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ABSTRACT We address a variant of the Steiner tree problem for delay constrained problems. The addressed
problem consists in determining the minimum cost Steiner tree, while guaranteeing that the delay between
any two terminal nodes does not exceed a given maximum value. This problem is known as the bounded
diameter Steiner minimum tree problem. We propose a compact formulation based on integer linear
programming (ILP) to obtain optimal solutions, which was efficiently solved on two telecommunication
core networks up to 75 nodes. However, given that for traditional Steiner tree graphs the ILP proved to
be inefficient, we propose a heuristic method and compare it with the ILP formulation. We show that the
heuristic provides optimal solutions, except for two cases in our experiments where it provided near-optimal
solutions, always in reasonable runtimes. Additionally, to reduce the complexity of the problem, we propose
some novel and modified graph reductions specific for the addressed problem.

INDEX TERMS Delay-constrained, graph reductions, heuristic, integer linear programming, Steiner tree
problem.

I. INTRODUCTION
The Steiner tree problem (STP) is one of the fundamental
combinatorial optimization problems [1]. Consider a con-
nected undirected graph, where each edge has an associated
positive cost, which may represent the length of the edge or
a delay incurred by using that edge, for instance. Given a set
of terminal nodes in the network, the STP is the problem of
finding a minimum cost tree that contains all the terminal
nodes, possibly using additional nodes in the network, the
so-called Steiner nodes.

This problem has been shown to be NP-complete for gen-
eral graphs [1]. Twowell-known special cases of this problem
may be considered: (i) if there are only two terminal nodes,
then the STP reduces to the shortest path problem; (ii) if all
nodes are terminal, then the STP reduces to the spanning
tree problem. Both these problems can be solved exactly
in polynomial time, for instance, by Dijkstra’s or by Prim’s
algorithm, respectively.

The associate editor coordinating the review of this manuscript and

approving it for publication was Zhenzhou Tang .

The STP arises in many network design problems, such
as facility location and reliability problems. For a recent
overview on applications of the STP in graphs and resolution
approaches, see [2].

Steiner tree problems arise in many communication net-
work problems [3]. An important application of Steiner trees
is in multicast communications, which are very important
in today’s networks. In a many-to-many distribution per-
spective, different nodes contribute and receive information,
and their interconnection may be established through other
network nodes. The information exchange should take place
within a certain delay limit, i.e., it is important to guarantee
that the delay between the nodes exchanging information
does not exceed a specified bound. This is the problem we
focus on in this work: the STP with pairwise delay con-
straints, i.e. the aim is to find the minimum cost Steiner
tree, while additionally guaranteeing that the delay between
each pair of terminal nodes does not exceed a given max-
imum value. This is the bounded diameter Steiner mini-
mum tree (BDSMT) problem, as described in [4]. The delay
between any two nodes is given by the sum of the delays of
the links belonging to the path connecting them.

VOLUME 9, 2021 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 144927

https://orcid.org/0000-0002-6534-0159
https://orcid.org/0000-0003-0368-2222
https://orcid.org/0000-0002-3084-5608
https://orcid.org/0000-0002-2331-8340
https://orcid.org/0000-0001-7997-6038


L. Martins et al.: Determining Minimum Cost Steiner Tree for Delay Constrained Problems

Delay constrained STPs are a variant of the classical
STP which have been tackled in multiple ways in the lit-
erature, with different formulations for the delay bounds.
One such problem is the bounded radius Steiner minimum
tree (BRSMT) problem, as described in [4], in which the STP
is formulated with the additional constraint of guaranteeing
that the delay between a given source (or root) node (one ter-
minal node selected in advance) and any other terminal node
cannot exceed a given value. This problem fits into multicast
communications in a one-to-many distribution perspective.
Possible variants of the BDSMT and the BRSMT consist
in considering that the delay in each edge is unitary, which
is equivalent to having hop constraints [5]–[7] rather than
delay constraints. All these problems are generalizations of
the classical STP and are, therefore, also NP-complete.
Other applications of Steiner trees include energy saving

in networks, as presented in [8], [9]. In [8], a Steiner tree is
defined, considering the inverse of the available bandwidth as
the link cost. A network element may be put into sleep mode
if no traffic passes through it. The final goal is to minimize
the number of active elements for routing. To achieve this
goal, if there are very long paths in the tree, bypass paths
can be found to modify the tree to have shorter routes on the
tree. As in our case, there is the need to avoid excessively
long routes on the tree, which we accomplish by constrain-
ing the tree diameter. In [9], a Steiner tree is defined to
minimize the power consumption in the nodes for wireless
networks. The power of a node is given by the maximum cost
of the edges incident to it, and in turn the edge costs define
the power to connect their endpoints via bidirectional links.
These problems areNP-hard, even for the spanning tree case.

Another application of a delay constrained STP is in the
Software Defined Networking (SDN) controller synchro-
nization problem, as stated in [10]. In this problem, the
number of controllers is known in advance, but not their
location. The problem aims at finding the appropriate place-
ment of the SDN controllers and assigning the switches
to the controllers that manage them. Different constraints
are considered, namely maximal latency constraints between
controllers and between the switches and the controllers that
manage them. The objective function is to minimize the total
cost of the Steiner tree (sum of the inter-controller delays),
as it represents the inter-controller network state synchroniza-
tion cost. This problem is formulated in a framework that
takes into account the possible existence of single link failures
and the subsequent need for recovery.

Another work related to SDN is [11], where reliable mul-
ticast routing in SDN is addressed. The work considers the
Steiner tree problem, where besides the destination nodes,
a candidate set of recovery nodes is also considered. The
reliable Steiner tree needs to span both destination and recov-
ery intermediate nodes, while minimizing the total tree cost.
The recovery nodes are selected in such a way, that if the
connection from the source node to a destination node fails,
then the connection is recovered in one of the recovery nodes
and restored to the affected destination node.

In the computational results, we consider the maximal
acceptable delay between any two nodes given as a percent-
age of the graph diameter, where the graph diameter is the
longest shortest path between any two nodes in the graph.
This arises in problems such as the controller placement prob-
lem in SDN networks [12], [13], where the maximum value
for the delays depends on how wide the graph is. The STP
variant addressed here is directly applicable in this context.
Moreover, we consider, as in [10], that the objective function
is to minimize the total cost of the Steiner tree given by the
sum of inter-controller delays.

We took advantage of considering the delay as the Steiner
tree cost to develop a simple but effective heuristic for this
variant of the BDSMT problem.

The contributions of our paper are the following:
1) We propose an integer linear programming (ILP) model,

which is an extension to that of [14], to guarantee that the
delay between any two terminal nodes does not exceed
a maximum value.

2) We propose a heuristic algorithm to find good quality
solutions in reasonable time.

3) We propose two novel and two modified graph reduc-
tions for the STP problem addressed.

4) We provide computational results that compare the
heuristic solutions to those obtained with the ILP model
to assess the quality of the heuristic, and show that the
heuristic is capable of obtaining (near-)optimal solu-
tions, in optical core network topologies and classic
graphs for the STP.

The paper is organized as follows. In the next section, some
related work is presented. In Section III, we present the com-
pact formulation for the STPwith delay constraints, as an ILP
model. In Section IV, we propose a heuristic method to obtain
good quality solutions for our problem, within reasonable
time. In Section V, we propose and present graph reductions
which allow to obtain simplified graphs for the Steiner tree
problem variant addressed herein. In Section VI, we report
the computational results and in Section VII, we draw the
conclusions.

II. RELATED WORK
Many references where multicast routing is tackled by using
a Steiner tree approach are cited in [2]. Here we emphasize
some contributions in this topic, in particular regarding the
BRSMT problem which is more common. In [15], a source-
based routing algorithm is considered. The proposed heuristic
starts by considering a closure graph, which is a fully meshed
graph formed by edges with a cost equal to the constrained
shortest path between every node pair in the original network.
The heuristic proceeds by building a Steiner tree in this graph
using a greedy approach, in which edges are added according
to some specific selection functions. In [16], a distributed
algorithm is proposed to find a minimum cost Steiner tree
that is both delay constrained (in the sense of the BRSMT
problem) and bandwidth constrained. When there is a call
request, a tree must be obtained such that its links can satisfy
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the bandwidth requirements of that call. In [17], the BRSMT
problem is also tackled. The resolution approach starts by cal-
culating a minimum delay tree, and in subsequent iterations,
the cost of the tree is improved while keeping the tree feasible
with regard to the delay constraint. In [14], a heuristic algo-
rithm based on the Takahashi and Matsuyama [18] heuristic
is considered, with adaptations similar to the ones proposed
in [6]. The construction of the constrained tree starts with the
delay constrained shortest path between the root and the most
distant terminal node, and follows by successively inserting
terminal nodes such that minimal constrained shortest paths
are appended to the existing tree. In [19], a heuristic based
on Particle Swarm Optimization (PSO) is proposed to solve
the BRSMT problem. In these references, cost and delay are
different metrics and are not used interchangeably, contrarily
to our work. Other relevant papers are [20], [21], in which
the purpose is finding a tree that not only satisfies a delay
constraint between a root and all the terminal nodes, but also a
constraint on the interdestination delay, i.e. a limit is imposed
to the maximum difference between path delays from the root
to any two terminal nodes. In particular, in [21] a problem
regarding a more complex framework of virtual network
embedding for cloud data centers is addressed. The delay-
sensitive multicast problem is considered on the virtual layer
with Quality of Service (QoS) constraints which translate
into source-destination delay constraints and delay variation
constraints. An ILP problem is formulated and two resolution
approaches are considered, one using a 3-step strategy, and
another using a Tabu search strategy. In [22], multiple QoS
constraints are considered when devising a QoS multicast
Steiner tree, including constraints in terms of bandwidth,
delay (in the sense considered in the BRSMT problem), loss
rate and jitter. The problem is solved by a hybridized bacteria
foraging and PSO algorithmic approach.

As for the BDSMT problem, it is addressed in [4] using
four heuristics. Their solution strategies involve first choos-
ing the Steiner nodes using some heuristic, and then finding
the Steiner tree (spanning tree) in the induced graph. The
performance of the heuristics is evaluated by their success
rate (finding a solution satisfying the diameter constraint), but
their quality is not discussed.

The BDSMT problem is designated as the constrained
diameter Steiner tree (CDST) problem in [23]. The heuristic
in [23] for the BDSMT problem uses a newmetric designated
the delta diameter for each edge, such that its sum over
the edges of the tree is related to the tree delay diameter.
However, the value of the delta diameter on the edges will
depend on the order they are added to the tree under con-
struction. The solutions obtained for the BDSMT problem
were evaluated for small instances, against the exact solution
obtained using an exhaustive approach.

In [24], a variant of the BDSMT is considered. All the
terminal nodes must appear as leaves on the tree and the
problem is known as the terminal Steiner tree problem. This is
a special case for the BDSMT, since in general some terminal
nodes can appear as intermediate nodes in the Steiner tree.

The problem is solved using a heuristic method with an inter-
play between the cost metric and the tree diameter metric.
In [25], the same authors deal with the opposite problem of
the minimum diameter cost-constrained Steiner tree, which
is also NP-hard. In this work, the terminal nodes must also
appear as leaves of the tree.

Usually, the approaches dealing with the multicast routing
problem formulated as a STP involve the use of heuristics.
This is due to two main reasons: (i) the formulated problems
areNP-complete and therefore heuristic algorithms are more
adequate to solve them; (ii) these are real time applications
and therefore being able to find appropriate (eventually sub-
optimal) solutions in a reasonable time is of the utmost
importance.

III. ILP MODEL FOR THE STP WITH DELAY CONSTRAINTS
We propose a compact formulation for the delay constrained
STP, in particular the BDSMT problem, as an ILP model
which is an extension of the model presented in [14]. The
model is extended in order to guarantee that the delay of the
path connecting any two terminal nodes on the Steiner tree
is bounded by D. In [14], [23] the cost of the Steiner tree is
unrelated to the delay. In our formulation the link cost is also
the delay. In fact longer links tend to be more expensive, and
according to [10], when terminal nodes are controllers, this
cost represents the SDN network synchronization cost.

Consider an undirected graph G = (N ,E), where N is the
set of nodes and E is the set of edges. The set of terminal
nodes is T ⊆ N and the remaining nodes (i.e., in N \ T ) are
the Steiner nodes. Each edge is denoted by its end nodes {i, j}
and has an associated delay dij > 0. For each node i ∈ N ,
the set of neighbouring or adjacent nodes to i is designated
by V (i). Also consider the set A as the set of arcs, where
arc (i, j) represents the directed link from i to j.

We aim to find the minimum cost Steiner tree connecting
the nodes in a given set of terminal nodes T ⊆ N , such that the
delay between any two nodes in T is at most a given valueD.
We assume that the delay of a path is the sum of the delay of
its links [12]. Consider the following decision variables:
yij binary variable that is 1 if link {i, j} ∈ E belongs to the

Steiner tree, and 0 otherwise
x tkij binary variable that is 1 if arc (i, j) ∈ A belongs to the

path from node t ∈ T to node k ∈ T \ {t} routed on the
Steiner tree, and 0 otherwise

ui binary variable that is 1 if node i ∈ N is either a terminal
or a Steiner node, and 0 otherwise

The ILP model for the addressed STP problem is given by:

min
∑
{i,j}∈E

dijyij (1)

subject to
∑
j∈V (i)

(
x tkij − x

tk
ji

)
=


1 i = t
−1 i = k
0 i 6= t, k

t ∈ T , k ∈ T \ {t}, i ∈ N (2)
x tkij + x

tk
ji ≤ yij t ∈ T , k ∈ T \ {t}, {i, j} ∈ E

(3)
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yij ≤
∑
t∈T

∑
k∈T\{t}

(
x tkij + x

tk
ji

)
{i, j} ∈ E (4)

∑
{i,j}∈E

dij
(
x tkij + x

tk
ji

)
≤ D t ∈ T , k ∈ T \ {t}

(5)
yij ≤ ui {i, j} ∈ E (6)
yij ≤ uj {i, j} ∈ E (7)

ui ≤
∑
j∈V (i)

yij i ∈ N (8)∑
{i,j}∈E

yij ≤
∑
i∈N

ui − 1 (9)

ui ∈ {0, 1} i ∈ N (10)
yij ∈ {0, 1} {i, j} ∈ E (11)
x tkij ∈ {0, 1} t ∈ T , k ∈ T \ {t}, (i, j) ∈ A (12)

The objective function (1) aims to minimize the cost
(which in our case represents the delay) of the Steiner tree,
and is given as the sum of the delays of the links belonging
to the Steiner tree.

Constraints (2) are the flow conservation constraints, guar-
anteeing that for each terminal node t , there is a path going
from t to all the other terminal nodes.
Constraints (3) and (4) guarantee the correct assignment

of variables yij, that account for the links belonging to the
Steiner tree, by making use of variables x tkij : constraints (3)
guarantee that each path defined in (2) can only transverse
links belonging to the Steiner tree, whereas constraints (4)
guarantee that a link belongs to the Steiner tree if it belongs
to one of the paths defined in (2).

Constraints (5) guarantee that the delays of the paths con-
necting any two terminal nodes and routed on the Steiner tree
do not exceed D.
Constraints (6)-(8) relate variables yij with variables ui,

that account for all the nodes belonging to the Steiner tree,
both terminal nodes and Steiner nodes: constraints (6) and (7)
guarantee that if link {i, j} belongs to the Steiner tree, then so
must its end nodes i and j, whereas constraints (8) guarantee
that if a node i belongs to a Steiner tree then it must be an end
node of a link on the Steiner tree.

Constraint (9) guarantees that the selected set of links
connecting the selected set of nodes necessarily forms a tree.

Finally, constraints (10)-(12) are the variable domain
constraints.

This ILP model extends the one in [14], by considering
that each terminal node is a source node. In this way, all
terminal nodes are connected via a tree to each terminal node
serving as the source node. Moreover, the delay between each
terminal node and each source node is guaranteed to be at
most D. This is achieved by constraints (2)-(5), which are an
extended version of the ones in [14].

The set of trees forms, among them, the final Steiner tree.
This is achieved by the additional constraints (6)-(9) (not
present in the model of [14]). The objective function ensures
the final tree is the minimum cost Steiner tree that guarantees
that the delay between any pair of terminal nodes is at mostD.

We solve the ILPmodel using the commercial optimization
solver CPLEX 12.6 [26]. For bi-connected topologies, which
are typical of optical core networks, the ILP model per-
forms efficiently for the topologies we tested up to 75 nodes.
However, for the classic topologies used for the STP, the ILP
model showed to be computationally challenging.

IV. HEURISTIC METHOD
We propose a heuristic method as an alternative to the ILP
model, to obtain good quality solutions within reasonable
time, inspired on the well-known Takahashi and Matsuyama
heuristic [18] for the STP. This heuristic starts the construc-
tion of the tree by selecting a terminal node and then connect-
ing it to its closest terminal node. The next terminal node to be
added is the one that is closest to the nodes already connected
and so forth until all terminal nodes are connected.

The following approaches were followed to add a terminal
node to the sub-tree. In the first approach the node connected
in each iteration is the one for which the largest distance
from it to each of the terminal nodes in the sub-tree already
obtained is the smallest one. However, when we try to obtain
a Steiner tree using only this approach we can get longer
trees with higher delays between the terminal nodes than
if we simply use the approach presented in [18] where the
node connected in each iteration is the closest one (second
approach). So the proposed strategy is to compute the first
part of the tree using the second approach and afterwards,
to compute the rest of the tree, using the first approach. This
is achieved picking the parameter d randomly in a given set
of values (in line 3) and with the if-else in lines 16 and 24
of Algorithm 1, respectively. Therefore if d is a small value,
the tree is mainly computed through the first approach
(lines 25-31) which in general leads to a higher number of
trees respecting the delay constraint but with higher cost.
On the other hand, if d is a higher value then the tree is
mainly computed through the second approach (lines 17-23)
and most of the trees do not respect the delay constraint but
the ones that do respect have in general a lower cost. So in

Algorithm 1, d varies in the set
{⌊

3
4 |T |

⌋
, . . . , |T |

}
.

In Algorithm 1, Dijkstra(s′, a) finds the shortest path p
and the cost c of this path from the node s′ to the node a
in the tree taking into account that the edges already
in the tree have infinite distance (line 12). The function
MaxDistance(s′, a, arv) computes the maximum distance
between s′ and each terminal node in the tree arv passing
through a (line 25). The total cost of the tree is computed
by the function Cost_Diameter(arv) and is the summation
of the lengths of its links (line 36). All the trees for which
MaxDistance(s′, a, arv) ≤ D are stored in S (line 35). The
final tree Arv is the one with minimum cost and minimum
diameter in S. Every time that a tree is found for which
the diameter, i.e., the maximum distance between a given
terminal node s′ and each terminal node in the tree arv is
greater than D, the algorithm aborts the computation of the
tree arv and starts the computation of a new tree through
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a new terminal node s (lines 14 and 15 of Algorithm 1).
In line 32 a new path is added to the tree arvwithout repeating
one of the path’s end-nodes (the one already in arv).
The cost of the path between the node s′ and node a in arv is

evaluated in line 17, and the one with minimum cost is stored
as well as node s′ (line 20). If there is more than one path with
minimum cost, the one with the minimum of the maximum
distance between the node s′ and each terminal node in the
tree is selected (line 23).
Analogously, the maximum distance between the node s′

and each terminal node is evaluated in line 25, and the one
with minimum value is stored as well as node s′ (line 28).
If there is more than one path with minimum value, the one
with the minimum cost is selected (line 31).
Our proposed heuristic, although inspired by the Takahashi

and Matsuyama heuristic [18], has two significant differ-
ences from the latter which are the introduction of random-
ness and the use of a wider set of paths, than solely the
shortest paths. This allows to obtain solutions that otherwise
would not be found because it can diversify much more the
search in the solutions space obtaining better solutions in
less time. The basic idea is that each node to be added to
the tree arv is picked randomly among those that are not
yet in the tree (function PickRandomly(T ′), line 10). Because
of this, the path that connects the new node may contain
other terminal nodes not yet in the tree, and so function
finds_nodes(p,T ′) (line 33 of Algorithm 1) finds other ter-
minal nodes in the path p different from s′. This is an impor-
tant feature of the algorithm to improve its efficiency as it
reduces the number of times that the while cycle (line 7 of
Algorithm 1) needs to be executed.

To improve the cost of a Steiner tree, it was shown in [27]
that it is better to try every terminal node to start the construc-
tion of the tree. This strategy is effective also for the present
problem however it proved to be an even better strategy to
pick randomly a terminal node from the set T (line 4 in Algo-
rithm 1) and do it for a given number of times θ |T |, where θ is
a small constant that can be tuned for each problem and |T | is
the number of terminal nodes (line 2 in Algorithm 1). As this
strategy also diversifies the search space it allows to obtain the
same solutions in a lower number of iterations as compared
with the one that picks sequentially all terminal nodes from
the set T as in this latter case most of the times we get the
same solutions.

Being |N | the total number of nodes in the graph, the
complexity of Dijkstra’s algorithm is O(|N |2) (which can be
reduced recurring to a binary heap, for instance). Note that it
is necessary to compute Dijkstra’s algorithm many times in
this algorithm because we need to consider that the links in
arv have infinite cost, so the complexity of the core algorithm
is O(|T |2 · |N |2) instead of O(|T | · |N |2) of Takahashi and
Matsuyama heuristic [18] because this classic algorithm can
compute all the necessary shortest paths in advance only
once as it only uses them to compute each tree. Considering
the outer cycle, the total complexity of Algorithm 1 is thus
O(|T |3 · |N |2). Note that this is an upper bound, as in most

Algorithm 1:Minimum Delay Tree Algorithm
input : G(N ,E), T , D, θ
output: Arv

1 S ← ∅ // set of trees
2 for i← 1 to θ |T | do

3 d ← PickRandomly
({⌊

3
4 |T |

⌋
, . . . , |T |

})
4 s← PickRandomly(T )
5 arv← {s}
6 T ′← T \ {s}
7 while T ′ 6= ∅ do
8 MinCost ←∞,MaxDist ←∞
9 NewPath← ∅
10 s′← PickRandomly(T ′)
11 forall a ∈ arv do
12 (p, c)← Dijkstra(s′, a)
13 Dist ← MaxDistance(s′, a, arv)
14 if Dist > D then
15 abort arv and continue with other s ∈ T

// goes to line 2

16 if |T \ T ′| < d then
17 if c < MinCost then
18 MinCost ← c
19 MaxDist ← Dist
20 NewPath← p, snew← s′

21 if c = MinCost ∧MaxDist > Dist then
22 MaxDist ← Dist
23 NewPath← p, snew← s′

24 else
25 if Dist < MaxDist then
26 MaxDist ← Dist
27 MinCost ← c
28 NewPath← p, snew← s′

29 if MaxDist = Dist ∧ c < MinCost then
30 MinCost ← c
31 NewPath = p, snew← s′

32 arv← arv⊕ NewPath
33 T ′′← finds_nodes(NewPath,T ′)
34 T ′← T ′ \

(
T ′′ ∪ {snew}

)
35 S ← S ∪ {arv}
36 Arv← argminarv∈S Cost_Diameter(arv)

cases a large number of trees is discarded (about halfway into
their construction on average).

To assess the quality of the solutions obtained with the
heuristic, we compare in section VI these solutions to those
obtained with the ILP model (when the ILP model can still
deliver them).

V. GRAPH REDUCTIONS
The complexity associated to the Steiner tree problem often
leads the resolution of this problem to be in the reduced
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graph obtained through the use of local properties of graphG.
Sometimes the minimum cost tree can even be found through
the reduction process (as observed in an example for the
performed experiments).

In this work, we propose two novel reductions: Reduc-
tion 1b) and Reduction 5. We also adapted two reductions
from the classical STP to integrate the delay constraints:
Reduction 4a) and Reduction 4b). Finally, some classical
reductions were also used: Reduction 1a), Reduction 2 and
Reduction 3. Further details on reductions for the classical
STP are presented in [28].
Reduction 1: Steiner nodes can be removed from G in the

following cases:
(a) All the Steiner nodes with degree 1 can be removed

from G as well as the respective incident edge.
(b) The Steiner nodes for which the longest shortest path

to the terminal nodes plus the smallest shortest path (in
terms of delay) is greater than the maximum delay can
also be removed together with their incident edges.
Proof: Assume that s ∈ N is a Steiner node.

(a) If deg(s) = 1, where deg(i) denotes the degree of node i,
then it cannot be an intermediate node in the Steiner tree
and so could never be a Steiner node. Henceforth, it can
be removed from G.

(b) Now assume that deg(s) ≥ 2. Consider

d̂min = min
t∈T

d̂st d̂max = max
t∈T

d̂st tM = argmax
t∈T

d̂st

where d̂st is the delay of the path from s to t on the
Steiner tree. Assume that d̂min + d̂max > D. Since s is a
Steiner node, then there exists t ′ ∈ T such that s belongs
to the path from t ′ to tM on the Steiner tree. Hence,

d̂t ′tM = d̂t ′s + d̂stM = d̂t ′s + d̂max ≥ d̂min + d̂max > D

which is not possible since t ′ and tM are terminal
nodes and so must obey d̂t ′tM ≤ D. Therefore,
if d̂min + d̂max > D, s cannot be a Steiner node and so
it can be removed from G (together with its incident
edges).

Reduction 2: All the Steiner nodes k with degree 2 can be
removed from G. The two edges {i, k} and {k, j} are replaced
by the edge {i, j} with delay dij = dik + dkj. If parallel edges
appear in this operation, the one with the larger delay can be
removed.
Reduction 3: All the edges {i, j} such that dij ≥ pij (being

pij the delay of the shortest path between i and j) can be
removed from G.

Proof: Note that reductions 2 and 3 are straightforward
applications of the classical ones.
Reduction 4: The terminal node i with degree 1 can be

removed from G as well as the respective incident arc in the
following cases:
(a) If node i connects to a node k where deg(k) = 2, node

i can be removed and then k becomes a terminal node

(if it is not already). Assume node l is the other node
that k connects to. Then, as node i is removed, dlk ←
dlk + dki to account for the contracted edge {i, k} and
T ← T ∪ {k} \ {i}. Node i and edge {i, k} will belong to
the optimal Steiner tree.

(b) If node i connects to a node k with deg(k) ≥ 2 and k is
connected to a terminal node nwith deg(n) = 1 such that
dkn ≥ dki, then node i and edge {i, k} can be removed.
In this case T ← T \ {i} and the node i and the edge
{i, k} will belong to the optimal Steiner tree.
Proof:

(a) Since node i is terminal and node k connects only to i
and l, then i can be contracted into k , where k becomes
the terminal node and dik is summed to dlk . In the final
optimal Steiner tree, i is added via edge {i, k}.

(b) Two terminal nodes i and n with degree 1 connect to a
node k , where dki ≤ dkn. Then, node i can be removed
in the reduced graph, since it will be added in the final
tree via edge {i, k}, but is not crucial to guarantee the
constrained delay in the tree, since dkn is greater.

Reduction 5: Assume i ∈ T and j is adjacent to i. If there
exists z ∈ T \{i; j} such that dij+min{piz, pjz} > D, then edge
{i, j} cannot be on the Steiner tree and so it can be removed
from G.

Proof: Assume that {i, j} belongs to the Steiner tree.
Then there are at least two terminal nodes such that {i, j}
belongs to the path between them (over the tree).

By removing {i, j} from the tree, we are left with two sub-
trees ST1 and ST2 such that ST1 includes i and possibly other
terminal nodes, and ST2 includes j and possibly other terminal
nodes.

Let z ∈ T \{i; j} be a node such that dij+min{piz, pjz} > D.
The following situations may occur:
(i) z ∈ ST1:
(a) Node j is a Steiner node and so there exists w ∈ T ∩

ST2. We have that:

d̂zw = d̂zi + dij + d̂jw ≥ pzi + dij + pjw
> pzi + dij ≥ min{pzi, pzj} + dij > D

(b) Node j is a terminal node. We have that:

d̂zj = d̂zi + dij ≥ pzi + dij
≥ min{pzi, pzj} + dij > D

(ii) z ∈ ST2. We have that:

d̂iz = dij + d̂jz ≥ dij + pjz
≥ dij +min{piz, pjz} > D

In all the above situations, it is shown that there is a pair of
terminal nodes such that the delay is greater than D. This
results from the assumption that {i, j} is in the Steiner tree.
We conclude that edge {i, j} cannot be in the Steiner tree and
therefore it can be removed from G.
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The reductions are applied sequentially, and for each itera-
tion as long as one of them is applied, the process continues.
The order of the applied reductions is the following:
• Reduction 1;
• Reduction 3;
• Reduction 2;
• Reduction 5;
• Reduction 4.
As a final note, we point out that one of the most effective

reductions used in the classical Steiner problems, revisited
next, cannot be applied in the present work.

Consider the terminal node i such that deg(i) ≥ 2 and for
which j is the closest node and k is the second-closest node
(in terms of delay). If

dij +min{pjz|z ∈ T ∧ z 6= i} ≤ dik

then the edge {i, j} will belong to the optimal Steiner tree and
the graph G can be contracted along the edge {i, j} [28].

It is possible to construct a counter-example to show this
reduction is not valid in our Steiner problem with delay
constraints.

VI. COMPUTATIONAL RESULTS
In this section, we present computational results comparing
the optimal solutions obtained by the exact method via the
ILP model and the heuristic solutions. Since we calculate
the optimal solutions, we can assess the performance of our
heuristic for the set of networks considered.

As this problem was inspired by network design prob-
lems, we started by testing our heuristic on some of the
SNDlib instances [29] representing core telecommunication
network topologies. For the computational results, we con-
sidered two telecommunication bi-connected core networks:
germany50 from SNDlib with 50 nodes and 88 links (the
largest we tested of the SNDlib instances), and coronet
available at http://www.monarchna.com/topology.html with
75 nodes and 99 links (representing a USA core network). For
both networks the cost was given by the delays, that were cal-
culated as the distances over the Earth’s surface from the GPS
coordinates of the nodes. We considered two sets of terminal
nodes (controller sets) for each network: for germany50,
we considered instance ger1 with T = {22, 24, 38, 40} and
instance ger2 with T = {4, 7, 24, 38}; for coronet, we consid-
ered instance cor1 with T = {10, 20, 26, 33, 37, 38, 45, 56}
and instance cor2 with T = {16, 20, 26, 38, 56, 65, 66, 72}.
These instances were chosen from our previous work [13],
where the controller placements are for a robust SDN net-
work and for which the addressed Steiner tree problem is
relevant. Moreover, we also considered the testset B from the
SteinLib library [30] with topologies ranging from 50 nodes
and 63 links to 100 nodes and 200 links, since they were
generated to represent more difficult Steiner tree problems
and are roughly the same size as the previously mentioned
networks. Details on these networks (including the set of
terminal nodes and the cost of the links) can be found in the
SteinLib site (http://steinlib.zib.de/showset.php?B).

TABLE 1. Reductions for testset B from SteinLib.

We consideredD to be given as a percentage of the network
diameter Dg [12], [13], and it is the maximum delay to be
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FIGURE 1. Relative number of nodes (solid lines) and links (dashed lines) of the simplified B networks versus D given as a
percentage of Dg.

guaranteed between any two terminal nodes of the Steiner
tree. For all networks, we started with D = Dg, i.e., D is
initially the network diameter. The value was then decreased
by a factor of 0.05 until the problem became infeasible.

The ILP model and heuristic (Algorithm 1) were imple-
mented in C/C++. For solving the ILP, the Callable libraries
of CPLEX 12.6 were additionally used. All instances were
run on a Dell Precision 7500, Intel(R) Xeon(R) CPU
X5660with 6 cores and 48GB of RAM, running at 2.80 GHz.

Since the heuristic is stochastic in nature, it was run
10 times for each instance and we used θ = 2 in all runs.
Reductions were applied for each instance as a pre-

processing step. Then, the ILP model and heuristic are solved
in the reduced graph, with the links that must be on the Steiner
tree added to it. In the ILP model, these links are fixed by
setting the corresponding yij variables to 1. We have imposed
a time limit for the ILP model of 6 hours (21600 seconds),
since it is computationally challenging for many instances of
the testset B from SteinLib.

In Table 1, we show the impact of the reductions in each
instance of testset B. For each instance, the number of nodes
|N |, the number of links |E| and the number of terminal
nodes |T | are shown for the original graph b01 to b18 and
for each of the reduced graphs obtained for each instance.
For the reduced graphs, the number of mandatory links
(No. L.) needed to be added to the final Steiner tree is also
shown.

While some reductions are more pronounced as in b13,
others are less pronounced as in b05, since they strongly
depend on the graph’s topology and the set of terminal nodes.
However, it is clear that the reductions in most graphs are
significant. An advantage of using reductions, is that when
the reduced graph becomes disconnected, then we know the
instance is infeasible for that value of D and, consequently
for lower values of D.
Fig. 1 illustrates the impact of the reductions for some of

the instances: b02, b04, b05, b07 and b13. We can see the
relative number of nodes (shown as solid lines) and links
(shown as dashed lines) obtained by applying the reductions
for the different values of D, in each instance.
Note that as the value of D decreases (x-axis), there is

a tendency for the relative number of nodes and links to
decrease too, as more reductions can be applied. Note that
the lack of lines beyond some value D shows that the graph
has become disconnected.

The results obtained with the ILP and heuristic are shown
in Tables 2-4 for the testset B of SteinLib, for the two
instances of germany50, and for the two instances of coronet
(respectively). In all the tables, the first column identifies the
instance and the second column shows the maximum delayD
considered (as a percentage of the graph diameter Dg). The
following three columns refer to the results obtained with
the ILP model, while the final five columns refer to those
obtained with the heuristic. For the ILP, the columns show the
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TABLE 2. ILP and heuristic results for the testset B from SteinLib.

cost of the Steiner tree, the diameter of the obtainedminimum
cost tree (which is given as the largest delay between any
two terminal nodes in the Steiner tree), and the runtime
in seconds.

For the heuristic, 10 runs were executed. The results dis-
played in the tables show the information regarding the best
solution obtained (the cost of the Steiner tree and the diameter
of the obtained minimum cost tree), and the average results
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TABLE 3. ILP and heuristic results for germany50.

TABLE 4. ILP and heuristic results for Coronet.

(cost, diameter and runtime in seconds) for the 10 runs. Note
that in some situations (identified in the tables) there were no
solutions for some of the 10 runs.

Concerning Table 2, some of the instances of testset B are
very challenging for both the ILP, not finding any solution
after the time limit of 6 hours (denoted by TL in the table),
and the heuristic (that could not find any solution either). The
runtimes for the heuristic are very small (almost always less
than a second on average), while the runtimes for the ILP
model can become very high.

In many cases, the solutions found by the heuristic in the
10 runs for each instance are such that the average value
of their cost is the same as the minimum value of the cost,
which means that the heuristic was able to find minimum
cost solutions in all those 10 runs. This may be observable

in the heuristic solutions for instances b01, b02, b03, b07
(for all values of D). This is also observable for b05 with
D = Dg and b08 with D = 0.95Dg. In all cases, the optimal
solution is found at least once (shown in best solution), except
for instances b04 with D = 0.9 Dg and b10 with D = Dg.
For these instances, increasing the value of θ in the heuris-
tic may help find better solutions, since the search space
becomes wider. This is also true for those instances where
at least one of the 10 runs did not retrieve a solution, such
as b04 with D = 0.90Dg, b05 with D = 0.60Dg, b10 with
D = Dg and 0.95Dg, b13 and b15 with D = 0.95Dg.
The average cost of the obtained solutions is in general

only slightly higher than the minimum value, which means
that even when the heuristic is not able to find the minimum
cost solution in a specific run, the obtained solution has a cost
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close to the minimum (0.9% higher on average) and it may
be considered sub-optimal.

Also note that the heuristic sometimes finds a minimum
cost tree with a smaller diameter than the ILP, as for b02 with
D = 0.95Dg and b05 with D = Dg. This reinforces the
idea that the heuristic tries to find the minimum cost solution
satisfying a delay constraint, but it also tends to keep the
solutions with the lowest possible delay. In the ILP, the cost
is minimized as long as the pairwise delay constraint is
satisfied (no emphasis is given to the diameter). However,
it is possible to obtain the minimum cost Steiner tree (while
satisfying the maximum delay constraint) with minimum
diameter, by solving a second ILP model which is similar
to the previous one but now minimizing the diameter with
an additional constraint to guarantee the known minimum
cost.

Finally, note that the heuristic was able to find solutions for
b15 withD = Dg andD = 0.9 Dg, and for b16 withD = Dg
(in very small runtimes), whereas the ILP model was not (in
the given time limit). For some instances, such as b02 with
D = 0.8 Dg, b09 and b13 with D = 0.9 Dg, the ILP model
was able to determine that the problem was infeasible, but the
heuristic was not.

Concerning Table 3, the germany50 instances were effi-
ciently solved with the ILP model as shown by the runtimes.
This is due to the fact that germany50 represents a core
telecommunication network, and so it is bi-connected and has
an average node degree of 3.52. Moreover, the number of
terminal nodes is very small for both network cases, |T | = 4,
whereas the number of terminal nodes in testset B ranges
from 9 to 50.

The table shows that our proposed heuristic is also able to
find the optimal solutions for all the instances of germany50
(with the same tree diameter) at least once, and with even
smaller runtimes in general. For the germany50 instances,
only for ger1 with D = 0.60 Dg and for ger2 with D =
0.65 Dg were all the solutions (for the different success-
ful runs) minimum cost solutions. In the remaining cases,
the average cost of the obtained solutions is on average 1.1%
higher than the minimum cost (a higher relative variation than
the one for the results for the testset B networks).

Concerning Table 4, the coronet instances were also effi-
ciently solved with the ILP model as shown by the runtimes
(under 4 seconds). Coronet also represents a core telecom-
munication network, being bi-connected and has an average
node degree of 2.64. The number of terminal nodes consid-
ered is |T | = 8.

Interestingly, for both instances cor1 and cor2 with
D = 0.55Dg, the optimal solution was obtained through the
graph reductions alone. For all other instances, all the 10 runs
retrieved the optimal solution. Interestingly enough, for all
instances of cor1, the optimal Steiner tree is the same (for
all values of D). This is also true for all instances of cor2.
While the minimum cost is smaller for cor2 than for cor1,

FIGURE 2. Optimal Steiner tree for cor1 (top) and for cor2 (bottom)
respectively. The Steiner tree is shown in red and the terminal nodes are
shown as red dots.

the diameter of the trees is the same. These results suggest
that the variety of Steiner trees for each set of terminal nodes
may be very small. The Steiner trees for cor1 and cor2 are
shown in Fig. 2. The diameter of the trees is the same, since
the diameter is determined by the subtree from the furthest
left terminal node down to the bottom terminal node (in both
cases). We can also see that the cost of the first tree is greater,
because of the two long edges connecting the top terminal
nodes.

Finally, to illustrate the effectiveness of the reductions,
we also show the relative runtimes for the heuristic, of the
networks of testset B, in Fig. 3. These relative times were
calculated as the ratio of the runtime of the heuristic for
the reduced networks to the runtime of the heuristic for the
original networks. Each group of colored bars refers to a
network (b01 to b18). Each colored bar refers to an instance of
that network, corresponding to a different D as a percentage
(in the legend) of Dg. The relative runtimes for the ILP are
not shown, since there are many instances ending due to the
imposed time limit.

For all instances, the best solutions obtained were the same
for the original and reduced graphs (among 10 runs), except
for b15 with D = Dg and 0.95Dg, where the reduced graph
allowed to obtain better solutions.

Note that for all the instances of b01, b02, b03, b07,
b09 and b13 the time diminishes to less than 50% in the
reduced graphs. For all the other instances, the time decreases
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FIGURE 3. Relative time for the heuristic with the reduced networks, for all instances of testset B.

to less than 80% of the original runtime, except for b05 with
D above 0.70Dg, b06 with D = Dg and b12.

VII. CONCLUSION
In this paper, we addressed the problem of finding the mini-
mum cost Steiner tree with delay constraints. We proposed
an exact method via an ILP model for the minimum cost
Steiner tree while guaranteeing that the delay between any
two terminal nodes is at most a maximum value D.
We also proposed two novel and two modified reduc-

tions for the particular STP addressed here. The set of
reductions used allowed for significant graph reductions in
most instances we tested. For the coronet instances with
D = 0.55Dg, we observed that the graph reductions were
so significant, that they alone were able to find the optimal
solution.

The ILP model efficiently solved all instances for ger-
many50 and coronet (graphs representing core communica-
tion networks), but struggled in many instances of the testset
B (even for the corresponding reduced graphs). Therefore,
we also proposed a simple and efficient heuristic which
always found the optimal solutions, except in two cases:
b04 with D = 0.90 Dg; and b10 with D = Dg. Therefore,
this ensures the quality of our heuristic. We observed that the
heuristic is very fast (all runtimes under 3 seconds).

Finally, we observed that the heuristic also found solutions
for some of the instances that the ILP model did not. These
observations demonstrate the suitability of the heuristic for
larger and more complicated instances.

As a final note, we point out that increasing θ can help find
better solutions with increased runtimes, for more difficult
cases.
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