributed to non-uniform curvature along the panels’ 

length, thus inevitable load eccentricities, uneven contacts between specimens and the loading 

beam and/or bottom plate that are not accounted for in the numerical models. On the other 

hand, it should be reminded that various simplifications are made in the numerical model, such 

as the adoption of the buckling modes as the shapes of the imperfections.  

Nevertheless, it may be stated that geometry, material properties, boundary conditions, loads, 

size and type of FE are modeled correctly, thus these numerical models may be used with 

conformity for the imperfection sensitivity analysis.  
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3.4.4 Assessment of imperfection sensitivity 

The influence of various imperfection shapes on the ultimate strength is assessed, using the 

same 16 numerical models previously calibrated against the experimental results. Table 3.8 

summarizes the imperfections considered in the study, all of them determined by LBA. 

 

Table 3.8: Imperfections considered in the study 
 

IMP-1 1st buckling mode 

IMP-2 2nd buckling mode 

IMP-3 3rd buckling mode 

IMP-4 4th buckling mode 

IMP-5 global mode 

IMP-6 IMP-5 + 0.7*IMP-1 

IMP-7 IMP-5 + 0.7*IMP-1 + 0.7*IMP-2 

IMP-8 IMP-5 + 0.7*IMP-1 + 0.7*IMP-3 

IMP-9 IMP-5 + 0.7*IMP-1 + 0.7*IMP-4 

 

The modeling of imperfections is based on equivalent geometric imperfections recommended 

by EN 1993-1-5, as explained in 3.4.2. Therefore, the amplitudes are adopted in accordance with 

Fig. 3.24, bearing in mind that for the imperfections IMP-1 to IMP-4 the amplitude depends on 

the type of the buckling mode (global or local). In the case of unstiffened panels, where the 1st 

mode is a global mode, imperfections IMP-5 and IMP-6 are not relevant, while imperfections 

IMP-7 to IMP-9 are combined so that the leading imperfection is IMP-1 and the imperfections 

IMP-2, IMP-3, and IMP-4 are the accompanying, with reduced values of amplitudes (i.e. 70% of 

the nominal value). 

For the sake of simplicity, many authors suggest an imperfection shape affine to the 1st 

buckling mode (or combination of the first four modes), which has become the common practice 

often found in the literature (e.g. [16], [75], [78], [80], [82], to name a few). Hence, one of the 

objectives of the present study is also to assess this assumption since, in 3.4.3, it is concluded that 

the leading global imperfection (with or without accompanying local imperfections) is the one 

that leads to the most realistic behavior of curved panels, observed in experimental results. 

To demonstrate to what extent the imperfection shape may affect the response of curved 

panels, an example is presented hereby, using the geometry of a 2-stiffened panel, with the radius 

equal to R = 5.0 m (i.e. R5-S2). The shapes of the first 4 buckling modes that correspond to 

different local imperfections, as well as the global mode (57th in this case), are presented in Table 

3.9. These eigenmodes, when used as initial imperfections, lead to very different failure modes, 

as presented also in Table 3.9.  

In Fig. 3.29, the force-radial displacement curves are plotted and the ultimate resistances are 

summarized for each of the considered cases, including the two experimental results.  
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Table 3.9: Imperfection and corresponding collapse shapes for panel R5-S2 
 

 IMP-1 IMP-2 IMP-3 IMP-4 IMP-5 

Imperfection 

shape 

     

Collapse shape 

     

 

From Fig. 3.29, it may be observed that the imperfection shape significantly affects the 

behavior of the panels, leading to a wide scatter of results, with the largest difference between 

the maximum and the minimum value of the ultimate resistance of 40% in this case. The results 

for all 16 geometries, sorted based on the number of stiffeners, are summarized in Fig. 3.30, 

where the values of the ultimate compressive strength obtained numerically (Fnum) are normalized 

to the experimental results Fexp (i.e. an average of two tests). 

 

 

Fmax (kN) 

IMP-1 703 

IMP-2 684 

IMP-3 657 

IMP-4 723 

IMP-5 857 

IMP-6 920 

IMP-7 806 

IMP-8 897 

IMP-9 754 

Test-1 915 

Test-2 866 
 

Fig. 3.29: Behavior of panel R5-S2 assuming various imperfection shapes 

 

Based on these graphs, it may be concluded that the panels’ sensitivity to imperfections, in 

general, decreases with the number of stiffeners, which is manifested by a reduced difference 

between the studied 9 imperfections, regardless of the radius of curvature (see Fig. 3.30c and Fig. 

3.30d). This means that the importance of the adopted imperfection shape decreases and thus, 

the results are closer to the ones obtained experimentally, with the coefficient of variation of 

CoV = 18%, which is significantly lower than in the case of unstiffened panels (CoV = 36%). 

Moreover, in the case of unstiffened and lightly stiffened panels, an increased imperfection 

sensitivity is noticed for the increased curvatures, where the difference between the maximum 

and the minimum value between the analyzed 9 imperfections exceeds 60%. 
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a) b) 

  
c) d) 

Fig. 3.30: Comparison of results with respect to radius R: a) S0; b) S1; c) S2; d) S3 

 

Furthermore, in all four graphs, a declining trend may be noticed with the increase of the 

curvature parameter, extending the gap between the numerical and experimental results. This 

leads to the conclusion that the adoption of the equivalent geometric imperfections from Annex 

C.5 of EN 1993-1-5 for flat plates leads to conservative results and thus, are not appropriate for 

highly curved panels that are known to be more susceptible to imperfections.  

In Fig. 3.31a and Fig. 3.31b, the results of the study are statistically processed, in order to 

identify: i) the critical imperfection shape that most frequently gives the lowest ultimate resistance 

out of 9 studied imperfection patterns; ii) the imperfection pattern that gives the result closest to 

reality (i.e. experimental results). 

Based on the results presented in Fig. 3.31, it may be stated that for the prediction of the 

ultimate strength of curved panels, the adoption of one of the first four buckling modes as the 

imperfection shape is not necessarily a good assumption, as commonly believed. In fact, the 

imperfection shape affine to the global eigenmode leads to the most accurate results (i.e. 

CoV = 11%, see Fig. 3.31b, with the mean error of 7%), which coincides with the conclusions 

found by Tran et al. [59]. On the other hand, another widespread assumption that the 1st buckling 

mode is the critical imperfection shape is proven to be wrong. Namely, in this study, imperfection 

with the shape of the 1st buckling mode leads to the lowest ultimate resistance only in 6.25% of 

cases, according to Fig. 3.31a. However, it may be seen that for any given combination of radius 

of curvature and number of stiffeners, in more than 80% of cases the minimum collapse load is 

found by introducing an imperfection in the form of one of the first four modes. Therefore, for 

the design practice, where the safest solution is sought for, it is not sufficient to consider only 
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the first buckling mode, but the first four buckling modes should be verified as possible critical 

imperfection shapes.  

 

  
a) b) 

Fig. 3.31: Comparison of results: a) Frequency of imperfection leading to the lowest strength; b) CoV 

(%) of different imperfections around the experimental results 

 

3.5 Summary 

In this chapter, axial compression tests on 32 curved panels, both stiffened and unstiffened, 

were reported and the results were compared with the existing design standards and semi-

empirical formulae available in the literature. Using the numerical FE models calibrated against 

the experimental tests, a series of material and geometrical non-linear analyses were performed 

to assess the imperfection sensitivity of curved panels and the influence of various imperfection 

shapes on their ultimate resistance. In particular, it was shown that: 

• An unstable post-buckling path, governed by geometrical nonlinearities, characterizes the 

behavior of curved panels, with a dominant global buckling in case of unstiffened panels, 

whereas, in the case of stiffened panels, local buckling of both the stiffeners and the 

curved subpanel prevails; 

• The methods proposed by Tran et al. [59] and in the OUTBURST research project [85] 

seem to be the most suitable for the estimation of the ultimate resistance of the stiffened 

curved panels (i.e. with the mean difference of 9% and 6%, respectively, and CoV ≈ 16% 

with respect to the experimental results); however, the method from the OUTBURST 

research project is used further in the thesis since it allows for higher local curvatures 

(Zloc ≤ 100); 

• The use of the design standard (i.e. EN 1993-1-5 and DNV-RP-C202) almost in all cases 

leads to an underestimation of the ultimate resistance, with the mean difference of 30% 

(CoV ≈ 28%) and 50% (CoV ≈ 37%), respectively; 

• The imperfection sensitivity decreases with the number of stiffeners, regardless of the 

curvature parameter, reducing the relevance of the imperfection shape adopted; 

• The equivalent geometric imperfections recommended by EN 1993-1-5 for flat plates 

lead to conservative results in the case of highly curved panels (e.g. average error 

∆max = 50% for R2.5); 
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• The modeling of the imperfection in the form of the global eigenmode leads to the results 

closest to the experimental ones (mean error 7%, CoV ≈ 11%), whereas the imperfection 

in the form of one of the first four eigenmodes leads to the safest approach in more than 

80% of cases; 

 

Finally, due to the complexity of the problem and the unpredictability of the imperfection 

distribution, the actual pattern needs to be standardized. Therefore, a further experimental study 

is necessary, with a clear definition of fabrication tolerances for curved panels that should be 

included in design codes in a way it was done for flat plates.  
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   CHAPTER 4 

4. Elastic buckling behavior of curved panels 
under shear 

4.1 Overview 

Shear load, besides the compression load that was tackled in chapter 3, is another dominant 

loading condition in box-girder bridge decks, close to the intermediate support, where the curved 

panel is integrated into the lower flange of the cross-section. However, based on the literature 

review presented in section 2.4, it was concluded that very few studies on the curved panels under 

shear had been reported in the literature so far, without a clear design method for the assessment 

of the ultimate shear load. Hence, the thesis aims to propose a methodology, allowing the 

computation of the ultimate shear resistance of unstiffened simply supported curved panels 

under shear, thus addressing most practical cases of bridges, but also offshore and aeronautical 

applications.  

Since the objective is to propose a design methodology that is conceptually similar to the 

existing one for flat plates under shear (see 2.5.2), it is necessary first to calculate the critical shear 

load for a curved panel. Therefore, this section is dedicated to the elastic buckling behavior of 

curved panels only, with the ultimate goal to propose a simple expression for prediction of shear 

buckling coefficient kτ, thus accomplishing Task 3.1 of the thesis defined in section 1.2. 

Subsequently, Task 3.2 is tackled in chapter 5, in which the expressions for the ultimate shear 

load are proposed. 
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The numerical study, presented in this chapter, is divided into three sections. First, in section 

4.2, the numerical model used in the parametric study is described, whereas, the most relevant 

findings are discussed in section 4.3. Finally, in section 4.4, a new formula is proposed to estimate 

the critical shear stress of unstiffened curved panels, valid for three different types of edge 

constraints, various curvatures (1 < Z ≤ 100) and various aspect ratios (α ≤ 5.0).  

4.2 Numerical finite element model 

4.2.1 Section overview 

This section depicts the numerical models and numerical analyses carried out using the FEM 

software ABAQUS [142]. To define the critical buckling load, only the linear bifurcation analysis 

(LBA) is performed for each model, using the Subspace algorithm available in the software. Since 

the critical load is defined as the minimum load at which the buckling of panel occurs, in all LBAs 

carried out in this study, only the 1st eigenmode is considered. 

In 4.2.2, the most relevant features of the numerical model (e.g. geometry, material properties, 

boundary and loading conditions, FE mesh size, etc.) are described in detail, whereas some of 

the assumptions used in the study presented in section 3.4 are only briefly addressed. The 

validation of the numerical model is carried out in 4.2.3, using the available theoretical results as 

the comparator. Finally, some additional considerations regarding the curvature parameter Z are 

presented in 4.2.4, proving that this parameter is suitable to characterize the geometry of 

cylindrically curved panels.  

4.2.2 Definition of the model 

4.2.2.1 Geometry and material properties 

In line with the assumption that the geometry of cylindrically curved panels is fully described 

only by the aspect ratio α (see Eq.(2.1)) and the curvature parameter Z, being a function of width 

b, thickness t and radius R (see Eq.(2.2)), the width and the thickness in this study are kept 

constant and equal to b = 1000 mm and t = 10 mm, respectively. Hence, to vary the curvature 

parameter and the aspect ratio between the desired ranges, the radius of curvature and the length 

of the panels are varied according to Table 4.1, thus addressing all the cases with the radius-to-

thickness ratio higher than R/t > 100.  

 

Table 4.1: Geometry of the curved panels considered in this study 
 

Width, b Length, a Thickness, t Radius, R Aspect ratio, α Curvature, Z 

1000 mm 200 – 5000 mm 10 mm ≥ 1000 mm 0.2 – 5.0 0 - 100 

 

The geometry of panels is discretized by a mesh of finite elements, whose coordinates of the 

nodes are previously calculated and introduced in each model using a sub-routine.  

Regarding the material model of structural steel applied in the models, only the nominal elastic 

properties relevant for the LBA are considered, such as Poisson’s ratio equal to ν = 0.3 and the 

modulus of elasticity equal to E = 210 GPa. 
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4.2.2.2 Loads and boundary condition 

The loads and boundary conditions are defined using a cylindrical coordinate system (see Fig. 

4.1a), with the origin at the point O that lays on the revolution axis. Similar to the numerical 

model used in section 3.4, the displacement field is defined by uz, uφ and ur, which are the 

displacements in axial z-direction, the circumferential displacements, and the radial 

displacements, respectively. 
 

 

a) 

   

b) c) d) 

Fig. 4.1: Boundary conditions: a) coordinate system, b) BC1; c) BC2 and d) BC3 

 

Regarding the boundary conditions, only simply supported panels are considered in this study. 

It is important to stress that in reality the boundary conditions of a panel are rarely simply 

supported, but rather somewhere in between the simply supported and the clamped condition. 

This is due to the surrounding supports, which have a certain torsional rigidity that make the 

boundary conditions of a panel elastically rotation-restrained. Therefore, the higher the torsional 

rigidity of support the higher the level of the edge constraint [147]. However, since the principal 

goal of this study is to propose a formula that returns lower bound of the shear buckling load, as 

it is commonly done in the design practice (e.g. European standard for flat plates), where a certain 

level of safety needs to be guaranteed, only simply supported curved panels are studied.  

To ensure the desired boundary condition, the following restraints are introduced in the shell 

model (see Fig. 4.1): all edges restrained in the radial direction (i.e. ur = 0); the axial displacements 
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prevented in points A, B, C and D (i.e. uz = 0) and the circumferential displacements prevented 

point A (i.e. uφ = 0). 

In addition, three different boundary conditions are considered, based on the edge in-plane 

constraints (C – constrained or UC – unconstrained edge), encountered also in several studies (e.g. 

[55], [71]) on curved panels subjected to pure compression: 

• BC1: all edges are free to deflect (UC) (Fig. 4.1b); 

• BC2: curved edges EF and GH are forced to remain straight (C), while the longitudinal 

edges FG and EH are free to deflect (UC) (Fig. 4.1c); 

• BC3: all edges are forced to remain straight (C) (Fig. 4.1d); 

 

One may agree that the exact level of in-plane constraint, in reality, is difficult to determine. 

Hence, these three simplified cases aim to cover the possible range of behaviors, where BC1 and 

BC3 correspond to lower and upper bounds, and BC2 is an intermediate case. For instance, 

boundary condition BC2 simulates approximately the boundary conditions of a cylindrically 

curved bottom flange in a box-girder bridge, where rigid diaphragms prevent the curved edges 

to deflect freely (C), whereas the flexible webs allow the longitudinal edges to wave (UC). 

To force an edge to remain straight (as required in the case of the boundary condition BC2 

and BC3), it is necessary to define the kinematical equations, which dictate displacements of the 

nodes along the edges in a kinematically consistent manner once the edge starts to displace. These 

kinematical equations are introduced along the considered edge by means of keyword 

*EQUATION, where the displacement of each node N is defined by translational and rotational 

component of the corresponding master node that governs constraint behavior. The edge 

constraints used in the numerical model are summarized in Table 4.2. 

 

Table 4.2: In-plane edge constraints applied in the model for BC2 and BC3 
 

Boundary type Edge Master node Equation 

BC2 
EF A 3 3 4

N A Au u d u= +   

GH B 3 3 4
N B Bu u d u= +   

BC3 

EF A 3 3 4
N A Au u d u= +   

GH B 3 3 4
N B Bu u d u= +   

FG D 2 2 4
N D Du u d u= +   

EH C 2 2 4
N C Cu u d u= +   

 

In these expressions, u2, u3, and u4 correspond to the circumferential displacement (uφ), axial 

displacement (uz) and the rotation around the radial axis, respectively, since ABAQUS uses a 

convention in which the radial, circumferential and longitudinal axes are interpreted as the 1-, 2-

, and 3-axes, respectively. The scalar d represents the distance between a node N and the 

corresponding master point. 
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Since the translational component of the master nodes A and B (i.e. u3
A and u3

B) is prevented 

in the longitudinal direction due to requirements for the simply supported conditions, the axial 

displacement of a node N is defined only by the rotational component. This further means that 

the edges EF and GH may only rotate around points A and B (see Fig. 4.1c and Fig. 4.1d). 

Finally, regarding the loading conditions applied in the numerical model, the shell edge load 

is uniformly distributed along all the edges in the middle surface of the panels.  

4.2.2.3 Type and size of FE 

To choose an appropriate type and dimension of the shell finite element for the discretization 

of the numerical models, a mesh sensitivity study is first carried out. Namely, the convergence of 

the shear buckling coefficient kτ is monitored for three different curvatures, varying the size of 

elements and comparing several types of shell FE, commonly encountered in the literature for 

studies on thin shell-like structures. Since the elements are assumed to be squared, their number 

in the circumferential direction nC, for a given width of b = 1000 mm, remains constant, whereas, 

in the longitudinal direction, the number of elements nL depends on the aspect ratio. The results 

of the convergence study are summarized in Table 4.3.  

 

Table 4.3: Mesh convergence study (shear buckling coefficient - kτ) 
 

Curvature FE type 
33.3x33.3mm2 

(nC = 30) 

25x25mm2 

(nC = 40) 

20x20mm2 

(nC = 50) 

10x10mm2 

(nC = 100) 

Z = 0 

S4 9.38 9.33 9.31 9.28 

S4R 9.36 9.32 9.30 9.27 

S8R5/S9R5 9.31 9.30 9.30 9.28 

Z = 50 

S4 19.11 18.95 18.87 18.76 

S4R 18.99 18.87 18.81 18.73 

S8R5/S9R5 18.81 18.76 18.78 18.72 

Z = 100 

S4 27.79 27.50 27.36 27.17 

S4R 27.62 27.40 27.30 27.16 

S8R5/S9R5 27.22 27.20 27.19 27.15 

 

Based on these results, it is concluded that the size of an element of 25 x 25 mm2 is sufficient 

to achieve numerical convergence, regardless of the FE type, which means that further increase 

of the number of elements practically does not affect the results. However, it is decided again to 

discretize the numerical models by four-node shell elements (S4R) since it is concluded that 

considerable CPU time saving could be achieved. 

4.2.3 Validation of the model 

Owing to the lack of a general analytical expression that allows the calculation of the shear 

buckling coefficient of the curved panels for various aspect ratios and curvature parameters, the 

numerical results are validated against the available theoretical results for flat panels, implemented 

in EN 1993-1-5 [11]. Thus, the validation is done by comparing the numerical results of the shear 

buckling coefficient (kτ,num) for flat unstiffened panel (Z = 0) with the theoretical results (kτ,theory), 

derived from Eq.(2.101). The results are presented in Table 4.4, from where it may be concluded 
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that the agreement is excellent, with the maximum difference of Δmax = 3.3%. Therefore, for the 

purpose of this study, in which only LBA analyses are carried out, it is possible to consider the 

present numerical model validated.  

 

Table 4.4: Validation of numerical models – flat panel 
 

α = a/b 0.4 0.6 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 

kτ,num 37.68 18.95 9.33 7.07 6.55 6.04 5.84 5.74 5.63 5.59 5.53 

kτ,theory 37.38 18.83 9.34 7.12 6.34 5.98 5.78 5.67 5.59 5.54 5.50 

Δ (%) 0.83 0.61 - 0.16 - 0.63 3.31 0.94 1.02 1.25 0.68 0.86 0.61 

 

4.2.4 Justification of the curvature parameter as a key parameter 

The non-dimensional curvature parameter Z, defined by Eq.(2.2), is a very convenient 

parameter for the characterization of the geometry of cylindrically curved panels, as it merges 

into one all the other relevant parameters (i.e. R, t, and b). As stated in Martins et al. [55], numerous 

authors questioned and confirmed the suitability of curvature parameter as a key parameter for 

assessment of the buckling behavior of curved panels when subjected to uniform compression. 

This means that two panels with the same curvature parameter, despite having different widths, 

thicknesses and/or radii, should always yield the same critical load.  

To the best of the author’s knowledge, such suitability of curvature parameter has never been 

validated in the case of critical shear load of curved panels. Hence, in this study, additional 1600 

LBAs are carried out, aiming to verify whether the critical shear load (i.e. shear buckling 

coefficient) may be determined based only on the curvature parameter. In Table 4.5, the ranges 

of parameters for the presented study are summarized, whereas the mesh size and the boundary 

conditions (BC1) are kept the same in all analyses. 

 

Table 4.5: Ranges of parameters for a study on the Z parameter justification 
 

Width, b [mm] Thickness, t [mm] Aspect ratio, α Curvature, Z 

500 – 1000 (step 100) 
5 – 15 (step 2.5) 

0.5 – 3.0 (step 0.5) 
0 – 100 (step 25) 

1000 – 2000 (step 500) 3.0 – 5.0 (step 1) 

 

In each model, for a certain combination of width b and thickness t from the table, the desired 

curvature is obtained by varying the radius of curvature R. The results are compared against the 

reference values (kτ,ref), which are assumed to be the shear buckling coefficients of the panels with 

the width equal to b = 1000 mm, for each curvature parameter. In Table 4.6, some results of the 

study are presented, highlighting the most relevant findings. 
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Table 4.6: Justification for the use of Z as a key parameter - kτ/kτ,ref (%) 
 

Z = 0 b = 500 mm b = 600 mm b = 800 mm b = 1000 mm b = 1500 mm b = 2000 mm 

t = 5.0 mm 0.0 0.2 0.4 0.5 0.8 0.8 

t = 10.0 mm -1.2 -0.8 -0.2 0.0 0.4 0.5 

t = 12.5 mm -1.9 -1.3 -0.6 -0.2 0.2 0.4 

t = 15.0 mm -2.8 -1.9 -1.1 -0.5 0.0 0.3 

Z = 50 b = 500 mm b = 600 mm b = 800 mm b = 1000 mm b = 1500 mm b = 2000 mm 

t = 5.0 mm 0.0 0.2 0.5 0.6 0.7 0.7 

t = 10.0 mm -2.1 -1.3 -0.4 0.0 0.4 0.6 

t = 12.5 mm -3.6 -2.3 -1.0 -0.4 0.2 0.5 

t = 15.0 mm -5.5 -3.6 -1.8 -0.9 0.0 0.3 

Z = 100 b = 500 mm b = 600 mm b = 800 mm b = 1000 mm b = 1500 mm b = 2000 mm 

t = 5.0 mm 0.0 0.6 1.1 1.4 1.7 1.8 

t = 10.0 mm -6.2 -3.5 -1.1 0.0 1.0 1.4 

t = 12.5 mm -11.9 -7.0 -2.8 -1.1 0.6 1.1 

t = 15.0 mm -20.1 -11.9 -5.1 -2.4 0.0 0.8 

 

Based on these presented results, it may be noticed that for low values of the b/t ratio (i.e. 

stocky panels), marked in bold in Table 4.6, and for increasing curvature parameter, the panels start 

to change qualitatively its behavior. This alteration of behavior is illustrated in Fig. 4.2, in which 

b/t ratio is varied (t = 15 mm), while keeping the same curvature parameter Z = 100. 

 

b/t = 33.3 b/t = 40 b/t = 53.3 b/t = 66.6 

    

    

Fig. 4.2: Different buckling behavior of a panel with Z = 100 

 

From the figure, it may be observed that in case of panels with a reduced b/t ratio, the cylinder-

type behavior with torsional effect starts to prevail, rather than a pure shear behavior of an 

isolated curved panel. Consequently, the shear buckling coefficient of these panels differs from 

the expected reference buckling coefficient for a given curvature parameter (kτ,ref), with an error 

that exceeds 5% and goes up to 20% in case of very curved stocky panels. 
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This further means that there are panels for which the shear buckling coefficient cannot be 

obtained based only on the curvature parameter, as it is assumed in the NASA curves, but 

additional information on the b/t ratio is required. The reason for this is that the NASA curves 

were mainly developed for the design of aircraft, where the b/t ratio of panels is considerably 

higher, and therefore, the problem of stocky panels with high curvatures was never encountered.  

Therefore, it is intended in this study to define the lower bound limit for the b/t ratio, below 

which the curvature parameter is no longer a suitable parameter for the prediction of the shear 

buckling coefficient. This is achieved by using Eq.(4.1), derived from Eq.(2.2) 

 
min min

b R
Z

t t

   
   

   
  (4.1) 

 

where (R/t)min is the minimum value of R/t ratio, taken as the one below which the error 

between the buckling coefficient of the considered panel (kτ) and the buckling coefficient of the 

reference panel (kτ,ref) exceeds Δ = 5%. The value of (R/t)min depends not only on the curvature 

parameter Z, but also on the aspect ratio α of the panel, as shown in Table 4.7. 

 

Table 4.7: Minimum R/t ratio for a suitable Z parameter 
 

(R/t)min α ≥ 3.0 α = 2.0 α = 1.0 α = 0.5 

Z = 0 136 178 278 544 

Z = 25 17 22 16.5 34.5 

Z = 50 31.5 33 15 18.5 

Z = 75 45.5 48 16 14.5 

Z = 100 56 56 20.5 17 

 

Based on the results presented in Table 4.7, the minimum values of the b/t ratio (Eq.(4.1)) are 

plotted in Fig. 4.3, for the aspect ratios higher than α ≥ 1. It may be noticed, for instance, that a 

panel with a curvature parameter equal to Z = 60, needs to have the b/t ratio equal or higher than 

b/t ≥ 30 for the aspect ratio α = 1.0, and b/t ≥ 46 for α = 2.0, in order to avoid the inconsistency 

in results encountered in the case of stocky panels.  

However, since the objective is to define the minimum b/t ratio that would cover all the cases 

of curved panels, regardless of the aspect ratio, the limit (red dashed line) is conservatively 

adopted as an upper bound of the presented curves, which may be approximated by Eq.(4.2). 

 
2

min

14.5
20 2.6

b Z Z

t

   
= + +   

   
  (4.2) 

 

This criterion needs to be satisfied in order to avoid the aforementioned cylinder-type 

behavior, which further allows for a simple calculation of the shear buckling coefficient based 

only on the curvature parameter. Therefore, for any b/t ratio above these limits, the curvature Z 

may be considered a suitable key parameter for the characterization of the geometry of 

cylindrically curved panels, whereas for the values below the limits this statement cannot be 

granted. 
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Fig. 4.3: Minimum values of b/t ratio for a suitable Z parameter 

 

Finally, in Fig. 4.4, the b/t ratio is plotted against the curvature parameter Z for numerous real 

examples of the steel curved panels used in different engineering applications, addressed in 

chapter 2 (see Fig. 2.6). Additionally, the newly developed limitation for b/t ratio, given by 

Eq.(4.2), is also plotted.  

It may be noticed that only a few cases of bridges with the curvature parameter Z < 1 have 

the b/t ratio below the limit. However, these panels are considered flat panels according to 

EN 1993-1-5 [11], and therefore, they are not of interest in this study. For panels with curvature 

Z ≥ 1, none of the examined panels has the b/t ratio below the proposed limit. This approves 

that the Z parameter may be comfortably used for the prediction of the shear buckling coefficient 

for all the curved panels with the geometry that falls in the domain of the practical design interest, 

in the same way it is used in case of the panels subjected to in-plane compression. 

 

 

Fig. 4.4: Ranges of the b/t ratio and the Zloc parameter of practical interest (see Fig. 2.6) 
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4.3 Parametric study 

4.3.1 Section overview 

This section is devoted to a numerical parametric study, carried out to characterize the 

buckling behavior of unstiffened simply supported curved panels under pure in-plane shear. First, 

the parameters varied in the study are summarized in 4.3.2, whereas the influence of aspect ratio, 

curvature parameter and the boundary conditions on the buckling behavior is presented in 4.3.3. 

4.3.2 Ranges of parameters 

The parametric study considers three boundary conditions – BC1, BC2, and BC3, presented 

in Fig. 4.1. For each of them, 101 different curvatures (i.e. Z = 0 - 100 with step 1) and 49 aspect 

ratios (i.e. α = 0.2 - 5.0 with step 0.1) are varied, comprising in total 14 847 linear buckling 

analysis, summarized in Table 4.1. 

The width and thickness are kept constant since it was proven in 4.2.4 that the curvature 

parameter might be reliably used for the definition of the panel’s geometry, provided that the 

previously set criterion, given by Eq.(4.2), is satisfied. In the presented study, the b/t ratio is equal 

to b/t = 100, which satisfies the criterion for the entire range of curvature parameters. 

4.3.3 Elastic buckling behavior of curved panels 

4.3.3.1 Influence of aspect ratio 

The dependence of the shear buckling behavior on the aspect ratio (α = a/b) is not a novelty 

and it was addressed in almost all relevant references dealing with this topic, presented in section 

2.4. In fact, the expression for the calculation of the shear buckling coefficient prescribed by 

EN 1993-1-5 for flat plates reproduced in Eq.(2.101), directly depends on the aspect ratio. As for 

the cylindrically curved panels, the aforementioned analytical solutions (i.e. NACA monographs), 

also allow the computation of the shear buckling coefficient as a function of various aspect ratios 

(see Fig. 2.20 and Fig. 2.21). 

In Fig. 4.5, the numerical results are presented to emphasize the influence of the aspect ratio 

on the shear buckling coefficient for various curvatures and boundary conditions. It may be 

noticed that a very good agreement is achieved between the analytical solutions (red line) and the 

numerical results for the flat plate (Z = 0), as already shown in 4.2.3. However, for increased 

curvatures, Eq.(2.101) is no longer suitable for the prediction of the shear buckling coefficient, 

as it returns very conservative results. 

Here, it is necessary to point out that the buckling behavior of cylindrically curved panels is a 

complex problem that cannot be considered as a function of only one variable. Namely, the form 

of the first eigenmode is quite difficult to anticipate since it is determined by the combination of 

aspect ratio and curvature parameter, and not only by one of them. In addition, the complexity 

of the problem increases by the inclusion of different boundary conditions since two panels with 

the same geometry and with different boundary conditions may also experience different 

buckling behavior.  
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 a) 

  
b) c) 

Fig. 4.5: Influence of α on the shear buckling coefficient for: a) BC1; b) BC2; c) BC3 

 

Nevertheless, from Fig. 4.5, it is noticed that for all three boundary conditions, the critical 

shear stress decreases with the increment of the aspect ratio and this trend is always the same, 

regardless of the curvature parameter, which was also confirmed in Refs. [109], [127]. 

Furthermore, for high values of aspect ratio, the minimum elastic buckling coefficient stabilizes 

and the influence of aspect ratio becomes practically negligible. 

This further means that the dependence between shear buckling coefficient and aspect ratio, 

for a certain curvature parameter, may be described by a parabolic function, with a format similar 

to Eq.(2.101). A minor deviation from this trend is noticed only in several points in the 

intermediate range of aspect ratio (α = 1.0 - 2.5), for higher values of the curvature parameter 

(see Fig. 4.5). This may be explained by the sudden modification of the buckling pattern that is 

noticed to occur in that range, as it was noticed also in [127]. Namely, with a minor change of 

the aspect ratio, the first buckling mode may shift randomly from a symmetric to an 

antisymmetric buckling mode and vice versa, leading also to a sudden jump (or drop) in the shear 

buckling coefficient.  

In Fig. 4.6, these changes in the buckling form with a change of the aspect ratios are presented 

for the boundary conditions BC1, BC2, and BC3, whereas the curvature parameter is kept 

constant and equal to Z = 100. 
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Based on this example, it may be noticed that a minor change in the aspect ratio (i.e. from 

α = 1.6 to α = 1.8) may cause a drastic change in the buckling pattern, depending on the boundary 

condition. Namely, in the case of BC1, the buckling mode shifts from the antisymmetric to 

symmetric; in the case of BC3, it jumps from symmetric to antisymmetric, whereas in the case of 

BC2, no change in the buckling mode occurs for this combination of α and Z. Therefore, two 

consecutive values of shear buckling coefficients in Fig. 4.5 may show a certain discrepancy from 

the uniformly declining trend, especially in the case of more flexible BC1, which seems to be 

more susceptible to these changes. Nevertheless, these deviations of the shear buckling 

coefficient are almost negligible and thus, they are not explicitly considered in section 4.4, where 

the expression for kτ is proposed. 

 

 α = 1.6 α = 1.8 

BC1 

  

BC2 

  

BC3 

  

Fig. 4.6: Influence of α on the buckling mode for various boundary conditions (Z = 100) 

 

4.3.3.2 Influence of the curvature parameter 

The influence of the curvature parameter on the shear buckling behavior of curved panels was 

discovered in the very first studies dealing with this problem, summarized in 2.4.2. To analyze 

the Z - kτ relation, the shear buckling coefficients obtained numerically are plotted in Fig. 4.7 

against the curvature parameter, for the boundary condition type BC2 and various aspect ratios. 

It is important to stress that such an interpretation of the results was not possible before, owing 

to the various limitations found in literature (see Table 2.3). 
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a) b) 

Fig. 4.7: Influence of curvature on the shear buckling coefficient: a) α ≤ 1.0; b) α > 1.0 

 

It may be observed from these graphs that the increase of the curvature parameter leads to an 

increase of the critical buckling stress. This is explained by the fact that panels with a higher 

curvature have also a higher second moment of area (i.e. initial stiffness) thus, yielding higher 

critical stress. Moreover, it may be noticed that this increasing trend is the same, regardless of the 

aspect ratio. 

Furthermore, from Fig. 4.7b, it may be noticed that for the entire spectrum of curvatures the 

influence of the aspect ratio starts to decrease for the panels with the aspect ratio higher than 

α ≥ 3.0. To understand to what extent its influence decreases, the shear buckling coefficients are 

presented in Table 4.8 for various aspect ratios (i.e. α = 3.0, α = 4.0 and α = 5.0) and various 

curvature parameters. In addition, the differences between the aspect ratio α = 4.0 and α = 3.0 

(i.e. Δ α4 - α3), as well as between α = 4.0 and α = 5.0 (i.e. Δ α4 – α5) are calculated. 

 

Table 4.8: Buckling coefficient kτ for panels with α ≥ 3.0 
 

 Z = 0 Z = 20 Z = 40 Z = 60 Z = 80 Z = 100 

α = 3 5.844 7.972 10.895 13.946 16.883 19.634 

α = 4 5.628 7.636 10.284 12.610 14.933 17.222 

α = 5 5.534 7.302 10.070 12.247 14.127 15.972 

Δ α4 - α3 (%) -3.69 -4.21 -5.62 -9.58 -11.55 -12.28 

Δ α4 - α5 (%) 1.71 4.57 2.12 2.96 5.70 7.83 

 

The results from the table indicate that the influence of the aspect ratio indeed drops gradually 

for α ≥ 3.0. Namely, the difference between the aspect ratio α = 4.0 and α = 3.0 is slightly higher 

only for higher curvature parameters, whereas the difference between the aspect ratio α = 4.0 

and α = 5.0 is practically negligible for the whole spectrum of Z.  

A further increase of the aspect ratio above α ≥ 5.0 would be redundant since it leads to very 

long panels, rarely met in the practical applications. Moreover, based on the trend presented in 

Table 4.8, one may deduce that the behavior of such panels would be very similar to the panels 

with the aspect ratio equal to α = 5.0. For instance, the shear buckling coefficient for an infinitely 

long flat panel (i.e. Z = 0 and α → ∞) asymptotically reaches the lowest theoretical value of 
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kτ = 5.34 (see Eq.(2.101)). This leads to a negligible difference of Δ = 3.5% when compared to 

the buckling coefficient of a flat panel with the aspect ratio α = 5.0 (kτ = 5.53). Therefore, the 

panels with the aspect ratio higher than α ≥ 5.0 are not considered in this study. 

Finally, the influence of the curvature parameter on the eigenmode shape is illustrated in Fig. 

4.8, considering panels with two different aspect ratios (i.e. α = 1.0 and α = 5.0) and the boundary 

condition BC2. 

 

 Z = 0 Z = 25 Z = 50 

α = 1.0 

   

α = 5.0 

   

Fig. 4.8: Influence of curvature on the shear buckling mode 

 

It may be noticed that the pattern of the 1st buckling mode varies with the curvature parameter 

without a clear trend, shifting occasionally from symmetric to antisymmetric shape, depending 

on the given combination of Z and α.  

4.3.3.3 Influence of boundary conditions 

The influence of the various boundary conditions on the shear buckling behavior was very 

scarcely investigated in the past. Namely, the analytical solutions available in the literature (e.g. 

NACA monographs [119]-[120], Domb&Leigh [41], Machaly et al. [126]) allow the calculation of 

the shear buckling coefficient for simply supported panels, without a clear specification of the 

in-plane edge constraints. 

Therefore, the comparison of the three boundary conditions, introduced earlier in this chapter 

(see Fig. 4.1) is carried out for panels with various aspect ratios and curvature parameters. The 

most relevant results are summarized in Fig. 4.9, emphasizing the importance of the edge 

constraints on the critical shear load.  
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Fig. 4.9: Influence of boundary conditions - FEM vs theoretical results (NACA curves) 

 

It may be noticed that the level of in-plane constraint has a major influence on the shear 

buckling coefficient. Namely, the case where the most of the DOFs are restrained (BC3), as the 

most rigid one, expectedly gives the highest values of the buckling load, whereas the panels with 

boundary condition BC1 yield the lowest buckling load. Finally, the boundary condition BC2 is 

an intermediate case, limited by BC1 and BC3. 

Moreover, in Fig. 4.9, the comparison between the theoretical (NACA curves) and FEM 

results is made. It may be concluded that in the NACA monographs, the shear buckling 

coefficient corresponds best to boundary condition BC2, which means that the tested curved 

panels are most likely partially constrained. However, in some cases (e.g. α = 1.0), the values of 

the shear buckling coefficient from the NACA curves are even higher than those obtained 

numerically. Therefore, since in design practice the edges are commonly assumed to be 

unconstrained (i.e. BC1 boundary condition), the use of the NACA monographs could lead to an 

overestimation of the buckling load, and thus an unsafe design.  

In Table 4.9, the values of the shear buckling coefficients from Fig. 4.9 are presented for two 

aspect ratios (α = 1.0 and α = 4.0) and several curvature parameters. To examine the influence 

of the three boundary conditions, the difference between the BC2 and BC1 (i.e. Δ BC2 - BC1), 

as well as between BC2 and BC3 (i.e. Δ BC2 – BC3) are calculated. 
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Table 4.9: Influence of boundary conditions on shear buckling coefficient kτ 
 

α = 1.0 Z = 0 Z = 20 Z = 50 Z = 100 

BC1 9.33 12.51 18.84 27.58 

BC2 9.33 13.15 20.31 31.46 

BC3 9.33 14.25 22.78 34.55 

Δ BC2-BC1 (%) 0.0 5.1 7.8 14.1 

Δ BC2-BC3 (%) 0.0 -7.7 -10.8 -8.9 

α = 4.0 Z = 0 Z = 20 Z = 50 Z = 100 

BC1 5.63 7.31 11.03 14.54 

BC2 5.63 7.64 11.45 17.22 

BC3 5.63 12.36 20.05 29.18 

Δ BC2-BC1 (%) 0.0 4.4 3.8 18.4 

Δ BC2-BC3 (%) 0.0 -38.2 -42.9 -41.0 

 

The results of this comparative analysis indicate that the difference between the buckling 

coefficients for the three boundary conditions increases with the curvature, however, the 

difference does not increase uniformly (e.g. for α = 4.0, the difference Δ BC2-BC1 for Z = 20, 

Z = 50 and Z = 100 is equal to 4.4%, 3.8%, and 18.4%, respectively). This is due to 

aforementioned complexity of the problem, where the buckling pattern and thus the buckling 

load that panel yields cannot be considered only as a function of the curvature Z, but also of the 

aspect ratio. According to Table 4.9, it may be concluded that the difference between the buckling 

coefficients generally increases as the aspect ratio increases, which means that for the shorter 

panel, the role of the constraints loses its relevance. 

Finally, the influence of the boundary condition on the buckling shape is demonstrated in Fig. 

4.10.  

Based on this example, it may be noticed that the flat panels (Z → 0) are insensitive to the 

differences between boundary conditions BC1, BC2, and BC3, which consequently explains the 

same buckling coefficients obtained in Table 4.9. The difference in results, however, is noticeable 

only for higher values of curvatures since more energy is required for the onset of buckling. This 

is particularly emphasized in the case of fully constrained edges (BC3), where the buckling shapes 

are substantially different from the other two boundaries, manifested by a different number of 

the buckling waves. 

Consequently, in section 4.4, the formulae are proposed for all three cases of boundary 

conditions, allowing for various levels of in-plane constraint, having apparently a huge impact on 

the buckling behavior of the curved panels. 
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 Z = 0 Z = 50 Z = 100 

BC1 

   

BC2 

   

BC3 

   

Fig. 4.10: Influence of boundary conditions on the eigenmode form (α = 1.0) 

 

4.4 Proposal of design rules for the buckling coefficient  

4.4.1 Section overview 

In this section, a new set of formulae for the prediction of the shear buckling coefficient for 

unstiffened simply supported curved is proposed, based on the above presented results from the 

parametric study. The calibration methodology used to derive the formulae is briefly described 

in 4.4.2, whereas in 4.4.4, the proposed formulae are statistically validated. 

4.4.2 Calibration method 

The principal goal is to propose the formulae with a similar mathematical framework from 

the European standard for flat plates (EN 1993-1-5), extrapolating them to cylindrically curved 

panels by adding the effect of the curvature parameter Z. This extension of the formulae is done 

by calibration of numerical results of kτ within the ranges of curvature and aspect ratios from the 

parametric study (see Table 4.1). 

To achieve that, the main challenge is to define a suitable function of two variables, kτ = f (Z, 

α), which returns the value of the shear buckling coefficient for any combination of aspect ratio 

and curvature parameter from the considered ranges, as presented in Fig. 4.11. 
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BC1 BC2 BC3 

   

Fig. 4.11: Shear buckling coefficient as a function of the curvature and aspect ratio 
 

The starting point is to use Eq.(2.101) from Annex A.3 of EN 1993-1-5, which reproduces 

the shear buckling coefficient kτ for a flat plate (Z = 0), simply supported on four edges, without 

in-plane constraints (i.e. case BC1). Subsequently, the set of proposed formulae is divided in three 

main branches, based on the boundary conditions (BC1, BC2, and BC3), whereas each of these 

three branches are divided into two sub-categories of panels: i) short (α ≤ 1.0) and ii) long panels 

(α > 1.0), in the same way as it is done in EN 1993-1-5. 

4.4.3 Proposed formulas 

The proposed formula for both the short (α ≤ 1.0) and the long panels (α > 1.0) keeps the 

same parabolic format as Eq.(2.101), regardless of the boundary conditions, written in a general 

form by Eq.(4.3), where the parameters Ak and Bk, which are both functions of the Z parameter, 

are calculated according to Table 4.10, for various boundary conditions and aspect ratios 

 
2

1
k kk A B



 
= +  

 
  (4.3) 

Table 4.10: Ak and Bk parameters for computation of the shear buckling coefficient - kτ
1,2 

 α ≤ 1.0 α > 1.0 

BC1 

0.214 2.88

5.343
175.6

k

k

A Z

Z
B

= +

= −
 

0.096 5.15

0.135 3.18

k

k

A Z

B Z

= +

= +
 

BC2 

0.247 2.732

5.34
150.4

k

k

A Z

Z
B

= +

= −
 

0.124 4.94

0.137 3.756

k

k

A Z

B Z

= +

= +
 

BC3 

0.2734 2.794

5.33
127.2

k

k

A Z

Z
B

= +

= −
 

2

2

0.349 5.424
28.86

0.0452 2.422
37.735

k

k

Z
A Z

Z
B Z

 
= − + + 

 

 
= − + 
 

 

1 The formulae are applicable for the curvature parameters in the range 1 < Z ≤ 100, whereas for Z ≤ 1, 
Eq.(2.101) from Annex A.3 of EN 1993-1-5 should be used. 

2 The formulae are applicable only if the b/t ratio satisfies the criterion given by Eq.(4.2). 
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4.4.4 Validation 

The validation of the proposed formulae is carried out by comparing the shear buckling 

coefficients obtained numerically (kτ, num) with the values obtained by using the proposed formulae 

(kτ, prop). In total, 14847 numerical models are used for the global statistical evaluation, which are 

divided into three groups (4949 each) based on the boundary conditions.  

Statistical evaluation is made based on the �̅�𝜏,prop/�̅�𝜏,num ratio, where both �̅�𝜏,prop and �̅�𝜏,num are 

first normalized against the maximum value. Besides the mean value (μ) of this ratio and the 

maximum relative error, the coefficient of variation (CoV) is additionally calculated for each of 

the three boundary conditions, assessing the difference (%) between the proposed formulae and 

the numerical results. In Fig. 4.12 and Table 4.11, the most relevant results of the statistical 

assessment of the proposed formulae are summarized.  

 

BC1 BC2 BC3 

   

Fig. 4.12: Correlation between �̅�𝜏,prop and �̅�𝜏,num 

 

Table 4.11: Statistical assessment based on the ratio �̅�𝜏,prop/�̅�𝜏,num 
 

Boundary condition Number of analysis Mean (μ) CoV (%) Max. error (%) 

BC1 4949 1.023 3.82 -12.05 

BC2 4949 1.021 4.48 13.00 

BC3 4949 1.004 1.78 -6.26 

 

Although the maximum errors for cases BC1 and BC2 are higher than 10%, the mean value 

of �̅�𝜏,prop/�̅�𝜏,num is almost equal to 1.0, and the CoV is lower than 5% in all three cases. This shows 

that the proposed formulae may be reliably used for an accurate prediction of the shear buckling 

coefficient, both for long and short curved panels and for all three boundary conditions.  

4.5 Summary 

This chapter was dedicated to the buckling behavior of simply supported cylindrically curved 

panels subjected to pure shear stresses. The influence of several parameters on the elastic critical 

behavior, namely 1st buckling mode, was numerically investigated, such as curvature parameter 

Z ≤ 100, aspect ratio from α = 0.2 to α = 5.0 and three boundary conditions: BC1 (all edges free-
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to-wave), BC2 (two edges constrained and two free-to-wave) and BC3 (all edges constrained). In 

specific, it was concluded that:  

• Cylindrically curved panels subjected to shear show very complex buckling behavior that 

depends on the combination of aspect ratio and curvature parameter and not only on one 

of them. Principally, the shorter and the more curved the panel is, the higher is the critical 

load; 

• For very long panels, the aspect ratio has only minor influence on the critical load since 

for α > 4.0 it asymptotically reaches the lowest theoretical values; 

• Curvature parameter Z may be comfortably used as the key parameter for the 

determination of the shear buckling coefficient for all the curved panels encountered in 

the real applications of bridges, ship hulls, and airplanes. Only in the case of highly curved 

stocky panels, the behavior of panels qualitatively changes and the buckling coefficient 

cannot be considered only as a function of Z parameter; 

• In contrast to flat plates, the buckling modes and the elastic critical stress of cylindrically 

curved panels under shear highly depends on the boundary conditions studied in this 

chapter. Moreover, the effect of the edge constraints is particularly emphasized for highly 

curved and long panels; 

• The NACA charts give the shear buckling coefficients that correspond best to the 

boundary condition BC2, which in most cases is the realistic assumption, being an 

intermediate case. However, for the panels with the unconstrained edges (BC1), as well 

as the ones with all four edges constrained (BC3), the NACA monographs may lead 

respectively to an overestimation or underestimation of the shear buckling coefficient. 

Finally, a set of expressions was proposed for the prediction of the shear buckling coefficient, 

using the same format of EN 1993-1-5 [11] for the flat plates, which may easily substitute the 

impractical and outdated NACA monographs. The formulae were numerically calibrated within 

geometrical ranges (i.e. 1 < Z ≤ 100 and 0.2 < α ≤ 5.0) encountered in real engineering 

applications, for which it was shown that the Z parameter might be used as the key parameter. 

Moreover, for the very first time, the influence of various in-plane edge constraints was explicitly 

accounted for. 

Having the expressions for the calculation of the elastic critical stress, the next challenge is to 

extend the scope of EN 1993-1-5 [11] and to allow the calculation of the ultimate resistance of 

cylindrically curved panels subjected to shear. This is done in the upcoming chapter 5. 
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   CHAPTER 5  

5. Ultimate shear load of curved panels  

5.1 Overview 

In this chapter, an extensive numerical study is carried out with the aim to investigate the post-

buckling behavior of simply supported cylindrically curved steel panels subjected to a pure shear 

load. Therefore, this chapter tackles Task 3.2 of the thesis (defined in section 1.2) and presents a 

logical continuation of chapter 4, in which Task 3.1 was accomplished, where the pre-buckling 

behavior of curved panels under shear was studied.  

The principal objective is to assess the influence of geometrical parameters (e.g. curvature and 

aspect ratio), initial imperfections and edge constraints on the ultimate shear resistance, in a 

similar way it was done in chapter 4 for the critical shear load.  

Furthermore, to overcome the limitations found in the design standards, a new set of formulas 

are numerically derived for the prediction of the ultimate shear strength of unstiffened curved 

panels, with various edge in-plane constraints, applicable for curvatures and aspect ratios within 

the ranges that may be of the practical use in offshore, aeronautics and bridge applications.  

The proposed design methodology is conceptually similar to the one for a flat plate (see 2.5.2); 

however, the domain of its application is extended to a wide range of the curvature parameter. 

Hence, it is required first to calculate the shear buckling coefficient kτ for a curved panel, which 

can be obtained by using the formulas developed in chapter 4 or by carrying out numerical 

calculations. 
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The chapter is divided into three sections. First, in section 5.2, a detailed description of the 

numerical model used in the parametric study is provided. Subsequently, in section 5.3, the most 

relevant results of the parametric study are discussed, emphasizing the way the varied parameters 

of the study affect the behavior of the curved panels. Section 5.4 presents the newly proposed 

expression for the determination of the ultimate shear resistance of unstiffened curved panels, 

valid for three different types of edge constraints, various curvatures (Z ≤ 50) and aspect ratios 

(α ≤ 5.0). Finally, in order to demonstrate how to use adequately the proposed methodology, an 

example is presented in section 5.5. 

5.2 Numerical finite element model 

5.2.1 Section overview 

The numerical models and numerical analyses for the presented study are carried out using 

the FEM software ABAQUS [142]. Since some of the modeling assumptions were already 

addressed before, in section 3.4 and 4.2.2, more emphasis in 5.2.2 is given only to some features 

of the numerical model that are specific for the study carried out in this section. The validation 

of the numerical model is carried out in 5.2.3, separately for flat plate and curved panel models, 

using the available theoretical results as the comparator.  

5.2.2 Definition of the model 

5.2.2.1 Type of analysis 

Following the same approach described in section 3.4, two types of analyses are performed in 

this study: i) Linear elastic bifurcation analysis (LBA) and ii) Geometrically and materially 

nonlinear analysis with imperfections included (GMNIA). 

The LBA is first performed for each model, with the aim to extract the eigenmodes, which 

are then used as the shapes of the initial geometrical imperfections in a GMNIA. In order to 

obtain a non-linear static equilibrium solution, the arc-length Riks’ method [143] is used. 

The ultimate resistance of a curved panel is determined as the maximum load factor on the 

load-deformation curve. However, it is necessary to observe carefully the load-displacement 

curves since the arc-length routine may, in some cases, decide to follow an inappropriate 

secondary (post-critical) equilibrium path [144]. Namely, depending on the geometrical 

configuration and the initial imperfections, curved panels under shear load may exhibit two 

distinct types of structural instability: i) bifurcation instability and ii) snap-through instability, as 

presented in Fig. 5.1. 

The bifurcation instability, which commonly occurs in the case of shallow curved panels with 

low curvature parameters, is recognized by a sudden change of deformation direction after the 

critical (bifurcation) point is exceeded. In the case of shear load, due to the development of 

stabilizing tension field mechanism (see 2.4.2), a stable symmetric bifurcation takes place with 

the secondary equilibrium path that rises above the critical load. This behavior is very similar to 
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one of the flat plates, and commonly enables considerable exploitation of the post-buckling load 

reserves. 
 

  
a) b) 

Fig. 5.1: Types of instability: a) bifurcation and b) snap-through 

 

On the other hand, in the case of curved panels with higher curvatures, a snap-through 

instability occurs, characterized by a sudden increase in deformation under a constant load. 

Namely, once the shear load reaches a certain value (denoted by point 1 in Fig. 5.1b) the system 

can maintain equilibrium only if the displacement snaps suddenly from point 1 to point 2 as 

depicted by the solid horizontal line. In reality, the structure behaves in such a way that, once the 

first peak is reached, the load passes abruptly from one equilibrium state (point 1) to another 

equilibrium state (point 2), without any load reduction presented by the dashed line. As a result, 

the actual ultimate load is reached only after a new equilibrium is established, and not at the first 

peak point. The dashed line represents an unstable equilibrium state and, in general, it can be 

registered only if the system is subjected to an ideal displacement controlled condition, such as 

the one achieved in ABAQUS software, with a carefully defined size of the arc-length. 

5.2.2.2 Geometry 

The geometry of a curved panel is fully defined by the aspect ratio and the curvature 

parameter, defined by Eq.(2.1) and Eq.(2.2), respectively. In fact, in 4.2.4, it was shown that the 

non-dimensional curvature parameter Z is a suitable parameter to characterize the geometry of 

cylindrically curved panels under shear if the b/t ratio of the panel satisfies the criterion, given by 

Eq.(4.2).  

However, when assessing the ultimate load of a panel, it is not sufficient to define only the 

curvature parameter Z and the aspect ratio α since two panels, with different b/t ratios, even if 

the curvature parameter and the aspect ratio are the same, may have entirely different ultimate 

resistances. Hence, in addition, it is necessary to specify the non-dimensional slenderness 

parameter 𝜆̅
𝑤, reproduced by Eq.(2.99) since it accounts for the b/t ratio of the panel. 

In this study, the thickness is kept constant (t = 10 mm), the non-dimensional slenderness 

parameter is varied in the range found in EN 1993-1-5 for the flat panels subjected to a shear 

load between (�̅�𝑤 = 0.3 - 3.0), whereas the width b is considered as a variable, calculated by 

Eq.(5.1), derived from Eq.(2.99). 
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 37.4 wb t k =  with 235
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 =  (5.1) 

 

In this equation, the shear buckling coefficient kτ is calculated using the formulas developed 

in section 4.4, as a function of the curvature parameter Z and the aspect ratio α.  

For this study, the aspect ratio is varied from α = 0.5 to α = 5.0, whereas the curvature 

parameter is held up to Z ≤ 50 since it was shown in Fig. 4.4 that in most of the practical cases, 

the local curvature does not exceed the value of Z ≤ 40.  

The geometry of panels is discretized by a mesh of FE, whose type and size are defined in the 

following paragraphs. The coordinates of all the nodes are previously calculated and introduced 

in each model using a sub-routine. 

5.2.2.3 Applied initial imperfections 

Owing to the lack of information on the ‘real’ material and geometrical imperfections, the 

initial imperfections are modeled as the equivalent imperfections, following the 

recommendations from Annex C.5 of EN 1993-1-5 for flat plates. According to the standard, 

for the panels and subpanels, the shape of the initial imperfections should have a form of a critical 

eigenmode, with an amplitude equal to a minimum between a/200 and b/200.  

In addition, based on the results from a series of studies on the shape, the amplitude and the 

sign of the imperfections, carried out and presented in one of the following sections, it is 

concluded that the imperfection shape of the 1st buckling mode with an amplitude equal to b/200 

leads in most cases to a safe design. Such an assumption was justified also by former authors (e.g. 

Featherstone [127], Amani et al. [129]) who investigated the influence of the imperfection shape 

on the ultimate resistance of curved panels under shear. In specific, Featherston (2003) claims 

that in 85% of cases, the minimum ultimate load is obtained with an imperfection in the form of 

either the first or the second eigenmode. Moreover, Amani et al. (2011) confirmed that the form 

of the first eigenmode often results in the most critical case, emphasizing that the shape of the 

imperfection has only minor influence on the ultimate load in the case of slender panels. 

Finally, in all numerical models, the imperfection is assumed to be oriented radially inward, as 

it is shown later that such imperfection always results in lower ultimate resistance. 

The implementation of the equivalent initial imperfections in ABAQUS is achieved using the 

keyword *IMPERFECTION, as already presented in 3.4.2. Namely, the shape of the 1st buckling 

mode is obtained from linear bifurcation analysis (LBA), carried out on a perfect structure, which 

is then introduced in a model through a perturbation of radial translational DOF for each node 

using Eq.(3.1). 

5.2.2.4 Applied material model 

The material used in numerical models is steel grade S355 JR. The material is modeled as 

elastic-plastic, with linear strain hardening, disregarding the yield plateau. The elastic properties 

(i.e. Young’s modulus E and Poisson’s coefficient ν) used in LBA, as well as the plastic properties 
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(i.e. yield strength fy and ultimate strength fu) used in GMNIA that are adopted from standard 

EN 10025 [148] recommendations, are summarized in Table 5.1.  

According to ECCS Publication no. 125 [149], the tangent modulus is adopted as E/100 

referring to 1% linear strain hardening, which was proven to be a solid assumption in several 

references in the literature (e.g. [8], [10], [78],). Finally, the material model is presented in Fig. 5.2 

and it is introduced in the FE software as true stress-true strain, as suggested by EN 1993-1-5. 

 

Table 5.1: Material properties of steel S355 (t = 10 mm) 

Young’s modulus, E Poisson’s coefficient, ν Yield strength, fy Ultimate strength, fu 

210 GPa 0.3 355 MPa 470 MPa 

 

 

Fig. 5.2: Material behavior applied in GMNIA 

 

5.2.2.5 Loading and support conditions 

The loads and the boundary condition for this study are kept the same as in chapter 4, in 

which the elastic buckling behavior of curved panels under shear was investigated. Therefore, a 

detailed description of the three boundary conditions (BC1, BC2, and BC3) considered in the 

study, as well, as the application of the edge shear load, may be found in 4.2.2.  

5.2.2.6 Type and size of FE 

A linear four-node shell element with reduced integration (S4R) is used for the model 

discretization since it was found a suitable FE type for curved panels under shear in chapter 4.  

To define an appropriate size of the shell FE, a mesh convergence study is carried out by 

monitoring the convergence of the shear reduction factor χw, while varying the size of the FE. In 

contrast to the study carried out in chapter 4, in which the width b was kept constant 

(b = 1000 mm), in the study on the ultimate shear resistance, the width depends on the 

slenderness parameter �̅�𝑤, and for each model is calculated by Eq.(5.1). Therefore, assuming that 

the FE is squared (bFE = aFE), the size of an element is defined by the number of finite elements 

in the circumferential direction (nC), i.e. bFE = b/nC. The total number of elements (nC x nL) 
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depends on the aspect ratio, where nL represents the number of FE in the longitudinal direction 

and it may be obtained as nL = α x nC. 

In the presented mesh sensitivity study, three different curvatures are considered, whereas the 

aspect ratio (α = 1.0), the slenderness parameter (𝜆̅
𝑤 = 2.0) and the boundary condition BC1 are 

kept constant. The results of the study are summarized in Table 5.2.  

 

Table 5.2: Mesh convergence study (shear reduction factor - χw) 

Curvature Slenderness nC = 50 nC = 60 nC = 70 nC = 80 nC = 90 nC = 100 nC = 120 

Z = 0 

w = 2.0 

0.458 0.454 0.451 0.449 0.449 0.448 0.448 

Z = 30 0.312 0.308 0.305 0.302 0.301 0.301 0.301 

Z = 50 0.270 0.265 0.261 0.257 0.257 0.257 0.257 

 

Based on these results, it may be concluded that 80 finite elements (nC = 80) along the curved 

edge b are sufficient to achieve numerical convergence, which means that that increasing the 

number of elements does not affect the shear reduction factor. 

5.2.3 Validation of the model 

Owing to the lack of experimental results or a general analytical expression for the calculation 

of the ultimate shear resistance of the curved panels, the numerical models are validated by 

comparing the results with: i) existing methods for flat panels in shear; ii) numerical results from 

Amani et al. [129] for curved panels. 

5.2.3.1 Flat plate model 

In a recent study by Zhang et al. [150], the authors proposed a new approach for the ultimate 

shear strength of a flat plate, comparing their results with the existing methods, including the 

European standard. Most of the methods propose a semi-empirical expression, assuming that all 

edges remain straight, which corresponds to the boundary condition BC3, defined earlier in the 

thesis. Hence, in Fig. 5.3, the numerical results for the boundary condition BC3 are compared 

with the existing methodologies for two aspect ratios (α = 1.0 and α = 2.0) and for various values 

of double slenderness ratio λβ, defined in [150] as λβ = (b/t)(fy/E)1/2. 

A large scatter in the results could be observed for both aspect ratios, which seems to be 

particularly noticeable for plates with increased slenderness, where the difference between some 

of the methods reaches 30-40%. Since the methods are based merely on the numerical results, 

such a significant difference might be explained only by the differences in the modeling 

assumptions adopted by different authors.  

Nevertheless, in the case of squared panels (α = 1.0), arguably good agreement (Δmax < 3%) is 

achieved between FEM results and the results obtained using the method proposed by Zhang et 

al., whereas for the aspect ratio equal to α = 2.0, the FEM results are close to the ones obtained 

by Nara et al., with the maximum difference of Δmax < 5%. Therefore, it may be concluded that 

the numerical model gives the ultimate resistance within the expected values. However, due to 
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high variability in the results predicted by the various methods, the overall impression is that 

further validation against both numerical and experimental results would be of great benefit. 

 

 
a) 

 
b) 

Fig. 5.3: Comparison between FEM results and various methods: a) α = 1.0 and b) α = 2.0 

 

5.2.3.2 Curved panel model 

The comparison of the numerical results against the results obtained from Amani et al. is 

shown in Fig. 5.4, where the force-displacement curves are plotted for a curved panel (Z = 15 

and α = 1.0), with various levels of the imperfection amplitudes (δ0) and boundary conditions 

that correspond to the case BC1. The applied shear load τ is normalized to the yield shear load 

𝜏𝑢 = 𝑓𝑦 √3⁄ , whereas the out-of-plane (radial) displacement (ur) measured in the middle point of 

the panel is normalized to the thickness of the panel, equal to t = 3 mm according to Amani et al. 

[129]. 
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Fig. 5.4: Comparison between numerical results: FEM (solid) and Amani et al. (dashed) 

 

It may be noticed that the results obtained by the numerical model correspond to the ones 

obtained by Amani et al. [129], despite several differences assumed in the numerical models. 

Namely, in the numerical model by Amani et al., the points E, F, G, and H restrain the movements 

in the z-direction, whereas in the model used for the current study, these axial displacements are 

restrained in points A, B, C, and D (see Fig. 4.1). In addition, the density of the mesh considered 

in the two numerical models is not the same. In the model by Amani et al., only 30 FE are adopted 

in the circumferential direction (nC = 30), whereas in the model used in the study a more refined 

mesh is considered (nC = 80). This explains a certain discrepancy in results, especially in the post-

buckling phase, leading to slightly higher values (Δmax < 3.5%) of the ultimate resistance in the 

case of Amani et al. Nevertheless, it may be concluded that the behavior of panels is qualitatively 

and quantitatively the same, which to some extent validates the numerical model used in this 

study. 

5.3 Parametric study 

5.3.1 Goal and scope 

The goal of the parametric study is to characterize the post-buckling behavior of simply 

supported cylindrically curved panels subjected to a pure shear load. Based on the collected data 

from the study, a new set of formulas for the determination of the ultimate shear load is proposed 

in section 5.4. The parametric study comprises 3 different boundary conditions – BC1, BC2, and 

BC3 (see Fig. 4.1). For each of them, 9 different aspect ratios, 6 different curvatures, and 27 

different slenderness parameters are varied, comprising in total 4374 LBAs and 4374 GMNIAs, 

summarized in Table 5.3. 

Table 5.3: Scope of the parametric study 

Boundary condition Slenderness, �̅�𝒘 Curvature, Z Aspect ratio, α 

 
0.3 - 3.0 
(step 0.1) 

0 - 50  
(step 10) 

(0.5 - 1.0) (step 0.25) 
(1.0 - 3.0) (step 0.5) 
(3.0 - 5.0) (step 1) 

BC1, BC2, BC3 
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5.3.2 Buckling behavior of the panel 

5.3.2.1 General considerations 

One typical example of the load-displacement curve of a panel with a higher curvature 

parameter (i.e. Z = 50) that undergoes snap-through buckling addressed earlier in this chapter, is 

illustrated in Fig. 5.5.  

The response of the panel may be clearly divided into several characteristic phases, addressed 

also in the study by Amani et al. [129]. After the bifurcation point (1) is reached, the membrane 

strength of the panel decreases due to the development of the buckling modes, resulting in an 

unstable equilibrium path until the minimum elastic post-buckling load is reached at point (2). 

This softening phase (1-2) is governed by the geometric nonlinearities and, thus, depends on the 

initial geometric imperfections. Namely, the higher the amplitude of the imperfections, the 

smoother is the post-buckling response, i.e. without the peak at the bifurcation point.  

 

Point 1 Point 2 Point 3 Point 4 Point 5 

     

 

Fig. 5.5: Post-buckling behavior of a curved panel subjected to shear loading 

 

After the minimum post-buckling load is reached at point (2), starts a post-buckling hardening 

phase, until the ultimate capacity is reached at point (5). Namely, as the load increases, the yielding 

of the material occurs first in the corners of the panel at point (3), which is quickly distributed 

across the diagonal of the panel, forming the tension field at point (4). Further increase of shear 

load leads to the ultimate shear resistance of the panel at point (5), after which starts another 

softening phase, characterized by large deformations and spread of plasticity. 

The shape of the load displacement-curve presented above highly depends on the geometry 

of panel, boundary conditions and the initial imperfection, which is discussed in the following 

few paragraphs.  
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5.3.2.2 Influence of geometry 

In the case of flat plates, the influence of geometry on the ultimate resistance is introduced in 

EN 1993-1-5 [11] through the slenderness parameter 𝜆̅
𝑤, reproduced by Eq.(2.99), whereas the 

influence of the aspect ratio is accounted for indirectly through the shear buckling coefficient kτ 

(see Eq.(2.101)).  

Regarding the cylindrically curved panels, the influence of the aspect ratio and the curvature 

parameter on the post-buckling behavior and the ultimate resistance was acknowledged in almost 

all relevant historical references (e.g. [41], [126], [129], [127]).  

The influence of these two parameters on the ultimate shear resistance is illustrated in Fig. 

5.6, where the shear reduction factor χw is plotted against the b/t ratio of the panels (t = 10 mm), 

for various aspect ratios and curvature parameters, while the boundary conditions are kept the 

same (BC1). The shape of the initial imperfections is assumed affine to the shape of the 1st 

buckling mode, with an amplitude of b/200.  

 

 
a) 

 
b) 

Fig. 5.6: Influence of geometry on the ultimate shear resistance for a) Z = 0 and b) Z = 40 

 

From these graphs, several important conclusions may be drawn. First, the higher the aspect 

ratio is, the lower is the ultimate resistance, regardless of the slenderness (b/t) and curvature of 
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the panel (Z). A certain deviation is noticed in the case of panels with a high curvature parameter 

and intermediate slenderness (100 < b/t < 200) (see Fig. 5.6b). This happens due to a strong 

sensitivity of these panels to the shape of the initial imperfections, which is discussed later in this 

section. 

Furthermore, in chapter 4, it was shown that for high values of aspect ratio, its influence on 

the shear buckling coefficient kτ becomes negligible, regardless of the curvature parameter (see 

Fig. 4.5). A similar trend is observed for the ultimate shear resistance of curved panels. This could 

be explained by the fact that for long panels, the shear load is not resisted by the entire panel but 

only one portion of the panel participates in shear resistance. What portion of the panel is 

activated in the resisting mechanism is closely related to the level of the edge constraint, which is 

tackled in the following subsection. 

As for the influence of the curvature parameter Z, as shown in Fig. 4.7, higher curvatures 

result in higher critical loads since the second moment of area increases. However, an increase 

of the curvature parameter leads to a ‘shell-like’ behavior with a reduced post-critical strength 

reserve (see Fig. 5.5), resulting in a drop of the ultimate shear resistance. This declining trend is 

shown in Fig. 5.7, where the applied shear load is normalized to the yield shear load, whereas the 

circumferential displacement (uφ) in the point C (see Fig. 4.1) is normalized with the thickness of 

the panel. 

 

 

Fig. 5.7: Influence of curvature on the ultimate shear resistance for α = 1.0 and b/t = 300 

 

The figure clearly shows that the higher curvature results in a more unstable post-critical 

behavior, leading to increased deformations and to a drop in the ultimate resistance (23% in this 

case when compared to flat panel). 

Finally, in the case of the stocky panels, with very low slenderness (b/t < 50), the ultimate 

resistance is insensitive to the aspect ratio and curvature parameter. These panels are under pure 

shear, no buckling occurs, and their ultimate resistance corresponds to the yield load. 
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5.3.2.3 Influence of the boundary conditions 

The influence of the various in-plane edge constraints on the critical shear stress (τcr) was 

investigated in chapter 4. It was shown that the impact of the edge constraints is particularly 

emphasized in the case of highly curved panels since the curvature adds nonlinearity to the pre-

buckling state of the panel. On the other hand, the influence of the in-plane edge constraints on 

the ultimate shear resistance of curved panels has never been reported in the literature, in any 

topic-related reference.  

The design standard for the flat panels (EN 1993-1-5 [11]) prescribes the rules for simply 

supported panels, however, without a clear specification of the in-plane edge constraints. Namely, 

the design methodology provided in the standard refers to the flat webs of the girders, 

surrounded by flanges and the transverse stiffeners. Prior to the publication of the standard, 

numerous authors investigated the influence of the flexibility of the flanges and the vertical 

stiffeners on the ultimate shear resistance of the web, resulting in a several tension field models, 

summarized by Dubas & Gehri [128]. As it is presented in this chapter, some of these conclusions 

could refer also to the curved panels.  

For stocky panels with low slenderness, the ultimate shear load corresponds to the yield load, 

regardless of the boundary conditions, as shown in Fig. 5.8. In the case of a panel with constraint 

edges (BC3), an elastic-perfectly plastic response is achieved, where the plasticity is spread all 

over the panel without a force reduction. 
 

 
Fig. 5.8: Influence of the boundary conditions on the panels with a low slenderness 

 

On the other hand, for very slender panels, the ultimate resistance highly depends on the level 

of the edge constraints. Namely, in the case of boundary conditions without any in-plane 

constraints (BC1), a redistribution of the shear stresses occurs and predominant membrane 

stresses develop in narrow strips, anchored to the corners of the panel, being the most rigid parts 

of the structural element (see Fig. 5.9a). Hence, in this case, the tension field cannot be developed 

and the exploitation of the post-critical reserves is prevented, resulting in low ultimate resistance. 

Furthermore, for higher curvature parameters (see Fig. 5.9b), the predominant membrane 

stresses are developed at even lower values of load, which additionally decreases the ultimate 

resistance.  
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Regarding the influence of the aspect ratio, in general, the higher the aspect ratio, the more 

premature distribution of the membrane stress occurs (i.e. at a lower value of the shear load). 

However, as shown in Fig. 5.9c, for aspect ratios higher than α ≥ 2.0, these stresses are not 

concentrated in the corners, but in the zones located close to the middle of a panel, where a new 

local resisting mechanism develops. 

 

  
a) α = 1.0 and Z = 0 b) α = 1.0 and Z = 50 

  
c) α = 4.0 and Z = 0 

Fig. 5.9: Deformed shapes of the panels with boundary condition BC1 
 

In the case of boundary conditions BC2 and BC3, the tension field may be developed since 

the edges provide sufficient rigidity to take the compressive force components that appear as a 

response to an increase of the tensile force component along the diagonal of the panel. Hence, 

considerable post-critical reserves may be mobilized, which results in a higher ultimate shear 

resistance than in the case of boundary condition BC1.  

Depending on the level of the constraint of edges, the position, the width and the inclination 

angle (φ) of the tension field may vary considerably. Based on Fig. 4.1c, it may be concluded that 

the behavior of a panel with the boundary condition BC2 corresponds to Basler’s tension field 

model, illustrated in Fig. 5.10.  

 

 

Fig. 5.10: Basler’s model (adapted from [128]) – boundary condition BC2 
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According to Basler’s model, the compressive components are received only by two curved 

edges, which act in this case as the transverse stiffeners of the girder, whereas the other two 

longitudinal edges are not a constraint since they may displace freely. This means that the shear 

resistance depends on the vertical reaction only since the lateral edges have no rigidity to take the 

horizontal reaction. Consequently, the higher is the aspect ratio (i.e. the distance between the 

‘transverse stiffeners’), the smaller is the angle of the inclination φ of the tension band and thus 

the smaller the ultimate resistance, followed by a considerable increase of deflection. 

On the other hand, in the case of boundary condition BC3, the compressive components are 

taken by all four edges and the panel’s behavior is similar to the behavior of a web with both 

transverse stiffeners and the rigid flanges. This leads to a considerably stiffer system with reduced 

deflections, which enables full exploitation of the post-critical reserves and thus a higher ultimate 

resistance. 

It should be also highlighted that in contrast to BC2, in the case of BC3, the inclination angle 

of the tension band remains constant, regardless of the aspect ratio, as shown in Fig. 5.11 where 

these two boundaries are compared, for Z = 50. However, even in the case of BC3, the 

inclination angle is dictated by the curvature parameter. Namely, the angle tends to decrease with 

an increase of the curvature, thus jeopardizing full exploitation of the post-critical reserves. As a 

consequence, for a high curvature (e.g. Z = 50), the ultimate resistance decreases for the aspect 

ratios up to α ≤ 3.0, after which the reduction factor stabilizes and the influence of the aspect 

ratio becomes negligible. In the case of panels with lower curvatures (Z < 30-40), where the 

inclination angle increases, the influence of the aspect ratio on the ultimate resistance is noticeable 

only for the aspect ratios up to α < 2.0. 

 

  
φ ≈ 41.5° 

  
φ ≈ 25° 

a) 

 
φ ≈ 26.5° 

 
φ ≈ 25° 

b) 

Fig. 5.11: Comparison of the deformed shapes for BC2 (left) and BC3 (right): a) α = 1.0 and b) α = 2.0 
 

Finally, in Fig. 5.12, the comparison between the three boundary conditions is presented, 

considering both a flat (Z = 0) and highly curved panels (Z = 50), whereas the aspect ratio is kept 



CHAPTER 5 

137 

constant and equal to α = 2.0. In both examples, the shear reduction factor is plotted against the 

relative slenderness, which is in the design standards referred to as a buckling curve.  

 

  

a) b) 

Fig. 5.12: Influence of BC on the ultimate shear resistance: a) Z = 0 and b) Z = 50 

 

As explained earlier in this section (see Fig. 5.8), for stocky panels with low slenderness, the 

difference between the three boundary conditions is practically negligible. However, for higher 

values of slenderness, it may be noticed that an unconstrained panel (BC1) has considerably lower 

values of the ultimate resistance than in the case of partially constrained (BC2) or fully constrained 

(BC3), regardless of curvature parameter. Finally, it may be concluded that the difference between 

BC2 and BC3 decreases with the increase of curvature. This might be explained by the fact that 

in case of a fully constrained panel (BC3), the curvature prevents the full exploitation of the post-

critical reserves, thus leading to the ultimate resistance closer to BC2. 

Based on the presented results, one may conclude that the in-plane constraints have a 

substantial effect on the ultimate resistance of curved panels subjected to shear and thus cannot 

be neglected in the design process. Hence, in section 5.4, the formulas are proposed for each of 

the three cases of boundary conditions. 

5.3.2.4 Influence of the initial geometric imperfections 

In the following paragraphs, some additional aspects regarding the shape, the amplitude and 

the sign (i.e. direction) of the imperfections used in the numerical models are analyzed, in an 

attempt to discover their influence on the ultimate resistance of curved panels.  

i) Influence of imperfection shape: 

As specified earlier in this chapter, the shape of the initial imperfections affine to the 1st 

buckling mode is adopted, as the shape that in most cases leads to the lowest ultimate resistance 

(e.g. [127], [129]). However, it is essential to highlight that the shape of the first eigenmode is not 

similar in shape for all the curved panels subjected to shear since their behavior is often very 

complex, without a clear trend, which makes the prediction of the shape of buckling mode almost 

impossible. In chapter 4 (see Fig. 4.6), it was shown that the pattern of the first buckling mode 

may shift randomly from symmetric to antisymmetric shape and vice versa, depending on the 

combination of aspect ratio and curvature parameter and does not depend only on one of them 

separately.  
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In Fig. 5.13, the reduction factor χw of the unconstrained panels (i.e. BC1) is plotted against 

the slenderness parameter 𝜆̅
𝑤, both for a shallow (Z = 10) and a highly curved panel (Z = 50), 

considering several aspect ratios.  

Based on these graphs, it may be observed that the behavior of the shallow panels is quite 

similar to flat plates, with no significant influence of the aspect ratio on the ultimate resistance, 

for the entire range of 𝜆̅
𝑤. However, for panels with higher curvatures (i.e. Z > 20) that show a 

‘shell-like’ behavior, the dependence on the aspect ratio is much more emphasized, especially in 

the intermediate range of the slenderness parameter (0.6 < 𝜆̅
𝑤 < 1.2). 

 

 
a) 

 
b) 

Fig. 5.13: Influence of α on the ultimate shear resistance for a) Z = 10 and b) Z = 50 

 

It means that in this specific range of slenderness parameter, where the ultimate load is driven 

by the yield strength of the material, the higher aspect ratio does not necessarily result in lower 

ultimate resistance. The reason is that a higher aspect ratio may result in a more favorable shape 

of the first buckling mode (i.e. initial imperfection), which leads to the entirely different behavior 

of the panel and thus different and higher ultimate resistance.  
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To understand better the influence of the imperfection form on the ultimate strength in this 

imperfection-sensitive range of slenderness parameter (0.6 < 𝜆̅
𝑤 < 1.2), a brief sensitivity analysis 

is performed, where several shapes of the imperfections (i.e. first four buckling modes) are 

considered. The results of the study, in which three curvatures and two aspect ratios are 

considered, are presented in Table 5.4 and Table 5.5. 

 

Table 5.4: Influence of imperfection shape on the shear reduction factor χw (α = 1.0) 

  Z = 10 Z = 30 Z = 50 

�̅�𝒘 = 0.8 

1st mode 0.825 0.662 0.699 

2nd mode 0.873 0.742 0.673 

3rd mode 0.975 0.874 0.870 

4th mode 0.958 0.906 0.821 

�̅�𝒘 = 1.0 

1st mode 0.691 0.477 0.518 

2nd mode 0.763 0.602 0.497 

3rd mode 0.861 0.696 0.717 

4th mode 0.831 0.763 0.651 

�̅�𝒘 = 1.2 

1st mode 0.597 0.421 0.418 

2nd mode 0.662 0.499 0.402 

3rd mode 0.709 0.511 0.612 

4th mode 0.67 0.573 0.475 

 

Table 5.5: Influence of imperfection shape on the shear reduction factor χw (α = 2.0) 

  Z = 10 Z = 30 Z = 50 

�̅�𝒘 = 0.8 

1st mode 0.879 0.808 0.785 

2nd mode 0.851 0.775 0.792 

3rd mode 0.952 0.877 0.837 

4th mode 0.943 0.9 0.871 

�̅�𝒘 = 1.0 

1st mode 0.718 0.558 0.505 

2nd mode 0.710 0.559 0.565 

3rd mode 0.839 0.689 0.623 

4th mode 0.802 0.749 0.691 

�̅�𝒘 = 1.2 

1st mode 0.602 0.451 0.345 

2nd mode 0.607 0.456 0.384 

3rd mode 0.730 0.549 0.438 

4th mode 0.663 0.557 0.534 

 

The results from the study indicate that the ultimate load may vary significantly depending on 

the imperfection shape, with the maximum difference between the lowest and the highest value 

of almost 60% (e.g. for Z = 30, 𝜆̅
𝑤 = 1.0, α = 1.0). Furthermore, it may be observed that the form 

of the 1st buckling mode leads to the lowest resistance in most cases (12 out of 18), whereas in 

the remaining 6 cases, the second mode is the critical one, leading to a slightly lower ultimate 

resistance than the first mode (Δ < 5% in all 6 cases). Finally, the higher modes have less 

influence on the ultimate load.  
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An example in which the second mode is critical (e.g. for Z = 50, 𝜆̅
𝑤 = 0.8, α = 1.0) is 

presented in Fig. 5.14a, where for the sake of comparison, force-displacement curves are plotted 

for all four imperfection forms. Once again, the shear load is normalized to the yield shear load, 

whereas the circumferential displacement (uφ) in the point C (see Fig. 4.1) is normalized with the 

thickness of the panel. In the other example, shown in Fig. 5.14b, force-displacement curves are 

plotted for the same curvature and slenderness; however, with the aspect ratio equal to α = 2.0. 

 

 
a) 

 
b) 

Fig. 5.14: Influence of the imperfection shape: a) α = 1.0 and b) α = 2.0 

 

From these figures, it may be clearly seen how the imperfection form affects the response of 

panels, where the second mode leads to the lowest ultimate resistance in the first case (α = 1.0), 

whereas in the second case (α = 2.0), the first mode is the critical one. Moreover, the figures 

show the diversity of the imperfection shapes for the first four buckling modes, despite the same 

slenderness and the curvature parameter. Namely, for α = 1.0, the first buckling mode is 

antisymmetric and the second mode is symmetric, while for α = 2.0 it is opposite, resulting in a 

different and even higher ultimate resistance, as it was already observed and discussed in Fig. 

5.13b. 
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Finally, for higher values of the slenderness parameter (𝜆̅
𝑤 > 1.2), variation in the ultimate 

resistance with the aspect ratio is negligible since in that range the ultimate load is mainly driven 

by elastic behavior. 

A similar study is carried out for boundary conditions BC2 and BC3, in which the influence 

of the imperfection form on the ultimate resistance is investigated for two different aspect ratios 

while keeping the curvature and the slenderness parameter constant and equal to Z = 50 and 

𝜆̅
𝑤 = 1.2, respectively. The results are summarized in Table 5.6. 

 

Table 5.6: Influence of imperfection shape on the shear reduction factor χw (BC2 and BC3) 

  1st mode 2nd mode 3rd mode 4th mode 

BC2 
α = 1.0 0.705 0.737 0.772 0.768 

α = 2.0 0.575 0.589 0.65 0.668 

BC3 
α = 1.0 0.784 0.759 0.770 0.790 

α = 2.0 0.599 0.614 0.622 0.619 

 

It may be concluded that in the case of boundary conditions BC2 and BC3, the panels do not 

show significant imperfection sensitivity in this range. Namely, the maximum difference between 

the lowest and the highest ultimate load is 16% in the case of BC2 and 4% in the case of BC3. 

This is due to the development of the tensile band that positively affects the post-critical 

behavior, reducing the panel’s sensitivity to imperfections, as described by Dubas & Gehri [128]. 

Based on the imperfection sensitivity analysis presented herein, one may conclude that the 

shape of the first buckling mode is a satisfactory assumption for the shape of the initial 

imperfections, leading in most cases to a ‘safe design’. In addition, it is shown that the shape 

affine to the second mode may lead to a lower resistance; however, the difference between these 

two shapes is almost negligible (Δ < 5%), which coincides with the findings from the former 

references (e.g. [127], [129]). 

Hence, due to a continuing need for generality and simplicity, the equivalent imperfection 

affine to the 1st buckling mode is adopted in order to derive the expressions for the ultimate shear 

resistance, something, which to the authors’ knowledge is still not available in the literature. 

Nevertheless, it is a general impression that further study on the imperfection sensitivity is 

necessary, where not only the fictive forms of imperfections affine to the buckling modes should 

be considered, but also the measured realistic forms. 

 

ii) Influence of imperfection amplitude: 

Regarding the amplitude of the imperfections, as it was specified before, an amplitude equal 

to a minimum between a/200 and b/200 is adopted in this study, according to the prescriptions 

from EN 1993-1-5 [11]. In the case of both flat and curved panels subjected to the axial 

compression, these amplitudes give conservative results as shown in chapter 3 of this thesis, and 

confirmed by several authors (e.g. [8], [78], [146]). Moreover, Rusch & Lindner [146] back-

calculated an amplitude equal to b/420 for the Winter curve for plates under pure compression. 

Hence, it is also intended to compare these two amplitudes (b/200 and b/420) for curved panels 
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under shear and to understand to what extent they affect the ultimate resistance. The results of 

the comparison are presented in Fig. 5.15, for boundary condition BC1, aspect ratio α = 2.0 and 

two curvature parameters. For the sake of comparison, the buckling curve (χw - 𝜆̅
𝑤) from 

EN 1993-1-5 is additionally plotted. 
 

 
Fig. 5.15: Comparison between two imperfection amplitudes – b/200 and b/420  

 

The figure indicates that the difference between the two amplitudes is not very significant, 

especially in the case of the flat panels, due to the presence of the tensile component that 

decreases the imperfection sensitivity, as it was pointed out several times  in this chapter. A larger 

difference between the amplitudes is noticed only in the intermediate range of the slenderness 

parameter (0.6 < 𝜆̅
𝑤 < 1.2), due to the aforementioned particular sensitivity of these panels, and 

it is specifically emphasized for the higher values of curvatures, where the maximum difference 

in shear reduction factor may reach up to Δmax ≈ 32% (e.g. for 𝜆̅
𝑤 = 1.0 and Z = 50). For higher 

slenderness, once again, the difference is practically negligible regardless of the curvature 

parameter. It should be also mentioned that both b/200 and b/420 are considerably high values 

for the imperfections. Consequently, the bending and buckling displacements are combined and 

the panels do not exhibit a clear-cut difference between the pre-buckling and tensile field phase, 

which is in detail explained by Dubas & Gehri [128], and could be seen also in Fig. 5.4.  

Lastly, Fig. 5.15 also shows that a quite good agreement is achieved between the curve 

proposed by the standard for the flat plate and the numerical results when the amplitude is equal 

to b/420, but also for the value equal to b/200. Nevertheless, due to the lack of more precise 

information for the imperfection of the curved panels subjected to a shear load, the 

recommended value (i.e. b/200) is selected in the parametric study and the formulas are built 

based on this assumption. 
 

iii) Influence of imperfection sign: 

Finally, the sign of the imperfections (i.e. its direction) is investigated and presented herein, 

being a parameter that may become relevant in case of the curved panels subjected to shear.  



CHAPTER 5 

143 

In general, the imperfection shape may be symmetric or antisymmetric, as shown, for instance, 

in Fig. 5.14. In the case of the antisymmetric shape, the ultimate resistance is insensitive to the 

direction of the imperfections. However, in the case of the non-flat panels with the symmetric 

imperfection shape, it is no longer irrelevant in what direction the buckling waves propagate and 

thus, the ‘positive’ (δ0
+) and the ‘negative’ (δ0

-) imperfections must be distinguished. The two 

possible imperfection signs are schematically illustrated in Fig. 5.16, with the ‘positive’ 

imperfection oriented radially inward, whereas the negative has the opposite orientation.  

 
 

a) b) 

Fig. 5.16: imperfection sign: a) positive and b) negative 
 

Subsequently, a comparison between these two imperfection signs is made, in an attempt to 

discover which sign is less favorable, i.e. leads to lower ultimate shear resistance. In Fig. 5.17, 

some of the most representative results are shown, using as an example a panel with an aspect 

ratio equal to α = 2.0 and boundary condition BC1, while keeping the amplitude constant and 

equal to the previously adopted value of b/200. 
 

 
Fig. 5.17: Comparison between two imperfection signs – positive and negative  

 

Based on the results from the comparative study, it is concluded that imperfection oriented 

radially inward always results in lower ultimate resistance, regardless of the curvature parameter. 

Moreover, the difference between the two imperfection signs seems to increase with the 

curvature parameter. For instance, for slenderness 𝜆̅
𝑤 = 1.2, the difference is equal to Δ ≈ 14% 

and Δ ≈ 80%, for Z = 10 and Z = 50, respectively. Therefore, in section 5.4, where the design 

rules for the ultimate resistance are proposed, the positive sign of the imperfections is considered 

as the less favorable case. 
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5.4 Proposal of design rules for the ultimate resistance  

5.4.1 General 

The determination of the ultimate shear resistance of a flat panel (i.e. a web of a girder) by 

EN 1993-1-5 [11] is shown in 2.5.2. According to this method, in Eq.(2.96), it is required to 

calculate first the reduction factor χw, which is a function of the slenderness parameter 𝜆̅
𝑤. 

Depending on the stiffness of the surrounding stiffeners, the standard provides two different 

buckling curves (χw - 𝜆̅
𝑤) for the flat webs, reproduced by Eq.(2.97) and Eq.(2.98), which may be 

used for any aspect ratio. 

It is necessary to emphasize that both buckling curves in EN 1993-1-5 are obtained as lower 

bounds to a large set of experimental data performed on the girders [128], where χw is plotted 

against 𝜆̅
𝑤 calculated using the theoretical values of the critical stress (see Eq.(2.99)). However, 

as shown in chapter 4, the real critical shear stress and thus the real slenderness parameter may 

highly depend on the exact level of the constraints provided by the flanges and the vertical 

stiffeners. Therefore, the use of the theoretical values of the critical stresses as an approximation 

may lead to the horizontal translation of the buckling curves and subsequently to an 

underestimation of the ultimate resistance. 

The main advantage of the numerical simulation carried out in this study, is that the boundary 

conditions are well controlled so that the calculated value of the critical stress and slenderness 

parameter corresponds exactly to the considered panel. Hence, the principal objective of this 

study is to propose new formulas using a similar buckling-curve format (χw - 𝜆̅
𝑤) adopted from 

standard, however, for non-flat panels and with a clear specification on the in-plane edge 

constraints. The extension of the formulas from the standard is done by calibrating the FEM 

results of χw, covering the ranges specified in Table 5.3. 

5.4.2 Calibration methodology 

As shown in previous sections, the ultimate shear resistance decreases with the increase of the 

curvature parameter, regardless of the boundary condition and thus, a buckling curve needs to 

be defined separately for each curvature parameter.  

In the case of the boundary condition BC1, the influence of the aspect ratio on the buckling 

curve is negligible (see Fig. 5.13) and thus, only one buckling curve is required for each curvature 

parameter, as presented in Fig. 5.18. 

This further implies that the reduction factor can be determined as a function of only two 

variables, i.e. χw = f (𝜆̅
𝑤, Z), and not as a function of the aspect ratio. For the sake of the simplicity, 

the minor variations of the shear reduction factor noticed to occur in the imperfection-sensitive 

range of slenderness (0.6 < 𝜆̅
𝑤 < 1.2), are neglected. Conservatively, for the calibration of 

formulas, the values of χw in this range are adopted as the lowest ones from all considered aspect 

ratios. For instance, in the example presented in Fig. 5.13, the values obtained with α = 1.0 are 

adopted. 
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Fig. 5.18: Buckling curves for boundary condition BC1  

 

On the other hand, in the case of the boundary conditions BC2 and BC3, where the tension 

field may be developed, the reduction factor χw additionally depends on the aspect ratio, with a 

noticeable influence for values up to α ≤ 3.0 and α ≤ 2.0, respectively. It implies that the 

reduction factor for BC2 and BC3 is defined as a function of three variables, i.e. χw = f (𝜆̅
𝑤, Z, α). 

Therefore, for each curvature parameter, it is necessary to generate several buckling curves, which 

account for the various values of the aspect ratio.  

An example is shown in Fig. 5.19 and Fig. 5.20, where the buckling curves for curvature equal 

to Z = 50 are plotted for boundary condition BC2 and BC3. It may be observed that for the 

panels with the aspect ratio higher than α > 3.0 (i.e. α > 2.0 for BC3), the buckling curve that 

corresponds to α = 3.0 (i.e. α = 2.0 for BC3) is adopted. 
 

 

Fig. 5.19: Buckling curves for boundary condition BC2 (Z = 50) 
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Fig. 5.20: Buckling curves for boundary condition BC3 (Z = 50) 

 

Hence, the main challenge in the calibration process is to define a suitable function of two 

variables (BC1) or three variables (BC2 and BC3), which fits nicely to the FEM results of the 

shear reduction factor, for any combination of α and Z. 

The starting assumption in the calibration process is to use the rational function from 

EN 1993-1-5 (see Eq.(2.97) and Eq.(2.98), which determines χw for a flat plate, simply supported 

on four edges, with no specification on the level of the edge in-plane constraints. Therefore, the 

proposed formulas are firstly divided into three main branches, based on the boundary conditions 

(BC1, BC2, and BC3), and subsequently, each of these three branches are split into two sub-

categories of panels, in the same way as it is done in EN 1993-1-5 [11]: i) with low slenderness 

parameter (𝜆̅
𝑤 < 1.1) and ii) with high slenderness parameter (1.1 ≤ 𝜆̅

𝑤 < 3.0). 

5.4.3 Proposed formulas 

The proposed formula for the panels with high slenderness parameter (1.1 ≤ 𝜆̅
𝑤 < 3.0) 

retained the format of a rational function from the standard, regardless of the boundary 

conditions. On the other hand, for the panels with low slenderness parameter (𝜆̅
𝑤 < 1.1) a 

polynomial function of the second degree is found more appropriate, given in a general form by 

Eq.(5.2) 
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where 𝜆̅
𝑤,0 is the length of the initial plateau, i.e. for which the reduction factor is equal to 

χw = 1.0, given by Eq.(5.3) 
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In Eq.(5.2), the parameters Aχ, Bχ and Cχ are functions of α and/or Z, which are calculated 

using Table 5.7 and Table 5.8 for slenderness 1.1 ≤ 𝜆̅
𝑤 < 3.0 and 𝜆̅

𝑤 < 1.1, respectively.  
 

Table 5.7: Aχ and Bχ parameters (1.1 ≤ 𝜆̅
𝑤 < 3.0) 

 

BC1 
335.5 3.7

;
380 47.5

Z Z
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− +
= =  
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0.34 4.1 9.6
2000 25.8 14.3
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Table 5.8: Aχ, Bχ and Cχ parameters (𝜆̅
𝑤 < 1.1) 

 

BC1 0.48; 0.25; 1.0
57.7 86 367

  = − − = + = − +
Z Z Z

A B C  

BC2 

2

2

2

0.035 0.03 0.04
125.8 27.2 73.3

0.03 0.19 0.13
65.8 14.1 39.4

0.004 0.13 1.06
160.9 34.2 97.5
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BC3 

2

2
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0.005 0.12 0.025
125.8 30 87.6

0.03 0.275 0.08
58.5 14.2 41.3

0.02 0.12 1.05
136 33 96.7







 

 

 

     
= − + + + − +     

     

     
= − − + + −     
     

     
= − − + + − −     

     

Z Z Z
A

Z Z Z
B

Z Z Z
C

 

 

The slenderness parameter 𝜆̅
𝑤 is calculated by Eq.(2.99), with the shear buckling coefficient kτ 

obtained using the formulas proposed in chapter 4 (see Table 4.10). 

It should be highlighted that the objective is to propose a universal formula (see Eq.(5.2)) that 

accounts for all boundary conditions and geometries studied, which leads to a considerably more 

complex problem, incomparable with the problem of flat plates. Moreover, the aim is to provide 

expressions that reproduce the numerical results with very high accuracy (i.e. Δmax < 5%), which 
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consequently led to relatively more complex expressions for the Aχ, Bχ and Cχ parameters. 

However, it is emphasized that all expressions are explicit and thus very easy to implement in 

hand calculation. 

Finally, for the practical engineering application, the expressions proposed above could be 

further simplified, if conservatively adopted α = 2.0 for all the buckling curves, which in most 

cases gives the lowest value of the shear reduction factor. In that case, for the boundary 

conditions BC2 and BC3, the proposed formulas would have the forms given in Table 5.9 and 

Table 5.10, respectively. 

 

Table 5.9: Simplified expressions for Aχ, Bχ and Cχ parameters (BC2) 
 

w,0 wλ λ 1.1   0.12; 0.63; 1.34
35.6 18 42.8

  = + = − − = +
Z Z Z

A B C  

w1.1 λ 3.0   
1155 1.07 93.5 1.23

;
500 50

 

+ +
= =

Z Z
A B  

 

Table 5.10: Simplified expressions for Aχ, Bχ and Cχ parameters (BC3) 
 

w,0 wλ λ 1.1   0.19; 0.75; 1.37
42.6 20.7 48

  = + = − − = +
Z Z Z

A B C  

w1.1 λ 3.0   
228 494

;
75 179

 

− +
= =

Z Z
A B  

 

These simplified expressions are suitable for quick verification of the ultimate shear resistance 

of curved panels. However, the maximum difference between the FEM results and the simplified 

expression may reach, in some cases, the value of Δmax = 20%, thus leading to an overly 

conservative design. Hence, for more precise design, the expressions given in Table 5.7 and Table 

5.8 should be used. 

5.4.4 Validation 

To validate the proposed formulas, the numerical results of the shear reduction factor (χw, num) 

are compared with the corresponding values obtained by using the formulas (χw, prop). In total, 

4374 FE models are used for the global statistical evaluation, divided into three groups (1458 

each) based on the three boundary conditions, as it was done also in chapter 4. The most relevant 

results of the statistical assessment (i.e. the mean value, the coefficient of variation and the 

maximum relative error) of the proposed formulas are summarized in Fig. 5.21 and Table 5.11.  

Table 5.11: Statistical assessment based on the ratio �̅�𝑤,prop/�̅�𝑤,num 

 

Boundary condition Number of analysis Mean (μ) CoV (%) Max. error (%) 

BC1 1458 0.996 1.76 +6.04 

BC2 1458 0.999 1.64 -4.99 

BC3 1458 1.006 1.66 -4.90 
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The statistical evaluation is made based on the �̅�𝑤,prop/�̅�𝑤,num ratio, where all the values are 

normalized against the maximum value, separately for each of the three boundary conditions. 
 

BC1 BC2 BC3 

   

Fig. 5.21: Correlation between �̅�𝑤,prop and �̅�𝑤,num 

 

Based on the presented statistical evaluation, it is concluded that the proposed formulas may 

be reliably used for an accurate determination of the shear reduction factor, for all three boundary 

conditions, within the considered geometrical ranges. 

5.5 Application of design rules 

To determine the ultimate shear resistance VRd, several steps need to be carried out, as 

schematically presented in Fig. 5.22. 
 

I - Input geometry, BC type, and steel grade: 

(a, b, R, t, BC, fy) 

 

II -  Determination of curvature and aspect ratio: 

• α - Eq.(2.1) 

• Z - Eq.(2.2) 

 

III - Verification of (b/t)min criterion - Eq.(4.2) 

 

IV - Determination of the shear buckling coefficient: 

• Ak, Bk  (Table 4.10) 

• kτ - Eq.(4.3) 

 

V - Determination of the shear resistance: 

• 𝜆̅
𝑤 - Eq.(2.99) 

• Aχ, Bχ, Cχ  (Table 5.7 and Table 5.8)  

• χw - Eq.(5.2) 

• VRd - Eq.(2.96) 

Fig. 5.22: Flowchart for determination of the ultimate shear resistance of curved panels 
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Following the procedure from Fig. 5.22, one example of curved panels is chosen to 

demonstrate the appropriate use of the proposed methodology. The results are summarized 

below, as follows: 

I – Input data: 

The geometry is adopted within the ranges encountered in real bridge applications, with the 

boundary condition BC2, whereas the steel S355 is assumed, as shown in Table 5.12. 
 

Table 5.12: Definition of example 
 

Width, b Length, a Radius, R Thickness, t Boundary Steel 

1000 mm 4000 mm 5000 mm 10 mm BC2 S355 

 

II – Definition of aspect ratio and curvature parameter: 

 4.0
a

b
 = =   (5.4) 

 
2

20
b

Z
Rt

= =   (5.5) 

 

III – Verification of criterion for minimum b/t ratio: 

 
2

min

100 14.5 23
20 2.6

b b Z Z

t t

   
=  = + + =   

   
  (5.6) 

 

IV – Determination of the shear buckling coefficient: 

 0.124 4.94 7.42kA Z= + =   (5.7) 

 0.137 3.756 6.5kB Z= + =   (5.8) 

 ( )
2

1/ 7.83k kk A B = + =   (5.9) 

 

V – Determination of the ultimate shear resistance: 

 
/

1.175
37.4

w
b t

k



= =

 
  (5.10) 

 
20.43 2.91 6.41 1.62

250 46.9 40.8

Z Z Z
A  

     
= − − + − − − =     

     
  (5.11) 

 
20.33 2.56 5.67 1.446

100.6 20.2 28.8

Z Z Z
B  

     
= − − + − − − =     

     
  (5.12) 

 0.6185w
w

A

B








= =
+

  (5.13) 

 3 1266kNRd w yV bt f= =   (5.14) 

 

Since the aspect ratio is higher than α > 3.0, in Eqs. (5.11)-(5.12), the buckling curve that 

corresponds to the value equal to α = 3.0 is used, as shown in Fig. 5.23.  
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Fig. 5.23: Corresponding buckling curve for the considered study cases (Z = 20, α > 3.0) 

 

As it may be seen, using the proposed formulas given by Eq.(5.2), it is possible to plot the 

corresponding buckling curves for any desired combination of the curvature parameter and 

aspect ratio, within the domain of this study. Finally, the calculated ultimate resistance 

(VRd,prop = 1266 kN) is compared with the value obtained numerically (VRd,num = 1246 kN), and a 

very good agreement is achieved (Δ = +1.61%). 

5.6 Summary 

The chapter was devoted to the post-critical behavior of unstiffened simply supported curved 

panels when subjected to pure shear stresses and to the determination of their ultimate shear 

resistance. The influence of several parameters on the ultimate shear resistance was numerically 

investigated, such as i) curvature parameter (Z ≤ 50); ii) aspect ratio (α = 0.5-5.0); iii) three 

boundary conditions - BC1 (all edges free-to-wave), BC2 (two curved edges constrained and two 

longitudinal free-to-wave) and BC3 (all edges constrained); and iv) the initial imperfections (shape, 

amplitude, and sign). 

In particular, it was shown that: 

• The higher the curvature parameter and the aspect ratio, the lower is the ultimate 

resistance. However, the post-critical behavior depends on both geometrical parameters 

and not only one of them; 

• For very slender panels, the ultimate resistance highly depends on the rigidity of the 

boundary conditions. Namely, in case of more rigid boundary conditions (i.e. BC2 and 

BC3), where the tension field may be developed, considerable post-critical reserves could 

be mobilized, resulting in a higher ultimate shear resistance; 

• Moreover, in the case of boundary conditions BC2 and BC3, owing to the presence of 

the tensile band, the panels show lower sensitivity to the geometric imperfections. On 

the other hand, in case of BC1, panels are susceptible to the shape and the amplitude of 
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the imperfections, which is particularly emphasized in the case of more curved panels 

(Z > 20) for the intermediate range of the slenderness parameter (0.6 < 𝜆̅
𝑤 < 1.2); 

 

Finally, a set of expressions was proposed, using the same buckling curve (χw - 𝜆̅
𝑤) approach 

from EN 1993-1-5 [11] for the flat plates, which enables an accurate estimation of the shear 

reduction factor for curved panels. The proposed method requires the calculation of the shear 

buckling coefficient first, which can be obtained using the formulas proposed in chapter 4. The 

formulas were derived assuming the equivalent geometric imperfections recommended by 

EN 1993-1-5, with the shape affine to the 1st buckling mode and an amplitude equal to a 

minimum between a/200 and b/200, which leads to a safe design. The proposed formulae are 

valid for curvatures and aspect ratios within the ranges that may be of practical use in offshore, 

aeronautics and bridge applications. 
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   CHAPTER 6 

6. Experimental study on curved bottom 
flanges in steel box-girder bridge decks 

6.1 Overview 

In this chapter, a study on the entire box-girder bridge cross-section integrating the bottom 

curved panel is carried out, which is one of the principal goals of this thesis, defined as Task 4 in 

section 1.2. More specifically, the goal is to assess the M-V interaction behavior of a box girder 

bridge deck near the intermediate support, giving an emphasis to the zone where the curved panel 

in the bottom flange is subjected to both in-plane compressive and shear stresses, which was 

addressed in Task 2 (chapter 3) and Task 3 (chapter 4 and chapter 5). 

To accomplish the desired targets from Task 4 in the most elaborate way, the research strategy 

is to divide the study into two equally relevant steps - Task 4.1 and Task 4.2. This section deals 

only with the first step, in which the results from the experimental campaign on the bridge-deck 

specimens are in detail reported. The collected data from this section serve as the benchmark in 

the subsequent Task 4.2, tackled in chapter 7, in which an extensive numerical study on this type 

of bridge decks is carried out. Together, these two steps should contribute to the development 

of solid knowledge on the M-V interaction behavior of this innovative cross-section type, and 

eventually to the proposal of new robust design rules in the final part of this thesis (chapter 8).  

The experimental campaign, presented in this chapter, is carried out within the OUTBURST 

research project [18] and it comprises two bridge deck prototypes, tested as three-point bending 

tests, thus simulating the bridge behavior near the intermediate support. The prototype box-
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girder bridge segments are in scale 1:3 with respect to a real study case identical, with identical 

geometry, however, with two different steel grades (S460 and S690). Both tests are performed in 

the laboratory of the Civil Engineering Department at the University of Coimbra. 

The scientific significance of the presented experimental study is twofold: i) it gives an insight 

into the real behavior of the box-girder bridge deck with a curved bottom flange. Such an 

experimental program was not reported in the literature, least of all with the scale that is tested 

within the OUTBURST research project; ii) the reported results serve as a reliable benchmark 

for the future work, available for the entire scientific community. This allows for the reproduction 

of experimental and/or numerical results, thus extending the scope of the study presented herein. 

The chapter is divided into three sections. In section 6.2, all the major steps carried out prior 

to the tests are described in detail, starting from the real case study of the bridge until the final 

adoption of the test specimens. In particular, the geometry and the material properties of the 

specimens are specified. Subsequently, in section 6.3, the layout of the experiment is represented, 

including the instrumentation used for data acquisition in both tests. Finally, the most relevant 

test results are discussed in section 6.4. 

6.2 Design of test specimens 

6.2.1 Introduction 

The design of the test specimens had to comply with several requirements and some inevitable 

restrictions. Firstly, since the key objective is to test a curved bottom flange as part of a bridge 

deck subject to longitudinal compression and shear, it is necessary to consider a bridge segment 

with intermediate support that could have this stress state. Secondly, the bridge deck should 

correspond to a realistic and potentially efficient bridge design. Therefore, the strategy is to 

consider a real multi-span bridge deck with a trapezoidal box-girder cross-section, and 

subsequently, to design a variant solution using a transversally curved bottom flange/web.  

The main constraint to the experimental program was related to the limitations on the 

maximum width of the test specimens due to transportation restrictions. Therefore, it was 

necessary to design a scaled-down specimen that maintained the relevant features of the variant 

solution. Finally, the test specimens had to comply with the University of Coimbra laboratory 

specifications, in terms of geometry and load application capacity. 

This section summarizes the reference case study of a bridge deck followed by the description 

of the test specimens. In addition, the material properties of the S460 and S690 steels are 

specified, obtained from tensile coupon tests. Finally, some of the main fabrication challenges 

for this innovative bridge type are highlighted. 

6.2.2 Reference case study 

The deck cross-section of the reference case study described herein is proposed by GRID 

International [151]. The bridge is a continuous five-span composite steel-concrete box-girder 

deck with standard reinforced concrete abutments and piers. It is designed to carry a roadway 
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with a single carriageway of two lanes. The deck comprises two lateral spans of 37.8 m and three 

central spans of 54 m, in a total of 237.6 m length, as shown in Fig. 6.1. 

 

 

Fig. 6.1: Span layout of the reference case study - bridge elevation [151] 

 

The deck cross-section comprises a steel-box girder with a concrete slab supporting the 

roadway. Both the slab and the non-structural bridge elements are symmetrical with respect to 

the bridge axis. The slab has a 2.5% inclination on either side of the bridge axis. The bridge deck 

is 10930 mm wide, carries two traffic lanes (3700 mm wide in each direction) and VRS barriers. 

Two pedestrian walkways 1600 mm wide, concrete stringcourse and a steel balustrade are 

provided on either side of the carriageway. The slab is formed by 70 mm precast planks and 

180 mm cast in place concrete, allowing a fast construction. 

Based on this realistic case study, the alternative solution with cylindrically curved steel panels 

is developed, adopting a box-girder section 2250 mm deep, as indicated in Fig. 6.2. The box 

girder is formed by i) a curved bottom soffit with a radius of 2500 mm (whose center coincides 

with the slab top surface) longitudinally stiffened with 250 x 25 mm flats at 950 mm centers; ii) 

webs with 46 degrees of inclination with regards to the horizontal axis; and iii) standard plate top 

flanges, 80 mm thick. 

 

  
a) b) 

Fig. 6.2: Alternative cross-section with the curved panel at a) span and b) pier [5] 
 

From these figures, it may be noticed that the center distance between top flanges is 6230 mm, 

whereas the slab cantilevers are 2350 mm long. The welded I-shape cantilever beams vary in 

depth from 509 mm to 130 mm at the tip, whereas the diaphragms are designed as flat plates 

with 450 x 16 mm dimensions. Only over the supports, a 30 mm thick closed diaphragms are 

adopted. To transfer the reaction forces to the piers, a 4700 mm wide support box is provided, 

shown in Fig. 6.2b. The reinforced concrete slab is supported by cross-beams every 2160 mm, 

which coincides with the position of the girder diaphragms, as presented in Fig. 6.3, where also 

3400 mm wide stiffened bottom curved flange is presented.  
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Fig. 6.3: Curved steel plate in the bottom flange (adapted from [5]) 
 

The structural steel distribution for a typical 54 m span is designed to comply with the existing 

standards, and it is presented in Fig. 6.4. For construction simplicity reasons, the slab is adopted 

with a constant thickness of 250 mm. The girder also has a constant depth of 2250 mm, whereas 

the thickness of the upper and lower flanges, as well as the flat web, decreases towards the mid-

span of the box girder, as indicated in Fig. 6.4. The flat webs, which are longitudinally unstiffened, 

have the same steel distribution and the thickness as the cylindrical panel, varying between 30 mm 

at the supports and 15 mm at mid-span. The upper flange is 800 mm wide, with the thickness 

that varies between 80 mm at the support and 40 mm at mid-span. To provide full composite 

behavior, three rows of 175 x Ø22 mm head studs are provided (see Fig. 6.4), with spacing 

varying between 150 mm and 300 mm at the supports and mid-span, respectively. For more 

details regarding the proposed alternative solution, the reader is invited to see references [5] and 

[151]. 

 

Fig. 6.4: Structural steel distribution [5] 
 

Finally, the main geometrical parameters of the proposed solution, defined in section 2.2, such 

as the global and local curvature parameters, aspect ratios and plate slenderness, are summarized 

in Table 6.1. In addition, for the sake of comparison, the average value of these parameters is 

provided, based on the data collected on the real examples of bridges with curved cross-sectional 

panels from Table 2.2.  
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Table 6.1: Geometrical parameters of the adopted cross-section at support 
 

 Z α b/t Zloc αloc bloc/t 

Real examples (avg.) 100 0.7 165 3 4 28 

Case study 235 0.5 140 12 2.3 32 

 

It may be observed that all parameters fall inside the ranges of typical bridge geometries. 

However, in order to grasp the benefits of higher curvatures, the global curvature, Z = 235, and 

the local curvature, Zloc = 12, are on the upper bound of the existing bridge decks. 

6.2.3 Geometry of test specimens 

The goal of the experimental tests is to reproduce the behavior of the bridge deck in the 

vicinity of intermediate support with a length of approximately 0.2 x L (L ≈ 54 m) on both sides 

of the support, which corresponds to the distance between two zero-bending moments. This 

results in a bridge deck segment with a total length of approximately 21.6 m (i.e. 0.4 x L), as 

shown in Fig. 6.5. 
 

 

Fig. 6.5: Length of bridge deck close to an intermediate pier 
 

This segment is proportionally scaled-down by about a 1:3 ratio to meet the aforementioned 

road transportation constraint of approximately 2400 mm on the width. The new dimensions of 

all relevant parts of the test specimens are presented in Fig. 6.6, whereas some additional 

information is provided in Table 6.2.  
 

 

 

Fig. 6.6: Cross-section of the tested prototypes 
 

The figure indicates that the cross-section consists of a curved bottom panel, approximately 

1400 mm wide and flat webs welded to the curved panel. To secure an adequate load application 

and the desired boundary conditions, the specimens are extended by a = 720 mm on both sides. 

Consequently, the total length of each specimen is equal to L + a + a = 8640 mm (see Table 6.2).  
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Table 6.2: Adopted geometry of the tested prototype in [mm] 
 

 Symbol R = 1:1 R = 1:3 

Total length L 21600 7200 

Top flange thickness tf 80 25 

Bottom flange thickness t 30 10 

Cross-frames distance a 2160 720 

Stiffener thickness tst 25 8 

Cross-frame thickness tcf 16 5 

Diaphragm thickness td 30 10 

 

Finally, it is necessary to emphasize that several simplifications are introduced in the tested 

deck prototype (see Fig. 6.6): 

• The cross-section is considered as a homogeneous steel section, and not as a composite 

one, where the reinforced concrete slab above the intermediate support is replaced by an 

equivalent steel plate, resulting in a top flange with a constant thickness; 

• The inclination of the slab of 2.5% is neglected, resulting in a flat top flange; 

• The cross-section of the bridge deck that participates in load-bearing capacity consists 

only of the box girder part, whereas the cantilevers are omitted; 

 

6.2.4 Fabrication challenges 

The two test specimens are fabricated by MCE GmbH within the OUTBURST project [18] 

(see Fig. 6.7). During the fabrication, several unexpected challenges were encountered that 

deserve to be highlighted. 

 

 
 

Fig. 6.7: Fabrication of test specimens by MCE GmbH 
 

Firstly, the scaling of the specimens resulted in thin plates with relatively thick butt welds. 

Therefore, the welding had to be done with a particular caution since these thick welds showed 

a tendency to shrink in the cooling phase, causing warping and distortion of the adjacent plates. 

One example of this phenomenon is detected after a thorough inspection of the specimen made 

in S690, where the longitudinal stiffeners experienced a severe bow imperfection, with an 

amplitude of almost δloc ≈ 20 mm (i.e. δloc ≈ h/4), as shown in Fig. 6.7. Nevertheless, such huge 

bow imperfections are identified only in the zones of the bottom flange located far from the 
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intermediate support, where the failure is anticipated, thus, their influence on the behavior of the 

bridge prototype is insignificant.  

Moreover, due to the scaling, the assembly order of the specimens required another change 

in the design. Namely, in the full-scale deck, the holes in the diaphragms would have been big 

enough to allow access to the welder inside the box-girder. However, in the downscaled 

specimen, these holes are too small and thus, two rectangular openings (windows) are left open 

on each side of the specimens. Moreover, these two windows are used also for the installation of 

measuring equipment inside the section. The windows are closed by welding in the laboratory of 

the University of Coimbra after the instrumentation is completed, as shown later in section 6.3. 

However, the most intricate fabrication issue turned out to be the assembly of the longitudinal 

stiffeners and perpendicular cross-frames. Commonly, in the case of trapezoidal box cross-

sections, the assembly starts with the welding of the longitudinal stiffeners onto the bottom flat 

panel. Subsequently, the assembly of the cross-frame is achieved by sliding over the longitudinal 

stiffeners until the desired position, followed by complete welding at the end. However, in the 

case of a curved panel, each flat longitudinal stiffener takes a different global angle and therefore, 

the sliding of the cross-frame is not feasible. In this particular case, it is possible to assemble 

manually all parts at the desired position before welding, owing to relatively lightweight cross-

frames. However, for larger-scale structures, the use of a different longitudinal stiffener would 

be recommendable, e.g. trapezoidal stiffeners with inclined side plates.  

Finally, the chosen steel grades of S460 and S690 require special attention in the workshop, 

both in terms of quality management, certificates (workshop and welders), heating, costs, etc. 

Hence, although these materials are covered by existing design codes, their use is still rather 

limited in the bridge industry.  

6.2.5 Material properties  

The mechanical properties of the S460 NL and S690 QL steels are obtained by a standard 

tensile test, according to ISO 6892-1 [152], performed at room temperature in the strain control 

method A222, with a strain rate equal to 0.00025 s-1.  

For the tensile tests, ten specimens in total (five per steel) are cut directly from the bridge 

prototypes after the tests are completed. The samples are taken from the flat parts of the webs, 

at the far end of each of two bridge prototypes since these areas are not exposed to any external 

load during the experimental test. To assess the level of anisotropy of this material, the test 

samples are taken in two perpendicular directions, according to the scheme presented in Fig. 6.8. 

All specimens have the thickness equal to t = 10 mm. The mechanical properties relevant to 

the characterization of the material are summarized in Table 6.3, where the values correspond to 

an average obtained from five tests. The modulus of elasticity E is obtained by means of linear 

regression, as recommended in Annex A of ISO 6892-1 [152]. 
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Fig. 6.8: Geometry and orientation of the tensile test specimens 
 

Table 6.3: Measured mechanical properties for two steels – engineering stresses 
 

Steel E [GPa] fy [MPa] fu [MPa] fu/fy At [%] 

S460 209.5 526 638 1.20 26.1 

S690 209.4 892 948 1.06 13.8 

 

For each steel grade, one representative engineering stress-strain curve obtained from the 

tensile coupon tests is shown in Fig. 6.9. For the high-strength steel (S690) the yield strength 

corresponds to the proof strength (Rp0.2), shown in Fig. 6.9b. 

 
a) 

 
b) 

Fig. 6.9: Engineering stress-strain curves: a) S460; b) S690 
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Based on the results of tensile coupon tests it is concluded that both materials might be 

considered isotropic, showing the same mechanical properties in two perpendicular directions. 

For both materials, the yield strength exceeded the nominal values by 14% in the case of S460 

and 29% in the case of S690.  

From these graphs, it may be noticed that steel S460 is characterized by discontinuous yielding, 

with a yield plateau between the start of yielding and the start of uniform work-hardening. On 

the other hand, the higher strength steel (S690) shows a less ductile behavior, with a considerably 

lower fu/fy ratio, and almost two times lower values of the percentage total elongation after 

fracture (At). 

6.3 Experimental layout 

6.3.1 Definition of the setup 

To assess the complex behavior of a box girder bridge deck near the intermediate support, 

where the moment-shear (M - V) interaction occurs, the two bridge prototypes in a scale 1:3 are 

tested as three-point bending tests. The global view of the test setup is shown in Fig. 6.10.  
 

 

Fig. 6.10: Global view of the test setup 
 

To achieve the desired load and boundary conditions, the following material is designed and 

fabricated for the experimental tests: 

• 1 bridge prototype made of steel S460 and another identical in S690 

• 2 supporting feet where the intermediate support is placed 

• 1 loading beam (stiffened HEB300 profile), placed below the hydraulic jack 

• 2 supporting beams (back-to-back U260 profiles – white colour) 

• 2 supporting beams (HEB300 profiles – blue colour) supporting U260 profiles 

• 4 high strength pre-stressing systems(Ø47 mm) 4.5 m long. 
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Besides the bridge prototypes made of steel S460 and S690, all other auxiliary elements are 

made of steel S355. Moreover, 4 pre-stressing HSS threadbar systems with the corresponding 

accessories (plates, nuts, washers) used in both tests, are adopted from a catalog [153]. 

Each bridge prototype is loaded by a concentrated force on one end using an Agop 6000 kN 

actuator, as indicated in Fig. 6.11a. The load is transferred to the bridge deck through a load beam 

made of a stiffened HEB300 profile. The middle support of the segment is supported by two 

support feet, connected together by means of bolts. 

At the other end of the bridge prototype, 4 high strength bars anchored to the reaction beam 

in the ground, act as a counter-reaction and prevent the rotation of the bridge segment upwards. 

The bars are supported by two simply supported beams, made of two back-to-back UPN260 

profiles (white-coloured), designed to sustain huge local transversal forces from the bars. These 

two beams are supported by another two welded beams made of HEB300 profiles (blue-

coloured), as presented in Fig. 6.11b. 
 

  
a) b) 

Fig. 6.11: Test setup: a) load application; b) end support - 2 back-to-back U260 beams (white) and 2 

HEB300 beams (blue) 
 

Finally, the lateral movements of the bridge prototype during the load application are 

prevented by two specially designed lateral constraints attached to the loading frame, with a 5 mm 

distance from the segment, as shown in Fig. 6.12.  
 

  
Fig. 6.12: Lateral constraints 

6.3.2 Instrumentation 

During the two experimental tests, the following data is acquired: 

▪ Applied axial force and reaction (with load cells) 

▪ Vertical, lateral and longitudinal displacements (with LVDTs) 

▪ Strains (with strain gauges – SGs) 
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6.3.2.1 Linear displacement traducers (LVDTs) 

In total, 10 LVDT TML are used in each test to record vertical, lateral and longitudinal 

displacements of the specimen, positioned according to the scheme in Fig. 6.13. 
 

 

Fig. 6.13: The position of LVDTs 
 

Out of 7 LVDTs that measure vertical displacements (i.e. V-1 to V-7), V-6 and V-7 are placed 

at two ends of the loading beam to monitor if the load is centered during the test (see Fig. 6.11a), 

V-1, V-2, and V-3 are placed at one side of the bridge segment that is moving downwards (see 

Fig. 6.14a), whereas the remaining two, V-4 and V-5, are placed at the opposite side of the mid-

support (see Fig. 6.14b). 
 

  
a) b) 

Fig. 6.14: LVDTs to measure vertical displacements: a) V-1, V-2, and V-3; b) V-4 and V-5 
 

Finally, 2 LVDTs (L-1 and L-2) measured the longitudinal displacement at the two ends of 

the bridge specimen (see Fig. 6.15a), whereas one LVDT (H-1) is used to measure potential 

horizontal (in-plan) displacements (see Fig. 6.15b). 
 

  
a) b) 

Fig. 6.15: LVDTs to measure: a) longitudinal (L-2) and b) horizontal (H-1) displacements  
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6.3.2.2 Load cells 

For the load measurements, five load cells (type C6A) are used in each test. As may be seen 

in Fig. 6.11b, four of them (R1, R2, R3, and R4), with the capacity of 2 MN, are placed at the 

position of the 4 high strength bars to measure the forces in the bars. The last one, with the 

capacity of 5 MN, is placed at the position of the loading point (F), as shown in Fig. 6.11a. 

6.3.2.3 Strain gauges 

In total, 99 SGs and 103 SGs (type FLA-6-11) are used for the S460 and S690 specimens, 

respectively. They are located in 3 different cross-sections, 150 mm, 300 mm and 570 mm away 

from the intermediate support, where the failure of the prototype is anticipated, as shown in Fig. 

6.16. 
 

 
Fig. 6.16: Position of SGs close to the intermediate support 

 

The position of all SGs in the cross-section is illustrated in Fig. 6.18. This scheme refers to 

the specimen S690. In the case of the specimen S460, the position of SGs is the same, however, 

without 4 SGs on the top flange in plane 1-1 (i.e. 4T and 5T). In this figure, the circular symbol 

refers to a single SG that measures strains only in the longitudinal direction. These individual 

SGs are placed only on the longitudinal stiffeners that may be considered as a linear element with 

the dominant strains only in the longitudinal direction. On the other hand, the rectangular symbol 

refers to 2 SGs placed orthogonally to each other, as shown in Fig. 6.17a. Namely, owing to the 

limited number of data logger channels (i.e. 6 x HBM MX1615 with 16 channels and 

1 x HBM MX840 with 24 channels), instead of rosettes, which commonly measure strains in 3 

directions (0°, 45°, and 90°), two ‘normal’ SGs are used at each point of interest. In Fig. 6.17a, it 

may be seen that one SG is placed to measure strains in the longitudinal direction (L) and the 

other one is placed in the perpendicular (or transversal) direction (T).  

   
a) b) c) 

Fig. 6.17: a) Application of SGs (L and T); b) SGs on curved part (C and N); c) SGs on flat webs (F) 
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Designation Position 
Number of SG 

Symbol 
1-1 2-2 3-3 

C Curved bottom flange 16 16 8  (2SG) 

F Flat webs 12 12 4  (2SG) 

T Top flange 10 - -  (2SG) 

N Longitudinal stiffeners 10 10 5  (1SG) 

 

1-1 

 

2-2 

 

3-3 

 
Fig. 6.18: Position of SGs in cross-sections 1-1, 2-2 and 3-3 

 
 

As mentioned before, to allow the installation of SGs inside the box section, two ‘windows’ 

(613 x 613 mm2) are cut off from the flat webs on both sides of the specimen, close to the 

intermediate support. All strain gauge cables that transmit the information to the data logger are 

led outside of the box through one of the holes (200 x 200 mm2) that is deliberately left on the 

top flange for this reason (see Fig. 6.17b). After the instrumentation inside of the box is finished, 

the ‘windows’ are closed by full welds with metallic backing on three sides, and an ordinary fillet 

weld to the top plate. Subsequently, the SGs, which measured the strains on the flat webs (F), are 

attached to the outer surface of the windows, as shown in Fig. 6.17c.  
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6.4 Experimental results 

6.4.1 Loading 

As explained in section 6.3.2, the load is recorded at 5 points of the test setup, presented in 

Fig. 6.19. Besides the vertical load (F) applied on the specimen with the hydraulic jack, the 

reactions (R1, R2, R3, and R4) are recorded at the positions of the high strength bars, 

corresponding to the axial force induced in the bars. 
 

 
Fig. 6.19: Measurements of applied load (F) and reactions (R1-R4) 

 

The load application in two tests is stopped when the vertical displacement at the position of 

the load (V-1) reached the value of approximately 125 mm and 160 mm, respectively, which 

occurred in the descending branch of the force-displacement curves, presented in Fig. 6.20.  
 

 
Fig. 6.20: Load (F)-displacement (V-1) curves 

 

As it may be seen, the maximum load reached values of F1 = 1580 kN and F2 = 2217 kN, for 

specimen S460 and S690, respectively. Although the difference in the nominal value of the yield 

strength between the two steels is 50% (or in this case 70% when considering measured values 

of the yield strength from Table 6.3), the difference between the ultimate loads is approximately 

40%. This means that in the case of the higher steel grade specimen (S690), which is more 

sensitive to the buckling phenomenon than specimen in S460, the local buckling occurred even 

before the yield strength is achieved, which caused a slight reduction of the ultimate load. 

Regarding the data recorded by the four load cells at the position of the high strength bars, 

the load-displacement curves are presented in Fig. 6.21. It may be noticed that in both tests, the 
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sum of these four reactions at the moment when the ultimate load is reached (i.e. ΣR ≈ 1400 kN 

and ΣR ≈ 2060 kN) corresponds to the applied load F, which confirms that the bridge specimens 

behaved statically in the desired way. The differences of Δ1 = 13% and Δ2 = 7.5% are due to the 

fact that the bars do not have the theoretically infinite rigidity and may be considered as springs 

with a certain axial rigidity. This means that a small portion of the force, responsible for the axial 

extension of the bars, is not measured by the load cells.  
 

  
a) b) 

Fig. 6.21: Reactions at the end-support: a) specimen S460 and b) specimen S690 
 

Finally, it should be emphasized that the reactions R1 and R3 are not equal respectively to 

reactions R2 and R4, which is in contrast to the expectations. However, the differences might be 

explained by the uneven pre-stressing forces that are introduced in the bars when they are 

anchored in the reaction beam. Moreover, the tested system is statically indeterminate, which 

means that not only the axial forces but also certain horizontal forces are introduced in the bars 

during the load application. Consequently, some of the bars are subject to bending rather than 

the pure axial extension, thus reducing the measured axial force. 

6.4.2 Displacements 

The displacements of the bridge prototypes are measured with LVDTs, as described in 6.3.2. 

For specimen S690, a comparison between the initial position of the prototype (before the test) 

and its position after the test is presented in Fig. 6.22. Using the surrounding frame as a reference, 

it may be noticed that the segment bent downwards at the end of the test. 
 

  
a) b) 

Fig. 6.22: Vertical displacement of the bridge: a) before and b) after the test 
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Based on the data recorded by LVDTs, the deformed shape of both specimens at the moment 

when the ultimate load is reached is schematically illustrated in Fig. 6.23. 

 

[mm] End-1 V-1 V-2 V-3 V-4 V-5 End-2 

S460 146 106 63 25 9 14 17 

S690 166 137 81 31 13 20 24 

 

Fig. 6.23: Vertical displacements measured at the ultimate load in [mm] 
 

Besides the vertical, the horizontal (in-plan) and the longitudinal displacements are also 

recorded (see L-1, L-2, and H-1 in Fig. 6.13) and their values at the ultimate load are summarized 

in Table 6.4. 
 

Table 6.4: Longitudinal and horizontal displacements measured at the ultimate load  
 

[mm] L-1 L-2 H-1 

S460 0.8 -0.7 1.6 

S690 8.7 -8.4 6 

 

It may be noticed that the horizontal displacements of the specimen S690 are considerably 

higher than those of the specimen S460; however, they are still negligible when compared to the 

vertical displacements presented before. Hence, in both cases, the desired behavior of the 

specimens is achieved.  

6.4.3 Strains 

The strains are measured at various points (see 6.3.2), mainly in the zone close to the 

intermediate support where the failure occurred. In Fig. 6.24 and Fig. 6.25, the development of 

strains with the force is presented at several relevant points of cross-section 1-1, for both 

specimens, whereas all the readings from all points are presented in Annex B (B.1). The notations 

L and T correspond to ‘longitudinal’ and ‘transversal’ (or ‘tangential’) directions (see Fig. 6.18).  

From these graphs, it may be noticed that the strains in the longitudinal direction (ε1) are 

significantly higher than those in the tangential direction (ε2). Furthermore, it may be concluded 

that the strains in the curved part of the cross-section (C) exceeded the yield strain (εu ≈ 0.2 %), 

indicating that bridge specimens underwent plastic deformations in the bottom part, whereas the 

flat webs (F) remained in the elastic domain. Finally, based on the signs of the strains ε1 in the 

flat webs (i.e. 1F and 6F are positive, 2F, 3F, 4F and 5F are negative), it is clear that the elastic 

neutral axis crosses the flat webs somewhere between the strain gauges 1F and 2F. This is further 

discussed in 6.4.4, where the stress state in the cross-section is determined, using the measured 

strains. 
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Fig. 6.24: Strains in curved (C) and flat (F) parts of cross-section 1-1 – S460 

 

  

  

Fig. 6.25: Strains in curved (C) and flat (F) parts of cross-section 1-1 – S690 
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6.4.4 Stresses 

6.4.4.1 General 

If the bridge prototype is considered as a linear (1 - dimensional) element, having one 

dimension (length L) significantly larger than the other two (width b and height h), the axial 

stresses (σ1) may be calculated using Hooke’s law given by Eq.(6.1) 

 1 1E =   (6.1) 
 

On the other hand, if the panels and sub-panels of the prototype cross-sections are considered 

as planar (2 - dimensional) elements under a biaxial stress state, the axial in-plane stresses (σ1 and 

σ2) may be calculated using Kirchhoff - Love plate theory [154], applicable for thin isotropic 

plates, defined by Eq.(6.2) and Eq.(6.3) as 

  1 1 221

E
  


= +

−
  (6.2) 

 

 2 2 1E  = +   (6.3) 
 

where ε2 is the strain measured in the tangential direction, i.e. perpendicular to the axial x-axis. 

Using the strain values measured by the SGs and reported in 6.4.3, the values of axial stresses 

(σ1) calculated by Hooke’s law (Eq.(6.1)) and Kirchhoff - Love plate theory (Eq.(6.2)) are 

compared in the following paragraphs. Furthermore, these values are also compared with the 

axial stresses calculated by classical beam theory (LBT), obtained from Eq.(6.4) 

 1 z

y y

M Fl
e

W I
 = =   (6.4) 

 

where Wy and Iy are section modulus and the second moment of area of the gross cross-

section, F is the applied force, l is the distance between the point of load application and the 

considered cross-section, and ez is the vertical coordinate of the considered point in the cross-

section with respect to the elastic neutral axis. 

The results of the comparison are shown in Fig. 6.26, where ‘σ–Hooke’, ‘σ–Kirchhoff’ and ‘σ–

LBT’ correspond to the axial stresses (σ1) calculated using Eq.(6.1), Eq.(6.2) and Eq.(6.4), 

respectively. In these graphs, the stress evolution is plotted against the force at point 2F/5F (see 

Fig. 6.18) in all three planes (1-1, 2-2 and 3-3) for both bridge specimens. Due to the symmetry 

of the box-girder cross-section, in the case of ‘σ–Hooke’ and ‘σ–Kirchhoff’, the stresses are 

obtained using the average value of the strains measured on the left side of the cross-section (i.e. 

2F) and the corresponding ones on the right side (i.e. 5F).  

The graphs indicate that the difference between the stresses calculated using linear (Hooke) 

and planar (Kirchhoff-Love) theory is noticeable only in plane 1-1 since it lays in the vicinity to 

the intermediate support, where a complex stress state exists with non-negligible tangential 

stresses. Another explanation for a larger difference between these two theories in plane 1-1 

might be the imprecise readings from the SGs, i.e. their exact orientation and the angle between 

longitudinal (L) and tangential (T) strain gauge. On the other hand, in-plane 2-2, which is more 
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distant from the intermediate support, this difference slowly decreases, while in plane 3-3, there 

is practically no difference, which means that the bridge segment might be considered a linear 

(1 - dimensional) structure for the determination of the stress state. 

 

 S460 S690 

1-1 

  

2-2 

  

3-3 

  

Fig. 6.26: Comparison of the experimental and analytical (LBT) results at point 2F/5F 
 

Regarding the stresses defined by LBT (Eq.(6.4)), a good agreement with the experimental 

results reproduced by Eq.(6.1) (i.e. Hook’s theory) is achieved in planes 2-2 and 3-3, whereas a 

larger discrepancy is noticed in plane 1-1. These values are obtained assuming that the SGs lay 

exactly at ez = 65 mm away from the neutral axis. However, in Fig. 6.26, it is shown that even a 

small variation of the SG position (Δez = +/- 10 mm) has a significant impact on these results.  

Nevertheless, in all the points where the comparison is made, a good correspondence between 

the experimental and the analytical results is obtained (Δ < 10%), which gives confidence in the 

validity of the experimental measurements. Namely, the stresses obtained with plate theory 

(Kirchhoff-Love) are slightly higher than those calculated with the beam theory (LBT); however, 

for a quick estimation of the stresses in the cross-section of the bridge prototype, this difference 

may be considered negligible. Finally, the linear beam theory may be comfortably used for the 
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prediction of the stresses within the elastic range (i.e. until the extreme fiber starts to yield), 

whereas beyond that point, a non-linear theory must be considered. 

6.4.4.2 Stresses in flat web and curved panel (F and C) 

Using the strain measurements and the linear theory (Eq.(6.1)), the stress distribution along 

the height of the specimens is presented in Fig. 6.27and Fig. 6.28 for various levels of the load, 

both for section 1-1 and 2-2. The values of the stresses are again adopted as the average of the 

ones on the left side of the cross-section (e.g. 1F, 2F, 1C, 2C etc.) and the corresponding ones on 

the right side (e.g. 6F, 5F, 8C, 7C etc.). For stresses that exceed the yield strength, for the sake of 

simplicity, it is assumed that the stress is equal to yield strength measured in 6.2.5. 

 

  
a) b) 

Fig. 6.27: Axial stresses in specimen S460 in cross-section: a) 1-1 and b) 2-2 
 
 

  
a) b) 

Fig. 6.28: Axial stresses in specimen S690 in cross-section: a) 1-1 and b) 2-2 
 

In both cases, the linear stress distribution is observed for forces up to 60-70% of the 

maximum force, at which, the yield stress is reached at the bottom (compressed) fiber of the 

cross-section. Subsequently, with the additional increase of load, the yielding zone starts to spread 
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towards the neutral axis; however, due to local buckling, the cross-section fails before the full 

plastic moment is developed.  

To verify this statement, the elastic bending moment Mel, at which the extreme fiber reaches 

yielding stress (see Fig. 6.29a), as well as the plastic bending moment Mpl (see Fig. 6.29b), are 

calculated for the gross cross-section, using the yield strength fy obtained in 6.2.5. The calculated 

values are summarized in Table 6.5, whereas in Fig. 6.30, the development of the bending 

moment in the cross-section above the intermediate support, normalized to the plastic moment 

Mpl, is plotted against the rotation of the loaded cantilever of the bridge. 

 

 
a) 

 
b) 

Fig. 6.29: a) Elastic bending moment Mel; b) Plastic bending moment Mpl 
 
 

Table 6.5: Elastic, plastic and measured bending moments  
 

 Mel [kNm] Mpl [kNm] Mexp,max [kNm] 

Prototype S460 5103 8670 5686 

Prototype S690 8654 14832 7981 

 
 

The results indicate that in the case of the prototype S460, the cross-section has sufficient 

capacity to sustain additional load after the yielding of the extremely compressed fiber, but the 

plastic resistance cannot be reached. On the other hand, in the case of the prototype S690, the 

ultimate bending resistance (calculated with the real material properties) is reached slightly before 

the extreme fiber yields, which means that local buckling of the curved bottom flange occurred. 

It is important to emphasize that the analyzed cross-section is subject not only to bending 

moment but also to shear forces, thus, the value Mexp presented in Table 6.5, cannot be necessarily 

considered the bending resistance of the cross-section.  
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Fig. 6.30: Moment-rotation curves 

Finally, based on Fig. 6.29, it may be observed that the elastic neutral axis passes through the 

flat webs (i.e. 581 mm from the bottom fiber), whereas the plastic neutral axis crosses the top 

flange of the section (i.e. 20 mm from the top fiber). However, after yielding is reached in the 

extreme fiber of the cross-section, the neutral axis starts to shift towards the plastic neutral axis, 

as shown in Fig. 6.31, where the stress distribution measured by the SGs is presented for several 

levels of load.  
 

 

a) 

 

b) 

Fig. 6.31: Neutral axis shifting after yielding at section 1-1 for a) S460 and b) S690 

 

According to these experimental results, it may be noticed that the position of the elastic 

neutral axis before the yield stress is reached is indeed 581 mm away from the bottom fiber, 

which coincides with the analytical value shown in Fig. 6.29a.  

Based on the calculated plastic section modulus (Wpl = Mpl/fy), which is equal to 

16.63 x 103 cm3, and elastic section modulus (Wel = Iy/zmax) equal to 9.7 x 103 cm3, the shape 

factor f is calculated as f = Wpl/Wel ≈ 1.7, which falls inside the usual range for box-girders (i.e. 

f = 1.5 - 2.0). 
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6.4.4.3 Stresses in the top flange (T) 

Due to the shear strains, the longitudinal tensile bending stresses in wide top flanges reduce 

with the distance from the webs. Based on the results from the first experimental test, carried out 

with specimen in S460, it is noticed that this phenomenon called shear lag effect occurred, and thus, 

for the subsequent test in S690, additional SGs are placed along the top flange (i.e. 4T and 5T in 

Fig. 6.18) to obtain a more refined distribution of the tensile stresses.  

In Fig. 6.32, the distribution of longitudinal tensile stresses is plotted across the width of the 

top flange for various values of the applied force F. 

 

 
a) 

 
b) 

Fig. 6.32: Shear lag effect in the prototype: a) S460 and b) S690 – σ1 [MPa] 

 

Based on these figures, it may be observed that the stresses in the middle of the top flange are 

significantly lower (approximately 3 times) in comparison to the stresses in the edges of the 

flange. Furthermore, the shape of this distribution is not parabolic, as it is generally assumed. 

Therefore, since linear beam theory (LBT) does not recognize directly shear lag effect, to make 

axial stresses in the top flange comparable with the ones calculated by LBT, in Fig. 6.27a and Fig. 

6.28a, as well as in Fig. 6.31, it is necessary to find an average value (σ1,avg), using these measured 

values.  
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6.4.4.4 Stresses in longitudinal stiffeners (N) 

Finally, the data from the SGs placed on the longitudinal stiffeners are also assessed for both 

tests. The position of SGs, as well as their notation, is shown in Fig. 6.33, where the index number 

refers to the number of stiffeners (1 to 5), whereas the letter indicates the position of the SG (i.e. 

T- ‘top’ and M- ‘middle’).  
 

 

Fig. 6.33: Position and notation of SGs on the longitudinal stiffeners 

 

Since the stiffeners are considered the linear elements, the axial stresses are determined using 

Hooke’s law, given by Eq.(6.1). The development of the axial compressive stresses for increasing 

values of the applied force F is presented for the cross-section 2-2 of prototype S690 since only 

in this cross-section no data losses occurred during the test in any of the strain gauges. Due to 

the symmetry of the cross-section, the results are presented only for three stiffeners (i.e. 1N, 2N, 

and 3N). The stresses presented in Fig. 6.34 correspond to the average of stresses obtained at 

two symmetrical stiffeners (e.g. 1N and 5N; 2N and 4N). 

 

 F = 250 kN F = 750 kN F = 1500 kN F = 1750 kN F = 2000 kN F = 2217 kN 

1N 

      

2N 

      

3N 

      

Fig. 6.34: Axial stresses in longitudinal stiffeners - prototype S690 (cross-section 2-2) 
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The figure shows that the stiffener in the middle (3N) reaches the yield stress when the applied 

load reached approximately 70-80% of the maximum load (F ≈ 1500 - 1750 kN). The yielding of 

stiffeners 2N and 4N occurred only at the maximum values of load (F ≈ 2200 kN), whereas in 

the edge stiffeners (1N and 5N), the stresses did not reach the yield strength fy.  

In the case of specimen S460, similar results are obtained, with the exceedance of the yield 

strength in the middle stiffener at around 70-80% of the maximum applied force 

(F ≈ 1200 - 1300 kN), and in the stiffeners, 2N and 4N almost at the maximum applied load 

(F ≈ 1500 kN).  

6.4.5 Failure mode 

Using the experimental results, the objective is to get an insight into the buckling behavior of 

the stiffened curved panels when subject to compression. Namely, in both tests, failure occurred 

at the curved bottom flange close to the intermediate support, as shown in Fig. 6.35. 

 

  
a) b) 

Fig. 6.35: Failure mode of the bottom curved panel: a) specimen S460; b) specimen S690 
 

In addition, using cameras placed inside the box segment during the tests, it is possible to 

capture the buckling mode, which is presented in Fig. 6.36. In this figure, yellow arrows indicate 

the stiffeners movement direction after the buckling occurred, whereas the red arrows show the 

direction in which sub-panels moved.  

 

 

Fig. 6.36: Failure mode of the bottom curved panel inside the box-girder – specimen S460 
 

Based on Fig. 6.36, the collapse mechanism is schematically presented in Fig. 6.37, from where 

it may be nicely seen that the longitudinal stiffeners and curved subpanels in-between both 

attained local buckling, whereas no global buckling (plate-like or column-like) of the entire 

stiffened curved panel is detected.  
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Fig. 6.37: Local buckling of the stiffened bottom curved panel 
 

The figure shows that local buckling occurred in the vicinity of cross-section 1-1, 

approximately 150 mm away from the intermediate support, as anticipated in Fig. 6.16. The 

deformed shape of cross-section 1-1 is presented in Fig. 6.38 for four levels of applied force F, 

with the normalized stress distribution obtained from the SGs.  

Based on these figures, it may be noticed that the yielding in the bottom flange started when 

the force reached approximately 0.7Fmax, whereas the local buckling occurred at force close to the 

ultimate load. This means that the ultimate load is mainly driven by the yielding of the material, 

whereas the local buckling only slightly reduced the ultimate resistance of the curved stiffened 

bottom flange.  

Almost identical collapse mechanism was obtained in the study by Piculin & Može [85], in 

which isolated curved stiffened panels, tested under uniform axial compression, are also derived 

from the bridge case study defined in 6.2.2, however, downscaled 5 times.  

Moreover, in the subsequent numerical study carried out by Piculin & Može [60], the authors 

concluded that in the case of highly curved stiffened panels, global buckling has almost no effect 

on the ultimate resistance due to a high cross-section inertia, which coincides with the findings 

reported by Tran ([8], [59]). Thus, it may be stated that failure of highly curved panels, with the 

geometry encountered in bridge applications, is governed mainly by local buckling, which is 

confirmed by the test results from both experimental campaigns reported in this thesis (i.e. in 

chapter 3 and in this chapter), but also by the experimental results from Piculin & Može [85].  

This further means that the resistance at high curvatures is not affected by the aspect ratio α 

of the panel since the local buckling of subpanels is independent of the panel length a. 

Consequently, in the case of highly curved panels, it is possible to reduce the number of cross-

frames, which may significantly reduce the fabrication costs and the environmental impact, by 

reducing the material consumption, the amount of welding and the amount of work. 

Nevertheless, this assumption is to be checked and discussed in more detail in chapter 7 and 8, 

where the numerical study is carried out, extending the limited set of geometric parameters 

covered in the presented experimental study. 
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a) 

  

b) 

  

c) 

 
 

d) 

Fig. 6.38: Deformed shape of prototype S460 (cross-section 1-1) for: a) F = 0.7Fmax;  

b) F = 0.9Fmax; c) F = 0.95Fmax; and d) F = Fmax 
 

6.4.6 Comparison between test results and verification procedures 

Since there are still no design rules to assess the buckling behavior, as well as the bending 

(MRd) and shear resistance (VRd) of a box-girder cross-section with a stiffened curved bottom 

flange, the experimental results are verified using two different design approaches: 

i) Equivalent flat panel approach 

ii) Curved panel approach 
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6.4.6.1 Equivalent flat panel approach – Method 1 

This approach corresponds to the design rules for trapezoidal box-girder bridge cross-section 

from EN 1993-1-5 [11], described in detail in 2.5.3; however, assuming an equivalent flat 

stiffened panel in the bottom flange instead of a curved panel, as indicated in Fig. 6.39. 

As it may be noticed, the bottom flange is assumed to be the entire curved part of the cross-

section, with the width b = 1400 mm, whereas the web is considered a 612 mm wide flat plate 

that connects the bottom and the top flange. 

Following the steps defined in 2.5.3, to determine the bending resistance MRd, it is necessary 

to calculate the effective section modulus Wel,eff, which consists of the gross area of the top flange 

(in tension) and the effective area of the bottom flange and webs.  

 

Fig. 6.39: Equivalent flat panel approach 
 

6.4.6.2 Curved panel approach – Method 2 

This approach is fundamentally equivalent to the previous one; however, the effect of 

curvature is explicitly accounted for. Namely, a simplification is adopted, according to which the 

entire curved panel (see Fig. 6.39) is assumed to be the bottom flange, subjected to uniform axial 

compression (ψ = 1.0). Consequently, such assumption allows the use of the same design 

methodology from EN 1993-1-5 [11], where instead of the procedure for flat stiffened panel, the 

methodology developed within the OUTBURST research project [85] could be applied since it 

was proven in chapter 3 the most adequate for the curved panels with Z > 100. All the steps for 

the determination of the local and global buckling of curved stiffened panels using this 

methodology are described in detail in 2.5.1.  

6.4.6.3 Comparison of results 

The effective cross-sections, obtained using these two methodologies, are presented in Fig. 

6.40 and Fig. 6.41 for steel S690, whereas the corresponding bending resistances are summarized 

and compared in Table 6.6 for both steel grades.  
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Table 6.6: Comparison of bending moment capacity 
 

 

Test 
 

Equivalent plate method 
 

Curved panel method 

Mexp [kNm] 
 

Meff,1 [kNm] Meff,1/Mexp 
 

Meff,2 [kNm] Meff,2/Mexp 

Specimen S460 5686  3931 0.69  4430 0.78 

Specimen S690 7981  5365 0.67  6529 0.82 

 
 

 

 

Fig. 6.40: Effective cross-section of specimen S690 according to equivalent panel approach 
 
 

 

Fig. 6.41: Effective cross-section of specimen S690 according to curved panel approach 
 

As may be seen from the results in the table, both methods give bending resistance lower than 

the one obtained in the experimental tests, and the ratio between Meff/Mexp does not seem to vary 

significantly with the steel grade. However, the method in which the curved panel is explicitly 

considered (Method 2) gives results much more realistic and closer to the experimental ones, 

when compared to the first simplified method. It should be noted that Method 2 is also a 

simplified method since the whole curved panel is assumed to be under most unfavourable 

uniform compression, which to some extent justifies slightly conservative results when applying 

this method (Meff/Mexp ≈ 0.8).  
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Since the main difference between the two methods lays in the determination of the local and 

global buckling of the bottom curved panel, all the relevant effective width factors are compared 

in Table 6.7. 

Table 6.7: Comparison of two design approaches – bottom flange effective width factors 
 

Specimen Method 
σcr,loc 

loc 
σcr,p 

 
σcr,c 

χc c 
[MPa] [MPa] [MPa] 

S460 
1 760 0.884 1824 1.0 1666 0.78 0.82 

2 1110 0.824 Z > 100 ( = 1.0) 30746 1.0 1.0 

S690 
1 760 0.735 1824 1.0 1666 0.72 0.77 

2 1110 0.708 Z > 100 ( = 1.0) 30746 1.0 1.0 

 

Based on the results of this comparative study, several important conclusions should be 

highlighted: 

1) The flat panel approach (Method 1) gives smaller reduction (i.e. higher local reduction 

factor loc) than a curved sub-panel since small local curvature have a less 

favorablepost-buckling response, being more sensitive to local imperfections 

([8],[9],[10]) 

2) On the other hand, due to a significantly higher second moment of area, the plate-

type and column-type buckling stresses are much higher in the case of the curved 

panel than the equivalent buckling stresses of a stiffened flat plate, thus, no global 

buckling occurs (c = 1.0). 

3) Hence, it may be concluded that the collapse of the highly curved stiffened curved 

panels, such as those used in the experimental test, is governed by the local buckling 

of sub-panels.  

Nevertheless, the conclusions are made based on the data obtained from the experiments and 

are therefore limited to specimens similar to those used in this study. To verify the validity of the 

proposed procedure for an arbitrary stiffened curved panel, an extensive parametric study is 

carried out in chapter 7. 

Finally, regarding the shear resistance of the cross-section, due to the lack of design rules for 

this type of box-girder cross-section, the comparison is made between the experimental results 

and the procedure given by EN 1993-1-5 [11] for flat webs, as described in 2.5.2. The main results 

are presented in Table 6.8. 
 

Table 6.8: Comparison of shear force capacity 
 

 

Test  EN 1993-1-5 

Fexp [kN] Vbw,exp [kN]  Vbw [kN] Vbw,exp/Vbw 

Specimen S460 1580 1098  1808 0.61 

Specimen S690 2217 1541  2384 0.65 
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The table indicates that only around 60-65% of the shear capacity of the flat webs is exhausted 

in the experimental tests, which confirms that failure of two specimens is due to insufficient 

bending capacity, i.e. buckling of the bottom curved flange.  

However, it is one of the main objectives of this PhD thesis to discover what part of the cross-

section with the curved bottom flange actively contributes to the shear resistance, besides the flat 

webs. This particular problem is tackled in chapter 8, where an extensive numerical study is 

carried out and the whole spectrum of the M-V interaction behavior (i.e. from pure bending to 

‘almost’ pure shear) is characterized.  

6.5 Summary 

In this chapter, two identical prototype box-girder bridge segments, in scale 1:3 with respect 

to a real study case, with two different steel grades (S460 and S690) were experimentally tested. 

Segments were tested as three-point bending tests, with the aim to assess the complex behavior 

of a box girder bridge deck near the intermediate support, where the moment-shear (M - V) 

interaction occurs. This chapter gave a detailed description of the most relevant data, such as 

load measurements, displacements, strains, stresses, failure modes, etc. The main observations 

from the tests were: 

• In both prototypes, failure occurs in the bottom (curved) flange, where both the 

longitudinal stiffeners and the curved panel in-between buckled close to the intermediate 

support; 

• The collapse mechanism is governed by the local buckling of the longitudinal stiffeners 

and curved subpanels in-between, whereas no global buckling (plate-like or column-like) 

of the entire stiffened curved occurred; 

• Consequently, the resistance of the highly curved stiffened panels is not affected by the 

aspect ratio of the panel since the local buckling of subpanels is independent of the panel 

length. This might be one of the substantial advantages of this type of bridge cross-

section since considerable saving could be made by reduction of the transversal cross-

frames and diaphragms; 

Finally, the experimental results were compared with two proposed design methods: i) 

equivalent flat-panel approach and ii) curved panel approach and it was concluded that the latter, 

which was developed within the OUTBURST research project, gave a more realistic 

approximation of the test results.  

However, the validity of this design method needs to be verified for a wider spectrum of the 

geometrical parameters, with the dimensions that may be encountered in real bridge applications. 

This is done in chapter 7, where a parametric study is carried out, using a numerical FEM model 

calibrated against the experimental results reported in this chapter. 
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   CHAPTER 7 

7. Numerical study on box-girder bridge 
cross-section integrating curved panels 

7.1 Overview 

The objective of this chapter is to analyze the M - V interaction behavior of a box-girder 

bridge deck, with a cross-section that integrates a curved bottom flange, and thus, to accomplish 

Task 4.2 of the thesis, defined in section 1.2. More specifically, the goal is to characterize the 

entire spectrum of behavior, i.e. from pure bending to ‘almost’ pure shear, and to assess the 

validity of the bending and shear resistance models, as well as the M - V interaction equation, 

available in the literature. Therefore, a comprehensive numerical study is carried out using 

ABAQUS software, in which multiple geometrical parameters are varied within the common 

ranges found in bridge applications.  

Firstly, in section 7.2, a reliable FE model is built and verified against the experimental results 

reported in chapter 6. In section 7.3, some changes adopted in the numerical model prior to the 

parametric study are presented, and the scope of the study (i.e. ranges of geometrical and material 

parameters) is specified. Finally, in section 7.4, the most relevant results of the numerical 

investigation are demonstrated and discussed. 

The collected results from this parametric study serve as a solid benchmark in the subsequent 

chapter 8, where the assessment of the available design resistance models is carried out and new 

(modified) design rules are  proposed. 
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7.2 Calibration of the FEM numerical model 

7.2.1 Section overview 

This section deals with the development of the FEM numerical model and its validation 

against the experimental results, presented in chapter 6.  

The numerical model, which is set up by using the FEM software ABAQUS [142], is 

determined by the following input parameters: geometry, material model, boundary conditions, 

loads, element type, mesh size, and initial imperfections. A detailed definition of all these 

parameters is provided in the subsequent sections.  

7.2.2 Definition of the model used for the calibration 

7.2.2.1 Type of analysis 

For each numerical model in this study, two types of analyses are performed: i) Linear elastic 

bifurcation  analysis (LBA) and ii) Geometrically and materially nonlinear analysis with 

imperfections included (GMNIA), in the same way, it was done in previous numerical studies 

from this thesis (see in 3.4.2 and 5.2.2).  

Namely, the LBA is performed first to extract the eigenmodes, which are subsequently used 

as the shapes of the initial geometric imperfections in a GMNIA. In all simulations, the ultimate 

resistance is considered as the maximum load factor on the load-deformation curve, obtained by 

the arc-length Riks’ method [143], which is particularly suitable for numerical problems where 

non-linear static equilibrium solutions are sought with descending load level and/or the 

displacement along the loading path. 

7.2.2.2 Geometry 

The geometry of the numerical models corresponds to the geometry of test specimens, 

defined in 6.2.3. The mathematical model consists of a bridge deck specimen, one loading beam, 

and two supporting beams, as shown in Fig. 6.19. Each specimen contains 9 open cross frames 

(see Fig. 6.6) and 6 closed diaphragms, located at the two ends of the bridge segment, below the 

loading beam, at the intermediate support, and below each of two supporting beams.  

7.2.2.3 Applied material model 

The material behavior of two steel grades, assigned to the bridge deck segments in the 

numerical simulations are presented in Fig. 7.1. Namely, the structural steel is modeled as an 

elastic-plastic material, defined by true stress-strain relation, obtained from engineering stress-

strain relations determined by tensile coupon tests in 6.2.5. 

As it may be noticed in two figures, the measured engineering stress-strain diagrams (grey 

curves), are first simplified and approximated by a polygonal (blue) curve and then transformed 

in the form of true (Cauchy) stress and logarithmic strains (red curve) using Eq.(7.1) and Eq.(7.2)  

 true eng eng(1 )  = +   (7.1) 
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 true engln(1 ) = +   (7.2) 
 

Since the tensile coupon tests are not carried out for the 25 mm thick top flange, the material 

is modeled as elastic-plastic, with linear strain hardening, disregarding the yield plateau. The 

plastic properties (i.e. yield strength fy and ultimate strength fu) are adopted based on the material 

specification provided by the project partner MCE GmbH [18], who produced the bridge deck 

specimens (see Table 7.1). It is needless to say that the axial stresses in the top flange, at the 

instant when the ultimate force is reached, remained in the elastic range in both tests (see Fig. 

6.32). Hence, the only relevant parameter for the characterization of the material behavior for 

the top flange is the Young’s modulus.  
 

 
a) 

 
b) 

Fig. 7.1: Stress-strain relations applied in FEM: a) S460 and b) S690 
 
 

Table 7.1: Mechanical properties of steels in the top flange (by MCE GmbH [18]) 
 

Steel E [GPa] fy [MPa] fu [MPa] fu/fy At [%] 

S460 209.5 460 628 1.36 23.5 

S690 209.4 828 940 1.13 15 
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Finally, for all the other auxiliary elements made of steel S355 (loading and supporting beams, 

see Fig. 6.19), the same bi-linear elastoplastic material model used in chapter 5 is adopted, with a 

hardening module equal to E/100 (following the recommendations of Annex C of EN 1993-1-

5:2006), as indicated in Fig. 5.2. 

7.2.2.4 Loading and support conditions 

The load and boundary conditions are modeled in such a way to simulate as closely as possible 

the real conditions provided in the two experimental tests, as schematically illustrated in Fig. 7.2.  

Regarding the boundary conditions, all three translational DOF (i.e. in X, Y, and Z-direction) 

are prevented at the intermediate support, as indicated in the figure. On the opposite side of the 

load, 4 high strength pre-stressing bars are modeled as springs, with the axial stiffness, k, 

calculated by Eq.(7.3) as 

 , ( 1,2,3,4)i
i

i

R
k i


= =   (7.3) 

 

where Ri is the axial force measured in the cables using load cells and δi is the measured 

displacement of the bridge deck segment measured at the position of the bars (see section 6.4). 

In ABAQUS, spring is an engineering feature defined by a pair of reference points, whereas the 

distance between these two points is not pertinent since the spring stiffness is explicitly defined 

in the software.  

 

 
Fig. 7.2: Applied loading and support condition 

 

According to Fig. 6.19 and Fig. 7.2, spring 1 is defined by RP-3 and RP-7, spring 2 is defined 

by RP-4 and RP-8, etc. Table 7.2 and Table 7.3 summarize the spring stiffnesses adopted in the 

FEM models, for the two specimens, separately.  

 

Table 7.2: Stiffness of the springs adopted in the FEM model – specimen S460 
 

Spring  Force, Ri (kN) Displacement, δi (mm) Stiffness, ki (kN/mm) 

1 256 14 18.3 

2 316 14 22.6 

3 391 15 26.1 

4 435 15 29.0 
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Table 7.3: Stiffness of the springs adopted in the FEM model – specimen S690 
 

Spring Force, Ri (kN) Displacement, δi (mm) Stiffness, ki (kN/mm) 

1 356 19.5 18.3 

2 464 19.5 23.8 

3 650 21 30.2 

4 597 21 28.4 

 

Regarding the loads, to avoid numerical singularities, instead of a concentrated force F, the 

uniformly distributed load is applied on a ’small area’, as shown in Fig. 7.2, simulating the contact 

area between the loading beam and the head of the hydraulic jack. Additionally, the self-weight 

of the specimen is introduced in the model, assuming the standard steel density of 

 = 7850 kg/m3.  

Finally, in the numerical model, tie constraint is used to simulate the contact between the loading 

(and supporting beams) and the top flange of the bridge deck. 

7.2.2.5 Type and size of the FE mesh 

For the model discretization, four-node shell elements with the reduced integration (S4R) are 

used, with a mesh size of approximately 150 x 150 mm2, comprising in total around 200 000 FE, 

as shown in Fig. 7.3. 

Although the mesh configuration is slightly too refined, for calibration purpose, it is not 

necessarily intended to reduce the number of finite elements since considerably powerful 

computing machines are used. However, for the forthcoming parametric study, where an 

increased number of the numerical simulations is carried out, a convergence study is conducted 

to optimize the number of FE, while keeping the accuracy of the results. 

 

 
a) 

 
 

b) c) 



Numerical study on box-girder bridge cross-section integrating curved panels  

190 

  
d) e) 

Fig. 7.3: a) FE mesh configuration used for the model calibration; b) supporting beams; c) segment 

between two cross-frames; d) supporting foot; e) loading beam 
 

7.2.2.6 Initial imperfections 

Owing to the lack of information on the exact shape of the initial imperfections, the 

recommendations for design by FEM from Annex C.5 of EN 1993-1-5 are followed. Hence, 

equivalent geometric imperfections are assumed, accounting for both geometric and structural 

imperfections (i.e. residual stresses). As already explained in section 3.4, the initial geometric 

imperfections in ABAQUS are commonly introduced by a perturbation of translational degrees 

of freedom for each node in the finite element model. The coordinate perturbation may be 

defined by a linear superposition of the buckling modes (eigenmodes) of the panel, obtained 

from LBA performed on a perfect structure.  

For the calibration of the FE model, two different buckling modes are simulated and 

combined, as presented in Fig. 7.4: i) 1st eigenmode, causing buckling due to shear and ii) 14th 

eigenmode, corresponding to the first mode that causes buckling due bending moment (i.e. due 

to compression in the bottom curved flange).  

 

 

 

a) 

 

 
b) 

Fig. 7.4: Eigenmodes used for the calibration of the model: a) 1st mode and b) 14th mode 

 

To achieve a good convergence, the imperfection amplitudes are varied from hw/100 to hw/200 

for the 1st (shear-governed) eigenmode, and from b/200 to b/400 for the 14th (compression-

governed) eigenmode, until results matching the experimental ones are obtained. According to 

Fig. 6.6, hw corresponds to the flat part of the web, being the subpanel with the largest width 

(hw ≈ 623 mm), whereas b represents the width of the bottom flange (b = 1400 mm). 
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Although the results showed that there are no large differences (< 7 %) between the ultimate 

loads using different imperfection shapes or different signs, a more comprehensive study on the 

imperfection sensitivity is carried out and presented in the following section 7.3, with the aim to 

adopt one uniform imperfection for all the numerical models in the parametric study.  

7.2.3 Model validation by experimental test results 

The numerical model is validated using comparison with the experimental tests (see section 

6.4), where the main comparators are: i) the collapse shape and ii) the force-vertical displacement 

curves. 

In both experimental tests, the failure mode is almost identical and it occurrs at the bottom 

(curved) flange close to the intermediate support. The failure modes are compared from outside 

(see Fig. 6.35) and from inside (see Fig. 6.36) with the ones obtained numerically, and a very good 

agreement is achieved for both bridge deck specimens, as it may be seen in Fig. 7.5. 

 

 
a) 

 
 

b) c) 

Fig. 7.5: a) Failure mode obtained by FEM; b) outside; c) inside 

 

The force-vertical displacement curves for specimens S460 and S690 are presented in Fig. 7.6. 

A good agreement is obtained, with differences in the ultimate strength of ΔS460 = 2.53% and 

ΔS690 = 2.98%. This minor difference may be partly attributed to the inevitable load 

eccentricities, uneven contacts between specimens and the loading (and supporting) beam, and 

partly due to various simplifications made, such as the adoption of the buckling modes as the 

shapes of the imperfections or the approximation of the pre-stressing bars by springs.  

Based on this comparative study, it may be concluded that the adopted geometry, material 

properties, boundary conditions, loads, size and type of FE adequately simulate the behavior of 

the tested specimens. Thus, the numerical model may be further utilized for the parametric study. 
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a) b) 

Fig. 7.6: Comparison of force-displacement curves: a) specimen S460; b) specimen S690 

 

7.3 Parametric study 

7.3.1 Section overview 

The goal of the parametric study is to characterize the behavior of a box-girder bridge deck 

near the intermediate support, where the moment-shear (M - V) interaction occurs.  

In the parametric study presented herein, the interaction between these two internal forces in 

the desired cross-section is provided by a 3-point bending layout, similar to the one used in the 

two experimental tests. In the mechanical model used for the validation in the previous section, 

the geometry of the segments (including diaphragms, cross-frames), boundaries (supporting foot, 

high-strength bars), and loads are explicitly modeled to simulate the conditions achieved in the 

experimental campaign. Since this model is found somewhat too complex and thus impractical 

for a broad parametric study on the M-V interaction, several changes (i.e. simplifications) are 

introduced in a new model, described in this section.  

Moreover, particular emphasis is given to the scope of the parametric study. Namely, the study 

aims to cover only the most practical ranges of parameters commonly found in bridges, which 

has significant importance for the validity interval of the studied M-V interaction model.  

7.3.2 Definition of the FE model for the parametric study 

This section gives an overview of the main changes adopted in the numerical model, with 

respect to the model used for the calibration in section 7.2.  

7.3.2.1 Geometry 

To reduce the CPU time of the analysis, it is necessary first to simplify the geometry of the 

mechanical model, which is achieved in two steps presented in Fig. 7.7.  

Step 1 - Removal of all the elements used in the experimental test (loading beam and 

supporting beams) that physically do not belong to the bridge deck specimen. Consequently, the 

tie constraint contacts between the top flange and these elements are also removed (see Fig. 7.7a); 
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Step 2 - Replacement of the cross-frames and diaphragms by rigid bodies, which simplifies 

the geometry of the model, resulting in a lower number of finite elements (see Fig. 7.7b).  

 

a) 

 

b) 

Fig. 7.7: Simplified FE model: a) Step 1; b) Step 2 
 

It is noticed that in these figures, in the simplified model, the four springs from the initial 

(calibration) model are replaced by a single spring, with an adequate axial stiffness k. 

Furthermore, the boundary conditions and the applied concentrated force are assigned to the 

reference points (RP), which are tied to all points of a considered cross-section by means of a 

rigid body constraint. The force-displacement curves and failure modes of the three models (i.e. 

calibration model, simplified model 1, and simplified model 2) are compared in Fig. 7.8 for 

specimen S460.  

 

Calibration model 

 

Step 1

 

Step 2 

 

Fig. 7.8: Simplified FE model vs experimental results - comparison of results 
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Based on the force-displacement curves and the failure modes presented in the figure, it may 

be stated that the behavior of the bridge deck specimen remained almost unchanged, despite all 

the simplifications made, with a difference in the maximum force applied less than 3%. This 

means that all these simplifications may be also used in the models for the parametric study, thus 

reducing considerably the computation time. 

7.3.2.2 Static scheme 

The 3-point bending test layout, with a force on one side and support on the opposite side of 

the segment, was found to be a more suitable solution for the experimental investigation of the 

interaction behavior, due to the better control of the boundary conditions and thus more accurate 

anticipation of the bridge deck segment behavior. However, for the parametric study, the static 

scheme is slightly modified and adapted to simulate the behavior of the intermediate support. 

Namely, a simply-supported beam is adopted, where the concentrated force in the middle 

replaces the intermediate support from the test layout, as illustrated in Fig. 7.9. 

 

  

a) b) 

Fig. 7.9: Static scheme: a) experimental test; b) numerical parametric study 

 

Different M/V-ratios (ψ) are achieved by applying different values of the concentrated force 

F and concentrated bending moment M0 and by varying the length of the specimen L. For each 

model, ψ is determined at the mid cross-section, where the shear force is equal to V = F/2, 

whereas the moment is equal to M = M0 + F·L/4. 

To ensure the desired simply-supported boundary conditions, all three translational degrees 

of freedom are prevented at one end of the beam, whereas on the opposite end, only vertical and 

out-of-plane displacements are prevented. Furthermore, the rotational degree of freedom around 

the axial axes of the specimen is also prevented. All the boundary conditions and concentrated 

loads are applied at the corresponding reference point (RP), which coincides with the center of 

gravity of the cross-section, as presented in Fig. 7.7. 

7.3.2.3 Applied material model 

For the numerical parametric study presented herein, structural steel S355 is considered, 

because of its widespread use in bridge construction.  

The material is modeled as elastoplastic with strain-hardening according to the 

recommendations from C.6 of EN 1993-1-5, with Young’s modulus equal to E = 210 GPa and 

Poisson’s coefficient ν = 0.3. The material behaves linearly elastic up to the yield stress (fy), after 
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which an isotropic hardening behavior occurs with a hardening modulus equal to E/100 until 

the ultimate strength (fu) is reached (see also Fig. 5.2). After the ultimate strength is exceeded, the 

material is assumed to behave perfectly plastic. The yield and ultimate strength are adopted based 

on the characteristic values of the material properties given in EN 10025-2 [148], as presented in 

Table 7.4. 

 

Table 7.4: Characteristic values of considered material properties – steel S355 [148] 
 

fy  [MPa]  
fu [MPa] 

t < 16 mm t = 16-40 mm t = 40-63 mm t = 63-80 mm  

355 345 335 325  470 MPa 

 

7.3.2.4 FE mesh size 

The specimens are discretized by S4R shell elements. Their size is defined based on a 

convergence study, where it is obtained that sufficiently accurate results are obtained with finite 

elements of 50x50 mm2, as shown in Fig. 7.10. 
 

 
Fig. 7.10: Example of a numerical model used for the parametric study 

 

As it may be seen, 5 finite elements are adopted across the depth of a longitudinal flat stiffener, 

whereas a particular effort is made to ensure an integer number of FE between stiffeners, so that 

the bottom node of each stiffener coincides with the corresponding node of the curved panel. 

7.3.2.5 Applied initial imperfections 

Finally, the initial imperfections for the parametric study are adopted based on the results 

from an imperfection sensitivity analysis, in which the first four eigenmodes are considered as a 

potential initial geometric imperfection shape, whereas the amplitudes are varied in a range 

between b/400 – b/800. Moreover, for this study, two groups of analyses are executed and 

investigated separately, one in which the bridge deck fails in shear (Fig. 7.11), and the other in 

which the specimen fails in bending, due to compressive stresses in the bottom flange (Fig. 7.12). 
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a) b) 

Fig. 7.11: Imperfection sensitivity analysis – shear failure: a) force-displacement curves;  

b) peak region of force-displacement curves 

 

  

a) b) 

Fig. 7.12: Imperfection sensitivity analysis – bending failure: a) force-displacement curves;  

b) peak region of force displacement curves 

 

In these figures, the force load amplifier λF and the bending moment load amplifier λM (i.e. 

load proportionality factors), obtained from GMNIA for arbitrary applied concentrated force F 

and bending moment M, are plotted against the vertical displacement (Uy) of the point laying in 

the middle of the bottom flange in the middle plane, i.e. plane where load F is applied.  

Based on the presented results, one may notice that both shapes and the amplitudes 

considered in this study have a minor influence (∆max = 8%) on the behavior of the specimen and 

its ultimate resistance. Therefore, equivalent geometric imperfections are adopted, with a shape 

affine to the 1st buckling mode, and an amplitude equal to b/400.  

It is necessary to stress that for an investigation of the M-V interaction behavior, as indicated 

also in the study by Jáger et al. [139], the adoption of the 1st buckling mode is a clever approach 

since it contains the relevant failure mode depending on the applied internal forces, thus 

accounting for the change of the failure mode in the interaction domain depending on the M/V-

ratio. 
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7.3.3 Scope of the study 

The geometrical parameters varied in the parametric study are carefully chosen to fall within 

the limits of practical ranges in bridge application, discovered and demonstrated in section 2.3. 

Namely, using the cross-section of the reference case study on a scale R = 1:1, proposed by 

GRID International [151] (see 6.2.2), several key parameters for the definition of the curved 

bottom flange geometry are varied in a parametric numerical study to investigate their effect on 

the M - V interaction behavior. 

In total, 210 different bridge cross-section geometries are selected, where 5 different 

curvatures of the bottom curved flange (i.e. Z = 0, Z = 50, Z = 100, Z = 200 and Z = 300) and 

3 aspect ratios (i.e. α = 0.5, α = 1.0 and α = 1.5) are varied. The length of the specimen L = 2a 

(see Fig. 7.9), defined by the aspect ratio α = a/b, is equal to L = 4200 mm, L = 8400 mm, and 

L = 12600 mm, for the aspect ratios 0.5, 1.0 and 1.5, respectively, where the width of the bottom 

flange is kept constant and equal to the width of the reference case study (i.e. b = 4200 mm).  

Regarding the bottom curved flange, besides the curvature parameter and the aspect ratio, 

several other parameters are varied, such as two different thicknesses (t = 15 mm and 

t = 25 mm), but also three longitudinal stiffener typologies - one flat (hst/tst = 250/25 mm) and 

two types of trapezoidal stiffeners, as illustrated in Fig. 7.13.  

 

 
 

 

a) b) c) 

Fig. 7.13: Stiffener typologies: a) flat; b) trapezoidal– Type 1 and c) trapezoidal – Type 2 

 

Moreover, for each of the presented typologies, two configurations of longitudinal stiffeners 

are considered, which is achieved by varying the number of stiffeners between nst = 3 and nst = 5, 

as presented in Fig. 7.14 for extreme values of curvatures, i.e. Z = 0 and Z = 300.  

There are four different stiffener configurations, i.e. with 3 and 5 flat stiffeners, and with 3 

and 5 trapezoidal stiffeners, where the distances between the stiffeners (bloc and bedge) are kept the 

same for all curvature parameters. Trapezoidal stiffener Type 1 (Fig. 7.13b) is used in the 

configuration with 3 longitudinal stiffeners, whereas Type 2 (Fig. 7.13c) is applied in the case of 

5-stiffened plates. Moreover, Fig. 7.14a shows that in the configurations with flat stiffeners and 

trapezoidal stiffener Type 1, two thicknesses of the bottom flange are considered (t = 15 mm and 

t = 25 mm), while in the case of the trapezoidal stiffener Type 2 only 15 mm thick plates are 

considered, comprising in total 7 different bottom flange geometries, for each curvature.  
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a) b) 

Fig. 7.14: Stiffener configurations: a) Z = 0; b) Z = 300 

 

It is necessary to highlight that one of the goals of the study presented herein, is to assess the 

aforementioned two design methods, one proposed by Tran et al. (2014a) [59] and the other by 

the OUTBURST research project [85], for the calculation of the effective properties of curved 

panels subjected to pure compression. Since the main difference between the two methods lies 

in the calculation of the local buckling of the sub-panels, the b/t-ratio in this study is varied in a 

wide range (up to 70), which exceeds the common ranges of the slenderness found in the bridges 

built so far (see Fig. 2.6). Furthermore, since none of the two methods tackled explicitly the local 

buckling of the longitudinal stiffeners, the dimensions of the stiffeners are chosen to be class 3 

(or lower), thus isolating merely the local buckling of the sub-panels, which allows for a direct 

comparison of these two methods.  

Regarding the cross-section shape, in all studied models, the depth of the curved panel f is 

kept lower than the total height H of the cross-section, which corresponds to the first case in 

Fig. 2.5. Namely, in bridges with a curved bottom flange built so far and reported in section 2.3, 

the shape with f < H is identified in 21 out of 22 cases. Hence, it is found justified to study this 

more common solution, where a clearer distinction between the bottom flange and the web can 

be made. Besides, all 210 FEM models may be divided into two main groups (105 models each): 

i) cross-sections with a constant height (H = const.) and ii) cross-sections with a variable height 

(H = var.), illustrated in Fig. 7.15a and Fig. 7.15b, respectively.  

 

 
a) 

 
b) 

Fig. 7.15: Cross-section with: a) constant height; b) variable height H 
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In the first group (H = const.), the total height is kept constant, which results in a shorter flat 

web (h) with the increase of curvature. On the other hand, in the second group, the width of the 

flat web h is kept constant for all the cross-sections, which leads to an increased total height with 

the curvature. The reason for considering these two groups of cross-sections is threefold: i) First, 

it is intended to compare somehow the performance of the bridge cross-sections with a curved 

bottom flange with respect to the corresponding conventional (trapezoidal) cross-section with a 

flat bottom flange. However, as it is later discovered, for a given trapezoidal box-girder with a 

flat bottom flange (Z = 0), it is difficult (if possible at all) to define a corresponding cross-section 

with a curved bottom flange of equal area that may allow a straightforward comparison of their 

performances. Namely, in the first group (H = const.), the second moment of area of a cross-

section with a higher curvature is considerably reduced with respect to the trapezoidal cross-

section, resulting in lower bending resistance, but also a lower material consumption. On the 

other side, in the second group, the bending resistance increases with the curvature, but the height 

and the material consumption also increase. Therefore, it is decided to account for both groups 

of cross-sections, representing the lower and the upper bounds of a given trapezoidal cross-

section. ii) Secondly, by varying the height of the cross-section and the depth of the curved 

bottom flange, various positions of the neutral axis may be achieved and thus different stress 

gradients in the bottom curved flange. This is particularly important since one of the objectives 

is to assess the simplified ‘curved panel method’, described in 6.4.6, according to which a uniform 

axial compression (ψ = 1.0) is assumed in the entire bottom flange. iii) Finally, by varying the 

ratio between the flat web and the bottom curved panel, while keeping the same height of the 

cross-section, or by keeping the same height of the flat part of the web only, it is aimed to 

distinguish and track the influence of both curved panel and flat web in the shear resistance of 

the cross-section.  

As for the flat webs, the thickness is also varied between tw = 15 mm and tw = 25 mm. Namely, 

inspired by the real examples of bridges, in the reference case study defined by GRID 

International [151] the thickness of the web and the thickness of the bottom curved panel are 

kept the same and equal to (t = tw = 25 mm), which falls within the common ranges (i.e. 25 - 40 

mm) reported in section 2.3. However, to allow for the shear buckling of the webs, it is found 

that the thickness of 15 mm is sufficiently thin for the occurrence of this instability phenomenon. 

It is necessary to stress that in those cases where the bottom flange is t = 25 mm thick, both 

thickness tw = 15 mm and tw = 25 mm of the web are considered, whereas in those cases where 

the bottom flange is t = 15 mm thick, only thickness tw = 15 mm is studied. Furthermore, 

regarding the longitudinal stiffeners in the webs, the corresponding typologies used for the 

bottom flange are adopted (see Fig. 7.13), where the number of the stiffeners varied between 

nst,web = 1 and nst,web = 2 for H = const. and H = var., respectively, as illustrated in Fig. 7.15a and 

Fig. 7.15b. The position of the longitudinal stiffeners, both trapezoidal and flat, is summarized 

in Fig. 7.16, for various cross-section shapes.  

Finally, since the principal focus of this study is dedicated to the bottom curved flange 

subjected mainly to the axial compression, the simplifications related to the top flange mentioned 

in section 6.2 are adopted here as well. Specifically, in all numerical simulations, a thick flat top 
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flange with a constant width is considered (bf/tf = 7000/75 mm), thus substituting the composite 

steel-concrete top flanges, while keeping the position of the neutral axis close to the top flange.  

 

 
a) 

 
b) 

Fig. 7.16: Position of the longitudinal stiffeners on webs: a) H = const. (nst,web = 1);  

b) H = var. (nst,web = 2) 

 

7.4 Results of the parametric study 

7.4.1 Section overview 

For all 210 box-girder configurations described in the previous section, both the ultimate 

resistances and failure modes are assessed, aiming to characterize the entire spectrum of behavior, 

i.e. from pure bending to ‘almost’ pure shear. In this study, 10 different M/V-ratios (ψ) are 

considered (see Fig. 7.9b), whereas two extreme ratios correspond to pure bending and shear 

resistances, while the other eight represent intermediate points of the interaction. Hence, the total 

number of the executed numerical simulations is 2100. 

The main output of the parametric study is numerically generated M-V interaction diagrams 

for various box-girder bridge cross-sections with curved bottom flange, which are essential for 

the verification of the applicability and safety of the M-V interaction criterion proposed by Jáger 

et al. [139], given by Eqs.(2.122)-(2.123), adopted in prEN 1993-1-5 [140]. 

7.4.2 M-V interaction  

For each geometry, the load-deflection (F - δ) curves are first assessed, measured in the middle 

of the span, i.e. reference point RP-3 (see Fig. 7.10). In Fig. 7.17, using as an example a box-girder 

subjected to 3-point bending, with an aspect ratio of α = 0.5 and a curved bottom flange 25 mm 

thick with three flat stiffeners and a curvature equal to Z = 300, the M-V interaction behavior is 

illustrated.  
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a) b) 

Fig. 7.17: a) Force-deflection curves and b) M-V interaction diagram for box-girder (H = const.; 

Z = 300; α = 0.5; nst = 3; t = 25 mm; tw = 25 mm) 
 

In Fig. 7.17a, 9 F - δ curves are plotted to show the entire spectrum of M-V interaction 

behavior, starting from ‘almost pure’ bending (M) up to ‘almost pure’ shear (V), including 7 

intermediate curves (M+V) that correspond to different M/V ratios. Pure bending is achieved 

by applying only the concentrated bending moments (M0) in reference points RP-1 and RP-2 (see 

Fig. 7.9b), whereas pure shear can never be achieved since the applied force F, besides shear, also 

includes bending moment in the girder. It is also necessary to say that long span specimens with 

higher aspect ratios fail only in bending, which is characterized by a low resistance and increased 

vertical deformation, thus the entire M-V interaction spectrum may not be achieved.  

In Fig. 7.17b, the corresponding M-V interaction diagram is shown, where each of the 10 

points is defined by two coordinates [Mnum; Vnum], calculated by Vnum = Fmax/2, and 

Mnum = M0 + Fmax·L/4, where Fmax is the maximum force read from the corresponding F - δ 

curve in Fig. 7.17a. As stated before, the only exception is for pure bending, where no vertical 

force F is applied, resulting in Vnum = 0 and Mnum = M0. 

For the considered case (Z = 300), and two more curvature parameters (Z = 0 and Z = 100), 

the corresponding bending failure modes (M), shear failure modes (V) and the mixed failure 

modes (M+V) are illustrated in Fig. 7.18. A bending dominant failure mode is characterized by 

the local buckling of the sub-panels in the bottom flange (and webs), whereas in the case of mixed 

failure modes, both local buckling of the flange due to bending and global or local buckling of 

the web due to shear occurred simultaneously. Finally, shear dominant failure is recognized by 

the development of a tension field band across the web of the cross-section.  

In Fig. 7.19 and Fig. 7.20, all numerically generated M-V interaction diagrams are summarized, 

which are used in the subsequent chapter of the document for the assessment of the M-V 

interaction criterion proposed by Jáger et al. [139]. For a simpler interpretation of the results, the 

diagrams are divided into two main groups, H = const. (Fig. 7.19) and H = var. (Fig. 7.20), as 

explained in Fig. 7.15. Besides, for each of these two groups, the diagrams are further divided 

into seven sub-groups, based on various stiffener configurations and plate thicknesses.  
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 Bending (M) Mixed (M+V) Shear (V) 

Z = 0 

  
 

Z = 100 

  
 

Z = 300 

   

Fig. 7.18: Bending (M), mixed (M+V) and shear dominant (V) failure modes and Mises stress 

distributions  
 

In these diagrams, the x-axis (Mnum/MRd,num) and the y-axis (Vnum/VRd,num) indicate that the 

numerical results are normalized against numerically determined bending and shear resistances 

for the given cross-section configuration. In other words, each point of an M-V interaction 

diagram, defined by two coordinates [Mnum; Vnum] is on one side divided by the bending resistance 

(MRd,num) obtained for pure bending (case M0 in Fig. 7.17b), and on the other side by the shear 

resistance (VRd,num) obtained for shear dominated failure (case V in Fig. 7.17b).  

The reason for the normalization against the numerically determined resistances is twofold: i) 

To compare qualitatively the M-V interaction behavior for different box-girder cross-sections 

(i.e. with different curvatures), it is necessary to compare the shape of the M-V diagrams rather 

than their resistances. Namely, as one may expect, in the case of H = const. cross-sections, the 

higher curvature implies the reduction of the second moment of area and thus the reduction of 

the cross-section resistance, whereas, in the case of H = var., the second moment of area of the 

cross-section increases with the curvature, which leads to increased resistance. Hence, the mere 

quantitative comparison of the resistances would be superfluous and could fail to interpret the 

real difference in the behavior of different cross-sections; ii) Owing to the lack of the analytical 

bending and shear resistance models for the studied cross-sections with a curved bottom flange, 

the results are normalized against the numerical resistances. Consequently, the extreme two 

points of each diagram that correspond to pure bending (M0) and ‘almost’ pure shear (V) are 

equal to 1.0. The results can not be used for a direct evaluation of the criterion proposed by Jáger 

et al. [139] since the reference resistances are taken from the FE analysis. However, in the 

following chapter of the thesis, new analytical models for the prediction of the bending and shear 

resistances are proposed and incorporated in the existing M-V interaction criterion, which will 

allow for the comparison between the analytical and numerical results.  
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Fig. 7.19: M-V interaction diagrams for H = const. and various Z parameters 
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Fig. 7.20: M-V interaction diagrams for H = var. and various Z parameters 
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All the diagrams in Fig. 7.19 and Fig. 7.20, regardless of the geometry, confirm clearly that 

there is no need to consider interaction for small values of the shear force (approx. 

Vnum/VRd,num < 0.5). It is interesting to note that the bending resistance increases slightly when a 

small shear force is applied. This increase is attributed to the more favorable moment gradient, 

which takes place as soon as the force F is applied, whereas the reference bending resistance (case 

M0) comes from numerical simulations with uniform bending. However, for higher values of the 

shear force (Vnum/VRd,num > 0.5), an M-V interaction takes place characterized by an obvious 

bending resistance reduction. At what shear utilization (η3,lim = Vnum/VRd,num) the interaction starts 

depends on the geometry of the cross-section (i.e. curvature, thickness, number and type of 

stiffeners, etc.). In general, it may be noticed from the diagrams that the interaction starts with 

the shear force exceeding approximately 50% of the shear resistance, which coincides with the 

provisions given in EN 1993-1-5, as well as with the M-V criterion proposed by Jáger et al. [139]. 

However, it may be noticed that the limiting shear utilization, at which the interaction occurs, 

varies between η3,lim = 0.4 - 0.7, which may lead to slightly unsafe results on one side, and on the 

other side, to conservative results. Since the value of η3,lim directly depends on the shear resistance 

VRd,num, which in this case is estimated from the numerical simulations using the shear dominated 

cases, this variation may be attributed to the accuracy of such estimation. Hence, in chapter 8, 

only the value prescribed in the design codes of η3,lim = 0.5 is considered.  

In addition, it should be mentioned that after the shear force exceeds the limiting value (η3,lim), 

the extent of the moment resistance reduction (i.e. the shape of the M-V interaction diagram) is 

not uniform and equivalent for all the cross-sections, but it highly depends on the entire set of 

the geometrical parameters. In an attempt to understand the influence of a single (or more) 

geometrical parameters on the M-V interaction behavior, the diagrams from Fig. 7.19 and Fig. 

7.20 are rearranged and summarized in Annex C (C.1), so that 7 different configurations of the 

same curvature parameter are gathered in the same graph, separately for H = const. and H = var. 

In spite of the difficulty in finding a clear correlation between a single geometrical parameter (e.g. 

number of stiffeners, curvature, thickness, etc.) and the shape of the M-V interaction diagram 

since all the diagrams are rather similar, some regularities in response are noticed. Namely, the 

thickness (tw) and the stiffeners configuration of the webs seem to have the greatest impact on 

the M-V interaction behavior. In the case of lightly stiffened slender webs (see Fig. 7.19 - right), 

it may be noticed that after η3,lim is exceeded a sudden reduction of bending moment takes place, 

which may be attributed to shear buckling of the web that occurs for higher shear forces. On the 

other hand, for the thicker and more stiffened webs (e.g. H = var. and/or H = const. with tw = 25 

mm), the transition zone between the bending dominated and shear dominant response is much 

smoother.  

Finally, it must be reminded that in the case of I-girders and/or trapezoidal box-girders, there 

is a clear distinction between the flange and the web of a cross-section, which considerably eases 

the interpretation of the M-V interaction behavior and subsequently the application of the 

standard design rules. According to all rules that address the problem of the M-V interaction (see 

2.5.3), there is no interaction if the applied bending moment is smaller than the bending resistance 

coming from the effective flanges alone (M < Mf). However, in the case of the box-girder with a 

curved bottom flange, it is not clear what is the ‘web’ and what is the ‘flange’ in a cross-section, 



Numerical study on box-girder bridge cross-section integrating curved panels  

206 

which implies that this condition at this phase cannot be applied. Therefore, owing to the 

complexity of the problem and in an attempt to be consistent with the existing design rules, a 

deeper study is carried out in the following chapter of the thesis to identify what part of the cross-

section participates in the shear and what in the bending resistance.  

7.5 Summary 

In this chapter, a numerical parametric study was carried out, in which the M - V interaction 

behavior of a box-girder bridge deck cross-section with a curved bottom flange was 

characterized. For the parametric study, a reliable FE model was built and verified against the 

experimental results, reported in chapter 6. The reported study aimed at covering all the relevant 

geometrical parameters (e.g. curvature parameter, aspect ratio, the thickness of flange and web, 

stiffener type, number, and configuration, etc.) that fall within the most common ranges found 

in the real examples of bridges. 

For all considered geometrical configurations, 10 different M/V-ratios were applied, aiming 

to characterize the entire spectrum of behavior, i.e. from pure bending to ‘almost’ pure shear. 

The main output of the parametric study was numerically generated M-V interaction diagrams 

for various box-girder bridge cross-sections with curved bottom flange. These results serve as a 

solid benchmark in the subsequent chapter 8, where the available M-V interaction criterion 

proposed by Jáger et al. [139] is statistically assessed and the modified design rules are proposed.  
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   CHAPTER 8 

8. Design proposals for bridge cross-sections 
integrating curved steel panels 

8.1 Overview 

According to the task flowchart in section 1.2, the previous chapter tackled Task 4.2 of the 

thesis, where a numerical study on the M-V interaction behavior of a box-girder bridge deck with 

curved bottom flange is carried out, generating an extensive database of FE results in a form of 

M-V interaction diagrams. Using the collected data, the goal of this chapter is now to assess if 

the M-V interaction equation recently proposed by Jáger et al. [139], adopted in prEN 1993-1-5 

[140], may also be safely applied in the case of box-girder bridge cross-sections with a curved 

bottom flange.  

However, as shown in Fig. 8.1 that plots the M-V interaction equation, Eqs.(2.122)-(2.123), 

for the application of this criterion, it is necessary first to define the effective bending resistance 

(Meff,Rd) and the web shear resistance (Vbw,Rd) of the cross-section. This is found to be the main 

challenge and one of the main motivations for the present thesis since there are still no analytical 

design rules that may be used to calculate these two values for studied cross-section typology. 

Hence, following closely the analytical resistance models for the trapezoidal box-girders from 

EN 1993-1-5, defined in 2.5.3, a study on a new bending resistance model is carried out first in 

section 8.2, whereas in section 8.3, a new analytical shear model is developed. Subsequently, in 

section 8.4, based on the new (modified) resistance models, the M-V interaction equation is 

accordingly redefined and assessed against the FEM results obtained in chapter 7. Finally, in 
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section 8.5, all three models (i.e. bending resistance model, shear resistance model, and the M-V 

interaction model) are statistically assessed against the numerical results by calculating the partial 

factor (γM) and thus, completing the last task of the thesis (Task 5, see section 1.2). 

 

 

Fig. 8.1: Graphical interpretation of the M-V interaction formula by Jáger et al. [139] 

 

8.2 Bending resistance model 

8.2.1 Introduction 

In chapter 7, the pure bending resistances are determined using the verified numerical model 

(case M0, see Fig. 7.17) for 210 different geometries of box-girder cross-sections with a curved 

(and flat) stiffened bottom flange. Depending on the geometry (i.e. stiffener configuration, aspect 

ratio, and curvature parameter), several typical bending failure modes are attained, as presented 

in Fig. 8.2. For heavily stiffened short bridge decks (Fig. 8.2a), it can be clearly seen how the 

bottom flange reaches yield strength over a larger area, without any evidence of buckling. For 

shorter spans and higher curvatures or heavily stiffened bottom flanges, commonly the local 

buckling of subpanels is the governing failure mode as presented in Fig. 8.2b, but also in Fig. 

7.18. Finally, for longer spans and lower curvatures, the global buckling mode is obtained (Fig. 

8.2c), characterized by buckling of the entire bottom flange with accompanying stiffener 

buckling.  

For the M-V interaction check and for the development of a new bending resistance model, 

which is the main goal of this section, all three failure modes are accounted for. Nevertheless, 

one may conclude that the bottom flange, either flat or curved, is dominantly subjected to axial 

compression regardless of the failure mode. Consequently, the bending resistance of the box-

girder cross-section directly depends on the bottom flange resistance to axial compressive 

stresses.  
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a) b) 

 

c) 

Fig. 8.2: Typical bending failure modes - FEM: a) yielding of bottom flange; b) local buckling; c) global 

buckling 

 

This is completely in line with the analytical bending resistance model prescribed by EN 1993-

1-5 (see 2.5.3), according to which, the bending resistance of a class 4 box-girder cross-section 

(Meff,Rd) is determined in two consecutive steps: 

i) calculation of the effective cross-section of the stiffened bottom flange and  

ii) calculation of the effective cross-section of the stiffened web. 

However, the use of this standard model to obtain analytically the bending resistance for the 

cross-sections considered in the parametric numerical study is not correct owing to two main 

problems. Firstly, the bottom flange of the cross-section is not flat, hence, these cases fall outside 

of the scope of the standard, which is limited to very low curvatures (i.e. Z < 1). Secondly, the 

standard method assumes that the bottom flange is subjected to a uniform axial compression, 

which is true in the case of a trapezoidal box-girder with a flat panel having the same constant 

distance from the neutral axis. On the other hand, in the case of a cross-section with a curved 

bottom flange, not all the parts of the panel are equally distant from the neutral axis, which means 

that the axial stresses are not uniformly distributed along with the panel but a stress gradient is 

always present. This further means that a clear distinction between the bottom flange and the 

webs in a cross-section with a curved bottom flange cannot be made, at least not in a way it is 

done for the trapezoidal box-girders.  

The first of these two issues was tackled in chapter 3 of the thesis. Namely, since the main 

difference between these bridge decks and conventional trapezoidal box-girder decks is the 
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presence of a transversely curved panel in the bottom flange, it is necessary to develop adequate 

design guidance to deal with curved panels as an individual structural element, subjected to axial 

compression. As shown in 3.3.3, numerous authors proposed different analytical methods to 

calculate the effective properties of a curved stiffened panel under uniform compression. Based 

on a thorough comparative study against the results from the experimental compression tests 

carried out in chapter 3, it was concluded that the methods proposed by Tran et al. [59] and in 

the OUTBURST research project [85] seem to be the most suitable for the estimation of the 

compressive resistance of the stiffened curved panels. However, the dimension ranges of the 

tested individual curved panels do not correspond to the realistic full-scale geometries 

encountered in bridge deck applications; hence, another numerical study is carried out in the 

forthcoming 8.2.2, where these two analytical methods are again assessed but only this time for 

an extended range of geometrical parameters potentially found in curved bridges.  

Regarding the second problem, which disables a straightforward use of EN 1993-1-5 

methodology for the calculation of the bending resistance of cross-sections with a curved panel, 

this topic is partly addressed in 6.4.6 of the thesis. Owing to the lack of the adequate design rules, 

two simplified design approaches were proposed and assessed against the experimental results 

on two box-girder bridge deck specimens: i) ‘Equivalent flat panel approach’ (Method 1) and ii) 

‘Curved panel approach’ (Method 2).  

Based on the results of the comparison, it was concluded that Method 2, in which the effect 

of the curvature is explicitly accounted for, gives a better estimation of the bending resistance, 

i.e. closer to the experimental results. However, since the conclusions are made based on a small 

data sample (i.e. two experimental tests), the validity of this design method needs to be verified 

for a wider spectrum of the geometrical parameters, with the dimensions encountered in real 

bridge applications. Hence, in chapter 7, using a numerical FE model validated against the 

experimental, a parametric study was carried out comprising 210 different geometries, and thus 

extrapolating the limits of the experimental campaign. Using the ‘Curved panel approach’ 

(Method 2), the bending resistance Meff,Rd is analytically calculated for all 210 geometries and 

statistically assessed in 8.2.3.  

8.2.2 Study on the isolated bottom flange under pure compression 

8.2.2.1 Scope of study 

The aim of the non-linear numerical study presented herein is threefold: i) to determine the 

buckling resistance (and effective area) of the stiffened curved and non-curved panels under pure 

compression; ii) to compare the numerical resistances to the methods proposed by Tran et al. [59] 

and by OUTBURST research project [85] and iii) to assess the computed resistances for two 

different boundary conditions.  

The geometry of the panels considered for this study is identical to the geometry of the bottom 

flanges of the box-girder cross-sections analyzed in chapter 7. Hence, this study may be 

understood as a supplementary sub-study, where the bottom flanges are extracted from the 

corresponding box-girder cross-sections and subjected to uniform compression, which is in 

accordance with the bending resistance design methodology proposed in this section.  
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The numerical FE model of isolated curved panels is obtained from the numerical model of 

the bridge cross-section, which was already validated against the experimental results in section 

7.2. Since the failure of the bridge cross-section subjected to 3-point bending is governed by the 

collapse response of the curved bottom flange dominantly subjected to compression, it may be 

considered for the actual problem that the FE model of an isolated panel is also validated to a 

certain extent, giving sufficiently realistic estimations of the real resistances. Therefore, all the 

details of the FE model (e.g. geometry, applied material, adopted mesh configuration) are 

addressed in chapter 7.  

In total, 60 different geometries are chosen from 7.3.3, where the main geometrical parameters 

are adopted to fall within the ranges found in real examples of bridges (e.g. Z = 0-300, Zloc < 0 -

18.75, α = 0.5-1.5, b/t = 28-46). In the case of flat stiffeners, only the thickness of t = 25 mm is 

considered, whereas, in the case of trapezoidal stiffeners, the thicknesses of 15 mm and 25 mm 

are considered for nst = 5 and nst = 3, respectively.  

8.2.2.2 Imperfections 

Regarding the initial geometric imperfections, as explained in 7.3.2, for the characterization of 

the M-V interaction behavior of a bridge deck cross-section, the adoption of the 1st buckling 

mode is a suitable solution since it contains the relevant failure mode depending on the applied 

M/V-ratio. Hence, in order to be consistent with the results of the corresponding bending 

resistance obtained in chapter 7, also in this study the imperfections are modeled as equivalent 

geometric imperfections recommended by EN 1993-1-5, with a shape affine to the 1st eigenmode 

and the amplitudes defined in Fig. 3.24.  

It is needless to remind that the objective of this study is not to carry out another imperfection 

sensitivity analysis of curved panels under compression as this problem was addressed by the 

authors, whose design methods are under assessment in this section, and in chapter 3 of the 

thesis. In other words, it is not attempted to define the most critical imperfection shape since 

that information should be already contained in the proposed design methods, being established 

as a lower bound of a much broader numerical study than one presented in this thesis. The 

purpose of this supplementary study is merely to compare the two design methods and to define, 

which one fits better the numerical results assuming the realistic bridge geometries. The adoption 

of the 1st buckling mode as the imperfection shape is justified also by the fact that both authors 

in their studies (Tran [8] and Piculin & Može [85]), assumed the 1st buckling mode as the 

imperfection shape and compared with other imperfection shapes. As discussed already in 

chapter 3, it is to expect that the numerical models with the 1st eigenmode shape give safe results 

when compared to these analytical models; however, the same trend might be obtained even if 

the actual imperfection pattern is explicitly introduced in the model. This was confirmed by 

Piculin & Može [85], where the authors compared their experimental results of both flat and 

curved panels with two different numerical models: i) with the imperfection measured in the tests 

and ii) with the imperfection affine to the 1st eigenmode. The difference between the simplified 

model (ii) and the experimental results was even lower than that of the more realistic model (i), 

with an average difference of 3% and 8%, respectively. 
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8.2.2.3 Load and boundary conditions 

The isolated simply-supported curved panels under uniform compression were studied in 

chapter 3, where the numerical model was first calibrated against the experimental tests. 

Therefore, the same modeling technique for the application of loads and boundaries is adopted 

in this study (see Fig. 3.22).  

However, several modifications are introduced to simulate the behavior of a bottom flange of 

a box-girder deck, which in reality is located between rigid (or semi-rigid) transversal cross-

frames, i.e. diaphragms. To make the boundary conditions symmetric, the longitudinal 

displacements at the edge CD of panels are released (i.e. uz ≠ 0), and instead, the in-plane 

compressive load, qc, is uniformly distributed as it is done on the edge AB (see Fig. 3.22). Hence, 

the panels are modeled as simply supported (hinged) on all four edges, but two different 

supporting conditions (constraints) are considered on the loaded edges AB and CD: 

i) ‘free’ - no constraints are accounted for, i.e. the rigidity of the transversal frames is neglected 

and the loaded edges are allowed to wave freely 

ii) ‘rigid’ - the nodes of the loaded panel ends (including stiffeners) are connected by rigid 

constraint equations, thus the edges remain straight. 

The consideration of these two boundary conditions is not a novelty. On the contrary, in 

almost all previous investigations, addressed in 2.4.1, where both flat and curved panels were 

studied under pure compression ([8], [9], [10], [59], [60], [85]), the distinction between these 

conditions was emphasized. Moreover, in the most recent study on flat stiffened panels under 

uniform compression by Haffar et al. (2019) [155], the authors compared these two boundary 

conditions and showed that although both conditions are considered ‘hinged’ a significant 

difference in critical stress may be obtained (avg. 30-35%). 

8.2.2.4 Model validation 

Although the numerical model used in this study is almost identical to the one calibrated 

against the experimental tests, due to the modifications made in the supporting conditions, the 

model is validated with the results obtained by Tran [8] and Manco [10], who performed a similar 

study. Besides, the geometry of the specimens tested in chapter 3 is downscaled for the tests, 

thus does not correspond to the real bridge cross-section geometry. To validate the model, the 

same conditions (geometry, imperfections, material, boundary conditions, etc.) from Tran’s 

numerical model [8] are reproduced. In total, 6 models are compared, all of which have the same 

width and thickness of the panel (b = 4800 mm; t = 12 mm), and the same stiffener configuration 

(i.e. 8 flat stiffeners with tst = 16 mm and hst = 150 mm), whereas three aspect ratios (α = 0.5, 1.0 

and 1.5) and two curvatures (Z = 0 and Z = 192) are considered. The author considered the first 

global mode from eigenmodes with an amplitude of min (a/400; b/400), whereas the hinged 

boundary conditions are considered with ‘rigid’ constraint on both loaded edges. The numerical 

results are compared in terms of the ultimate resistance (in MN) in Table 8.1.  
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Table 8.1: Validation of the numerical models with results from Tran [8] and Manco [10] for ‘rigid’ 

boundary conditions – ultimate resistance (MN)  
 

 Z = 0 Z = 192 

 Tran [8] Manco [10] FEM EC3-1-5 Tran [8] Manco [10] FEM 

α = 0.5 16.9 17.8 16.8 16.1 21.9 20.64 21.2 

α = 1.0 8.20 7.80 8.70 8.50 18.0 17.68 18.1 

α = 1.5 7.70 7.23 7.35 5.70 15.2 15.21 15.45 

 

Based on the table it is possible to verify that the maximum difference between the numerical 

model used in this study (FEM) and the results from Tran [8] and Manco [10] is 6% and -5.6%, 

respectively, whereas the maximum difference between Tran [8] and Manco [10] is -6%. The 

differences between the three models may be explained by different software packages used, 

different mesh type and size considered, and different imperfection shapes adopted since the first 

global mode in LBA analysis is found based on the visual observation of eigenmodes. 

Nevertheless, the values of the maximum differences verified for all cases are low, so it is possible 

to consider the present numerical model validated. 

As may be seen in Table 8.1, for the flat panels (Z = 0), the results from all three studies are 

compared with the values obtained using EN 1993-1-5. It is interesting to observe that the 

numerical results for the considered geometry may differ considerably from the design codes, 

and it seems that the difference is particularly high for higher aspect ratios. For the aspect ratio 

α = 0.5, α = 1.0, and α = 1.5, the maximum differences are respectively equal to 10.56%, -8.23%, 

and 35.1%, whereas on average from three numerical models, the differences are respectively 

6.63%, 4.7%, and 30.3%.  

8.2.2.5 Discussion of results 

The results from 120 numerical analyses, coming from 60 different geometries and 2 types of 

boundary conditions - ‘free’ and ‘rigid’ are here discussed. For each model, a nonlinear analysis 

with initial imperfections (GMNIA) is performed to determine the ultimate compressive 

resistance, defined as the maximum load on the corresponding load-displacement curve. The 

main objective of the study is to assess the influence of the most relevant parameters (curvature 

Z, aspect ratio α and boundary conditions) on the ultimate resistance of stiffened panels, but also 

to compare the results with two analytical models from Tran et al. [59] and by OUTBURST 

research project [85].  

The results are divided into two groups based on the stiffener typology, i.e. flat or trapezoidal, 

which are presented in Fig. 8.3 and Fig. 8.4, respectively. These two groups are additionally sub-

divided based on the number of stiffeners, i.e. nst = 3 and nst = 5. In all graphs, the reduction 

factor c on the vertical axis is plotted against the curvature parameter Z. The reduction factor is 

obtained as the ratio between the maximum axial force obtained in numerical simulations and 

the plastic resistance of the panel (Npl = Afy). Besides the numerical results for two types of 

boundary conditions (free and rigid), in each graph, the results obtained analytically from two 

aforementioned methods are presented, as well as the results obtained from EN 1993-1-5, 

calculated for the corresponding flat panel (Z = 0). 
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Fig. 8.3: Comparison between FEM and analytical results for panels with flat stiffeners 

 

   

   

Fig. 8.4: Comparison between FEM and analytical results for panels with trapezoidal stiffeners 

 

Based on the presented results, several conclusions may be drawn, some of which were already 

discussed in chapter 3.  

• The curvature undisputedly increases the ultimate strength of panels, which is particularly 

noticeable for higher aspect ratios (i.e. α ≥ 1); 

• As expected, the ultimate resistance strongly depends on the boundary conditions, 

despite all of them being nominally simply-supported. For all considered panels, a higher 

resistance is obtained for ‘rigid’ boundary conditions (on average 11.5%).  



CHAPTER 8 

215 

• It is worth saying that the difference is particularly emphasized in the case of trapezoidal 

stiffeners (on average 17.7%), whereas, in the case of flat stiffeners, the difference 

between the two boundary conditions drops to 5.5%. This may be attributed to the fact 

that the application of rigid diaphragms at the plate ends restrains additional DOFs, thus 

forcing the same rotation at the plate ends, which eventually tries to deform all 

longitudinal stiffeners similarly. Hence, the force required for this deformation to occur 

is directly related to the torsional rigidity of the longitudinal stiffeners, which is known to 

be substantially higher for a closed trapezoidal stiffener when compared to an open flat 

stiffener that possesses merely its Saint-Venant torsional stiffness. As a consequence, on 

one side, the rigidity of a trapezoidal stiffener against flexural-torsional buckling is higher, 

while on the other side, being hardly twisted, higher deformation energy is required, 

resulting in large strain deformations of the panels between the stiffeners and thus 

increased ultimate load.  

• For short (α = 0.5) heavily stiffened plates (nst = 5), the ultimate resistance is governed by 

the local buckling of subpanels (see Fig. 8.2b), while the global buckling has little (if any) 

effect on the ultimate resistance. Hence, for these panels, an increase of curvature does 

not necessarily increase the panel’s ultimate resistance with respect to the flat ones since 

the local curvatures of subpanels in bridge design rarely exceed Zloc < 15 as shown in Fig. 

2.6; 

• Consequently, the favorable effect of curvature on the ultimate resistance is particularly 

pronounced for longer and lightly stiffened plates (flat stiffeners, or light trapezoidal 

stiffener – Type 2 in Fig. 7.13), where, for instance, the resistance for Z = 300 can be up 

to 2 times higher compared to Z = 0; 

• Furthermore, owing to the high inertia of the cross-section in the case of panels with 

higher curvatures, no global buckling (plate-type or column-type) occurs, as shown also 

in experimental results (see Table 6.7). This means that failure is governed by local 

buckling of subpanels in combination with material yielding. Consequently, the resistance 

of highly curved panels converges towards a constant value regardless of the aspect ratio 

since the local buckling is independent of the panel length. This confirms the 

observations found in the literature by multiple authors [8], [10], [85]; 

• Finally, it is discovered that in contrast to flat plates, in the case of highly curved panels 

(Z ≥ 200), due to high cross-section inertia and strong arch effect, the type and size of 

longitudinal stiffeners have only a negligible influence on the ultimate resistance 

(Δmax < 1%), at least for the stiffeners class 3 considered in this study.  

These findings present some of the crucial advantages of curved panels used in these 

innovative bridge deck cross-sections since considerable savings could be made by reduction of 

the number of the transversal cross-frames (i.e. diaphragms) but also by the reduction of the 

number and size of longitudinal stiffeners. 

The numerical results are compared with the resistance calculated from EN 1993-1-5 [11], and 

the results are summarized in Fig. 8.5. Since the code is limited to flat plates only, the resistance 

of curved panels is calculated assuming an equivalent flat stiffened panel, as shown in Fig. 6.39. 
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The reason for this comparison is merely to assess the conservatism of the design code when 

used for the calculation of the curved panels.  

 

Fig. 8.5: Numerical results vs EN 1993-1-5 [11] – comparison of the ultimate resistances for various 

curvatures Z (avg.) 

 

The figure indicates that the difference between the GMNIA-based resistances and the EC3-

based resistances increases with the curvature from approximately 21.7% for Z = 0 (considering 

both ‘free’ and ‘rigid’ BC), up to 66% for Z = 300, which confirms the observations stated in 

chapter 3 of the thesis. To have a better insight on the influence of different parameters varied 

in the study, the mean differences between numerical results and EN 1993-1-5 [11] are provided 

in Table 8.2 and Table 8.3, separately for two types of boundary conditions.  
 

Table 8.2: Numerical results vs EN 1993-1-5 [11] – comparison of the ultimate resistances for ‘free’ 

boundary condition (avg.) 
 

 Z=0 Z=50 Z=100 Z=200 Z=300 Mean 

α = 0.5 1.02 1.03 1.03 1.06 1.08 1.05 

α = 1.0 1.17 1.21 1.36 1.48 1.52 1.35 

α = 1.5 1.29 1.35 1.72 2.04 2.10 1.70 

Mean 1.16 1.20 1.37 1.53 1.57 1.36 

 
 

Table 8.3: Numerical results vs EN 1993-1-5 [11] – comparison of the ultimate resistances for ‘rigid’ 

boundary condition (avg.) 
 

 Z=0 Z=50 Z=100 Z=200 Z=300 Mean 

α = 0.5 1.10 1.12 1.13 1.17 1.20 1.14 

α = 1.0 1.28 1.36 1.56 1.65 1.70 1.51 

α = 1.5 1.44 1.58 1.99 2.29 2.35 1.93 

Mean 1.28 1.35 1.56 1.70 1.75 1.53 

 
 

It is interesting to observe that the difference in the case of a flat panel (Z = 0) for ‘free’ and 

‘rigid’ supports is respectively 16% and 28%, hence significant. The difference of 28% is justified 

by the fact that the code does not account for the additional restraints applied in the model on 

the loaded edges; however, in the bridge design, these boundary conditions (i.e. ‘rigid’) are much 

closer to the realistic ones, which means that the design code, in this case, is over-conservative. 
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As for the ‘free’ supported plates, which should completely correspond to the ones in the code, 

the difference is noticeable only for higher aspect ratios (e.g. 29% for α = 1.5). A relatively poor 

agreement in results is due to several inaccuracies: 

(i) In the case of plates with trapezoidal stiffeners, the design standard does not account for 

the positive effect of the torsional rigidity, which leads to an underestimation of the resistance. 

This may be confirmed by comparing the mean differences for ‘free’ supported plates, but 

separately with flat and trapezoidal stiffeners, which is respectively equal to 11.7% and 19.8%.  

(ii) On the other hand, in the case of long flat plates, either with flat or light trapezoidal 

stiffeners, the global plate-type buckling prevails, with significant participation of the interaction 

parameter ξ, defined by Eq.(2.30). This leads to another two groups of uncertainties that have 

been recently rigorously studied:  

(ii-a) First, the buckling curve from EN 1993-1-5 (Winter’s curve) used for plate buckling 

of plates subjected to direct stresses has been criticized lately by numerous authors (Haffar et al. 

[155], Schillo et al. [156], Martin et al. [157], Sinur [158]), to name a few. In all of the mentioned 

studies, the authors claim that a set of formulae given in Annex A of EN 1993-1-5 for the 

calculation of the critical stresses of stiffened plates do not precisely consider all the possible 

parameters, such as more realistic boundary conditions (edge constraints found in bridges) and 

torsional rigidity of stiffeners. Consequently, an underestimation of the critical stresses was 

reported (e.g. up to 31.4% according to Haffar et al. [155]). Besides the over conservative critical 

stress formulae, the authors also agreed that the critical stress-resistance relation (λ - ) is too 

optimistic.  

(ii-b) In addition to the plate-type buckling formulae, the interaction formula given by 

Eq.(2.29) was also questioned in recent years. Tran [8] even proposed a modified formula, given 

by Eq.(2.74), which fits better the results obtained in a large numerical study.  

Although the flat stiffened plates are not the topic of this thesis, it is important to highlight 

these inconsistences between the standard and the numerical results found by different authors 

since the two methods for curved panels, that are under scrutiny in this study, are based on the 

same design philosophy from the standard EN 1993-1-5 (see 2.5.1.3).  

Finally, in Fig. 8.6, the FEM results are compared with both analytical methods, i.e. by Tran et 

al. [59] and by OUTBURST research project [85], where the mean differences between the 

ultimate resistances are presented separately for two end supports (‘free’ and ‘rigid’) and various 

curvature parameters (Z > 0). 

Based on these two graphs, it may be stated that the two methods give virtually identical 

results. Namely, in contrast to Fig. 8.5, in both cases, a descending trend is noticed with the 

increase of curvature. This may be attributed to the aforementioned dominant local buckling of 

the subpanels with almost no effect of the global buckling. As shown before in Table 6.7, in the 

case of curved panels with a strong arch effect, the critical stresses for column-type buckling 

(σcr,c), although physically impossible, is much higher than that of the plate-type behavior (σcr,p), 

resulting in the interpolation parameter ξ equal to 0 for all considered cases (see Eq.(2.30)). 

Hence, the effectiveness of a stiffened panel is obtained only from the column buckling reduction 
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factor (χc), whereas the plate post-buckling resistance is neglected. This further means that the 

uncertainties and inaccuracies found in formulae from Annex A of EN 1993-1-5 and in the 

interpolation formulae, addressed in the previous few paragraphs, are avoided in the calculation 

of the ultimate resistance of curved panels. Therefore, the higher the curvature, the more the 

difference between the FEM results and analytical results relies merely on the quality of the 

methods for the assessment of the local buckling phenomenon of curved subpanels, which are 

quite accurate for both Tran’s and OUTBURST methods (i.e. -6% and -2% for ‘free’ supports, 

and 4% and 8% for ‘rigid’ support). 

 

  
a) b) 

Fig. 8.6: Comparison of the ultimate resistances for various curvatures (avg.): a) FEM vs Tran et al. [59] 

and b) FEM vs OUTBURST [85] 

 

To choose a more suitable method, these two design proposals are compared against each 

other in Fig. 8.7 for the entire scope of 60 different geometries studied. 

 

Fig. 8.7: Comparison of methods by Tran et al. [59] and OUTBURST [85] 
 

Based on Fig. 8.7, it may be concluded that the difference between the two methods for the 

considered range of geometrical parameters is arguably small (in average 4.6%), with the highest 

difference of 14% for lightly stiffened panels, with 3 flat stiffeners (points in red in Fig. 8.7). A 

slightly higher disagreement in results may be attributed to different approaches that these two 

methods assume for the assessment of the local buckling of the subpanels. Namely, in Tran’s 

proposal, the local buckling is determined for a corresponding flat plate, neglecting the local 



CHAPTER 8 

219 

curvature, whereas the method proposed within OUTBURST research project [85], the effect of 

local curvature is explicitly accounted for, by applying the expressions developed by Martins et al. 

[78] for unstiffened curved panels. Therefore, the flat panel approach (used by Tran) gives 

optimistically higher local reduction factor (loc) than a corresponding curved sub-panel with 

Zloc = 18.75 since small local curvature has a less favorable post-buckling response, being more 

sensitive to local imperfections ([8],[9],[10]). In other cases, with 5 stiffeners and/or trapezoidal 

stiffeners considered in this study, the subpanels have considerably low local curvature (Zloc < 8), 

thus the effect of curvature is practically lost, leading to a negligible difference between the two 

methods (in average 2%).  

In addition, in Fig. 8.8 and Fig. 8.9, as well as in Table 8.4, the two methods are statistically 

compared against the FEM results for various categories of models, divided into groups based 

on the support conditions, type of stiffeners, curvature parameter, and the aspect ratio. In general, 

the results show that the method proposed by Tran is slightly less conservative for the studied 

range of parameters; however, the method seems to give overly optimistic resistance of panels 

(max. error 15%).  

 

Flat Stiffeners 

 

 

Trapezoidal Stiffeners 

 

a) 
Flat Stiffeners 

 

 

Trapezoidal Stiffeners 

 
b) 

Fig. 8.8: FEM vs Tran et al. [59] in a function of a) Z parameter and b) aspect ratio 
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Flat Stiffeners 

 

 

Trapezoidal Stiffeners 

 

a) 

Flat Stiffeners 

 

 

Trapezoidal Stiffeners 

 
b) 

Fig. 8.9: FEM vs OUTBURST [85] in a function of a) Z parameter; b) aspect ratio  
 

Regarding the type of stiffeners, as indicated in Table 8.4, a better agreement between the 

results is achieved for flat stiffeners than the trapezoidal ones since both methods fail to account 

adequately for the torsional rigidity of trapezoidal stiffeners. The same may be stated for the 

results of a comparison between the two boundary conditions. Namely, both methods are 

inspired by the EC3 formalism, hence not accounting for ‘rigid’ constraints on the loaded edges, 

which explains an underestimation of the results by 12% and 16%, respectively, for two methods. 
 

Table 8.4: Comparison between methods by Tran et al. [59] and OUTBURST [85] with respect to the 

FEM results 
 

 
Flat  

stiffener 

Trapezoidal 

stiffener 

‘Free’  

Support 

‘Rigid’  

Support 

 Tran Outburst Tran Outburst Tran Outburst Tran Outburst 

St. Dev. 0.12 0.11 0.16 0.16 0.11 0.11 0.15 0.14 

Mean 1.04 1.07 1.08 1.09 1.0 1.04 1.12 1.16 

CoV (%) 11.5 10.3 15.0 14.8 10.5 10.3 13.5 11.6 

 
 

Finally, the figures show that the highest difference between the FEM results and both 

analytical methods is obtained for longer (α ≥ 1) and less curved panels (Z ≤ 100), i.e. for the 

panels that dominantly exhibit global buckling mode (see Fig. 8.2c). Since both methods use the 
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conservative formulae for plate-type buckling and interpolation equation from the standard, it 

may partly explain the underestimated values of the panels’ resistance. 

To sum up, based on the comparative study presented herein, one may agree that the choice 

on the ‘better’ method between the two is not straightforward since Tran’s proposal seems to be 

at times too optimistic, whereas the method developed within the OUTBURST research project 

for certain configurations give too safe results. In the case of the bridge deck design, where the 

recent trend is to use curved panels with higher curvatures for aesthetical reasons, due to relatively 

small aspect ratios and heavily stiffened bottom flanges, it may be claimed that both methods 

would give the same or almost identical results. This is due to the aforementioned strong arch 

effect that prevents the global buckling to occur, thus both methods converge to the same 

simplified method, in which it is required to determine the effective area merely due to the local 

buckling of subpanels. In such case, the accuracy of both methods is significantly increased since 

multiple uncertainties discovered in EN 1993-1-5 are avoided (i.e. difficulty in definition of the 

critical stress in terms of the edges constraints and rigidity of longitudinal stiffeners, the 

applicability of the Winter’s curve, adequacy of the interpolation equation, etc.). Therefore, in the 

case of bridge decks, where the local curvature parameter of the bottom curved flange rarely 

exceeds Zloc < 15-20 (see Fig. 2.6), technically, both methods may be equally applied.  

Without any particular preference, the author of the thesis decided to use the method 

developed withing the OUTBURST research project for the determination of the bending 

resistance in the following section, despite being slightly more conservative and more 

complicated. The only reason is that the method explicitly accounts for the unfavorable post-

critical behavior of the curved panels with small-to-intermediate values of the local curvature 

parameter.  

8.2.3 Bending resistance – FEM vs Analytical model 

Using Eq.(2.116), the bending resistance is calculated analytically for all 210 geometries of 

box-girder cross-sections with a curved (and flat) stiffened bottom flange, shown in section 7.3. 

The results are subsequently compared with the corresponding bending resistance (case M0, see 

Fig. 7.17), obtained from computer simulations in section 7.4. 

As stated before, for the calculation of the bending resistance of a class 4 box-girder cross-

section (Meff,Rd), the Curved panel approach (i.e. Method 2 in 6.4.6) is used, being the method that 

explicitly accounts for the effect of curvature in the bottom flange. Similar to the method for 

trapezoidal box-girders, given by the actual design code, the determination of the effective cross-

section modulus (Weff) is done in two steps, described in detail in 2.5.3.  

I - calculation of the effective cross-section of the stiffened bottom flange  

II - calculation of the effective cross-section of the stiffened web 

For the application of this bending analytical model, it is necessary first to specify clearly what 

is the bottom flange and what is the web in these non-trapezoidal cross-sections. Therefore, using 

the analogy with the method used for the trapezoidal cross-sections from EN 1993-1-5 [11], a 

simplification is adopted, according to which the entire curved panel is assumed to be the bottom 

flange, subjected to uniform axial compression (ψ = 1.0), as shown in Fig. 6.39 and in Fig. 8.10.  
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Fig. 8.10: Definition of the ‘bottom flange’ (in black) in box-girders with curved bottom flange for 

various Z parameters 
 

Namely, such simplification, although conservative, is very suitable for widespread 

engineering practice since it corresponds to what is currently done in EN 1993-1-5 [11]. In this 

thesis, the OUTBURST design method reported by Piculin & Može [85] is considered, whose all 

required steps for the determination of the local and global buckling of curved stiffened panels 

are described in detail in 2.5.1.  

Once the effective area of the bottom flange is determined, a new position of the neutral axis 

is found and the rules in Annex A from EN 1993-1-5 [11] for the determination of the effective 

area of stiffened flat webs in bending are applied, in accordance with Fig. 2.28 and Table 2.10. 

The web is the part of the cross-section between the top flange and the bottom curved flange, 

defined in Fig. 8.10. 

An example with all the required steps for the determination of the bending resistance of a 

cross-section with a curved bottom flange is shown later in Annex D (D.2). In Fig. 8.11, the 

normalized bending resistances, obtained numerically (�̅̅̅�num) and analytically (�̅̅̅�analy) (as 

characteristic values, without partial factors) are compared for various Z parameters and aspect 

ratios, illustrating also the mean values of the �̅̅̅�num/�̅̅̅�analy ratio for different categories.  

Fig. 8.11 shows that the numerical results give considerably higher bending resistance for all 

210 studied geometries. It may be stated that the difference of approximately 40% is constant, 

regardless of the curvature parameter and the type of cross-section (i.e. H = const. and 

H = variable), whereas the influence of the aspect ratio on this difference is much more 

pronounced. A similar trend was noticed and discussed in 8.2.2 (see Fig. 8.9b), where the isolated 

panels under pure compression are studied. It was concluded that the difference between the 

FEM and analytical results is particularly high for longer (α ≥ 1) and less curved panels (Z ≤ 100), 

where the global buckling mode of the bottom flange may occur (see Fig. 8.2c), requiring the use 

of conservative formulae for the estimation of the critical plate-type stress and interpolation 

equation from the standard.  
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a) 

 

 

b) 

Fig. 8.11: Comparison of FEM results with the analytical model: a) for various Z parameters and b) 

various aspect ratios  
 

These results for the �̅̅̅�num/�̅̅̅�analy ratio, regardless of the curvature parameter, are mainly 

attributed to two inaccuracies: (i) the analytical method does not account for the additional 

restraints on the loaded edges, applied in the FE model to simulate the rigid transversal frames 

(diaphragms) that undoubtedly exist in a real bridge deck; and (ii) the analytical model assumes 

the most unfavorable uniform axial stress gradient across the height of the curved bottom flange.  

The first of these two inaccuracies was discussed in 8.2.2, but merely on the level of the 

isolated bottom flanges under axial compression that are analyzed for two types of boundary 

conditions - ‘free’ and ‘rigid’. The difference between the GMNIA-based resistances and the 

EC3-based resistances in the case of flat plates (Z = 0) with ‘rigid’ supports reached a significant 

28% (see Table 8.3). On the other hand, the difference between the FEM results and the analytical 

method used for curved panels (Z > 0) showed a decreasing trend with the curvature (see Fig. 

8.6), owing to the local buckling phenomenon that prevails due to a strong arch effect, which 

consequently reduces the number of inaccuracies in the analytical model and reduces the 
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difference. Therefore, in the case of the whole box-girder cross-section subjected to bending, the 

difference between the numerical and analytical results also seem to show a slightly descending 

trend (see Fig. 8.11 - right). However, the consistency of a high �̅̅̅�num/�̅̅̅�analy ratio is kept due to 

the second inaccuracy specified above, i.e. the higher the curvature of the bottom flange, the 

more conservative becomes the assumption of a bottom flange subjected to a uniform 

compression (ψ = 1.0). In fact, the conservatism of this assumption is two-fold: (i) firstly, the 

effective area of the bottom flange (Aeff) is smaller than the one obtained in the computer 

simulations; and (ii) secondly, this conservative estimation of the effective bottom flange is 

indirectly reflected on the estimation on the effective area of the webs too. Namely, the more 

non-effective the bottom flange, the higher the new position of the neutral axis and subsequently 

the less favorable the stress gradient along with the web height. This means that the webs in the 

analytical model are calculated for a more severe axial stress distribution, which additionally 

underestimates the bending resistance. And last but not the least, although the conservatism of 

the design standard was multiple times emphasized, the method for the calculation of the 

effective area of webs under variable axial stresses, given in Annex A of EN 1993-1-5 was never 

assessed in this thesis. However, the recent work by Haffar et al. [155] reveals that the method 

for the determination of the plate-type critical stress from Annex A of EN 1993-1-5 is particularly 

conservative in the case of non-orthotropic flat plates (i.e. with nst < 3). This might partly justify 

the difference obtained between �̅̅̅�num and �̅̅̅�analy since for all cross-sections considered in the 

presented parametric study, the number of stiffeners on the flat webs was either equal to nst = 1 

or nst = 2. Furthermore, the webs and the longitudinal stiffeners are restrained by ‘rigid’ support, 

which may only enlarge the �̅̅̅�num/�̅̅̅�analy ratio. 

In conclusion, despite the significant difference between the FEM and analytical results, the 

proposed bending resistance model is simple to apply from the engineering standpoint, and it 

even returns slightly less conservative results than the model from EN 1993-1-5 used for the 

trapezoidal box-girders with a flat bottom flange (40% vs 48%). However, since the proposed 

model is based on the same conservative formulae from EN 1993-1-5, a better estimation of the 

bending resistance of box-girders with curved panels may be achieved whenever the formulae in 

the design code account for several relevant parameters (e.g. level of edge constraint, the torsional 

rigidity of the stiffeners, lightly stiffened plates (nst < 3), etc.). The proposed model is further 

statistically evaluated in section 8.5, where the partial factor (γM) is calculated. 

8.3 Shear resistance model 

8.3.1 Introduction 

To complete the assessment of the safety and applicability of the M-V interaction equation 

proposed by Jáger et al. [139] in the case of box-girder bridge cross-sections with a curved bottom 

flange, besides the moment resistance (Meff,R) tackled in section 8.2, it is necessary to determine 

also the shear resistance (Vbw,R), which is the topic of this section.  

In chapter 7, the shear resistances are determined using the verified numerical model (case V, 

see Fig. 7.17) for 210 different geometries of box-girder cross-sections with a curved (and flat) 

stiffened bottom flange. Depending on the web stiffener configuration and the slenderness of 
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the web sub-panels, two distinct shear failure modes are attained: (1) global buckling and (2) local 

sub-panel buckling, as presented in Fig. 8.12a and Fig. 8.12b, respectively. In fact, the geometry 

of the webs is deliberately chosen in such a way to allow for the two typical situations covered 

by the Eurocode-based shear buckling resistance model, described in 2.5.2. In the presented 

example, two failure modes are achieved by varying merely the thickness of the web tw. Namely, 

for thinner webs with relatively high sub-panel slenderness (i.e. hw/tw > 72ε/η according to 

EN 1993-1-5), local buckling occurs, whereas for thicker and lightly stiffened webs, the global 

shear failure becomes dominant. 

 

 

 

 

a)  b) 

Fig. 8.12: Typical shear failure modes - FEM: a) global buckling and b) local buckling 

 

Similarly to the bending resistance model, the principal objective is to use the existing rules 

from EN 1993-1-5 for flat stiffened webs and to extend and adapt them to allow for the 

determination of the shear resistance of this non-conventional box-girder cross-section. 

However, unlike the bending resistance model, where the behavior of the curved bottom flange 

under axial compression was studied and reported by numerous authors in the literature, to the 

best of the author’s knowledge, no study has ever dealt with the shear resistance of the bridge 

deck cross-sectional geometries studied in this thesis. Therefore, to define a new analytical shear 

resistance model, it is necessary to carry out several intermediate steps that are systematically 

presented in 8.3.2 to 8.3.5. Furthermore, for the development of a new shear resistance model, 

which is the main goal of this section, both failure modes are accounted for.  

8.3.2 Comparison of EN 1993-1-5 and FEM results 

Owing to the lack of the adequate design rules for the studied box-girder cross-section 

typology, the starting point is to compare the FEM-based shear resistance (Vnum) presented in 

section 7.4 and the shear resistance calculated from EN 1993-1-5 [11] (i.e. VEC3). Such 

comparison is demonstrated already in 6.4.6 (see Table 6.8), where the EC3-based results are 

compared with the experimental ones; however, it was concluded that the results were not 

representative since both test specimens failed dominantly in bending. This limitation is 

overcome in the parametric numerical study, where, by controlling the M/V ratio in the cross-

section, it is possible to attain a shear failure mode and the corresponding shear resistance.  

The procedure from the standard for the calculation of the shear resistance of a stiffened web 

is described in detail in 2.5.2. However, for the comparison presented herein, it is necessary to 

emphasize the assumptions adopted: 
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(1) Due to the presence of transversal stiffeners (diaphragms), the shear resistance is calculated 

by Eq.(2.96) assuming the rigid end posts, hence the required shear reduction factor is obtained 

by Eq.(2.98); 

(2) Only the contribution from the web (Vbw,R) is considered, while, due to the uncertainty, 

the contribution from the top and bottom flanges (Vbf,R) is omitted;  

(3) Since the design standard is limited to flat plates, the shear resistance is calculated only for 

a flat part of the web with the height marked as hw,flat in Fig. 8.13, i.e. the part between the top 

flange and the bottom flange, as defined in Fig. 8.10.  

 

 
 

Fig. 8.13: Definition of the ‘flat web’ (in black) in box-girders with a curved bottom flange 
 
 

(4) In the current study, only webs with 1 or 2 longitudinal stiffeners and an aspect ratio of 

less than α < 3.0 are studied, hence the Eq.(2.102) from Annex A.3 of EN 1993-1-5 for the 

definition of the shear buckling coefficient kτ is required. However, this expression was originally 

proposed by Beg [159] in a slightly different form, given by Eq.(8.1): 

▪  
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By comparing Eq.(2.102) and Eq.(8.1), it may be noticed that the expressions are practically 

identical, except that the standard prescribes the stiffener’s second moment of area to be one-

third of its actual value (i.e. Isl/3) in the shear buckling coefficient. As stated in [139], the reason 

for the 1/3 stiffness reduction in EN 1993-1-5 is due to a smaller post-buckling reserve of 

longitudinally stiffened panels compared to unstiffened panels. However, in studies by Jáger et al. 

[139], as well as in the recent experimental and numerical studies by Pavlovčič et al. [160][161], 

Eq.(2.102) from EN 1993-1-5 was questioned and it was concluded that the standard gives 

conservative results even if no reduction of the second moment of area is applied. Therefore, in 

this study, the FEM-based shear resistances are compared with the standard-based results for 

both reduced bending stiffness Isl/3 and full bending stiffness ‘Isl -full’, using respectively 

Eq.(2.102) and Eq.(8.1) for the determination of the shear buckling coefficient. 

In Fig. 8.14 and Table 8.5, the GMNIA-based shear resistances (Vnum) are compared with the 

characteristic values calculated from EN 1993-1-5 (VEC3) for all cases from the parametric study 

where the dominant shear failure was possible to attain. As stated before, in many cases of bridge 

decks, especially with a higher aspect ratio (α > 1.0), the bending failure mode is dominant, 
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regardless of the M/V ratio applied in the model. These cases are excluded from the current 

study in order to eliminate any biased conclusion.  

 

 

 

 
a)  b) 

Fig. 8.14: Comparison of the shear resistances calculated by FEM and EC3 considering: 

a) Isl/3 and b) Isl - full 
 
 

Table 8.5: Statistical assessment of the Vnum/VEC3 ratio for various Z parameters 
 

Vnum/VEC3 
Z = 0 Z = 50 Z = 100 Z = 200 Z = 300 

Isl/3 Isl Isl/3 Isl Isl/3 Isl Isl/3 Isl Isl/3 Isl 

St. Dev. 0.27 0.21 0.29 0.22 0.29 0.23 0.30 0.24 0.35 0.28 

Mean 1.57 1.47 1.63 1.54 1.68 1.57 1.79 1.66 1.91 1.77 

CoV (%) 17.2 14.3 17.7 15.9 17.0 12.9 17.0 11.7 18.4 13.2 

 

Based on the presented results several relevant conclusions may be drawn. First, the procedure 

given in the design standard, indeed underestimates the shear resistance, which coincides with 

the findings from all recent studies dealing with this problem (e.g. Jáger et al. [131][139], Sinur et 

al. [162][163]). There are several possible explanations for this: (i) the aforementioned 

consideration of 1/3 of the stiffener’s second moment of area; (ii) the neglection of the torsional 

rigidity of the closed longitudinal stiffeners; and (iii) the omission of the flange contribution in 

hand calculation.  

Regarding the reduction of stiffness, it may be observed from Fig. 8.14b that even if the full 

second moment of area (Isl) is considered, the results are safe; however, the difference drops 

significantly, from 57% to 47% in the case of trapezoidal box-girders (Z = 0), and from 91% to 

77% in case of the most curved girders (Z = 300). Jáger et al. [131][139] in their study also found 

the reduction of stiffness unjustified, hence suggesting the use of the full second moment of area.  

As for the second source for a high Vnum/VEC3 ratio, it may be noticed in Fig. 8.14 that the 

results for trapezoidal longitudinal stiffeners (triangular symbols) are the most conservative due 

to the omission of the beneficial torsional rigidity in the hand calculation. For instance, in the 

case of trapezoidal bridge deck cross-section with flat bottom flanges (Z = 0), the mean 

difference between Vnum and VEC3 for girders with flat web stiffeners and trapezoidal ones is 47% 

and 69%, respectively. These values decrease to 39% and 57% if the full flexural rigidity of the 

stiffeners is considered; either way, the standard undoubtedly underestimates the torsional rigidity 
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in the case of closed stiffeners. Similar results were found also by former authors, Sinur et al. [163] 

and Jáger et al. [139], where the latter obtained the difference of almost 87% between the 

numerical and analytical results for certain configurations of closed stiffeners. Moreover, the 

authors particularly criticized the inadequacy of the formulae given by EN 1993-1-5 for the 

determination of the shear buckling coefficient in the case of webs with less than nst < 3 stiffeners, 

which is the case for all the webs in this study. In fact, the standard overestimates the effect of 

local shear buckling, not accounting for the tendency of the rigid edge constraint to deform all 

longitudinal stiffeners in the similar way, which in the case of rigid and hardly twisted closed 

stiffeners may result in large strain deformations of the subpanels and consequently increased 

bearing capacity.  

Concerning the last possible reason for large Vnum/VEC3 ratios obtained, the contribution from 

the flanges (Vbf,R) is not considered due to twofold uncertainty. First, the contribution from the 

bottom flange is not accounted for in this comparison since it is still unclear what exactly is the 

bottom flange for the studied box-girders and what is the actual contribution of the curved panel 

in shear bearing capacity. The participation of the curved bottom panel in the shear resistance is 

yet to be revealed in 8.3.3. Secondly, the contribution of the top flange is also not considered 

since the studies by Sinur et al. [163] and Jáger et al. [139] showed that the consideration of the 

flange contribution is too optimistic for heavy flanges, which applies also to this study, where the 

top flange is intentionally adopted as overly thick to replace the composite steel-concrete top 

flanges and to keep the position of the neutral axis close to the top flange. Therefore, although 

the numerical model undoubtedly accounts for at least minor flange contribution, owing to the 

unsafety of the EC3-like model, this component is neglected in hand calculation.  

Finally, regardless of the cross-section geometry, type, and flexural stiffness of the longitudinal 

stiffeners, it may be seen from Fig. 8.14 and Table 8.5 that the standard model for the calculation 

of the shear resistance is not adequate for cross-sections with increased curvatures. In fact, the 

Vnum/VEC3 ratio is gradually increasing for the elevated curvatures, reaching an average difference 

of 91% for Z = 300. This indicates that merely consideration of the flat part of the web (with 

height hw,flat in Fig. 8.13) is not sufficient and that a part of the bottom curved panel also 

contributes to the shear resistance. To what extent the bottom flange participates in the shear 

resistance is discussed in 8.3.3.  

8.3.3 Study on the shear participation of the curved bottom flange  

Based on the results from the previous section, where the shear resistance from computer 

simulations was compared with the resistance of the flat part of the web using the method from 

EN 1993-1-5, it is noticed that the curved bottom flange also contributes to the development of 

shear stresses. To confirm this statement, the distribution of the shear stresses at the moment of 

failure, obtained in FEM simulations, is plotted in Fig. 8.15 and Fig. 8.16 for cross-sections with 

various curvatures of bottom flange, respectively for H=const. and H=var. (see Fig. 7.15). These 

two examples illustrate how the part of the cross-section receiving the shear stresses gradually 

increases with the curvature. 
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Z = 0 Z = 100 Z = 200 Z = 300 

    

Fig. 8.15: Shear stress distribution in cross-sections with H=const. (FEM) 

 

Z = 0 Z = 100 Z = 200 Z = 300 

    

Fig. 8.16: Shear stress distribution in cross-sections with H=var. (FEM) 
 

To understand to what extent the curved parts are activated, in Fig. 8.17, the area of the cross-

section that participates in shear resistance, obtained from FEM results as Aw,Z = Vnum/fyw, is 

normalized with the shear area of a corresponding trapezoidal box-girder (Aw (Z=0)) and plotted 

against the curvature parameter Z, separately for cross-sections with constant and variable height. 

The results are categorically divided into 7 groups, based on the geometry of the cross-section, 

where nw and nf in the legend refer to the number of stiffeners on the web and flange, respectively.  
 

  

  
a) b) 

Fig. 8.17: The ratio between the area participating in shear resistance in a cross-section with curved 

bottom flange (Z > 0) and cross-section with flat bottom flange (Z = 0) for:  

a) H=const and b) H=variable 
 

Fig. 8.17a shows that in the case of a cross-section with constant height, the area of the cross-

section that participates in the shear resistance also remains constant and equal to the reference 

case (i.e. Z = 0), with a max difference of 6.7%. Since in this group of cross-sections the total 
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height remains the same, while the flat part of the web reduces with the increase of curvature, it 

may be deduced that the shear resistance directly depends on the total height Hw of the cross-

section and not only on the height of the flat part hw,flat (see Fig. 8.13). This may be also 

understood from the results in Fig. 8.17b, where the cross-sections with variable height are 

studied. Namely, unlike the cross-sections with H = const., in sections with H = var., the flat 

part remains constant, while the total height increases with the curvature, which directly increases 

the shear resistance of the cross-section.  

This confirms the assumption that the total shear resistance of a cross-section, besides the flat 

part of the web with depth hw,flat, should be increased for an extra portion of the bottom curved 

flange, with the length marked as Lw in the remaining of the document.  

To define the length Lw, the starting point is to use the analogy with the known expression for 

the plastic shear resistance (Vpl) of a thin-walled circular cross-section, shown in Fig. 8.18a. 
 

 

 

a) b) 

Fig. 8.18: Notations and the shear area Aw for a) circular and b) half-circular cross-section 
 

Using the notations from Fig. 8.18a, the shear area Aw of a circular cross-section is calculated 

by Eq.(8.2) as: 

▪  2w wA L t=   (8.2) 

In the literature, the shear area of a thin-walled circular cross-section is often given by Eq.(8.3) 

as: 

▪  
2

0.64wA A A


=    (8.3) 

where A is the total area of the tubular cross-section, obtained as A = 2Rπt, with t being the 

thickness and R the radius of the cross-section. After substituting the expression for the area (A) 

in Eq.(8.3), the expression for the shear area may be transformed into Eq.(8.4) as: 

▪  
2

(2 ) 2 (2 )wA R t R t


= =     (8.4) 

Finally, combining Eq.(8.2) and Eq.(8.4), the length Lw of the circular cross-section that 

participates in the plastic shear resistance is expressed by Eq.(8.5) as: 

▪  2w wL R L H= → =   (8.5) 
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where H is the height of the cross-section, equal to H=2R (see Fig. 8.18a). This confirms once 

again that the height of a cross-section dictates the shear area, i.e. the length of the cross-section 

that participates in the shear resistance.  

Analogously, for a half-circle cross-section, the length Lw is equal to Lw = R, thus 

corresponding to the length of an arc with the central angle equal to φ = 1 rad (i.e. ≈ 57.3°), as 

indicated in Fig. 8.18b. Assuming a half-circle cross-section as an extreme shape of a box-girder 

bridge deck, with the total width b, it may be deduced that the length Lw is equal to 

Lw ≈ 0.64·(b/2) ≈ 2/π·(b/2), as shown in Fig. 8.18b. The ratio between the length Lw and the 

half-width b/2 is named ‘shear participation’ in the thesis, denoted by ξs = Lw / (b/2) (0 < ξs <1), 

which in the case of a half-circular cross-section is equal to ξs = 2/π. 

The validity of this statement is verified numerically by integrating the shear stresses (τ) from 

a 3-point bending model, similar to the models used in the parametric study; however, with a 

half-circular cross-section shape. The width of b = 4200 mm is equal to the width of the bottom 

flange in all cases from the parametric study, whereas the thickness of t = 25 mm is adopted as 

sufficiently thick to avoid shear buckling, thus allowing for the determination of the shear plastic 

resistance and comparison with Eq.(8.3). For the considered b/t ratio, and the radius, which in 

the case of a half-circle is equal to R = b/π (≈ 1336.9 mm in this case), the curvature parameter 

is equal to Z = 528. The distribution of the shear stresses at the moment of shear-dominated 

failure is presented in Fig. 8.19. 
 

 

Fig. 8.19: Shear stress distribution at reaching the plastic resistance (Vpl) 
 

As it may be observed from the figure, the shear stress reached yield shear stress (𝑓𝑦𝑤 = 𝑓𝑦 √3⁄ ) 

along the arc approximately Lw ≈ 1350 mm long, which confirms that the shear participation in 

a half-circular shaped cross-section is equal to ξs = 2/π.  

Using as a reference this extreme cylindrical cross-section shape, the objective is to determine 

now the shear participation for more realistic bridge deck cross-sections, i.e. with the shapes 

studied in the parametric study in 7.3.3. Therefore, another numerical study is carried out, to 

understand to what extent the angles α and β, shown in Fig. 8.20, may influence the parameter ξs. 

The study comprises 66 different geometries of bridge decks, some of which have already been 

addressed in the parametric study. The angle α describes the inclination of the curved bottom 

flange with respect to an imaginary horizontal line, measured from the contact point between the 

flat web and bottom flange. For the two extreme cases, i.e. a trapezoidal box-girder with a flat 

bottom flange and aforementioned half-circular cross-section, this angle is equal to α = 0° and 

α = 90°, respectively, whereas, for any other intermediate case, the angle α is defined by Z-

parameter. On the other hand, the angle β is the angle between the top flange and the flat web, 
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hence represents the inclination of the flat web. In this study, four different values of angle β are 

considered (45°, 60°, 75°, and 90°), where the angle β = 90° corresponds to the half-circular 

cross-section. The range for the β angle is adopted based on the common web inclinations, 

identified in the real bridge examples, mentioned in chapter 2.  

The curvature parameter in this study is varied between Z = 0 and Z = Zmax, where the latter 

is defined as the curvature for which the inclination of the bottom flange and flat web coincide 

(i.e. α = β). This means that the angle β dictates the maximum value of the angle α (i.e. α ≤ β) and 

subsequently, the maximum value of the curvature parameter Zmax. For instance, in the case of 

β = 90°, the maximum value of the angle is also α = 90°, which corresponds to a half-circular 

section, leading to Zmax = 528, for the values of the width b = 4200 mm and the thickness 

t = 25 mm, considered in this study. 

 

 
Fig. 8.20: Definition of relevant geometric parameters for the study on the shear participation of the 

curved bottom flange ξs 

 

Similar to the example of a half-circular cross-section presented in Fig. 8.19, for each of 66 

studied geometries, either with H=const. or H=var., the distribution of the shear stresses at the 

moment of shear-dominated failure is assessed and the corresponding length Lw is derived as the 

length of the arc where the shear stress reaches the yield shear stress. An example with β = 60° 

is illustrated in Fig. 8.21, where the shear distribution and the length Lw are presented for 4 

different curvature parameters, including the maximum curvature of Zmax = 352 in this case, 

obtained for αmax = β = 60°. 

The results indicate that there is a gradual growth of the length Lw with the curvature Z. In 

fact, in the case of a flat bottom flange (Fig. 8.21a), the shear is resisted only by the webs, resulting 

in the shear participation of the bottom flange equal to ξs = 0. For the remaining three curvatures, 

i.e. Z = 100, Z = 200, and Z = 352, the length Lw is approximately equal to 258 mm, 570 mm, 

and 926 mm, respectively, which leads to the shear participations of ξs = 0.12, ξs = 0.27, and 

ξs = 0.44.  

Following the same logic, the contribution of the bottom flange in the shear plastic resistance 

is obtained for all the studied cases and the results are summarized in Fig. 8.22, where ξs is plotted 

against the angle α for 4 different angles β. 
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a) b) 

 
 

c) d) 

Fig. 8.21: Shear stress distribution in the bottom flange at reaching the plastic resistance (Vpl) for 

H=var. and curvatures: a) Z = 0; b) Z = 100; c) Z = 200 and d) Z = Zmax = 352 

The results show that the angle β has almost no influence on the shear participation, whereas 

the angle α directly affects the parameter ξs and this regularity is the same for both groups of the 

cross-sections (i.e. with H = const. and H = var.). Furthermore, the results show that α - ξs 

correlation may be approximated by a linear function, with ξs = 0 for α = 0° (i.e. trapezoidal box-

girder) and ξs = 2/π for α = 90° (i.e. half-circular cross-section).  

 
Fig. 8.22: Bottom flange shear participation as a function of α and β angles  

 

Hence, the length Lw might be now calculated in a function of α by Eq.(8.6) as: 

▪  
90
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=  

 
  (8.6) 
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Since the angle α is equal to the central angle of an arc with the length b/2 (see Fig. 8.20), and 

thus may be expressed in radians as α = (b/2)/R or in degrees as α = (b/R)·(90/π), the length Lw 

may be rewritten by Eq.(8.7), where Z is the curvature parameter, and t is the thickness of the 

bottom flange. 

▪  
2

2
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w

b Z t
L
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= = 

 
  (8.7) 

 

Finally, now that the length Lw is defined, it is possible to calculate shear plastic resistance Vpl, 

using Eq.(8.8) as: 

▪  
( ),

,
3

w flat w w y

pl Rk

h t L t f
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 + 
=   (8.8) 

where hw,flat is the length of the flat part of the web, defined in Fig. 8.13, t and tw are thicknesses 

of the bottom flange and flat web, respectively, and Lw is the part of the bottom flange that 

participates in the shear plastic resistance, calculated by Eq.(8.7). 

8.3.4 Proposal of a new shear resistance model 

Once the plastic shear resistance (Vpl,Rk) is determined, the objective is to propose a design 

method for the prediction of the shear resistance (Vbw,Rk), allowing for the shear buckling 

phenomenon as well. As specified before, the initial idea is to use the same �̅�w - χw design 

methodology from the standard; however, modified to account for the contribution of the curved 

panel in the shear resistance. In Fig. 8.14 and Table 8.5, the analytical method from EN 1993-1-

5 applied only to the flat part of the web is compared with the numerical results, and it is 

concluded that merely consideration of the flat part of the web (with height hw,flat in Fig. 8.13) is 

not sufficient for the shear resistance estimation. Namely, even for the trapezoidal box-girders 

with a flat bottom flange (Z = 0), the Vnum/VEC3 ratio is found considerably high (i.e. mean 

difference of 57% for Isl/3 and 47% for full stiffener inertia Isl). However, the Vnum/VEC3 ratio 

tends to increase with the increase of the bottom panel curvature, reaching, for instance, the 

mean difference of 91% for Z = 300, with the max difference of 150%.  

Therefore, the objective of this study is not to propose a completely new analytical method, 

but to slightly adjust the one from the standard, making it applicable for the cases of bridge decks 

with a curved bottom flange, with a Vnum/VEC3 ratio within an acceptable margin, i.e. at least close 

to the one for the non-curved girders. 

The design methodology from the standard for the calculation of the web contribution to the 

shear buckling resistance is described in detail in 2.5.2. The method is based on the 𝜆̅
w - χw 

correlation, defined by Eq.(2.98) for the rigid end-posts. Therefore, to assess the applicability of 

this method for the studied cross-sections, for each model it is necessary first to determine 

numerically the values of slenderness parameter (𝜆̅
w,num) and the reduction factor (χw,num) and to 

compare with the formula given by Eq.(2.98), as presented in Fig. 8.23. Using Eq.(8.8) for the 

plastic shear resistance Vpl,Rk derived in 8.3.3, the slenderness (𝜆̅
w,num) and the reduction factor 

(χw,num) are calculated by Eq.(8.9) and Eq.(8.10) as: 
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where Vcr is the critical shear force, i.e. the force at which the 1st shear eigenmode occurs, 

obtained directly from linear bifurcation analysis (LBA), whereas Vnum is the ultimate shear 

resistance obtained from GMNIA analysis, as described in section 7.4 (see Fig. 7.17). 

The numerical results in Fig. 8.23 indicate that the shear buckling curve from EN 1993-1-5 is 

a lower bound curve of the buckling resistance for any considered bridge deck geometry. This 

justifies the initial intention of using the method from EN 1993-1-5 for determination of the 

shear buckling resistance also in the case of cross-sections with a curved bottom flange. However, 

although the results look virtually safe for the entire scope of the study, in the cases where the 

webs have higher slenderness (approx. 𝜆̅
w,num > 1.0, see the grey range in Fig. 8.23), the reduction 

factor χw may be overestimated, leading to unsafe results. The reason for this discrepancy is the 

difference between analytically (EC3-based) and numerically (FEM-based) derived relative 

slendernesses. Namely, according to the analytical design method, the slenderness parameter is 

obtained using the critical shear stress calculation from Annex A of EN1993-1-5, which is 

applicable only for the flat plates (i.e. flat webs). On the other hand, in numerical simulations, the 

critical stresses are calculated for the entire cross-section (and not only flat part of the web), 

which leads to more realistic reduced critical shear stress and thus increased relative slenderness 

parameter.  
 

 

Fig. 8.23: Verification of the FEM results against the EC3-based method with respect to the 𝜆̅
w - χw 

correlation 
 

For all numerical models considered in the study, the slenderness is calculated using the EC3-

like methodology (applied on the flat webs), as well as the corresponding reduction factor, using 

Eq.(2.98), and the results are presented in Fig. 8.23 with blue dots. As it may be noticed, for those 

cases from the ‘grey area’ (𝜆̅
w,num > 1.0), the use of the EC3-based method may considerably reduce 

the slenderness parameter and subsequently overestimate the reduction factor (i.e. χw,EC3 > χw,num).  
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To overcome this safety deficiency, while attempting at the same time to keep the design code 

mathematical formalism, a slightly modified shear resistant model is proposed, named ‘Extended 

web method’. In fact, according to this analytical model, the same rules for the web contribution 

to shear buckling resistance from EN 1993-1-5 are applied; however, the height of the flat web, 

for which the resistance is calculated, is elongated from hw,flat to hw. As it may be seen in Fig. 8.24, 

the latter is obtained as the projection of the cross-section total depth Hw, which remains the 

same in the extended model, onto the plane of the flat part of the web (i.e. hw = Hw/sinβ). Since 

it was proven multiple times that the shear resistance dominantly depends on the total height of 

the cross-section Hw, this simplified extended model (see Fig. 8.24b) may be considered 

reasonably accurate. 
 

  
a) b) 

Fig. 8.24: Proposed shear resistance model: a) real web geometry; b) extended flat web 

 

Using the notations from Fig. 8.24, the characteristic shear buckling resistance of the web 

panel alone (without flange contributions) may be calculated by Eq.(8.11) as: 
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where Vpl,Rk is the characteristic plastic shear resistance, given by Eq.(8.8), whereas χw is the 

shear reduction factor obtained from Eq.(2.98) of EN 1993-1-5, assuming a rigid end post.  

For the calculation of the reduction factor, as we know, it is necessary to calculate first the 

slenderness parameter 𝜆̅
w, defined by Eq.(2.99). As explained in 2.5.2 (see Eq.(2.100)) the 

slenderness is calculated for the entire stiffened web, with corresponding elastic buckling 

coefficient kτ, and for the entire width hw; however, it should not be lower than the slenderness 

of each subpanel, considered as an unstiffened panel (flat or curved) with the corresponding kτ,i 

and local width bloc,i. For the actual case, Eq.(2.100) may be adapted by Eq.(8.12) as: 
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  (8.12) 

To explain how the critical stress (and slenderness) are calculated, a more general example is 

considered, i.e. the one from Fig. 8.24. Before any calculation, it is necessary to define the number 

and position of the longitudinal stiffeners considered in the extended web model, for which the 

following guidelines may be applied:  
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(1) All longitudinal stiffeners on the flat part of the web are kept in the extended web model 

and their position remains unchanged; 

(2) Only those stiffeners on the curved bottom flange that are found in the zone that 

participates in the shear resistance (i.e. inside the length Lw, see Fig. 8.24a) are kept in the 

extended web model and their positions, defined by hst,i, remain unchanged with respect to the 

bottom (dashed) line;  

(3) The stiffeners outside of the arc length Lw may be excluded from the model since in this 

zone the shear stresses become less relevant, as shown in Fig. 8.21. Therefore, the 

consideration of all bottom flange stiffeners in the extended web model would only artificially 

enhance the critical stress of the web, which would eventually lead to unrealistically stocky 

webs and unsafe (high) reduction factors.  

As may be seen in the example shown in Fig. 8.24, the extended web has two longitudinal 

stiffeners (one on the flat part of the web and the other on the curved within the length Lw), thus 

the extended web consists of three subpanels. This means that besides the global critical stress 

and slenderness of the entire 2-stiffened web, for each of three subpanels another local critical 

stress and slenderness need to be determined as follows: 

 

i) Global critical stress and slenderness – Whole web: 

The expressions for the hand calculation of the shear buckling coefficient kτ are provided in 

Annex A.3 of EN 1993-1-5, given by Eqs.(2.102)-(2.104), depending on the number of the 

stiffeners and the aspect ratio αw = a/hw. The slenderness is then obtained using the first part of 

Eq.(8.12). 

 

ii) Local critical stress and slenderness – Subpanel 1: 

As illustrated in Fig. 8.24, the first subpanel is a flat panel between the top flange and the first 

stiffener, with the aspect ratio equal to αw,1 = a/hw,1. Hence, for the calculation of the shear 

buckling coefficient (kτ,1), Eq.(2.101) from Annex A of EN 1993-1-5 for unstiffened flat plates 

should be used. Subsequently, the local slenderness parameter is obtained using the second part 

of Eq.(8.12), where the local width is equal to bloc,1 = hw,1, while the thickness is equal to the 

thickness of the flat web, i.e. t1 = tw. 

 

iii) Local critical stress and slenderness – Subpanel 2: 

According to the example in Fig. 8.24, the second subpanel is also flat panel between the first 

and the second stiffener, with the aspect ratio equal to αw,2 = a/hw,2. The subpanel is considered 

flat with the thickness tw, although it also includes a small curved part with the thickness t. This 

is merely due to the safety reasons since in the bridge decks the web thickness is rarely (if ever) 

higher than the thickness of the bottom flange (i.e. tw ≤ t). The hand calculation of both local 

critical stress (kτ,2) and slenderness parameter is completely the same as in the case of Subpanel 

1; however, in Eq.(8.12), the local width is replaced by bloc,2 = hw,2, while the thickness remains 

the same and equal to t2 = tw. 
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iv) Local critical stress and slenderness – Subpanel 3: 

Finally, the subpanel 3 in the considered example is curved in the real geometry with the width 

bloc,3 (Fig. 8.24a), whereas in the extended web model, the subpanel is substituted by a flat one 

with the width hw,3. Since the buckling behavior of an unstiffened curved panel under shear is 

somewhat different from the behavior of a flat panel (as shown in chapter 4), for the safety 

requirements, it is necessary to calculate the critical stress of both curved (kτ,3,C) and flat panel 

(kτ,3,F), as follows: 

- The shear buckling coefficient (kτ,3,C) of an unstiffened curved subpanel, with the aspect 

ratio αw,3 = a/bloc,3 and the local curvature Zloc = bloc,3
2/Rt, may be calculated using Eq.(4.3) 

developed in chapter 4, assuming the boundary condition BC2 due to the presence of the rigid 

diaphragms on both curved edges.  

- On the other hand, the shear buckling coefficient (kτ,3,F) of the corresponding flat 

subpanel is calculated by Eq.(2.101), in the same way, it is done for subpanels 1 and 2. Namely, 

the panel is assumed to be simply supported by a longitudinal stiffener on one side and by fictive 

support along the other longitudinal edge, whereas the local width and the thickness of the panel 

are equal to bloc,3 = hw,3 and t3 = t, respectively. 

Subsequently, for the determination of the relative slenderness of the subpanel 3, in Eq.(8.12), 

the lower of the two critical stresses is to be considered, i.e. kτ,3 = min (kτ,3,C; kτ,3,F). 

Finally, using the proposed analytical model, the 𝜆̅
w - χw correlation is recalculated for all the 

cases from the parametric study, and similar to Fig. 8.23, the results are compared with the 

numerical ones in Fig. 8.25.  
 

 

Fig. 8.25: Verification of the FEM results against the EC3-based extended web method with respect to 

the �̅�w - χw correlation 
 

By comparing the analytical results (red dots) in Fig. 8.25 with the results from Fig. 8.23 (blue 

dots), in which only the flat web is considered, it may be noticed that the web extension shifts 

the results rightwards on the 𝜆̅
w - χw curve due to increased slenderness parameter 𝜆̅

w. Therefore, 

it may be concluded that the application of the proposed extended web method leads to a safe 
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design for the entire scope of the studied bridge deck configurations since the method allows for 

a more realistic assessment of the relative slenderness, i.e. closer to the ones obtained in the 

computer simulations (𝜆̅
w,num). 

8.3.5 Shear resistance – FEM vs Analytical model 

Using Eq.(8.11), the shear buckling resistance is calculated analytically for all box-girder cross-

section geometries, studied in section 7.3, and the results are subsequently compared with the 

corresponding shear resistance (case V, see Fig. 7.17), obtained from computer simulations in 

section 7.4. An example with all required steps for the determination of the shear resistance of a 

cross-section with a curved bottom flange is shown in Annex D (D.3). 

In Fig. 8.26, the GMNIA-based shear resistances (Vnum) are compared with the values 

calculated using the proposed analytical method (Vanaly) for all cases from the parametric study 

where the dominant shear failure is possible to attain. The comparsion is made using the 

characteristic values, i.e. without consideration of the partial factores. As stated before, in the case 

of bridge decks with a higher aspect ratio (α > 1.0), the bending failure mode is dominant, 

regardless of the M/V ratio applied in the model. Hence, these cases are eliminated from this 

comparative study to avoid biased conclusions. For the sake of complicity, the comparison for 

the trapezoidal box-girders (Z = 0) is repeated, although these results are presented in Fig. 8.14. 

As it may be noticed, the proposed extended web approach applied in cases with curvatures 

higher than Z > 0 is safe, presenting a lower bound of all numerical results. In fact, only in two 

cases with very high curvatures (Z = 200 and Z = 300) and with 1 flat web stiffener, the method 

overestimates the numerical results for 2% and 6%, respectively. However, more importantly, 

the method succeeds in reducing the considerably high Vnum/VEC3 ratios obtained in Fig. 8.14, 

especially in the case of high bottom flange curvatures (e.g. Vnum/VEC3 = 2.0-2.5 for Z = 300). As 

it may be noticed in Table 8.6, where the Vnum/Vanaly is statistically assessed, in contrast to a rising 

trend of the Vnum/VEC3 ratio, the use of the proposed method leads to a constant or even slightly 

declining trend of the Vnum/Vanaly ratio with the increase of curvature.  

 

 

 

 
a)  b) 

Fig. 8.26: Comparison of the shear resistances calculated by FEM and by new analytical method 

considering: a) Isl/3 and b) Isl - full 
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Table 8.6: Statistical assessment of the Vnum/Vanaly ratio for various Z parameters 
 

Vnum/Vanaly 
Z = 0 Z = 50 Z = 100 Z = 200 Z = 300 

Isl/3 Isl Isl/3 Isl Isl/3 Isl Isl/3 Isl Isl/3 Isl 

St. Dev. 0.27 0.21 0.26 0.22 0.26 0.18 0.26 0.20 0.27 0.24 

Mean 1.57 1.47 1.50 1.41 1.44 1.35 1.36 1.30 1.29 1.26 

CoV (%) 17.2 14.3 17.7 15.3 17.8 13.6 18.9 15.5 20.6 19.2 

 

The results from the table indicate that the proposed analytical model, although still quite 

conservative for all curvature parameters, tends to decrease the difference with respect to the 

FEM results found in Table 8.5. This is illustrated in Fig. 8.27, where the shear resistances 

obtained numerically (�̅�num) and analytically (�̅�analy) are normalized against the maximum values. 

The proposed method seems to be particularly advantageous for very high curvatures, where, for 

instance, the mean difference of 91% for Z = 300 (see Table 8.5) dropped to satisfactory 29%. 

However, since the proposed method is an extension of EN 1993-1-5 approach, whose adequacy 

was questioned and criticized in one of the previous sections, this significant safety margin 

remains, regardless of the cross-section geometry configuration.  

 

  

a) b) 

Fig. 8.27: Comparison of the EC3-method and the proposed method against the FEM results 

considering: a) Isl/3 and b) Isl - full 
 

In an attempt to reduce further the Vnum/Vanaly ratio, as shown before, the full stiffener flexural 

stiffness is considered by using Eq.(8.1), and the results are summarized in Fig. 8.26 and Table 

8.6. As it may be noticed, the application of the full stiffener inertia virtually reduces the 

difference for all curvature parameters. Namely, the consideration of the full inertia is particularly 

emphasized in the case of thin webs prone to buckling, where the full inertia of the stiffeners 

may partly compensate for the deficiency of the overly conservative standard approach for the 

calculation of the global shear buckling. Hence, the positive effect is even more pronounced for 

2-stiffened webs. However, in some cases, especially where the buckling of the web does not 

occur, there is no difference if 1/3 of the inertia is considered of the full inertia, as shown in Fig. 

8.28.  
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In conclusion, despite the difference between the FEM and analytical results, it may be stated 

that the proposed shear resistance model is as simple to apply as the method from the design 

standard; however, producing more accurate results than the model from EN 1993-1-5 used for 

the trapezoidal box-girders with a flat bottom flange. Nevertheless, since the proposed model 

implements the same conservative formulae from EN 1993-1-5, a better estimation of the shear 

resistance of box-girders with curved panels may be achieved once the formulae from the 

standard are adequately revised to account for several relevant parameters (e.g. level of edge 

constraint, the torsional rigidity of the stiffeners, lightly stiffened plates (nst < 3), etc.).  

 

 

Fig. 8.28: Comparison of the proposed method against the FEM results considering full (Isl) and 

reduced (Isl /3) longitudinal stiffener inertia 

 

Furthermore, the consideration of the full stiffener inertia in the shear buckling coefficient 

may be applied for girders with stiffened webs, and the proposed shear analytical method would 

still return safe solutions, at least for the ranges of parameters studied in this thesis. However, 

this problem requires further investigation since, for instance, in the mentioned work by Jáger et 

al. [139], the authors claim that the full stiffener inertia may lead to an overestimation of the shear 

buckling resistance for certain I-girder typologies.  

The proposed shear resistance model is further statistically evaluated in section 8.5, where the 

partial factor (γM) is calculated. 

8.4 Assessment of the M-V interaction equation 

In this section, the applicability of the M-V interaction equation, developed by Jáger et al. [139] 

(Eqs.(2.122)-(2.123)) is assessed against the collected numerical results in chapter 7. As specified 

before, the main challenge for a direct application of this criterion in the case of the box-girder 

bridge deck cross-sections with the curved bottom flange is the lack of the adequate analytical 

models for determination of the bending (Meff,Rk) and the shear resistance (Vbw,Rk). However, these 

obstacles are tackled in section 8.2 and section 8.3, where the new analytical resistance models 

for bending and shear, respectively, are developed and statistically assessed against the numerical 
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results. Therefore, by implementing the new (modified) resistance models in the M-V interaction 

equation by Jáger et al. [139], a straightforward safety assessment of this criterion may be 

conducted against the FEM results.  

The M-V interaction formula given by Eq.(2.122), is commonly found in the literature in a 

slightly shorter format, given by Eq.(8.13), as illustrated in Fig. 8.1. 
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=  (8.13) 

 

where η1 is the ratio between the applied (M) and the effective resistant bending moment 

(Meff,Rk) calculated using the method proposed in section 8.2; whereas �̅�3 is the ratio between the 

applied (V) and the shear buckling resistance of the web panel alone (Vbw,Rk) calculated by the 

method proposed in section 8.3. It should be noticed that for the comparison between the FEM 

results and proposed analytical methods, no partial factors are considered, thus, according to EN 

designation, the resistances obtained are the characteristic (Rk) and not the design values (Rd). 

Before the comparison is made, it is also important to clarify how the bending resistance of 

the section considering the effective area of the flanges alone (Mf,Rk) is obtained. Namely, to 

maintain consistency with the developed bending and shear resistance models, the same 

assumption is retained, according to which the ‘bottom flange’ is considered the entire curved 

stiffened panel (see Fig. 8.10). Therefore, the effective area of the bottom flange, required for the 

calculation of Mf,Rk is obtained using the method proposed by the OUTBURST research project 

[85] for a stiffened curved panel under uniform compression, whereas the top flange, being in 

tension, is considered fully effective. In Fig. 8.29, the ranges of Mf/Meff ratio are plotted for each 

curvature parameter. As it may be noticed, Mf/Meff ratio increases with the increased curvature 

owing to the reduction of the non-flange parts (i.e. webs) of the cross-section, particularly in the 

case with the constant height (H = const).  
 

 
Fig. 8.29: Mf/Meff ratios considered in the study 

 

In Fig. 8.30, the 3D plot of all the numerical results is shown, together with the adjusted 

interaction equation (Eq.(8.13)), considering both the full Isl (red dots) and the reduced inertia 

Isl/3 (black dots) of the stiffener in the shear buckling coefficient. The horizontal and the vertical 
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axes represent the ratio of the FEM-based results and the corresponding bending 

(η1 = Mnum/Meff,Rk) and shear resistance of the web panel alone (�̅�3 = Vnum/Vbw,Rk).  
 

  
a) b) 

Fig. 8.30: Comparison between the FEM results and M-V interaction formula Eq.(8.13) for both Isl 

(red) and Isl/3 (black): a) front view; b) back view 
 

The third axis represents the Mf,Rk/Meff,Rk ratio, which may have a significant influence on the 

shape of the M-V interaction diagram, as shown in an example in Fig. 8.31. In this example, 5 

bridge deck cross-sections are considered, with the same geometrical parameters (H = var., 

tw = 15mm, nst = 5), where 5 different Mf,Rk/Meff,Rk ratios are obtained by varying the curvature 

parameter. To show the difference between the reduced and full stiffener inertia, in each graph, 

the results are plotted for both Isl/3 (black) and Isl (red). 
 

   

                    
Fig. 8.31: FEM results vs M-V interaction formula for various Mf,Rk/Meff,Rk ratios 

 

The graphs indicate that all the points are above the M-V interaction equation, which means 

that the use of Eq.(8.13) leads to a safe design for the studied geometries of bridge decks. Similar 

conclusions were found by Jáger et al. [139]. Namely, the authors claim that in the case of I-
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girders with heavy flanges, commonly used in bridges (Mf,Rk/Meff,Rk > 0.88), the modified equation 

leads to considerably safe results (avg. error up to 50% for Isl/3 and up to 35% for Isl), principally 

due to the conservatism of the shear resistance model from EN 1993-1-5. 

The numerical results from Fig. 8.30 are statistically evaluated using the M-V interaction 

formula. The statistical assessment is based on the distance between the numerically computed 

resistances and its central projection to the used M-V interaction curve (i.e. surface). The 

statistical evaluation is summarized in Table 8.7, whereas the results are graphically interpreted in 

Fig. 8.32, separately for the reduced (Isl/3) or the full (Isl) second moment of area of the 

longitudinal stiffeners. 

 

Table 8.7: Statistical assessment of the numerical results with respect to the M-V interaction formula 

Eq.(8.13) for both Isl and Isl/3 and various Z parameters 
 

 
Z = 0 Z = 50 Z = 100 Z = 200 Z = 300 

Isl/3 Isl Isl/3 Isl Isl/3 Isl Isl/3 Isl Isl/3 Isl 

SD (%) 25.8 19.8 20.9 14.6 18.8 13.3 15.6 12.5 15.1 14.0 

Mean 1.454 1.400 1.419 1.354 1.372 1.329 1.367 1.340 1.363 1.351 

CoV (%) 17.7 14.1 14.7 10.8 13.7 10.0 11.4 9.3 11.1 10.4 

Max 2.243 1.886 2.145 1.846 2.086 1.839 1.984 1.805 1.966 1.924 

Min 1.171 1.165 1.093 1.083 1.080 1.076 1.075 1.069 1.011 1.010 

 

Based on the results of the statistical evaluation, several conclusions should be highlighted. 

First, none of the intermediate points are under the interaction equation, when only the web 

contribution to the shear resistance is considered (Vbw,Rk). Namely, the minimum differences 

obtained vary between approx. 17% and 1.0% on the safe side, from Z = 0 to Z = 300, 

respectively, which confirms that the M-V interaction equation may be safely applied across the 

entire range of parameters covered in this thesis (Mf,Rk/Meff,Rk ≈ 0.7–1.0). Secondly, once again a 

non-negligible level of conservatism may be noticed, which comes from the conservatism of both 

bending and shear resistance models, discussed in detail in sections 8.2 and 8.3, respectively. 

According to Table 8.7, the average differences vary between 45% for trapezoidal box-girders 

(Z = 0) to around 35% for the most curved girders (Z = 300). The descending trend is not 

surprising, given the declining trends obtained both in the case of the bending resistance model 

(see Fig. 8.11) and shear resistance model (see Fig. 8.26). Namely, based on Table 8.6, where the 

shear model is statistically evaluated, the mean difference decreased even more rapidly with the 

increase of curvature (i.e. from 57% for Z = 0 to 29% for Z = 300). However, the less 

emphasized difference obtained in the bending model (i.e. from 46% for Z = 0 to 38% for 

Z = 300), virtually flattens the average differences obtained from the statistical assessment of the 

overall M-V interaction equation, presented in Table 8.7. Finally, the design solution in which 

the full inertia of the longitudinal stiffeners is considered in the assessment of the shear resistance 

proves once again to be safe and less conservative than the standardized one. In addition, as may 

be seen in Fig. 8.32, this solution shows an arguably smaller scatter of results, manifested by a 

reduced coefficient of variation, shown in Table 8.7. 
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a)  b) 

Fig. 8.32: FEM results vs M-V interaction formula for various Mf,Rk/Meff,Rk ratios: 

a) Isl/3 and b) Isl - full 
 

In the following section, besides the bending and shear resistance models, the partial factor 

(γM) is calculated also for the M-V interaction equation, thus enhancing the statistical evaluation 

presented in this section.  

8.5 Statistical evaluation of resistance models – Determination of 

the partial factor γM 

8.5.1 Introduction 

To verify the structural safety of a structure, the Eurocodes use the semi-probabilistic 

approach, according to which each parameter (loading and resistance) has an average value (μ) 

(considered in the deterministic approach), but also a distribution function (for example, normal 

or log-normal), most often characterized by a variance (V) or a deviation (σ). The intersection of 

these distributions, which constitutes the probability of failure, is evaluated by means of two 

partial factors (γE and γM), corresponding to two independent sides - the Action and Resistance 

side.  

In what concerns the steel structures, the Eurocodes recognize three characteristic failure 

modes: Mode 0 (deformation by yielding before failure - e.g. cross-section strength), Mode 1 

(stability failure induced by imperfections and yielding - e.g. buckling strength of an element) and 

Mode 2 (fracture failure after yielding – e.g. strength of connections). Depending on the failure 

mode and the type of structure, EN 1993-1-5 and EN 1993-2 [164] recommend different partial 

factors for strength formulae, summarized in Table 8.8 for buildings and bridges.  
 

Table 8.8: Recommended values for γM – EN 1993-1-5 and EN 1993-2 
 

Structure type 
Failure mode 

Mode 0 (γM,0) Mode 1 (γM,1) Mode 2 (γM,2) 

Buildings 1.00 1.00 1.25 

Bridges 1.00 1.10 1.25 
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The objective of this section is to determine the appropriate values of γM for the strength 

formulae (i.e. resistance models) proposed in the previous three sections. Namely, the statistical 

evaluation is carried out separately for the bending resistance (Meff, see Eq.(2.116)), shear 

resistance (Vbw, see Eq.(8.11)) and M-V interaction resistance models (Eq.(8.13)) and 

subsequently compared with the recommended values from Table 8.8 by the standard. 

8.5.2 EN 1990 - methodology used for evaluation of γM 

The partial factor γM is calculated on the basis of the procedure given in Annex D of EN 1990 

[165] – ‘Design assisted by testing’. Although this procedure is primarily based on the evaluation 

of physical (experimental) tests carried out in the laboratory, it remains valid also for the 

evaluation of ‘numerical experiments’ (i.e. FEM-based result), carried out using computer 

simulations. This is particularly convenient when a large pool of ‘experimental’ results is required, 

in an attempt to account for a broad range of geometrical and material parameters, which would 

lead to unacceptably demanding laboratory test campaigns, such as the testing of over 200 bridge 

deck geometries studied in this thesis. Needless to say, to carry out an extensive campaign of 

numerical experiments for the reliability analysis, it is of the utmost importance to validate first 

the numerical model against real (physical) tests, which is done in the presented case in section 

7.2. 

In the following paragraphs, the main steps of this methodology are briefly described, whereas 

some specific remarks and simplifications are highlighted. Although in Annex D of EN 1990 

[165] the procedure is divided into seven main steps, the 4-step approach from SAFEBRICTILE 

project [166] is used in this study, adopted also in Annex E of prEN 1993-1-1 [167]. 

• STEP 1:  

In the first step, a theoretical resistance (strength) function is defined by Eq.(8.14) 

 1 2( ) ( , ,... ,... )t rt rt j kr g X g X X X X= =    (8.14) 
 

where X represents the set of selected basic independent variables Xj, influencing the 

resistance of the relevant limit state. In this case, the safety coefficients γM are separately evaluated 

for three different resistance functions rt,M, rt,V and rt,MV, given by Eq.(2.116), Eq.(8.11) and 

Eq.(8.13), corresponding to the bending, shear, and M-V interaction resistance model, 

respectively.  

For each considered geometry i in the parametric study, the theoretical resistances (i.e. 

resistance functions) (rt,i) are compared with the ‘experimental’ values (re,i), obtained from 

advanced numerical simulations as specified before.  

The biggest challenge of the first step is to choose appropriately the most relevant independent 

basic variables Xj and to collect the necessary statistical database (mean values, standard deviation, 

and/or the coefficient of variation) for each of them from the previous knowledge (i.e. literature). 

Namely, in the case of a simple resistance function that may be expressed as a product of several 

variables (e.g. axial resistance of a steel section), the choice of the independent variables is rather 

straightforward. However, for the three resistance functions under the current study, the degree 

of difficulty to separate individual variables tends to increase considerably since the strength 
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formulae are much more complex and several variables are often interrelated. For instance, to 

calculate the bending resistance of a box-girder cross-section with class 4, it is necessary to 

determine the effective section modulus Weff. Although it seems like a parameter that depends 

only on the geometrical variables (e.g. thickness, width, thickness and height of the stiffeners, 

etc.), it also depends on the material properties (e.g. yield strength, modulus of elasticity) at various 

levels: i) for the computation of the critical stresses; ii) for the definition of the local buckling of 

sub-panels, through the parameter ε (see Eq.(2.26)); iii) through the slenderness parameter λ for 

both plate-type and column-type behavior (see Eq.(2.23)), etc. The level of complexity further 

increases in the assessment of the M-V interaction resistance function.  

Finally, it should be highlighted that the required statistical data for all the mentioned variables 

is not always available in the literature. For instance, the statistical parameters for the main 

material properties (fy, fu, E) are well-reported and may be found in some of the actual standards 

(e.g. EN 10025-2 [148]) or the literature [166]. On the other hand, the standard deviation and/or 

variance of the geometrical parameters are covered by European Standard for execution and 

fabrication EN 1090-2 [168]. However, only the database for the most general geometrical 

parameters is available, such as the thickness t, the width b, and the length a of a steel plate, 

whereas, the specific data for the presented case (e.g. the radius of curvature R of the bottom 

flange, the local subpanel geometry bloc, etc.) are still not standardized.  

Therefore, owing to an increased level of uncertainty for the presented study, based on the 

choice of the basic variables, for which the database exists in the standardized form, four different 

scenarios are considered for the statistical assessment, summarized in Table 8.9. In this table, fy 

and E are the yield strength and the modulus of elasticity, t, b, and a are the thickness, the width, 

and the length of the bottom flange panel, whereas tw and hw are the thickness and the height of 

the webs, respectively. 
 

Table 8.9: Scenarios for the statistical assessment based on the choice of the basic variables  
 

Scenario 
Material variables Geometrical variables 

fy E t b a tw hw 

1 – ‘None’  - - - - - - - 

2 – ‘fy only’ X1 - - - - - - 

3 – ‘Mat + Geom’ max (X1 ; X2) max (X3 ; X4 ; X5 ; X6 ; X7) 

4 – ‘All’  X1 X2 X3 X4 X5 X6 X7 

 

According to the first scenario, all the variables are assumed as deterministic quantities with 

no variability. Tran [8] also considered this scenario for the assessment of the partial factor of 

the proposed formula. In the second scenario, only the variation of the yield strength is 

considered, being the basic variable with the highest impact on all three resistance functions 

under evaluation. In the third scenario, studied by Tankova et al. [169], only one material and one 

geometrical variable are combined, however, the ones with the highest coefficient of variations, 

Vmat and Vgeom, respectively. Finally, in the last scenario, both the material and the geometrical 

parameters are considered as random variables, despite their mutual dependence and even 

overlapping in some cases. The second, third, and fourth scenarios were considered in the 

SAFEBRICTILE project [166], where the latter two were assessed as slightly too conservative. 
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Nevertheless, the advantage of considering these 4 scenarios is that a certain sensitivity of the 

partial factor may be assessed, depending on the number of random variables. The distributions 

of the basic variables considered in these four scenarios are given in Table 8.10. 

 

Table 8.10: Recommended distributions for material and geometrical variables [166] 
 

Basic variable Symbol 
Xmean/Xnom VXi 

(Mean/Nominal) (CoV) 

Material 
fy 1.2 5.0% 

E 1.0 3.0% 

Geometry 

t 1.0 2.5% 

b 1.0 0.9% 

a 1.0 0.9% 

tw 1.0 2.5% 

hw 1.0 0.9% 

 
 

• STEP 2:  

In the second step, the results from each of n ‘numerical experiments’ (i.e. FEM-based result) 

(re,i) are compared with the theoretical values (i.e. resistances obtained using proposed analytical 

formulae) (rt,i). This comparison is carried out in several consecutive sub-steps defined in Annex 

D of EN 1990 [165]. First, it is necessary to determine the so-called ‘mean value correction factor’ 

(b), which represents the inclination of the regression line through the origin for considered 

scatter of n (rt,i; re,i) points, as schematically presented in Fig. 8.33.  

 

Fig. 8.33: Schematic illustration of rt – re diagram  

 

The correction factor b may be calculated through least-square approximation, by Eq.(8.15): 

 

( )

, ,

1

2

,

1

n

t i e i

i

n

t i

i

r r

b

r

=

=



=





   (8.15) 

Once the mean value of the correction factor b is calculated, it is necessary to determine the 

error term δi for each pair of (rt,i; re,i) using Eq.(8.16) and subsequently the coefficient of variation 

of error term Vδ by equation Eq.(8.17). 
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In theory, the coefficient of variation Vδ should be sufficient to represent the variation of the 

theoretical resistance model rt. However, since in reality the number of tests is often limited and 

thus insufficient to cover all the variation in the model, the total coefficient of variation Vr needs 

to be increased by the variation of the basic input variables Vrt (i.e. Vr
2 = Vδ

2 + Vrt
2). The 

calculation of Vrt is addressed in the following step.  

• STEP 3:  

In the first two steps, the statistical evaluation refers merely to the differences between n 

‘experimental’ results (commonly expressed in terms of strength) and the same strength obtained 

by the resistance function. However, in this step, the sensitivity of the resistance function itself 

to the variability of the basic input variables Xj is addressed, by introducing the coefficient of 

variation (i.e. error propagation) term Vrt. 

The calculation of the coefficient of variation of the basic input variables Vrt depends primarily 

on the complexity of the theoretical strength formula, which is in detail explained in Annex D of 

EN 1990 [165] and further elaborated in SAFEBRICTILE project [166]. Namely, the standard 

recognizes two types of resistance functions – i) simple product functions (e.g. rt = X1 x X2…Xj) 

and ii) more complicated resistance functions (e.g. rt = grt(X1, X2…Xj)). For these two common 

formats of resistance functions, Vrt may be calculated by Eq.(8.21) and Eq.(8.22), respectively. 

 2 2
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However, as discussed before (see STEP 1), the resistance functions under investigation in 

this thesis cannot be written as a simple product of independent variables, nor they have a closed 

analytical format for which derivative of an independent variable (𝜕𝑟𝑡,𝑖(𝑋𝑗) 𝜕𝑋𝑗⁄ ) can be found. 

Hence, in this study, an alternative approach is implemented, according to which four simplified 

scenarios are considered, based on the selection of the basic input variables (see Table 8.9). 

Subsequently, using the distributions (i.e. CoV) of the basic variables considered in these four 

scenarios that are available in the literature (see Table 8.10), Vr,t is then determined by Eq.(8.21), 
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which was found acceptably correct in aforementioned studies [166],[169]. Therefore, the value 

of Vr,t for studied four scenarios is respectively Vr,t,1 = 0, Vr,t,2 = 0.05, Vr,t,3 = 0.056 and Vr,t,4 = 

0.07. 

It should be stated that none of these four scenarios is generally ‘more correct’ since in all 

cases an averaging effect is taken into account; however, the principal reason for considering all 

four cases is to assess the sensitivity of the partial factor γM to the number and the variability of 

the basic input variables. 

• STEP 4:  

Finally, in the last step, the partial factor (γM) is calculated. In general, according to Annex D 

of EN 1990 [165], the partial factor is determined as the ratio between the characteristic (rk) and 

the design value of the strength (rd) by Eq.(8.23) as: 

 
k

M

d

r

r
 =    (8.23) 

where the ‘characteristic value’ is defined as a value with a specified (non-) exceedance 

probability that commonly corresponds to the 5% fractile (or 95% exceedance probability), 

whereas the ‘design value’ is a value with a non-exceedance probability corresponding to the value 

of αR × β given (commonly equal to 0.8 × 3.8 = 3.04 for the reference period of 50 years). 

However, as explained in [166], in the case of the design checks of steel structures, and 

specifically in the case where the strength is predominantly a function of the yield stress fy, the 

nominal values are often close to the design point. Therefore, the ‘characteristic value’ is seldomly 

used in the design of steel structures, but instead, the ‘nominal value’ is considered, which results 

in a slightly modified expression for the determination of the partial factor given by Eq.(8.24) as: 
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where rnom,i is the resistance function evaluated with nominal values of the input parameters 

(rnom = grt(Xnom)) for each specimen i, whereas rd,i is the resistance function evaluated with mean 

values of the input parameters for each specimen i, using Eq.(8.25). 
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2

, , ,( )exp( 0.5 )d i t i m d i ir br X k Q Q= − −  , 100n   

In these expressions, grt(Xm) represents the value of the resistance function evaluated with the 

mean values of basic input variables, kd,n and kd,∞, are the design fractile factors, respectively for 

n and infinite single test results, whose values are given in Table D.1 and Table D.2 of Annex D 

of EN 1990 [165]. Finally, the log-normal variation coefficients (Qδ, Qr,t, Q) are calculated from 

Eqs.(8.26)-(8.28) as follows: 

 2ln( 1)Q V = +    (8.26) 

 2
, ,ln( 1)r t r tQ V= +    (8.27) 
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 2 2 2
,ln( 1) ln( 1)r r tQ V V V= + = + +    (8.28) 

 

It should be highlighted once again that rd is calculated individually for each experimental 

results, comprising a total of n values or rd,i.  

8.5.3 Calculated γM factors  

Finally, the proposed rules for the bending resistance (Meff, see Eq.(2.116)), shear resistance 

(Vbw, see Eq.(8.11)) and M-V interaction resistance (Eq.(8.13)) are statistically evaluated based on 

partial factor γM. The procedure and the main assumptions for the determination of the partial 

factor are described in 8.5.2. The results of the statistical assessment are thus presented separately 

for these three subsets (bending, shear, and M-V interaction), and compared with the value of 

the corresponding partial factor, recommended by EN1993-2 (see Table 8.8). 

8.5.3.1 Bending 

The calculated partial factors for the bending resistance model are presented in Fig. 8.34. The 

figure illustrates the variation of the partial factor for various curvature parameters and different 

scenarios considered for the assessment of the partial factor (see Table 8.9). As the total number 

of ‘experimental’ tests in pure bending for all curvatures is 210, the partial factor for each 

curvature consists of n = 42 results. 
 

 

Fig. 8.34: All results organized by curvature parameter for four different distributions of the basic 

variables (Vr,t,1 = 0, Vr,t,2 = 0.05, Vr,t,3 = 0.056 and Vr,t,4 = 0.07) 

 

The calculated partial factors are close to the value of γM,0 = 1.0 recommended by the design 

standard. Namely, the partial factor shows a declining trend with the increase of curvature, from 

γM,0 = 1.03 for Z = 0 to γM,0 = 0.91 for Z = 300. Slightly lower values of γM may be justified by 

the aforementioned conservatism of the proposed methodology in the case of highly curved 

cross-sections (see 8.2.3). On the other hand, the variation of the partial factor with respect to 

the number of basic variables is not significant, regardless of the curvature parameter. Namely, 

the difference is more pronounced only in the first scenario, in which all the variables are assumed 

as deterministic quantities with no variability, which may be considered an extreme case. The 
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difference between the other three scenarios is less pronounced, with the highest partial factors, 

as expected, obtained for the scenario where the variability of all the basic variables is accounted 

for.  

The exact values of all γM are summarized in Table 8.11, where it may be also seen the mean 

value and the CoV for each of four scenarios calculated using a larger sample of n = 210 results 

(i.e. for the entire scope of curvatures). The results show that the mean value varies in a very 

narrow range between 0.96 and 1.0, with acceptably low coefficient of variation between 6.6% 

and 4.8%, respectively.  
 

Table 8.11: Partial factors γM for bending resistance model 
 

 
Scenario 1  

(None) 

Scenario 2  

(fy Only) 

Scenario 3  

(Mat + Geom) 

Scenario 4  

(All) 

Z = 0 1.003 1.016 1.019 1.031 

Z = 50 1.006 1.019 1.022 1.034 

Z = 100 0.965 0.980 0.984 0.997 

Z = 200 0.889 0.917 0.923 0.942 

Z = 300 0.870 0.905 0.911 0.933 

Mean 0.962 0.978 0.982 0.995 

CoV (%) 6.6 5.5 5.4 4.8 

 

In conclusion, although the partial factors obtained are slightly lower than those currently 

recommended by EN 1993-2 for cross-section resistance verifications, the author suggests to 

keep γM,0 = 1.0. 

8.5.3.2 Shear 

The calculated partial factors for the shear resistance model are presented in Fig. 8.35. The 

figure illustrates the variation of the partial factor γM,1 for the aforementioned four scenarios 

considered for the assessment of the partial factor (see Table 8.9) and separately for reduced 

(Isl/3) and full (Isl – full) stiffener inertia. For the statistical assessment of the proposed design 

formula, only those experimental results with dominant shear failure are considered (around 

n = 115) since for larger aspect ratios, as stated before, ‘pure’ shear failure could not be attained.  

The results indicate that the consideration of the reduced stiffener inertia (Isl/3), which is in 

line with EN 1993-1-5 design formula, give the partial factor equal or slightly higher than the 

value recommended by EN 1993-2 of γM,1 = 1.1. On the other hand, the consideration of the full 

inertia leads to somewhat less conservative results and thus lower partial factors, which vary 

between γM,1 = 1.05, and γM,1 = 1.07 depending on the adopted distribution of the random 

variables. Once again, the proposed formula shows insignificant sensitivity to the number and 

variance of the basic input data. Consequently, it may be stated that the design code partial factor 

of γM,1 = 1.1 is appropriate for the determination of the shear resistance.  
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Fig. 8.35: All results organized by four different distributions of the basic variables – for reduced (Isl/3) 

and full (Isl – full) stiffener inertia 

8.5.3.3 M-V interaction 

Finally, the equivalent partial factor is calculated for the M-V interaction equation, and the 

results are represented in Fig. 8.36 and Fig. 8.37, for reduced and full stiffener inertia, respectively. 

Similar to Fig. 8.34, the variation of the equivalent partial factor for various curvature parameters 

is illustrated, separately for four scenarios assumed in the assessment of the partial factor are (see 

Table 8.9). The equivalent partial factor for each curvature is calculated using n = 420 

‘experimental’ results, whereas for the overall mean value and CoV, presented in Table 8.12 and 

Table 8.13, a total of n = 2100 results are considered.  

In general, the results indicate that the equivalent partial factor varies approximately between 

γM = 0.95 and γM = 1.05, depending on the considered subset. In fact, in Fig. 8.36, where the 

reduced inertia of stiffeners is assumed, the results resemble the ones obtained for pure bending 

(see Fig. 8.34); however, slightly magnified partial factors are obtained due to the interaction with 

the shear, which tends to increase the equivalent partial factor, as indicated in Fig. 8.35. Once 

again, it may be noticed that the equivalent partial factor shows a declining trend with the increase 

of curvature, i.e. from γM = 1.06 for Z = 0 to γM = 0.97 for Z = 300. 
 

 

Fig. 8.36: All results organized by curvature parameter for four different distributions of the basic 

variables, considering reduced stiffener inertia Isl/3  
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Fig. 8.37: All results organized by curvature parameter for four different distributions of the basic 

variables, considering full stiffener inertia Isl-full 

 

Furthermore, the consideration of full inertia, yields slightly lower values of the equivalent 

partial factor (γM = 0.98 on average) with respect to the reduced stiffener inertia (γM = 1.02 on 

average), and also the lower coefficient of variations as shown in Table 8.12 and Table 8.13. 

Finally, the adoption of the second, third, or the fourth scenario for the distribution of basic 

variables, leads to virtually similar results, whereas the consideration of the first scenario results 

in an underestimation of the equivalent partial factor.  
 

Table 8.12: Equivalent partial factors γM for M-V resistance model – Isl/3 
 

 
Scenario 1  

(None) 

Scenario 2  

(fy Only) 

Scenario 3  

(Mat + Geom) 

Scenario 4  

(All) 

Z = 0 1.051 1.062 1.065 1.075 

Z = 50 1.010 1.022 1.025 1.037 

Z = 100 0.994 1.008 1.011 1.023 

Z = 200 0.968 0.984 0.987 1.001 

Z = 300 0.970 0.985 0.989 1.002 

Mean 1.003 1.016 1.019 1.031 

CoV (%) 3.4 3.2 3.1 3.0 

 
 

Table 8.13: Equivalent partial factors γM for M-V resistance model – Isl full 
 

 
Scenario 1  

(None) 

Scenario 2  

(fy Only) 

Scenario 3  

(Mat + Geom) 

Scenario 4  

(All) 

Z = 0 1.005 1.018 1.021 1.033 

Z = 50 0.961 0.977 0.980 0.994 

Z = 100 0.952 0.968 0.972 0.987 

Z = 200 0.946 0.963 0.967 0.982 

Z = 300 0.964 0.979 0.983 0.997 

Mean 0.968 0.983 0.987 1.000 

CoV (%) 2.4 2.2 2.2 2.0 

 

In conclusion, it is recommended to keep the values γM,0 = 1.0 and γM,1 = 1.1. 
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8.6 Summary 

In this chapter, the final task (Task 5) was accomplished, in which the applicability of the M-

V interaction equation, proposed by Jáger et al. [139] and adopted in prEN 1993-1-5 [140], was 

assessed in the case of box-girder bridge cross-sections with a curved bottom flange.  

First, it was necessary to define analytical models for the prediction of the bending (Meff,Rk) and 

the shear resistance (Vbw,Rk) for these innovative bridge deck cross-sections, which were then 

directly implemented in the M-V interaction equation by Jáger et al. [139]. Both resistance models 

were adapted to have an EC3-like format and were statistically assessed against the numerical 

results collected in chapter 7 of the thesis.  

Subsequently, the safety assessment of the M-V equation was conducted against the FEM 

results. The results showed that that the M-V interaction equation might be safely applied across 

the entire range of parameters covered in this thesis (Mf,Rk/Meff,Rk ≈ 0.7–1.0), with the minimum 

differences between numerical and analytical results of approx. 17% and 1.0% on the safe side, 

from Z = 0 to Z = 300, respectively. The average differences of around 45% for trapezoidal box-

girders (Z = 0) and 35% for the most curved girders (Z = 300) were explained by the 

conservatism of both bending resistance model and shear resistance model, discussed in detail in 

sections 8.2 and 8.3, respectively.  

Moreover, the design solution, in which the full inertia of the longitudinal stiffeners was 

assumed for the determination of the shear resistance, was also studied in this chapter, and it was 

concluded that such a solution led to safe but less conservative results when compared to the 

standardized reduced stiffness (Isl/3). 

Finally, all three models (i.e. bending resistance model, shear resistance model, and the M-V 

interaction model) were statistically assessed against the numerical results by calculating the 

partial factor (γM). The partial factors obtained were slightly lower than those recommended by 

EN 1993-2. Nevertheless, there are still insufficient real experimental results that could justify 

the reduction of the partial factor, hence, it was recommended to keep γM,0 = 1.0 and γM,1 = 1.1 

for the bending and shear resistance models, in the design of box-girder bridges, regardless of 

the curvature parameter. 
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   CHAPTER 9 

9. Summary and future prospects 

9.1 Conclusions 

For a better systematical review on the main conclusions of the work, the thesis is, for this 

purpose, thematically divided into three main clusters, based on the specific targeted goals, 

defined on the basis of the knowledge deficiencies identified in Literature review, as follows: 

 

i) Individual curved panels subjected to axial compression 

The topic represents the key aspect in the stability of thin-walled structures, and thus, has been 

widely investigated (mainly analytically and numerically) in the past. However, the main 

contribution of this thesis, which differentiates this study from the majority of former ones, is 

the experimental campaign carried out in the scope of the ULTIMATEPANEL project, thus 

narrowing the deficiencies discovered in the literature. In total, 32 axial compression tests were 

reported, both on stiffened and unstiffened curved panels, and the results were used for the 

evaluation of the existing design standards and semi-empirical formulae available in the literature. 

In particular, it was shown that: 

• An unstable post-buckling path, governed by geometrical nonlinearities, characterizes the 

behavior of curved panels, with a dominant global buckling in case of unstiffened panels, 

whereas, in the case of stiffened panels, local buckling prevails; 

• The methods by Tran et al. [59] and OUTBURST research project [85] gave a reasonably 

good approximation of the ultimate compressive resistance (with the mean difference of 
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9% and 6%, respectively, with respect to the experimental results); however, the method 

from the OUTBURST research project was used further in the thesis since it allows for 

higher local curvatures up to Zloc ≤ 100; 

• The use of the available standards (EN 1993-1-5 and DNV-RP-C202) almost in all cases 

leads to an underestimation of the ultimate resistance, with the mean difference of 30% 

(CoV ≈ 28%) and 50% (CoV ≈ 37%), respectively; 

Moreover, using the FEM models validated against the experimental tests, a numerical study 

was performed to assess the sensitivity of curved panels to imperfections. The following 

conclusions should be mentioned: 

• The imperfection sensitivity decreases with the number of stiffeners, regardless of the 

curvature parameter, reducing the relevance of the imperfection shape adopted; 

• The equivalent geometric imperfections recommended by EN 1993-1-5 for flat plates 

lead to conservative results (50% on average) for highly curved panels; 

• The imperfections in the form of the global eigenmode lead to the results closest to the 

experimental ones (mean difference 7%), whereas the imperfections in the form of one 

of the first four eigenmodes lead to the safest approach in more than 80% of cases; 

In addition, since the dimensions of the tested curved panels do not correspond to the realistic 

full-scale geometries encountered in bridge deck applications, another numerical study was 

carried, with an extended pool of the geometrical parameters. In specific, the aim of the study 

was: i) to determine the buckling resistance of the stiffened curved and non-curved panels in 

compression; ii) to compare the numerical resistances to the methods proposed by Tran et al. [59] 

and OUTBURST research project [85] and iii) to assess the difference between two boundary 

conditions - ‘free’ and ‘rigid’ (both nominally simply-supported). The following conclusions were 

observed: 

• The ultimate resistance strongly depends on the boundary conditions, despite all of them 

being nominally simply-supported. For all considered panels, a higher resistance is 

obtained for ‘rigid’ boundary conditions (in average 11.5%), with the difference 

particularly emphasized in the case of trapezoidal stiffeners (in average 17.7%), attributed 

to torsional rigidity, which is known to be substantially higher when compared to an open 

flat stiffener; 

• For short heavily stiffened plates, the ultimate resistance is governed by the local buckling 

of subpanels, while the global buckling has a minor effect. Hence, for these panels, an 

increase of curvature does not increase dramatically the ultimate resistance with respect 

to the flat ones since the local curvatures of subpanels in bridge design rarely exceeds 

Zloc < 15;  

• Consequently, the favorable effect of curvature on the ultimate resistance is particularly 

pronounced for longer and lightly stiffened plates, where, the resistance may be up to 2 

times higher compared to corresponding flat plate; 

• Furthermore, owing to high cross-section second moment of area in the case of very 

curved panels, no global buckling (plate-type or column-type) occurs, meaning that failure 

is governed by local buckling of subpanels in combination with material yielding. 
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Therefore, the resistance of highly curved panels converges towards a constant value 

regardless of the aspect ratio since the local buckling is independent of the panel length; 

• Besides, in contrast to flat plates, in the case of highly curved panels, due to high cross-

section inertia and strong arch effect, the type and size of longitudinal stiffeners have 

only a negligible influence on the ultimate resistance, at least for the stiffeners class 3 

considered in this thesis; 

• These findings present some of the substantial advantages of curved panels with respect 

to the flat ones since considerable savings could be made by reduction of the number of 

the transversal cross-frames (diaphragms) and by the reduction of the number and size 

of longitudinal stiffeners; 

• Finally, for the considered geometrical configurations, the difference between the 

methods by Tran et al. [59] and the OUTBURST research project [85] is arguably small 

(on average 4.6%), with the maximum difference of 14%. Namely, Tran’s method seems 

to be at times too optimistic, whereas the latter is too conservative for certain 

configurations. Nevertheless, the method developed withing the Outburst project was 

recommended since it explicitly accounts for the unfavourable post-critical behavior of 

the curved panels with small-to-intermediate values of local curvature parameter, found 

in bridges.  

 

ii) Individual curved panels subjected to in-plane shear 

Since very few studies had tackled this problem and no clear design method for the assessment 

of the ultimate shear had ever been reported, an extensive numerical program was carried out to 

overcome this deficiency. The design rules developed are conceptually similar to the codified 

ones for flat plates, hence, it was necessary first to propose a formula for the determination of 

the critical shear load for a curved panel. Therefore, a supplementary numerical study was carried 

out, where the influence of several parameters on the elastic critical behavior, namely 1st buckling 

mode, was investigated, such as curvature parameter Z ≤ 100, aspect ratio (α = 0.2 to α = 5.0 and 

three boundary conditions (nominally simply-supported but with different levels of edge 

constraints). The following conclusions were highlighted: 

• In general, the shorter and the more curved the panel is, the higher is the critical load. 

For very long panels (α > 4.0), the aspect ratio has only minor influence on the critical 

load; 

• In contrast to flat plates, the elastic critical stress of cylindrically curved panels under 

shear highly depends on the edge constraints studied in the thesis. Moreover, the effect 

of the constraints is particularly emphasized for highly curved and long panels; 

• The NACA charts give the shear buckling coefficients that correspond best to the 

boundary condition BC2, which in most cases is the realistic assumption, being an 

intermediate case. However, the NACA monographs may lead to an overestimation or 

underestimation of the critical load for boundary conditions BC1 and BC3, respectively; 

• Finally, a set of formulae was proposed for the prediction of the shear buckling coefficient 

that may substitute the use of impractical and outdated NACA monographs. The validity 

of formulae was verified within geometrical ranges (i.e. 1 < Z ≤ 100 and 0.2 < α ≤ 5.0) 
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encountered in real engineering applications, and, for the very first time, the influence of 

various in-plane edge constraints was explicitly accounted for. 

Subsequently, another extensive numerical study is carried out with the aim to i) investigate 

the post-buckling behavior of simply supported cylindrically curved steel panels and ii) propose 

expression for the determination of the ultimate shear resistance of unstiffened curved panels, 

valid for three different types of edge constraints, various curvatures (Z ≤ 50) and aspect ratios 

(α ≤ 5.0). The most relevant findings from this study were: 

• The post-critical behavior depends on both the curvature parameter and the aspect ratio 

and not only one of them; however, the higher the curvature parameter and the aspect 

ratio, the lower is the ultimate resistance; 

• For slender panels, the ultimate resistance highly depends on the rigidity of the boundary 

conditions. Namely, in the case of rigid boundary conditions (BC2 or BC3), where the 

tension field may be developed, considerable post-critical reserves may be mobilized, 

resulting in a higher ultimate resistance; 

• Finally, a set of expressions was proposed for simple estimation of the shear reduction 

factor for curved panels. The formulas were derived assuming the equivalent geometric 

imperfections recommended by EN 1993-1-5, which leads to a safe design. The proposed 

rules are valid for geometries that may be of practical use in offshore, aeronautics, and 

bridge applications. 

 

iii) Curved panels integrated into box-girder bridge cross-sections subjected to bending 

and shear (M-V interaction) 

Finally, in the scope of the European OUTBURST research project, the study on the entire 

box-girder bridge cross-sections integrating a curved panel in the bottom flange was carried out, 

to characterize the entire spectrum of behavior, i.e. from pure bending to ‘almost’ pure shear, and 

to assess the validity of the developed bending and shear resistance models, as well as the M - V 

interaction equation, available in the literature. The study was accomplished in four steps:  

(i) First, the experimental campaign was carried out, comprising two bridge deck 

prototypes, tested as three-point bending tests to achieve M-V interaction near the intermediate 

support. Such an experimental program had not been reported in the literature, hence the 

scientific relevance of the reported experimental study is twofold: i) it gives an insight into the 

real behavior of the box-girder bridge deck with a curved bottom flange and ii) the reported 

results are available for the entire scientific community, allowing for the reproduction of 

experimental and/or numerical results, thus extending the scope of this thesis. In addition, the 

experimental results were compared with the Curved panel approach developed within the 

OUTBURST project, and satisfactory results were obtained.  

(ii) Subsequently, a numerical parametric study was carried out, using a numerical FE model 

calibrated against the experimental results. In total, 210 different bridge cross-section geometries 

were considered, where the main geometrical parameters (e.g. curvature parameter, aspect ratio, 

the thickness of flange and web, stiffener type, number, and configuration, etc.) were varied 

within the common ranges encountered in the real examples of bridges. For each geometry, 10 
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different M/V-ratios were applied, characterizing the entire spectrum of M-V interaction 

behavior and generating 210 interaction diagrams as the main output of the parametric study.  

(iii) In the third step, a new bending and shear resistance models were developed. Both 

models correspond to the design rules for trapezoidal box-girder bridge cross-section from 

EN 1993-1-5; however, adjusted to account for the presence of the curved bottom flange, as the 

only difference with respect to the conventional trapezoidal cross-section shape. An example 

with all the required steps for the determination of the bending and shear resistance of a cross-

section with a curved bottom flange is shown in Annex D. 

Regarding the bending resistance model, the following conclusions were found: 

• The numerical results give higher bending resistance for all 210 studied geometries 

(approximately 40% in average), which may be attributed to two main inaccuracies: (i) 

Analytical method does not account for additional restraints on the loaded edges, coming 

from rigid transversal frames (diaphragms), and (ii) The analytical model assumes the 

most unfavourable uniform axial stress gradient across the height of the curved bottom 

flange; 

• The difference between the FEM and analytical results is particularly high for longer 

(α ≥ 1) and less curved panels (Z ≤ 100), where the global buckling mode of the bottom 

flange may occur, requiring the use of conservative formulae for the estimation of the 

critical plate-type stress and interpolation equation from the standard; 

• Finally, since the proposed model is based on the same conservative formulae from the 

actual design code, a better estimation of the bending resistance of box-girders with 

curved panels may be achieved once the formulae from the design code are revised to 

account for several relevant parameters (edge constraints, stiffeners torsional rigidity, 

etc.). 

Relatively to the developed shear resistance model, named ‘extended web method’ in the 

thesis, the following findings were observed: 

• The proposed extended web approach is safe, presenting a lower bound of all numerical 

results, except for two cases where the numerical results were overestimated for 2% and 

6%; 

• Moreover, being an extension of EN 1993-1-5 approach, whose conservatism was 

appointed by multiple authors, it is in most cases overly safe; however, it tends to decrease 

the difference with respect to the FEM results to satisfactory 29% with the increase of 

curvature parameter; 

• In an attempt to reduce further the Vnum/Vanaly ratio, the full stiffener flexural stiffness 

was also considered, and it was concluded that the proposed shear analytical method 

would still return safe solutions, at least for the ranges of parameters studied in this thesis. 

In fact, the consideration of the full inertia is particularly emphasized in the case of thin 

webs prone to buckling, where the full inertia of the stiffeners may partly compensate for 

an overly conservative standard approach for the calculation of the global shear buckling. 
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By implementing the developed bending and shear resistance models in the M-V interaction 

equation by Jáger et al. [139], the safety assessment of this criterion was conducted by comparing 

the analytical with the FEM results. In specific, the following conclusions were drawn: 

• The M-V interaction equation may be safely applied across the entire range of parameters 

covered in this thesis (Mf,Rk/Meff,Rk ≈ 0.7–1.0), with the minimum differences between 

numerical and analytical results of approx. 17% and 1.0% on the safe side, from Z = 0 to 

Z = 300, respectively; 

• The average differences of around 45% for trapezoidal box-girders (Z = 0) and 35% for 

the most curved girders (Z = 300) are explained by the conservatism of both bending 

resistance model and shear resistance model; 

• Moreover, the design solution in which the full inertia of the longitudinal stiffeners is 

assumed for the determination of the shear resistance leads to safe and even less 

conservative results when compared to the standardized reduced stiffness (Isl/3). 

(iv) Finally, a statistical evaluation of the proposed rules was carried out against the FEM 

results for all three resistance functions (i.e. bending, shear, and the M-V interaction model) by 

calculating the corresponding partial factors (γM). The partial factors obtained are slightly lower 

than that recommended by EN 1993-2, hence, it was suggested to keep γM,0 = 1.0 and γM,1 = 1.1, 

in the design of box-girder bridges, also in the case with the curved bottom flange. 

9.2 Outlook on future research 

Most of the targeted objectives set at the outset of the thesis were successfully accomplished. 

However, many relevant questions emerged along the way that ought to be addressed in the 

future. In this section, some aspects worth of further investigation are summarized: 

More experimental results. Although two independent experimental campaigns were 

carried out in this thesis in chapter 3 and chapter 6, which lends a certain credibility to the results 

of the subsequent numerical investigations presented, more tests should be performed, both on 

isolated cylindrically curved panels and structures incorporating cylindrically curved steel panels 

(e.g. box-girder bridge segments), with the geometries other than those examined in this work. 

The collection of more experimental results should always be an absolute priority for multiple 

reasons: i) to obtain a realistic insight into the behavior of the curved panels; ii) to enhance the 

validity of the developed rules; iii) to record and create a plausible and standardized database of 

the initial imperfections for the curved panels and iv) to collect data on the material and 

geometrical properties to generate distributions of potential basic variables for future safety level 

assessments and calibration of new design rules. 

Further studies on the curved panels under shear. A comprehensive numerical study on 

curved panels under shear was performed in chapter 4 and chapter 5 and the design rules were 

developed, yet, the study has its limitations. First of all, only the unstiffened curved panels were 

studied, which means that the rules developed have restricted field of application in real stiffened 

structures (i.e. bridges). Namely, the rules may be used for the verification of the shear resistance 

on a local level (i.e. curved subpanels between the longitudinal stiffeners) or the assessment of 

global shear resistance for lightly stiffened curved panels. Consequently, it is required to study 
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the influence of the longitudinal stiffeners as well and to extend the rules developed in this thesis. 

Secondly, the design rules developed in the thesis are purely empirical, coming from a FEM study, 

whereas no experimental evidence was provided to increase their validity. Hence, the work would 

contribute from an experimental study on curved panels under shear, similar to the one under 

axial compression performed in the scope of the ULTIMATEPANEL research project.  

Curved steel panels under combined non-uniform compression and shear. As it was 

revealed in the thesis, a curved panel, being the bottom flange of a box-girder bridge cross-section 

is in reality subjected to a complex stress state of combined non-uniform compression and shear, 

which was not explicitly accounted for in the developed analytical models. To the best of the 

author’s knowledge, no interaction formula in the literature deals with curved panels under such 

loading. The starting point for this study might be the interaction formula from the offshore 

design standards (DNV-RP-C202), used for the assessment of the ultimate strength of full 

revolution cylinders, based on the theoretical grounds established by Timoshenko & Gere in 

1963 [121]. The development of an appropriate interaction formula may allow also for the safety 

verification of some extreme cases of the box-girder bridges, e.g. cross-sections with the depth of 

the curved part equal to the total height (f = H), as indicated in Fig. 2.5. 

High strength steels (HSS). In all numerical parametric studies presented herein, the 

structural steel S355 was considered, being representative of common mild steel used in bridge 

construction. However, due to technological improvements and increasing structural and 

architectural demands, the use of high-strength steel is becoming nowadays more common, 

especially in bridge designs. This requires an adjustment of actual stability design rules, accounting 

for specific aspects related to the use of HSS, such as enhanced material properties, more 

favourable residual stress distributions, different plastic behavior, etc.  

9.3 Publications 

In this section, the author publications disseminated within the course of this thesis are 

summarized: 

9.3.1 International journal papers (ISI) 

 

▪ J.P. Martins, F. Ljubinkovic, L. Simões da Silva, H. Gervásio, (2018) Behavior of thin walled 

curved steel plates under generalised in-plane stresses: A review, Journal of Constructional Steel 

Research, Vol. 140: 191-207. 

https://doi.org/10.1016/j.jcsr.2017.10.018 

▪ F. Ljubinkovic, J.P. Martins, H. Gervásio, L. Simões da Silva, (2019) Eigenvalue analysis of 

cylindrically curved steel panels under pure shear, Thin–Walled Structures, Vol. 141: 447-459. 

https://doi.org/10.1016/j.tws.2019.04.025 

▪ F. Ljubinkovic, J.P. Martins, H. Gervásio, L. Simões da Silva, (2019) Ultimate load of 

cylindrically curved steel panels under pure shear, Thin–Walled Structures, Vol. 142: 171-188.  

https://doi.org/10.1016/j.tws.2019.04.022 

https://doi.org/10.1016/j.jcsr.2017.10.018
https://doi.org/10.1016/j.tws.2019.04.025
https://doi.org/10.1016/j.tws.2019.04.022
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▪ F. Ljubinkovic, J.P. Martins, H. Gervásio L. Simões da Silva, J.O. Pedro, (2019) 

Experimental behavior of curved bottom flanges in steel box-girder bridge decks, Journal of 

Constructional Steel Research, Vol. 160: 169-188. 

https://doi.org/10.1016/j.jcsr.2019.05.031 

▪ F. Ljubinkovic, J.P. Martins, H. Gervásio L. Simões da Silva, C. Leitão, (2020) 

Experimental and numerical investigation on cylindrically curved steel panels under uniform compression, 

Thin–Walled Structures, Vol. 149: 106527. 

https://doi.org/10.1016/j.tws.2019.106527 

▪ C. Hendy, M. Cai, J.P. Martins, F. Ljubinkovic, L. Simões da Silva, (2020) New design rules 

for plate girders curved in plan, Bridge Engineering (2020). ISSN 1478-4637 | E-ISSN 1751-

7664. 

https://doi.org/10.1680/jbren.19.00057 

▪ F. Ljubinkovic, J.P. Martins, H. Gervásio, L. Simões da Silva, (2020) Steel box-girder bridge 

decks with curved bottom flange – Numerical studies, Steel Construction, Vol. 13, Issue 3: 238-

244. 

https://doi.org/10.1002/stco.202000007 

▪ F. Ljubinkovic, J.P. Martins, H. Gervásio, L. Simões da Silva, (2021) Resistance of curved steel 

cross-sections for bridge deck applications: Design proposals, Journal of Constructional Steel 

Research, Vol. 182 (3): 106679. 

https://doi.org/10.1016/j.jcsr.2021.106679 

 

9.3.2 International conference proceedings 

 

▪ F. Ljubinkovic, J.P. Martins, L. Simões da Silva, (2017) Cylindrically curved steel panels in 

bridge design: Buckling and post-buckling behavior under shear stresses. Special Issue: Proceedings 

of Eurosteel 2017, Vol. 1, Issue 2-3: 888-897; September 2017, Copenhagen, Denmark. 

https://doi.org/10.1002/cepa.129 

▪ F. Ljubinkovic, J.P. Martins, H. Gervásio, L. Simões da Silva, C. Leitão, (2017) 

Experimental analysis of unstiffened cylindrically curved panels. Special issue: XI Conference on 

Steel and Composite Construction, Vol. 1, Issue 4: 448-457; December 2017, Coimbra, 

Portugal. 

https://doi.org/10.1002/cepa.544 

▪ F. Ljubinkovic, J.P. Martins, H. Gervásio, L. Simões da Silva, (2018) Experimental 

investigation on the bridge segments with transversally curved bottom flange. IOP Conference Series: 

Materials Science and Engineering, Vol. 419, Issue 1: 012042; 9th International 

Symposium on Steel Bridges; September 2018, Prague, Czech Republic. 

https://doi.org/10.1088/1757-899X/419/1/012042 

https://doi.org/10.1016/j.jcsr.2019.05.031
https://doi.org/10.1016/j.tws.2019.106527
https://doi.org/10.1680/jbren.19.00057
https://doi.org/10.1002/stco.202000007
https://doi.org/10.1016/j.jcsr.2021.106679
https://doi.org/10.1002/cepa.129
https://doi.org/10.1002/cepa.544
https://doi.org/10.1088/1757-899X/419/1/012042
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▪ F. Ljubinkovic, J.P. Martins, H. Gervásio, L. Simões da Silva, C. Leitão, (2019) 

Experimental and numerical analysis of cylindrically curved panels under uniform compression. 9th 

International Conference on Steel and Aluminium Structures (ICSAS19); July 2019, 

Bradford, United Kingdom. 

▪ F. Ljubinkovic, J.P. Martins, H. Gervásio, L. Simões da Silva, (2019) Ultimate shear resistance 

of cylindrically curved steel panels. The International Colloquium On Stability And Ductility 

Of Steel Structures (SDSS19); 11-13 September 2019, Prague, Czech Republic. 

▪ F. Ljubinkovic, J.P. Martins, H. Gervásio, L. Simões da Silva, C. Leitão, (2017) 

Experimental and numerical investigation on the steel box-girder bridge decks with curved bottom flange. 

Special issue: XII Conference on Steel and Composite Construction, Vol. 3, Issue 5-6: 

118-127; December 2019, Coimbra, Portugal. 

https://doi.org/10.1002/cepa.1187 

 

9.3.3 OUTBURST Project dissemination 

9.3.3.1 Official meetings and workshops 

Within the scope of the European OUTBURST Project, the author participated in the 

following official meetings and workshops: 

▪ 1st OUTBURST Meeting: 25-26 August 2016, Hotel HolidayInn, Lisbon, Portugal; 

▪ 3rd OUTBURST Meeting: 2-3 October 2017, Univerza v Ljubljana, Fakulteta za 

gradbeništvo in geodezijo, Ljubljana, Slovenia; 

▪ 4th OUTBURST Meeting: 1-2 February 2018, Universidade de Coimbra, Departamento 

de Engenharia Civil, Coimbra, Portugal; 

▪ 5th OUTBURST Meeting: 27-28 September 2018, Universität Stuttgart, Institut für 

Konstruktion und Entwurf, Stuttgart, Germany; 

▪ 6th OUTBURST Meeting: 7 February 2019, Euston Tower, London, United Kingdom; 

▪ OUTBURST Workshop - Optimization of steel plated bridges, 28 June 2019, Universität 

Stuttgart, Institut für Konstruktion und Entwurf, Stuttgart, Germany; 

9.3.3.2 Project deliverables and official reports 

Within the scope of the European OUTBURST Project, the author participated in the 

production of the following official project reports and deliverables: 

▪ F. Ljubinkovic, J.P. Martins, H. Gervásio, L. Simões da Silva, (2019) Life cycle assessment of 

curved bridges. RFCS Research Project OUTBURST (RFCS-2015-709782): Deliverable 3.1; 

▪ F. Ljubinkovic, J.P. Martins, H. Gervásio, L. Simões da Silva, (2018) Assessment of the public 

perception on bridge aesthetics. RFCS Research Project OUTBURST (RFCS-2015-709782): 

Deliverable 3.2; 

▪ F. Ljubinkovic, J.P. Martins, L. Simões da Silva, (2018) Experimental results of tests on 

prototype bridge segments. RFCS Research Project OUTBURST (RFCS-2015-709782): 

Deliverable 7.2; 

https://doi.org/10.1002/cepa.1187
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▪ J.P. Martins, F. Ljubinkovic, L. Simões da Silva, (2019) Report on calibration of numerical 

models with experimental results from WP7. RFCS Research Project OUTBURST (RFCS-

2015-709782): Deliverable 8.1; 

▪ J.P. Martins, F. Ljubinkovic, L. Simões da Silva, (2019) Report on numerical parametric study 

and analysis of results. RFCS Research Project OUTBURST (RFCS-2015-709782): 

Deliverable 8.2; 

▪ F. Ljubinkovic, J.P. Martins, H. Gervásio, L. Simões da Silva, (2019) Numerical simulations 

on box-girder bridge cross-section integrating curved steel panels. RFCS Research Project 

OUTBURST (RFCS-2015-709782): Deliverable 11.1; 

▪ F. Ljubinkovic, J.P. Martins, H. Gervásio, L. Simões da Silva, C. Hendy, C. Minjie, J.O. 

Pedro, A. Biscaya, A. Reis, S. Piculin, P. Može, V. Pourostad, U. Kuhlmann (2019) Design 

rules for bridge cross-sections integrating curved or nonrectangular steel panels. RFCS Research Project 

OUTBURST (RFCS-2015-709782): Deliverable 11.2; 

▪ L. Simões da Silva, J.P. Martins, F. Ljubinkovic, S. Piculin, P. Može, U. Kuhlmann, V. 

Pourostad, C. Hendy (2019) Design guidelines. RFCS Research Project OUTBURST 

(RFCS-2015-709782): Deliverable 12.1; 

▪ J.O. Pedro, A. Biscaya, A. Reis, C. Hendy, C. Minjie, K.A. Santiago, F. Saba, F. 

Ljubinkovic, J.P. Martins, L. Simões da Silva, S. Piculin, P. Može, U. Kuhlmann, V. 

Pourostad (2019) Design examples and case studies. RFCS Research Project OUTBURST 

(RFCS-2015-709782): Deliverable 12.2; 

▪ L. Simões da Silva, J.P. Martins, F. Ljubinkovic, P. Može, S. Piculin, U. Kuhlmann, V. 

Pourostad, A. Reis, J.O. Pedro, G. Dorrer, J. Eitelberger, M. Pircher, C. Hendy, F. Saba 

(2017) Design rules for bridge cross-sections integrating curved or nonrectangular steel panels. RFCS 

Research Project OUTBURST (RFCS-2015-709782): 1st Periodic Techincal Report; 

▪ L. Simões da Silva, J.P. Martins, F. Ljubinkovic, P. Može, S. Piculin, U. Kuhlmann, V. 
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(2019) Design rules for bridge cross-sections integrating curved or nonrectangular steel panels. RFCS 

Research Project OUTBURST (RFCS-2015-709782): 2nd Periodic Techincal Report; 

 

9.3.4 Other publications and thesis-related presentations 

• TWG 8.3 Meeting Presentation 

- F. Ljubinkovic, J.P. Martins, H. Gervásio, L. Simões da Silva (2020), Design of box-

girder bridge cross-sections with curved bottom flange, 20th Official Meeting of Working 

Group “EN 1993-1-5” & 31st Official Meeting of ECCS-TWG 8.3, September 29th, 

Web Meeting;  

- F. Ljubinkovic, J.P. Martins, L. Simões da Silva, P. Može, S. Piculin, J.O. Pedro 

(2021), Report on investigation of buckling behaviour of cylindrically curved panels, 21st Official 

Meeting of Working Group “EN 1993-1-5” & 32nd Official Meeting of ECCS-TWG 

8.3, February 12th, Web Meeting;  
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Annex A 

A.1 – Strains recorded by SG in experimental tests (from section 3.3): 
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Fig. A.1: Strains measured in panels with radius R = 20.0 m 
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Fig. A.2: Strains measured in panels with radius R = 10.0 m 
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Fig. A.3: Strains measured in panels with radius R = 5.0 m 
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Fig. A.4: Strains measured in panels with radius R = 2.5 m 
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A.2 – Geometrical properties of stiffened test specimens used for the calculation of the 

ultimate strength (from section 3.3): 

 

nst = 1 R = 20.0 m R = 10.0 m R = 5.0 m R = 2.5 m 

Isl x104 [mm4] 25.15 53.13 174.49 673.38 

e x10 [mm] 2.16 1.71 1.90 3.70 

Isl,1,eff x104 [mm4] 10.39 10.51 11.20 13.29 

nst = 2 R = 20.0 m R = 10.0 m R = 5.0 m R = 2.5 m 

Isl x104 [mm4] 41.14 67.42 185.18 675.55 

e x10 [mm] 2.24 1.95 1.96 3.75 

Isl,1,eff x104 [mm4] 11.83 11.86 12.03 12.87 

nst = 3 R = 20.0 m R = 10.0 m R = 5.0 m R = 2.5 m 

Isl x104 [mm4] 57.16 83.23 200.94 693.40 

e x10 [mm] 2.24 2.03 2.03 3.81 

Isl,1,eff x104 [mm4] 12.82 12.82 12.85 13.16 

 
*Note:  Isl and e are respectively the gross second moment of area and the largest distance from the 

respective centroids of the plating and the stiffeners to the neutral axis of the whole cross-section 
used in Tran [8], Tran et al. [59] and OUTBURST [85]; 

 
Isl,1,eff is the second moment of area of longitudinal stiffener including effective shell width   
used in procedure prescribed by DNV-RP-C202 [13]. 
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A.3 – Comparison of failure modes between experimental and FEM results - backside 

view (from section 3.4): 

 
 
 

Panel: R20–S2-2 
Test 

 

FEM 

  

 

 

 

 

Panel: R10–S1-2 
Test 

 

FEM 

  

 

 

 

 

Panel: R10–S3-2 
Test 

 

FEM 
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Panel: R5–S1-2 
Test 

 

FEM 

  

 

 

 

 

  

   

Panel: R5–S2-2 
Test 

 

FEM 

  

 

 

 

 

 

  

Panel: R2.5–S2-2 
Test 

 

FEM 
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Annex B 

B.1 – Strains recorded by SG in experimental tests (from section 6.4): 

 

SPECIMEN S460 

 

  

  

  

  
Fig. B.1: Strains in cross-section 1-1 
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Fig. B.2: Strains in cross-section 2-2 

 

  

  
Fig. B.3: Strains in cross-section 3-3 
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SPECIMEN S690 

 

  

  

  

  

Fig. B.4: Strains in cross-section 1-1 
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Fig. B.5: Strains in cross-section 2-2 
 

  

  
Fig. B.6: Strains in cross-section 3-3 
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Annex C 

C.1 – M-V Interaction diagrams for various Z parameters (from 7.4.2): 

 
 

  

a) b) 

Fig. C.1: M-V interaction diagrams for Z = 0: a) H = const.; b) H = variable 
 

  

a) b) 

Fig. C.2: M-V interaction diagrams for Z = 50: a) H = const.; b) H = variable 

 

  
a) b) 

Fig. C.3: M-V interaction diagrams for Z = 100: a) H = const.; b) H = variable 
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a) b) 

Fig. C.4: M-V interaction diagrams for Z = 200: a) H = const.; b) H = variable 

 

  
a) b) 

Fig. C.5: M-V interaction diagrams for Z = 300: a) H = const.; b) H = variable 
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Annex D 

 

 

APPLICATION OF PROPOSED METHODOLOGY  

(WORKED EXAMPLE) 

 

D.1 - Introduction 

The goal of this section is to show how to calculate the bending and shear resistance of a box-

girder cross-section with a curved steel panel in the bottom flange using the proposed rules in 

this thesis, and subsequently, how to verify if the M-V interaction criterion is satisfied. The 

geometry of the design example, presented in Fig. D.1 is adopted from the parametric study, 

carried out in section 7.3, thus allowing for direct comparison with the numerical results. The 

main geometrical parameters of the bottom flange are summarized in Table D.1. 
 

Table D.1: Geometrical parameters of the design example cross-section  
 

 Z α b/t Zloc αloc bloc/t 

Design example 100 0.5 168 6.25 2.0 42 

 

It may be noticed that all parameters fall inside the ranges of typical bridge geometries, 

reported in section 2.3. The structural steel S355 is considered, where the yield strength is adopted 

based on the values of the material properties given in EN 10025-2 [148], as presented in Table 

7.4.  
 

 

Fig. D.1: Design example – cross-section geometry 

 

Once again, since the central focus of the thesis is the addition of the bottom curved flange 

in the cross-section, the simplifications related to the top flange mentioned in section 6.2 are kept 

also in this example.  
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D.2 – Bending resistance  

The bending resistance of a class 4 box-girder cross-section (Meff,Rd) is calculated using 

Eq.(2.116) from the design code. The effective properties of the cross-section (Weff) are obtained 

using the Curved panel approach developed in this thesis (see Method 2 in 6.4.6), which is completed 

in two steps: 

I – Effective cross-section of the stiffened bottom flange: 

The curved bottom flange, for which the effective properties (Aeff) are calculated is presented 

in Fig. D.2. 

 

Fig. D.2: Design example – bottom flange geometry 

 

The Curved panel approach assumes that the entire curved panel is subject to a uniform axial 

compression (see Fig. 8.10), which enables the use of the methodology developed within the 

OUTBURST research project [85], (see 2.5.1) as follows: 
 

i) Local buckling - loc  

• Subpanel: (Zloc = 6.25, see Table D.1) 
 

 
2

1 2 3
, 2

1 2 3

4.5
1

loc loc
Z

loc loc

a a Z a Z
k

b b Z b Z


+ +
= =

+ + +
  see Eq.(2.11) 

 

2
2

, 2
484.4MPa

12(1 )
cr E Z

loc

E t
k k

bv
 


 

 
= = = 

−  

  see Eq.(2.6) 

 0.84
y

cr

f



= =   see Eq.(2.23) 

 
( )

0,

0, 0, 0,

0, 0,

0, 0,

0,2

1.0

0.779

0.22

Z

p Z Z

loc Z p

p Z

Z
Z p

Z

if

if

S if
c

 

    
   

 

 
 




 

 − − −

=   =
−

 −
 + 


 
 see Eq.(2.51) 

 

with αz, cz and Sz equal to 1.0, 1.18 and 0.0375, respectively (see Table 2.6) and  

 ( )0, 0.2 0.473 0.95 0.543locZ

Z = + =   see Eq.(2.52) 

 0, 0.5 0.085 0.055 0.673p = + − =   see Eq.(2.53) 
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Since the subpanel is considered long (αloc >1.0), the local reduction coefficient is obtained as 

 long longC = = 0.75  see Eq.(2.55) 

 

• Stiffener: (hst/tst = 10; kσ = 0.43) 
 

 
235

0.65 0.825
28.4

st st

y

h t

fk
 


= = = =with   see Eq.(2.26) 

 

 
2

1.0 0.748

0.188
0.748



 




 


=  −




if

if

 1.0loc→ =  see Eq.(2.25) 

 

The effective area Ac,eff,loc, is calculated as: 

 𝐴𝑐,𝑒𝑓𝑓,𝑙𝑜𝑐 = 𝐴𝑠𝑙,𝑒𝑓𝑓 + ∑ 𝜌𝑙𝑜𝑐𝑏𝑐,𝑙𝑜𝑐𝑡

𝑐

= 77812.5𝑚𝑚2  see Eq.(2.28) 

 

ii) Global buckling - c  

• Shell-type buckling: -  
 

 
2

21 23.85a

a
Z

Rt
= − =   see Eq.(2.82) 

 

,1
1

57.5

1

sl

p

st

p

I

I

A

A



+

= =

+

 
 see Eq.(2.83) 

with the geometrical properties of the gross cross-section of one longitudinal stiffener equal 

to Isl,1 = 1.06x108 mm4 and Ast = 6250 mm2, whereas the other two parameters are Ip = bloct
3/12(1-

ν2) = 1502404 mm4 and Ap = bloct = 26250 mm2. 
 

 

2

, 2

4 3
1 59.9a

Za

Z
k 

 

 
= + =  

 

  see Eq.(2.81) 

 

22

, , 2
1612MPa

12(1 )
cr s Za

E t
k

av





 
= = 

−  
  see Eq.(2.80) 

 
,

0.463
y

cr s

f



= =   see Eq.(2.23) 

 

The reduction factor  is determined from equations for the unstiffened panels; however, 

considering the global curvature Z = 100 as: 

 ( )0, 0.2 0.473 0.95 0.203Z

Z = + =   see Eq.(2.52) 

 

 0, 0.5 0.085 0.055 0.673p = + − =   see Eq.(2.53) 
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0,

0, 2

0,

0.22
0.68

p Z

Z Z

Z p

S
c

 




−
= + =   see Eq.(2.54) 

 

with αz, cz and Sz equal to 0.545, 1.7 and -0.04, respectively (see Table 2.6). 

 
( )

0,

0, 0, 0,

0, 0,

0, 0,

0,2

1.0

0.82

0.22

Z

p Z Z

Z p

p Z

Z
Z p

Z

S
c

 

    
   

 

 
 




 

 − − −

=   =
−

 −
 + 


if

if

if

 
 see Eq.(2.51) 

 

• Column-type buckling: - χc 
 

 
2

, , 2
4197MPasl

cr c cr sl

sl

EI

A a


 = = =   see Eq.(2.37) 

with Asl and Isl being the gross properties of the whole cross-section equal to 

Isl = 11.1x108 mm4 and Asl = 123750 mm2. 

 �̄�𝑐 = √
𝛽𝐴,𝑐𝑓𝑦

𝜎𝑐𝑟,𝑐
= 0.227 with    𝛽𝐴,𝑐 =

𝐴𝑐,𝑒𝑓𝑓,𝑙𝑜𝑐

𝐴𝑠𝑙
= 0.629 see Eq.(2.36) 

 
0.09

0.6
/

e
i e

 = + =  ,1

,1

94.5mm
sl

sl

I
i

A
= =with  see Eq.(2.38) 

where α is the imperfection factor (α = 0.49 for open cross-section stiffeners), and e is the 

largest distance from the respective centroids of the plating and the stiffeners to the neutral axis 

of the whole cross-section e = 115.1 mm. 

 𝜙 = 0.5 [1 + 𝛼𝑒(�̄�𝑐 − 0.2) + �̄�𝑐
2

] = 0.534  see Eq.(2.35) 

 2 2

1
0.98c

c


  

= =
+ −

 
 see Eq.(2.35) 

 

• Interpolation between shell-type and column-type buckling: - c 

 
,

,

1 0.62 0
cr p

cr c


 


= − = − → =   see Eq.(2.30) 

 𝜌𝑐 = (𝜌 − 𝜒𝑐)𝜉(2 − 𝜉) + 𝜒𝑐 = 0.983  see Eq.(2.29) 
 
 

iii) Effective area of the stiffened curved plate – Ac,eff 

 
𝐴𝑐,𝑒𝑓𝑓 = 𝜌𝑐𝐴𝑐,𝑒𝑓𝑓,𝑙𝑜𝑐 + 𝛴𝑏𝑖,𝑒𝑑𝑔𝑒,𝑒𝑓𝑓𝑡

= 96177𝑚𝑚2 
 see Eq.(2.27) 

 
 

The effective area of the bottom flange is illustrated in Fig. D.3. 
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Fig. D.3: Design example – effective area of the bottom flange  

 

II – Effective cross-section of the stiffened web: 

To complete the calculation of the effective properties of the cross-section, the axial stress 

distribution in the web must be re-calculated, accounting for a new position of the center of 

gravity (i.e. neutral axis nel,1) for cross-section consisting of: i) gross area of the top flanges; ii) 

gross area of the web and iii) effective area of the bottom flange calculated in the previous step. 

This is illustrated in Fig. D.4.  
 

 

 
Fig. D.4: Design example – buckling of the web 

 

Subsequently, the effective properties of a flat 2-stiffened main web, Aeff, subjected to bending 

is calculated using the procedure prescribed by EN 1993-1-5, as follows: 
 

i) Local buckling - loc  

The local buckling reduction factor is calculated separately for each of three subpanels (i.e. 

fields), depending on the previously calculated stress ratio ψ (see Table 2.10). In Fig. D.5, all 

required geometrical parameters for this calculus are summarized and some additional helpful 

notations are introduced. 

• Field 1: (lw,1/tw = 50.13; ψ1 > 0) 

 
4

1

5

0.589
s

s
 = =    

 ( )8.2 / 1.05 5.0k = + =   see Eq.(2.117) 

 
,1 235

0.97 0.814
28.4

w w

p

y

l t

fk
 


= = = =with   see Eq.(2.26) 
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 ,1

2

1.0 0.5 0.085 0.055

0.820.055(3 )
0.5 0.085 0.055

loc

 

  
 



  + −


= = − +
 + −



if

if

 see Eq.(2.24) 

 

 

• s0 = 424.7 mm 

• s1 = 261.0 mm 

• s2 = 284.6 mm 

• s3 = 994.3 mm 

• s4 = 1017.9 mm 

• s5 = 1723.5 mm 

 

• lw,1 = hw,3 = 751.9 mm 

• lw,2 = hw,2 = 751.9 mm 

• lw,3 = hw,1 = 724.7 mm 

• lw,3;C = 284.4 mm 

• lw,lump = 701.7 mm 

Fig. D.5: Design example – Auxiliary notations for the buckling of the web 

 
 

• Field 2: (lw,2/tw = 50.13; ψ2 > 0) 

𝜓1 =
𝑠2

𝑠3

= 0.286 

 ( )8.2 / 1.05 6.16k = + =   see Eq.(2.117) 

 
,2 235

0.874 0.814
28.4

w w

p

y

l t

fk
 


= = = =with   see Eq.(2.26) 

 ,1

2

1.0 0.5 0.085 0.055

0.910.055(3 )
0.5 0.085 0.055

loc

 

  
 



  + −


= = − +
 + −



if

if

 see Eq.(2.24) 

 
 

• Field 3: (lw,3/tw = 48.3; ψ3 < 0) 

         𝜓1 =
𝑠0

𝑠1

= −1.63 

 𝑘𝜎 = 5.98(1 − 𝜓)2 = 41.27  see Eq.(2.117) 

 �̄�𝑝 =
𝑙𝑤,3 𝑡𝑤⁄

28.4𝜀√𝑘𝜎

= 0.325 , 𝜀 = √
235

𝑓𝑦

= 0.814  see Eq.(2.26) 

 ,1

2

1.0 0.5 0.085 0.055

1.00.055(3 )
0.5 0.085 0.055

loc

 

  
 



  + −


= = − +
 + −



if

if

 see Eq.(2.24) 
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• Stiffener: (hst/tst = 10; kσ = 0.43) 
 

 
235

0.65 0.814
28.4

st st
p

y

h t

fk
 


= = = =with   see Eq.(2.26) 

 
2

1.0 0.748

0.188
0.748



 




 


=  −




if

if

 1.0loc→ =  see Eq.(2.25) 

 

Using the notation from Fig. 2.28 and Table 2.10, the calculated effective widths for three 

subpanels are: 

b1,edge,eff = 280 mm  b2,inf,eff = 393.1 mm  b3,sup,eff = 107.3 mm 

b1,inf,eff = 337.5 mm  b2,sup,eff = 289.3 mm  b3,edge,eff = 160.9 mm 
 

and the effective area Ac,eff,loc, is calculated as: 

 
2

, , , , 30050.3mmc eff loc sl eff loc c loc
c

A A b t= + =  
 see Eq.(2.28) 

 
 
 

ii) Global buckling - c  

• Plate-type buckling: -  
 

The stiffened web has two longitudinal stiffeners in the compression zone, hence the elastic 

critical plate buckling stress should be taken as the lowest of the three possible cases (see Fig. 

2.24), as follows: 

 

I) Buckling of the bottom stiffener 1: 
 

The geometrical properties of the stiffener gross cross-section with the adjacent parts are 

obtained according to Fig. 2.28 and Table 2.10 as: 

Asl,1 = 17570 mm2 

Isl,1 = 1.034x108 mm4 

The corresponding distances between stiffeners are: 

b1 = lw,1 = 751.9 mm 

b2 = lw,2 = 751.9 mm 

B = b1 + b2 = 1503.8 mm 
 

 
2 2

,1 1 2

3
4.33 6918mm

sl

c

I b b
a

t B
= =   see Eq.(2.33) 

 

As a < ac (a = 2100 mm), the buckling stress is obtained as follows: 

 
2 3 2

,1

, 2 2 2 2 2

,1 ,1 1 2

2791MPa
4 (1 )

sl

cr sl

sl sl

EI Et Ba

A a A b b




 
= + =

−
  see Eq.(2.32) 
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Due to the stress gradient, the critical plate buckling stress is obtained by interpolation from 

the position of the stiffener to the most stressed edge of the plate: 

 
( )

5
, , ,

3 4

4795MPa
/ 2

cr p I cr sl

s

s s
 = =

+
   

 

II) Buckling of the upper stiffener 2: 
 

The geometrical properties of the stiffener gross cross-section with the adjacent parts are 

obtained according to Fig. 2.28 and Table 2.10 as: 

Asl,2 = 14732.8 mm2 

Isl,2 = 0.959x108 mm4 

The corresponding distances between stiffeners are: 

b1 = lw,2 = 751.9 mm 

b2 = lw,3 = 724.7 mm 

B = b1 + b2 = 1476.6 mm 
 

 
2 2

,2 1 2

3
4.33 6694.5mm

sl

c

I b b
a

t B
= =   see Eq.(2.33) 

 

As a < ac (a = 2100 mm), the buckling stress is obtained as follows: 

 
2 3 2

,2

, 2 2 2 2 2

,2 ,2 1 2

3088.3MPa
4 (1 )

sl

cr sl

sl sl

EI Et Ba

A a A b b




 
= + =

−
  see Eq.(2.32) 

 

Due to the stress gradient, the critical plate buckling stress is obtained by interpolation from 

the position of the stiffener to the most stressed edge of the plate: 

 
( )

5
, , ,

1 2

19958MPa
/ 2

cr p II cr sl

s

s s
 = =

+
   

 
 
 

III) Buckling of both stiffener 1 and 2: 
 

The geometrical properties of the lumped stiffener are obtained as : 

Asl,lump = Asl,1 + Asl,2 = 32302.6 mm2 

Isl,lump = Isl,1 + Isl,2 = 1.99x108 mm4 
 

Based on the position of the lumped stiffener (lw,lump = 701.7 mm from the neutral axis, see Fig. 

D.5), the corresponding distances are: 

b1,lump = 1118.7 mm 

b2,lump = 1159.8 mm 

Blump = b1,lump + b2,lump = 2278.5 mm 
 

 
2 2

,lump 1,lump 2,lump

3

lump

4.33 11129mm
sl

c

I b b
a

t B
= =   see Eq.(2.33) 

 

As a < ac (a = 2100 mm), the buckling stress is obtained as follows: 
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2 3 2

,

,lump 2 2 2 2 2

, , 1, 2,

2904MPa
4 (1 )

sl lump lump

cr

sl lump sl lump lump lump

EI Et B a

A a A b b




 
= + =

−
 see Eq.(2.32) 

 

Due to the stress gradient, the critical plate buckling stress is obtained by interpolation from 

the position of the lumped stiffener (defined by lw,lump = 701.7 mm from the neutral axis, see Fig. 

D.5) to the most stressed edge of the plate: 

 , , , ,

,lump

/ (1 )
7534MPaw web

cr p I II cr sl lump

w

h

l


 +

−
= =    

with the stress gradient of the web equal to ψweb = -s0/s5 = -0.252. 
 

 , , , , , , ,min , , 4795MPacr p cr p I cr p II cr p I II    +
 = = 

  

 
, , , ,

,

,1 ,2

0.934
c eff loc c eff loc

A c

c sl sl

A A

A A A
 = = =

+
  see Eq.(2.31) 

 
,

,

0.263
A c y

p

cr p

f



= =   see Eq.(2.31) 

 

2

1.0 0.5 0.085 0.055

1.00.055(3 )
0.5 0.085 0.055

 

  
 



  + −


= = − +
 + −



if

if

 see Eq.(2.24) 

 

where ψ is the stress gradient of the whole web ψweb = -s0/s5 = -0.252. 
 
 

• Column-type buckling: - χc 
 

The critical stress is determined for the stiffener closest to the most compressed edge with the 

gross material properties Isl,1 = 1.034x108 mm4 and Asl,1 = 17570 mm2. 

 
2

,1

, 2

,1

2767.4MPa
sl

cr sl

sl

EI

A a


 = =   see Eq.(2.37) 

 

Similar to the plate-type buckling, the critical column buckling stress is obtained by 

interpolation from the position of the stiffener to the most stressed edge of the web as: 

 
( )

5
, ,

3 4

4755MPa
/ 2

cr c cr sl

s

s s
 = =

+
   

 
,1,

,

,1

0.912
sl eff

A c

sl

A

A
 = =   see Eq.(2.36) 

 

where Asl,1,eff = 16028 mm2 and Asl,1 = 17570 mm2 are respectively the effective and the gross 

cross-sectional area of the stiffener with the adjacent parts of the plate sheet, determined in 

accordance with Fig. 2.28 and Table 2.10. 

 
,

,

0.261
A c y

c

cr c

f



= =   see Eq.(2.36) 
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0.09

0.59
/

e
i e

 = + =  ,1

,1

76.7mm
sl

sl

I
i

A
= =with  see Eq.(2.38) 

where α is the imperfection factor (α = 0.49 for open cross-section stiffeners), and e is 

calculated in accordance with Fig. 2.25, as e = max(e1, e2) = max(47.1, 85.4) = 85.4 mm. 

 
20.5 1 ( 0.2) 0.552e c c    = + − + = 

  see Eq.(2.35) 

 2 2

1
0.963c

c


  

= =
+ −

 
 see Eq.(2.35) 

 

• Interpolation between shell-type and column-type buckling: - c 
 

 
4795

1 0.008
4755

 = − =   see Eq.(2.30) 

 ( ) (2 ) 0.964c c c     = − − + =   see Eq.(2.29) 
 
 

III – Effective cross-section properties and bending resistance: 

The effective cross-section, which consists of the gross area of the top flange and the effective 

area of the bottom flange and webs, is illustrated in Fig. D.6. 
 

 

Fig. D.6: Design example – effective cross-section  
 

The calculation of the mechanical properties for this effective cross-section is tedious work 

but without particular difficulties. The second moment of area Iy,eff and the effective section 

modulus Wel,eff (all calculations done) are given as: 

Iy,eff = 4.91x1011 mm4 

Wel,eff = Iy,eff / zmax = 4.91x1011 /2080 = 2.361x108 mm3 

 Meff,Rd =
Wel,eff fy

γ
M0

= 81440 kNm  see Eq.(2.116) 

Finally, the corresponding bending resistance obtained from FEM simulations is equal to 

Mnum = 111170 kNm, which is around 26.7% higher. 
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D.3 – Shear resistance  

The shear resistance of a box-girder cross-section (Vbw,Rd) is calculated using the Extended web 

method developed in this thesis (see 8.3.4), defined by Eq.(8.11). The geometry of the extended 

web with required notations is illustrated in Fig. D.7. 

 

Fig. D.7: Design example – extended web geometry 

 

First, the shear plastic resistance Vpl is calculated as: 

▪  
( ),

,

,1

7548
3

w flat w w y

pl Rd

M

h t L t f
V kN



 + 
= =   see Eq.(8.8) 

 

where the partial factor is taken as γM,1 = 1.1, whereas the part of the bottom flange that 

participates in the shear plastic resistance (Lw) is calculated as: 

▪  
2

2

1
253.3mmw

b Z t
L

R  

 
= = = 

 
  see Eq.(8.7) 

 

As bloc = 1050 mm > Lw = 253.3 mm (see Fig. D.7), the stiffeners on the bottom flange fall 

outside of the arc length Lw, which means that they may be excluded from the extended web 

model. Consequently, the main (extended) web is considered as 2-stiffened with a total height of 

hw = 2631 mm. 

For the calculation of the reduction factor, it is necessary to calculate first the slenderness 

parameter 𝜆̅
w, defined by Eq.(8.12). The slenderness is calculated for the entire 2-stiffened web, 

with corresponding elastic buckling coefficient kτ and for the width of the extended web hw; 

however, it should not be lower than the slenderness of each of three subpanels, considered as 

an unstiffened panel with the corresponding kτ,i and local width bloc,i, indicated in Fig. D.7. 
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I – Global shear buckling: 

The web consists of two flat stiffeners, both of which with the geometry indicated in Fig. D.8. 

The mechanical properties of each stiffener are as follows (all calculations done): 

Asl,1 = 1.21x104 mm2 and Isl,1 = 0.858x108 mm4. Hence, the total second moment of area is 

Isl = Isl,1 + Isl,2 = 2Isl,1 = 1.716x108 mm4. 

 

 

Fig. D.8: Design example – web stiffener geometry 

 

Since the aspect ratio of the whole extended web (αw) is equal to a/hw = 2100/2631 = 0.8 < 3, 

the shear buckling coefficient kτ is obtained from Annex A.3 of EN 1993-1-5 as: 

▪  
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3
2 3
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w w w
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t h I
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+

= + + =   see Eq.(2.102) 
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1.144
37.4

w w
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h t
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= =

 
  see Eq.(8.12) 

 
 

II – Local shear buckling: 

• Subpanel 1: 
 

The subpanel 1 is a flat panel between the top flange and the first stiffener, with the aspect 

ratio equal to αw,1 = a/hw,1 = 2100/751.9 = 2.8 > 1. Hence, the shear buckling coefficient (kτ,1), 

and the local slenderness parameter (𝜆̅
w,1) are obtained as follows: 
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 see Eq.(2.101) 
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  see Eq.(8.12) 
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• Subpanel 2: 
 

The subpanel 2 is a flat panel between the two longitudinal stiffeners, with the aspect ratio 

equal to αw,2 = a/hw,2 = 2100/724.7 = 2.9 > 1. Hence, the shear buckling coefficient (kτ,2), and the 

local slenderness parameter (𝜆̅
w,2) are obtained as follows: 
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 see Eq.(2.101) 
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  see Eq.(8.12) 

 

• Subpanel 3: 
 

Despite small participation of curved bottom part in the shear resistance (Lw = 253.3 mm), 

the subpanel 3 is considered flat, with the aspect ratio equal to 

αw,3 = a/hw,3 = 2100/1102 = 1.9 > 1. Hence, the shear buckling coefficient (kτ,3), and the local 

slenderness parameter (𝜆̅
w,3) are obtained as follows: 
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 see Eq.(2.101) 
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  see Eq.(8.12) 

 

Finally, the web slenderness that should be used for the reduction factor calculation is equal 

𝜆̅
w = max (1.144 ; 0.658 ; 0.681 ; 0.951) = 1.144. 

According to clause 5.1(2) in EN 1993-1-5, the shear in the main stiffened web should be 

considered if the following criterion is satisfied: 

 
31w

w

h
k

t



  , which is the case in this example (175.24 ≥ 105.8), with η = 1.2. 

 

Assuming a rigid end post, the reduction factor for 𝜆̅
w = 1.144 > 1.08 is obtained from 

EN 1993-1-5 as: 

 
1.37

0.743
0.7

w

w




= =
+

  see Eq.(2.98) 

 

Using the values from Fig. D.7, the shear buckling resistance of a single web in box-girder 

cross-section (without flange contributions) is calculated as: 
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 + − = =   see Eq.(8.11) 

with γM,1 = 1.1. This value should be lower than the calculated plastic resistance, which is the 

case in this example (Vbw,Rd = 5943 kN < Vpl,Rd = 7548 kN). Finally, the corresponding shear 

resistance obtained by numerical simulations is equal to Vnum = 8376 kN, which is around 40% 

higher.  

 
 

D.4 – M-V Interaction 

For the sake of this example, it is assumed that the box-girder cross-section is well designed 

against the design values of applied force (MEd and VEd), with the following utilization factors: 

1

,

0.9Ed

eff Rd

M

M
 = =  

3

,

0.9Ed

bw Rd

V

V
 = =  

For this cross-section, the bending moment resistance of the flanges only is equal to 

Mf,Rd = 77720 kNm, obtained considering the effective area of the bottom flange (see Fig. D.3) 

and the fully effective top flange.  

Interaction between bending and shear should be considered if the following two conditions 

are satisfied: 
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  = =  , which is satisfied (0.9 > 0.845)  

 

 3 0.5   , which is satisfied (0.9 > 0.5)  
 

Hence, the M-V interaction is verified as follows: 
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=    Eq.(8.13) 
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+ − − =  
  

   Eq.(8.13) 

 

Hence, for these utilization factors, the resistance of the considered cross-section to the 

interaction between bending and shear is verified. The results are illustrated in Fig. D.9, where 

the corresponding M-V interaction diagram for this cross-section is shown, as well as the FEM 

results obtained in section 7.4. 
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Fig. D.9: Design example – M-V interaction verification 
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