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Supplementary Methods 

1. Selection of land cover rates 

Land cover rates are highly dependent on the land mapping application. In this study, 

two land mapping applications were selected: Water-level attenuation role in the 

assessment of inundation extents during flood events in coastal areas; and Impervious 

quantifications for watershed management. 

Application 1| Water-level attenuation role in the assessment of inundation extents 

during flood events in coastal areas 

Assessments of coastal flood exposure and risk are required to inform mitigation and 

adaptation decisions to climate change (Dolan and Walker, 2004). From a socio-

economic view, one of the most critical issues is to determine inundation extent in order 

to evaluate the risk to populations. Along with distance from coast and elevation, water-

level attenuation from land cover plays a significant role in determining inundation 

extent in coastal areas. Mangroves in South Florida, for instance, have attenuated water-

level during Hurricane Wilma up to 50 cm km-1 (Liu et al. 2013); and urban and 

residential areas have been shown to significantly decrease inundation extent (Vafeidis 

et al. 2019). Vafeidis et al. (2019) present a set of water-level attenuation rates per land 

cover category, which we have adapted for the purpose of this study (Table SM.1). 

Table SM.1 

Maximum water-level attenuation rates per land cover category used to determine the relevance of 

classification errors (adapted from Vafeidis et al. 2019). 

Land use category Maximum attenuation (cm km-1) 

Urban 100 

Forest 50 

Mangroves 50 

Restinga 50 

Agriculture 40 

Aquaculture 0 

Water 0 
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Application 2 | Impervious quantifications for urban watershed management 

Land cover types, and their arrangement, have been used to explore variation in water 

quality (Alberti et al., 2007; Shandas and Alberti, 2009; Teixeira and Marques, 2016), 

demonstrating that impervious surfaces contribute to declining water quality (Booth and 

Jackson, 1997; Schueler et al., 2009), amplifying the transport of polluted stormwater 

runoff (Tang et al., 2011). Although the general relationship between impervious 

surface and water quality is well-established, Schueler et al. (2009) found out that water 

quality varies greatly among watersheds with similar levels of impervious surface, as a 

result of different land cover patterns. According to these authors, in urban watersheds, 

the impact of stormwater runoff is, in part, determined by vegetation patterns. For one 

hand, forests absorb runoff with greater efficiency than grass (Brabec et al., 2002) and 

agriculture (Wang et al., 2018), although this pattern might change in steeper slopes 

(Wang et al., 2018); for another, grass and agriculture tend to intensify pollution 

concentrations in surface water runoff due to the use of chemicals and fertilizers (St-

Hilaire et al., 2016). Moreover, though studies have shown that the effectiveness of 

riparian buffers decreases in urban watersheds (Pratt and Chang, 2012; Walsh et al., 

2004), these vegetated zones still play a significant role in halting surface runoff 

(Boongaling et al., 2018) and decreasing water pollution (Chua et al., 2019; St-Hilaire 

et al., 2016). Based on the information provided by the literature, the impervious rate of 

our seven land categories was established (Table SM.2). Although forest is frequently 

considered a sink, a rate of 10 was assigned to this category to account for forests 

associated with steep slopes (Wang et al. 2018). 
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2. Calculation of land cover rates’ differences 

Once the land cover rates have been established (Table SM.1 and Table SM.2), the 

difference between the land cover rates is calculated (Table SM.3). 

 

Table SM.2 

Imperviousness rates per land cover category used to determine the relevance of classification errors. 

Land use category Impervious rate 

Urban 100 

Agriculture 30 

Forest 10 

Aquaculture (Unknown) 0 

Mangroves 0 

Restinga 0 

Water 0 

Table SM.3 

Difference between the rates for two land applications. 

  agriculture aquaculture mangrove restinga urban water rainforest 

Application 1 | Water-level attenuation role in the assessment of inundation extents during flood events 

agriculture 0       

aquaculture 40 0      

mangrove 10 50 0     

restinga 10 50 0 0    

urban 60 100 50 50 0   

water 40 0 50 50 100 0 

 rainforest 10 50 0 0 50 50 0 

Application 2 | Impervious quantifications for urban watershed management 

agriculture 0       

aquaculture 30 0      

mangrove 30 0 0     

restinga 30 0 0 0    

urban 70 100 100 100 0   

water 30 0 0 0 100 0 

 rainforest 20 10 10 0 90 10 0 
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