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Abstract 
 

The design of cost-effective strategies to simultaneously identify and eliminate toxic 

compounds from the aquatic environment requires knowledge of relevant molecular fingerprints, 

interaction patterns, co-occurrence, synergistic effects, and contaminant sources, as this can be a 

gateway to an effective response to these societal obstacles. 

This study aims to develop predictive models for molecular similarity and toxicity of 

mycotoxins based on molecular and physicochemical descriptors using cheminformatics tools and 

machine learning approaches. An efficient chemical data mining over different datasets composed 

by 30 and 59 selected mycotoxins described by several molecular descriptors is proposed for virtual 

screening of molecular similarity and toxicity prediction. 

Hierarchical cluster analysis and k-means clustering revealed clusters consistent with the 

known mycotoxin families. PCA results show that discrimination between mycotoxins is largely 

determined by the selected molecular descriptors and evidence a tendency in the separation of 

acutely toxic mycotoxins from non-acutely toxic mycotoxins. 

Supervised learning models (LDA, RF, SVM, NN) were constructed for the purpose of 

classification and combined with the molecular descriptors selected from PCA to improve the 

knowledge of the selected mycotoxins and predict their respective acute-toxicity profiles. RF 

proved to be the best model in the classification of mycotoxins into acutely toxic or non-acutely 

toxic.  

This study allows the identification of relevant molecular and physiochemical descriptors 

for the 1) discrimination of different families of mycotoxins, 2) classification of structurally distinct 

mycotoxins and also those mycotoxins that are not so well described in the literature, and 3) 

prediction of toxicity. This creates a gateway for the subsequent classification, identification, and 

rapid and efficient characterization of potential new and unknown mycotoxins. Bridging the gap 

between multivariate physicochemical data and the ability of models to predict and address relevant 

mycotoxin-related phenomena, such as co-occurrence and molecular recognition, and to develop 

improved classification and remediation methods remains a challenge, often limited by available 

methodologies and experimental information. 
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Resumo 
 

O desenvolvimento de estratégias efetivas para identificar e eliminar compostos tóxicos do 

ambiente aquático requer um conhecimento profundo sobre os padrões moleculares e de interação, 

os fenómenos de coocorrência, e a origem dos contaminantes. 

Este estudo consiste no desenvolvimento de modelos computacionais capazes de 

caracterizar a similaridade molecular e prever a toxicidade de diferentes classes de micotoxinas, 

baseando-se em descritores físico-químicos e moleculares e dando uso a ferramentas de 

aprendizagem computacional.   

A análise de agrupamentos hierárquica e o método k-médias revelaram grupos consistentes 

com as famílias de micotoxinas já estabelecidas na literatura. A análise de componentes principais 

permitiu selecionar os descritores moleculares mais relevantes para discriminar diferentes famílias 

de micotoxinas, evidenciando tendências na classificação das micotoxinas tendo em conta a sua 

toxicidade aguda.  

Diversos modelos de aprendizagem supervisionada (LDA, RF, SVM e NN) foram 

construídos sobre os descritores moleculares selecionados da análise de componentes principais, 

com o intuito de melhorar o conhecimento sobre as micotoxinas selecionadas e desenvolver 

modelos de previsão para os seus perfis de toxicidade aguda. O modelo RF provou ser o melhor 

modelo na classificação das micotoxinas em toxicas de forma aguda ou não. 

Este estudo permite a identificação de descritores moleculares e físico-químicos relevantes 

para: 1) a discriminação entre várias famílias de micotoxinas, 2) a classificação de micotoxinas 

estruturalmente distintas e de micotoxinas desconhecidas, e 3) previsão da respetiva toxicidade. 

Estabelecer a ponte entre dados físico-químicos multivariados e a capacidade dos modelos 

computacionais de direcionar e prever fenómenos relacionados com micotoxinas, bem como 

desenvolver métodos mais eficientes de classificação e remediação, são desafios atuais, cuja 

solução está ainda muito limitada pelas metodologias e os dados experimentais disponíveis. 
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Toxicidade aguda.  
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Chapter 1 - Introduction 
 

Micropollutants in the aquatic environment have been of great concern over the last few 

decades. Also called emerging contaminants, micropollutants involve a large spectrum of 

anthropogenic or natural substances including drugs, industrial chemicals, hormones, pesticides, 

mycotoxins, among others. (1,2) Although its presence in the aquatic environment is at trace 

concentrations (ranging from a few ng/L to several μg/L), micropollutants are associated with 

negative effects such as endocrine disruption, short and long-term toxicity, and antibiotic resistance 

of microorganisms. (2) Due to their low concentrations and increasing diversity, their respective 

detection, analysis, and treatment becomes challenging. Currently, one class of micropollutants 

with great global impact are mycotoxins, toxic compounds that are naturally produced by molds 

during the growth or storage of plant products, and are capable of causing disease and death in both 

humans and animals. (3,4) 

Historically, fungi are known to be responsible for some cause-effect relationships between 

human consumption of moldy food and illness. (3,4) Scientific interest started when the ability of 

fungi to carry out fermentations was discovered and there was a need to understand the toxicity of 

the “secondary metabolites” involved. (4) The appearance of penicillin promoted studies related to 

fungi, from grain storage to animal toxicity. With this, and with diseases of the time that were 

thought to be related to mold contamination, mycotoxins were discovered. (4) Mycotoxins are 

secondary metabolites produced by fungi capable of causing adverse effects in humans and animals, 

ranging from allergic responses to cancer and death even in low concentrations. (3–8) Some 

examples of the most important mycotoxin-related episodes are ergotism, one of the oldest 

mycotoxicosis killing hundreds of thousands of people in Europe; Alimentary Toxic Aleukia 

(ATA), responsible for the death of 100,000 Russian people during the Second World War, and 

finally aflatoxicosis, responsible of killing 100,000 young turkeys (and probably other animals and 

even humans) in the United Kingdom during the 60’s. (3–6,8,9) This last event opened the door to 

modern mycotoxicology as it was realized that the mycotoxins were not only a storage problem in 

grains but actually contaminated certain pre-harvest crops, sensitizing the scientific community to 

the possibility that other hidden mold metabolites might be deadly, and widening the problem of 

mycotoxins to a multidisciplinary context. (3–5,9) Hereupon, and even knowing that mycotoxins 

can kill, there was a more challenging problem at hand: the fact that mycotoxin effects might be 

evident only years after ingestion, compromising food safety that can only be determined by direct 

analysis of the toxic compound. (3) 

Currently, climate changes, including global warning, are a trendy topic and, in fact, have 

accelerated the germination/growth/production of mycotoxins. (5–7,10) Regarding sociological 

aspects, in developing countries, poor food quality control, poor production technologies, and poor 
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crop storage conditions, beyond the hot climate, contribute to annual agricultural and industrial 

losses of billions of dollars. Currently, 25% of the world’s harvested crops are contaminated by 

mycotoxins. (6,9,10) 

With the growing concern in the scientific community and the increase of studies in this 

field, the interaction between concomitantly occurring mycotoxins was discovered and until today, 

the consequence for the toxicity remains a challenge to face. (6) Furthermore, there are two other 

environmental and socioeconomic points to consider, that contribute to a higher frequency of 

occurrence of mycotoxin-contaminated foods/feeds. (7,9) 

Mycotoxins are characterized by having a low molecular weight, with structures ranging 

from single heterocyclic rings with molecular weights of scarcely 50 Da, to groups of irregularly 

arranged 6 or 8 membered rings with total molecular weights greater than 500 Da, constituting a 

toxically and chemically heterogeneous group.  (5–9) Of these biologically active metabolites, 

some of which have received attention in the scientific community are aflatoxins, deoxynivalenol, 

citrinin, trichothecenes, fumonisins, zearalenone, T-2 toxin, ochratoxins, patulin and certain ergot 

alkaloids, due to their sociological and agroeconomic impact. (3–7,9,10) Even so, only a few are 

well characterized and have its effects in human or animals well established, with little information 

on the interaction between concomitantly occurring mycotoxins and the consequence for toxicity. 

Table 1 enumerates some of the most well-known mycotoxin families and their major 

characteristics with one example for each family. 

 

Table 1. Summary of the most common mycotoxin families and their respective characteristics. 

The structures were constructed using the online version of  ChemDraw.(11)  

Family Examples Characteristics References 

Aflatoxins Aflatoxins B1, B2, G1, G2, M1 

 

 

Aflatoxins are 

difuranocournarins 

derivatives and consist of a 

coumarin nucleus to which 

are attached a difuran moiety 

in one side and either a 

pentene ring or a six-

membered lactone ring in 

the other side. 

(6,9,12) 

Ergot alkaloids Ergotamine, Ergometrine, 

Ergocryptine, Ergocristine, 

Ergocornine, Ergosine 

 

The common structural 

feature of ergot alkaloids is 

the ergoline ring, which is 

methylated on the N-6 

nitrogen atom, substituted on 

C-8, and possesses a C-8, C-

9 or C-10 double bond. 

(9), (13) 
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Fumonisins Fumonisins A1, A2, B1, B2, B3 

 

Fumonisins contain 20 

carbon aliphatic chain with 

two ester linked hydrophilic 

side chains. The toxic action 

of fumonisins is related to 

the competition with 

sphingosine in sphingolipid 

metabolism 

(5) 

Trichothecenes 

(Types A and 

B) 

Type A: HT-2 Toxin, T2 Toxin  

Type B: Deoxynivalenol, Fus-X, 

Nivalenol 

 

Sesquiterpenoid toxins 

characterized by a variable 

number of acetoxy and 

hydroxyl groups, an epoxide 

ring at position C12-C13, 

and a double bond between 

C9 and C10. 

(7,9,14) 

Patulin 

 

Heterocyclic lactone (7) 

Citrinin 

 

Benzopyran derivative (7,15) 

Ochratoxins Ochratoxins A, B, C, TC 

 

Pentaketides consisting of a 

dihydro- isocoumarin 

coupled to 8-phenylalanine 

(7,16) 

Zearalenone 

 

Nonsteroidal estrogen of the 

resorcylic acid lactone group 

(6,7) 

Alternaria 

Toxins 

Altenuene, Alternariol, Alternariol 

methyl ether, Altertoxin, Tenuazonic 

acid 

 

There are several structural 

types: dibenzopyrones 

(polyketides), 

perylenequinones, cyclic 

tetrapeptides, 

Anthraquinones, 

amine/amide metabolites 

and dihydroisocoumarins 

(17) 
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Emerging 

Fusarium 

Mycotoxins 

Fusaproliferin, Moliniformin, 

Beauvericin, NX-2 Toxin, Enniatins 

 

The structure of these 

emerging mycotoxins can be 

diverse: 

bicyclic sesterterpene 

(fusaproliferin); cyclic 

hexadepsipeptides 

(ennieatins and beauvericin), 

organic acid (moniliformin) 

(18) 

 

The significance of mycotoxins is based on their frequency of occurrence and on the 

severity of the disease (mycotoxicosis) they produce in higher vertebrates. The latter can be as 

diverse as the chemical structures of the compounds themselves.(4,5,7,8) Mycotoxicosis is 

manifested in several ways, affecting a wide range of susceptive animal species and its diagnosis 

can be difficult due to the similar effects produced by other agents, such as pesticides and heavy 

metals. (9) Also, the symptoms depend on various factors like the type of mycotoxin, age, sex, 

health, dietary status, and other conditions of the exposed individual. (8,9) 

Mycotoxicosis can be categorized as chronic or acute. (5,7–9) Acute toxicity is 

characterized by a short acting time and an obvious toxic response (e.g.:  deterioration of liver and 

kidney function) , while chronic toxicity is characterized by a low-dose exposure over a long period 

of time, often resulting in irreversible effects and cancers. (5,8) Furthermore, some mycotoxins can 

affect DNA replication, producing mutagenic or teratogenic effects. (5,9) Bennet and Klich (9) 

mentioned an important point: in many studies, it is not easy to interpret data on purported health 

effects, and regarding human and veterinarian health, mycotoxin contamination is related to chronic 

exposure, for example, cancer induction, kidney toxicity, immune suppression. (5,7,9) However, 

the best-known mycotoxin episodes are associated with acute toxicity (e.g.: aflatoxicosis, ergotism, 

ATA). (9) The aforementioned facts make it necessary the existence of studies demonstrating a 

dose-response between the mycotoxin and the disease, that are, for human purposes, 

epidemiological studies conducted by environmental and biological monitoring of food, air, 

residues,  metabolites, and fluids, for example. (9) 

Controlling mycotoxin contamination is a difficult task because some fungi are able to 

produce more than one mycotoxin and some mycotoxins are produced by more than one fungal 

species. (6,7) In addition, there are several factors that contribute to their growth and production 

(e.g.: storage, environmental and ecological conditions) and, as said before, the interaction between 

themselves.  (6,7) Also, contamination can occur at any stage of the production process (from 

before harvesting to storage) which can result in a direct exposure through food consumption or 

indirect exposure through feed. (6,7,9) Prevention of mycotoxin production and detoxification are 

the two strategies to control mycotoxin contamination and include several physical, chemical, 

biological and food processing methods.  (6,7,9) 

Prevention consists in pre-harvest strategies to avoid the development of fungi and, 

consequently, mycotoxins. (7,9) These strategies are based on good agricultural, manufacturing, 
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and storage practices and environmental factors. (7,9) Decontamination/detoxification is a more 

complicated subject and comprises post-harvest strategies that involve chemical methods, such as 

oxidation, hydrolysis, absorption, etc., biological methods, with the use of biological agents, and 

even natural means, such as thermal insulation, radiation treatment and low temperature plasma. 

(7) However, some of these strategies, in particular chemical and physical methods, are not only 

ineffective and time-consuming, but also result in nutrient loss. (7) Beyond conventional methods, 

some novel and interesting approaches were performed that involve the use of nanoparticles and 

plant extracts. (7) 

Establishing the bridge between multivariate chemical data and the ability of models to 

predict and deal with relevant mycotoxin-related phenomena, such as co-occurrence and molecular 

recognition, and also the development of improved classification and remediation procedures, is 

still a challenge.  

With the rapid explosion of “big data” in Chemistry, Machine Learning (ML) and big-data 

analytics tools, as well as high-performance computing techniques, computational chemistry has 

significantly contributed to the discovery and characterization of new chemical entities, including 

drugs, reducing the cost and time required to identify lead compounds. (19–21) One of the primary 

uses of ML in chemical sciences is to aid researchers understanding and exploiting connections 

between chemical structures and activity, also known as structure-activity relationships (SAR). (19) 

Current search is increasingly focusing on in silico methods for rationalizing and predicting the 

occurrence and ecotoxicity of micropollutants and their degradation and transformation resulting 

from biological/chemical processes. (22–28) 

Quantitative Structure-Activity Relationships (QSARs) models have been developed for 

e.g. predicting toxicity of pollutant mixtures, including pesticides, pharmaceuticals and other 

chemicals (22,29–31), estimating properties of persistent organic pollutants required in the 

evaluation of their environmental fate and risk (32,33), modeling of (i) degradation of structurally 

different organic pollutants, including azo dyes, heterocyclic compounds, ionic compounds, among 

others (27,34,35), (ii) water quality indices of alkylphenol pollutants (36), (iii) cumulative 

environmental endpoints for the screen, ranks and prioritization of hazardous chemicals in the 

environment (37), and (iv) reaction rate constants for several organic compounds in water (38), just 

to name a few examples. 

There are two primary techniques for the application of ML: supervised and unsupervised 

learning. (19–21,39–41) Labels are assigned to the training data in supervised learning, and once 

trained, the model may predict labels for specific data inputs. (19,20,39) Regression analysis, k-

nearest neighbors (kNN), Bayesian probabilistic learning, Support Vector Machines (SVM), 

random forests (RF), and Neural Networks (NN) are examples of supervised ML methods. 

(19,20,39) Machine learning approaches that fall on the category of unsupervised learning aim at 

identifying underlying patterns or intrinsic structures in the absence of knowledge on the outcome. 

Some examples of unsupervised learning techniques are Principal Component Analysis (PCA), 
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clustering algorithms and some supervised methods that can also support unsupervised learning. 

(19,20,39) 

Table 2 shows several examples of ML applications in micropollutant-related problems, 

both supervised and unsupervised techniques.  

 

Table 2. Examples of ML applications to environmental micropollutant problems.  

References Main Goal Approach Conclusion 

(42) 

Estimating 

micropollutant 

concentration without 

resorting to stable 

isotope labels.  

Deep learning and 

machine learning models 

(RF, SVM, ANN) 

replacing stable isotope 

labels by natural organic 

matter information 

The trained models showed accurate 

training and validation results for 

the estimation of five 

micropollutant concentrations. The 

study demonstrated potential for an 

alternative, rapid and economic 

solution to measure micropollutants.  

(43) 

Predict O3 and ·OH 

exposures and 

consequently 

micropollutants 

abatement during 

ozonation. 

RF algorithm to output 

oxidant exposures from 

water quality input 

variables.  

The developed models showed 

useful to predict the abatement of 

micropollutants in drinking water 

and wastewater ozonation processes 

and to optimize the O3 dose for 

remediation procedures. Using 

higher-resolution fluorescence data 

as input variable resulted in more 

accurate predictions.  

(44) 

Aquatic Toxicity 

Prediction for Polar 

and Nonpolar 

Narcotic Pollutants. 

SVM algorithm for the 

classification of 190 

narcotic pollutants into 

polar or nonpolar using 

molecular descriptors  

The study demonstrated a possible 

application for the identification of 

the aquatic toxicity mechanism. 

(45) 

QSAR models to 

predict 

bioconcentration 

factors and median 

lethal concentrations.  

Recursive Feature 

elimination (RFE) and 

SVM using 2D 

molecular descriptors of 

450 diverse chemicals. 

Three ensemble models 

were constructed using 

three ML algorithms.  

The ensemble-SVM model proved 

to be more stable with more 

accurate predictions when compared 

to the other models. This study 

allowed to identify important 

structures to aquatic toxicity with 

relevant information to future 

aquatic toxicology experiments.  

 

Table 2 shows some ML techniques that have been applied to modelling micropollutants’ 

behavior in different environmental matrices. However, to our knowledge, the use of ML to 

establish a computational framework for dealing with multidimensional data related to mycotoxins 

is very limited. (46) 
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The first study where ML was applied to mycotoxins was conducted by Torelli and his 

coworkers (47) in a two year study where an artificial neural network model was developed to 

predict fumonisins, deoxynivalenol and zearalenone contamination of maize at the harvest time, 

using seven cropping system variables (Food and Agriculture Organization class, sowing and 

harvest dates, crop duration, kernel moisture, European corn borer treatment and irrigation). These 

authors showed for the first time the potential of ML in the study of mycotoxins, emphasizing the 

importance of new approaches for rapid cataloging of grain lots.  (47) More recently, Leggieri et 

al.  (46) recorded the occurrence of aflatoxin B1 and fumonisins in maize fields and collected the 

corresponding cropping data over the years 2005-2018 in northern Italy. The authors built two deep 

neural network models to predict, at harvest, which maize fields were contaminated with those 

mycotoxins, obtaining two robust models and better results when compared to AFLA-maize and 

FER-maize. (46)  Note that the aforementioned models (AFLA-maize and FER-maize) both use 

meteorological data as input variables to predict the risk of contamination of aflatoxin B1 and 

fumonisins above legal limits, but these models do not use a ML approach, being considered 

mechanistic models.  (46,48) 

The application of ML to mycotoxins-related phenomena, has been focused on field 

contamination, based on meteorological, environmental, agricultural data that reflects the growth 

and germination of fungi and therefore, the production of mycotoxins. (46,47) 

In this study, supervised and unsupervised learning techniques were used to investigate the 

chemical structures of mycotoxins and infer possible relationships between their structure, family, 

and toxicity. Hierarchical Cluster Analysis (HCA) and k-means clustering were used for molecular 

structure analysis aiming at understanding the molecular similarity between the chosen mycotoxins 

and the respective families, using their molecular fingerprints so that relevant properties can be 

predicted through the clustering map, and relevant chemical patterns within and between 

mycotoxins families can be identified. PCA was used to obtain an overview of the relative 

positioning of the chemical structures using several molecular descriptors, by summarizing the 

respective variation into a reduced number of Principal Components (PCs), aiming to build a 

classification model to predict mycotoxins acute toxicity. Finally, supervised learning techniques 

including linear discriminant analysis (LDA), RFs, SVMs and NNs were applied to predict 

mycotoxins’ toxicity into acutely toxic or non-acutely toxic.  
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Chapter 2 – Theory and Methods 
 

 The scientific study of algorithms and statistical models that computer systems employ to 

execute a given task without being explicitly programmed is known as ML (19–21,39,40) This is 

attempted by deploying algorithms that aim at learning the rules that underlie a dataset through the 

assessment of a portion of data and subsequent model fitting for predictions, process often 

designated by model training. (39)  ML is one of the most important and fast evolving topics in 

current science, with applications that range in context and methodology. (19,20,39,40) The major 

challenge of ML is the lack of interpretability and repeatability of ML-generated results, which 

later result in reproducibility problems. (39,49) Numerous methods exist within each technique and 

those methods may differ in prediction accuracy, training speed, or number of variables they can 

handle, which makes it necessary to ensure that the algorithms are appropriate for the task and type 

of data available. (20) ML approaches are usually more effective when applied to large amounts of 

data but is also important to verify its quality to ensure maximal effectiveness of the models.  

(20,21,39,49)  

 Two type of datasets should always be involved in a model construction: the training  and 

test sets, usually formed by randomly splitting the original dataset. (49) The training set is used for 

the model to learn from for certain hyperparameters and the test set is used to assess the final 

performance of the model. (49)   The key test for the effectiveness of a ML model is, in fact, the 

successful application to unseen data, in this case, the test set. (39,49) The test set is provided to 

the model once the training is complete and compared with the resulting predicted outputs. (39,49) 

A validation set can be used in cross-validation procedures that are very useful but are also only 

reliable when both training and test sets are representative of the whole dataset, which may be pose 

problem when the dataset is small. (39)  

 There is a large plethora of examples of chemical databases, including ZINC15 (50), 

PubChem (51), ChEMBL (52) and DrugBank (53), that offer scientists a wide variety of chemically 

and biologically relevant data which is extremely useful for ML applications. (19,39,54) In the 

present study, all mycotoxins 3D structures were downloaded from PubChem (51), the highest 

profile online database, in Structure-Data File (SDF) format. (55) SDF files are format files that 

handle a list of molecular structures with associated data between databases such as structure 

identifiers, experimental/physical properties, pricing information, among others. (55) 

The software for performing all the analysis was constructed in R (version 3.6.3) and 

Python (version 3.8) programming languages which provide several tools for a variety of problems 

related to statistical analysis in a variety of fields, and their respective Integrating Development 

Environments (IDE), RStudio and Spider. (54,56) Regarding chemistry, R and Python provide a 

wide range of tools for statistical modeling of chemical information allowing to read, represent, 
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manipulate, and analyze chemical structures. (54,56) Some examples of cheminformatics tools are 

the Open Eye for Chemical Information Processing (OEChem), the Java based 

cheminformatics/computational chemistry packages (JOELib) and Chemistry development Kit 

(CDK). (54,56) The latter was used in this study and is an open-source Java framework for 

structural chemo and bioinformatics. (57) It possesses an interface with statistical package, rJava 

of R (58), necessary for the installation of the package rcdk, used in the present work. (56,57,59) 

The rcdk package (60) allowed us to analyze chemical data and structures in several formats, 

calculate molecular descriptors, identify and evaluate relevant molecular fingerprints. (56,57)   

The Cluster package from R (61) was used to perform HCA and k-means, in order to 

analyze the chemical structures, and to understand the molecular similarity between mycotoxins 

using their molecular fingerprints, so that relevant properties can be predicted through the clustering 

map. The clustering results were visualized using the Factoextra package (62). PCA was used to 

obtain an overview of the relative positioning of the chemical structures by summarizing the 

respective variation into a reduced number of PCs, aiming at building a model for classifying new 

structures and identifying target properties, based on mycotoxins’ molecular descriptors. PCA 

resulting biplots were constructed using the FactomineR package form R (63). R was also used to 

build LDA and SVM models. Molecular descriptors (features)  were split into training set and test 

set using the caret package (64) and the models were build using MASS (65) and caret (64) 

packages, for LDA and SVM,  respectively. 

Python was used to construct RF and NN models and to perform a gridsearch (only for the 

NN model), so that several parameters that can affect the performance of the NN model could be 

tested. The RF and NN models were trained using the Python package “Scikit Learn” (version 

0.23.1): the molecular descriptors were subjected to normalization using StandardScaler and the 

RF was performed using RandomForestClassifier package, while NN was performed using 

MLPClassifier. (66) The gridsearch for parameters optimization is described in detail is section 2.8 

for the NN model. 

 

2.1 Unsupervised Learning  

 Dimensionality reduction (PCA) and clustering algorithms (HCA and k-means) belong to 

unsupervised learning algorithms where algorithms discover and present the relevant patterns in 

the data, for example, through similarity measures. (19–21,40,67,68) In this type of algorithms, 

there are no corresponding labels (they can be introduced a posteriori) and hidden patterns or 

intrinsic rules are identified in the input data and clustered in meaningful ways. (19–21,67,68) For 

all the above-mentioned algorithms, spatial descriptions of the mycotoxins structures as points in 

the Euclidean space are required.  

Clustering algorithms can be of several types, including partitioning, hierarchical, density-

based and grid-based. (41,68) In this work, HCA and partitioning (k-means) algorithms were 

deemed sufficient. Hierarchical clustering algorithms divides a dataset by creating a hierarchy of 
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clusters, whereas partitioning clustering algorithms splits the data points into k partitions, where 

each partition represents a cluster. (41) The clustering process has fundamentally two steps: 

choosing the metric to evaluate whether two items are similar or not, and adopting a technique for 

the clusters to be formed. (67,68) Distance measures are used to evaluate the similarity/dissimilarity 

of the objects and vary according of the type of data in question, e.g., numeric, binary, nominal 

data. (67) For a function d to be considered a distance, some conditions need to be satisfied for the 

objects i, j and k: 

 

1. 𝑑(𝑖, 𝑗) = 𝑑(𝑗, 𝑖)     ∀ 𝑥𝑖, 𝑥𝑗 ∈ 𝒮  (Equation 1) 

2. 𝑑(𝑖, 𝑗) ≥ 0     ∀ 𝑥𝑖, 𝑥𝑗 ∈ 𝒮  (Equation 2) 

3. 𝑑(𝑖, 𝑗) = 0, 𝑖𝑓 𝑖 = 𝑗    ∀ 𝑥𝑖, 𝑥𝑗 ∈ 𝒮  (Equation 3) 

4. 𝑑(𝑥𝑖, 𝑥𝑘) ≤ 𝑑(𝑥𝑖 , 𝑥𝑘) + 𝑑(𝑥𝑗, 𝑥𝑘)  ∀ 𝑥𝑖, 𝑥𝑗, 𝑥𝑘 ∈ 𝒮  (Equation 4) 

 

The first condition tells that the dissimilarity matrix is symmetric in relation to the diagonal (Eq. 

1), the second condition implies that all elements of the dissimilarity matrix are positive (Eq. 2), 

the third condition states that the diagonal of the dissimilarity matrix is composed by zeros (Eq. 3). 

The fourth condition is necessary for the distance measure to be considered a distance metric and 

refers to triangle inequality (Eq.4 ). (67) 

There are several distance measures available in the cluster package (61) from R that can 

be used as dissimilarity/similarity measure, such as Euclidean,  squared Euclidean, Manhattan, 

Cosine, Spearman, Minkowsli, Tanimoto, among others. (67) The distance measure used in this 

work was the Tanimoto distance (Eq.5) despite some work was done with the Euclidean Distance 

(data not shown) (Eq. 6).  

 

   𝑇𝑐 =
𝑐

[𝑎+𝑏−𝑐]
     (Equation 5) 

 

where Tc is the similarity, a and b are the number of “on” bits in molecules A and B and c is the 

number of “on” bits that both molecules have in common, resulting in a complete set of distances, 

in matrix form, for molecules A and B. (20,69–71) Tc values over a certain threshold (usually 0.85) 

(69) show that two compounds are similar, but do not provide information such as which chemical 

groups they share, for example. (19)  

 

 

𝑑(𝑖, 𝑗) = √|𝑥𝑖1 − 𝑥𝑗1||
2 + |𝑥𝑖2 − 𝑥𝑗2|2+. . . +|𝑥𝑖𝑛 − 𝑥𝑗𝑛|2  (Equation 6) 
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2.1.1 Hierarchical Cluster Analysis 

 HCA is a clustering approach that uses agglomerative clustering, which merges smaller 

clusters into a larger one, opposed to divisive clustering, characterized by dividing a big cluster into 

smaller ones, to create a hierarchy of clusters. (19,41) This method uses the distance matrix criteria 

to cluster the data. (41)  

Hierarchical clustering can be performed with different definitions of the distance between clusters, 

including single-linkage, complete-linkage, average-linkage, and Ward’s linkage. (67,68,72) 

Single-linkage considers the shortest distance between each member of one cluster and any member 

of the other cluster to represent the distance between two clusters; complete-linkage is similar to 

single-linkage but considers the distance between two clusters as the longest distance between each 

member of one cluster and any member of the other cluster and average-linkage uses the average 

distance from any member of one cluster to any member of the other cluster as the distance between 

two clusters. (67) Ward’s linkage identifies the two clusters, CA and CB, with sized nA and nB, that 

promote the minimum distance, dA-B, between the merged clusters’ centroids, IA and IB. (68)  

 

𝑑𝐴,𝐵 =
𝑛𝐴𝑛𝐵

𝑛𝐴+𝑛𝐵
(µ𝐴 − µ𝐵)′(µ𝐴 − µ𝐵)  (Equation 7) 

 

Ward’s linkage was used over the Tanimoto distances (Eq. 5)  between the mycotoxin 

structures and was chosen because is the only one among the agglomerative clustering methods 

that is based on sum-of-squares criterion, producing groups that minimize within-group dispersion. 

(68,72) 

 

2.1.2 K-means Clustering  

 K-means is a simple unsupervised learning method that gathers the given input data 

through a certain number of clusters defined by k centers, that are the number of desired clusters. 

(40,41,73,74) The fundamental steps of the k-means algorithm are: (i) selecting arbitrarily a 

centroid; (ii) assigning each object to the cluster with the closest centroid, according to the 

Euclidean distance between them; (iii) calculating the centroid as the mean of the objects assigned 

to it and (iv) repeat steps 2 and 3 until no changes are visible. (41,67,75) In the end, each point of 

a dataset is grouped with the nearest center until no point is pending, minimizing within-group 

distances to the centroid. (19,40) This algorithm was chosen because is easy to interpret, simple to 

implement and converges fast. (67) The main problem of this algorithm is to depend heavily on the 

initial conditions. (75) 

 

2.1.3 Principal Component Analysis 

PCA is one of the oldest and most widely used dimensionality reduction technique that 

increases interpretability of datasets and at the same time minimizes information loss. (40,76) This 
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statistical method uses an orthogonal transformation to convert a collection of observations of 

possibly correlated variables into a set of linearly uncorrelated variables called PCs. 

(19,40,68,73,76) PCA can be performed based on the covariance matrix, or the correlation matrix, 

depending on how the variables have different units of measurement or vary along different orders 

of magnitude. (67,68,76) With variables with different units of measurement, covariance matrix 

may not be adequate because the PCs are sensitive to their order of magnitude. (67,68,76) To work 

around this problem, it is common to standardize the variables, centering and dividing for the 

standard deviation each data value, thus producing the correlation matrix. (68,76) 

Considering a dataset with observations on p numerical variables, for n objects, these data 

values define a 𝑛 × 𝑝  data matrix whose column is the vector 𝑥𝑗 of observations of the jth variable: 

 

𝑋 = [

𝑥11 ⋯ 𝑥1𝑝

⋮ ⋱ ⋮
𝑥𝑛1 ⋯ 𝑥𝑛𝑝

]       (Equation 8) 

 

PCA seeks for linear combinations given by ∑ 𝑎𝑗𝒙𝑗
𝑝
𝑗=1   where a is a vector of constants. The 

variance of such linear combination is given by 𝑣𝑎𝑟(𝑋𝑎) = 𝑎′𝑆𝑎 where S is the covariance matrix 

associated with the dataset and while ‘ denotes the respective transposed.  (76)  The result is a 

rotation of the orthogonal system of axes associated with the original variables, obtaining a new 

data system, Y matrix, where Y matrix columns are the new variables, the PCs. (76) These PCs are 

linear combinations of the p variables of X matrix, where j=1,..., p and 𝑎𝑖𝑗 (i=1,…p; j=1,…, p) are 

constants, 

𝑌𝑖 =  𝑎1𝑗𝑋1+𝑎2𝑗𝑋2+. . . +𝑎𝑝𝑗𝑋𝑝   (Equation 9) 

 

In this case, 𝑎1𝑗. . . 𝑎𝑝𝑗 are the loadings, i.e. weights of the original variables on the linear 

combination. (68) The coefficients of these linear combinations are determined such that the 

following conditions are satisfied: 

1. 𝑉𝑎𝑟(𝑌1) ≥ 𝑉𝑎𝑟(𝑌2) ≥ ⋯ ≥ 𝑉𝑎𝑟(𝑌𝑝)  (Equation 10) 

2. Corr(Yi, Yj) = 0, ∀𝑖𝑗     (Equation 11) 

3. 𝑌𝑖 : 𝑎1𝑗
2 + 𝑎2𝑗

2 +. . . +𝑎𝑝𝑗
2 = 1   (Equation 12) 

 

In this case, 𝑌1 is the PC with highest variance, 𝑌2 has the second highest variance, and so on. There 

are as many PCs as the number of original variables and these PCs  are not correlated to each other 

(Eq. 11) and collectively explain the data entire variance (Eq. 12). (68,76) 

 A single value decomposition is used to obtain the transformation matrix W, whose 

elements are the loadings and the vector λ composed by the recovered variance 𝜆𝑖 , or eigenvalues, 

in each ith main component: 

𝐶𝑥𝑊 = 𝜆𝑊    (Equation 13) 
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Here, 𝑉𝑎𝑟(𝑌𝑖) =  𝜆𝑖 and ∑ 𝜆𝑖
𝑝
𝑖  gives the total variance of the data. When dealing with the 

correlation matrix, i.e., with normalized data, ∑ 𝜆𝑖
𝑝
𝑖  is equal to the number of variables.  

The next step of PCA is to evaluate how many PCs will be considered. For the covariance 

matrix, Pearson’s criteria is the most popular approach to decide how many components should be 

retained and consists in selecting the PCs necessary to obtain 80% of the total variability. (68) 

 

∑ 𝜆𝑖
𝑟
𝑖=1

∑ 𝜆𝑖
𝑝
𝑖=1

≥ 0.8    (Equation 14) 

  

For the correlation matrix, the most common criterion is to retain p components for which 𝜆𝑖 ≥ 1  

because if the ∑ 𝜆𝑖
𝑝
𝑖  is equal to the number of variables, the corresponding mean would be 1. (68) 

For that reason, 𝜆𝑖 < 1 are discarded and 𝜆𝑖 ≥ 1 are accepted. There is a third criterion that consists 

in plotting the eigenvalues, 𝜆𝑖, against their ordinal numbers, i, and the number of PCs that should 

be retained is given by a break or a leveling of the slope of the plotted line. (77) 

 In this work, molecular descriptors were calculated, normalized and thus, the correlation 

matrix was used. PCA is represented by a biplot that shows both the loadings and the scores where 

the loadings are the weight of the original variables in the PCs (arrows in the biplots) and the scores 

are the objects in the new system of PCs (points in the biplots).  

 

2.2 Supervised Learning  

 Supervised learning algorithms are characterized by having labels assigned to the training 

data and the models predict previously unknown values of data categories or continuous variables, 

for classification or regression problems, respectively. (19–21,39,40,73) The model choice is not 

an easy task, and its complexity does not always reflect better results. (40) Because of that, the 

chosen models for this work range from conventional algorithms such as LDA and SVM, to 

ensemble methods like RF and more complex algorithms such as DNN.  

 All supervised learning models were used for classification analysis with a ratio 

training/test of 0.7/0.3. The following sections will explain each model in detail.   

 

2.2.1 Linear Discriminant Analysis 

LDA technique (Figure 1) is a discriminating linear parametric approach that focuses on 

determining the optimal boundaries between classes by choosing the directions that provide the 

greatest separation between them. (68,73) Essentially, it finds the vectors in the variables space that 

best discriminate classes by building a linear combination from a set of independent variables that 

characterize the data to yield the greatest mean differences between the intended classes. (68) the 

between-class scatter matrix and the within-class scatter matrix are used to accomplish this. (68) 
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For all samples of all classes, the between-class scatter matrix, CB, and the within-class scatter 

matrix, CW, are given by: 

𝐶𝐵 = ∑ 𝑀𝑖 ∙𝑐
𝑖=1 (µ𝑖 − µ) × (µ𝑖 − µ)𝑇   (Equation 15) 

 

𝐶𝑊 = ∑ ∑ (𝑥𝑘 − µ𝑖)𝑥𝑘𝜖𝑋𝑖

𝑐
𝑖=1 ∙ (𝑥𝑘 − µ𝑖)𝑇  (Equation 16) 

 

where 𝑀𝑖 is the number of objects in class i, c is the number of different classes,  µ𝑖 is the mean 

vector of objects that belong to class i with 𝑥𝑘 being the kth variable of that class. 𝐶𝐵 represents the 

scatter of objects around the mean of each class and 𝐶𝑊 represents the scatter of objects around the 

overall mean for all classes. (68) The goal of LDA is to maximize 𝐶𝐵 and minimize 𝐶𝑊 by 

projecting the coordinates of an object along a line, derived from the decision rule, and assign it to 

the class with the nearest center of mass. (68) 

The major problem of LDA is to assume linearity of the border that discriminates between 

two classes in the space of attributes which is often hard to justify such functional form in advance. 

(67) LDA was built in R programming language using the lda function from the MASS package 

(65). 

 

2.2.2 Random Forest 

RF was created by Breiman (78) and is an ensemble model, meaning that a prediction is 

generated by combining the output of several individual classifiers. (79) Essentially, multiple 

decision trees (DTs) are created from the training data, considering random subsets of available 

variables, and a majority-voting scheme is to used make classification or regression predictions for 

new inputs (Figure 2). (19,79) DTs are classification trees that arrange instances based on feature 

values in which each branch indicates a value that the node might adopt, and each node represents 

Figure 1. Exemplification of the separation between two classes of objects by LDA. Data is 

projected in a new axis to maximize the separation between the 2 categories (A) by maximizing 

the distance between means and minimizing variation (B). 
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a feature in an instance to be categorized. (74) Those trees are made by pulling a subset of training 

samples and replacing them with new ones, known as the bagging approach. (80) The model was 

constructed using the RandomForestClassifier function from “Scikit Learn” (66) and contained 100 

trees.   

 

2.2.3 Support Vector Machines 

This method was developed by Vapnik (81) and can be used for both regression and 

classification, being one of the most widely used supervised ML algorithms. (40,73,79) The 

fundamental idea behind support vector classification is to identify a n-dimensional hyperplane, 

where n is the number of features, that separates instances of two different classes of objects by the 

greatest amount of distance feasible. (19,40,74,79) Basically, SVM draws margins that maximize 

the separation between the margin and the classes, or support vectors, consequently minimizing the 

error (see Figure 3). (40,74)  

The strength of the technique comes from the fact that during the training process, dot 

products are used only to refer to the input patterns which allows projecting data from a low-

dimensional space to a space of higher dimension. (79,82) Kernel functions are mathematical tricks 

that compute the dot product of two vectors in a high-dimensional feature space without mapping 

the vectors to that space directly. (79) The four types of kernel functions that are typically employed 

in SVMs are linear, polynomial, radial basis function (RBF), and sigmoid kernels. (82,83) In this 

work, the caret package (64) was used to construct SVM models with the “svmLinear” kernel. 

Figure 2. Schematic representation of the RF procedure. On the left are 3 DTs trough which an 

object (mycotoxin) is subjected (on the right), only progressing if given parameters are met. The 

instance will belong to different classes depending on the path taken. 
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Figure 3. Scheme illustrating the SVM basis. The instances are divided by a hyperplane that 

separates them by the greatest amount of distance feasible.  

 

2.2.4 Neural Networks 

The analysis and prediction of compound properties is one of the areas that is significantly 

impacted by the neural network methods. (19,69) Artificial Neural Networks (ANN) and Deep 

Neural Networks (DNN), illustrated in Figure 4, are algorithms that endeavors to recognize intrinsic 

relationships in a dataset by replicating brain’s activity arranging artificial neurons into input, 

output and hidden layers. (19,39,40,84) The hidden layers take input signals (analogous do 

dendrites) from other neurons, the hidden layers process and integrates and the output layer sends 

the resulting output. (39,40) The major difference between ANN and DNN is the depth of the 

network architecture. The model is considered DNN if it displays more than one hidden layer. 

(19,20,39,84) 

 

 

Figure 4. Representation of a shallow neural network (on the left) with only one hidden layer, and 

a deep neural network (on the right) with two hidden layers.  
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The input and activation functions of the nodes, network architecture, and the weight of 

each input connection are all important components of the ANN. (74) However, the activation 

function and the network architecture are fixed parameters, meaning that the behavior of the ANN 

depends fundamentally on the weights and biases. (74) The weights and biases of the ANN are 

usually set to random values at first, and then instances from the training set are regularly ran 

through the network to the net. The values for an instance's input are placed on the input units, and 

the net's output is compared to the instance's desired output. (74) In a NN, an activation function is 

what allows the network to learn complex patterns in the data and is used to get the output of a 

particular layer and supply it as the input for the next layer. (85) Activation functions can be linear 

or non-linear and some examples are sigmoid (range between 1 and 0), hyperbolic (range from -1 

to 1), and the most popular Rectified Linear Unit (ReLU) activation function that range from 0 to 

infinity. (85) In this work, the used activation function was ReLU. In layered NN architectures, 

network size is determined not only by the number of layers, but also by the number of nodes in 

each layer and the number of connections between them. (86) There might be an unlimited number 

of network architectures useful to learn the properties of a dataset but is not an easy topic because 

the optimal architecture can only be obtained experimentally. The next topic (see Grid Search 

Section) shows the several network structures used, regarding the initial learning rate, maximum 

number of iterations, the number of layers and nodes in each layer and the optimizers; the ANNs 

trained were fully connected neural networks, meaning that all the nodes of on layer were connected 

to each node of the next layer. MLPClassifier function from “Scikit Learn” (66) was used to build 

the NN models.  

 

2.2.4.1 Grid Search 

Grid Search (GS) is a technique that exhaustively scans through a series of parameters 

specific for an algorithm, in order to devise the best set of parameters to optimally perform a given 

task. ML makes use of GS to achieve the best possible model fit of a predictor on a given dataset. 

Commonly, the use of GS includes cross-validation upon the training dataset, in order to ensure 

that the parameters were adequately tuned, while still avoiding model bias. However useful, in large 

datasets, the deployment of GS can be problematic, as it will multiply the run time of the initial 

algorithm by the amount of parameter combinations inputted. For smaller datasets, on the other 

hand, it is still a very reliable method for optimizing the performance of single predictors. (66) This 

was used to correctly perform parameter optimization for the NN model, particularly to evaluate 

its best architecture. The tested parameters were the hidden layer sizes, the maximum number of 

iterations, the initial learning rate and the optimizer of the model. Table 3 shows the parameters 

subjected to GS with a total of 336 combinations.  The optimizer is responsible for updating weights 

to minimize loss and the initial learning rate controls the step-size in updating those weights. (66) 

The loss function (difference between the network output and its expected output) is often used to 

evaluate the neural network performance and is frequently calculated as a gradient trough the very 
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popular backpropagation algorithm. (84) Some examples, all subjected to GS, are LBFGS, 

Stochastic Gradient Descent (SGD) and ADAM. The Limited-Memory Broyden-Fletcher-

Goldfarb-Shanno (LBFGS) is derived from the BFGS algorithm that works to iteratively compute 

a matrix 𝑀𝑡 that approximates the inverse of the true Hessian of the objective function. (84) The 

main difference between LBFGS and BFGS is that LBFGS approximates the BFGS algorithm 

while requiring less computer memory by storing the m last updates instead of storing the full 

matrix approximation. (84) Gradient descent by itself finds the minimum of a sum of functions by 

moving in the opposite direction of the gradient. (84) SGD differs from gradient descent in that this 

method would then calculate the gradient of each of the functions in the sum and evaluate all of 

these functions at the current point. (84) ADAM algorithm computes individual adaptive learning 

rates for different parameters from estimates of first and second moments of the gradients. (87) 

 

Table 3. GS combination parameters for the NN model. 

Architecture 
Initial Learning 

Rate 

Maximum number of 

iterations 
Optimizer 

(3,), (5,) 

(3,3), (3,5), 

(5,5), 

(3,3,3), (5,5,5) 

0.01 

0.001 

0.0005 

0.00025 

250, 

300,  

350,  

400 

lbfgs 

sgd 

adam 

 

 

2.3 Evaluation of the models 

 

2.3.1 Unsupervised 

Cluster validation is used to evaluate the quality of clustering algorithm results and can be 

categorized in three classes: internal, external or relative. (88) Internal cluster validation evaluates 

the quality of a clustering procedure using internal information of the clustering without referring 

to external information (89), external cluster validation consists in comparing the cluster analysis 

results to an externally known result (88) and relative cluster validation consists in varying different 

parameter values for the same algorithm to evaluate the clustering procedure. (90) 

In this study, to validate de k-means clustering results, the silhouette coefficient was used. 

The silhouette coefficient is an internal validation measure that reflects the compactness, 

connectedness, and separation of cluster partitions by measuring how close are the objects within 

the same cluster, how separated are different clusters and to what extent objects are placed in the 

same cluster as their nearest neighbors. (88)  For an object i, the silhouette width Si is calculated as 

follows:  

1. For each object i, the average dissimilarity ai between i and all other objects of the cluster 

in which i belongs is calculated. 
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2. For all other clusters C to which i does not belong, the average dissimilarity d(i,C) of i  

to all objects of C is calculated, where the smallest d(i,C) is defined as bi. 

3. Calculate the silhouette width defined as: 

𝑆𝑖 =
(𝑏𝑖−𝑎𝑖)

𝑚𝑎𝑥(𝑎𝑖,𝑏𝑖)
    (Equation 17) 

 

Objects with a Si close to 1 are very well clustered, a Si close to 0 means that the object lies 

between to clusters and a negative Si suggests that the object was placed in the wrong cluster. (88) 

 

2.3.2 Supervised  

A robust model must be balanced between overfitting and underfitting. (21,49) Overfitting 

occurs when the model becomes too complex and  tends to follow small variations in the data too 

closely becoming susceptible to picking up random noise (21) This results in the accuracy of the 

training set constantly improving but in the test set reaching a plateau or declining. (20,39) In 

contrast, underfitting occurs when the model is highly biased and basically does not learn, for 

example because data are insufficiently detailed to allow the discovery of suitable rules, being 

unable to model the training or test data. (20,39) 

In ML, performance evaluation is critical for comparing models and selecting the one that 

best suits the problem. Confusion matrices are often used to measure ML errors, encoding type I 

(false positives) and type II errors (false negatives) for each class of information to extract. (91) 

These matrices can be used to: (i) inspect errors for each class; (ii) detect thresholds; (iii) compare 

software results. (91) Table 4 exemplifies a confusion matrix where TN is True Negative, TP is 

True Positive, FN is False Negative, and FP is False positive.  

 

Table 4. Example of a Confusion Matrix. 

Predicted 

Actual 

No Yes 

No TN FP 

Yes FN TP 

 

Confusion matrices are often created by deriving advanced metrics from basic metrics, 

which are essentially rates of right and wrong classifications divided by the total number of objects 

to detect or reject. (91) Some of those rates and the most widely used are: accuracy, true positive 

rate or sensitivity, true negative rate or specificity, positive predicted value or precision and 

negative predicted value (Equations 18-22).  

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
   (Equation 18) 

 

𝑇𝑃𝑅 𝑜𝑟 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
   (Equation 19) 
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𝑇𝑁𝑅 𝑜𝑟 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝐹𝑃+𝑇𝑁
   (Equation 20) 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
    (Equation 21) 

 

𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑉𝑎𝑙𝑢𝑒 =
𝐹𝑃

𝐹𝑃+𝑇𝑁
  (Equation 22) 

 

Another common metric is AUROC, Area Under the Receiving Operating Curve, that is often 

visualized by plotting together pairs of advanced metrics, in this case, sensitivity and specificity. 

(91) AUROC is defined mathematically as the probability of a classifier to rank a true instance, TN 

or TP, higher than a randomly chosen negative one. This metric is calculated as 

 

𝐴𝑈𝑅𝑂𝐶 = ∫ 𝑇𝑃𝑅(𝑇)(−𝐹𝑃𝑅′(𝑇))𝑑𝑇
∞

−∞
  (Equation 23) 

 

 For LDA and SVM models, constructed in R, the confusion matrix was generated using 

the caret package (64) and the AUROC curve was plotted using pROC package. (92) For RF and 

NN, performed in Python, scikit-learn (66) was used to calculate those metrics, inclusively 

AUROC. (66)





41 

 

Chapter 3 - Database Description and Data Processing 
 

The format in which data is presented has significant impact on processing and learning, 

being featurization the process of converting raw data to something more appropriate for an 

algorithm. (39) During featurization, missing or spurious elements are identified and handled, 

which sometimes requires insights about both the scientific and learning problem and is essential 

to avoid ML algorithms of being misled.  (39,49) This is a systematically discussed topic since 

there is no obvious choice of representation for the best performance. For example, in chemistry, 

data is not always fully assimilated or give a coherent description of structures. (39,49) The truth 

is that most data sources are biased (49), and this work did not escape that rule. In this context, it 

was not possible to use mycotoxins’ experimental toxicity values reported in literature to develop 

the aforementioned methods not only because some studies were old, not clear, and incomplete but 

also because there are few mycotoxins well studied, resulting in a lot of missing points in the target 

variable, the acute toxicity. Detailed information about this target variable is provided on section 

3.3 “Class Attribution”. In this work, the dataset is composed by molecular descriptors (features, 

columns) and mycotoxins (objects, rows). 

 

3.1 Molecular Fingerprints 

 Molecular fingerprints are high-dimensional vectors made up of chemical descriptor values 

and are widely employed in chemometric analysis and similarity-based virtual screening 

applications. (19,70,71) Specifically, these descriptors are presented in the form of bit string 

representations, consisting  in numbers of bits that represent the presence or absence of a specific 

molecular feature and depend on the type and number of molecular descriptors and the values they 

capture. (69,70) Molecular ACCess System (MACCS) substructure fingerprints are 2D binary 

fingerprints (0 and 1) that indicate the presence or absence of certain substructure keys with each 

of 166 bits. (19,69) Chemical patterns up to a specified length or diameter can be extracted from a 

chemical graph using Daylight fingerprints and extended connectivity fingerprints (ECEP), 

indexing features resorting to hash functions. (19,20,69) Hash functions, in the context of molecular 

fingerprints, take early types of bit vector representations with associated structural features and 

represent that structural information in a way that promotes virtual screening by mapping data of 

arbitrary size to fixed-size values. (93) 

Several metrics and similarity coefficients were developed to compare fingerprint 

representations (e.g.: Cosine similarity, Soergel distance, Manhattan distance, among others) and 
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the most widely used metric is the Tanimoto Coefficient (Equation 5) or Jaccard Index, used in the 

present work. 

The technique by which the molecular representation is converted into a bit string 

determines the type of molecular fingerprint. (70) The majority of techniques employ a 2D 

molecular graph and are hence referred to as 2D fingerprints; however, certain methods, such as 

pharmacophore fingerprinting, may store 3D information. (19,70) From those techniques, the major 

ones are substructure keys-based fingerprints, topological or path-based fingerprints and circular 

fingerprints. (70)  

 Substructure keys-based fingerprints set the bits of the bit string based on the existence of 

specific substructures or characteristics from a list of structural keys in the compound, meaning that 

if a substructure is not present on that structural keys list, the features will not be represented. (70) 

Some examples are MAACS fingerprints, PubChem fingerprints, BCI fingerprints and Typed 

Graph Triangle/Typed Graph Distance (TGT/TGD) fingerprints. (94–96) Figure 5 illustrates one 

example of substructure keys-based fingerprints. 

 

Figure 5. Representation of a hypothetical 21-bit substructure fingerprint, with 6 bits set as a result 

of the substructures they represent are present in the molecule. 

 

 Topological or path-based fingerprints are created by examining all of the molecule fragments that 

follow a (typically linear) path up to a specific number of bonds, and then hashing each of these 

paths to generate the fingerprint, meaning that any molecule can produce a meaningful fingerprint 

and its length can be adjusted. (70) These fingerprints can also be called hashed fingerprints, in 

which a given bit may be set by more than one feature, the so called “bit collision”. (70) Topological 

fingerprints were used in this study and are exemplified in Figure 6. 
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Figure 6. Representation of a hypothetical 14-bit topological fingerprint. Fragments found from the 

starting atom (circled in red) are shown with their respective length and corresponding bit. There 

are two-bit collisions, which are bits that are set by more than one fragment. 

 

Finally, circular fingerprints, exemplified in Figure 7, are also hashed fingerprints but instead of 

looking for pathways in a molecule, a radius is set and the environment of each atom is recorded. 

(70)  

 

Figure 7. Representation of a hypothetical 5-bit circular fingerprint. 

 

3.2 Molecular Descriptors 

Molecular descriptors are used for molecular data mining and consist of numerical features 

extracted from molecular structures. (19,69) These descriptors may have different complexities but 

can be classified according to their dimensionality, depending on the molecular representations 

from which they are calculated.  (19,69,97) One-dimensional (1D) descriptors include bulk 

properties and physiochemical parameters such as atom, bond or fragment counts, molecular weight 

and sum of atomic properties. (19,69) The most common descriptor type described in the literature 

are two dimensional (2D) molecular descriptors and comprise molecular profiles, topological 

indices and autocorrelation descriptors. (19,69) Selecting an appropriate set of molecular 



44 

 

descriptors is nontrivial since hundreds of molecular descriptors are available in the literature. 

(19,79) Also, there are several commercial software packages allowing their calculation for large 

compound datasets (e.g.: DRAGON, CDK, Mol2) but the major problem is how to best select 

descriptors beyond chemical intuition. (19,69,79). For many applications, PCA is used to reduce 

the dimensionality in order to choose the most important descriptors and their contributions, 

avoiding redundancies and correlations between descriptors. (69) 

The rcdk package (60) groups molecular descriptors into five categories: “constitutional”, 

“hybrid”, “topological”, “electronic” and “geometrical”. Table 5 shows the molecular descriptors 

used in this study after the feature selection process, described in detail in section 3.5.  

 

Table 5. Description of the molecular descriptors used in this study obtained by the CDK library. 

Only the resulting descriptors from the feature selection process are shown. The colors represent 

the category of the molecular descriptor:  hybrid;  topological;  electronic;  

constitutional. 

Molecular Descriptor Description References 

Burden Chemical 

Abstract Service 

University of 

Texas 

BCUTw,1l 

Eigenvalue based descriptor noted for its utility 

in chemical diversity. The descriptor is based on 

a weighted version of the Burden matrix which 

considers both the connectivity as well as 

atomic properties of a molecule. 

BCUTw,1l→ nhigh lowest atom weighted 

BCUTS. 

BCUTc,1h→ nlow highest partial charge 

weighted BCUTS. 

BCUTp,1l→ nhigh lowest polarizability 

weighted BCUTS. 

BCUTc,1l→ nhigh lowest partial charge 

weighted BCUTS. 

(98–100) 

BCUTc,1h 

BCUTp,1l 

BCUTc,1l 

PetitjeanNumber 

According to the Petitjean definition, the 

eccentricity of a vertex corresponds to the 

distance from that vertex to the most remote 

vertex in the graph. The distance is obtained 

from the distance matrix as the count of edges 

between the two vertices. If r i is the largest 

matrix entry in row i of the distance matrix D, 

then the radius is defined as the smallest of the r 

i. The graph diameter D is defined as the largest 

vertex eccentricity in the graph. Petitjean 

Number is the value of diameter - radius. The 

radius-diameter diagram allows classification of 

the shapes of compounds and has remarkable 

(101) 
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properties for both graph-theoretical and 

geometrical shapes. 

Molecular 

distance-edge 

MDEC,12 

MDE descriptors are based on two fundamental 

structural variables, one for distance between 

atoms in the molecular graph and another for 

edges of the adjacency in the graph. 

Molecular distance edge: 

MDEC,12 → between all primary and 

secondary carbons. 

MDEC,23 → between all secondary and 

terciary carbons. 

MDEC,33 → between all tertiary carbons. 

(100,102,103) MDEC,23 

MDEC,33 

Kier Hall Smarts 

or Eccentric 

Connectivity 

Index 

khs,dsCH A fragment count descriptor that uses 

electrotopological-state fragments. 

khs,dsCH→ [CD2H](=*)-* or =CH- 

khs,dCH2→ [CD1H2]=* or =CH2 

khs,ssO→ [OD2Ho](-*)-* or -O- 

khs,aaO→ [O,oD2Ho](:*):* or :O: 

khs,sCl→ [ClD1]-* or -Cl 

khs,aaaC→[C,c;D3H0](:*)(:*):* or ::C: 

khs,sNH2→ [ND1H2]-* or -NH2 

khs,ssNH→[ND2H](-*)-* or -NH2-+ 

khs,aaNH→ [N,nD2H](:*):* or :NH: 

khs,sssN→[ND3H0](-*)(-*)-* or >NH-+ 

(97,100,103,104) 

khs,dCH2 

khs,ssO 

khs,aaO 

khs,sCl 

khs,aaaC 

khs,sNH2 

khs,ssNH 

khs,aaNH 

khs,sssN 

Chi-chain 

VCH,5 

Evaluates the simple and valence chi chain 

descriptors of orders 3, 4, 5, 6 and 7 by finding 

fragments matching SMILES strings 

representing the fragments corresponding to 

each type of chain. 

VCH,5 → Valence chain, order 5. 

SCH,5 → Simple chai, order 5. 

(57,100) 

SCH,5 

Carbon Types 

C1SP3 
Characterizes de carbon connectivity in terms of 

hybridization. 

C1SP3 → Singly bound carbon bound to one 

other carbon. 

C2SP2 → Doubly bound carbon to two other 

carbons. 

C3SP2 → Doubly bound carbon bound to three 

other carbons. 

C4SP3 →Singly bound carbon to four other 

carbons. 

(57,100,103) 

C2SP2 

C3SP2 

C4SP3 
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Autocorrelation 

Descriptor 

Charge 

ATSc2 

Autocorrelation descriptor, weighted by 

charges. The values are calculated considering 

weight equal to charges. Explain how the 

values of certain functions, at intervals equal to 

the lag d, are correlated. In this case, lag is the 

topological distance, and the atomic properties 

(weight or charge) are the functions correlated. 

ATSc2 → autocorrelation of a topological 

structure of lag 2 

ATSc3 → autocorrelation of a topological 

structure of lag 3 

(103,105) 

ATSc3 

topoShape A measure of the anisotropy in a molecule. (101) 

TopoPSA 
Calculation of topological polar surface area 

based on fragment contributions.  
(100,103) 

tpsaEfficiency 
Polar surface area expressed as a ratio to 

molecular size. 
(100,103) 

nSmallRings Total number of small rings of size 3 through 9. (100,103) 

nAromRings Total number of small aromatic rings. (100,103) 

nRings4 Individual breakdown of 4 membered rings. (100,103) 

apol 
Calculates the sum of the atomic 

polarizabilities, including implicit hydrogens. 
(100) 

nHBDon Number of hydrogen bond donors.  (100) 

nHBAcc Number of hydrogen bond acceptors. (100) 

nBase Basic group count descriptor. (100,103) 

MW 

Weight of atoms of a certain element type.If no 

element if specified, the returned value is the 

molecular weight.  

(100,103) 

XlogP 
Prediction of logP based on the atom type 

method called XlogP. 
(103) 

AlogP Ghose-Crippen LogKow (100,103) 

Alogp2 Square of AlogP. (100,103) 

MLogP 
LogP based on the Mannhold equation using the 

number of carbons and hetero atoms.  
(103) 

LipinksiFailures Number of failures of the Lipinksi’s Rule of 5. (100,103) 

nRotB Number of non-rotatable bonds on a molecule. (103) 
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3.3 Class Attribution 

As mentioned previously, in supervised learning models classes are known. The main goal 

of this study is to better discriminate mycotoxins using their structures and molecular descriptors, 

and to predict whether they can be acutely toxic or not. The ideal would be to have experimental 

values of these mycotoxins in animal models. There are some experimental studies reporting 

toxicity values for rats, pigs, chickens, and others. (3,18,114,115,106–113) However, in order to 

construct a ML model, the data would have to be rigorous and there would have to exist a significant 

number of studies with the same animal model, route of administration, same conditions and time, 

which is not the case. Alternatively, mycotoxins were classified into acutely toxic (denoted as “1”) 

and non-acutely toxic (denoted as “0”) according to Global Harmonized System (GHS) 

classification. If the respective mycotoxin was classified by GHS as acutely toxic (pictogram with 

the skull), then the mycotoxin would be classified as 1. If not, the mycotoxins would be classified 

with 0, or non-acutely toxic.  GHS classifies substances into five categories defined by specific cut-

off values for oral, dermal, gases, vapors, dusts, and mists, based on experimental data. When no 

experimental data is available, GHS follows a series of steps that comprise intensive research on 

symptoms, similar molecules, types of animals and also several expert judgements. The GHS 

scheme was therefore employed in order to proceed with the analysis and bring more information 

about mycotoxins to the table, considering a system that accommodates the needs of the other 

systems, from labelling to transport.  

All this information can be found on the eighth revised edition of the GHS, available at 

https://unece.org/ghs-rev8-2019.  

 

3.4 Construction of the datasets 

 A first dataset was constructed composed of 30 mycotoxins from the most well-known 

families. (3–7,9,10)  However, ML models work better for large datasets, and it would be interesting 

to evaluate not so well-known mycotoxins. With this, to the first dataset composed of 30 

mycotoxins, 29 more mycotoxins were added. The complete list of mycotoxins is presented in 

Figure 8 with their respective assigned code and class. The classes (0 for non-acutely toxic and 1 

for acutely toxic) were only added to the dataset for labelling in the unsupervised analysis and to 

further construct the supervised learning models.  

https://unece.org/ghs-rev8-2019
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Figure 8. Schematic representation of mycotoxins (30) present on the first dataset (on the left), the 

posteriorly added mycotoxins (29) (on the right) and their respective acronym and class. 

 

3.5 Feature Extraction and Selection 

Fingerprints were computed using the fingerprint package (116) that handles binary 

fingerprint data and provides a function to construct and evaluate the distance matrix using the 

Tanimoto coefficient (Eq. 5).  
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The rcdk package (60) was used to calculate the molecular descriptors, resulting in a total 

of 287 descriptors.  After the features calculation, a feature selection procedure from the rcdk 

package was performed. (60) That process consisted in: (i) removing missing values; (ii) removing 

correlated columns and (iii) removing constant columns. For the dataset composed with 30 

mycotoxins this feature selected procedure resulted in the selection of 15 molecular descriptors and 

for the dataset composed by 59 mycotoxins, this procedure resulted in a final dataset of 28 

molecular descriptors.  However, when building the supervised learning models, some warnings 

arose about the existence of collinear or constant variables. For that reason, a fourth step has been 

performed that consisted in eliminating variables (molecular descriptors) with variance inferior to 

0.005, which resulted in a different dataset with 24 molecular descriptors. This procedure was only 

applied to the dataset composed by 59 mycotoxins. Also, because the main goal is to relate 

mycotoxins’ structures with their acute toxicity, another dataset was manually created with 

molecular descriptors related to biological activity. That selection was made according to some 

work in the literature (117–119) and the molecular descriptors were HBDon, HBAcc, nRot, MW, 

LipinksiFailures, nAromRings, XLogP, MlogP, ALogP, ALogp2, nSmallRings and TopoPSA (see 

Table 5). Lipinski Rule of five related descriptors were selected because they take into account the 

likelihood of absorption and permeation, important parameters that can directly influence the 

activity of every molecule, in this case mycotoxins.  (120)  For the sake of simplicity, Figure 9 

shows the process of constructing the datasets, including the number of molecular descriptors, that 

resulted from feature selection. 

Finally, and before constructing the models, data was normalized using the caret package 

from R (64) for LDA and SVM and using scikit-learn package from Python in the case of RF and 

NN.  
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Figure 9. A composed view of the steps for datasets construction and feature selection. Feature 

selection method 1 was only applied to the dataset composed by 30 mycotoxins. For the dataset 

composed by 59 mycotoxins, all feature selection methods were applied. nHBDon is in bold 

because it was one of the manually selected descriptors, but the process of feature selection also 

considered this descriptor. 
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Chapter 4 - Results and Discussion 
 

So far, the necessary tools to proceed with the analysis and the construction of the ML 

models and how those models work were presented. In short, unsupervised learning techniques, 

HCA and k-means, were used to evaluate the molecular similarity between the mycotoxins, based 

on molecular fingerprints. PCA was implemented to identify relevant molecular descriptors to 

discriminate the mycotoxins and their families. The relationship between the selected molecular 

descriptors and the acute toxicity of the mycotoxins were also assessed based on the relative 

positioning of mycotoxins labelled according to their acute toxicity. Finally, supervised learning 

models were constructed using those labels as target response to predict mycotoxins acute toxicity.  

All results are presented in this section. 

 

4.1 Molecular Similarity 

HCA was firstly performed over 30 mycotoxins belonging to the most commonly known 

families. The results are presented in Figure 10.  

 

From left to the right, we have fumonisins, trichothecenes, ergot alkaloids, aflatoxins and other 

mycotoxins that do not belong to a specific family.  

Figure 10. Dendrogram representing the similarity among 30 mycotoxins considering their 

molecular fingerprints, constructed resorting to Ward’s method over the Tanimoto distances. The 

different colors represent the different families: fumonisins are colored in green, dark blue 

represents the trichothecenes family (excepting CTN and PATL), in orange are ergot alkaloids, 

aflatoxins in red and in light blue are the remaining mycotoxins. 
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Considering the dendrogram distances, it is visible that all families are distant from each other, 

suggesting that they display different characteristics. Fumonisins group (green) is the most cohesive 

group in this dendrogram which makes sense because fumonisins B1, B2 and B3 are closely related 

metabolites that only differ in small substitutions from -OH to -H or vice versa. (121) The 

trichothecenes family (dark blue group) is a big family of mycotoxins and can be divided in four 

groups (A-D). In this dataset of 30 mycotoxins, only type A and B trichothecenes were selected 

and, in fact, they are present of the 2 first subgroups of this family: on the left side are type B 

trichothecenes and on the right side are type A trichothecenes. Considering that HCA was 

performed using hashed fingerprints- sequences of 0 and 1 digits containing structural information- 

the algorithm performed well distinguishing these trichothecenes types that only differ in the 

presence or absence of a carbonyl group at the C-8 position. (6,14) Furthermore, PATL and CTN 

are not trichothecenes but were clustered together with them. Even so, it is visible their distance 

from the remaining trichothecenes. Although patulin (PATL) and citrinin (CTN) are far from the 

trichothecenes, they are very close to each other in the cluster which is in accordance with the 

existence of bi-toxigenic fungal strains with the ability to produce both PATL and CTN. (122) 

Regarding the ergot alkaloids group (orange), there is a slight separation between ergometrine 

(EMET) and the other ergot alkaloids, which is explained by the fact that EMET is a lysergic acid 

derivative, and the remaining mycotoxins of this cluster are peptide alkaloids (also called 

ergopeptines) that only differ in a peptide moiety linked to the basic tetracyclic ergoline. (13) 

Aflatoxins are represented in the pink cluster and contain the most toxic known mycotoxin, 

aflatoxin B1 (AFB1). The term “B” and “G” refers to the blue and green, fluorescent colors 

produced by these mycotoxins under UV light and, with the exception of AFM1, all aflatoxins are 

the four major mycotoxins produced by mold metabolism. Aflatoxin M1 is the hydroxylated 

metabolite of AFB1 (5,6,123), corroborating their proximity in the cluster. The last group is 

composed by individual mycotoxins, ochratoxin A, zearalenone and α-zearalenol. Starting with 

zearalenone (ZRLN) and α-zearalenol (A_ZRLN), and as the name implies, A_ZRLN is a result of 

biotransformation of ZRLN carried out by animals, justifying their proximity in this cluster. OCHA 

was clustered together with ZRLN and A_ZRLN and there is evidence of their co-occurrence (124) 

but they are still too far away on the dendrogram.  

Further analysis based on K-means clustering, Figure 11, confirms the HCA results shown 

in the dendrogram (Figure 10). Each cluster has a centroid, and the algorithm combines distances 

between molecules and the group centroids. 
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Figure 11. K-means cluster plot constructed over the Tanimoto distances between the 30 mycotoxin 

structures, represented by their molecular fingerprints. 

 

Although a different algorithm was applied, the results obtained are generally in accordance 

with the results of the HCA.  

With the exception of the light blue cluster, all other clusters show both cohesion and 

separation. Interestingly, PATL and CTN were now clustered together with OCHA, ZRLN and 

A_ZRLN. The proximity between CTN and PATL is still visible, as well as ZRLN and A_ZRLN. 

OCHA, PATL and CTN are on opposite sides of the light blue cluster and OCHA is near ergot 

alkaloids (orange) and CTN and PATL near fumonisins. The fact that these mycotoxins are on 

opposite sides of their own cluster can be explained by their different molecular weights (OCHA 

has a MW of 403.8, PATL of 154.1 and CTN of 250.3) and the MW of ergot alkaloids, namely 

ergometrine (EMET), are closer to the MW of OCHA (EMET has a MW of 325.4). Furthermore, 

OCHA and EMET have the same number of hydrogen bond donors and a comparable number of 

heavy atoms (51,94).  It is curious that PATL and CTN are now on this cluster (and not in the 

trichothecenes as happened in HCA) since the co-occurrence of OCHA and PATL (125) and OCHA 

and CTN (126) has been documented. Nevertheless, they are on the opposite sides of their own 

cluster and can be in the decision boundary between their cluster and ergots cluster (in the case of 

OCHA) and fumonisins cluster (in the case of PATL and CTN).  

It is also visible that ergot alkaloids (orange) are mainly distant from aflatoxins (pink) in the Y 

axis while the remaining groups are mostly separated in the X axis. This observation can be related 

to the fact that ergot alkaloids are, in general, more complex molecules, with higher molecular 

weights and partition coefficients as well as with more stereocenters and heavy atoms.(51,94)  

Relatively to the X axis, these groups are probably separated due to their significantly different 

structures. Fumonisins have long-chain hydrocarbon units while trichothecenes are characterized 
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by a variable number of acetoxy and hydroxyl groups, an epoxide at C12,13 positions and a double 

bond between C9 and C10. 

To validate the clustering results, it was considered the silhouette coefficient, presented in 

Figure 12. Silhouette values range from -1, indicating that the mycotoxins are not in the correct 

cluster, to +1, indicating that the mycotoxin is far from the neighboring cluster and very close to 

the cluster to which is assigned.  

 

 

 

Excepting the light blue cluster, all other clusters show a silhouette coefficient near 1, 

suggesting that the similarity evaluation and group identification were performed correctly. The 

lower coefficient of 0.16 for the light blue cluster, is explained by the lack of cohesion within the 

group, visible in Figure 11, which suggests that mycotoxins in the cluster display distinct 

characteristics even within the group. The silhouette plot for the k-means clustering reveals a mean 

value of 0.67 which is considered acceptable, meaning an overall good clustering procedure. 

 

The previous data showed that the application of clustering techniques in the most well-known 

mycotoxins (30 mycotoxins) resulted in their grouping according to the families defined in the 

literature. (5–7) That said, some not so well-known mycotoxins were added to the dataset, including 

mycotoxins already belonging to the families shown previously, but also mycotoxins belonging to 

new families. (See Figure 8) The same clustering techniques were applied, and HCA results are 

shown in Figure 13. 

Figure 12. Silhouette plot for k-means clustering constructed over the initial 30 mycotoxins’ 

topological fingerprints. 
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Once again, all families are distant from each other. Regarding aflatoxins group (red), and 

excepting the four major aflatoxins (AFB1, AFB2, AFG1 and AFG2) the remaining aflatoxins were 

described as mammalian biotransformation products of the major metabolites (127), such as 

oxidative hydroxylation (AFM1 and AFQ1) (128), O-demethylation (AFP1) (129), justifying their 

closeness in the cluster. ESIN, also an ergot alkaloid, ended up in the right cluster (orange) and is 

notoriously close to the remaining ergots. A new group was formed, in brown, composed by 

ochratoxins and ATT1. All ochratoxins are very close to each other, which is in agreement with the 

fact that OCHB and OCHC are the dechlorinated and ethyl ester derivatives of OCHA, respectively. 

(130) ATT1 is distant from the ochratoxins even within the group, although it is interesting that 

ended up clustered together. Curiously, the yellow group is only composed by 3 Alternaria 

mycotoxins, ATNR, ATME and ATNE and 2 other mycotoxins ZRLN and A_ZRLN. ATNR and 

ATME are structurally very similar, reason why they are so close in the cluster. (131) However, 

ATNE, an Alternaria mycotoxin, is closer to ZRLN and A_ZRLN, suggesting some structural 

similarities. The new additions in the fumonisins group (FA1 and FA2) ended up in the respective 

family cluster and these new fumonisins, FAs, are separated from FBs as they are N-acetates of 

FB1 and FB2.  (132) Colored in pink is a new group composed by enniatins (ENs) and BAVR, 

despite one of the enniatins (ENF) is on the light blue cluster. BAVR was clustered with enniatins 

and indeed these mycotoxins are structurally related since several Fusarium species can produce 

ENNs, BEA or both, differing in their amino acid residues. (133) The new added trichothecenes 

(VERA and TCTC) were correctly clustered with the remaining trichothecenes. The light blue 

Figure 13. Dendrogram representing the similarity among all 59 mycotoxins considering their 

molecular fingerprints, constructed resorting to Ward’s method over the Tanimoto distances. In red 

are aflatoxins, orange are ergot alkaloids, brown are ochratoxins, fumonisins are colored in green, 

enniatins in pink, dark blue represents the trichothecenes family, and in light blue and yellow are 

the mycotoxins that are from different families or do not belong to a specific family. 
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group is particularly interesting because in addition to the mycotoxins already present in this group 

on the previous dataset (A_ZRLN, ZRLN, PATL and CTN), MNLF, FSPR and ENF are emerging 

Fusarium mycotoxins and TENT and TNZA are Alternaria mycotoxins. Looking at the 

dendrogram in a general perspective, this cluster is composed by mycotoxins more distant from 

each other (within the group) than the remaining clusters. For example, the trichothecenes group 

(dark blue) has mycotoxins closer to each other (lower distance) than the light blue group. This is 

explained by the cutoff value used to plot the dendrogram. In this case, the cutoff value used was 

at a distance of 2.5 but if this value was a bit lower, this light blue cluster would split into two other 

clusters and the main result would be a dendrogram with 9 clusters formed.  In contrast, if the cutoff 

value was a bit higher, it would result in the grouping of the yellow and brown clusters into one, 

and a final dendrogram with 7 clusters. Usually, this issue is assessed by determining the optimal 

number of clusters but, in this case, all tests gave a different optimal number of clusters and the 

chosen number corresponded to the number of different families present in the dataset. (See Annex 

I) However, this could be useful to ascertain the presence of any mycotoxin wrongly classified in 

the literature.  

Once more, k-means clustering was performed, and the results are shown in Figure 14. 

 

 

As expected, and in agreement with the HCA results, all groups are compact, with the 

exception of the light blue and, in this case, the yellow cluster that show no cohesion at all. This 

reveals that the majority of the mycotoxins belonging to these two clusters are not structurally 

similar. Yet, it is visible that even though ENF is not in the same cluster of enniatins (as happened 

in HCA), ENF is closer to their cluster centroid than to the centroid of its own cluster.  In addition, 

FSPR, an emerging Fusarium mycotoxin, was now clustered with trichothecenes, suggesting some 

Figure 14. K-means cluster plot used over the Tanimoto distances between the 59 mycotoxin 

structures, represented by their molecular fingerprints. 
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structural similarity between FSPR and trichothecenes. This makes sense because mycotoxins 

produced by Fusarium species include, among others, trichothecenes and zearalenone (ZRLN). 

(18) The light blue cluster is the less cohesive cluster which is understandable because contains 

mycotoxins from different families: ENF and MLNF are emerging Fusarium mycotoxins; TNZA 

and TENT are Alternaria mycotoxins and CTN and PATL do not belong to any specific family.  

The yellow cluster, mostly composed by Alternaria toxins, also presents some lack of 

cohesion probably due to the diversity of Alternaria mycotoxins, that can be divided into 5 classes. 

ATNE, ATME and ATNR all belong to pyranones/ benzopyrones corroborating their proximity in 

the yellow cluster; TNZA belongs to amine/amide metabolites which is probably the reason why 

was clustered in the light blue group; TENT belongs to cyclic tetrapeptides being was also clustered 

in the light blue group and ATT1 belongs to perylenequinones  (17) and was now clustered in the 

yellow group, in contrast with HCA where ATT1 was clustered with ochratoxins. This diversity 

may justify Alternaria mycotoxins positioning in the k-means cluster plot between yellow and light 

blue clusters. Even so, and similarly to ENF, it is visible that TENT is closer to the ergots cluster 

(orange) than to its own cluster, and ATT1 is closer to ochratoxins (brown) suggesting that these 

samples are on or very close to the decision boundary between these two neighboring clusters. 

Furthermore, and similarly to what happens in HCA, ZRLN and A_ZRLN were clustered together 

with some Alternaria toxins in the yellow cluster and their co-occurrence has also been reported. 

(134) K-means also confirmed the molecular similarity between ATNR and ATME.  

These clustering results were also validated using the silhouette coefficient and the 

resulting plot is presented in Figure 15.  

 

Figure 16. 

Figure 15. Silhouette plot for k-means clustering constructed over the 59 mycotoxins topological 

fingerprints. 



58 

 

As expected, the less cohesive clusters in the k-means cluster plot, light blue and yellow, 

contain mycotoxins with a lower silhouette coefficient (0.15 and 0.21, respectively) which means 

that, in fact, these mycotoxins were very close to the decision boundary between their neighboring 

clusters. These mycotoxins are TENT and ENF in the light blue cluster and ATT1 in the yellow 

cluster. As said before, ENF should have been clustered together with the other enniatins (pink), 

TENT with ergot alkaloids and curiously, ATT1 with ochratoxins.  All the other groups show a 

good silhouette coefficient, meaning that they were correctly clustered.  

 

4.2 Impact of Molecular Descriptors 

PCA was performed in order to summarize and visualize the information in a dataset 

composed of 30 mycotoxins described by several molecular descriptors. The main goal is to 

identify the principal components along which the variation is maximal, through a dimensionality 

reduction with minimal loss of information, in order to understand how these mycotoxins can be 

described and if there is any connection with the molecular similarity results, obtained using 

molecular fingerprints and simple distance measures.  A feature selection procedure from CDK 

allowed selecting 15 molecular descriptors, presented in Table 5. 

Table 6 shows the eigenvalues that resulted from PCA, allowing to evaluate the principal 

components to be considered. PCA with the first two components (PC1 and PC2) resulted in a 

variability recovery of 46.8% and with a third component, ca. 65% of information variability 

recovered. 

 

Table 6. Eigenvalues and evolution of the percentage of information recovery in relation to the 

number of principal components for the dataset composed by 30 mycotoxins and 15 molecular 

descriptors. The most relevant descriptors are underlined and correspond to eigenvalues greater 

than 1. 

 Eigenvalue Variance % Cumulative Variance % 

Dim. 1 3.88 25.8 25.8 

Dim. 2 3.14 20.9 46.8 

Dim. 3 2.69 17.9 64.7 

Dim. 4 1.86 12.4 77.1 

Dim. 5 1.24 8.25 85.4 

Dim. 6 0.818 5.46 90.8 

Dim. 7 0.540 3.60 94.4 

Dim. 8 0.299 1.99 96.4 

Dim. 9 0.188 1.26 97.7 

Dim. 10 0.139 0.926 98.6 

Dim. 11 0.111 0.737 99.4 

Dim. 12 0.049 0.325 99.7 
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Dim. 13 0.0278 0.185 99.9 

Dim. 14 0.0104 0.0697 99.9 

Dim. 15 0.00877 0.0585 100 

 

According to Table 6, 5 components would have to be retained, corresponding to 

components with eigenvalues superior to 1. These 5 components recover ca. 85.4% of cumulative 

variance. Both clustering techniques and PCA are unsupervised learning methods, but the 

difference now is that it is possible to understand not how similar these molecules are but what 

describes them and what features- molecular descriptors- are responsible for their discrimination 

profile. For that, the contributions of each molecular descriptor were assessed and are presented in 

Figure 16. 

 

The molecular descriptors with the highest impact on PC1 are MDEC.33, ATSc3, C3SP2 

and ATSc2. On the second component (PC2), BCUTp.1l, khs.dsCH, ATSc2 and C3SP2 have the 

Figure 16. Graphical representation of the impact of molecular descriptors (loadings) on the first 

two principal components (correlation matrix) for the dataset composed by 30 mycotoxins. The top 

and the bottom plots refer to PC1 and PC2, respectively. 
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highest impact. Surprisingly, all the molecular descriptors with highest impact on PC1 are 

topological but on the second component BCUTp.1l, BCUTw.1l and apol are hybrid and electronic 

molecular descriptors, respectively. This reinforces the evolution of the topological descriptors 

towards higher discriminating power and better correlating ability, as described by Balaban (1998). 

(135) 

PCA is two-dimensionally represented by a biplot composed with scores and loadings that 

are, respectively, the coordinates of the mycotoxins on the principal components and the weight of 

the original variables (molecular descriptors) on the new variables (PCs).  The PCA biplot is 

presented in Figure 17 for the first two components, PC1 and PC2. 

 

 

Figure 17.  Biplot representation of 30 mycotoxins described by 15 molecular descriptors on the 

first two principal components, recovering 46.8% of the variance. Mycotoxins are colored 

according to the clustering results (see Figure 10) and the molecular descriptors were selected 

according to feature selection method 1. 

 

The information variability recovered is ~47% but it is still visible some mycotoxin discrimination 

according to the already defined families in the literature, as it happened with the molecular 

similarity results. MDEC.33, ATSc3 and C3SP2 are mainly responsible for the positioning of 

aflatoxins and ergot alkaloids (pink and orange groups, respectively). This means that these two 

families may have in common their molecular distance edge between all tertiary carbons 

(MDEC.33) and also similar (i) autocorrelation of a topological structure of lag 3 (ATSc3) and (ii) 

numbers of doubly bound carbons bound to three other carbons (C3SP2).  ATSc2 also has a high 

impact on PC1 but is responsible for the discrimination of some Type B trichothecenes (NIVA, 

DON), ZRLN and A_ZRLN.  
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Most trichothecenes are influenced by BCUTw.1l and C1SP3 descriptors and fumonisins 

are discriminated by PetitjeanNumber and apol descriptors. Interestingly, the OCHA position is 

also consistent with the cluster results, considering that in both k-means cluster plot and PCA biplot 

representation this mycotoxin is close to ergot alkaloids. Now, it is plausible to infer that the reason 

for the proximity of OCHA to ergots may be due to one of the descriptors with positive impact on 

the principal component (MDEC.33, khs.aaO, VCH.5, C3SP2 and ATSc3).  

Since the main goal of this work is to predict mycotoxins toxicity, mycotoxins were 

classified into acutely toxic and non-acutely toxic. The following biplot- Figure 18- is still an 

unsupervised learning result, only with labels to help understand if there is any relationship between 

molecular descriptors and the acute toxicity of mycotoxins. For detailed information about the 

classification procedure of mycotoxins into acutely toxic or not, please refer to the Database 

Description and Data Processing section. 

 

 

Figure 18. Biplot representation of 30 mycotoxins described by 15 molecular descriptors on the 

first two principal components, recovering 46.8% of the variance. Mycotoxins are labeled 

according to their acute toxicity (see Figure 8). 

 

There is no visible relationship between molecular descriptors and mycotoxins’ toxicity. 

However, considering the dataset dimensions (30 mycotoxins and 15 molecular descriptors) and 

the variability recovered (47%), very few information is represented in this system. 

 

To extend the system description, and exactly as done previously to evaluate mycotoxins 

molecular similarity, PCA was applied to a larger dataset, composed by 59 mycotoxins. For these 

59 mycotoxins, two different feature selection methods were applied and are described in the 

Dataset Description and Data Processing section. After that, 5 different datasets were constructed, 
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all of them with the same mycotoxins. Two of the five datasets correspond to one method of feature 

selection (dataset A and B); other two to the other feature selection method (dataset C and D) and 

the last one (dataset E) was created using manually added molecular descriptors related to 

biological activity, please consult Figure 9. Again, more detailed information about the used 

molecular descriptors is presented in Table 5.  

 

Dataset A 

The eigenvalues were extracted to understand how many principal components should be 

used and are shown in Table 7. PCA with the first two components resulted in a variability recovery 

of ~38% and with a third component, ca. 52% of information variability recovered.  

 

Table 7. Eigenvalues and evolution of the percentage of information recovery in relation to the 

number of principal components for the dataset composed by 59 mycotoxins and 24 molecular 

descriptors. The most relevant descriptors are underlined and correspond to eigenvalues greater 

than 1. 
 

Eigenvalue Variance % Cumulative variance % 

Dim. 1 4.62 19.3 19.3 

Dim. 2 4.43 18.5 37.7 

Dim. 3 3.49 14.5 52.3 

Dim. 4 2.42 10.1 62.3 

Dim. 5 1.86 7.77 70.1 

Dim. 6 1.56 6.49 76.6 

Dim. 7 1.33 5.56 82.2 

Dim. 8 0.925 3.85 86.0 

Dim. 9 0.846 3.52 89.5 

Dim. 10 0.684 2.85 92.4 

Dim. 11 0.525 2.19 94.6 

Dim. 12 0.311 1.29 95.9 

Dim. 13 0.271 1.13 97.0 

Dim. 14 0.205 0.856 97.9 

Dim. 15 0.185 0.771 98.6 

Dim. 16 0.114 0.475 99.1 

Dim. 17 0.0873 0.364 99.5 

Dim. 18 0.0509 0.212 99.7 

Dim. 19 0.0317 0.132 99.8 

Dim. 20 0.0154 0.0641 99.9 

Dim. 21 0.0137 0.0570 99.9 

Dim. 22 0.00939 0.0391 99.9 

Dim. 23 0.00565 0.0235 100 

Dim. 24 7.61e-32 3.17e-31 100 
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In accordance with Table 7, seven components would have to be retained, with eigenvalues 

superior to 1. Again, the smaller dataset (15 molecular descriptors) recovered 85% of variance with 

five components. This dataset needs seven components to recover ~82% of variance. Molecular 

descriptors with highest contributions on the first two components are shown in Figure 19. 

 

 

Figure 19. Graphical representation of the impact of molecular descriptors (loadings) on the first 

two principal components (correlation matrix) for the dataset composed by 59 mycotoxins and 24 

molecular descriptors. The top and the bottom plots refer to PC1 and PC2, respectively. 

 

Once again, topological descriptors dominate the higher contributions on the first two 

components, with the exception of nBase, apol and HBDon that are constitutional and electronic, 

respectively.  

The PCA biplot for dataset A is presented in Figure 20. 
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Mycotoxins families for this dataset are also well discriminated. In this biplot it is visible 

that aflatoxins (red) are mainly discriminated by khs,aao, meaning that  they frequently have 

[O,oD2H0](:*):* e-state fragment. The same is visible with ergot alkaloids (orange) with the 

khs.aaNH descriptor, being rich in [N,nD2H](:*):* fragment.  

Fumonisins (green) are discriminated by apol, MDEC.12, khs,dCh2 and nHBDon and 

interestingly, FBs and FAs may have a slightly different apol and molecular distance-edge between 

all primary and secondary carbons (MDEC.12 descriptor) since it is visible in the biplot a small 

separation between them.  

The yellow group, mainly composed by Alternaria toxins, is widely distributed in the 

biplot.  This is in accordance with the fact that this family presents an enormous diversity and that 

is reflected by the molecular descriptors. All the other families are well separated, with only a few 

mycotoxins in one or another family that are more distant, for example, BAVR, ENF, MLNF and 

EMET, which also happened in the clustering results. ENF is away from its family probably due to 

a different sum of atomic polarizalities, reflected by apol descriptor; and it is possible that BAVR 

has more basic groups (nBase descriptor) or different MDE between secondary and tertiary carbons 

(MDEC,23) than Enniatins.  EMET, a ergot alkaloid, may be influenced by khs.ssO or C4SP3 

descriptors that distance this mycotoxin from the other ergot alkaloids and particularly discriminate 

the trichothecenes’ family.  

Figure 20. Biplot representation of 59 mycotoxins described by 24 molecular descriptors on the 

first two principal components, recovering 37.8% of the variance. Mycotoxins are colored 

according to the clustering results (see Figure 13) and the molecular descriptors resulted from 

feature selection method 2. 
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However, these descriptors do not seem to have significant impact on the discrimination of 

ochratoxins, present in the origin of the biplot, and enniatins (pink), being one possible reason for 

that the low variance recovery (38%) of this PCA with the two principal components.   

Figure 21 shows mycotoxins labelled into acutely toxic and non-acutely toxic to understand 

if these descriptors may lead to any toxicity information about these molecules. 

 

 

Figure 21. Biplot representation of 59 mycotoxins described by 24 molecular descriptors on the 

first two principal components, recovering 37.8% of the variance. Mycotoxins are colored 

according to their acute toxicity (see Figure 8). 

 

On the negative side of the principal component (PC1) are present 35 of the 59 mycotoxins 

and on the positive side 24. Of the 35 on the left side of the biplot, 9 are non-acutely toxic meaning 

that only 26 % of the molecules discriminated by a negative impact on PC1 are non-acutely toxic. 

In contrast, the positive side of PC1 contains 46% (11 out of 24) of non-acutely toxic mycotoxins.  

 

To evaluate if it is possible that discrimination through PC1 may contain information on 

toxicity profiles, to this dataset were added 11 biological activity related molecular descriptors, thus 

forming dataset B. One of them, nHBDon, was already present from the feature selection process. 

Exactly the same analysis was performed. 
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Dataset B 

 

Table 8. Eigenvalues and evolution of the percentage of information recovery in relation to the 

number of principal components for the dataset composed by 59 mycotoxins and 35 molecular 

descriptors. The most relevant descriptors are underlined and correspond to eigenvalues greater 

than 1. 
 

Eigenvalue Variance % Cumulative variance % 

Dim. 1 10.9 31.1 31.1 

Dim. 2 5.92 16.9 48.0 

Dim. 3 4.54 12.9 60.9 

Dim. 4 2.80 8.01 68.9 

Dim. 5 2.33 6.65 75.6 

Dim. 6 1.76 5.02 80.6 

Dim. 7 1.44 4.12 84.8 

Dim. 8 1.13 3.24 87.9 

Dim. 9 0.953 2.72 90.7 

Dim.10 0.778 2.22 92.9 

Dim.11 0.590 1.69 94.6 

Dim.12 0.505 1.44 96.1 

Dim.13 0.328 0.938 97.0 

Dim.14 0.241 0.689 97.7 

Dim.15 0.212 0.606 98.3 

Dim.16 0.153 0.436 98.7 

Dim.17 0.121 0.346 99.1 

Dim.18 0.0799 0.228 99.3 

Dim.19 0.0684 0.195 99.5 

Dim.20 0.0404 0.115 99.6 

Dim.21 0.0362 0.103 99.7 

Dim.22 0.0281 0.0802 99.8 

Dim.23 0.0164 0.0470 99.8 

Dim.24 0.0153 0.0437 99.9 

Dim.25 0.0113 0.0323 99.9 

Dim.26 0.00888 0.0254 99.9 

Dim.27 0.00566 0.0162 99.9 

Dim.28 0.00362 0.0103 99.9 

Dim.29 0.00323 0.00924 99.9 

Dim.30 0.00144 0.00411 100 

Dim.31 0.000909 0.00259 100 

Dim.32 0.000394 0.00112 100 

Dim.33 5.06e-06 1.44e-05 100 

Dim.34 9.32e-08 2.66e-07 100 
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Dim.35 8.58e-32 2.45e-31 100 

 

In fact, PCA on dataset B recovered more information variability, with 48% on the first 

two components and 61 % with a third component. The increase over the previous dataset was 10% 

in the main components. It is plausible to believe that biological activity related descriptors are a 

good contribution to the system. Molecular descriptors’ contributions for dataset B are shown in 

Figure 22. 

 

From the descriptors with highest contributions on PC1, only apol and MDEC.12 do not 

belong to the “biological activity group of descriptors”. Although apol is the descriptor that 

contributes the most, it is very close to MW, Lipinski Failures and nHBAcc. On the second 

Figure 22. Graphical representation of the impact of molecular descriptors (loadings) on the first 

two principal components (correlation matrix) for the dataset composed by 59 mycotoxins and 35 

molecular descriptors. The top and the bottom plots refer to PC1 and PC2, respectively. 
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component, nAromRings has the highest contribution and is related to biological activity. The 

remaining descriptors already belonged to dataset A. PCA biplot for dataset B is presented in Figure 

23.  

 

 

Firstly, and unlike dataset A, enniatins are now discriminated mainly by molecular weight 

and Lipinski Failures descriptors. The impact of khs.sNH2 on fumonisins is confirmed, as well as 

the impact of khs.aaNH and BCUTp.1l on ergot alkaloids. ALogP descriptor seems to be the reason 

for the distance of BAVR of its family. Aflatoxins are still influenced by khs.aao but now the 

number of small rings has also impact on their discrimination. C4SP3 descriptor continues to have 

great impact on the thrichothecenes family (dark blue). Ochratoxins (brown) do not seem to be 

particularly discriminated by any molecular descriptor, being constantly on the origin of the biplot. 

This can mean that ochratoxins may good reference molecules with average characteristics relative 

to molecular descriptors.  

It is curious that of twelve biological activity related descriptors, only two are on the 

negative side of PC1, both related to aromaticity of molecules that is proved to increase toxicity 

(136,137) (nAromRings, nSmallRings).   

The toxicity profile was reassessed with the resulting biplot present in Figure 24.  

 

Figure 23. Biplot representation of 59 mycotoxins described by 35 molecular descriptors on the 

first two principal components, recovering 48% of the variance. Mycotoxins are colored according 

to the clustering results (see Figure 13) and the molecular descriptors resulted from feature selection 

method 2 with the addition of biological-activity related descriptors. 
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Figure 24.  Biplot representation of 59 mycotoxins described by 35 molecular descriptors on the 

first two principal components, recovering 48% of the variance. Mycotoxins are colored according 

to their acute toxicity (see Figure 8). 

 

Only seven non-acutely toxic mycotoxins are on the negative side of the PC1, and almost 

the double (13) on the right side. In other words, 19,4% of the mycotoxins on the left side are non-

acutely toxic (7 out of 36) and on the positive side 56% (13 out of 23). It is noteworthy that 

LipinskiFailures is a descriptor that relates both absorption and permeation (120,138), important 

parameters in toxicity evaluation, and represents the third highest contribution to PC1. Biological 

activity descriptors had some impact on the mycotoxins positioning in the biplot regarding their 

toxicity profile. Obviously, both in dataset A and B the descriptors discriminate mycotoxins 

families but not necessarily the biological activity descriptors, since in dataset A they were not 

present, and all the families were clearly discriminated. 

Now, the same procedure was done, but with another feature selection method that 

originated datasets C and D.  
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Dataset C 

 

Table 9 shows the resulting eigenvalues and variance for dataset C.  

 

Table 9. Eigenvalues and evolution of the percentage of information recovery in relation to the 

number of principal components for the dataset composed by 59 mycotoxins and 28 molecular 

descriptors. The most relevant descriptors are underlined and correspond to eigenvalues greater 

than 1. 

 
 

Eigenvalue Variance % Cumulative variance % 

Dim. 1 5.34 19.08 19.08 

Dim. 2 4.53 16.2 35.3 

Dim. 3 4.28 15.3 50.5 

Dim. 4 2.89 10.3 60.9 

Dim. 5 2.24 8.01 68.9 

Dim. 6 1.65 5.88 74.6 

Dim. 7 1.52 5.42 80.2 

Dim. 8 1.03 3.67 83.8 

Dim. 9 0.959 3.42 87.3 

Dim. 10 0.698 2.49 89.8 

Dim. 11 0.605 2.16 91.9 

Dim. 12 0.523 1.87 93.8 

Dim. 13 0.400 1.43 95.2 

Dim. 14 0.316 1.13 96.3 

Dim. 15 0.260 0.931 97.3 

Dim. 16 0.197 0.702 97.9 

Dim. 17 0.170 0.608 98.6 

Dim. 18 0.126 0.449 99.0 

Dim. 19 0.0921 0.329 99.4 

Dim. 20 0.0599 0.214 99.6 

Dim. 21 0.0476 0.170 99.7 

Dim. 22 0.0270 0.0965 99.8 

Dim. 23 0.0168 0.0599 99.9 

Dim. 24 0.0102 0.0363 99.9 

Dim. 25 0.00804 0.0287 99.9 

Dim. 26 0.00560 0.0200 99.9 

Dim. 27 0.00304 0.0108 100 

Dim. 28 2.66e-31 9.49e-31 100 
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PC1 and PC2 attain ~35% of variance and a third component 50%. With this dataset, eight 

principal components are needed to reach 80% of the variance where both dataset A and B needed 

seven or six, respectively. The only differences between datasets A and C are that dataset C contains 

more three BCUT descriptors and considers PetitJeanNumber descriptor. Molecular descriptors 

contributions are shown in Figure 25. 

 

 

 

Topological descriptors continue to dominate PC1 with apol, nHBDon and MDEC,12, 

(electronic, constitutional, and topological) dominating the second component. 

The PCA biplot for dataset C is displayed in Figure 26.  

Figure 25. Graphical representation of the impact of molecular descriptors (loadings) on the first 

two principal components (correlation matrix) for the dataset composed by 59 mycotoxins and 28 

molecular descriptors. The top and the bottom plots refer to PC1 and PC2, respectively. 
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This biplot confirms what was seen in the previous datasets. To add to C4SP3 descriptor, 

PetitJeanNumber and tpsa descriptors appear to have some influence on the trichothecenes family. 

Ochratoxins persist in the origin of the biplot without any remarkable influence, despite the C2SP2 

descriptor has shown a very slight impact in this family, also visible in both datasets A and B. 

Biplot with acute toxicity labels is presented in Figure 27.  

Figure 26. Biplot representation of 59 mycotoxins described by 28 molecular descriptors on the 

first two principal components, recovering 35.3% of the variance. Mycotoxins are colored 

according to the clustering results (see Figure 13) and the molecular descriptors resulted from 

feature selection method 1. 
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Figure 27. Biplot representation of 59 mycotoxins described by 28 molecular descriptors on the 

first two principal components, recovering 35.3% of the variance. Mycotoxins are colored 

according to their acute toxicity (see Figure 8). 

 

In this biplot it seems that the toxicity profile is now over the second component (PC2). 

The positive side of PC2 contains 25 mycotoxins, 13 of which are non-acutely toxic, in other words 

52%. On the negative side, only 20% of the mycotoxins are non-acutely toxic (7 in 24). 

To this dataset were added biological activity descriptors, constituting dataset D.  

  

 

Dataset D 

 

The obtained eigenvalues and variances are presented in Table 10.  

 

Table 10. Eigenvalues and evolution of the percentage of information recovery in relation to the 

number of principal components for the dataset composed by 59 mycotoxins and 39 molecular 

descriptors. The most relevant descriptors are underlined and correspond to eigenvalues greater 

than 1. 
 

Eigenvalue Variance % Cumulative variance % 

Dim. 1 11.0 28.2 28.2 

Dim. 2 6.91 17.7 45.9 

Dim. 3 5.07 13.0 58.9 

Dim. 4 3.32 8.51 67.5 

Dim. 5 2.72 6.98 74.5 

Dim. 6 1.79 4.60 79.1 

Dim. 7 1.64 4.19 83.3 

Dim. 8 1.16 2.99 86.3 

Dim. 9 1.00 2.57 88.8 

Dim. 10 0.86 2.21 91.0 

Dim. 11 0.63 1.61 92.7 

Dim. 12 0.62 1.58 94.2 

Dim. 13 0.49 1.27 95.5 

Dim. 14 0.348 0.892 96.4 

Dim. 15 0.325 0.833 97.2 

Dim. 16 0.267 0.686 97.9 

Dim. 17 0.195 0.499 98.4 

Dim. 18 0.156 0.394 98.8 

Dim. 19 0.114 0.292 99.1 
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Dim. 20 0.0829 0.213 99.3 

Dim. 21 0.0749 0.192 99.5 

Dim. 22 0.0490 0.126 99.6 

Dim. 23 0.0349 0.0894 99.7 

Dim. 24 0.0310 0.0796 99.8 

Dim. 25 0.0208 0.0534 99.8 

Dim. 26 0.0160 0.0411 99.9 

Dim. 27 0.0109 0.0279 99.9 

Dim. 28 0.00878 0.0225 99.9 

Dim. 29 0.00668 0.0171 99.9 

Dim. 30 0.00509 0.0131 99.9 

Dim. 31 0.00383 0.00982 99.9 

Dim. 32 0.00199 0.00511 99.9 

Dim. 33 0.00134 0.00344 99.9 

Dim. 34 0.00105 0.00270 99.9 

Dim. 35 0.000457 0.00117 99.9 

Dim. 36 0.000248 0.000637 99.9 

Dim. 37 4.55e-06 1.17e-05 100 

Dim. 38 7.69e-08 1.97e-07 100 

Dim. 39 1.56e-31 4.01e-31 100 

 

These results are very similar to those on dataset B and as it happened with dataset A and 

B, when biological activity descriptors were added, and compared to dataset C, the explained 

variance increased by 10% in the first two components, reaching ca. 46%. The third component 

increased information variability to 59%.  

The contributions of the variables are displayed in the next Figure.  
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Similarly to what happened from dataset A to dataset B, on the first component are only 

biological activity descriptors, with the exception of apol. nAromRings is again the descriptor with 

the highest contribution on PC2, followed by BCUTp.1l, tpsaEfficiency and carbon types 

descriptors (C2SP2 and C3SP2). Considering the explained variance and descriptors contributions 

in both datasets B and D, it is expectable that the PCA biplot of dataset D may be identical to dataset 

B.  

PCA biplot for dataset D is shown below, Figure 29. 

Figure 28. Graphical representation of the impact of molecular descriptors (loadings) on the first 

two principal components (correlation matrix) for the dataset composed by 59 mycotoxins and 39 

molecular descriptors. The top and the bottom plots refer to PC1 and PC2, respectively. 
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Figure 29. Biplot representation of 59 mycotoxins described by 39 molecular descriptors on the 

first two principal components, recovering 45.9% of the variance. Mycotoxins are colored 

according to the clustering results (see Figure 13) and the molecular descriptors resulted from 

feature selection method 1 with the addition of biological-activity related descriptors. 

 

All that was said to dataset B in the PCA biplot is applied here. Biplots are very similar, 

which means that it is not worthy to use feature selection method 1 (see Figure 9) because it yields 

lower information recovery and requires more descriptors without conveying additional 

information. There is no necessity to show the same biplot only with different labels because the 

result would be the same.  

Finally, to confirm if the biological activity descriptors really have the capacity to 

discriminate mycotoxins according to their toxicity profile, dataset E was constructed, only with 

those descriptors.  

 

Dataset E 

 

As said before, this dataset is composed by a few descriptors that are: nHBDon, nHBAcc, 

MW, XLogP, LipinskiFailures, nRotB, ALogP, MLogP, Alogp2, nSmallRings, nAromRings and 

TopoPSA. The eigenvalues and explained variance are shown in Table 11.  

 

Table 11. Eigenvalues and evolution of the percentage of information recovery in relation to the 

number of principal components for the dataset composed by 59 mycotoxins and 12 molecular 

descriptors. The most relevant descriptors are underlined and correspond to eigenvalues greater 

than 1. 
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With less principal components, the information recovered is, naturally, much higher, since 

the dimension of the system is lower. The first two components attain ~80% of the variability and 

a third component reaches 89%.  The contributions are shown in Figure 30.  

 Eigenvalue Variance % Cumulative variance % 

Dim. 1 7.01 58.4 58.4 

Dim. 2 2.54 21.2 79.6 

Dim. 3 1.18 9.84 89.4 

Dim. 4 0.729 6.08 95.5 

Dim. 5 0.192 1.59 97.1 

Dim. 6 0.125 1.04 98.2 

Dim. 7 0.0741 0.618 98.8 

Dim. 8 0.0717 0.597 99.4 

Dim. 9 0.0319 0.267 99.6 

Dim. 10 0.0250 0.208 99.8 

Dim. 11 0.0154 0.128 99.9 

Dim. 12 0.00299 0.0249 100 
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On the first component, MW, LipinskiFailures, nHBAcc and TopoPSA give a higher 

contribution to the system. On the second component, NHBDon, LogP-related descriptors 

contribute the most. The impact of these descriptors on the discrimination profile of the 59 

mycotoxins was assessed and is present in Figure 31. 

 

 

Figure 31. Biplot representation of 59 mycotoxins described by 12 molecular descriptors related to 

biological activity on the first two principal components, recovering 79.5% of the variance. 

Mycotoxins are colored according to the clustering results (see Figure 13). 

 

The first noticeable aspect is that the families are no longer discriminated as seen in the 

previous datasets, with the exception of enniatins (pink) and fumonisins (green) that are separated 

along the second component. This suggests that constitutional descriptors, with the exception on 

apol, HAcc and HBDon that are electronic, are not sufficient to discriminate families and that 

topological descriptors are necessary for that discrimination to happen. It seems that mycotoxins 

belonging to fumonisins and enniatins are on the same side of the biplot mainly because of their 

molecular weight, which is in accordance with the molecular similarity results. AlogP is the 

molecular descriptor responsible for the enniatins position on the positive side of PC2 and 

TopoPSA for the position of fumonisins on the negative side of PC2. 

However, the main goal of this work is to find out relationships between molecular 

descriptors and acute toxicity, so that those descriptors can be use in a classification model.  

Figure 30.  Graphical representation of the impact of molecular descriptors (loadings) on the first 

two principal components (correlation matrix) for the dataset composed by 59 mycotoxins and 12 

biological activity descriptors. The top and the bottom plots refer to PC1 and PC2, respectively. 
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The biplot with the mycotoxins labelled according to their acute toxicity is presented in 

Figure 32.  

Figure 32. Biplot representation of 59 mycotoxins described by 12 molecular descriptors related to 

biological activity on the first two principal components, recovering 79.5% of the variance. 

Mycotoxins are colored according to their acute toxicity (see Figure 8). 

 

There are 22 mycotoxins on the positive side of PC1 and 37 on the negative side. From the 

37 mycotoxins on the negative side, only 8 are non-acutely toxic, meaning that 21,6% of those 

mycotoxins are non-acutely toxic. On the other side, 12 of 22, ~54% of the mycotoxins are non-

acutely toxic. The positive side of the PC1 has less mycotoxins than the negative side and has more 

than double of non-acutely toxic mycotoxins.   

However, this information was already obtained with dataset B. This means that to 

construct a model, it is better to use dataset B because not only those descriptors are able to give 

some information about the toxicity profile of the mycotoxins, but also because they can 

discriminate the families, ending up representing the system better, even though the variability 

recovery is lower. 

 

4.3 Toxicity Prediction 

 So far it has been seen that the biological activity reflected by some of the molecular 

descriptors do not contribute significantly to the discrimination of the mycotoxins families. In other 

words, all biplots, including the dataset composed by 30 mycotoxins, showed, in general, a good 

discrimination between mycotoxin families. Regarding mycotoxins acute toxicity, the dataset 

composed by 30 mycotoxins showed no relationship between mycotoxins positioning on the biplot 
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and their acute toxicity. However, all the other datasets showed that there is some tendency for 

more toxic mycotoxins to gather on one side of PC1, and less toxic on the other. 

 To construct the predictive models, classes 0 (non-acutely toxic) and 1 (acutely toxic) were 

assigned to each mycotoxin (see Figure 4). The major problem at this stage was the fact that there 

are significantly more acutely toxic mycotoxins than non-acutely toxic, which can result later in an 

imbalanced distribution of classes in the training and test set.  

 To remember, all datasets were scaled, and the ratio train/test was 70/30.  

 

4.3.1 Linear Discriminant Analysis 

Table 12 summarizes the LDA results for each dataset. 

 

Table 12. Performance evaluation metrics for the LDA models. The dataset with the best 

performance is underlined.  

 30 Mycotoxins Dataset A Dataset B Dataset C Dataset D Dataset E 

Train/test: 0.7/0.3 

Accuracy 

Train 

Test 

 

0.91 

0.75 

 

0.88 

0.24 

 

0.98 

0.18 

 

0.95 

0.59 

 

0.98 

0.53 

 

0.83 

0.59 

Recall 

Train 

Test 

 

0.94 

0.83 

 

0.96 

0.36 

 

0.96 

0.18 

 

0.96 

0.73 

 

0.96 

0.55 

 

0.93 

0.82 

Precision 

Train 

Test 

 

0.94 

0.83 

 

0.87 

0.40 

 

1.00 

0.29 

 

0.96 

0.67 

 

1.00 

0.67 

 

0.84 

0.64 

Specificity 

Train 

Test 

 

0.83 

0.50 

 

0.71 

0.00 

 

1.00 

0.17 

 

0.93 

0.33 

 

1.00 

0.50 

 

0.64 

0.17 

AUROC 

Train  

Test 

 

0.89 

0.67 

 

0.84 

0.18 

 

0.98 

0.17 

 

0.95 

0.53 

 

0.98 

0.52 

 

0.79 

0.49 

 

Overall, the LDA model shows overfitting for all datasets. Overfitting is less pronounced 

for the dataset composed by 30 mycotoxins and more pronounced for datasets A and B, with 24 

and 35 molecular descriptors, respectively. It is also visible that for dataset A the specificity is 0. 

The positive class when building the LDA model was 1, being the mycotoxin acutely toxic. Since 

the specificity is the true negative rate (see Equation 20) the test set for dataset A did not contain 

negative class (0, not acutely toxic mycotoxins) which resulted in a specificity of 0.  

LDA showed that the 30 mycotoxins dataset allowed to successfully predict the acute 

toxicity, followed by datasets C and D. For now, datasets A, B and E showed not to be appropriate. 
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It was seen before that even though dataset E recovered higher variance in PCA (Table 11) and 

reflects important biological activity parameters, those molecular descriptors were not sufficient to 

discriminate the different mycotoxin families.  This can be a reason for the poor performance of 

the LDA model for this dataset since it does not provide a good description of the system.  

 

4.3.2 Random Forest  

The next model evaluated was the RF model, and the respective results are presented in 

Table 13.  

 

Table 13. Performance evaluation metrics for the RF models. The dataset with the best performance 

is underlined. 

 30 Mycotoxins Dataset A Dataset B Dataset C Dataset D Dataset E 

Train/test: 70/30 

Accuracy 

Train 

Test 

 

1.00 

0.44 

 

1.00 

0.78 

 

1.00 

0.78 

 

1.00 

0.83 

 

1.00 

0.83 

 

1.0 

0.78 

Recall 

Train 

Test 

 

1.00 

0.80 

 

1.00 

1.00 

 

1.00 

0.92 

 

1.00 

1.00 

 

1.00 

1.00 

 

1.00 

0.92 

Precision 

Train 

Test 

 

1.00 

0.50 

 

1.00 

0.76 

 

1.00 

0.80 

 

1.00 

0.81 

 

1.00 

0.81 

 

1.00 

0.80 

Specificity 

Train 

Test 

 

1.00 

0.00 

 

1.00 

0.20 

 

1.00 

0.40 

 

1.00 

0.40 

 

1.00 

0.40 

 

1.00 

0.40 

AUROC 

Train 

Test 

 

1.00 

0.40 

 

1.00 

0.60 

 

1.00 

0.66 

 

1.00 

0.70 

 

1.00 

0.70 

 

1.0 

0.66 

 

 The first noticeable aspect is that RF results are much better than LDA. In this model, 

datasets C and D displayed the best performance, followed by datasets E and B. Some overfitting 

is also visible but is not so pronounced as in LDA. The specificity is low for all datasets, happening 

in the dataset composed by 30 mycotoxins what happened with dataset A in the LDA. Considering 

the dimension of all datasets, datasets C and D provided good results. Also, RF model demonstrated 

that the 28 molecular descriptors identified in dataset C are sufficient to achieve these performance 

values, since dataset D compiles those 28 and the biological activity results and the results were 

similar.  

 It is important to emphasize that since we are dealing with imbalanced datasets, looking at 

one metric can be misleading, and a close look should be given to all metrics. In general, few false 

negatives existed as it can be seen through recall metric with 0 false negatives in datasets A, C and 
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D. Some false positives existed in all datasets, which can be seen through the precision and 

specificity. The AUROC tells how good the model can distinguish correctly acutely toxic 

mycotoxins from non-acutely toxic mycotoxins. In this case, there is a 70% chance (for datasets C 

and D) for the model do correctly distinguish the classes.  

 

4.3.3 Support Vector Machines  

The results of SMV model are present in Table 14. 

 

Table 14. Performance evaluation metrics for the SVM models. The dataset with the best 

performance is underlined. 

 30 Mycotoxins Dataset A Dataset B Dataset C Dataset D Dataset E 

Train/test: 70/30 

Accuracy 

Train 

Test 

 

0.86 

0.88 

 

0.88 

0.47 

 

0.90 

0.47 

 

0.90 

0.47 

 

0.90 

0.47 

 

0.74 

0.64 

Recall 

Train 

Test 

 

1.00 

1.00 

 

1.00 

0.73 

 

1.00 

0.64 

 

1.00 

0.64 

 

1.00 

0.64 

 

0.89 

0.91 

Precision 

Train 

Test 

 

0.84 

0.86 

 

0.85 

0.57 

 

0.88 

0.58 

 

0.88 

0.58 

 

0.88 

0.58 

 

0.76 

0.67 

Specificity 

Train 

Test 

 

0.50 

0.50 

 

0.64 

0.00 

 

0.71 

0.17 

 

0.71 

0.17 

 

0.71 

0.17 

 

0.43 

0.17 

AUROC 

Train 

Test 

 

0.75 

0.75 

 

0.82 

0.36 

 

0.86 

0.40 

 

0.86 

0.40 

 

0.86 

0.40 

 

0.66 

0.54 

 

SVM results were very similar to those obtained with LDA with the dataset composed by 

30 mycotoxins giving the best results. So far, all models showed that dataset A (24 molecular 

descriptors) is not adequate to predict the acute toxicity of mycotoxins. The 30 mycotoxins dataset 

does not show overfitting unlike the remaining datasets. Datasets B, C and D all produced the same 

results and all show overfitting. Dataset E, as happened previously, presents intermediate results, 

but with SVM gave better results than all the other datasets with 59 mycotoxins. Dataset E yielded 

better results than datasets B and D (35 and 39 molecular descriptors) since both contain those 

descriptors. SVM did not presented itself as a good approach to predict mycotoxins acute toxicity.  
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4.3.4 Neural Networks 

Finally, a neural networks based model was constructed following a gridsearch procedure 

that tested various parameters and gave the combination with best accuracy for each dataset.  The 

resulting gridsearch parameters combinations are shown in Table 15.  

 

Table 15. Tested parameters using gridsearch that gave the best results in terms of accuracy of the 

NN models.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 All datasets gave best results recurring to deep neural networks with the majority consisting 

in 3 hidden layers with 5 or 3 nodes in each one (datasets A, B, C and D, respectively, Table 15). 

For the smaller datasets, simpler architectures with 2 hidden layers with 5 or 3 nodes in each gave 

the best results (dataset composed by 30 mycotoxins and E, respectively).  

 

Table 16. Performance evaluation metrics for the NN models. That dataset with the best 

performance is underlined. 

 

 30 Mycotoxins Dataset A Dataset B Dataset C Dataset D Dataset E 

Train/test: 70/30 

Accuracy 

Train 

Test 

 

0.90 

0.55 

 

1.00 

0.61 

 

0.88 

0.78 

 

0.95 

0.72 

 

0.63 

0.72 

 

0.73 

0.78 

Recall 

Train 

Test 

 

1.00 

1.00 

 

1.00 

0.77 

 

1.00 

0.92 

 

0.92 

0.85 

 

1.00 

1.00 

 

0.96 

0.85 

Dataset Best Parameters 

30 Mycotoxins Hidden layer sizes: (5,5); initial learning rate: 0.0005;  

maximum number of iterations: 300; solver: “adam” 

Dataset A Hidden layer sizes: (5,5,5); initial learning rate: 0.01;  

maximum number of iterations: 300; solver: “adam” 

Dataset B Hidden layer sizes: (5,5,5); initial learning rate: 0.01;  

maximum number of iterations: 250; solver: “lbfgs” 

Dataset C Hidden layer sizes: (3,3,3); initial learning rate: 0.01;  

maximum number of iterations: 250; solver: “adam” 

Dataset D Hidden layer sizes: (3,3,3); initial learning rate: 0.001;  

maximum number of iterations: 250; solver: “sgd” 

Dataset E Hidden layer sizes: (3,3); initial learning rate: 0.01;  

maximum number of iterations: 300; solver: “sgd” 
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Precision 

Train 

Test 

 

0.89 

0.56 

 

1.00 

0.71 

 

0.84 

0.80 

 

1.00 

0.79 

 

0.63 

0.72 

 

0.71 

0.85 

Specificity 

Train 

Test 

 

0.50 

0.00 

 

1.00 

0.20 

 

0.67 

0.40 

 

1.00 

0.40 

 

0.00 

0.00 

 

0.33 

0.60 

AUROC 

Train 

Test 

 

0.75 

0.50 

 

1.00 

0.48 

 

0.83 

0.66 

 

0.96 

0.62 

 

0.50 

0.50 

 

0.65 

0.72 

  

 In contrast to all other models, dataset composed only by biological activity descriptors 

had the best performance using DNN.  In all metrics this dataset showed a better performance in 

the test set than the training set, which most likely attests to the quality of the features as it excludes 

overfitting. On the other hand, this might lead us to consider underfitting which might be explained 

by the narrow hidden layers, in this particular case with only three nodes. This is due to the small 

overall sampling and suggests that larger amounts of information might benefit from being trained 

with broader hidden layer architectures. Dataset B also had better results and is visible some 

overfitting but not significant. 

 

 In short, the dataset composed by 30 mycotoxins provided better results with LDA and 

SVM models, datasets C and D worked better with the RF model and NN resulted better for datasets 

B and E. RF results for datasets C and D exceeded the results of all other models and dataset A is 

not good to perform supervised learning. The unbalanced dataset problem remains but it is a new 

step for the understanding and the application of supervised learning techniques on such diverse 

and spectacular molecules that are mycotoxins.  Dataset C, that mainly differs from dataset A in 

the amount of BCUT descriptors, gave, in all models, better results than dataset A suggesting that 

those BCUT descriptors can have some impact on the toxicity prediction. The addition of the 

biological activity descriptors to both datasets A and C (forming datasets B and D) showed not to 

be significant on the supervised learning results, although the NN model for dataset E, only 

composed by those descriptors, gave better results. All things considered, dataset C and D gave the 

best results with the RF model and since dataset D has more molecular descriptors, dataset C 

performed better in this task.  
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Chapter 5 – Conclusion and Future Perspectives 
 

 Algorithms based on unsupervised ML methods were constructed for different datasets, 

allowing to establish the correspondence between known mycotoxins in its literature-defined 

groups and validate the characterization of the mycotoxins in the pool of those not so well described 

in the literature. Some mycotoxins were not in their respective families suggesting some structural 

similarities with mycotoxins from different families, one aspect that may suggest possible literature 

misclassifications.  

 PCA suggested that topological molecular descriptors are pivotal on the discrimination of 

mycotoxins according to their families and constitutional molecular descriptor are not sufficient to 

represent that information. PCA also revealed that acutely toxic mycotoxins are tendentially on the 

same side of the biplot, indicating that some of the molecular descriptors (C4SP3, khs.ssO, 

khs.dsCH, khs.aaO, nRings4, nSmallRings) that separate them, may have some influence on their 

acute toxicity.  

 Supervised learning models suggested that dataset A is not a good dataset to use for the 

toxicity prediction of mycotoxins, but very satisfactory results were obtained with RF model for 

datasets C and D. Considering the size of the datasets, it is actually plausible to say that the results 

were good. 

 It is necessary to emphasize that this is a pioneering study, being the very first one 

compiling structural information about mycotoxins and using that information to execute ML tasks. 

This work also needs to be seen as an alert for the mycotoxins problem since there is information 

on some of their effects in some humans and animals but there are absolutely no clues about their 

impact on the aquatic environment. Also, the reported health effects on humans and animals are 

restricted to the most known mycotoxins and the consequences of the vast majority remains 

unknown.  

 Furthermore, and although ML is very powerful and widely used to reduce the cost of 

experiments in several areas of expertise, in this case, having meticulous experimental studies 

performed would be the best solution to achieve better predictive results, including in regression 

tasks that immediately could say, for example, not if a mycotoxin is toxic or not but how toxic 

could be. With the climate changes it is very likely that mycotoxin contamination could increase in 

several areas of the world, making it urgent to address this problem, for the sake of lives.  
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Annexes 

Annex 1. Evaluation of the optimal number of clusters using within-sum-of-squares (A), silhouette (B), and 

gap statistic techniques (C) using the initial 30 mycotoxins molecular fingerprints. 
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Annex 2. Code implementation for all clustering results on the 30 mycotoxins molecular 

fingerprints. 
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Annex 3. Evaluation of the optimal number of clusters using within-sum-of-squares (A), silhouette (B), and 

gap statistic techniques (C) using the initial 59 mycotoxins molecular fingerprints. 
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Annex 4. Code implementation for all clustering results on the 59 mycotoxins molecular fingerprints.  
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Annex 5. Code implementation for all PCA results on the dataset composed by 30 mycotoxins and 15 

molecular descriptors. 
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The next code was applied to perform PCA on all datasets composed by 59 mycotoxins. The only difference 

is on the feature selection where a 4rth step was added (mentioned in the code) and the name of the files read. 

All of the names follow a pattern in which the created variable contains the number of molecular descriptors. 

The following code is for dataset A, composed by 24 molecular descriptors and all variables end with 24. 
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Annex 6. Code implementation for PCA results of the dataset composed by 59 mycotoxins and 24 molecular 

descriptors. The remaining datasets are not shown because the code is similar, changing the variables names 

in R. 
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In similar with PCA, all implemented codes of supervised learning follow the same pattern: when dealing 

with one dataset, all variables in R end with the respective number of molecular descriptors of that dataset.  

 

Annex 7. Code implementation for LDA results of the dataset composed by 59 mycotoxins and 24 molecular 

descriptors. The remaining datasets are not shown because the code is similar, changing the variables names 

in R and the files read. 
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Annex 8. Code implementation for SVM results of the dataset composed by 59 mycotoxins and 24 molecular 

descriptors. The remaining datasets are not shown because the code is similar, changing the variables names in 

R and the files read. 

Annex 9. Code implementation for RF results of the dataset composed by 59 mycotoxins and 24 molecular 

descriptors. The remaining datasets are not shown because the code is similar, changing the variables names 

in R and the files read. 
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Annex 8. Code implementation for NN results of the dataset composed by 59 mycotoxins and 24 molecular 

descriptors. The remaining datasets are not shown because the code is similar, changing the variables names 

in R and the files read. 
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