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Abstract

Many real-life situations result in optimization problems with multiple objectives that
are very often conflicting. For example, in finance, we want to choose a portfolio where
the expected value is as high as possible and the risk is as low as possible. One way of
solving these problems is to scalarize the several objectives in order to obtain a single
objective optimization problem. In this thesis we use the notion of hypervolume scalar-
ization to solve graph optimization problems, with particular emphasis for the Shortest
Path Problem and Minimum Spanning Tree Problem. For the first problem, we introduce
the hypervolume scalarization for the Biobjective Shortest Path Problem and its mixed
integer linear programming formulation. In addition, we propose a label setting algo-
rithm to solve it and pruning conditions to improve its performance. Moreover, we prove
the computational complexity of solving this problem and present numerical results for
a wide range of graph problem instances. For the Spanning Tree Problem, we introduce
the hypervolume scalarization for the Biobjective Minimum Spanning Tree Problem, its
mixed integer linear programming formulation, a branch-and-bound algorithm, and the
computation complexity of this problem.

Keywords

Hypervolume scalarization, shortest Path Problem, Minimum Spanning Tree Problem,
multiobjective combinatorial optimization, integer linear programming.
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Resumo

Muitas situações da vida real resultam em problemas de optimização com objectivos múlti-
plos que muitas vezes estão em conflito. Por exemplo, em finanças, queremos escolher um
portfolio em que o retorno esperado é tão alto como possível e o risco é tão baixo como
possível. Uma forma de resolver estes problemas é escalarizar os vários objectivos para
obter um problema de optimização com um único objectivo. Nesta tese, usamos a no-
tação de escalarização de hipervolume para resolver problemas de optimização em grafos,
com um ênfase particular no Problema do Caminho Mais Curto e no Problema da Ár-
vore de Abrangência Mínima. Para o primeiro problema, introduzimos escalarizações de
hipervolume para o Problema do Caminho Mais Curto Biobjectivo e a sua formulação de
programação linear inteira mista. Além do mais, propomos um algoritmo de "label setting"
para o resolver e condições de corte para melhorar a sua performance. Para além disso,
demonstramos a complexidade computacional da resolução deste problema e apresenta-
mos resultados numéricos numa ampla gama de instâncias de problemas de grafos. Para
o Problema da Árvore de Abrangência Mínima, introduzimos a escalarização de hipervol-
ume para o Problema da Árvore de Abrangência Mínima Biobjectivo, a sua formulação de
programação linear inteira mista, um algoritmo de "branch-and-bound" e a complexidade
computacional deste problema.

Palavras-Chave

Escalarizações de hipervolume, Problema do Caminho Mais Curto, optimização combi-
natória multiobjectivo, programação linear inteira, Problema da Árvore de Abrangência
Mínima.
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Chapter 1

Introduction

Optimization problems are some of the fundamental problems in Computer Science. Al-
though many real-life applications result in optimization problems with multiple objectives,
in general, there is no single solution that is optimal for all objectives. For instance, usually
there is no single path between two cities that optimizes cost and time since the fastest
path may not be the cheapest, just consider highways. It is possible to solve a multi-
objective optimization problem by scalarizing it, under some assumptions on the decision
maker preferences. When scalarizing a multiobjective optimization problem we formalize a
related single-objective problem such that an optimal solution to this problem is also opti-
mal for the multiobjective problem. Some of the most common scalarizations are weighted
sum, ε-constraint method and achievement scalarizing functions.

The hypervolume scalarization has been proposed recently in [20] and it consists of a
particular product of the objective functions. This scalarization presents some interesting
properties, such as the fact that no convexity assumptions are required, but it leads to
particular formulations (which are quadratic for biojective problems) for which very little
is known. In [20], an application of this scalarization technique to a Biobjective Constrained
Knapsack Problem, which results in a quadratic knapsack formulation, is presented.

The goal of this dissertation is to formalize hypervolume scalarized formulation of known
multiobjective graph problems, such as the Minimum Spanning Tree Problem and the
shortest path problem, as well as to develop exact and/or approximation algorithms for
these problems. We start to extend the previous work for biobjective knapsack problems
in [20], for which a linearization of the quadratic scalarized formulation was achieved and
an approximation algorithm with provable quality guarantee was devised. Focusing on the
Biojective Shortest Path Problem, we start by introducing a linearization of the quadratic
scalarized formulation, prove its computational complexity, propose an algorithm for solv-
ing the quadratic scalarized formulation and pruning conditions that may improve the
running times. This work has recently been published in [16]. Then, we discuss the imple-
mentation of the proposed algorithm and perform an in-depth experimental analysis on a
wide range of graph problem. We relate the properties of these instances with the perfor-
mance of our approach. At last, we extend the work for the Biojective Minimum Spanning
Tree Problem, once again introducing the linearization of the quadratic scalarized formu-
lation, proving its computational complexity, proposing a branch-and-bound algorithm for
solving the quadratic scalarized formulation and pruning conditions.

The work developed shows that, while it is hard to solve the linearized version of hypervol-
ume scalarizations using integer linear programming solvers, algorithms dedicated to the
specific problem are much more efficient.

1



Chapter 1

We first review some basic concepts about graphs, multiobjective optimization problems,
computational complexity, integer linear programming and the Shortest Path Problem in
Chapter 2. Chapter 3 deals with the Biobjective Shortest Path Problem. We present
its integer linear programming formulation, its hypervolume scalarized formulation and a
linearization of the quadratic scalarized formulation. We prove the computational com-
plexity of the hypervolume scalarized formulation, propose a label setting algorithm for
solving it and pruning conditions for improving the running time. In Chapter 4, we discuss
the methods used for implementing the label setting algorithm, the benchmark instances
used for testing and the numerical results, focusing on running times, speedup values and
the instances characteristics. We discuss the efficiency of the pruning conditions for each
set of instances as well as which problem characteristics have more impact on the perfor-
mance. We also discuss the use of an integer linear programming solver and compare the
performance. Chapter 5 deals with the Biobjective Minimum Spanning Tree problem. We
present its integer linear programming formulation, its hypervolume scalarized formulation
and a linearization of the quadratic scalarized formulation. We prove the computational
complexity of the hypervolume scalarized formulation, propose an algorithm for solving it
and pruning conditions for improving the running time. In Chapter 6 we summarize the
main ideas presented in this thesis and how this work can be applied to other problems.

2
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Chapter 2

Basic Concepts

In this chapter, we introduce basic concepts that are relevant for the remainder of this
work, such as concepts about graphs, multiobjective combinatorial optimization and the
algorithms more commonly used for solving multiobjective optimization problems, com-
putational complexity, integer linear programming and the Shortest Path Problem. As
reference works we refer to [4], [19], [11] and [13].

2.1 Graphs

A directed graph G = (V,A) is a set V of nodes and a set A of arcs whose elements are
ordered pairs of distinct nodes. We denote an arc a from node u to node v by a = (u, v).
A directed network is a directed graph whose arcs and/or nodes have associated numerical
values, such as costs, capacities, etc.

|V | = n denotes the number of nodes and |A| = m denotes the number of arcs in a graph
G. For an arc a = (u, v), u is the source and v the target, both u and v are called endpoints
of the arc. Two arcs are adjacent if they share a common endpoint. The degree of a node
is the sum of the number of its incoming arcs and the number of its outgoing arcs.

A graph G′ = (V ′, A′) is a subgraph of G = (V,A) if V ′ ⊆ V and A′ ⊆ A. G′ is a spanning
subgraph if V ′ = V and A′ ⊆ A.

A path between two nodes u and v in a graph G is an alternating tuple (u, (u,w1), w1, . . . ,
wr, (wr, v), v) of nodes of V and arcs of A starting in u and ending in v so that every node
is adjacent to its neighbouring edges. If all nodes are pairwise distinct we have a simple
or loopless path.

A cycle is a simple path (i1, (i1, i2), i2, . . . , (ir−1, ir), ir) together with the arc (ir, i1). If a
graph contains no cycle, it is called acyclic.

Two nodes i and j are connected if the graph contains at least one path from node i to
node j. If every pair of nodes is connected, the graph is connected.

A tree is a connected graph that contains no cycle. A tree T is a spanning tree of G if T
is a spanning subgraph of G.

Topological sorting for graphs is a linear ordering of nodes such that for every directed
arc (u, v), node u comes before v in the ordering. Topological Sorting for a graph is not
possible if the graph is not a directed acyclic graph.

4
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2.2 Multiobjective Combinatorial Optimization

The goal of a combinatorial optimization problem is to find a combination of items of
a finite set A = {α1, . . . , αn} that is feasible for the problem constraints and optimizes
the objective of the problem. This is modeled by using binary decision variables xi for
i = 1, . . . , n. We have xi = 1 if item i belongs to the subset and xi = 0 otherwise. A
solution of the problem is a vector x = (x1, . . . , xn)

T ∈ {0, 1}n.

A combinatorial optimization problem is given by the set of feasible solutions X ⊆ 2{0,1}
n

defined as a subset of the power set A, and an objective function f : X → R. Thus, the
problem is written using the notation

min
x∈X

f(x).

In this thesis, we consider only the sum objective functions where each item αi has one
associated coefficient ci :

f(x) =

n∑
i=1

cixi.

In Multiobjective Combinatorial Optimization (MOCO) each item αi is associated with
several objective function coefficients cji , j = 1, . . . ,m withm ≥ 2. In this way, m objective
functions fj(x) are formulated. The MOCO-problem can now be modeled as

vmin
x∈X

f(x) = (f1(x), . . . , fm(x)) . (2.1)

The image of the feasible set X in the objective space is called the set of feasible points
and is denoted by Y := f(X ).

f2

f1

y2
y1

y3

Figure 2.1: Example for R2. We
have y1 < y2 and y1 ≤ y3.

In order to compare images we need to be able to
order vectors in Rm. Since there is no canonical or-
dering for m ≥ 2, the vectors may be ordered based
on several definitions. Given two points y1, y2 ∈ Rm,
we have

• weak componentwise order :

y1 5 y2 if y1j ≤ y2j for j = 1, . . . ,m;

• componentwise order :

y1 ≤ y2 if y1 5 y2 and y1 6= y2,

as illustrated for points y1 and y3 in Figure 2.1;

• strict componentwise order :

y1 < y2 if y1j < y2j for j = 1, . . . ,m,

as illustrated for points y1 and y2 in Figure 2.1;

• lexicographic order :

y1 ≤lex y
2 if y1 = y2 or y1k < y2k for k = min{j : y1j 6= y2j , j = 1, . . . ,m}.

5
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f2

f1

f(x)

f2

f1

f(x)

Figure 2.2: Example for a minimization problem in R2. On the left, solution x is efficient
and f(x) is a nondominated point. On the right, solution x is weakly efficient.

Using the component wise order, a feasible solution x ∈ X is called efficient or Pareto
optimal if there is no other solution x ∈ X such that

f(x) ≤ f(x).

If x is efficient, such as seen on the left in Figure 2.2, f(x) is called a nondominated point.
If x1, x2 ∈ X and f(x1) ≤ f(x2), we say x1 dominates x2 and f(x1) dominates f(x2). The
set of all efficient solutions x ∈ X is denoted by XE ⊆ X and is called the efficient set.
The set of all nondominated points y = f(x) ∈ Y, where x ∈ XE is denoted by YN ⊆ Y
and is called the nondominated set.

Using the weak componentwise order, a feasible solution x ∈ X is called weakly efficient
or weakly Pareto optimal if there is no x ∈ X such that f(x) < f(x), such as seen on the
right in Figure 2.2.

Let A + B = {a + b : a ∈ A, b ∈ B} denote the Minkovski-sum of sets A and B in Rm,
let Rm≥ := {y ∈ Rm : yj ≥ 0, j = 1, . . . ,m} denote the non-negative orthant of Rm and
let conv(YN ) denote the convex hull of the nondominated set.

The set of efficient solutions XE and the set of nondominated points YN are divided into two
subsets: if there is some λ ∈ Rm> such that x ∈ XE is an optimal solution of minx∈X λ

T f(x),
then x is called a supported solution and y = f(x) is called a supported point. Otherwise
x and y are called unsupported solution and unsupported point, respectively. The sets of
all supported solutions is denoted XsE , the set of all supported points YsN , the set of all
unsupported solutions XuE and the set of all unsupported points YuN . The set of supported
points that are also extreme points of conv(YN ) is called the set of extreme supported points
YeN . The corresponding efficient solutions are called extreme supported solutions XeE .

For MOCO it is possible to define upper and lower bounds on the set of nondominated
points because the set of feasible points Y is compact by definition.

The ideal point yI = (y1I , . . . , y
m
I )

T is a tight lower bound on YN and is defined as the
individual minima of the m objective functions, that is,

yjI := min{yj : y ∈ Y}, j = 1, . . . ,m.

Thus, the ideal point yI usually is not an element of Y, such as in Figure 2.3. If yI ∈ Y,
it dominates all other feasible points and YN = {yI}.

6
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f2

f1

yN

yI

Figure 2.3: Example for R2. We
have the ideal point yI and the nadir
point yN .

The nadir point yN = (y1N , . . . , y
m
N )

T is a tight upper
bound on Yn as is defined by the maximal compo-
nents of all nondominated points for the m objective
functions, that is,

yjN := max{yj : y ∈ YN}, j = 1, . . . ,m.

The computation of the ideal point is considered
easy (from a multiobjective point of view) because
the ideal point is found by solving m single objective
optimization problems. On the other hand, compu-
tation of the nadir point involves optimization over
the efficient set, which is a very difficult problem
and no efficient method to determine it in general is
known.

2.3 Techniques for Solving MOCO Problems

Scalarization methods are commonly used to solve MOCO problems. These methods
are based on the formulation of one or several parametric single objective optimization
problems that can be solved using single objective solution methods. The parameters
choice usually allow to compute a subset of the efficient set XE of the original multiobjective
problem.

2.3.1 Weighted Sum Scalarization
f2

f1

λ

Figure 2.4: Example of weighted
sum scalarization for R2. The so-
lution of the scalarized problem is
highlighted in red.

In this method, a single objective problem is cre-
ated by a weighted sum of the objective functions of
the MOCO problem. The feasible set and the num-
ber of constraints remains equal. The weighted sum
scalarization is formulated as follows:

min
x∈X

m∑
j=1

λjfj(x), (2.2)

where the weights λ are in Rm.

It has been shown [7] that for λ ∈ Rm≥ := {λ ∈
Rm : λj ≥ 0, j = 1, . . . ,m} every optimal solution
of (2.2) is a weakly efficient solution of the initial
problem and for λ ∈ Rm> := {λ ∈ Rm : λj >
0, j = 1, . . . ,m} every optimal solution of (2.2) is
a supported efficient solution of the initial problem.
Using appropriate weights λ ∈ Rm> , every supported efficient solution of the initial problem
can be found as an optimal solution of (2.2). The biggest drawback is the fact that no
unsupported solution can be obtained using the weighted sum method.

7
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2.3.2 Weighted Chebycheff Scalarization

The weighted Chebycheff scalarization is formulated as follows:

min
x∈X

max
j=1,...,m

{λj (fj(x)− zj)} , (2.3)

where the weights λ are in Rm and z is the ideal point. It has been shown that for
λ ∈ Rm> := {λ ∈ Rm : λj > 0, j = 1, . . . ,m} every optimal solution of 2.3 is a weakly
efficient solution of the initial problem.

2.3.3 ε-Constraint Method

f2

f1

ε

Figure 2.5: Example of ε-constraint method
for R2. For f2 ≤ ε, the solution of the scalar-
ized problem is highlighted in red.

In the ε-constraint method there is no ag-
gregation of criteria. Instead only one of
the original objectives fk, k = 1, . . . ,m is
used as the objective function, while the
others are transformed to constraints by in-
troducing a bound on the respective objec-
tive function values. This results in the fol-
lowing problem:

min
x∈X

fk(x)

s.t. fj(x) ≤ εj , j = 1, . . . ,m, j 6= k.
(2.4)

It has been shown that for any ε ∈ Rm,
every optimal solution of (2.4) is weakly ef-
ficient for the initial problem and it is an
efficient solution of the initial problem if
it is the unique optimal solution of (2.4).
Choosing an appropriate vector ε ∈ Rm, such as for x ∈ XE , ε = f(x), every efficient solu-
tion of the initial problem can be found by the ε-constraint method for any k ∈ {1, . . . ,m}.

2.4 Complexity Theory

This is a brief review of computational complexity of MOCO problems. For further details
we refer to [6]. Complexity theory allows us to evaluate how difficult it is to solve a problem
based on the number of operations an algorithm needs to find the correct answer to the
problem in the worst case. Complexity theory requires the problem to be stated as a
Decision Problem (DP), where a decision problem is a question that has either a yes or no
answer.

Optimization and decision problems are closely related. For example, if we have the fol-
lowing optimization problem: minimize f(x) for x ∈ X , then the decision version is: given
a constant β ∈ Z, does there exist x ∈ X such that f(x) ≤ β.

To measure the number of operations required to find the correct answer, we use the “big
O” notation. The running time of an algorithm is O(g(n)) if there is a constant c such
that the number of operations performed by the algorithm is less than or equal to cg(n)
for all instances of the decision problem, where g is some function and n is the size of the
instance.
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If there is a deterministic algorithm that answers the decision problem and needs O(p(n))
operations, where p is a polynomial in n, we say that the DP belongs to the class P of
problems.

If there is a polynomial p such that the running time of the algorithm is O(p(n)), the algo-
rithm is said to be a polynomial time algorithm. Otherwise, if there is no such polynomial,
the algorithm is said to be exponential.

If there is a nondeterministic polynomial time algorithm that solves the DP, the DP belongs
to the class NP. This means that, for the decision version of an optimization problem, given
x it is possible to check whether x ∈ X and f(x) ≤ β in polynomial time. Clearly, P ⊂ NP.

Let DP1 and DP2 be two decision problems. A polynomial time transformation of DP1

to DP2 is a polynomial time algorithm A that constructs an instance I2 of DP2 from an
instance I1 of DP1 with the property that x1 yields a “yes” answer for the instance I1 if
and only if A(x1) yields a “yes” answer for the instance of DP2 [4]. When this happens,
we write DP1 ∝ DP2. DP1 and DP2 are equivalent if DP1 ∝ DP2 and DP2 ∝ DP1.

A decision problem DP is NP−complete if DP ∈ NP and DP ′ ∝ DP for all DP ′ ∈ NP.
The relation is transitive and transitivity means that NP−completeness of DP follows if
DP ′ ∝ DP for one DP ′ ∈ NP [4]. Thus, showing DP ′ ∝ DP actually means that DP ′

is a special case of DP , so DP is at least as difficult as DP ′. A problem DP is called
NP−hard if DP ′ ∝ DP for all DP ′ ∈ NP but it is not known if DP ∈ NP (such as
optimization problems).

There is a Counting Problem (CP) associated to each DP: How many “yes” answers does
the DP have. For the decision version of an optimization problem, we have the following
CP: Given β ∈ Z, how many x ∈ X satisfy f(x) ≤ β?

If there is a nondeterministic algorithm that correctly finds the answer to the CP and such
that the longest computation that confirms a “yes” answer is bounded by a polynomial in
the size of the instance, the CP belongs to the class #P.

A counting problem CP is #P−complete, if it is in #P and for all CP ′ ∈ #P there is
a parsimonious transformation such that CP ′ ∝p CP. ∝p denotes a parsimonious trans-
formation, which is a polynomial time transformation that maintains the number of “yes”
answers to DP.

Most MOCO problems are not efficiently solvable [4] because:

1. Most MOCO problems are intractable, that is, the size of the set of nondominated
points |YN | grows exponentially in the size of the problem instance n. Thus, there
is no polynomial p such that |YN | is bounded by O(p(n)).

2. Scalarization methods that also compute unsupported efficient solutions often intro-
duce new capacity constraints to the optimization model and the resulting problems
are usually NP−hard and not efficiently solvable.

2.5 Integer Linear Programming

An Integer Linear Programming (ILP) problem is an optimization problem where the
objective function and constraints are linear and the decision variables are restricted to be
integers. If we have n decision variables and m linear constraints, these problems may be

9



Chapter 2

stated in canonical form:

max f(x) = cTx

s.t. Ax ≤ b, (2.5)
x ≥ 0,

x ∈ Zn,

or in standard form:

max f(x) = cTx

s.t. Ax+ z = b, (2.6)
x ≥ 0,

x ≥ 0,

x ∈ Zn,

where x is the vector of decision variables, c is a vector in Zn, b is a vector in Zm and
A is a matrix in Zm×n. ILP problems are usually analyzed in standard form, thus ILP
problems can be converted to standard form by eliminating inequalities, introducing slack
variables z and replacing variables that are not sign-constrained with the difference of two
sign-constrained variables.

It is known that a general ILP problem is NP−complete [11].

A first approach to solving an ILP problem is to solve its relaxation, which results by
removing the constraint that x takes only integer values. However, the solution obtained
for the relaxation may not take only integer values and rounding each variable may result
in a solution that not only is suboptimal but may also be infeasible. Alternatively, ILP
problems may be solved using exact algorithms that find an optimal solution when the
problem is feasible or report that there is no solution if the problem is infeasible, and
algorithms that provide suboptimal solutions, which may be more tailored for a specific
problem (heuristic algorithms) or are higher level methodologies that are not problem
dependent (metaheuristics) [13].

The running time for heuristic algorithms is not guaranteed to be polynomial, but em-
pirical evidence suggests that some of these algorithms find a good solution fast. Greedy
Randomized Adaptive Search, Simulated Annealing, Tabu Search, ant Colony Optimiza-
tion, Genetic Algorithms and Neural Network techniques are some of the most important
metaheuristics for ILP problems [13].

Some of the exact algorithms are the Cutting-Planes approach, the Branch-and-Bound
approach, the Additive Algorithm, the Branch-and-Cut algorithm, the Branch-and-Price
algorithm, the Branch-Cut-and-Price algorithm, Lagrange Relaxation and Decomposition
methods [13]. In order to get a solution for an ILP problem, one of these algorithms may
be implemented or we may use an already existing ILP solver.

In the ILP version of branch-and-bound approach, the ILP is relaxed and solved for the
continuous optimal solution. In a maximization problem, the value of the objective function
for the relaxed ILP problem is an upper bound on the optimal ILP objective and any
feasible point f(x) where x takes only integer values may be used as a lower bound on the
optimal ILP objective value. These bounds are used to add constraints to the sub-problems
created during the branch-and-bound approach [14].

If the solution for the relaxed ILP does not take only integer values, a variable with
fractional value is selected and two sub-problems are created by adding constraints that
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define the round up and round down values as a lower bound and upper bound of the
selected variable, respectively. Thus, the prior solution becomes infeasible but no feasible
integer values are eliminated. These two new sub-problems are solved and the procedure
repeated for all sub-problems found unless one of the following situations occur:

• the linear sub-problem is infeasible;

• the optimal linear sub-problem solution only takes integer values;

• the value of the objective function for the optimal linear sub-problem solution is
lower than the the current lower bound.

The lower bound on the optimal objective value is updated each time an optimal linear
sub-problem solution that only has integer values and has an higher objective value is
found.

2.6 The Shortest Path Problem

The Shortest Path Problem (SPP) is a combinatorial optimization problem. Given a
directed graph G = (V,A) with source node s, target node t and distance dij for each arc
(i, j) in A (a positive integer), the SPP finds the path P = (s = i0, i1, . . . , ik−1, ik = t)
that minimizes the distance. Its ILP formulation is as follows.

min f(x) =
∑

(i,j)∈A

dijxij (2.7a)

s.t
∑

j:(i,j)∈A

xij =
∑

j:(j,i)∈A

xji + bi, ∀i ∈ V, bi =


1, if i = s

−1, if i = t

0, otherwise
(2.7b)

xij ∈ {0, 1}, ∀(i, j) ∈ A. (2.7c)

Constraint (2.7b) guarantees that all feasible solutions are acyclic paths that start in s
and end in t. For (i, j) ∈ A, the variable xij is set to 1 if arc (i, j) is included in the path,
otherwise xij is set to 0.

In this thesis, we examine SPP with two objective functions. Therefore, we define the
Biobjective Shortest Path Problem (BSPP): Given a directed graph G = (V,A) with
source node s, target node t, distance dij and cost cij for each arc (i, j) in A, we want to
find the path P = (s = i0, i1, . . . , ik−1, ik = t) that minimizes the cost and the distance.
Thus we get the ILP formulation (2.8)

min f(x) =

 ∑
(i,j)∈A

dijxij ,
∑

(i,j)∈A

cijxij


s.t

∑
j:(i,j)∈A

xij =
∑

j:(j,i)∈A

xji + bi, ∀i ∈ V, bi =


1, if i = s

−1, if i = t

0, otherwise

xij ∈ {0, 1}, ∀(i, j) ∈ A.

It is known that finding an efficient solution for the the BSPP (2.8) is NP−complete and
#P−complete in acyclic directed graphs [21]. It is also known that for the multiobjective
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SPP the efficient set may grow exponentially in the size of the problem, even for the
biobjective case [10].

A label setting algorithm, presented in Algorithm 1, has been proposed in [15], under the
assumption that the cost and distance are non-negative for all arcs. Let vi be a node of G.
A label of vi is a 2+3 tuple (d, c, vj , `, k) where vj 6= vi is a node of G, ` is the number of a
label of node vj , and k is the index of the label at node vi. Thus, a label is a vector made
up of a distance component, a cost component, a node predecessor label, identifying the
node from which the label was obtained, a further label indicating from which of the several
labels of the predecessor it was computed, and a label number at the current node. A list
of temporary labels T L, which is kept in lexicographic order for the first two components
of the labels are concerned, and a list of permanent labels PL, which will identify efficient
paths, are used.

Algorithm 1: Biobjective label setting algorithm
Input : A graph G = (V,A) with 2 arc costs (distance and cost)
Initialization: Create label L = (0, 0, 0, 0, 1) at node s and let T L := {L}
while T L 6= ∅ do

Let label L = (d, c, vh, `, k) of node vi be the lexicographically smallest label in
T L;
Remove L from T L and add it to PL;
for all vj ∈ V such that (vi, vj) ∈ A do

Create label L′ = (d+ dij , c+ cij , vi, k, w) as the next label at node vj ,
where w is the is the number of the label at node vj , and add it to T L;

Delete all temporary labels of node vj dominated by L′, delete L′ if it is
dominated by another label of node vj ;

end
end
Use the predecessor labels in the permanent labels to recover all efficient paths
from s to other nodes of G;

Output : All efficient paths from node s to all other nodes of G.

In the original algorithm in [15] the output consists of all efficient paths from node s to all
other nodes of G, but we are only interested in the paths from node s to node t.

12
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Chapter 3

Hypervolume Scalarization of the
Biobjective Shortest Path Problem

In this chapter, we present the hypervolume scalarized formulation of the BSPP in terms
of ILP and introduce its linearization. We also prove the computational complexity of the
hypervolume scalarized formulation and propose an algorithm for solving it, with pruning
conditions to improve its performance.

3.1 Hypervolume Scalarizations

f2

f1

r

p1

p2

p3

p5

p4

Figure 3.1: Example of re-
gion D(S, r) for R2. For
S = {p1, p2, p3, p4, p5}, the hy-
pervolume indicator of S is the area
of the shaded region. The point p3
maximizes the measure.

For a given point set S ⊂ Rm and reference point
r, the hypervolume indicator of S is the measure
of the region D(S, r), weakly dominated by S and
(assuming minimization) bounded above by r [8],
that is,

D(S, r) =
⋃
p∈S
{z ∈ Rm | p 5 z 5 r} ,

such as represented in Figure 3.1.

For m = 2 the measure corresponds to the area and
for m = 3 the measure corresponds to the volume.

For a given point r, named reference point, an
hypervolume scalarization consists of finding the
point p ∈ YN that maximizes the measure
of {z ∈ Rm | p 5 z 5 r} . Thus the hypervolume
scalarization is formulated as follows:

max
x∈X

m∏
j=1

(rj − fj(x))

s.t. fj(x) ≤ rj , for j = 1, . . . ,m,

(3.1)

where, for a feasible solution x such that f(x) weakly dominates r, the objective function
computes the measure of the region weakly dominated by f(x) and bounded above by r.

It has been shown [20] that for r ∈ Rm every optimal solution of the scalarized problem (3.1)
is weakly efficient for (2.1) and every efficient solution x of (2.1) can be determined as an

14



Hypervolume Scalarization of the Biobjective Shortest Path Problem

optimal solution of a corresponding scalarized problem using r = f(x). The hypervolume
scalarization does not rely on convexity assumptions, thus it can be used for MOCO
problems without being restricted to supported efficient solutions.

3.2 Hypervolume Scalarization of the Shortest Path Problem

The hypervolume scalarization of the BSPP (2.8) leads to the following optimization prob-
lem with r = (r1, r2)

T ∈ R2
≥ as the reference point, presented in its integer programming

version.

max h(x) :=

r1 − ∑
(i,j)∈A

dijxij

 ·
r2 − ∑

(i,j)∈A

cijxij


s.t

∑
(i,j)∈A

dijxij ≤ r1∑
(i,j)∈A

cijxij ≤ r2

∑
j:(i,j)∈A

xij =
∑

j:(j,i)∈A

xji + bi, ∀i ∈ V, bi =


1, if i = s

−1, if i = t

0, otherwise

xij ∈ {0, 1}, ∀(i, j) ∈ A.

(3.2)

3.3 Linearization of the Hypervolume Scalarization

In order to be able to use an ILP solver, we need to linearize the problem above. We have

r1 − ∑
(i,j)∈A

dijxij

 ·
r2 − ∑

(i,j)∈A

cijxij


=
∑

(i,j)∈A

∑
(`,k)∈A

dijc`kxijx`k −
∑

(i,j)∈A

(r2dij + r1cij)xij + r1r2

=
∑

(i,j)∈A

∑
(`,k)∈A

Qij`kxijx`k −
∑

(i,j)∈A

(r2dij + r1cij)xij + r1r2,

where we define Qij`k = dijc`k for all (i, j) ∈ A, (`, k) ∈ A.

The objective function is linearized by introducing m2 (because |A| = m) new variables
yij`k = xijx`k, that attain value 1 if and only if xij = 1 and x`k = 1, which is ensured by
the following constraints:

yij`k ≤ yijij , ∀(i, j), (`, k) ∈ A, (i, j) 6= (`, k)

yij`k ≥ yijij + y`k`k − 1, ∀(i, j), (`, k) ∈ A.

Additional constraints are required to handle symmetry, that is, yij`k = y`kij . Thus, we
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get the ILP formulation (3.3) with O(m2) constraints:

max
∑

(i,j)∈A

∑
(`,k)∈A

Qij`kyij`k −
∑

(i,j)∈A

(r2dij + r1cij) yijij + r1r2

s.t
∑

(i,j)∈A

dijyijij ≤ r1∑
(i,j)∈A

cijyijij ≤ r2

∑
j:(i,j)∈A

yijij =
∑

j:(j,i)∈A

yjiji + bi, ∀i ∈ V, bi =


1, if i = s

−1, if i = t

0, otherwise

yij`k = y`kij , ∀(i, j), (`, k) ∈ A
yij`k ≤ yijij , ∀(i, j), (`, k) ∈ A, (i, j) 6= (`, k)

yij`k ≥ yijij + y`k`k − 1, ∀(i, j), (`, k) ∈ A
yij`k ∈ {0, 1}, ∀(i, j), (`, k) ∈ A.

(3.3)

A possible approach for solving the hypervolume scalarization is to use this linearized
formulation within an ILP solver.

3.4 Complexity

In order to analyze the complexity of problem (3.2) we introduce the Constrained Shortest
Path Problem (CSPP) [23]. The goal of the CSPP is to find the least cost path obeying a
set of resource constraints. Given a graph G = (V,A) with |V | = n and |A| = m, a source
node s and a target node t, and k resource limits λ(1) to λ(k). Each arc a = (i, j) has a
cost cij and uses r(p)ij units of resource p, 1 ≤ p ≤ k. Costs and resources are assumed to
be nonnegative and are additive along paths.

Let us consider the case where k = 1. If the resource is the distance, with a resource limit
λ(1) and each arc a = (i, j) with an associated use of resource r(1)ij = dij units of resource ,
then the ILP formulation of the CSPP with a single resource is:

min f(x) :=
∑

(i,j)∈A

cijxij

s.t
∑

(i,j)∈A

dijxij ≤ λ(1)

∑
j:(i,j)∈A

xij =
∑

j:(j,i)∈A

xji + bi, ∀i ∈ V, bi =


1, if i = s

−1, if i = t

0, otherwise

xij ∈ {0, 1}, ∀(i, j) ∈ A.

(3.4)

Now, let us consider the following decision version of the CSPP. For a constant β, is there
a solution x such that f(x) ≤ β within the constraints of (3.4)? Thus we have the following
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problem:

Is there a solution x

s.t
∑

(i,j)∈A

dijxij ≤ λ(1)∑
(i,j)∈A

cijxij ≤ β

∑
j:(i,j)∈A

xij =
∑

j:(j,i)∈A

xji + bi, ∀i ∈ V, bi =


1, if i = s

−1, if i = t

0, otherwise

xij ∈ {0, 1}, ∀(i, j) ∈ A?

(3.5)

The decision version of (3.2) is: For a constant γ, is there a solution x such that h(x) ≥ γ
within the constraints of (3.2)? Thus we have the following problem:

Is there a solution x

s.t

r1 − ∑
(i,j)∈A

dijxij

 ·
r2 − ∑

(i,j)∈A

cijxij

 ≥ γ (3.6a)

∑
(i,j)∈A

dijxij ≤ r1 (3.6b)

∑
(i,j)∈A

cijxij ≤ r2 (3.6c)

∑
j:(i,j)∈A

xij =
∑

j:(j,i)∈A

xji + bi, ∀i ∈ V, bi =


1, if i = s

−1, if i = t

0, otherwise
(3.6d)

xij ∈ {0, 1}, ∀(i, j) ∈ A? (3.6e)

In the DP (3.6), for γ = 0 we can ignore constraint (3.6a) because, if (3.6b) and (3.6c)
hold, then (3.6a) is true.

Therefore, if we assume λ(1) = r1, β = r2 and γ = 0, the decision version of the CSPP and
the decision version of the hypervolume scalarized formulation of the BSPP have the same
set of constraints. Thus, since CSPP is NP−complete [23], the hypervolume scalarized
formulation of the BSPP is also NP−complete.

3.5 Label Setting Approach

In the following, we propose an algorithm for solving the hypervolume scalarized formula-
tion of the BSPP based on the label setting approach discussed in Section 2.6 and similar
to the labeling approach used to solve the CSPP problem in [23].

Labeling approaches follow the line of Pareto-optima approaches, in which none of the
objectives can be improved without sacrificing at least one of the other objectives, and do
not consider dominated paths, that is, if a path is dominated by an already found path,
it is immediately discarded. An v-w-path p is dominated if there exists a v-w-path q such
that c(p) ≥ c(q) and d(p) ≥ d(q) with at least one strict inequality, that is, q is more
efficient than p with respect to cost and distance.
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The standard labeling approaches use a set of labels for each node. Each label represents a
path q from s to this node and consists of a tuple of numbers (c, d, h, vj , `, k) where c, d, h
are the cost, distance and hypervolume of path q, respectively, vj 6= vi is a node of G, ` is
the number of a label of node vj , and k is the number of the label at node vi. A labeling
algorithm now finds all non-dominated labels on every node. Starting with no labels at
every node, except for (0, 0, r1r2, 0, 0, 1) at node s, the algorithm extends the label lists by
extending non-dominated s-v-subpaths along their outgoing arcs for every node v ∈ V .

Algorithm 1 could be used for solving the hypervolume scalarized formulation of the BSPP
by choosing the path with the highest hypervolume from the set of efficient paths returned
that hold constraints (3.6b) and (3.6c). However, we can reduce the running time by using
the distance and cost constraints for discarding the subpaths that are infeasible at each
node. Therefore, a path does not need to be extended and is called non-promising if its
minimal cost and minimal distance exceeds the limits. A list of temporary labels T L,
which is kept in lexicographic order for the first two components of the label, and a list of
permanent labels PL, which will identify efficient paths, are used.

Algorithm 2: Hypervolume scalarization label setting algorithm
Input : A graph G = (V,A) with 2 arc costs (distance and cost)
Initialization: Create label L = (0, 0, r1r2, 0, 0, 1) at node s and let T L := {L}
while T L 6= ∅ do

Let label L = (d, c, h, vh, `, k) of node vi be the lexicographically smallest label
in T L;
Remove L from T L and add it to PL;
for all vj ∈ V such that (vi, vj) ∈ A do

if d+ dij ≤ r1 and c+ cij ≤ r2 then
Create label L′ = (d+ dij , c+ cij , (r1 − d− dij)· (r2 − c− cij), vi, k, w) as
the next label at node vj , where w is the is the number of the label at
node vj , and add it to T L;
Delete all temporary labels of node vj dominated by L′ for distance and
cost, delete L′ if it is dominated by another label of node vj ;

end
end

end
Use the predecessor labels in the permanent labels to recover all efficient paths
from s to other nodes of G;

Output : Efficient path from node s to node t a with the highest
hypervolume

There are at most n iterations, where labels for n nodes are computed. However, in the
worst case, the running time can be exponential, because there might exist an exponential
number of labels at each node.

3.6 Pruning Conditions

The label setting algorithm can be improved by considering stronger pruning conditions
instead of testing only the feasibility of the path identified by the label.

For a given path q, we introduce the following notation

d(q) :=
∑

(i,j)∈q

dij and c(q) :=
∑

(i,j)∈q

cij (3.7)
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to denote the total distance and the total cost of path q, respectively, and

h(q) = (r1 − d(q)) · (r2 − c(q)) (3.8)

to denote the hypervolume defined by path q with respect to the reference point r = (r1, r2).

We define a lower bound LA(q) for a given s-v-path q of the s-t-path BSPP as

LA(q) :=
(
d(q) + d(qd), c(q) + c(qc)

)
, (3.9)

where qd and qc are the shortest v-t-path with respect to distance and cost, respectively.
The value of the shortest v-t-path for any node v and for a given objective can be pre-
computed by reversing the direction of the arcs in G and building the shortest path tree
with source in node t.

Additionally, we define the upper bound UB(q) on the hypervolume scalarization for path
q

UB(q) :=
(
r1 − d(q)− d(qd)

)
·
(
r2 − c(q)− c(qc)

)
, (3.10)

as the hypervolume is at most the value of the measure of the region weakly dominated by
the lower bound LA(q) and bounded above by r.

Now, let PA(q) be the set of feasible s-t-paths for the BSPP, each of which contains s-v-
path q. Let PB(q) be the set of feasible s-t-paths for the hypervolume scalarization of the
BSPP, each of which contains s-v-path q. We have PB(q) ⊆ PA(q). Then, the following
implications hold with respect to path q, given a feasible s-t-path p and a reference point
(r1, r2) :

Pruning Condition D1. UB(q) ≤ h(p) =⇒ h(q̂) ≤ h(p), for q̂ ∈ PB(q)

Proof. If q̂ ∈ PB(q), then h(q̂) ≤ UB(q). But UB(q) ≤ h(p), thus h(q̂) ≤ h(p). �

Therefore, if an incumbent path q fulfills condition D1, it cannot improve the best known
solution for the hypervolume scalarization and q can be pruned.

Pruning Condition D2. (r1, r2) � LA(q) =⇒ PB(q) = ∅

Proof. For each path q̂ ∈ PB(q), we must have d(q̂) ≤ r1 and c(q̂) ≤ r2 in order to
have a feasible solution for the hypervolume scalarization. If (r1, r2) � LA(q), then for
∀q̂ ∈ LA(q), we have d(q̂) > r1 ∨ c(q̂) > r2. Thus, q̂ /∈ PB(q) and PB(q) = ∅. �

Therefore, if an incumbent path q fulfills condition D2, none of the path extensions is
feasible for the hypervolume scalarization and it can be pruned.

3.7 Particular Case

One may wonder whether a greedy algorithm, which selects only the path with the larger
hypervolume at each node, could solve problem (3.2). In the following we show that is not
possible.
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Let us consider the problem (3.2) where the reference point is far enough that all solutions
are feasible for the first two constraints. For example, let us consider any case where the
reference point r = (r1, r2) is such that

r1 ≥ 1 +
∑

(i,j)∈A

dij

r2 ≥ 1 +
∑

(i,j)∈A

cij .

Using such a reference point, we have∑
(i,j)∈A

dijxij ≤
∑

(i,j)∈A

dij < r1∑
(i,j)∈A

cijxij ≤
∑

(i,j)∈A

cij < r2,

thus all s-t-paths are feasible according to the distance and cost constraints and do not
need to be considered when solving the problem.

Even in this case, we cannot say that there is a polynomial time algorithm for solving (3.2)
because if we tried to use an algorithm that stores only the best hypervolume in each step
(such as the algorithm introduced in [1] for the SPP in directed acyclic graphs), it would
not find the optimal solution for the scalarized problem. The only way we could store
only the best hypervolume in each step is if we could prove that, if the hypervolume of
the s-v-path x is higher than the hypervolume of the s-v-path y, then any extension of
path x has higher hypervolume than the same extension for path y. However this can be
disproven by counterexample.

Example. Let r1 = 100 and r2 = 90. Let paths p and q start in node s and end in node
v. Let the distance and cost of path p be d(p) = 6 and c(p) = 7.7, respectively. Let the
distance and cost of path q be d(q) = 9 and c(q) = 5, respectively. Thus,

(r1 − d(p))(r2 − c(p)) = 7736.2 > 7735 = (r1 − d(q))(r2 − c(q))

and the hypervolume of path p is higher than the hypervolume of path q.

Now let us consider the arc (v, w) as an extension of paths p and q. Let the distance and
cost of arc (v, w) be dvw = 3 and cvw = 5, respectively. Thus,

(r1 − d(p)− dvw)(r2 − c(p)− cvw) = 7034.3 < 7040 = (r1 − d(q)− dvw)(r2 − c(q)− cvw)

and the hypervolume of the extension of path q is higher than the hypervolume of the
extension of path q.

Therefore, we have disproven that if the hypervolume of the s-v-path x is higher than the
hypervolume of the s-v-path y, then any extension of path x has higher hypervolume than
the same extension for path y.

Thus, with this counter example, we show that we need to store all non-dominated label
on every node.
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Chapter 4

Implementation and Results

In this chapter, we discuss the implementation of the label setting algorithm for the hyper-
volume scalarization of the BSPP and of the linearization of the hypervolume scalarization
of the BSPP using an ILP solver. The benchmark instances used for testing are available
in [18]. We discuss the numerical results obtained, focusing on comparing the performance
of the algorithm with the performance of the ILP solver and comparing the performance of
the algorithm using the pruning conditions. We also analyze the influence of the problem
parameters on the performance of the algorithm, focusing on the size and type of graphs,
and the influence of restricting the reference point and the resulting decrease on the number
of efficient paths.

4.1 Implementation of the Label Setting Algorithm and the
Integer Linear Programming Formulation

The label setting algorithm for the hypervolume scalarization of the BSPP, as presented in
Algorithm 2, was implemented in C++ and compiled with gcc version 8.3.0. The algorithm
was implemented with and without the pruning conditions discussed in Section 3.6. The
running time was measured only with respect to the label setting algorithm.

SCIP version 7.0.1, with default paramenters, was used as ILP solver. Solving Constraint
Integer Programs (SCIP) is a framework to solve constraint integer programs and mixed-
integer nonlinear programs implemented as a C callable library [5].

A problem is initiated using SCIPcreate() and the default plugins are included using
SCIPincludeDefaultPlugins(). Then, SCIPcreateProbBasic() is used to define the
problem and SCIPsetObjsense() is used to set the objective function direction to ei-
ther SCIP_OBJSENSE_MAXIMIZE or SCIP_OBJSENSE_MINIMIZE. Variables are
created using SCIPcreateVarBasic() and added to the problem with SCIPPaddVar().
Linear constraints are created using SCIPcreateConsBasicLinear(). We use SCIPad-
dCoefLinear() to define the coefficients of each variable in a constraint and SCIPcre-
ateConsBasicLinear() to add a constraint to the problem. Once this process is defined,
it is solved using SCIPsolve(). After this process finishes, using SCIPgetBestSol() re-
turns the best feasible primal solution of the problem and SCIPprintBestSol() prints the
best solution and which variables were chosen. At last, we use SCIPreleaseCons() and
SCIPreleaseVar() to release all the variables and constraints and we use SCIPfree() to
release the SCIP environment.
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4.2 Benchmark Instances

For the experimental analysis, we have used the graphs stored in a website [18], which
contains three types of network topologies. Given n nodes, we have

• Random networks: an Hamiltonian cycle is firstly generated to assure there are no
nodes that are never visited. The remainder arcs as well as the arc coefficients are
randomly generated.

• Square grid: Each node is connected to his nearest neighbors in a square mesh.
Coefficient are randomly generated.

• Complete networks: every node in the graph is connect by an arc. Coefficients are
randomly generated.

Each instance is characterized by the number of nodes n, the number of arcsm, the network
density n/m, the number of objectives and the maximum arc coefficient 1000, that is, the
arc coefficient for each objective are uniformly distributed over the set {1, . . . , 1000}. We
have considered only the instances with two objectives.

For random networks, we have (n,m) = {(1000, 3000), (2500, 15000), (5000, 30000)}. For
square grids, we have (n,m) = {(49, 168), (81, 288), (100, 360)}. For complete networks, we
have (n,m) = {(25, 600), (50, 245), (100, 9900)}. There is a total of 50 instances for each
set. Table 4.1 summarizes the main data about the benchmark instances used. For each
set of instances, the table presents the average number of efficients paths EF, computed
using Algorithm 1, and the average number of efficient paths when the reference point
is such that that we get max{0.5EFi, 1} efficient paths for each instance (EF 50%) and
max{0.1EFi, 1} efficient paths for each instance (EF 10%), where EFi is the number of
efficient paths for instance i. The reference points were restricted in order to decrease the
number of efficient paths and analyze its influence on average running times.

Type n m EF EF 50% EF 10%

Random 1000 3000 3.14± 1.69 1.44± 0.68 1.00± 0.00
2500 15000 6.25± 2.91 2.96± 1.37 1.00± 0.00
5000 30000 6.10± 2.43 2.86± 1.21 1.00± 0.00

Square 49 168 8.46± 3.32 4.04± 1.67 1.00± 0.00
81 288 12.22± 4.17 5.88± 2.05 1.06± 0.24
100 360 17.22± 7.22 8.32± 3.60 1.42± 0.61

Complete 25 600 6.90± 3.23 3.22± 1.62 1.00± 0.00
50 2450 8.62± 3.65 4.04± 1.85 1.02± 0.14

100 9900 12.64± 4.47 6.02± 2.21 1.08± 0.27

Table 4.1: Benchmark instances used for testing. Type of graph, number of nodes |V | = n,
number of arcs |A| = m, average number of efficients paths of problem (2.8) (EF, EF 50%
and EF 10%). 50 instances were used for each set of type of graph, n and m.

4.3 Numerical Results

All experiments were conducted on a computer cluster with the following specifications:
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• Dell PowerEdge R740 Server

• 2 Intel Xeon Silver 4210R 2.4G, 10 Cores / 20 Threads, 9.6GT/s, 13.75M Cache

• 2 32GB RDIMM, 2933MT/s

• 2 480GB SSD SATA

• OS Debian GNU/Linux 10 (buster)

• Slurm Workload Manager

using a gcc version 8.3.0 compiler and SCIP version 7.0.1 as ILP solver. We defined a
cut-off limit of 3600 seconds for the total time of each instance.

Due to the size of the graphs, the only results obtained using the ILP solver were for the
complete network with n = 25. On average the running time for the ILP was 470.4±719.6
seconds, versus 0.016 ± 0.010 seconds for Algorithm 2, thus, on average we have a 72566
speedup. The ILP solver also presents a very large variance.

Table 4.3 presents the average running times for Algorithm 2, with and without pruning
conditions. For each set of benchmark instances, defined by type of graph, number of nodes
|V | = n and number of arcs |A| = m, we have the average running time for the label setting
Algorithm 2 (time), the average running time and the average speedup for Algorithm 2
using pruning condition D1 (time D1 and speedup D1, respectively), the average running
time and average speedup for Algorithm 2 using pruning condition D2 (time D2 and
speedup D2, respectively) and the average running time and speedup for Algorithm 2
using pruning conditions D1 and D2 (time D12 andspeedup D12, respectively).

Type n time time 50% speedup 50% time 10% speedup 10%

Random 1000 0.8± 0.7 0.4± 0.4 3.9 0.2± 0.3 4.7

2500 28.9± 20.4 9.3± 10.5 7.5 1.6± 2.0 42.4

5000 158.9± 93.3 43.9± 43.2 17.7 7.8± 11.6 102.2

Square 49 0.0± 0.0 0.0± 0.0 1.4 0.0± 0.0 2.1

81 0.1± 0.0 0.0± 0.0 2.0 0.0± 0.0 3.53

100 0.1± 0.0 0.0± 0.0 1.9 0.0± 0.0 2.9

Complete 25 0.0± 0.0 0.0± 0.0 8.1 0.0± 0.0 40.5

50 0.0± 0.0 0.0± 0.0 9.8 0.0± 0.0 134.9

100 0.3± 0.1 0.1± 0.0 9.1 0.3± 0.1 313.7

Table 4.2: Results for testing with stricter reference points. For each set of benchmark
instances, defined by type of graph, number of nodes |V | = n and number of arcs |A| = m,
we have the average running time for the label setting algorithm (2) (time) and the average
running times and speedups for Algorithm (2) when the reference point is such that we
get only a percentage of the efficient paths.
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Type n time time D1 speedup D1 time D2 speedup D2 time D12 speedup D12

Random 1000 0.8± 0.7 0.8± 0.7 1.0 0.0± 0.1 56.7 0.0± 0.1 56.6

2500 28.9± 20.4 26.0± 16.1 1.5 8.4± 12.2 60.0 6.8± 9.6 60.4

5000 158.9± 93.3 154.5± 85.7 1.0 53.9± 80.4 96.5 42.5± 59.0 100.6

Square 49 0.0± 0.0 0.0± 0.0 1.1 0.0± 0.0 2.2 0.0± 0.0 2.3

81 0.1± 0.0 0.0± 0.0 2.0 0.0± 0.0 3.8 0.0± 0.0 3.7

100 0.1± 0.0 0.1± 0.0 1.5 0.1± 0.0 2.3 0.1± 0.0 2.2

Complete 25 0.0± 0.0 0.0± 0.0 1.4 0.0± 0.0 1.5 0.0± 0.0 1.9

50 0.0± 0.0 0.0± 0.0 2.0 0.0± 0.0 1.4 0.0± 0.0 2.5

100 0.3± 0.1 0.1± 0.0 2.7 0.3± 0.1 1.1 0.1± 0.1 2.7

Table 4.3: Results for the pruning conditions testing. For each set of benchmark instances, defined by type of graph, number of nodes |V | = n and
number of arcs |A| = m, we have the average running time for the label setting Algorithm 2 (time) and the average running times and speedups
using pruning conditions.
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Table 4.2 presents the average running time for Algorithm 2 using reference points such
that all efficient paths of BSPP are feasible for its hypervolume scalarization (time) and
the average running times and speedups using reference points such that only 50% (time
50% and speedup 50%) and 10% (time 10% and speedup 10%) of the efficient paths are
feasible.

4.3.1 Pruning Conditions

The speedup values for random networks in table 4.3 are not very significant when using
only pruning condition D1, but the speedup results are much better for pruning condition
D2. The speedup value obtained using both conditions is only slightly higher than the
speedup value obtained using only D2. Thus, pruning condition D2 is the main contributor
to the speedup in random networks and using condition D1 may not be essential to obtain
better running times.

The speedup values for square grids and complete networks are not very high, but may be
more significant when dealing with larger graphs. For square grids, pruning condition D2
is the main contributor to the speedup and for complete networks pruning condition D1 is
the main contributor.

Combining pruning conditions does not offer better results than using only the pruning
condition with the highest speedup average.

4.3.2 Reference Points and Efficient Paths

Figure 4.1: Running time for the label setting algorithm 2 for random networks with
n = 2500 grouped by number of efficient paths.

Looking at Table 4.2, selecting a stricter reference point seems to result in a more significant
speedup for random networks and complete networks. These results must be due to the
fact that restricting the reference point results in decreasing the number of efficient paths
and the number of efficient paths seems to have a bigger impact on random and complete
networks than on square grids, as can be observed in the examples in Figures 4.1, 4.2
and 4.3, where we observe the boxplots of running times grouped by number of efficient
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paths for some sets of instances. Thus, it seems that trying to restrict the reference point
may not be very effective for square grids but results in significant speedups for the other
graphs.

Figure 4.2: Running time for the label setting algorithm 2 for square grids with n = 100
grouped by number of efficient paths.

Figure 4.3: Running time for the label setting algorithm 2 for complete networks with
n = 50 grouped by number of efficient paths.

We must take into consideration the fact that the speedup values obtained are much higher
for a very restrictive reference point and these reference points were computed by first
solving the BSPP and then choosing points that allowed only for the chosen percentage of
efficient paths. The goal of restricting the reference point is to improve the performance
of the algorithm, so we would need to find another way of selecting a strict reference
point. However, any other way of severely restricting the reference point could result in an
unfeasible problem.
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4.3.3 Problem Parameters

Besides the type of graph, we may analyze the influence of the number of nodes and arcs
in the performance of the algorithm. Figures 4.4, 4.5 and 4.6 show the average running
time versus the number of nodes on the left and the number of arcs on the right for
random networks, square grids and complete networks, respectively. In those figures we
have the average running time for the label setting algorithm 2, the average running time
for algorithm 2 using pruning condition D1, the average running time for algorithm 2
using pruning condition D2 and the average running time for algorithm 2 using pruning
conditions D1 and D2.

The figures show that the improvements in the running time that result from using the
best pruning condition for each type of network are more significant for larger graphs, with
more nodes and arcs.

Figure 4.4: Average running time for the label setting algorithm 2 for random networks
versus the number of nodes on the left and the number of arcs on the right, with and
without pruning conditions.

Figure 4.5: Average running time for the label setting algorithm 2 for square grids versus
the number of nodes on the left and the number of arcs on the right, with and without
pruning conditions.
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Figure 4.6: Average running time for the label setting algorithm 2 for complete networks
versus the number of nodes on the left and the number of arcs on the right, with and
without pruning conditions.

4.4 Discussion

Pruning condition D2 is the main contributor to the speedup in random networks and
square grids. For complete networks pruning condition D1 is the main contributor. If we
combine pruning conditions, the results offered are similar to the results obtained using
only the pruning condition with the highest speedup average. Using the best pruning
condition for each type of network offer better improvements in the running time for larger
graphs, with more nodes and arcs.

Selecting a stricter reference point seems to result in a more significant speedup for random
networks and complete networks due to the number of efficient paths having a bigger impact
on running times for random and complete networks than on square grids. However, finding
a way to severely restrict the reference point while avoiding an unfeasible problem may be
computationally expensive.
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Chapter 5

Hypervolume Scalarization of the
Biobjective Minimum Spanning Tree
Problem

In this chapter, we present the hypervolume scalarized formulation of the Biobjective
Minimum Spanning Tree Problem (BMSTP) and introduce its linearization in order to
further illustrate the application of the previous concepts to a structurally different bio-
jective graph problem. We also prove the computational complexity of the hypervolume
scalarized formulation and propose an algorithm for solving this formulation.

5.1 Minimum Spanning Tree Problem

Given a graph G = (V,E), with |V | = n, |E| = m, cost ce and distance de for each
unordered edge e ∈ E = {1, . . . ,m} (a positive integer), the goal of the BMSTP is to
find the spanning tree of minimum cost and distance. Thus we get the Integer Linear
Programming (ILP) formulation (5.1)

min f(x) =

(∑
e∈E

cexe,
∑
e∈E

dexe

)
(5.1a)

s.t
∑
e∈E

xe = n− 1, (5.1b)∑
e∈E(S)

xe ≤ |S| − 1, ∀ S ⊂ V, S 6= ∅, S 6= V (5.1c)

xe ∈ {0, 1}, ∀e ∈ E, (5.1d)

where constraint (5.1b) guarantees that the solution is a spanning subgraph and con-
straint (5.1c) guarantees that there are no cycles in the solution, that is, any subset of
vertices S of V contains at most |S|−1 edges. For e ∈ E, the variable xe is set to 1 if edge
e is included in the spanning tree T , otherwise xe is set to 0.

It is known that the multiobjective MSTP (5.1) is NP-complete [3] and that the efficient
set may grow exponentially in the size of the problem, even for the biobjective case [9].
However, the P-completeness of the multiobjective MSTP is still open because it does not
follow from intractability due to the fact that counting the spanning trees of a graph is
easy [12].
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Practical applications of the BMSTP include the construction of powerline networks, in
which you may want the lenght of the network to be as low as possible while having a cost
of construction as low as possible.

5.2 Hypervolume Scalarization of the Biobjective Minimum
Spanning Tree Problem

The hypervolume scalarization of the BMSTP (5.1) leads to the following optimization
problem with r = (r1, r2)

T ∈ R2
≥ as the reference point, presented in its integer program-

ming version.

max h(x) :=

(
r1 −

∑
e∈E

cexe

)
·

(
r2 −

∑
e∈E

dexe

)
(5.2a)

s.t
∑
e∈E

cexe ≤ r1 (5.2b)∑
e∈E

dexe ≤ r2 (5.2c)∑
e∈E

xe = n− 1, (5.2d)∑
e∈E(S)

xe ≤ |S| − 1, ∀ S ⊂ V, S 6= ∅, S 6= V (5.2e)

xe ∈ {0, 1}, ∀e ∈ E. (5.2f)

5.3 Linearization of the Hypervolume Scalarization

In order to be able to use an ILP solver, we need to linearize the problem above. We have

(
r1 −

∑
i∈E

cixi

)
·

r2 −∑
j∈E

djxj


=
∑
i∈E

∑
j∈E

cidjxixj −
∑
i∈E

(r2ci + r1di)xi + r1r2

=
∑
i∈E

∑
j∈E

Qijxixj −
∑
i∈E

(r2ci + r1di)xi + r1r2,

where we define Qij = cidj for all i, j ∈ E. The objective function is linearized by
introducing m2 (because |E| = m) new variables yij = xixj , that attain value 1 if and only
if xi = 1 and xj = 1, which is ensured by the following constraints:

yij ≤ yij , ∀i, j ∈ E, i 6= j

yij ≥ yii + yjj − 1, ∀i, j ∈ E, i < j.
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Additional constraints are required to handle symmetry, that is, yij = yji. Thus, we get
the ILP formulation (5.3) with O(m2) constraints:

max
∑
i∈E

∑
j∈E

Qijyij −
∑
i∈E

(r2ci + r1di) yii + r1r2

s.t
∑
i∈E

ciyii ≤ r1∑
i∈E

diyii ≤ r2∑
i∈E

yii = n− 1,∑
i∈E(S)

yii ≤ |S| − 1, ∀ S ⊂ V, S 6= ∅, V

yij ∈ {0, 1}, ∀i, j ∈ E
yij = yba, ∀i, j ∈ E
yij ≤ yii, ∀i, j ∈ E, i 6= j

yij ≥ yii + yjj − 1, ∀i, j ∈ E, i < j.

(5.3)

A possible approach for solving the hypervolume scalarization is to use this linearized
formulation within an ILP solver.

5.4 Complexity

In this section we will use a combinatory formulation for the MSTP. Given a graph G =
(V,E), with |V | = n, |E| = m, cost ce and distance de for each unordered edge e ∈ E =
{1, . . . ,m} (a positive integer), the goal of the BMSTP is to find the spanning tree of
minimum cost and distance, that is, to find the spanning tree T = (V,E1), E1 ⊆ E such
that

c(T ) =
∑
e∈T

ce and d(T ) =
∑
e∈T

de (5.4)

are minimized. Thus we get the following formulation for the BMSTP

min
T∈T

(c(T ), d(T )) , (5.5)

where T is the set of spanning trees of graph G. Using this notation, we have the following
formulation for the hypervolume scalarization of the BMSTP with r = (r1, r2)

T ∈ R2
≥ as

the reference point:

max
T∈T

(r1 − c (T )) · (r2 − d (T )) (5.6a)

s.t c(T ) ≤ r1 (5.6b)
d(T ) ≤ r2. (5.6c)

In order to analyze the complexity of problem (5.5) we introduce the Constrained Minimum
Spanning Tree Problem (CMSTP) [17]. The goal of the CMSTP is to find the least cost
spanning tree obeying a set of resource constraints, such as a maximum value for the total
distance of the tree. Given a graph G = (V,E) with |V | = n and |E| = m, and distance
limit β, let T denote the set of spanning trees of G. Each edge e has a cost ce and distance
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de. Costs and distances are assumed to be nonnegative and are additive along trees. Thus
we have the following combinatory formulation:

min
T∈T

c(T ) (5.7a)

s.t d(T ) ≤ β. (5.7b)

The decision version of the CMSTP is: For a constant γ, is there a solution T such that T
is a spanning tree of G with cost c(T ) ≤ γ and distance d(T ) ≤ β?

Now, let us consider the decision version of (5.6): For a constant λ, is there a solution T
such that (r1 − c (T )) · (r2 − d (T )) ≥ λ within the constraints of (5.6)?

For λ = 0 we can ignore the constraint (r1 − c (T )) · (r2 − d (T )) ≥ λ because, if (5.6b)
and (5.6c) hold, then (r1 − c (T )) · (r2 − d (T )) ≥ λ is true.

Therefore, if we assume λ = 0, β = r2 and γ = r1, the decision version of the CMSTP
and the decision version of the hypervolume scalarized formulation of the BMSTP have
the same set of constraints. Thus, since CMSTP is NP−complete [2], the hypervolume
scalarized formulation of the BMSTP is also NP−complete.

5.5 Branch-and-Bound Approach

A branch-and-bound approach may be used to solve both the BMSTP [22] and its hy-
pervolume scalarization. The initial upper bound for the BMSTP may be computed by
summing the first n−1 highest edge values for cost and summing the first n−1 highest edge
values for distance. Using this initial upper bound, a corresponding initial lower bound for
the hypervolume scalarized version is computed.

The branching scheme is defined by, at each node, selecting an edge e of G and creating
two subproblems. In the first one, edge e is mandatory, that is, it must be in the spanning
tree, while in the second problem edge e is forbidden. The heuristic to select e may search
for the edge not yet considered such that min{ce, de}, where ce and de are the cost and
the distance of edge e, respectively, is minimal. Each subproblem is solved using the same
method, unless one of the following situations occur:

• the last mandatory or forbidden edge results in a feasible solution or in an unfeasible
problem;

• in the BMSTP, the objective value for the solution of the subproblem is dominated
by the current upper bound;

• in the case of its hypervolume scalarization, the objective value for the solution of
the subproblem is lower than the lower bound.

When a feasible solution for BMSTP is found for one of the subproblems and its objective
value dominates the upper bound, the upper bound is updated. When a feasible solution
for its hypervolume scalarization is found and its objective value is higher than the lower
bound, the lower bound for the hypervolume is updated.
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5.6 Pruning Conditions

The branch-and-bound approach can be improved by considering stronger pruning condi-
tions similar to the conditions used for the knapsack problem [16].

Let us assume that all instances of (5.1) are defined such that

c1 ≤ c2 ≤ . . . ≤ cm. (5.8)

Let Sm denote the symmetric group of order m and π ∈ Sm denote a permutation
{1, . . . ,m}. Consider π such that

dπ(1) ≤ dπ(2) ≤ . . . ≤ dπ(m). (5.9)

Using the sorted coefficients ci and bπ(i), we derive the following lower bound LA for any
efficient solution of (5.1):

LA :=

(
n−1∑
i=1

ci,

n−1∑
i=1

dπ(i)

)
, (5.10)

which results from the fact that a spanning tree has n − 1 edges. A related upper bound
for (5.2) can be derived:

UB :=

(
r1 −

n−1∑
i=1

ci

)
·

(
r2 −

n−1∑
i=1

dπ(i)

)
. (5.11)

Now, in the context of the branch and bound approach, let us introduce the following
definitions. Let x ∈ {0, 1}m such that xj = 0, for j = `+ 1, . . . ,m, and

∑`
i=1 xi ≤ n− 1,

and let

n := min

{
n− 1−

∑̀
i=1

xi, m− `

}
, (5.12)

that is, let x be a solution such that in the first ` edges, at most n − 1 edges belong to
the spanning tree and the last m− ` edges do not yet belong to the tree and let n be the
number of edges that have to be added to solution x in order to obtain a spanning tree.

We define a lower bound LA(x) as follows

LA(x) :=

∑̀
i=1

cixi +
`+n∑
j=l+1

cj ,
∑̀
i=1

dixi +
∑
j∈J

dπ(j)

 , (5.13)

where J := {j1, . . . , jn} ⊆ {`+ 1, . . . ,m} for which it holds that

π(j1) < π(j2) < . . . < π(jn) (5.14)

and
π(jn) < π(j), ∀j ∈ {`+ 1, . . . ,m} \ {j1, . . . , jn}. (5.15)

The different method of defining lower bound LA(q) for the BSPP and lower bound LA(x)
results of the fact that a feasible solution for the BMSTP has a fixed number of edges.

Similarly, we define the following upper bound UB(x)

UB(x) :=

r1 − ∑̀
i=1

cixi −
`+n∑
j=l+1

cj , r2 −
l∑

i=1

dixi −
∑
j∈J

dπ(j)

 . (5.16)
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Both lower bound LA(x) and upper bound UB(x) can be used for pruning incumbent
solutions within the branch-and-bound framework. A solution x̂ ∈ X is a feasible extension
of x if and only if it is feasible for (5.1) and x̂i = xi for i = 1, . . . , `. Let EA(x) denote
the set of all feasible extensions of x and let EB(x) ⊆ EA(x) denote the set of feasible
extensions of x that are also feasible for its hypervolume scalarizarion. Then, the following
implications hold with respect to path x, given a feasible x∗ ∈ X and a reference point
(r1, r2) :

Pruning Condition E1. UB(x) ≤ h(x∗) =⇒ h(x̂) ≤ h(x∗), for x̂ ∈ EB(x)

Proof. If x̂ ∈ EB(x), then h(x̂) ≤ UB(x). But UB(x) ≤ h(x∗), thus h(x̂) ≤ h(x∗). �

Therefore, if an incumbent solution x fulfills condition E1, it cannot improve the best
known solution for the hypervolume scalarization and x can be pruned.

Pruning Condition E2. (r1, r2) � LA(x) =⇒ EB(x) = ∅

Proof. For each path x̂ ∈ PB(x), we must have c(x̂) ≤ r1 and d(x̂) ≤ r2 in order to
have a feasible solution for the hypervolume scalarization. If (r1, r2) � LA(x), then for
∀x̂ ∈ LA(x), we have c(x̂) > r1 ∨ d(x̂) > r2. Thus, x̂ /∈ PB(x) and PB(x) = ∅. �

Therefore, if an incumbent path x fulfills condition E2, none of the path extensions is
feasible for the hypervolume scalarization and it can be pruned.
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Chapter 6

Conclusion

6.1 Tasks Scheduling

The timeline of the first semester is illustrated in Figure 6.1. During the first few weeks
of work, I reviewed the state of art of Multiobjective Combinatorial Optimization and
some graph problems (namely, the Shortest Path Problem). Then, I wrote about the basic
concepts about Multiobjective Combinatorial Optimization and studied the hypervolume
scalarization and linearization of the graph problems. For the following weeks I proved the
computational complexity of the hypervolume scalarized problem using the Constrained
Shortest Path Problem and studied the dynamic programming algorithms used for solving
this problem. After that, I analyzed a labeling approach for hypervolume scalarized prob-
lem and studied some particular cases of the problem. In the last few weeks I wrote the
intermediate report.

Figure 6.1: Gantt chart for tasks completed during the first semester

The timeline of the second semester is illustrated in Figure 6.2. The first few weeks were
spent on reviewing C++ and implementing both versions of the label setting algorithm,
focusing on optimizing the code in order to improve the execution time. At the same time,
I also focused on adapting the pruning conditions for the Biojective Knapsack Problem to
the hypervolume scalarization of the Biojective Shortest Path Problem. The next step was
to study the C++ SCIPOPT libraries and solving the linearized version of the hypervolume
scalarization of the Biojective Shortest Path Problem using SCIP. After the implementation
was completed, the testing phase, using different types of networks, began. During those
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weeks, I also focused on the Biojective Minimum Spanning Tree Problem, studying its
hypervolume scalarization and linearization. I proved the computational complexity of
the problem and analyzed a branch-and-bound approach to solve the problem and pruning
conditions to improve performance. The last few weeks were spent analyzing the numerical
results and writing the final report.

Figure 6.2: Gantt chart for tasks completed during the second semester

6.2 Main Conclusions and Future Work

In this thesis, we introduced the hypervolume scalarization of the Biobjective Shortest
Path Problem and it linearization. We proposed a label setting algorithm for solving the
hypervolume scalarization and pruning conditions to improve performance. Numerical
results showed that the proposed algorithm provides significantly better running times
than using the linearization and an ILP solver. Numerical results also show that the best
pruning condition depends on the type of network used and that the speed up resulting
from the use of pruning conditions is significantly higher for larger graphs.

The Biobjective Minimum Spanning Tree Problem was also studied. We extended the
work developed for the Biobjective Knapsack Problem in [16] and for the Biobjective
Shortest Path Problem by introducing the hypervolume scalarization and its linearization
and proposing an algorithm for solving the hypervolume scalarization and pruning con-
ditions. This algorithm was not implemented, therefore there are no numerical results
for this problem. However, given that the Minimum Spanning Tree contains an exponen-
tial number of constraints, we expect the branch-and-bound approach to have a better
performance.

Extending the work developed for the Biobjective Knapsack Problem to the Biobjective
Shortest Path Problem and the Biobjective Minimum Spanning Tree Problem shows that
applying the hypervolume scalarization to biobjective combinatorial problems is simple
and we may adapt algorithms already used for solving the biobjective versions of the
problems in order to solve the hypervolume scalarizations. On the other hand, the pruning
conditions seem to be general enough to be adapted to other problems.

The next step of this work would to generalize hypervolume scalarizations to problems with
higher dimensions and to compare the results obtained using hypervolume scalarizations
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with other scalarizations.
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