
 0

ANTÓNIO MANUEL MARTINS BORGES

5GLAN: REDES DE ÁREA LOCAL BASEADAS EM
TECNOLOGIAS 5G PARA MISSION CRITICAL SERVICES

NETWORK EXPOSURE FUNCTION AS MICROSERVICES

DISSERTATION IN THE CONTEXT OF THE MASTER’S IN INFORMATICS ENGINEERING, SPECIALIZATION IN CSI,
ORIENTED BY THE PROFESSOR TIAGO CRUZ AND PRESENTED TO PROFESSORS FERNANDO BOAVIDA AND

CATARINA SILVA
FACULTY OF SCIENCES AND TECHNOLOGY / DEPARTMENT OF INFORMATICS ENGINEERING.

SEPTEMBER 2021

 0

Acknowledgments

I would like to say thank you to my parents for all the support throughout my life and in specific

regarding the support during the production of this document.

Thank you, Professor Luís Cordeiro for the reality checks and for the suggestions and

comments to improve my work constantly.

A big thanks to Professor Tiago Cruz for being always available to clarify my doubts and for

your helpful suggestions.

To André Gomes, a big thank you for the technical discussions and for the helpful suggestions

and advice.

Finally, I would like to thank to João Henriques for his valuable guidance on the production of

this document.

 1

Abstract

In the last few years, the new Fifth Generation (5G) of mobile networks has been introduced

and has brought the potential of extend the cloud capabilities to the network. This means that

the virtualized environments will become part of the network. Beyond that, 5G also brings a

new architecture and one of the key changes is that the 5G Core (5GC) network functions

(NFs) become loosely coupled. However, as the network evolves and new features are added,

the loosely coupled NFs grow in complexity, impacting their performance. A microservice

architecture is a better choice for implementing the 5GC NFs.

Therefore, this works presents the standardized 3rd Generation Partnership Project (3GPP)

5G architecture, with the focus on the Network Exposure Function (NEF) and its

decomposition on micro services and the tools that will enable the management of those micro

services. With the standards and the tools, the work described in this document aims to carry

out the NEF decomposition into micro services and compare its performance with a monolithic

NEF implementation.

Keywords: 5G, 5G Core, Network Functions, Network Exposure Function, Microservices.

 2

Glossary

1G -First Generation of Mobile Telecommunications

2G – Second Generation of Mobile Telecommunications

3G – Third Generation of Mobile Telecommunications

3GPP - 3rd Generation Partnership Project

4G – Fourth Generation of Mobile Telecommunications

4K - 4000-pixel Screen Resolution

5G – Fifth Generation of Mobile Telecommunications

5G-VN – 5G Virtual Network

5GC – Fifth Generation of Mobile Telecommunications Core

5GLAN – 5G Local Area Network

5GLAN-VN – 5G Local Area Network Virtual Network

5GNR – 5G New Radio

5GPPP – 5th Generation of Mobile Telecommunications Infrastructure Public Private
Partnership

5GS – 5G System

AF – Application Function

AMF – Access and mobility management function

API -Application Programming Interface

AUSF – Authentication Server function

BDTP – Background Data Transfer Policy

CLI – Command Line Interface

CP – Control Plane

CPU – Central Process Unit

DHCP – Dynamic Host Configuration Protocol

DNN – Data Network Name

 3

DNS – Domain Name System

E2E NSO – End to End Network Service Orchestrator

EPC – Evolved Packet Core

eSBA – Enhanced Service Based Architecture

GMLC – Gateway Mobile Location Centre

HPLMN – Home Public Land Mobile Network

HTTP – Hypertext Transfer Protocol

ICN - Information -Centric network

LAN – Local Area Network

MAC – Media Access Control Address

MANO – Management and Orchestration

NaaS – Network as a Service

NAS – Non Access Stratum

NEF - Network Exposure Function

NF – Network Function

NFV – Network Function Virtualization

NFV MANO – Network Function Virtualization MANO

NGMN – Next Generation Mobile Networks

NIDD – Non-IP Data Delivery

NIDD – Non-IP Data Delivery

NPN – Non-Public Network

NRF – Network Function Repository

NRF – Network Repository Function

NSI – Network Slice Instance

NSSAI – Network Slice Selection Assistance Information

NSSF – Network Slice Selection Function

 4

NSSI – Network slice subnet instance

NWDAF – Network Data Analytics Function

ONAP – Open Network Automation Platform

OS – Operative System

OSI layer – Open System Interconnection layer

OSM – Open Source Mano

PCF – Policy Control Function

PDU Session - Protocol Data Unit Session

PEI – Permanent Equipment Identifier

PFD – Packet Flow Description

PFDF – Packet Flow Description Function

PLMN – Public Land Mobile Network

PNI-NPN – Public Network Integrated Non-Public Network

QoS – Quality of Service

RAN – Radio Access Network

S-NSSAI – Single Network Slice Selection Assistant Information

SBA – Service Based Architecture

SBI – Service Based Interface

SCP – Service Communication Proxy

SCS/AS – Service Capable Server / Application Server

SDN – Software Defined Network

SFM – Service Function Monitor

SM Context – Session Management Context

SMEs - Small Medium-sized Enterprises

SMF – Session Management’s Function

SNPN – Standalone Non-Public Network

 5

SUCI – Subscription Concealed Identifier

SUPI – Subscription Parameter Identifier

TCP – Transmission Control Protocol

TSN – Time Sensitive Networks

UCMF – UE Radio Capability Management Function

UDM – Unified Data Management

UDR – Unified Data Repository

UE – User Equipment

UP – User Plane

UPF – User Plane Function

VA – Vertical Application

VAO – Vertical Application Orchestrator

VIM – Virtualized Infrastructure Manager

VM – Virtual Machine

VNF – Virtual Network Function

VPLMN – Visited Public Land Mobile Network

 6

TABLE OF CONTENTS

List of figures ... 9

List of Tables .. 11

1 Introduction ... 12

1.1 Topic and context ... 12

1.2 Host Entity .. 13

1.3 Objectives ... 13

1.4 Methodology .. 14

1.5 Overview of the Structure of the Document ... 14

2 State of the Art and Implementation Tools .. 15

2.1 5G System .. 15

2.1.1 5GC Architecture and Network Functions .. 16

2.1.2 Network Exposure Function Services ... 19

2.1.3 Network Slicing ... 23

2.1.4 Non-Public Networks .. 23

2.1.5 5GLAN ... 24

2.1.6 Service Communication Proxy .. 26

2.2 Infrastructure ... 27

2.2.1 AWS Basics ... 27

2.2.2 AWS CloudFormation ... 30

 7

2.2.3 OpenStack .. 31

2.2.4 VMWare ... 32

2.2.5 Docker .. 33

2.3 Orchestration Tools .. 35

2.3.1 Matilda Vertical Applications Orchestrator .. 35

2.3.2 ONAP .. 38

2.3.3 OPEN-SOURCE Mano - OSM ... 39

2.3.4 Kubernetes ... 41

2.4 Microservices ... 42

2.4.1 Definition .. 42

2.4.2 Microservices on Mobile Network Systems ... 43

2.4.3 Decomposition Criteria ... 44

2.5 Considerations .. 45

3 FUDGE-5G .. 47

3.1 Project Objectives ... 47

3.2 Project Work Plan ... 48

3.3 Use Cases ... 49

3.4 5GLAN on FUDGE-5G .. 51

3.5 OneSource Role .. 52

3.6 5G Verticals .. 53

 8

3.6.1 Mobitrust .. 53

3.6.2 5G Virtual Office ... 55

3.6.3 PPDR ... 58

4 NEF as Micro Services .. 61

4.1 Problem Statement .. 61

4.2 Proposed Solution .. 62

4.2.1 Solution Implementation .. 62

4.2.2 Testbed ... 65

4.3 Experiments and Results ... 66

4.3.1 Experiments .. 66

4.3.2 Results .. 67

4.4 Discussion ... 71

5 Project Management ... 72

5.1 First Semester ... 72

5.2 Second Semester .. 74

6 Conclusions .. 78

7 Bibliography .. 79

 9

LIST OF FIGURES

Figure 1 - 5G system Architecture (from [6]) ... 17

Figure 2 - Cloudformation yaml templante (from [20]) .. 31

Figure 3 - Openstack landscape (from [22]) .. 31

Figure 4 - HEAT yaml template for creation of one stack (from [24]) 32

Figure 5 - Policy Manager and Monitoring Mechanisms Interaction (from [32]) 38

Figure 6 - OSM interation with VIMs and VNFs (from [39]) ... 40

Figure 7 – MANO VNF instantiation process (from [40]) ... 40

Figure 8 - Microservice Architecture (from [49]). ... 42

Figure 9 - FUDGE-5G consortium (from [52]) ... 47

Figure 10 - FUDGE-5G Gantt Chart .. 49

Figure 11 - FUDGE-5G Use cases and stakeholders (from [54]) ... 50

Figure 12 - Mobitrust Components and iterations ... 54

Figure 13 - Desintegrated NEF architecture ... 63

Figure 14 - Nef Micro-service YAML file ... 64

Figure 15 - Communication Sequence Scenario 1 ... 64

Figure 16 - Communication Sequence Scenario 2 ... 65

Figure 17 - Testbed Architecture ... 66

Figure 18 - Kubernetes Nodes .. 66

Figure 19 - NEF Services deployed into the Kubernetes Cluster .. 67

Figure 20 - Graphical Request - Response Duration Variation ... 68

 10

Figure 21 - Mean, Standard Deviation and Variance .. 69

Figure 22 - Micro Service Architecture Service Degradation .. 70

Figure 23 – First Semester Planning Chart ... 73

Figure 24 – First Semester Efective Schedule Chart .. 73

Figure 25 – Second Semester Planned Chart .. 75

Figure 26 - Second Semester Effective Schedule .. 77

 11

LIST OF TABLES

Table 1 - Testbed Hardware ... 65

Table 2 - Dataset Description .. 67

Table 3 - Mean, Standard Deviation and Variance of the datasets 69

Table 4 – First Planned Semester Schedule ... 72

Table 5 – First Semester Efective Schedule ... 73

Table 6 – Second Semester Planned Schedule ... 74

Table 7 - Second Semester Effective Schedule .. 76

 12

1 INTRODUCTION

1.1 TOPIC AND CONTEXT

5G is one of the hot acronyms of the present time but is nothing more than the fifth generation

of mobile telecommunication networks. 5G brings huge improvements in three areas:

bandwidth, latency and density. The most well-known by the general public is the massive

improvement of the bandwidth that derives from the use of the so-called millimetre

electromagnetic waves (mmWave). The bandwidth improvement will enable the generalization

of technologies that are now limited by current speeds, 4000-pixel (4K) screen resolutions will

become generalized, video streaming will become the norm and other technologies will grow,

cloud gaming or virtual reality for example. Another 5G improvement is the ultra-connectivity

capabilities that will allow for greater density of devices connected by area unity. It will boost

IoT enabling smart houses or smart cities. But the most important improvement resides on the

reduction of communication latency, and it is probably the area were 5G will impact the most.

Autonomous driving is the first area that comes to mind, but the low latency will enable a

revolution to industry and can even impact medicine.

These three major improvements provided by 5G are leading to Cloudification. Cloudification

is the process of extending cloud platforms, technologies, and virtualization capabilities to the

network. The network becomes more agile, flexible and scalable. 5G will lead to the network

softwarization. A network based on software opens doors for new key technologies like

software-defined networks, network slicing, network virtualization and intelligent orchestration.

Network virtualization is at the present time a very well standardized field. Third Generation

Partnership Project (3GPP) releases provide standards that have detailed the virtualized

network functions and its Application Programming Interfaces (APIs). It provides a standard

from where researchers can build and implement features to fulfil the 5G potential to the telco

world. Intelligent orchestration is one of those features and allows the network to orchestrate

herself adjusting dynamically to the user, device or use case for optimal performance.

Taking in consideration the 5G potential, not only for the telco providers, but also for different

size companies, an international consortium was created joining companies and research

institutions from different countries in Europe to develop the FUDGE-5G [1] project. FUDGE-

5G stands for “FUlly DisinteGrated private nEtworks for 5G verticals”. One of the project

partners is OneSource and it is on the context of the participation of OneSource in the FUDGE-

5G project that the work described in this document is being performed and developed. The

 13

work is part of the network function disintegration, a goal of FUDGE-5G, in particular the

decomposition of the Network Exposure Function into micro services.

1.2 HOST ENTITY

OneSource [2] is high-tech Small and medium-sized enterprise (SME) based in Coimbra and

specialized in 4 areas of activity:

• Provision of consulting and auditing services in communication networks, computer

infrastructures and information systems.

• Design, implementation and administration of computer networks and systems in an

outsourcing regime, being currently responsible for the administration of networks and

systems that serve, in total, more than 12,000 users.

• Applied research and technological development services in the areas of information

and telecommunications technologies.

• Design, development and maintenance of information systems, including intranets,

corporate websites and integration of information systems.

The participation of OneSource in FUDGE-5G is due to its large expertise integrating its

Situational Awareness platform, Mobitrust [3], with other projects and platforms.

Integration and development of its features were supported by projects Mobitrust

(Eureka/CATRENE), Mobilizador 5G (national project) and 5GINFIRE (H2020).

1.3 OBJECTIVES

There are a lot of research possibilities on the 5G world. Those possibilities encompass the

applications for the 5G technology, wave spectrum challenges, battery life and storage for 5G

equipment’s, security research, small cell research, 5G core implementations and much more

with a lot of different research groups addressing challenges in all of those possibilities.

One of the core tasks of FUDGE-5G is to ensure that appropriate network function

disintegration is carried out both for the 5GC control and user plane. In the end, the project

aims to provide a rich set of disintegrated network functions with the corresponding descriptors

for service instantiation. The work described in this document is part of the above task and is

focused on the disintegration of the Network Exposure Function (NEF), one of the network

functions to be disintegrated within the FUDGE-5G project.

 14

The first goal is to identify and disintegrate the NEF services into individual and independent

NEF components, micro services. The second goal is to assure that the NEF micro services

are able to provide the same service as the monolithic NEF in a transparent way for the NEF

consumer. To achieve that, the micro services need to be instantiated and lifecycle managed,

the third goal. At the end of the master thesis, it is expected that the work carried out shows

how a implemented microservice NEF performs in terms of latency and availability when

compared with a monolithic NEF implementation.

1.4 METHODOLOGY

The work presented this document followed an adapted Scrum [4] framework for development.

The 3GPP NEF requirements provided the product backlog and each planned activity a sprint,

that addressed the requirements belonging to the activity, the sprint backlog. The adaptation

comes from the fact that there is no team, so the author played the role of product owner,

scrum master and developer.

After each sprint, a retrospective was carried out. The goal was to identify what went well and

not well and to make adaptations to the next sprint, in order to improve the time efficiency and

the delivered work quality.

1.5 OVERVIEW OF THE STRUCTURE OF THE DOCUMENT

In this section the document structure is introduced. Firstly, Chapter 2, covers the 3GPP

standardization work regarding the 5G Core components in general and with a focus on the

Network Exposure Function, in section 2.1. Moreover, 5GLAN concept is explained, as well

as the 3GPP defined requirements. Section 2.2 describes some of the possible computational

infrastructure providers. In section 2.3, orchestration tools for verticals, virtual machine and

container level are presented, and finally, section 2.4 details the micro service architectural

approach. Chapter 3 presents the FUDGE-5G project, the European project behind the work

presented in this document. The NEF disintegration work and the micro service deployment

is described in Chapter 4. Chapter 5 illustrates and describes the work plan and Chapter 0

presents the final conclusions.

 15

2 STATE OF THE ART AND IMPLEMENTATION TOOLS

This chapter covers the state of the art of the technologies that will support the development

of the work described in this document. It starts by detailing the core technology behind 5G

presenting the needed background regarding the 5th Generation Core (5GC) architecture and

components, as well as their role into the 5th Generation System (5GS). This section also

contains the description of the Network Exposure Function (NEF) services. Some relevant 5G

concepts are also introduced, encompassing Non-Public Networks (NPNs), Network slicing,

5th Generation Local Area Network (5GLAN) and the Service Communication Proxy (SCP).

The second section of the chapter encompasses the infrastructure providers studied: AWS,

an on-demand cloud computing resources provider, OpenStack, an opensource cloud

computing software to control pools of computational resources, VMWare, a cloud computing

and virtualization, and Docker, an operative system level virtualization provider, that delivers

packed software units, containers.

The third section includes the studied orchestration tools. It starts with Matilda, a vertical

application orchestrator. Then moves to ONAP and OSM that are opensource automation and

orchestration frameworks for Virtual Networks Functions (VNFs). At the end, Kubernetes, that

is a system for automatic deployment, scaling and management of containerized applications.

The fourth section provides the information related to the Microservice architectural paradigm.

It defines a microservice, presents the relevance for the mobile telecommunication networks

implementation and, finally, enumerates the decomposition criteria to be considered when

disintegrating the NFs.

At the end, a small section resuming the relevance of all the state-of-the-art sections for the

work presented in this document.

2.1 5G SYSTEM

The basis for this work is 5G, the 5th generation mobile network. It is a new worldwide wireless

standard after 1G, 2G, 3G, and 4G networks. 5G enables a network that is designed to connect

virtually everyone and everything as one, including machines, objects, and devices.

5G wireless technology is meant to deliver higher multi-Gbps peak data speeds, ultra-low

latency, more reliability, massive network capacity and increased availability. Higher

 16

performance and improved efficiency enable and provides new user experiences and

connects new industries.

Most of these 5G capabilities came from the 5G New Radio [5] (5G NR). The 5G NR was

developed to enhance the flexibility, scalability and efficiency of the radio both for spectrum

and power consumption. One of the key differences from 5G NR to the previous radio

generations radio is that new areas of the spectrum are being made available for 5G, namely

the mmWave. It allows to overcome the physical limitations for bandwidth and throughput of

the lower frequencies used in the previous generations.

Another important step forward in 5G is the softwarisation of the network. The network

functions, that on the previous generations were hardware based, are now implemented as

software running in cloud environments. The 5GC core is now software based and a new set

of functionalities emerged, like Network Slicing and 5GLAN.

2.1.1 5GC ARCHITECTURE AND NETWORK FUNCTIONS

This section describes the 5G system architecture and its different components, Network

Functions (NFs). It is a standardized architecture, and its standard can be found in the 3GPP

release 23.501 [6]. Each NF has both functional behaviour and APIs defined. An NF can be

implemented either as a network element on a dedicated hardware, as a software instance

running on a dedicated hardware (Virtual Machine or Container), or as a virtualized function

instantiated on an appropriate platform, e.g., a cloud infrastructure.

The 5G architecture enables two main characteristics: separation of control and user

planes and modularization. On the first one, the User Plane (UP) carries user traffic while

the Control Plane (CP) carries signalling in the network. This allows each traffic plane resource

to be scaled independently. It also enables the deployment of User Plane Functions (UPFs)

separated from the Control Plane functions meaning that the UPFs can be deployed closer to

the users, ultimately reducing the communication latency. The second one, modularization, is

achieved by having the 5GC NFs deployed in independent modules allowing for independent

scaling and evolution.

 17

FIGURE 1 - 5G SYSTEM ARCHITECTURE (FROM [6])

The control plane functions use Service-Based Interfaces (SBI) to communicate. The user

plane functions use point-to-point connections for communication. The called “N” interfaces.

The 5GC NFs are described below.

Access and Mobility Management Function - AMF

The AMF is responsible for Radio Access Network (RAN) CP interface (N2) and Non Access

Stratum (NAS), (N1), ciphering and integrity protection. The AMF performs registration,

connection, reachability and mobility management for the User Equipment (UE). The AMF

deals with the UE Access authentication and authorization, provides transport for session

management messages between the UE and the Session Management Function (SMF) by

being a transparent proxy for routing them. The AMF raises event notifications of UE mobility

and supports network slice specific authentication and authorization.

Session Management Function - SMF

The SMF deals with session establishment and management. It deals with UE IP allocation

and management (can receive it from an UPF), DHCP messages and selection of UPF by

configurating the traffic steering rules. The SMF, also, enforces the policy control function, and

takes care of charging data collection for charging interfaces, controlling and coordinating it at

the UPF.

User Plane Function - UPF

 18

The UPF is an anchor point between inter-/intra-radio-access (RAT) mobility and allocates the

UE IP in a response to a SMF request. It is an external PDU session point to interconnect to

the data network, deals with packet routing, forwarding and inspection playing policy rules

enforcer on gating, redirection and traffic steering. On the downlink, the UPF buffers and

marks packets triggering the subsequent notifications and performs packet duplication. On the

uplink, it removes the duplicated packets and performs the packet marking.

Policy control function - PCF

The PCF supports a unified policy framework, to rule the 5G network. The PCF provides policy

rules to control plane functions enforcement. It uses the Unified Data Repository (UDR) to

access subscription information for policy decisions.

Network Exposure Function - NEF

The NEF securely exposes NF capabilities and events that are retrieved/stored as structured

data in the UDR using the standardized interface (Nudr), this information may be used for

analytics. It allows the AFs to securely provide information to 3GPP network by translating

internal-external information, in particular, the NEF handles masking of network and user

sensitive information to external AFs according with the network policy.

Network Repository Function - NRF

The NRF supports the service discovery function by responding to discovery request of NFs

or Service Communication Proxy (SCP) with information of the discovered NF or SCP

instances. It maintains NF and SCP instances profiles, when one of these instances is

registered/updated/deregistered, the NRF raises notifications to the appropriate subscriptors.

In the context of network slicing, multiple NRFs can be deployed at Public Land Mobile

Network (PLMN) level, shared-slice level (configured with information regarding the set of

network slices) and slice-specific level (has information belonging to a Single-Network Slice

Selection Assistance Information (S-NSSAI)).

Unified Data Management - UDM

The UDM is responsible for the generation of 3GPP Authentication and Key Agreement

credentials and handles user authentication by storing and managing the Subscription

Permanent Identifier (SUPI). It also supports the de-concealment of the Subscription

 19

Concealed Identifier (SUCI). The UDM also handles the 5G Virtual Network (5G-VN)

management.

Authentication Server Function - AUSF

The AUSF supports authentication for 3GPP access and untrusted non-3GPP access by

performing authentication and authorization verifications for UEs. It is done by connecting the

UDM to retrieve the authentication information and by providing the results to the AMF.

Application Function - AF

The AF interacts with the core in order to provide services that support the application to

influence the traffic routing, to access NEFs and to interact with the policy framework. AFs that

are considered trusted by the operator, are allowed to communicate directly with relevant NFs,

otherwise, the AF uses the NEF to interact with the 3GPP NFs.

Unified Data Repository - UDR

The UDR is responsible by storing and retrieval of subscription data to the UDM, policy data

to the PCF, data for exposure, application data (packet flows description, AF request

information for multiple UEs, 5G-VN group information) and NF group ID matching a

subscriber identifier.

Network Data Analytics Function - NWADF

NWDAF represents the operator managed network analytics function and supports data

collection from NFs, AFs and from Operations, Administration and Maintenance (OAM). It

exposes is own service registration and metadata to AFs/NFs and supports analytics

information provision to them.

2.1.2 NETWORK EXPOSURE FUNCTION SERVICES

This section describes the services provided by the NEF that will become micro services at

the end of the work described in this document. The services as well as its operations are

described in 3GPP release 16, technical specification (TS) 23.502 [7].

A NEF is deployed in a 5GC to expose standardized APIs for external services. The AF is the

main consumer of services from NEF, but there are also services that are consumed internally

to the 5GC, namely by the NWDAF and by the SMF. All the NEF services are explained bellow.

 20

Event Exposure

The NEF here is receiving information from monitoring events, inside the 5G system, and

reports them to the requesting party. These events may be detected by the AMF (e.g., UE loss

of connectivity, UE location reporting, UE communication failure, number of UEs in a specific

geographical area), by the SMF (UE PDU session status and downlink data delivery status)

or by the UDM (e.g., UE roaming status, UE change of SUPI-PEI association, etc).

The service follows a Subscribe/Notify semantic and the consumers are the AF and NWDAF.

PFD Management

This service allows for create, update and delete Packet Flow Descriptors (PFDs). An example

of use is when an AF requires that all its devices start to send information to a new application

server. The AF will use this NEF service to create or update a PFD with the new IP, port and

protocol to be used.

Parameter Provisioning

In this service the NEF is used by the AF to provision UE related information (e.g., network

configuration parameters, location and privacy parameters) or 5G Virtual Network group

information (e.g., group data or membership management).

Trigger

The trigger service allows the AF to request that a trigger is sent to an application on a UE

and to receive the status of the trigger delivery.

BDTP Negotiation

This service allows the AF to request a creation or update of a Background Transfer Policy

(BDTP) [8]. It allows for providers to favour specific time windows to specific UEs in a

geographical area, with the intent to use non-busy hours that are cheaper and provide larger

communication bitrates.

Traffic Influence

The AF uses the NEF to request traffic influence, i.e., routing decisions. This service is used

when the AF is not authorized to make request directly to the SMF, so the request goes

 21

through the NEF. If valid, the request may influence the routing decisions for a PDU session

and UPF selection for serving a specific UE or a group of UEs.

Chargeable Party

By using this service, the AF requests to become the chargeable party of a data session for a

specific UE.

AF Session with QoS

This service enables the AF to request the NEF for an AF session with a specific quality of

Service (QoS). The AF must indent the specific UE and the QoS parameters and it may, also,

identify a time window and a traffic volume for the specific session. It supports create, update

and revoke operations.

MSISDN-less MO SMS

This service allows the NEF to deliverer a SMS without Mobile Station International Subscriber

Directory Number (MSISDN-less). The SMS comes from a specific UE connected do the

3GPP system, i.e., mobile originated.

Service Parameter

The AF uses the service to store service specific parameters in the UDR via the NEF. The

NEF stores the information in the UDR under the “Application data” category. This information

may be used by a UE that subscribes to notifications on the data. It supports the Create,

Update and Delete operations as well as Get.

API support capability

This service is intended to inform the AF about the level of support in the API associated with

a UE. These changes happen due to the possible support of interoperability with the Evolved

Packet Core (EPC), i.e., 4G. If some service becomes unsupported, the AF is notified by the

NEF of it. It supports the Subscribe and Unsubscribe operations (by the AF) and the Notify

operation (by the NEF).

NIDD configuration

In this service, the AF is able to configure the NEF with necessary information for data delivery

via the Non-IP Data Delivery (NIDD).

 22

NIDD

This service allows for NIDD data to be delivered from the UE or group of UEs to the AF or

from the AF to the UE. It supports the delivery service (AF -> UE) and the delivery notify

service (UE(s) -> AF).

SM Context

This service provides the capability to manage the SMF-NEF connection that is established

for the NIDD via the NEF when a UE requests to send “unstructured” data . It supports Create

and Delete operations as well as the delivery operation itself. The consumer of the service is

the SMF.

Analytics Exposure

The NEF is able to provide analytics to the AF. These analytics are from the UEs being served

by the AF. The service provides Subscribe/Unsubscribe and Fetch operations to the AF and

the Notify operation that is performed by the NEF to the subscriber AF.

UCMF provisioning

By using this service, the AF is able to provide the UE radio Capability Management Function

(UCMF) with Manufacturer-assigned UE Radio Capability ID via the NEF. The UE Radio

Capability information contains information on radio access technologies (RATs) that the UE

supports (e.g., power class, frequency bands, etc). The service supports the Create, Delete

and Update operations.

EC Restriction

This service is for allowing the AF to query the status of Enhanced Coverage (EC) Restriction

or enable/disable EC Restriction per individual UE.

Apply Policy

This NEF service provides the capability to apply a previously negotiated Background Data

Transfer Policy to a UE or a group of UEs.

Location

With this service, the NEF is able to provide the UE location to the AF.

 23

2.1.3 NETWORK SLICING

A network slice is an entire logical network that provides a set of network capabilities required

by the service provider. Network slices range depending on the features of the service they

are supporting.

The network slicing concept proposed by Next Generation Mobile Networks (NGMN) Alliance

consists of three layers: (1) service instance layer, (2) network slice instance layer, and (3)

resource layer [9]. The service instance layer represents the services supported by the

network. Each service is represented by a single service instance that is provided by network

operators or third parties. The network slice instance gives the network characteristics

required by the service instance. A single network slice instance can be shared by multiple

service instances. The network slice instance can be composed or not by sub-network

instances shared by other network slice instances. The sub-network instance is a group of

NFs, which run on top of logical or physical resources. The NSSF works with the Network

Slice Selection Assistance Information (NSSAI) to take care of the selection and attribution of

a slice to the UE on a 5G network.

2.1.4 NON-PUBLIC NETWORKS

3GPP defines Non-Public Networks (NPNs) as: “Non-public networks intended for the sole

use of a private entity such as an enterprise, and may be deployed in a variety of configurations,

utilising both virtual and physical elements. Specifically, they may be deployed as completely

standalone networks, they may be hosted by a PLMN, or they may be offered as a slice of a

PLMN.” [10]

An NPN is a 5G private network deployed for the solo use of private entity (e.g., a vertical

costumer, a government agency). The NPN is designed to support non-public use that

includes infrastructural and communication services.

NPNs are divided in two categories. An NPN can be deployed as a standalone NPN (SNPN)

or as a public network integrated NPN (PNI-NPN). On the SNPN type, the NPN does not rely

on NFs provided by a PLMN. On the PNI-NPN type the NPN is deployed with the support of

a PLMN. The PNI-NPN deployment can be done in two ways. The first way uses a PLMN

dedicated Data Network Name (DNN) with a mobile pipe to forward the traffic to the NPN

mobile gateway, the UPF. The second PNI-NPN deployment option uses a dedicated slice of

the PLMN with exclusive resources allocated to the NPN.

 24

5G PPP Technology Board [11], defines the following components for an NPN in a 5G system:

• 3GPP 5G Radio Access Network (RAN): The set of base stations that provide New

Radio (NR) connectivity to the UEs.

• 3GPP 5GC user plane (UP): A set of UPFs

• 3GPP 5GC control plane (CP): The 5GC cloud native network functions that provide

signalling and packet core functionality. The SMF, AMF, PCF and the NSSF.

• 3GPP 5GC data management: The 5GC cloud native network functions that provide

authorization and authentication of UEs. They include the UDM and the UDR.

• Service/Enterprise applications: The applications that provide the service logic and

that are hosted in cloud environments.

PNI-NPNs, normally, have the UP, CP and data management functions provided and

managed by the PLMN, while the RAN is kept on the customer premises but with public

spectrum. The isolation of the CP, UP and data management traffic is achieved with a DNN

or a dedicated PLMN slice, as mentioned before.

In the SNPN scenarios, all components are deployed on the private customer premises,

providing the required isolation. However, some SNPN owners, may deploy NPN components

into hyperscalers (AWS, Azure, Google cloud) or even share the RAN with other mobile

network operators.

2.1.5 5GLAN

5G Local Area Network (5G LAN) provides the same functionalities as Local Area Networks

(LANs) and VPN’s but improved with 5G capabilities (e.g., high-performance, long-distance

access, mobility and security). Another important aspect about 5G LAN is that it will enable

private communication (IP or non-IP) with seamlessly integration of 5G with fixed and wireless

LAN.

5G LAN aims to provide connectivity between two or more UEs connected to a 5G network.

The protocol registration and discovery, that allows a UE to communicate to another UE on

the same 5G LAN group is provided by the SMF. After each UE has registered identifier

information with the SMF, responsible by managing the paths across UEs in the 5GLAN group,

the SMF is able to provide the necessary forwarding information. UE register and discover

identifiers, during the establishment of a PDU Session, can be MAC or IP addresses. After the

registration/discovery process, the SMF, managing the paths over the 5GLAN group, provides

the forwarding between the UPFs ensuring the LAN connectivity between the UEs. The

 25

forwarding happens (1) between UPFs and (2) between UPFs and UEs. In the first, if the N9

interface is used, the forwarding is done using a tunnel-based approach. If the Nx interface is

used, the forwarding is path-based. In the second, LAN based forwarding is used between the

final UPF and the UE through the N3 interface.

Trossen [12] proposes a path base forwarding, thus using the Nx interface. A bit field is used

to encode the destination UPF and provided in the packet header. Each bit position on the

bitfield represents a unique link in the network. When a UPF receives a packet, checks (binary

AND and CMP operation) the bitfield to find any local link being server by one of its ports, if

the UPF cannot find a link, the packet is dropped. By using a binary OR for combining two or

more path identifiers, multicast relations can be created. Another important feature of the path

identifier is that it can used in both directions (request/response), thus not requires any path

computation for the return path.

3GPP has defined the requirements for 5GLAN [13], below are listed the requirements to

5GLAN virtual network (5GLAN-VN) and to the discovery within it:

• A UE is able to select a 5GLAN-VN, that the UE is a member of, for private

communication. 	
• A 5G system supports 5GLAN-VNs with a few to tens of thousands of member UEs. 	
• The 5GLAN-VN supports member UEs that are subscribed to different PLMNs, e.g., a

5GLAN-VN may span across multiple countries and have member UEs with a

subscription to a PLMN in their home country. 	
• The 5G system supports on-demand establishment of UE to UE, multicast, and

broadcast private communication between members UEs of the same 5GLAN-VN. At

least IP and Ethernet data types should be supported. 	
• The 5G network ensures that only member UEs of the same 5GLAN-VN are able to

establish or maintain private communications between each other using 5GLAN. 	
• The 5G system allows member UEs of a 5GLAN-VN to join an authorized multicast

session over that 5GLAN-VN. 	
• The 5G system is able to restrict private communications within a 5GLAN-VN based

on UE’s location. 	
• The 5G network enables member UEs of a 5GLAN-VN to use multicast/broadcast over

a 5G LAN-type service to communicate with a required latency. 	
• The 5G system supports a mechanism to provide consistent QoE to all the member

UEs of the same 5GLAN-VN. The 5G system supports routing based on a private

addressing scheme within the 5GLAN-VN. 	

 26

• The 5G system enables a member UE to discover other member UEs within the same

5GLAN-VN. 	
• The 5GLAN-type service is able to support existing non-3GPP service discovery

mechanisms 	

2.1.6 SERVICE COMMUNICATION PROXY

This section describes how 3GPP core network functions can communicate between

themselves by using a Service Communication Proxy (SCP). 3GPP describes and allows

three deployment options SCP [6]:

1. SCP based on a service mesh
2. SCP based on independent deployment units
3. SCP based on Name-based Routing

SCP based on a service mesh

On this deployment the SCP follows a distributed model in where the SCP end points are co-

located with the 5GC NF. The SCP end points are called Service Agents [6]. The Service

Agents are responsible to implement the necessary peripheral tasks, end despite being co-

located, the Service Agents and the 5GC NF are separated components. With Service Based

Interfaces (SBI) communication between two 5GC functionalities (A and B), the consumer (A)

communicates through his Service Agent via SBI. The Service Agent chooses a target

producer based on the request and routes to the producer’s (B) Service Agent. The selection

and routing policies, that are applied by the Service Agent are determined by the service mesh

controller.

SCP based on independent deployment units

The 5GC NF and the SCP are deployed in independent deployment units. The SCP agents

implement the HTTP intermediaries between service consumers and service producers. The

SCP Agents are controlled by an SCP controller.

SCP based on Name-based Routing

In this SCP topology the SCP is based on a name-based routing mechanism that provides IP

over Information - Centric Network (ICN). The IP-over-ICN [14] routing intends to establish

islands of networks that, while maintaining IP-based protocols at the ingress and egress of the

network, internally route packets based on Information-Centric Networking.

 27

The core part of the SCP is a Path Computation unit, that performs Name-Based Routing. The

5GC services run as microservices in a cluster. The SCP contains a Service Deployment

Cluster that encloses a Service Router. The Service Router is the communication node

between the 5GC services, and the SCP and it is responsible for mapping IP based messages

onto ICN publications and subscriptions, acting as a proxy. For direct communication between

5GC services within the cluster, the Service Router is not used, instead it serves multiple 5GC

services when they need to communicate to other 5GC services within a different cluster.

In order to have two 5GC functionalities communication, service registration and discovery

needs to take place. The service registration can be done by the 5GC Service function via the

Nnrf interface. The registration request is forwarded to the operator’s NRF as well to the

internal Registry.

2.2 INFRASTRUCTURE

In this section are described possible infrastructure providers and infrastructure management

tools. The providers can be cloud and on premisses. The management tools provide

mechanisms to instantiate and administrate computational and network resources at the

virtual machine or container level. AWS with AWS CloudFormation provide a tool to instantiate

AWS resources, to the scope of this work, the relevant ones are the computational and

network AWS resources. Kubernetes and Docker, with the container concept, supply tools

and building blocks to instantiate network functions with the microservice concept behind.

OpenStack is normally used in NFV deployments in the VIM layer, is opensource and gives

standard interfaces that then are used by the orchestrator to access, manage and monitoring

pools of resources.

2.2.1 AWS BASICS

This section describes the basic features and components of the AWS infrastructure that can

be combined to provide powerful, secure and high available systems. These components

include user management, network, computational instances and storage.

IAM

Identity and Access Management (IAM) is the AWS service to manage access to AWS

services and resources on a secure way. In IAM there are different entities. The first one is

the user, that represents an individual person or entity. Then we get the groups which

englobes a set of users that will get the same permissions described on the third entity, the

 28

policies. The policies are a set of rules that applies to a user, a group or a role, they define the

permissions and access rules to a set of resources. Finally, we have the roles. The role entity

allows the same user to move from role to role and also a role can be assumed by different

users.

EC2 Instances

Amazon EC2 provides a wide selection of VM instance types optimized to fit different use

cases. Different instances provide different combinations of CPU, memory, storage, and

networking capacity and that provide the flexibility to choose the appropriate mix of resources

for needed for the application. Each instance type includes one or more instance sizes,

allowing the scaling of resources to the requirements of the target workload. The distinct types

of EC2 instances are divided into categories [15]:

• General purpose: These ones have a balanced mix of resources (network,

computation and memory), and can be used to variety of workloads that uses these

resources in equal proportions.

• Compute optimized: Compute optimized instances are made to be used in compute

intensive applications that require high performance processors.

• Memory optimized: With big quantities of memory available, this type of instance suits

workloads that process large datasets in memory.

• Accelerated computing: In these instances, hardware accelerators or co-processors

are used to perform functions more efficiently then in software running CPUs.

• Storage optimized: When a workload performs high and sequential reads and writes

to very large datasets in local storage, the storage optimized instances are the one to

use, since they are optimized to provide tens of thousands of input/output operations

per second to applications.

S3 – Object Storage

Amazon Simple Storage Service is storage for the Internet. It is designed to make web-scale

computing easier for developers. Amazon S3 has a simple web services interface that can be

used to store and retrieve any amount of data, at any time, from anywhere on the web. It gives

any developer access to the same highly scalable, reliable and fast data storage infrastructure

that Amazon uses to run its own global network of web sites [16]. It is called an S3 bucket. An

S3 bucket allows encryption when the files are in transit and when they are at rest. The bucket

has a backup policy that saves versions of it along the time, and it provides a lock mechanism

that can be used to fulfil legal requirements or just to ensure that the files cannot be changed.

 29

Route 53 – AWS DNS

Route 53 is the DNS service from AWS, it allows for domain registration and the definition of

a routing policy from a set offered by AWS. Route 53 connects user requests to the AWS

infrastructure [17] and can also route to outside of AWS infrastructure. Another feature of AWS

DNS is the ability to do health checks on the DNS end points. The routing policies offered by

Route 53 are [18]:

• Simple Routing policy: Here there is only a name registered but with multiple IP

addresses that are returned to the recursive resolver in a random order.

• Weighted routing policy: The traffic is routed accordingly with the weights that were

attributed to the resources.

• Latency routing policy: Route 53 finds the resource with the lowest latency and then

routes the traffic to there. This policy is mostly used when resources are in different

AWS Regions with different latencies.

• Failover routing policy: It is used when there is an active-passive failover

configuration. With the AWS health checks the traffic is routed to the active, if he fails

then Route 53 routes the traffic to the passive.

• Geo location routing policy: The traffic is routed based on the location of the users.

• Geo proximity routing policy: Used when the traffic should be routed based on the

location of the resources.

• Multivalue answer routing policy: AWS responds to DNS queries with up to eight

healthy records selected randomly.

Virtual Private Cloud – VPC

VPC is a virtual network logically isolated that is used to launch AWS resources. It gives

complete control over the virtual networking environment, including selection of IP address

range, creation of subnets, for example a public-facing subnet for web servers that have

access to the internet, and configuration of route tables and network gateways. It also allows

the placement of backend systems, such as databases or application servers, in a private-

facing subnet with no internet access. A VPC consists in Virtual private gateways, route tables,

network access control lists (stateless), subnets and security groups (stateful).

Elastic Load Balancer

An Elastic Load Balancing automatically distributes incoming application traffic to multiple

targets, such as EC2 instances, containers, IP addresses, Lambda functions, and virtual

 30

appliances. Elastic Load Balancing offers four types of load balancers that feature the high

availability, automatic scaling, and robust security necessary to make the applications fault

tolerant, they are [19]:

• Classic load balancer: it provides basic load balancing across multiple Amazon EC2

instances and operates at both the request level and connection level.

• Application load balancer: It is the load balancer suited for modern architectures like

micro-services and container-based applications since it operates at OSI layer 7. The

routing is based on the content of the request.

• Network load balancer: The faster load balancer because it is able to deal with

millions of requests with a very low latency, it routes based on IP protocol data, and it

is ideal for routing TCP and UDP traffic.

• Gateway load balancer: this load balancer makes it easy to deploy, scale, and

manage third-party virtual appliances by providing one gateway for distributing traffic

across multiple virtual appliances, while scaling them up, or down, based on demand.

2.2.2 AWS CLOUDFORMATION

AWS CloudFormation gives a way to model a collection of related AWS and third-party

resources, provision them quickly and consistently, and manage them throughout their

lifecycles, by treating infrastructure as code. A CloudFormation template describes the desired

resources and their dependencies so they can be launched and configured together as a

stack. A template can be used to create, update, and delete an entire stack as a single unit,

instead of managing resources individually.

As written before, CloudFormation treats infrastructure as code. That code is written in

templates that are YAML, as in Figure 2, or JSON formatted text files. A CloudFormation

template is a blueprint for building AWS resources [21]. From the template a Stack is created.

A CloudFormation Stack is collection of AWS resources that are managed as a unit. A stack

can be created, updated and deleted. When updating a stack, AWS CloudFormation allows

the generation of a Change set that shows how the updates will impact the already running

infrastructure.

 31

FIGURE 2 - CLOUDFORMATION YAML TEMPLANTE (FROM [20])

2.2.3 OPENSTACK

OpenStack is a cloud software composed of software components that enable the control of

large pools of compute, network and storage in a datacentre, Figure 3 presents the OpenStack

components. Besides the infrastructure as a service, OpenStack also contains components

that provide fault management, service management and orchestration.

FIGURE 3 - OPENSTACK LANDSCAPE (FROM [22])

For orchestration, OpenStack provides six components listed below [23]:

 32

• HEAT: HEAT uses templates to orchestrate resources for a cloud application based

on templates in text files. These templates describe the application infrastructure that

HEAT, by executing OpenStack API calls, generates. The templates specify the

resources, that include instances, volumes, security groups, etc., and the relations

between them. On Figure 4 an example of an OpenStack YAML template for the

creation of HEAT stack with one instance.

• SENLIN: With SENLIN, OpenStack offers the capability of creation and operation of

clusters of homogenous recourses, facilitating the orchestration of those collections.

• MISTRAL: Using YAML templates, a workflow can be described by a set of tasks and

task relations. By uploading such template to MISTRAL, it can than take care of the

steps described in the template. MISTRAL is a workflow service.

• ZAQAR: ZAQAR provides a multi-tenant messaging service bases on a RESTful API

that can be used to exchange messages between the components of the application.

• BLAZAR: BAZAR gives the ability for reservation of services or an amount of it for a

designated time period, that then it provides to users accordingly with the reservations.

I can be used to provide instantiation of network slices.

• AODH: AODH is an alarm service that can trigger actions based on metrics collected

by the data collected by the OpenStack data collection service, CEILOMETER.

FIGURE 4 - HEAT YAML TEMPLATE FOR CREATION OF ONE STACK (FROM [24])

2.2.4 VMWARE

 33

VMWare [25] offers solutions for cloud computing and virtualization both for bare metal

deployments and for deployments on top of an operative system. The VMWare hypervisors

allow for the deployment of Virtual Machines with completely virtualized hardware. The

disadvantage of VMWare is that it is not an opensource thus a license needs to be purchased.

On the other end is more friendly user, thus enabling the fast deployment and instantiation of

virtual environments.

A VMWare virtual environment provides the tools to manage the cluster network, storage,

memory and CPU. It enables the creation of virtual networks emulating the LAN concept. At

the same time, it can bridge the physical network adapter, providing connectivity for the VM.

Moreover, the software also allows the sharing of the physical devices (USB, disk drive)

between the hosting machine and the VM.

2.2.5 DOCKER

It all started with applications running in physical servers and this caused resource allocation

issues [26]. One application could consume all the resources and let the others, on the same

server, starving. On the other end, the resources could be iddle but still allocated. So, the

technology evolved to the virtualized world. Virtualization is a technology that allows the

creation of multiple Virtual Machines (VMs) on a single physical hardware system [27]. In order

for this system to work, a software called hypervisor is deployed in the physical server and

connects directly to the hardware. The hypervisor is responsible for distribute the resource to

the different VMs. Virtualization allows better usage of the resources and at the same time to

a reduction of down time of the service deployed on the VM [28]. This behaviour results from

the easiest provision, deployment, cloning and replication of a VM when compared to a

physical machine. The arising is: Are the VMs small enough? No, they are not. They still use

a lot of resources to boot the Operative System (OS). So, the container concept was born. A

container is far more lightweight that a VM [29]. Containers share the OS kernel, use much

less memory and boot way faster. So, containers are the ideal tools to bundle and run

applications.

Containers

A container is a standard unit of software that packages up code and all its dependencies. A

container image is a standalone, executable package of software that includes everything

needed to run the application: code, runtime, system tools, system libraries and settings. A

container provides isolation and security allowing to run many containers simultaneously on a

given host. Containers are lightweight because they don’t need a hypervisor and run directly

 34

within the host machine’s kernel. It is even possible to run containers within host machines

that are actually virtual machines.

Docker

With Docker it is possible to develop, run and test applications in an isolated environment, the

container [30]. Docker gives the tools and the platform to deploy, and lifecycle manage

containers.

Docker architecture rests on a client-server application called the Docker Engine. This Engine

has three main components. First, the docker daemon, it is the server and does all the hard

work of building, running and distributing the containers, a daemon can also communicate with

other daemons to manage Docker services. The second component is a Rest API that

exposes interfaces that can be used to pass instructions to the daemon. The last component

is the command line interface (CLI) that acts has the client and allows that instructions or

scripts get to the docker daemon. The Docker client can communicate with more than one

daemon.

Docker uses objects to provide the service. Networks, volumes, plug-ins are the standard

across multiple platforms. Docker then extends the object library with its own objects. Starting

with Images. A docker image is a template with instructions to create a container, usually they

are based in other images but with additional instructions. Images can be created from scratch

or found published in a registry. To build an image, a Dockerfile needs to be written with a

simple syntax. The Dockerfile describes the steps needed to create the image and run it. Each

instruction in a Dockerfile creates a layer in the image. When the Dockerfile is changed and

the image rebuild, only the changed layers are rebuilt. This is what makes images so

lightweight, small, and fast, when compared to other virtualization technologies. Another

object is the container which is a runnable instance of an image. By using the Docker API or

CLI, the container can be created, started, stopped, moved, or deleted. A container can be

connected to one or more networks, attached to storage, or even be used to create a new

image based on its current state. By default, a container is relatively well isolated from other

containers and from the hosting machine. However, the isolation configurations can be

changed. Finally, the service object. Docker services provide containers with scaling

capabilities. The containers can be replicated across multiple Docker daemons, which all work

together as a swarm of multiple workers nodes [31]. Each member of a swarm is a Docker

daemon, and all the daemons communicate using the Docker API. A service allows the

definition of the desired state, such as the number of replicas of the service that must be

available at any given time. By default, the service is load-balanced across all worker nodes.

 35

2.3 ORCHESTRATION TOOLS

The capability to automatically configure, coordinate and manage computing resources is

called orchestration. It allows for suited attribution and provisioning of resources to meet the

performance goals for a service. At the same time, orchestration enables the most effective

utilization of the resources available. This chapter provides an overview of some tools and its

building blocks that provide solutions service orchestration.

The section encompasses vertical application orchestration, NFVs orchestration and

containerized services orchestration.

2.3.1 MATILDA VERTICAL APPLICATIONS ORCHESTRATOR

MATILDA vertical applications orchestrator (VAO) is responsible for the lifecycle management

of cloud-native applications based on their deployment over a 5G programmable

infrastructure. The MATILDA VAO is formed by the following components [32]: (i) the

deployment and execution manager that produces optimal deployment plans and manages

the overall execution of the application, (ii) a set of data monitoring mechanisms which collect

metrics from the applications and from the network, (iii) a data fusion, real-time profiling and

analytics toolkit, that use machine learning mechanisms to produce advanced insights and

provide real-time profiling of the deployed components, application graphs and Virtual Network

Functions, (iv) service discovery mechanisms, that follow a service mesh approach, for

supporting registration and consumption of application- oriented services,(v) a context

awareness engine in order to provide inference over the acquired data and support runtime

policies enforcement, and (vi) mechanisms supporting interaction among the VAO and the

OSS.

Deployment and Execution Manager

This Orchestrator component is responsible to materialize a vertical application (VA)

placement plan, that incorporates the different components of the VA and the way that they

connect to each other. The VA provider introduces some constraints regarding his VA. The

telco provider interprets these constraints in a constraint satisfaction problem, when getting to

a solution, a slice is created that facilitates the requirements of the VA provider. That slice is

passed to the VAO, that is responsible to trigger the VIMs and to monitor the proper

instantiation of the vertical components.

Matilda Agent

 36

The main duty of the MATILDA Agent is done at the application layer (OSI layer 7). It handles

the signalling between the VAO and the core components. When an VA is deployed into a

MATILDA enabled provider, there is a VM to each component of the VA and all of these VM

are spanned before a seven step are executed, after all the seven steps the VA component is

operational. The seven steps are:

1. Agent booted.

2. Check executable prerequisites.

3. Fetch Image of Vertical Component.

4. Block until dependencies are resolved.

5. Spawn container of Vertical Component.

6. Register component to Software Defined Storage (SDS) server when health-check

passes.

7. Register to a pub/sub queue.

From the previous steps, it is possible to understand that the SDS server, that acts as a

key/value store, is a very important component, since it is accessible by all Agents that are

booted. Besides that, it stores all information about the VA components, Agent arguments and

Docker image’s locations.

Monitoring Mechanisms

The MATILDA monitoring system is responsible by acquisition and management of metrics,

the management of alerts and events based on these metrics, and the visualization of the

available data that comes from a variety of domains that fall in four categories:

• Network function virtualization infrastructure that includes computation, network and

storage resources both from virtual and physical resources.

• Software defined networks (SDN) elements, also physical and virtual.

• Physical devices that do not belong to the previous categories, like routers and

switches non-SDN

• Linux containers, that form the 5G VA components, deployed.

Data Analytics Toolkit

The data analytics toolkit provides a set of native analyses processes/scripts that processes

the metrics collected and presents the results in different ways. This processes/scripts include:

• Correlation Analysis.

 37

• Time Series Decomposition and Forecasting.

• Resource Efficiency Analysis.

• Clustering.

• Filter healthy metrics.

Runtime Policies Enforcement

MATILDA follows a continuous match-resolve-act approach to provide policy enforcement. On

the match phase, the alerts from the monitoring infrastructure, allow to infer the set of applied

rules that then are mapped to the application deployed graphs. On the resolve phase, the

conflicts between different rules that may be valid and were triggered at the same time. In the

act phase, the provision of a set of suggested actions by the policy manager to the

orchestration components Deployment Manager (application graphs placement) and the

Execution Manager (application graphs management) is done. Policies enforcement is

realized through a rule-based framework that attempts to derive execution instructions based

on the current set of data and the active rules, rules associated with the deployed application

graphs at each point of time.

The Policy manager consists of: (i) the working memory (WM); facts based on the provided

data, (ii) the production memory (PM); set of defined rules, and (iii) an inference engine (IE)

that does reasoning and conflict resolution as well as triggering of the appropriate actions.

The collection and consumption of the metrics data is based on a publish/subscribe model.

That uses application graphs-oriented topics to provide the correspondent data to the Policy

Manager, that converts the data into facts that can be matched to the rules on the active

policies. Each rule has two parts: the conditions and the actions to meet those conditions. If

the conditions are met, the policy is enforced, if the conditions are not met, the IE publishes

the actions on the message broker, so the orchestration consumes them. The image below

shows the interaction between the Policy manager and the monitoring agents as well with the

orchestration and slice management mechanisms.

 38

FIGURE 5 - POLICY MANAGER AND MONITORING MECHANISMS INTERACTION (FROM [32])

North bound APIs for Communication Service Providers

The Separation Support System (OSS) provides Northbound APIs towards the VAO.

MATILDA specified and partially implemented to interfaces to support the Northbound APIs:

1. Interface for accepting a slice intent from the orchestrator by asking the telco provider

to create the slice with the specifications of the Application graph.

2. Interface to inform the orchestrator if the slice can be created or not, so the deployment

of the application can begin or not.

2.3.2 ONAP

ONAP [33] is a platform for orchestration, management, and automation of network and edge

computing services. It provides real-time, policy-driven orchestration and automation of

physical, virtual, and cloud native NFs that enables rapid automation of new services and

complete lifecycle management, a fundamental need of 5G networks. Below some of the

relevant ONAP components for authentication and authorization, inventory management,

VNFs lifecycle management, monitoring and analyses and communication with the underling

infrastructure.

AAF - Application Authorization Framework

AAF [34] consists of a set of Client Libraries (CADI Framework) and RESTful Services to

support multiple Authentication Protocols. The AAF provides consistent authentication,

authorization and security to various ONAP components.

 39

AAI - Active and Available Inventory

Active and Available Inventory [35] (AAI) is the ONAP component that contains all the network

information. AAI captures references to all the service components (network, data centre

resources) and their relations. It shows the components state lively.

APPC - Application Controller

The APPC [36] API allows the management and control of VNFs’s lifecycle. The APPC

receives commands from external ONAP components to manage the lifecycle of virtual

applications and their components.

DCAE - Data Collection, Analysis and Events

Data Collection Analytics and Events [37] (DCAE) is the main data collection and analysis

system of ONAP. DCAE offers services that provide data collection and analytics.

MULTICLOUD - MultiCloud Framework

ONAP MultiCloud [38] is the mediator for the communication with VIM or cloud infrastructure

to:

• enable ONAP to deploy and run-on multiple infrastructure environments

• Offers decupling between the ONAP and the infrastructure, minimizing the impact of

update it.

• Enables infrastructure providers to expose infrastructure’s resources to ONAP allowing

for optimization of placement of VNFs.

2.3.3 OPEN-SOURCE MANO - OSM

OSM is an end-to-end network service orchestrator that allows modelling and automation of

telco services. With the OSM orchestrator it is possible to create network resources that are

identified by a service object ID that then can be manage throw the OSM northbound API in

order to control and monitor the network resource through its lifecycle. Those network

resources can belong to two categories, network services and network slices (a composition

of various network services). The OSM orchestrator is a consumer from two entities, the entity

responsible by providing the computational resources (VMs or containers) and the entity

responsible by the software defined networks.

 40

FIGURE 6 - OSM INTERATION WITH VIMS AND VNFS (FROM [39])

In OSM a VNF lifecycle goes through a three stage, day 0, day 1 and day 2 (see Figure 7).

Day 0 stage is where the VNF is instantiated and the management channels are established

and for that is required that the VNF is described and the NFVI requirements (CPU, RAM and

disk) are defined. In Day 1 stage, the VNF is configured so it can start to provide the expected

service, for it, it is required that the dependencies between components are identified. Finally,

Day 2 which is related to modifying the VNF during runtime, it requires the definition of the

dependencies, all possible configurations for runtime operations and KPIs, with these three

sets it is possible to configure closed-loop operations like Auto-scaling or Auto-healing.

FIGURE 7 – MANO VNF INSTANTIATION PROCESS (FROM [40])

 41

2.3.4 KUBERNETES

Kubernetes [41] is an opensource platform, for managing containerized services and

workloads. It allows declarative configuration and automation. Kubernetes automates rollouts

and rollbacks, monitoring the health of the services to prevent bad rollouts. It also continuously

runs health checks against the services, restarting containers that fail or have stalled, and only

advertising services to clients when it has confirmed they’ve started up successfully.

Additionally, Kubernetes will automatically scale the services up or down based off of

utilization.

In a Kubernetes cluster, a set of worker machines, called nodes, run the containers. A node

hosts Pods, that are the components of the application workload. A Node provides Kubernetes

his runtime environment and its first component is the Kubelet [42]. Kubelet takes a set of

PodSpecs and makes sure that the containers described there are running and healthy. The

second Kubernetes Node component is the kube-proxy [43]. As the name indicates, kube-

proxy is a network proxy that maintains network rules on nodes. It allows Pods to communicate

within the cluster or to outside of the cluster. Kube-proxy it can rely on the OS packet filtering

layer rules or do the forwarding by himself. The last Node component is the container runtime,

the software responsible to run the container, Docker is one of the possibilities.

In the cluster’s control plane global decisions are made and when an event occurs, the control

plane detects it and responds. The first component of the control plane is the kube-apiserver

[44] that exposes the Kubernetes API. It is Kubernetes front end, and kube-apiserver is

designed to scale horizontally. The second component is the etcd. It is a high availability key

store to save all the cluster data. The third component is the kube-scheduler [45]. Kube-

scheduler takes in consideration resource requirements (hardware, software, policy

constraints, deadlines and data locality), when a new Pod needs to be assigned to a node.

The fourth component is the kube-controller-manager, it runs controller processes that include

the node controller, the replication controller, the endpoints controller and service and token

controllers. Finally, the last component of the control plane is the cloud-controller-manager,

that is responsible to embed cloud-specific control logic. Cloud-controller-manager gives the

ability to link Kubernetes with a cloud provider API and separates the components that interact

with the cloud provider from the ones that only interact with the Kubernetes cluster.

Kubeadm, kubelet and kubectl

These three Kubernetes tools are the ones that allow an administrator to deploy and manage

a Kubernetes cluster.

 42

The first one is kubeadm [46]. Kubeadm is the tools that allows for the cluster creation with

two main instructions, init and join. Init is the instruction that bootstraps the cluster control

plane. Join bootstraps a worker node and joins it to the cluster. The second tool is kubelet

[47]. Kubelet is a node agent, running in all nodes of a Kubernetes cluster. Its job is to ensure

that each pod is running with the specs provided by the PodSpec file and that the containers

running there are healthy. Finally, the third Kubernetes tools is kubectl [48]. It is a command

line tool that enables the cluster administrator to control the Kubernetes cluster. Instructions

like apply, delete, get and describe allows the cluster administrator to deploy, delete, list and

get the description of the cluster deployed units (pods, services, etc).

2.4 MICROSERVICES

The concept behind a Microservice architecture is that complex applications become easier

to build and maintain if they are divided into smaller pieces that work together to provide the

same service expected from the monolithic application, but with optimized performance and

resource consumption.

2.4.1 DEFINITION

Microservices are an architectural method for building applications [49]. The application is

segmented into smaller pieces focused on specific functionalities [50], the microservice.

A microservice is a self-contained segment of a data, business or function domain. It contains

clear interfaces that allow for development, maintenance and operation of such applications,

especially their scaling.

FIGURE 8 - MICROSERVICE ARCHITECTURE (FROM [49]).

 43

In a Microservice architecture, services are:

• Processes that, over a network, communicate, interact and operate to fulfil an

objective. These processes use technology agnostic communication protocols like

HTTP.

• Structured around service functionalities, data pools or business capabilities.

• Capable of being implemented in distinct languages, databases, hardware and

software environments.

• Decentralized, independently deployed and developed, and built and released using

automatic processes.

It is a common practice to use a Microservice architecture in cloud-native applications. Cloud

native applications are applications conceived and built for running in the cloud. They take

advantage of the cloud resources, scaling capabilities, built-in resilience and self-healing

mechanisms and are suitable for automated management, orchestration, and monitoring.

The technological enabler for the (cloud native) microservices is the container. Containers fit

well on this architectural approach since they occupy a well-defined slice of the hosting

infrastructure and are isolated from the other containers. Another important aspect is that

containers package code, dependencies and runtime into a single binary image. These

characteristics enable containers to be moved easily and to run in any environment, whether

a Desktop, IT infrastructure or on the cloud.

2.4.2 MICROSERVICES ON MOBILE NETWORK SYSTEMS

Mobile network systems are based on network functions instead of generic business functions.

By being part of the critical communication infrastructure, network functions have the need to

satisfy requirements regarding latency and reliability. In the first three mobile network system

generations, these requirements were met by using dedicated hardware implementing the

network and its functionalities. In the fourth generation some industrial initiatives raised the

idea of replacing the hardware-based network functions by software-based ones, the virtual

network functions. With the fifth generation, the system was designed natively to be software

based and modular, fostering the transition between virtual network functions (VNFs) to cloud-

native network functions (CNFs).

3GPP defined the 5GS architecture, Figure 1, where the NFs are identified both for control

and user plane of the 5GC. At the same time 3GPP provides the functional description, as

well as the services produced by each NF to the distinct consumers [51].

 44

In principle, each NF service shall be self-contained, reusable, and managed independently

from other services offered by the same NF. These characteristics allow for agile and dynamic

scaling, independent lifecycle management and data isolation, all suiting the microservice

architectural paradigm.

2.4.3 DECOMPOSITION CRITERIA

In [51], 3GPP provides guidelines for a logical decomposition of the service producers, the

NFs. The decomposition is done, in the first iteration, along the services that the producer

offers. However, it is important to take in consideration other possible disintegration criteria.

These criteria provides different approaches that may be beneficial for different service

performance metrics that may be harmed by the strict service decomposition suggested by

3GPP. The criterium are:

• Parallelizability: NF services that can run in parallel should be decomposed. It saves

time but at the same time requires more computational resources.

• Bottleneck Approach: It is good practise to isolate the NF services that may represent

bottlenecks. On the other end, if a NF service executes rapidly or has a fast relation

with other NF services, there may be no real advantage in splitting it from the rest of

the NF services.

• Privacy/Security: In general, when decomposing the NF into independent services,

the attack surface is increased. It may also be difficult to increase security into a

heterogeneous set of containers. To reduce the threat level, it is important to configure

the services in term authentication and authorization.

• Criticality/Redundancy/Resilience: isolating services that have strict dependability

requirements will optimize the effect of their pluri-instantiation. Thus, strengthening the

overall resilience of the NF against failures.

• Dependencies:

o Data/State: There may exist dependencies between NF services within the

same NF when they share some resources/data. There must be a criterion that

is dependent on the data that a service needs to read/write/retrieve/process for

running. It may be prejudicial to be performing these operations for multiple

microservices, especially when there is the need to keep synchrony between

multiple instances of the same NF.

o Consumer/Producer: The lifetime of a consumer/producer relationship needs

to be considered. This is especially relevant with HTTP/2 where multiplexing of

 45

HTTP transactions in non-serial order over the same TCP connection is

possible.

• Portability: It is beneficial to disaggregate a service from the NF when this allows the

disintegrated service to run on a broader set of cloud resources with different types.

• Automatability: The disintegration of the NF into microservices may facilitate the

automation of service provisioning.

• Scalability: With a disintegrated NF, its scalability capability should, naturally,

improve.

• Observability: with the correct disintegration, the tracing, logging and monitoring of a

(micro) service should be improved.

• Upgradability: the disintegration can be carried out with the purpose of optimizing the

service update/upgrade operations easiness.

2.5 CONSIDERATIONS

The basis for this work is the new generation of mobile communication systems. From the first

section of this chapter, 2.1, it was possible to identify and understand the role and interfaces

of the 5GC NFs. Each of the NFs has a specific set of tasks that enable the 5GC to provide

functionalities such as connectivity and mobility management, authentication and

authorization, subscriber data management and policy management, among others. Special

attention was given to the NEF. From the NEF section, it was possible to identify all the

services provided by the NF, that will be disintegrated as microservices.

In section 2.1, three more 5G innovative concepts were explained, Network Slicing, NPNs and

5GLAN. Network slicing is the ability to provide isolated pieces of the network to specific

consumers, providing isolation and a specific Quality of Service (QoS). NPNs are the focus of

the FUDGE-5G project. The NPN section provided the knowledge of the deployment scenarios

and components necessary to provide a mobile telecommunication service on top of a private

network. 5GLAN is the transposal of the well-known concept of LAN to 5G networks. In the

5GLAN section were identified the 5GC NFs responsible for the communication establishment

and management, as well as a routing protocol to forward 5GLAN packets between UE

5GLAN group members.

Section 2.2 is focused on the infrastructure providers. To run the 5GC NFs a computational

infrastructure is necessary. This section gives the insight of the four possible infrastructure

providers, a cloud infrastructure provider, AWS, and its management tool CloudFormation. An

opensource local infrastructure provider, OpenStack, VMWare and a container infrastructure

 46

provider. AWS provides computational resources on the cloud. It has as advantage the “infinite

pool” and the availability and resilience of those resources. On the other end, the cost

associated has a high weight on the decision of using those resources. OpenStack provides

the capability of managing the resources locally and it is mandatory the hardware is available

on premises. At the same time, it is an opensource tool. Both of these tools were considered

as the virtualization providers the Virtual Machine Level. Finally, Docker is the tool that delivers

solutions to virtualization on the operative system level. The micro-service architecture is

based on containerized applications that run on top of the operative system. Docker provides

a platform to deliver the NF services as containers.

The third section, section 2.3, is focused on orchestration tools. Tools that allow for automatic

instantiation, lifecycle management and scaling of virtualized computational blocks. It

encompasses tools for the orchestration of Vertical applications, orchestration of VNFs and

orchestration of containers. From the Matilda Vertical Application orchestrator, some of the

concepts presented were applied by the OneSource team on the orchestration of Mobitrust,

OneSource Vertical Application. ONAP and OSM provide the tools for orchestration in the

Virtual Machine (VM) level both for the 5GC NFs and for the VMs that will host the containers

of the disintegrated NEF. Kubernetes provides a platform for orchestration of containers,

regarding this work, the containerized NEF services.

Finally, the last section, 2.4, describes the micro-service concept and enumerates the criteria

to disintegrate the NEF services.

 47

3 FUDGE-5G

The project presented in this document is integrated in the participation that OneSource has

on the European project FUDGE-5G. FUDGE-5G stands for FUlly DisinteGrated private

nEtworks for 5G verticals. The project started at September 2021 (M1) and is scheduled to

finish by March 2023 (M30).

The project brings together four vendors of virtualized 5GC solutions: Athonet, Cumucore,

One2many and Fraunhofer FOKUS. OneSource and Fivecomm are experts on 5G service

applications. UBITECH develops a 5G vertical application orchestrator, Matilda, described in

2.3.1. InterDigital and Huawei, two major vendors of SBA platforms. Thales, a European

leader in secured complex mission critical systems. And finally, Telenor that brings a state-of-

the-art 5G facility.

FIGURE 9 - FUDGE-5G CONSORTIUM (FROM [52])

In a system, usually a functionality is linked with a particular system component. The cloud-

native vision of SBA challenges this vision by providing the ability to transform these

functionalities into decomposed, orchestrable and controllable resources. FUDGE-5G is

based on the SBA vision and goes even further by committing to extend the SBA vision to

both control and user plane. The to be implemented framework is called enhanced Service-

Based Architecture and will decompose the 5G ecosystem into the following players: (i) NR

radio access networks, (ii) eSBA 5G platforms, (iii) mobile 5G core solutions, (iv) 5G vertical

application orchestration platforms, and (iv) 5G vertical service applications.

3.1 PROJECT OBJECTIVES

The overall FUDGE-5G objective is to devise, access and demonstrate a novel cloud-based,

unified and service based 5G architecture, solutions and systems for private networks. The

 48

FUDGE-5G platform will enable extreme interoperability and customization for industry

verticals. FUDGE-5G will provide solutions suitable for wired and wireless infrastructure, eSBA

platform, mobile 5GC, service orchestration and vertical applications.

The overall objective is divided into seven objectives:

1. Define innovative vertical uses cases for 5G private networks.

2. Design the project platform in order to provide extreme deployment customization,

both for control and user plan, for 5G private networks.

3. Devise 5G technological elements for 5G private networks, that include 5GLAN,

5GTSN, 5G multicast and the interconnection of private networks.

4. Develop and integrate the FUDGE-5G technological components into the project

platform supporting a fully disintegrated 5G infrastructure for private 5G networks.

5. To carry out at least five field trials to validate the technology readiness of the project

platform and its components.

6. Promote the project innovation on the relevant Standardization Development

Organizations.

7. Demonstrate the value of the project innovation to relevant industry groups.

3.2 PROJECT WORK PLAN

FUDGE-5G project is structured into six work packages (WP) that encompass the design,

development, integration and trials of the platform and project technologies as well as the work

regarding exploitation, dissemination and standardization activities and project management.

The work packages are the following:

WP1 Ecosystem and Platform architecture will be focused into the design and definition

both of the vertical use cases and the FUDGE-5G platform.

WP2 5G Core Technologies and Platform Development is the WP where all innovative

technologies will be developed and integrated into the project platform.

WP3 5G-VINNI integration and Execution encompasses all the work required to integrate

FUDGE-5G platform and verticals into the 5G-VINNI [53] facilities.

WP4 Demonstration of Products in real life conditions. The vertical use cases designed in

WP1 will be trialled in order to validate the project technology components. The validation will

 49

be performed from the point of view of the infrastructure provider, as well as, from the vertical

end user.

WP5 Exploitation, Standardization and Dissemination has activities that intent to improve

the exploitation of the results and know-how obtained in the trials. On the other end, it intends

to promote standardization of technologies on the relevant entities. Finally, WP5 covers the

project results and achievements dissemination.

WP6 Project Coordination contains tasks that involve takin care of risks and implementing

mitigation strategies, the communication between the project and the European Commission

officers and the 5G-PPP association. Another important activity of the WP is the management

of the ethics, privacy and data management of the vertical trials.

FIGURE 10 - FUDGE-5G GANTT CHART

3.3 USE CASES

The project realized five highly significative vertical use cases, namely: (i)Concurrent Media

Delivery, (ii) a deployable 5G network for PPDR, (iii) a 5G Virtual Office, (iv) an Industry 4.0

Campus Network, and (v) Interconnected Non-Public Networks for university campus.

 50

FIGURE 11 - FUDGE-5G USE CASES AND STAKEHOLDERS (FROM [54])

The Concurrent Media Delivery use case main goal is to use the 5G multicast capability in

a 5G LAN group to delivery popular content to all mobile users belonging to that 5G LAN

group. With this use case, FUDGE-5G will demonstrate how a mobile operator can optimize

the radio resources when carrying out highly dynamic media distribution by showcasing a

colossal video and audio media showroom. The stakeholder is NRK.

On the PPDR use case, FUDGE-5G will deploy Mission Critical Services with specific

requirements in performance, reliability and security, executed as service applications on a

pure 5G LAN. Those Mission Critical Services include push-to-talk and, video and data

retrieved from operatives deployed on the field. The stakeholder is the Norwegian Defence

Material Agency.

With the 5G Virtual Office use case, FUDGE-5G will demonstrate that a set of corporate

services can be accessed without any restriction regarding coverage range or proximity. This

use case will be realized in an hospital and will enable hospital staff to access patients files,

databases or office equipment independently of the location, allowing for the flexibility to work

remotely. The stakeholder is the Oslo universitetssykehus Rikshospitalet.

In fourth use case, FUDGE-5G will bring 5G to the industry by showcasing an Industry 4.0

campus with ultra-low latency, high reliability requirements and deterministic delivery of

messages. The arrival of 5G will allow the substitution of the wired networks by wireless

connectivity, enabling remote configuration and facilitating deployments. The stakeholder is

ABB.

For last use case, Interconnected NPNs, FUDGE-5G proposes the deployment of 5G LAN

across multiple independently administrated domains, a concept similar to Eduroam [55], thus

providing connectivity of devices in multiple own administered domains. The use case

stakeholders are Telenor, Universitat Politecnica de Valencia and Fraunhofer FOKUS.

 51

3.4 5GLAN ON FUDGE-5G

Has described on section 2.1.5, 5GLAN aims to emulate the traditional LAN capabilities in the

5G network i.e., offer IP and non-IP communications seamlessly integration the 5G network

with the fixed and wired networks. FUDGE-5G aims to go a step further and extend 5GLAN to

support the so called “all-ethernet”. The goal is to integrate multiple existing networks (5G,

fixed, wireless) into a single converge 5G network under a unified access domain. All devices

belonging to the network will be connected either by a “virtual ethernet cable” or by a real

ethernet cable.

In order to provide the 5GLAN support, the (5GLAN) UPF needs to be adapted to integrate

the mobile devices as part of the fixed LAN network. The adaptation will enable the connection

of mobile devices to other devices part of the fixed LAN.

The (5GLAN) UPF will support ethernet PDU sessions. The SMF and the (5GLAN) UPF also

need to support ARP proxying and IPV6 Neighbour solicitation proxying. As the session

manager, the SMF will request that the (5GLAN) UPF, acting has the PDU session anchor,

forwards the ARP/IPV6 Neighbour solicitation traffic to him.

Regarding the user plane traffic, the (5GLAN) UPF will perform packet modification. It will

modify the:

• Ethernet Preamble.

• Start Frame Delimiter (SFD).

• Frame Check Sequence (FCS).

When packets enter the 5G network, the (5GLAN) UPF removes the ethernet preamble, the

SFD and the FCS from the ethernet packet. On the other direction, the (5GLAN) UPF adds

the three fields to the packets leaving the 5G network.

In a 5G network, the SMF is the NF responsible for allocation and attribution of IP addresses

to the UEs. In the fixed LAN, the IP addresses are allocated and attributed by the Dynamic

Host Configuration Protocol (DHCP) server. If not managed correctly, the external attribution

would cause problems on the address management of the 5G network. The solution is to use,

instead of the IP address, the UE’s MAC address. The (5GLAN) UPF is responsible for storing

the UE’s MAC address and to associate it with the corresponding PDU session.

 52

The other service required for the integration of LAN into the 5G system, is the creation and

management of 5G VNs to provide 5GLAN UE groups. There are two options for the

management. The groups can be dynamically created by the 5G operator, or they can be

managed by an AF that uses the exposed services of the 5GC NEF. In order for the NEF to

provide the service, it may include the Group Management Function (GMF). The GMF will

implement and expose the service for create, update and remove a 5GLAN group. The service

could them be used by an AF to manage the groups.

Once the 5G VN is created, a member UE will be accessing it on the specific created PDU

session for that 5G VN.

3.5 ONESOURCE ROLE

OneSource has a role in all FUDGE-5G WPs. OneSource leads Use Case (UC) 3 – 5G Virtual

Office. It means that the company produced the UC3 blueprint presented in the Derivable 1.1

[54]. For that deliverable, the Master Thesis author wrote the entire section 3, with the

supervision of Dr. André Gomes. Yet for Deliverable 1.1, OneSource participates in UC2 -

PPDR and UC5 – Interconnected NPNs. For UC2, the Master Thesis author contributions are

related to the Vertical application, Mobitrust, description. All this works belongs to FUDGE-5G

WP1.

Regarding WP2, OneSource contributes for Task(T) 2.4 – Disintegration of Network Functions

as Micro-services. For the T2.4, each partner contributes with the disintegration of one of the

NFs. OneSource got the NEF. The work presented in this document, at its submission date,

reports OneSource contribution for T2.4, the disintegration of the NEF as Microservices.

For WP3, OneSource leads both tasks regarding UC3. The work encompasses the

coordination and integration work, involving the remaining partners, of the different

components for the Use Case testbed. The Master Thesis author participation here was on

the management of the meetings, as well as the continuous monitoring of the execution of the

planned work.

At the time of submission of this report, WP4 was not started yet.

With respect to WP5, OneSource leads T5.2 – Dissemination. The task comprises the

management and content update of FUDGE-5G dissemination channels, which includes news

and newsletter publications, as well as assuring that the project outputs are made available

for the public. The Master Thesis author was responsible by doing the work described, with

 53

the supervision of the communication team leader. For T5.1, The Master Thesis author was

responsible for describing OneSource exploitable assets and UC3 expected innovations. The

work was developed with the supervision of Dr. André Gomes. Another important output of

the participation on WP5, was the extended abstract - FUlly DisinteGrated private nEtworks

for 5G verticals [56] and [57]– submitted and accepted for 2021 EuCNC [58]. The Master

Thesis author took part on OneSource contributions for the extended abstract and was

responsible by the presentation during the conference. The video is available here [59].

Finally, WP6 where OneSource is the leading partner for T6.2 – Ethics, Privacy and data

management. For these tasks, the output was D6.2 – Data management plan. For that

deliverable, the Master Thesis author contributions encompassed the consent template and

information sheet template, as well as multiple contributions to different sections of the

document.

When the Master Thesis was submitted, OneSource was, also, taking part of a Non-Public

Networks white paper. The Master Thesis author was responsible by the identification of

relevant uses cases, and their benefits of using NPNs, to be included in the white paper.

3.6 5G VERTICALS

A vertical application is an application designed for a particular market or industry. It is

business specific software designed for a specific domain. On the 5G world, they are

applications designed to address the needs of specific vertical sectors.

Despite the natural target of satisfying the common human communications (voice, data and

internet), 5G has the goal of improving and accelerating the economy and global digital

transformation. 5G aims to provide communication solutions for vertical sectors as automotive,

manufacturing, media, energy, eHealth, public safety and smart cities.

In order to contribute to the digitalization of public awareness and eHealth, OneSource

developed an application capable of providing situational awareness for different operational

theatres.

3.6.1 MOBITRUST

Mobitrust [60] is an end-to-end platform that includes all components to provide situational

awareness for mission critical services. The platform includes the devices and a control and

command centre in completely integrated all-in-one platform.

 54

The platform provides a variety of devices that field operators and patients wear. The devices

provide a wide range of sensors and related equipment. The devices enable monitoring of a

variety of indicators that include GPS positioning, man-down detection, electrocardiogram,

respiratory rate as well as, environment monitoring to detect hazardous situations. Mobitrust

also offers communication with on-demand real-time video and audio. All the collected data

and communications are sent to command-and-control centre, enabling a continuous

monitoring and situation awareness from the decision makers.

Mobitrust is implemented into two flavours, one designed for Public Protection and Disaster

Relief (PPDR) operations and the other one for the eHealth vertical sector. The first one is be

demonstrated on the FUDGE-5G PPDR use case and the second one showcased at the 5G

Virtual Office use case.

Mobitrust Components

Mobitrust is composed by a set of components and technologies that working together provide

the platform services represented in Figure 12. The components are:

Orchestrator: It is the brains of the platform. The orchestrator manages the integration of all

components, and its tasks include the operations that provision and association of the

WebRTC mount points, the End User device sensors’ driver association and the fault tolerance

mechanism.

FIGURE 12 - MOBITRUST COMPONENTS AND ITERATIONS

 55

Operational Controller: The operation controller is responsible for the services provided by

the Command-and-Control Centre. It has all the backend operations that enable the

visualization of the data collected by the platform. The component is also responsible by

processing the request of the human operator.

Operational App: It is the frontend of the platform. Provides the visualization of all the data

collected by the platform, including sensor data and live video. The Operational app also

provides the interface for the human operator.

Message Broker: The component is the communication backhaul of the system. It follows the

publish/subscribe model. The message broker is responsible for the communication, both

control and data plane, between the components. It deals with configuration messages and

with all the sensor collected data transmission.

WebRTC server: The WebRTC server is the component that deals with the voice and video

transmission. It provides the mount points that enable the voice and video transmission

between the End User Devices and the Command-and-Control Centre.

Monitor: The monitor is the micro-service responsible by watching and reporting on the state

of the end-user devices. It uses the Message broker to ping the End User Devices and by that,

monitor their state.

PostgreSQL Database: The relational database is the component of the system that stores

the information regarding users, End user devices, mount points and their associations, as

well as the access control policies.

Tick Stack: The component that stores the data associated with a timestamp. It is composed

by influxDB, Telegraph, Kapacitor and Chronograph. It stores all the sensor data and system

events. The component has a paramount importance when data forensic analyses is required.

End User device: The wearable that incorporates all the equipment that allows for the sensor

data collection as well as for the real-time video and audio communications.

3.6.2 5G VIRTUAL OFFICE

A 5G Virtual Office provides secure access to a specific set of corporate services. This means

that a 5G device can communicate with any other device member of the 5G Virtual Office, if

there is any type of 5G coverage, including both indoors and outdoors. In an assumed hospital

environment, a group of heterogeneous individuals, from different teams and with distinct

 56

responsibilities (doctors, nurses, paramedics), share a set of office resources and have the

need to communicate both with each other, and with the hospital physical resources in a

reliable way.

For the specific context of a hospital as considered in this use case, the main application is

that hospital staff is not bound by location to access medical devices, electronic health records,

or any office equipment, allowing the flexibility to work remotely (e.g., paramedics accessing

patient health on the go, video conferencing diagnosis, remote operation of medical

equipment), including from a patient premise or another off-site location. The Vertical includes

scenarios that encompass Ward Remote Monitoring, Intra-Hospital Patient Transport

Monitoring and Ambulance Emergency Response

Ward Remote Monitoring

Unlike Intensive Care Units (ICUs) where monitoring of patients is continuous and hospitals

tend to have better equipment and more qualified staff, hospital wards have the capacity to

accommodate big quantities of patients, and the amount of time that the medical staff has to

monitor each of the patients individually is very short. Another important aspect is that wards

have sparser monitoring resources. This leads to additional delays in the detection of

symptoms, some of them life threatening, which increase the overall mortality rate. Thus, if

more sophisticated monitoring can be expanded to wards and if it can be done with less human

interaction/less need for qualified staff, the overall quality of healthcare can improve, and

mortality can decrease.

In the 5G Virtual Office use case, every time a patient enters the ward (either from admission

or from ICU), it receives a smart shirt to monitor cardiac and respiratory functions. All the data

collected by sensors is centralized in the hospital network and sent over the 5G non-public

network. This collection and the fact that it is done in real-time over 5G has multiple benefits:

first, it has no wires and does not depend on sketchy Wi-Fi coverage, meaning the patient can

be easily moved to another location without monitoring disruptions (see the next sub-

scenario); second, it enables centralized data fusion and processing with machine learning

algorithms that detect abnormal readings and dispatch alarms to the relevant staff. The latter

benefit is extremely important towards an effective monitoring, and it further reduces the need

for qualified staff to be constantly monitoring each patient. In fact, human intervention is

reduced and only exists either when an abnormal reading is automatically detected or when a

consultation is given to the specific patient.

 57

While the patients are undergoing medical care at the ward, qualified staff can also remotely

access all information and interact with patients in real time, even performing diagnostic tests

and complex procedures (for example, ventilator configuration). This means that qualified staff

and specialists do not need to move within the hospital at all times, reducing wait times,

increasing efficiency and also reducing the probability of spreading contagious conditions.

Intra-Hospital Patient Transport Monitoring

A large percentage of patients need to be moved across the hospital building to perform

exams, sometimes covering distances close to one kilometre. These patients are heavily

monitored by multiple equipment types with wires, thus moving them around is complex.

This becomes a challenge when patients need to be monitored at all times, in particular ICU

patients due to their underlying conditions and invasive monitoring equipment. Additionally,

some of the sensors (including ECG, blood pressure, SpO2, respiration rate) may require very

high sampling rates (> 100Hz) and will generate huge quantities of data that needs to be

transmitted in real time.

With the 5G non-public coverage across the entire hospital, moving patients around, when

necessary, becomes easier as coverage is highly dependable. Moreover, as it lacks wires and

supports high bandwidths/low latencies, it is also a great alternative to existing wired solutions.

As in the ward, such patients can have greater quality of monitoring delivered by the network

solution, but also a better care overall because even if a qualified person is not monitoring

vital signs at all times, an automated system is always performing a real time analysis to detect

abnormal patterns and will send alerts as soon as that happens.

Ambulance Emergency Response

An ambulance is dispatched to an emergency call and uses an NPN on top of public 5G

networks to remain connected, thus obtaining seamless connectivity with the required security

and performance.

When an ambulance is called on site, paramedics aid the patient, where they usually receive

only a brief report from the emergency call centre, identifying the patient with information

obtained from the emergency contact. The paramedics can now check the patient’s medical

history and information regarding underlying conditions (for example, medication being taken

by the patient, allergies, recent hospital visits, chronic illnesses, etc.) from the emergency

response vehicle. The information is readily available during the journey to the patient's

 58

location. Based on this patient information, paramedics apply the appropriate procedure to

stabilize the patient and start moving towards the hospital. Along this path, the patient is

monitored with cameras, microphones and biosensors. This information is uploaded, stored

and viewed at the hospital to prepare for the patient's arrival. Still, additional diagnostic tests

can now be performed to save time. If necessary, the doctor can instruct paramedics to apply

specific procedures or medications.

This is particularly relevant as, typically, an ambulance has a crew of two paramedics, one

being the driver, the other staying with the patient. The problem arises, when there are some

tasks (bureaucracy, monitoring, reporting to the hospital), for which both are necessary. When

having a doctor intervene remotely with the ambulance, as described above, the driver will be

responsible only for making the journey to the hospital. The remote

support of the doctor allows the driver to focus on a specific task, enabling the redistribution

of qualified paramedics to new ambulances to use resources more efficiently.

Upon arrival at the emergency room, everything is ready for the patient and the connectivity

of any remaining monitoring equipment is assured by the hospital’s non-public 5G network.

Mobitrust is the Vertical Application that will enable all the monitoring and data access

showcased into this vertical trial. OneSource is the leading partner of the Use Case, the

content presented in chapter 4 of [61] was produced by the author with the supervision of Dr.

André Gomes.

3.6.3 PPDR

Public Protection and Disaster Relief (PPDR) applications include software and hardware

solutions that enable emergency agencies to improve their coordination activities to respond

to threat events. Rescue operators, police forces, firefighters, ambulance services and civil

defence are examples of verticals targeted by PPDR applications.

PPDR operations, nowadays, involve several and distinct entities with a multiplicity of actors

deployed for different disaster scenarios in operational theatres (e.g., fires, earthquakes, war

zones). In order to fulfil the common mission objectives, efficient coordination at operational,

tactic and strategic level represent decisive factors. Thus, communication is a key enabler for

information to transverse the PPDR hierarchy, allowing the actors to make correct and timely

decisions. Advances in computing capabilities and cloud architectures have made possible

new kinds of information sharing, including high quality audio/video communications, image

 59

recognition and classification, as well as, near real time telemetry (e.g., geopositioning

tracking, vital signs, environmental and terrain monitoring). Likewise, the latest developments

in telecommunications allow better support of communication in those environments (e.g.,

one-to-one calls, push-to-talk mechanisms, and multi-party conferences), which ultimately

enable better collaboration models between law enforcement forces and first responders and

improve the overall situation awareness. The Vertical trial encompasses scenarios that

demonstrate different types of backhaul connectivity of the PPDR operational mobile

telecommunications infrastructure: autonomous edge, intermittent connectivity to a remote

cloud and the coexisting of the private and public mobile telecommunications network.

5G core and cloud applications deployed in FUDGE-5G mobile autonomous edge

In this scenario, a mobile autonomous edge is deployed, providing a communication bubble

based on a 5G Non-public Network. A vehicle carrying the required infrastructure (5GC, Radio

and Vertical Applications) provided 5G coverage for a mission critical operations theatre. With

this deployment, the mobile telecommunication is assured in any circumstances. The scenario

aims to demonstrate the capability of delivering 5G coverage anywhere, enabling the support

of the PPDR operations [61].

Intermittent backhaul connectivity and heterogeneous deployment

The communication bubble showcased in the previous scenario, is based on limited

computational capabilities. Those capabilities are the ones needed to support the minimal

mobile telecommunication requirements. When on a PPDR scenario where the national/local

communication infrastructure is destroyed or damage, eventually it will start to recover. This

scenario aims to demonstrate the FUDGE-5G platform capabilities to leverage remote cloud

capabilities provided by the nationwide telecommunications infrastructure that is now starting

to recover from the disaster. The goal is to overcome the limited computational capabilities of

the theatre deployed telecommunications bubble with enhanced performing applications, with

fewer resource constraints. Without a full recovered national telecommunications

infrastructure, only vertical applications will be considered to run on the remote cloud. Thus,

only user plane traffic will be shifted. The control plane will stay at the bubble, that is the only

capable of provided reliable performance.

Coexistence of public and non-public networks

On the previous scenarios it is assumed that the national/local mobile telecommunications

infrastructure is destroyed or damage, however, it does not always happen. In this scenario is

 60

assumed that there are available other public and non-public networks and that the mobile

devices are capable to connect to them, in different network slices. These networks can offer

other services that may not be mission critical. Therefore, one slice offers connectivity to the

public network, with best-effort performance. The other slice is the one that is served by the

FUDGE-5G communication bubble and that assures connectivity to the local deployed mission

critical services and PPDR applications. This slice provides a better QoS regarding

prioritization, traffic isolation and security.

One of the PPDR applications providing mission critical services, on the three scenarios, is

Mobitrust. Mobitrust will be responsible for the situational awareness service, enabling the

monitor of the deployed forces as well as the surrounding environment. With those capabilities,

the task leaders will be able to get near-real time information from the operations theatre.

The complete blueprint of the Use case can be found on section 3 of [61].

 61

4 NEF AS MICRO SERVICES

The 5GC was designed following the 3GPP Service-Based reference architecture [62],

allowing the exposure of the network capabilities to operators, application developers and

service provides via standardized APIs. However, the 5GC NFs are standardized to be

deployed as VNFs. VNFs are monolithic entities deployed on top of Virtual Machines.

The work, described below, is integrated into task 2.4 - Disintegration of Network Functions

as Microservices - from FUDGE-5G Work Package 2 . For this task each partner selected the

5GC NF that they plan to disintegrate. OneSource chose the NEF to disintegrate due to its

previous developed work with this particular NF, showcased in the project Mobilizador 5G [63].

4.1 PROBLEM STATEMENT

As the 5GC evolves, it needs to provide an even bigger variety of services. The increasing

number of services, built on top of the monolithic NFs, increase exponentially the complexity

of the code. Activities like bug resolution, interface modifications, adding capabilities impact

the NF as a whole.

In the last version of 3GPP rel. 16, the NEF is standardized to support around 20 services with

different development challenges, runtime requirements, maintenance needs and downtime

impact. With the deployment of a monolithic NEF these service characteristics will propagate

to all the NEF services, thus limiting the performance of the overall NF.

One can argue that the NF can be scaled, i.e., deployed with multiple instances. It is a possible

approach, but with big inefficiencies. If the NF is replicated due to service A that faces a large

load/traffic and at the same time, NF service B requires a big chunk of computational

capabilities but faces a low number of requests, that do not require replication. By replicating

the NF, those computational capabilities will be reserved but idle, increasing cost to the service

provider, and ultimately to the service consumer.

With monolithic NFs, a single bug on one of its services can bring down the whole NF, the

same is true for updates, even the smaller ones require the redeployment of the whole NF.

Technologies that are well suited for a specific service may become difficult to adopt due to

the implications on the remaining services.

From the point of view of the network operators [64], the challenge is to have an environment

where they can deploy and upgrade services frequently, meeting the market demands.

 62

Monolithic NFs do not suit these requirements. In reality, they do not benefit from the cloud

capabilities (scaling, self-healing, intelligent orchestration, etc) since they do not offer the ideal

deployment unit.

4.2 PROPOSED SOLUTION

In order to overcome the problems identified for NFs deployed as monolithic entities, and in

particular, the monolithic NEF, the solution is to follow a micro service architecture. The NEF

services , described at section 2.1.2 are disintegrated, decoupling the NEF in small units that

communicate using the same interfaces and by using HTTP, thus following the standardized

APIs from 3GPP.

By deploying the NEF as a set of independent micro services a number of advantages arise:

• The services become easier to manage due to their smaller size

• When an update is needed, only the update service needs to be redeployed,

maintaining the remaining services unchanged and on-line. The redeployed time is

also smaller that the redeployment of the monolithic NF.

• The technology used for the service is the one that better fulfils the business

requirements.

• The failing of the service does not affect the remaining NF services.

Instead of running the NF on top of a Virtual Machine, the services are containerised and

deployed on top of a container engine. By transforming the monolithic NEF into a set of

containers, the exploitation of the cloud capabilities becomes efficient, since a container is the

ideal deployment unit for cloud deployments.

4.2.1 SOLUTION IMPLEMENTATION

In order to implement the NEF services as micro services (Scenario 1), each one of them was

written into a python version 3 executable. Since the 5GC is standardized as RESTful APIs,

each executable runs a local instance of the Quart framework [65]. To perform the HTTP

requests, python library Requests [66] was used. To transport the data inside the HTTP

requests and responses, JSON format was used.

Regarding the architecture design(see Figure 13), a NEF gateway exposes all the NEF

services to the consumers (AF, SMF and NWDAF) and performs the SCP role (see 2.1.6)

based on independent deployment units. When a request arrives at the gateway, it is

 63

responsible to forward the request to the target micro-service and, once received the

response, it forwards it to the service consumer. In order to avoid processing bottleneck at the

gateway, no processing is made there, it just forwards the requests and replies.

Each NEF service container is deployed into a Kubernetes pod that runs in a node. A pod is

not shared by multiple containers, but a node may host multiple pods. The micro services are

implemented to support multiple instances but on separated pods.

FIGURE 13 - DESINTEGRATED NEF ARCHITECTURE

 64

Moreover, to perform the experiments, a monolithic version of NEF was also created (Scenario

2). This version was used to establish the experiment baseline that allowed for the micro-

service architecture performance to be

compared.

Each of the python executables, including the

gateway, the micro-services, and the monolithic

NEF version, were packed as a docker image.

The docker images were, then, saved to a

GitLab image registry. From the image registry,

Kubernetes is able to pull and deploy them into

a cluster.

The Kubernetes deployment instructions are

written into a YAML file, Figure 14. A file for

each of the microservices was written. The file

has two parts. The first one defines a

deployment instance - in this case it is a

container. The first part has the instruction from were to pull the image and the port that is

open on the container. The second part defines the service characteristics, in the example a

ClusterIP exposing port 6700. The service deployment is managed by kubectl.

In order to perform the experiments, a NEF consumer was also implemented, an AF. The AF

is the entity that requests actions provided by the NEF services through the RESTful APIs.

For the AF, the request process is transparent in both scenarios.

FIGURE 15 - COMMUNICATION SEQUENCE SCENARIO 1

In Scenario 1 (Figure 15), the request is made to the NEF gateway and forward to the target

(micro) service. The response follows the reverse path.

FIGURE 14 - NEF MICRO-SERVICE YAML FILE

 65

FIGURE 16 - COMMUNICATION SEQUENCE SCENARIO 2

In the second scenario, the request is made to the monolithic NEF (Figure 16), that replies as

soon as the requested action is performed. It is expected that the requests made to the NEF

as micro-services take a higher time to be replied, due to the additional communication step.

4.2.2 TESTBED

The testbed,(see Figure 17), is supported by a server with 8 AMD Ryzen 7 CPU cores @

3.6GHz, 32GB DDR4 RAM and 500 GB SSD. The server deployed four Virtual Machines

(VMs).

The Kubernetes cluster has three nodes, hosted within VMs (see Figure 18). A fourth VM was

deployed to run the AF(s). Table 1 displays the hardware of each of the computational nodes.

TABLE 1 - TESTBED HARDWARE

Virtual Machine Hardware

Master Node • 8 vCPUs
• 8 GB DDR4
• 40 GB SSD Worker Node 1

Worker Node 2

AF(s) VM • 2 vCPUs
• 4 GB DDR4
• 20 GB SSD

 66

FIGURE 17 - TESTBED ARCHITECTURE

The VMs run Ubuntu 20.04.3 LTS, Kubernetes 1.22.1 and Docker 20.10.8.

FIGURE 18 - KUBERNETES NODES

4.3 EXPERIMENTS AND RESULTS

In this section the experiments are described in detail. Furthermore, the experiment results

are presented, and some conclusions are written.

4.3.1 EXPERIMENTS

For the experiment, eleven of the NEF services were deployed into the Kubernetes cluster

(see Figure 19). Moreover, the NEF gateway and the Monolithic NEF were also deployed into

the cluster.

 67

FIGURE 19 - NEF SERVICES DEPLOYED INTO THE KUBERNETES CLUSTER

The first group of experiments consisted in the execution of 20, 40 and 60 AF(s) in parallel as

processes in the same VM for an interval of 120 seconds. The different number of consumers

(AFs) allowed for the measurement of the system performance with different loads. On the

experiments, was measured the time interval between the beginning of the request and the

arrival of the response. The measurements were made at the AF(s) VM. Furthermore, the

HTTP status code was also written to the log file. The experiments were made both for the

NEF as Micro-Services as well as for the monolithic NEF, resulting into six datasets (M 20,

MS 20, M 40, MS 40, M 60 and MS 60.

A second group of experiments was conducted. It addressed the capability of the micro service

NEF to still provide a service when some of the micro-services are down, its availability [67].

The experiment was conducted by shutting down two micro services at a time. For each of the

shutdown cycles, the 20 parallel AFs performed requests for 120s, resulting into 5 datasets

(9, 7, 5, 3 and 1).

4.3.2 RESULTS

With the experiments explained in detail, this section describes the results. The request-

response cycle is measured, the progressive micro-service NEF degradation is studied and,

finally, the implementation complexity of both architectural approaches is correlated with the

code lines number of the implementation. Table 2 identifies and describes the datasets

collected and studied.

TABLE 2 - DATASET DESCRIPTION

Dataset ID Description

 68

M 20 Monolithic Service NEF with requests from 20 parallel AFs

MS 20 Micro Service NEF with requests from 20 parallel AFs

M 40 Monolithic NEF with requests from 40 parallel AFs

MS 40 Micro Service NEF with requests from 40 parallel AFs

M 60 Monolithic NEF with requests from 60 parallel AFs

MS 60 Micro Service NEF with requests from 60 parallel AFs

9 Micro Service NEF, running 9 out of the 11 micro services, with requests from 20 parallel AFs

7 Micro Service NEF, running 7 out of the 11 micro services, with requests from 20 parallel AFs

5 Micro Service NEF, running 5 out of the 11 micro services, with requests from 20 parallel AFs

3 Micro Service NEF, running 3 out of the 11 micro services, with requests from 20 parallel AFs

1 Micro Service NEF, running 1 out of the 11 micro services, with requests from 20 parallel AFs

Request – Response Cycle Duration

The time elapsed between the request and the response is, in average, doubled in the micro

service (MS) deployment when compared to the monolithic (M) deployment, as shown in Table

3. This observation is valid for the three load levels (20, 40 and 60 AFs). This result is

explained with the additional communication step, between the gateway and the micro service.

FIGURE 20 - GRAPHICAL REQUEST - RESPONSE DURATION VARIATION

 69

Despite the previous observation, an important aspect visible in Figure 20 is the variation of

the measured cycle duration. It is visible that the monolithic datasets present a bigger

dispersion on the gathered values.

TABLE 3 - MEAN, STANDARD DEVIATION AND VARIANCE OF THE DATASETS

MS 20 M 20 MS 40 M 40 MS 60 M 60

Mean (s) 0,1022 0,0524 0,2004 0,1056 0,2990 0,1578
Std. Dev. (s) 0,0174 0,0270 0,0267 0,0582 0,0415 0,0903
Variance (s) 0,0003 0,0007 0,0007 0,0034 0,0017 0,0081

By computing the standard deviation and the variance of the datasets in Table 3 and Figure

21, the numbers show that the monolithic NEF values are dispersed into a range,

approximately, two times bigger than the micro-service one. This is explained by the capacity

that the micro service deployment has to distribute the load among the independent services,

unlike the monolithic implementation that needs to deal with all the load. It causes processing

latency when overloaded with requests, resulting into bigger latency values.

FIGURE 21 - MEAN, STANDARD DEVIATION AND VARIANCE

Regarding the capability of both approaches to deal with different load levels, the data shows

that for the tested load levels, the duration of the request-response cycle increases

proportionally. When the load is doubled (20 vs 40 AFs), the duration doubles in average.

When there is an increment of 50% on the load (40 vs 60 AFs), the duration also increases

50% on average. On the other end, the dispersion of the data is much bigger for the monolithic

NEF as the load increases. This shows that the micro-service NEF suits better services that

require a smaller variation of the request-response cycle latency.

Service Availability

 70

The capability to provide a degraded service when experience problems in some of the micro-

services, is one of the advantages of that architectural approach. Compared to the monolithic

implementation, there is not much to say, either it provides all services or none.

In order to measure the implemented micro-service NEF availability, the HTTP status code of

each response was registered and divided into two categories, success codes and error

codes. The success codes include the 2xx group (200, 201 and 204) and the error code

includes the 500-error code.

FIGURE 22 - MICRO SERVICE ARCHITECTURE SERVICE DEGRADATION

As shown in

 71

, as the micro services are going down, the number of error codes increase, as expected. On

the other end, it visible that, despite a degraded service, the architectural approach is still able

to provide success responses. In order to maximize this micro service architectural

characteristic, multiple replicas of the micro service can be run in parallel, impacting the

response times, but avoiding the error codes.

Code Size

The complexity of an implementation can be measured by the number of lines needed to

implement a particular functionality. One of the benefits of the micro-service architecture is

that the micro services tend to be less complex that the monolithic implementation. By

comparing the NEF implementations used to perform the experiments on this document, the

monolithic NEF presents approximately 6 times more code lines that each of the micro

services.

4.4 DISCUSSION

From the experiments four main conclusions arise. When it comes to the duration of the

request-response cycle, the monolithic NEF has on average half of the duration when

comparing with the micro-service NEF. It was an expected result due to the network

communication between the gateway and the micro service, whereas the value dispersion is

much bigger for the monolithic NEF implementation. This behaviour is a result of the

bottleneck that the monolithic NEF presents, when compared to the load distribution of the

micro-services based approach. The experiment results, also, showed that the micro-service

NEF has the capability to provide a degraded service when one or a group of micro services

are unavailable. The monolithic NEF does not have this capability due to its nature. Finally, by

comparing the number of code lines needed to implement the monolithic NEF vs the micro-

service implementations, it becomes apparent to which extent the latter has an advantage.

While this constitutes a rather crude code complexity metric, it provides some interesting

insights regarding the existing differences between both implementations.

It is expected that by scaling the two NEF architectural approaches the latency results would

improve. The gateway of the micro service NEF, despite not being a processing bottleneck, it

would become a communication bottleneck. It would be interesting for future work to study the

system performance with the presence of multiple instances of the micro-services and

gateway as well as comparing the results with replicated monolithic NEFs. However, in order

to do that it is important to understand the more suitable load balancing policy between the

different instances.

 72

5 PROJECT MANAGEMENT

This chapter describes the first and second semester activities, regarding the work plan of the

Master Thesis presented in this document.

The first section presents the work plan for the first semester and the effective work conducted.

The second section describes the proposed work plan concerning the second semester and

the real work plan performed.

5.1 FIRST SEMESTER

Figure 23 and Table 4 illustrate the initial proposed plan for the first semester. Since the

predicted tasks experienced delays and changes, the progress of the project took a different

path from the initial plan. Therefore, the real schedule of the work plan is presented at Table

5 and Figure 24.

Description Start Date End Date Duration
(Days)

T1.1- State of the art and requirements analyses 21/09/2020 22/11/2020 62

T1.1.1 - Studying 5G Topology/Components 21/09/2020 15/10/2020 24

T1.1.2 - Infrastructure Providers 15/10/2020 02/11/2020 18

T1.1.2.1 - AWS CloudFormation 15/10/2020 24/10/2020 9

T1.1.2.2 - Docker 25/10/2020 02/11/2020 8

T1.1.3 - Orchestration Tools 03/11/2020 18/11/2020 15

T1.1.3.1 - Matilda Vertical Applications Orchestrator 03/11/2020 08/11/2020 5

T1.1.3.2 - ONAP 09/11/2020 18/11/2020 9

T1.1.4 - 5GLAN - Studying Releases/Papers 19/11/2020 22/11/2020 3

T1.2- Initial design of the proposed solution 01/01/2021 09/01/2021 8

T1.2.1 - 5GLAN - Proposed Solution Analyses and

Design

01/01/2021 05/01/2021 4

T1.2.2 - Orchestration - Proposed Solution Analyses

and Design

06/01/2021 09/01/2021 3

T1.3 - FUDGE-5G Use Cases 01/10/2020 20/12/2020 80

T1.4 - Writing the report 04/12/2020 19/01/2021 46
 TABLE 4 – FIRST PLANNED SEMESTER SCHEDULE

 73

FIGURE 23 – FIRST SEMESTER PLANNING CHART

Description Start Date End Date Duration
(Days)

T1.1- State of the art and requirements analyses 21/09/2020 04/12/2020 74

T1.1.1 - Studying 5G Topology/Components 21/09/2020 15/10/2020 24

T1.1.2 - Infrastructure Providers 15/10/2020 02/11/2020 18

T1.1.2.1 - AWS CloudFormation 15/10/2020 18/10/2020 3

T1.1.2.2 - Docker 19/10/2020 22/10/2020 3

T1.1.2.3 - OpenStack 23/10/2020 02/11/2020 10

T1.1.3 - Orchestration Tools 03/11/2020 28/11/2020 25

T1.1.3.1 - Matilda Vertical Applications Orchestrator 03/11/2020 06/11/2020 3

T1.1.3.2 - ONAP 07/11/2020 17/11/2020 10

T1.1.2.5 - Open-Source Mano 18/11/2020 28/11/2020 10

T1.1.4 - 5GLAN - studying Releases/Papers 01/12/2020 04/12/2020 3

T1.2 - FUDGE-5G Use Cases 01/10/2020 20/12/2020 80

T1.3 - Writing the report 04/12/2020 19/01/2021 46
TABLE 5 – FIRST SEMESTER EFECTIVE SCHEDULE

FIGURE 24 – FIRST SEMESTER EFECTIVE SCHEDULE CHART

 74

The first performed task was the studying of the 5GC topology and components (NFs), with

focus on the NEF. It was a time-consuming task due to the novelty of the content to the author.

The following task the study of the cloud infrastructure providers AWS, OpenStack and

Docker, which was followed by studying the VNF orchestration tools ONAP and OSM, a

vertical application orchestrator Matilda and finally Kubernetes, a containerised application

orchestrator.

5.2 SECOND SEMESTER

The plan proposed for the second semester is presented in Table 6 and Figure 25. Like in the

first semester, adjustments were made to the schedule. Some tasks suffered major delays

impacting the following ones. Figure 26 and Table 7 showcase the effective schedule.

TABLE 6 – SECOND SEMESTER PLANNED SCHEDULE

Description Start date End date Duration
(days)

T2.1- Identification and Desintegration of the
NEF services

20/01/2021 18/05/2021 118

T2.1.1 - Identification of the NEF Services and
its requirements

20/01/2021 25/01/2021 5

T2.1.2 - NEF Services implementation 26/01/2021 01/04/2021 65

T2.1.3 - Service Containerization 02/04/2021 20/04/2021 18
T2.1.4 - Kubernetes PodSpecs creation 21/04/2021 18/05/2021 27

T2.2 - Test Bed instalation and Integration tests 19/05/2021 05/06/2021 17

T2.2.1 - Test Bed instalation 19/05/2021 21/05/2021 2

T2.2.2 - Kubernetes micro-services deployment 22/05/2021 25/05/2021 3

T2.2.4 - Test the integration of the micro
services with the NEF gateway

25/05/2021 26/05/2021 1

T2.2.5 - Test the integration of the micro
services with the NEF consumers

27/05/2021 01/06/2021 5

T2.3 Experiment and Results 02/06/2021 16/06/2021 14

T2.4- Writing internship report. 01/05/2021 30/06/2021 60

 75

FIGURE 25 – SECOND SEMESTER PLANNED CHART

19/01/2021 06/02/2021 24/02/2021 14/03/2021 01/04/2021 19/04/2021 07/05/2021 25/05/2021 12/06/2021

T2.1- Identification and Desintegration of the NEF services

T2.1.1 - Identification of the NEF Services and its requirements

T2.1.2 - NEF Services implementation

T2.1.3 - Service Containerization

T2.1.4 - Kubernetes PodSpecs creation

T2.2 - Test Bed instalation and Integration tests

T2.2.1 - Test Bed instalation

T2.2.2 - Kubernetes micro-services deployment

T2.2.4 - Test the integration of the MS with the NEF gateway

T2.2.5 - Test the integration of the MS with the NEF consumers

T2.3 Experiment and Results

T2.4- Writing internship report.

 76

Description Start date End date Duration
(days)

T2.1- Identification and Desintegration of the NEF
services

20/01/2021 28/05/2021 128

T2.1.1 - Identification of the NEF Services and its
requirements

20/01/2021 25/01/2021 5

T2.1.2 - NEF Services implementation 26/01/2021 15/04/2021 79

T2.1.3 - Service Containerization 16/04/2021 30/04/2021 14

T2.1.4 - Kubernetes PodSpecs creation 01/05/2021 28/05/2021 27

T2.2 - Test Bed instalation and Integration tests 28/05/2021 15/07/2021 48

T2.2.1 - Test Bed instalation 28/05/2021 06/06/2021 9

T2.2.2 - Kubernetes micro-services deployment 07/06/2021 12/06/2021 5

T2.2.4 - Test the integration of the MS with the NEF
gateway

13/06/2021 30/06/2021 17

T2.2.5 - Test the integration of the MS with the NEF
consumers

01/07/2021 15/07/2021 14

T2.3 Experiment and Results 16/07/2021 31/07/2021 15

T2.4- Writing internship report 01/07/2021 30/08/2021 60

TABLE 7 - SECOND SEMESTER EFFECTIVE SCHEDULE

The second semester had the majority of the time dedicated to the NEF and its disintegration.

The disintegration of the NEF services took 128 days to perform, 10 more days that the initial

plan.

A major delay on task 2.2 was the reason for the rescheduling of the report deliver from June

30th to September 7th. The delay was caused by complexity of the Kubernetes cluster inter-

service communication. This affected the integration tests and delayed the experiment.

After the integration of the NEF services with the respective consumers, and gateway, the

experiment took place. The next step was to process the collected datasets to obtain the

experiment results.

Finally, the remaining task was the report writing. It included the modifications from the

midterm review meeting and the new content regarding the practical work.

 77

FIGURE 26 - SECOND SEMESTER EFFECTIVE SCHEDULE

19/01/2021 18/02/2021 20/03/2021 19/04/2021 19/05/2021 18/06/2021 18/07/2021 17/08/2021

T2.1- Identification and Desintegration of the NEF services

T2.1.1 - Identification of the NEF Services and its requirements

T2.1.2 - NEF Services implementation

T2.1.3 - Service Containerization

T2.1.4 - Kubernetes PodSpecs creation

T2.2 - Test Bed instalation and Integration tests

T2.2.1 - Test Bed instalation

T2.2.2 - Kubernetes micro-services deployment

T2.2.4 - Test the integration of the MS with the NEF gateway

T2.2.5 - Test the integration of the MS with the NEF consumers

T2.3 Experiment and Results

T2.4- Writing internship report

 78

6 CONCLUSIONS

With the 5th Generation of mobile networks major improvements in bandwidth, latency and

equipment density per km2 will be broth to the companies and end-users of this new

technology. However, it is fundamental to the telco providers, to virtualize the network and

thus provide 5G in a costly-efficient and scalable way.

3GPP standardized the 5G Core network functions and its APIS. The standardization allows

for interoperability and to network operators and application developers to develop the 5G

network following the standards. As the standardization evolves, the number of services

provided for each of the 5G Core network functions is growing. Despite the standardization,

the 5G Core network functions are becoming an heterogenous mesh of services with different

requirements. Thus, the implementation of the 5G Core NFs is resulting into monolithic entities

with a huge number of code lines. The consequence is that the 5GC NFs lifecycle

management is becoming complex, when dealing with maintenance, updates and scaling. To

solve this problem, FUDGE-5G proposes the disintegration of the 5G Core network functions

into micro services.

Concerning the state of the art for this work, it was possible to identify, that the tools for the

orchestration and management of those micro services already exist. Tools like Docker and

Kubernetes. The former, provides a framework to packaging all dependencies and code of an

application into a container that is agnostic to the operative system. The ladder provides a

system for deployment, scaling and management of containerized applications. By using both

tools, it is possible to decompose the 5GC NFs into a set of smaller services and orchestrate

them in a way that the NF provides the expected service in a transparent way for the

consumer.

The way how the services should be separated can follow different criteria. Services that have

traffic peaks can be isolated and scaled, services that consume a lot of processor and memory

too. The NEF decomposition into micro services, presented in this document, was made by

splitting the 3GPP standardized NEF services into independent units. The criterion was

chosen in order to maximize the NEF service availability.

By disintegrating the 5GC NFs, following the micro service approach, the 5G Core becomes

a loosely couple and scalable system, making the 5G mobile telecommunications network

more resilient and easier to manage.

 79

7 BIBLIOGRAPHY

[1] “FUDGE-5G,” [Online]. Available: https://fudge-5g.eu/.

[2] “OneSource,” [Online]. Available: https://onesource.pt/#customizedSystems.

[Accessed 2021].

[3] “mobitrust,” [Online]. Available: https://mobitrust.onesource.pt.

[4] “SCRUM,” [Online]. Available: https://www.scrum.org. [Accessed 2021].

[5] “5G New Radio,” [Online]. Available: https://www.electronics-

notes.com/articles/connectivity/5g-mobile-wireless-cellular/5g-nr-new-radio.php.

[Accessed May 2021].

[6] “3rd Generation Partnership Project; Technical Specification Group Services and

System Aspects; System architecture for the 5G System (5GS); Stage 2 (Release

16),” 3GPP, 2020.

[7] 3GPP, “3GPP TS 23.502 V16.7.1,” 3GPP, 2021.

[8] ETSI, “ETSI TS 129 554”.

[9] NGMN Alliance, “5G White paper, V.1.0,” February 2015. [Online]. Available:

https://www.ngmn.org/wp-content/uploads/NGMN_5G_White_Paper_V1_0.pdf.

[Accessed 6 January 2020].

[10] 3GPP, “3GPP TS 22.261 – Section 6.25”.

[11] “NPNs – State of the art and way forward,” 5G PPP Technology Board, To be

published.

[12] Trossen, Robitzsch, Reed, Al-Naday and Riihijarvi, “Internet Services over ICN in 5G

LAN Environments draft-trossen-icnrg-internet-icn-5glan-03,” 1 October 2020.

[Online]. Available: https://tools.ietf.org/html/draft-trossen-icnrg-internet-icn-5glan-

03#page-21. [Accessed 6 January 2021].

[13] 3. G. P. Project, “Technical Specification Group Services and System Aspects;

Service requirements for the 5G system; TS 22.261 V18.1.0; Stage 1 (Release 18),”

2020.

[14] M. J. R. J. R. M. G. N. F. G. X. 1. E. 2. o. E. 3. A. U. 4. 5. U. o. E. &. B. Dirk Trossen1,

“IP Over ICN - The Better IP?,” in 2015 European Conference on Networks and

Communications (EuCNC), Paris, France, 2015.

 80

[15] “Amazon EC2 Instance Types,” 2020. [Online]. Available:

https://aws.amazon.com/ec2/instance-types/. [Accessed 24 12 2020].

[16] “What is Amazon S3?,” 2020. [Online]. Available:

https://docs.aws.amazon.com/AmazonS3/latest/dev/Welcome.html. [Accessed 24 12

2020].

[17] “Amazon Route 53,” 2020. [Online]. Available: https://aws.amazon.com/route53/.

[Accessed 24 12 2020].

[18] “Choosing a routing policy,” 2020. [Online]. Available:

https://docs.aws.amazon.com/Route53/latest/DeveloperGuide/routing-policy.html.

[Accessed 24 12 2020].

[19] “Elastic Load Balancing,” 2020. [Online]. Available:

https://aws.amazon.com/elasticloadbalancing/?elb-whats-new.sort-

by=item.additionalFields.postDateTime&elb-whats-new.sort-order=desc. [Accessed

24 12 2020].

[20] “AWS CloudFormation concepts,” 2020. [Online]. Available:

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/cfn-whatis-

concepts.html. [Accessed 25 12 2020].

[21] “AWS CloudFormation template formats,” [Online]. Available:

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/template-

formats.html. [Accessed 07 01 2021].

[22] “OpenStack Sotware,” [Online]. Available: https://www.openstack.org/software/.

[Accessed 10 01 2021].

[23] “OpenStack Services,” [Online]. Available:

https://www.openstack.org/software/project-navigator/openstack-

components/#openstack-services. [Accessed 10 01 2021].

[24] “Launch an instance,” [Online]. Available:

https://docs.openstack.org/heat/latest/install/launch-instance.html#create-a-stack.

[Accessed 10 01 2020].

[25] “VMWare,” [Online]. Available: https://www.vmware.com. [Accessed 2021].

[26] “What is Kubernetes?,” 22 10 2020. [Online]. Available:

https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/. [Accessed 23 12

2020].

[27] RED HAT, “Understanding virtualization,” 2020. [Online]. Available:

https://www.redhat.com/en/topics/virtualization. [Accessed 23 12 2020].

 81

[28] J. Shamir, “5 Benefits of Virtualization,” IBM, 2020. [Online]. Available:

https://www.ibm.com/cloud/blog/5-benefits-of-virtualization. [Accessed 23 12 2020].

[29] “CONTAINERS AT GOOGLE,” 2020. [Online]. Available:

https://cloud.google.com/containers. [Accessed 23 12 2020].

[30] “Docker overview,” 2020. [Online]. Available: https://docs.docker.com/get-

started/overview/. [Accessed 23 12 2020].

[31] “Docker overview,” 2020. [Online]. Available: https://docs.docker.com/get-

started/overview/#docker-architecture. [Accessed 24 12 2020].

[32] M. Project, “5G-Ready Vertical Applications Orchestration - Whitepaper,” 2020.

[Online]. Available: https://t.co/NgfztmC2Ya?amp=1. [Accessed 24 12 2020].

[33] “ONAP,” [Online]. Available: https://www.onap.org. [Accessed 2021].

[34] “AAF - Application Authorization Framework,” [Online]. Available:

https://docs.onap.org/projects/onap-aaf-authz/en/latest/index.html#master-index.

[Accessed 2021].

[35] “AAI Documentation Repository,” [Online]. Available:

https://docs.onap.org/projects/onap-aai-aai-common/en/honolulu/index.html#master-

index. [Accessed 2021].

[36] “APPC LCM API Guide,” [Online]. Available: https://docs.onap.org/projects/onap-

appc/en/frankfurt/APPC-LCM-API-Guide/APPC-LCM-API-Guide.html#introduction.

[Accessed 2021].

[37] “DCAE Architecture,” [Online]. Available: https://docs.onap.org/projects/onap-

dcaegen2/en/honolulu/sections/architecture.html. [Accessed 2021].

[38] “ONAP MultiCloud Architecture,” [Online]. Available:

https://docs.onap.org/projects/onap-multicloud-framework/en/honolulu/MultiCloud-

Architecture.html#value-proposition. [Accessed 2021].

[39] “OSM Quickstart,” [Online]. Available: https://osm.etsi.org/docs/user-guide/01-

quickstart.html. [Accessed 11 01 2020].

[40] [Online]. Available: https://osm.etsi.org/docs/vnf-onboarding-guidelines/00-

introduction.html. [Accessed 01 2020].

[41] “Kubernetes,” [Online]. Available: https://kubernetes.io. [Accessed 2021].

[42] “kubelet,” [Online]. Available: https://kubernetes.io/docs/reference/command-line-

tools-reference/kubelet/. [Accessed 2021].

[43] “kube-proxy,” [Online]. Available: https://kubernetes.io/docs/reference/command-line-

tools-reference/kube-proxy/. [Accessed 2021].

 82

[44] “kube-apiserver,” [Online]. Available: https://kubernetes.io/docs/reference/command-

line-tools-reference/kube-apiserver/. [Accessed 2021].

[45] “kube-scheduler,” [Online]. Available: https://kubernetes.io/docs/reference/command-

line-tools-reference/kube-scheduler/. [Accessed 2021].

[46] “Kubeadm,” [Online]. Available: https://kubernetes.io/docs/reference/setup-

tools/kubeadm/. [Accessed 2021].

[47] kubelet. [Online]. Available: https://kubernetes.io/docs/reference/command-line-tools-

reference/kubelet/.

[48] “Overview of kubectl,” [Online]. Available:

https://kubernetes.io/docs/reference/kubectl/overview/.

[49] R. Hat, “What are microservices?,” [Online]. Available:

https://www.redhat.com/en/topics/microservices/what-are-microservices. [Accessed

May 2021].

[50] A. Vieira, “What is a Microservice?,” [Online]. Available:

https://www.outsystems.com/blog/posts/what-is-a-microservice/. [Accessed June

2021].

[51] 3GPP, “TS 23.502 V16.8.0 section 5,” 2021, pp. 458-565.

[52] “FUDGE-5G consortium,” [Online]. Available: https://fudge-5g.eu/en/consortium.

[Accessed June 2021].

[53] “5G-VINNI,” [Online]. Available: https://www.5g-vinni.eu. [Accessed 2021].

[54] FUDGE-5G, “ Technical Blueprint for Vertical Use Cases and Validation Framework,”

[Online]. Available: https://fudge-5g.eu/download-

file/365/sq6G3zIXkRBOFWRM3bqO.

[55] [Online]. Available: https://www.eduroam.org.

[56] “FUDGE-5G: Fully Disintegrated Private Networks for 5G Verticals,” [Online].

Available: https://zenodo.org/record/5137741#.YP696C1Q1QI. [Accessed 2021].

[57] “FUDGE-5G: Fully Disintegrated Private Networks for 5G Verticals,” [Online].

Available: https://zenodo.org/record/5139613#.YP_k8y1Q1QI. [Accessed 2021].

[58] “2021 Joint EuCNC & 6G Summit,” [Online]. Available: https://www.eucnc.eu.

[59] “EuCNC 2021 FUDGE-5G poster presentation,” [Online]. Available:

https://www.youtube.com/watch?v=9FERHWE_NSs&t=15s. [Accessed 2021].

[60] “Mobitrust,” [Online]. Available: https://mobitrust.onesource.pt. [Accessed 2021].

 83

[61] FUDGE-5G, “Technical Blueprint for Vertical Use Cases and Validation Framework,”

2021.

[62] M. Richards, “The Challenges of Service-Based Architecture,” 2015. [Online].

[63] [Online]. Available: https://5go.pt/projeto/. [Accessed June 2021].

[64] L. Samsung Electronics Co., “Cloud Native 5G Core,” 2020. [Online]. Available:

https://images.samsung.com/is/content/samsung/p5/global/business/networks/insigh

ts/white-paper/cloud-native-5g-core/Samsung-5G-Core-Vol-2-Cloud-Native-5G-

Core.pdf.

[65] PyPI, “Quart,” [Online]. Available: https://pypi.org/project/Quart/. [Accessed 2021].

[66] PyPI, “Requests,” [Online]. Available: https://pypi.org/project/requests/. [Accessed

2021].

[67] J.-C. L. B. R. C. L. Algirdas Avizienis, “Basic Concepts and Taxonomy of Dependable

and Secure Computing,” in IEEE TRANSACTIONS ON DEPENDABLE AND

SECURE COMPUTING, 2004, pp. 11-33.

[68] [Online]. Available: https://prometheus.io. [Accessed 25 12 2020].

[69] [Online]. Available: https://qmon.io. [Accessed 25 12 2020].

[70] [Online]. Available: https://www.netdata.cloud. [Accessed 25 12 2020].

[71] P. Guntermann, “What is Water-Scrum-Fall?,” 19 10 2017. [Online]. Available:

https://www.letsmakebettersoftware.com/2017/10/what-is-water-scrum-fall.html.

[Accessed 16 01 2021].

[72] “How to Make Agile and Waterfall Methodologies Work Together,” [Online]. Available:

https://reqtest.com/agile-blog/agile-waterfall-hybrid-methodology-2/. [Accessed 16 01

2021].

