

Beatriz de Jesus Pereira Santos

DRUG DISCOVERY WITH GENERATIVE

ADVERSARIAL NETWORKS

Dissertation in the context of the Master in Biomedical

Engineering, Specialization in Clinical Informatics and
Bioinformatics advised by Prof. Dr. Joel P. Arrais and Prof. Dr.

Bernardete Ribeiro and presented to the Faculty of Sciences and
Technology.

August 2021

Beatriz de Jesus Pereira Santos

Drug Discovery with Generative
Adversarial Networks

Thesis submitted to the

University of Coimbra for the degree of

Master in Biomedical Engineering

Supervisors:

Prof. Dr. Joel P. Arrais

Prof. Dr. Bernardete Ribeiro

Coimbra, 2021

ii

This work was developed in collaboration with:

Center for Informatics and Systems of the University of Coimbra

iii

iv

Esta cópia da tese é fornecida na condição de que quem a consulta reconhece que os

direitos de autor são pertença do autor da tese e que nenhuma citação ou informação

obtida a partir dela pode ser publicada sem a referência apropriada.

This copy of the thesis has been supplied on condition that anyone who consults

it is understood to recognize that its copyright rests with its author and that no

quotation from the thesis and no information derived from it may be published

without proper acknowledgement.

v

vi

Acknowledgments

This dissertation marks the end of a five-year journey at the University of Coimbra

and while I am a firm believer that the journey matters more than the destination,

I am very pleased with what I have achieved which would not have been possible

without the help and support of countless people.

First, I would like to thank my supervisors Prof. Dr. Joel P. Arrais and Prof. Dr.

Bernardete Ribeiro for giving me the opportunity to study what I am passionate

about, the liberty to explore new ideas while also steering me in the right direction,

and for introducing and advising me on the world of scientific research. I also want to

express my deep gratitude to Dr. Maryam Abbasi, without whom this dissertation

would unlikely see the light of day, for all the advice, discussion of ideas, formatting

tips and overall, constant support and mentorship. I would also like to thank PhD

student Tiago Pereira and the remaining colleagues at LARN for the invaluable

suggestions and discussions.

Finally, and most importantly, a deep thank you to my family, in particular to my

parents, for the unconditional love and support, for fostering my love for learning

from an early age, believing in me when I didn’t, keeping me motivated and, most of

all, for always having a word of encouragement even in the hardest of times. A final

note to my grandparents: this would not have been possible without your hard-work

and resilience throughout life.

Thank you.

vii

Acknowledgments

viii

Financing

This research has been funded by the Portuguese Research Agency FCT, through

D4 - Deep Drug Discovery and Deployment (CENTRO-01-0145-FEDER029266).

This work is funded by national funds through the FCT - Foundation for Science

and Technology, I.P., within the scope of the project CISUC -

UID/CEC/00326/2020 and by European Social Fund, through the Regional

Operational Program Centro 2020.

ix

Financing

x

“O que impede de saber não são nem o tempo nem a inteligência, mas

somente a falta de curiosidade.”
Agostinho da Silva

xi

Resumo

A descoberta de novos fármacos é um processo extremamente demorado, complexo,

dispendioso e que apresenta taxas de sucesso muito baixas que podem ser atribúıdas

à elevada dimensionalidade do espaço qúımico. Estudar e avaliar o espaço qúımico

de forma integral é simplesmente imprativável pelo que é importante encontrar novas

formas de restringir o espaço de pesquisa. A utilização de algoritmos de Deep Learn-

ing tem surgido como uma posśıvel solução para mitigar os problemas acima men-

cionados já que diminuem consideravelmente o tempo dispendido e, por conseguinte,

as despesas associadas a todo o processo. As redes neuronais recorrentes (RNNs)

e adversariais generativas (GANs) encontram-se entre os métodos mais promissores

no que se refere à geração de novos potenciais fármacos.

O trabalho desenvolvido deu origem a duas contribuições independentes. Foi efetua-

do um estudo extensivo das arquiteturas e parâmetros associados às redes recorrentes

do qual resultou um modelo otimizado capaz de gerar até 98.7% de moléculas válidas

mantendo elevados ńıveis de diversidade. Este estudo permitiu ainda demonstrar

que a informação estereoqúımica, que é de extrema importância no desenvolvimento

de fármacos mas frequentemente ignorada, pode ser inclúıda nestes modelos com-

putacionais com elevado sucesso.

Para além disso, foi desenvolvida uma estratégia baseada em GANs que inclui uma

componente de otimização. Este método é composto por duas técnicas de Deep

Learning : um modelo Encoder-Decoder responsável por converter as moléculas em

vetores do espaço latente, criando, desta forma, um novo tipo de representação

molecular; e uma GAN com a capacidade de aprender e replicar a distribuição

dos dados de treino para, posteriormente, gerar novos compostos. De modo a gerar

moléculas otimizadas para uma determinada caracteŕıstica, a GAN treinada é conec-

tada a um mecanismo de feedback que avalia as moléculas geradas a cada época e

substitui os compostos do conjunto de treino que apresentam menor pontuação pelas

novas moléculas com propriedades mais desejáveis. Desta forma, a distribuição dos

compostos gerados vai-se aproximando sucessivamente do espaço qúımico de inte-

resse, o que resulta na geração de um maior número de moléculas relevantes para o

problema em estudo.

Palavras-Chave

Aprendizagem Profunda, Geração de Novos Fármacos, Redes Adversariais Genera-

xii

tivas, Redes Neuronais Recurrentes, SMILES

xiii

Abstract

Drug discovery is a highly time-consuming, complex, and expensive process with

low rates of success that can be mainly attributed to the high dimensionality of the

chemical space. Evaluating the entire chemical space is prohibitively expensive, so it

is of the utmost importance to find ways of narrowing down the search space. Deep

Learning algorithms are emerging as a potential method to generate novel chemical

structures since they can speed up the traditional process and decrease expenditure.

Recurrent Neural networks (RNNs) and Generative Adversarial Networks (GANs)

are two of the most promising methods for generating drug-like molecules from

scratch.

The proposed work resulted in two independent contributions. A comprehensive

study on RNNs’ architectures and parameters that resulted in an optimized model

capable of generating up to 98.7% of valid non-specific drug-like molecules while

maintaining high levels of diversity. This work also proved that stereo-chemical

information, often overlooked in most works, can be successfully incorporated and

learned by these models.

Furthermore, a novel GAN-based framework that includes an optimization stage was

developed. This approach incorporates two deep learning techniques: an Encoder-

Decoder model that converts the string notations of molecules into latent space

vectors, effectively creating a new type of molecular representation, and a GAN that

is able to learn and replicate the training data distribution and, therefore, generate

new compounds. In order to generate compounds with bespoken properties and

once the GAN is replicating the chemical space, a feedback loop is incorporated

that evaluates the generated molecules according to the desired property at every

epoch of training and replaces the worst scoring entries in the training data by

the best scoring generated molecules. This ensures a slow but steady shift of the

generated distribution towards the space of the targeted property resulting in the

generation of molecules that exhibit the desired characteristics.

Keywords

Deep Learning, Drug Design, Generative Adversarial Networks, Recurrent Neural

Networks, SMILES

xiv

Contents

List of Tables xix

List of Figures xxiii

Acronyms xxvii

1 Introduction 1

1.1 Context and Motivation . 1

1.2 Objectives . 2

1.3 Contributions . 2

1.4 Scientific Outcomes . 4

1.5 Dissertation Structure . 5

2 Artificial Intelligence in Drug Discovery 7

2.1 Introduction . 7

2.1.1 Artificial Intelligence . 7

2.1.2 Drug Discovery and Development 9

2.1.3 Artificial Intelligence in Drug Discovery 10

2.2 Molecular Representation . 10

2.2.1 Molecular Graphs . 10

2.2.2 SMILES . 11

xv

Contents

2.2.3 Molecular Fingerprints . 12

2.3 Review of Approaches to Property and Activity Prediction 13

2.4 Review of Approaches to Molecular Generation and Optimization . . 14

2.5 Evaluation Metrics . 16

3 Deep Learning Models 21

3.1 Artificial Neural Networks . 21

3.2 Fully Connected Neural Networks . 23

3.3 Recurrent Neural Networks . 24

3.3.1 Long Short-Term Memory . 25

3.3.2 Gated Recurrent Units . 28

3.3.3 Bidirectional RNNs . 29

3.4 Autoencoder . 29

3.4.1 Encoder-Decoder Sequence to Sequence 31

3.5 Generative Adversarial Networks . 32

3.5.1 Vanilla GAN . 32

3.5.2 Wasserstein GAN . 35

3.5.3 Wasserstein GAN with Gradient Penalty 36

3.6 Regularization Techniques . 37

4 RNN Generator 41

4.1 Introduction . 41

4.2 Methods . 42

4.2.1 Preprocessing Data . 42

4.2.2 Training Models . 43

4.2.3 Output Generation . 46

4.2.4 Validation Strategy . 46

xvi

Contents

4.3 Experimental Results and Discussion 47

4.3.1 Datasets . 47

4.3.2 Performance Analysis and Results 47

4.4 Conclusions . 52

5 GAN-based Framework 53

5.1 Introduction . 53

5.2 Methods . 54

5.2.1 Encoder-Decoder Model . 54

5.2.2 Wasserstein GAN with Gradient Penalty 55

5.2.3 Case-study: Kappa Opioid Receptor 56

5.2.4 KOR Binding Affinity Predictor 57

5.2.5 Optimization through Transfer Learning 57

5.2.6 Optimization through FeedbackGAN 58

5.2.7 Validation Strategy . 58

5.3 Experimental Results and Discussion 59

5.3.1 Datasets . 59

5.3.2 Encoder-Decoder Model . 60

5.3.3 WGAN-GP . 68

5.3.4 Performance of the Predictor 70

5.3.5 Optimization through Transfer Learning 71

5.3.6 Optimization through FeedbackGAN 73

5.4 Conclusions . 79

6 Conclusions and Future work 83

6.1 Conclusions . 83

6.2 Future Work and Open Issues . 85

xvii

Contents

Bibliography 87

xviii

List of Tables

4.1 The training time and percentage of valid and unique SMILES gen-

erated with 8 different models. 48

4.2 The training time and percentage of valid SMILES and diversity with

4 different optimizers for models 2 and 3. 49

4.3 The training time and percentage of valid and unique SMILES with

different batch sizes for models 2 and 3. 50

4.4 The percentage of valid SMILES and diversity for Model 2 with dif-

ferent number of training samples. 50

4.5 The percentage of valid SMILES and diversity for different values of

Sampling Temperatures . 50

4.6 The percentage of valid SMILES and diversity for two different models

and two types of input encoding. 51

4.7 Comparison of the results obtained for model 3 when applied to two

different datasets: “Biogenic” and “ChEMBL” and using two types

of encoding “Embedding” and “OHE” with Number of Samples equal

to 100,000. 51

5.1 Summary of the datasets used throughout the experiment. 60

5.2 Search space for finding the optimal set of parameters of the proposed

Encoder-Decoder model. 61

5.3 Results for different number of encoder BiLSTM layers and decoder

LSTM layers (Encoder-Decoder with OHE structure) 62

xix

List of Tables

5.4 Results for different number of BiLSTM/LSTM units (Encoder-Decoder

with OHE structure) . 62

5.5 Results for different number of batch size (Encoder-Decoder with

OHE structure) . 62

5.6 Results for different values Batch Normalization Momentum (BNM)

(Encoder-Decoder with OHE structure) 63

5.7 Results for different latent dimensions (Encoder-Decoder with OHE

structure) . 63

5.8 Results for different values of Noise Standard Deviation (Encoder-

Decoder with OHE structure) . 64

5.9 Results for different number of SMILES in dataset (Encoder-Decoder

with OHE structure) . 64

5.10 Search space for finding the optimal set of parameters of the proposed

Encoder-Decoder model (with Embedding structure). 65

5.11 Results for different number of encoder BiLSTM layers and decoder

LSTM layers (Encoder-Decoder with Embedding structure) 65

5.12 Results for different number of BiLSTM/LSTM units (Encoder-Decoder

with Embedding structure) . 66

5.13 Results for different number of batch size (Encoder-Decoder with Em-

bedding structure) . 66

5.14 Results for different number of embedding dimension in encoder (Encoder-

Decoder with Embedding structure) 67

5.15 Results for comparison between embedding dimension and latent di-

mension (Encoder-Decoder with Embedding structure) 67

5.16 Results for different number of SMILES in dataset (Encoder-Decoder

with Embedding structure) . 68

5.17 Performance of the Encoder-Decoder model for 100,000 and 500,000

training data. 69

5.18 Comparison of the Original Data with the Generated Data in terms

of predicted pIC50 and performance of the WGAN-GP model. 70

xx

List of Tables

5.19 Comparison of the performance of the biased and unbiased models

(maximization through TL). 72

5.20 Comparison of the performance of the biased and unbiased models

(minimization through TL). 73

5.21 Comparison of pIC50 distribution measures throughout the optimiza-

tion process (maximization of KOR affinity). 75

5.22 Comparison of pIC50 distribution measures throughout the optimiza-

tion process (minimization of KOR affinity). 78

xxi

List of Tables

xxii

List of Figures

2.1 Schematic summary of AI concepts. 8

2.2 Drug Discovery and Development Process. 9

2.3 Example of the molecular graph and its corresponding matrices for

the acetic acid. 11

2.4 Example of chemical compounds and corresponding skeletal forms

and SMILES string. 12

2.5 Example of a Molecular Fingerprint. 13

2.6 Transfer Learning vs Reinforcement Learning. 15

3.1 Biological neuron and artificial neuron. 22

3.2 Schematic representation of a Fully Connected Neural Network. . . . 24

3.3 Diagram of a recurrent layer and its unfolded representation. 25

3.4 LSTM Architecture. 26

3.5 LSTM Cell state. 26

3.6 Steps to update a single LSTM cell. 28

3.7 GRU Architecture. 29

3.8 Bidirectional RNN. 30

3.9 Schematic representation of an Autoencoder. 30

3.10 Schematic of an Encoder-Decoder network for English-German trans-

lation. 32

xxiii

List of Figures

3.11 Schematic representation of a Generative Adversarial Network. 33

3.12 Schematic representation of a Wasserstein Generative Adversarial

Network with Gradient Penalty . 37

4.1 General workflow of the proposed Generator based on Recurrent Neu-

ral Network. 42

4.2 Data preprocessing for the molecule of Acetylsalicylic Acid using One-

hot Encoding. 44

4.3 General structure of RNN Models for producing SMILES strings. . . 45

4.4 Workflow for generating the SMILES with a trained network. 46

4.5 Training epochs and percentage of valid and unique molecules for

Models 2 and 3. 49

5.1 The general workflow of the proposed model. 55

5.2 The detailed structure of the Encoder (A) and Decoder (B) applied

in the framework. 56

5.3 Implemented optimization mechanism via FeedbackGAN. 59

5.4 Comparison of the predicted pIC50 distributions for the original data

and generated data. 70

5.5 Evaluation of properties (QED, SA score, logP and MW) for the

original training data and generated data. 71

5.6 Predicted pIC50 versus true pIC50 and regression line for the test set. 71

5.7 Distribution of the predicted pIC50 values for the biased and unbi-

ased model (maximization through TL). 72

5.8 Distribution of the predicted pIC50 values for the biased and unbi-

ased model (minimization through TL). 73

5.9 Distribution of the predicted pIC50 values for the unbiased model

and the biased model at every 100 epochs (maximization of KOR

affinity). 75

xxiv

List of Figures

5.10 Evaluation of properties (QED, SA score, logP and MW) for the

biased model (500 epochs). 76

5.11 Best scoring examples in terms of predicted pIC50 generated by the

proposed framework for every 100th epoch of optimization (maxi-

mization). 77

5.12 Distribution of the predicted pIC50 values for the unbiased model

and the biased model at every 100 epochs (minimization of KOR

affinity). 78

5.13 Evaluation of properties (QED, SA score, logP and MW) for the

biased model (500 epochs). 79

5.14 Best scoring examples in terms of predicted pIC50 generated by the

proposed framework for every 100th epoch of optimization (minimiza-

tion). 80

xxv

List of Figures

xxvi

Acronyms

Kd Dissociation Constant

Ki Inhibition Constant

logP Logarithm of the partition coefficient between n-octanol and water

pIC50 Negative Logarithm of the Half Maximal Inhibitory Concentration

Adam Adaptive Moment Estimation

ADMET Absorption, Distribution, Metabolism, Excretion and Toxicity

AI Artificial Intelligence

ANN Artificial Neural Network

BiLSTM Bidirectional Long Short-Term Memory

BN Batch Normalization

BNM Batch Normalization Momentum

DL Deep Learning

ECFP Extended-Connectivity Fingerprints

FCNN Fully Connected Neural Network

GAN Generative Adversarial Network

GPCR G-Protein-Coupled Receptors

GRU Gated Recurrent Unit

IC50 Half Maximal Inhibitory Concentration

IUPAC International Union of Pure and Applied Chemistry

xxvii

Acronyms

KNN K-Nearest Neighbors

KOR Kappa Opioid Receptor

LSTM Long Short-Term Memory

ML Machine Learning

MW Molecular Weight

NLP Natural Language Processing

NN Neural Network

OHE One-Hot Encoding

QED Quantitative Estimate of Drug-Likeness

QSAR Quantitative Structure-Activity Relationship

QSPR Quantitative Structure-Property Relationship

RF Random Forest

RL Reinforcement Learning

RNN Recurrent Neural Network

ROF Rule of Five

SA Synthetic Accessibility

SGD Stochastic Gradient Descent

SMILES Simplified Molecular-Input Line-Entry System

SVR Support Vector Regression

TL Transfer Learning

VAE Variational Autoencoder

WGAN Wasserstein Generative Adversarial Network

WGAN-GP Wasserstein GAN with Gradient Penalty

xxviii

1

Introduction

1.1 Context and Motivation

The discovery and development of new drug candidates is a complex, lengthy and

expensive process. For every drug that reaches the final step of this process and gets

approved, an estimated $2.8 billion have been spent and between 10 and 15 years

of research were necessary [1, 2]. This is due to the fact that most drug candidates

fail before reaching the last step of the process, with recent estimates pointing to

a success rate of only 2% [3]. Such a low success rate implies that this is not just

an expensive process but a high-risk one from a financial point of view, as most

investments will fail.

One of the main challenges is the high dimension of the chemical space since it has

been estimated that over 1060 drug-like molecules could be synthetically accessible [4]

and only a small fraction of this chemical space has been explored [5].Researchers

have to select and analyze molecules from this vast space in order to find potential

compounds that can be biologically active towards a defined target of interest and

also exhibit a set of desired physicochemical and pharmacological properties. This

is a prohibitively expensive process, and therefore it is critical to use computational

tools to narrow down the search space. Search can be conducted using similarity-

based metrics, which provide a quantifiable statistical indicator of closeness between

molecules. Heuristics and modern virtual screening techniques can help this process

narrow the space of possibilities, but the task remains daunting. In contrast, in de

novo drug design, the practitioners try to directly design novel molecules that are

active towards the desired biological target [6].

With the increase in computational power and available datasets, Deep Learning

(DL) techniques have shown promising results in research fields such as radiology,

1

1. Introduction

microscopy and genomics and are emerging as a promising solution for de novo drug

design [7]. Generative Adversarial Network (GAN) [8] is a powerful state-of-the-art

DL method that has revolutionized generative modeling and therefore is likely to

improve de novo drug design. It should be noted that with the constant increase

of the average life expectancy, prevalence of chronic illnesses and regulations, the

drug discovery and development process is likely to become even more challenging.

Therefore, an important strategy to cut costs and increase the rates of success can

be summarized as “fail sooner” [7]. By identifying and filtering out compounds

that will be rejected in the later stages of the process, it reduces the time and cost

associated with clinical trials and improves the overall process.

While there has been impressive advances in the field of DL applied to drug design

over the past years, there are still plenty of new techniques and avenues of research

to be pursued in order for these methods to become reliable and be implemented in

the pharmaceutical industry pipeline.

1.2 Objectives

The main goal of this thesis is to research, develop and evaluate a generative frame-

work based on DL techniques with a focus on GANs that can integrate the stages

of drug generation and optimization. The objectives can be summarized as follows:

O1 - Overview DL tecnhiques and their current applications to drug design.

O2 - Explore different DL architectures and corresponding hyperparameters to train

a molecule generator.

O3 - Implement a discriminative model to predict the binding affinity for the Kappa

Opioid Receptor (KOR).

O4 - Implement a generative model based on GANs that can learn the distribution

of the training data and generate new valid molecules.

O5 - Propose and evaluate an optimization framework to bias the GAN towards

generating molecules that exhibit the desired properties.

1.3 Contributions

In summary, the main contributions of this dissertation are as follows:

2

1. Introduction

C1 - A RNN model with increased performance when compared to the

current literature that is able to generate up to 98.7% of valid

molecules while maintaining high levels of diversity among the gen-

erated compounds.

A comprehensive study on different RNNs frameworks applied to molecule gen-

eration with SMILES notation was performed. More specifically, the impact of

different recurrent architectures and hyperparameters such as the batch size,

data size, epochs, and the neural network optimizer were analyzed in terms of

the rate of valid molecules, diversity of the generated compounds, and the time

required to train the models. The effect of applying either embedding or one-

hot encoding in the validity, diversity, and speed of generating the results was

also studied. Further, the effect of using a different type of tokenization was

explored, such as character by character (token by token) as proposed in the

work of Olivecrona et al. [9] or by considering the stereo-chemistry notations

with combined tokens grouped by a pair of square brackets [10]. Stereochem-

istry is vital in medicinal chemistry, but often overlooked by most works due

to its increased complexity.

C2 - A novel Encoder-Decoder model inspired on LatentGAN [11] that is

able to convert the SMILES notation of the compounds into latent

vectors, and vice-versa, achieving up to 99.0% of correctly recon-

structed molecules.

An exhaustive study of the proposed Encoder-Decoder model was performed

and its architecture and hyperparameters independently studied. This resulted

in a model with improved performance when compared to the literature as it

can correctly reconstruct 99.0% of the compounds while also including stereo-

chemical data, which is know for its higher complexity and not considered on

LatentGAN [11].

C3 - A GAN model that is able to learn the distribution of the chemical

space and generate new molecules.

A Wasserstein GAN with Gradient Penalty (WGAN-GP) [12] that uses the

newfound representation given by the previously mentioned Encoder-Decoder

model as real training data was implemented. Through adversarial training,

the generator was able to approximate the distribution of the chemical space

and therefore sample new molecules represented by their latent vectors from it.

3

1. Introduction

These vectors must then be decoded by the Decoder of the Encoder-Decoder

model in order to obtain the corresponding SMILES strings.

C4 - An optimization framework that can bias the generator of the afore-

mentioned GAN model in order to generate compounds with desired

properties.

An optimization framework inspired on FeedbackGAN [13] was implemented to

bias the generation of the molecules towards the space of compounds with high

binding affinity to the Kappa-Oppioid Receptor (the chosen case-study). This

framework works by iteratively sampling new molecules from the generator,

evaluating them, and replacing the worst scoring molecules in the training data

by the best sampled molecules, effectively biasing the distribution towards the

desired property.

1.4 Scientific Outcomes

The contributions were submitted to international journals and presented/accepted

at international conferences. They are listed, in chronological order for each type of

venue, together with reference to the contribution.

P1 - Beatriz P. Santos, Maryam Abbasi, Tiago Pereira, Bernardete Ribeiro and Joel

P. Arrais. “Optimizing Recurrent Neural Network Architectures for De Novo

Drug Design”, IEEE CBMS, The 34th IEEE CBMS International Symposium

on Computer-Based Medical Systems, 2021. (Published Paper) [14]

P2 - Beatriz P. Santos, Maryam Abbasi, Tiago Pereira, Bernardete Ribeiro and

Joel P. Arrais.“Improvement on Generative Adversarial Network for Targeted

Drug Design”, ESANN 2021, The 29th European Symposium on Artificial

Neural Networks, 2021. (Accepted Paper)

P3 - Maryam Abbasi, Tiago Pereira, Beatriz P. Santos, Bernardete Ribeiro and Joel

P. Arrais.“Multiobjective Reinforcement Learning in Optimized Drug Design”,

ESANN 2021, The 29th European Symposium on Artificial Neural Networks,

2021. (Accepted Paper)

P4 - Beatriz P. Santos, Maryam Abbasi, Carlos Simões, Bernardete Ribeiro and

Joel P. Arrais. “Designing Optimized Drug Candidates with Generative Ad-

versarial Network”, Bioinformatics Journal. (In preparation)

4

1. Introduction

During this work, there was also the opportunity of presenting and discussing the

main topics of this dissertation:

• Generative Adversarial Networks and their application to discrete data, De-

partment of Informatics Engineering, University of Coimbra, November 2020.

• Generative Adversarial Networks, Department of Informatics Engineering, Uni-

versity of Coimbra, March 2021.

• Improvements on Generative Adversarial Networks and their application to

drug design, Department of Informatics Engineering, University of Coimbra,

May, 2021.

All the implemented models presented and discussed in this dissertation are publicly

available on:

• https://github.com/larngroup/RNN-Drug-Generation.

• https://github.com/larngroup/GAN-Drug-Generator.

1.5 Dissertation Structure

This thesis is divided into six chapters. The current and first chapter is concerned

with a brief introduction that aims to contextualize and motivate the reader to the

problem that is going to be addressed. Chapter 2, Artificial Intelligence in Drug

Discovery, focuses on important introductory notions as well as a review of the

current research approaches to improving the Drug Discovery process by resorting

to computational methods. This review is further divided into two subcategories:

Property Prediction and Molecular Generation. Chapter 3, Deep Learning Models,

provides a theoretical overview of the relevant models. Chapters 4 and 5 cover the

contributions of this dissertation: a generator based on Recurrent Neural Networks

and an optimized generator based on Generative Adversarial Networks, respectively.

The sixth and final chapter presents the conclusions of the dissertation and future

potential directions of research.

5

https://github.com/larngroup/RNN-Drug-Generation
https://github.com/larngroup/GAN-Drug-Generator

1. Introduction

6

2

Artificial Intelligence in Drug

Discovery

This chapter clarifies the core principles of Artificial Intelligence (AI), Machine

Learning (ML), Deep Learning (DL) and the process of Drug Discovery and De-

velopment. Moreover, it overviews the most common used computational molecular

representations followed by a literature review of deep learning algorithms applied

to property prediction and molecular generation and optimization. It closes with a

section on evaluation metrics for molecules.

2.1 Introduction

2.1.1 Artificial Intelligence

Artificial Intelligence (AI) is defined by Rich as “the study of how to make computers

do things that people are better at” [15] and can be though of as intelligence demon-

strated by machines in the sense that these machines will be able to learn and solve

problems [16]. It is a broad field that encompasses a wide variety of computational

methods and has been successfully applied to fields such as image recognition [17],

language translation [18], music generation [19], gaming [20] and drug discovery [21].

Machine Learning (ML) is a sub-field of AI that refers to systems that have the

ability of learning from experience, i.e., from given data and then use this knowl-

edge to infer on new samples [7, 22]. ML algorithms can be further divided into

three main groups: Supervised, Unsupervised and Reinforcement Learning (RL).

Supervised learning requires the samples in the input data to be labeled so that the

model can learn how to map each sample to its corresponding label. Once the model

is trained, it will be able to predict the label of a new observation from the knowl-

7

2. Artificial Intelligence in Drug Discovery

edge that it has acquired during the training phase [22,23]. The label can either be

quantitative or categorical making the problem a regression or classification, respec-

tively. By contrast, Unsupervised Learning works with unlabeled data in order to

find a structure in the input data, i.e. to identify patterns or relationships [22, 24].

Clustering is an example of unsupervised learning where the goal is to organize the

samples into a predefined number of groups based on a metric of similarity [24].

Reinforcement Learning is an approach that mimics the learning process of humans

in a new environment. There is no data available but the agent needs to decide on

which actions to take through a process of trial and error in order to maximize the

long-term reward [7, 25,26].

Deep Learning (DL) encompasses a group of neuro-inspired ML algorithms that

use multilayer neural networks to create non-linear models. The more layers, the

deeper the network, hence the term “Deep Learning” [27]. DL takes advantage of

the recent increase in available data and computational power to find high-level

representations of the input data [25,26]. Similarly to ML, it can be further divided

into Supervised, Unsupervised and Reinforcement Learning. However, unlike most

ML algorithms, DL has the advantage of not requiring structured data. Structured

data refers to data that has a set of features for each observation, typically organized

into a tabular format, while unstructured data, like images or text, is not naturally

arranged into a predefined format [28]. Figure 2.1 summarizes the relationship

between the aforementioned concepts.

Figure 2.1: Schematic summary of AI concepts.

8

2. Artificial Intelligence in Drug Discovery

2.1.2 Drug Discovery and Development

Drug Discovery and Development is a lengthy, expensive and prone to failure process

that aims to bring new drugs to the market and can be partitioned into several steps

from finding a new candidate drug to its regulatory approval (Figure 2.2). The

overall process is triggered when an unmet medical need, i.e., a medical condition

for which there is no satisfactory treatment, is found [29]. Drug Discovery starts

with Target Discovery and Validation which aims to identify the origin of the disease

and demonstrate the functional role of the target in terms of therapeutic benefit

and safety, respectively [29, 30]. Lead Discovery refers to the identification of a

group of drug-like compounds that can bind to the chosen target. The final step of

Drug Discovery is the Lead Optimization which is concerned with improving target

specificity and selectivity so that off-target binding and toxicity can be mitigated

[29,30].

The Drug Development phase can start once a drug candidate or lead has been

selected. The Pre-clinical Trials involve studying the safety, efficacy and toxicity of

the compound in animals. A compound that passes the Pre-clinical Trials should

also be stable, easily synthesizable, adhere to Lipinski’s Rule of 5 (see Section 2.5

on Page 17) and possess acceptable solubility and bioavailability [29]. If the drug

candidate passes all the trials and the regulatory bodies approve, the Clinical Trials

can be conducted on humans. If successful, the process concludes with filing for

regulatory approval [29,30].

Figure 2.2: Drug Discovery and Development Process.

9

2. Artificial Intelligence in Drug Discovery

2.1.3 Artificial Intelligence in Drug Discovery

The increase in data digitalization and available computational power has prompted

research on the integration of AI in the Drug Discovery process with the aim of

decreasing costs, increasing the rates of success and exploring the extensive chemical

space [5, 21,31].

The current work is focused on the Drug Discovery phase, more specifically on de

novo drug design. De novo drug design refers to the design of novel molecules with

specific properties and that are active towards a predefined target [5,6]. Therefore, de

novo drug design frameworks require the use of two types of models: generative and

discriminative. Generative models are able to generate new data points by returning

the probability of observing a certain observation while discriminative models learn

a function that maps the input to a label [28]. In this context, generative models

are used for molecular generation, i.e., generating a pool of new molecules, and

discriminative models are used for property prediction. De novo drug design requires

the generation and simultaneous optimization of compounds, therefore combining

both of these types of models. Sections 2.3 on Page 13 and 2.4 on Page 14 provide a

literature review on property prediction and molecular generation and optimization,

respectively.

2.2 Molecular Representation

While chemists have several strategies for representing molecules, with the Interna-

tional Union of Pure and Applied Chemistry (IUPAC) nomenclature being the most

widely used, they typically do not capture the structure of the molecule and cannot

be interpreted by computational methods [32]. To solve this, notation systems such

as Molecular Graphs, SMILES and Molecular Fingerprints have been developed in

order to find a suitable way of computationally representing molecules.

2.2.1 Molecular Graphs

Molecules can be represented as mathematical graphs, with the atoms being the

nodes and the bonds being the edges [7]. So that the computer can handle the

information, the molecular graphs are mapped to matrices as represented in Figure

2.3. An adjacency matrix stores information regarding the manner by which the

atoms are connected, a node features matrix identifies the type of atoms and an edge

10

2. Artificial Intelligence in Drug Discovery

features matrix the type of bonds. Since a graph can be traversed in many ways, this

is a non-unique type of representation. Molecular graphs are very popular since they

resemble how chemists draw molecules on paper, store some spacial information and

all the sub graphs are interpretable [32]. However, they are not compact, require

a lot of memory, cannot represent all types of molecules and cannot distinguish

between right- and left-handed enantiomers, which is of the utmost importance in

drug discovery [7, 32].

Figure 2.3: Example of the molecular graph and its corresponding matrices for
the acetic acid.

2.2.2 SMILES

Simplified Molecular-Input Line-Entry System (SMILES) is a line notation that

represents a chemical structure as a sequence of characters typically denoted by

SMILES strings and that was first introduced by Weininger [33]. This is a non-

unique type of representation, meaning that for each molecule there are several

possible SMILES strings depending on the atom that was chosen at the beginning

of the encoding process. In fact, there are as many possible SMILES strings as heavy

atoms in the molecule [34]. In some situations, this might not be desirable, so tools

like RDKit [35] include canonicalization algorithms that transform a molecule into

a unique representation. While the SMILES encoding contains no 2D or 3D atom

coordinates, it has the advantage of being extremely compact [34]. The encoding

process adheres to the following set of basic rules [36]:

• Atoms are represented by their atomic symbols;

• Single, double and triple bonds are represented by ′−′, ′ =′ and ′#′, respec-

tively;

• Branches are represented by parentheses;

• Implicit Hydrogen atoms and single bonds can be omitted;

11

2. Artificial Intelligence in Drug Discovery

• Explicit Hydrogen atoms and charges are represented inside square brackets;

• Rings are represented by breaking one bond and numbering it, followed by the

remaining atoms and a repetition of the same number to denote ring closure.

Aromatic rings have their atoms written in lower case.

The SMILES syntax also supports stereochemestry and isotopism by including sym-

bols such as ”@” (anti-clockwise) and ”@@ (clockwise) to indicate tetrahedral cen-

ters [36]. Figure 2.4 shows some examples of chemical compounds, their skeletal

formula and the corresponding SMILES strings.

Figure 2.4: Example of chemical compounds and corresponding skeletal forms and
SMILES string.

2.2.3 Molecular Fingerprints

Molecular Fingerprints are fixed-length binary vectors that represent the presence or

absence of structural and functional properties [7] as shown in Figure 2.5. Depend-

ing on the traversal algorithm, it is possible to distinguish between path-based and

circular fingerprints. Extended-Connectivity Fingerprints (ECFPs) are the most

commonly used circular fingerprints and represent the molecular structure by atom

neighborhoods [37]. ECFPs are fast to compute and can be used for clustering, vir-

tual screening, similarity searching and as input to Quantitative Structure-Activity

Relationship (QSAR) models. However, they have the disadvantage of not encoding

all the information regarding a molecule which can lead to two different molecules

being represented by the same fingerprint, making this an ambiguous representa-

tion [32].

12

2. Artificial Intelligence in Drug Discovery

Figure 2.5: Example of a Molecular Fingerprint.

2.3 Approaches to Property and Activity Prediction

In drug discovery, for a molecule to be considered a drug it must satisfy several

requirements that relate not only to its biological activity, but also to its intrinsic

physicochemical properties that affect how the drug is processed in the organism,

which makes drug discovery a multi-objective problem [16]. Therefore, finding a

mathematical model that can correlate the chemical structure of a compound to a

certain property is of the utmost importance [38]. It is possible to distinguish be-

tween two types of predictive models according to their goal: Quantitative Structure-

Activity Relationship (QSAR) models aim to predict the biological activity of a given

molecule to a predefined target while Quantitative Structure-Property Relationship

(QSPR) models intend to predict a specific physicochemical property given a com-

pound [39, 40]. These models are essential in computer-aided drug discovery since

they allow the assessment of generator models and their optimization towards the

space of desired properties so that valuable compounds can be found [16]. More-

over, another potential use for these types of models is to find, in the existing pool

of commercially available drugs, compounds with interesting characteristics that

can be applied to new therapeutic purposes. This is denoted by drug repurpos-

ing [41, 42] and is a remarkable worthwhile endeavour since, as these drugs have

already been approved by the competent authorities, the cost and time associated

with the evaluation of potential adverse effects is significantly reduced.

Several methodologies and molecular representations have been used for both QSAR

and QSPR models. Initially, machine learning methods such as Support Vector Re-

gression (SVR) [16, 43], Random Forest (RF) [16, 44], k-nearest neighbors (KNN)

algorithm [45] or Bayesian Learning [46] were employed. However, with the increase

in available datasets and computational power that has surged in the last decade,

deep learning techniques, more specifically, predictive models based on deep neu-

13

2. Artificial Intelligence in Drug Discovery

ral networks have proved to be a more effective approach. Deep Neural networks

present the following advantages when compared to traditional ML approaches: the

possibility of tuning a variety of hyperparameters, changing the architecture and em-

ploying dropout layers, which considerably reduces over-fitting and thus, increases

the robustness of the models [21].

Regarding the choice of the molecular representation, it is possible to use any of the

representations presented in Section 2.2 on Page 10 or to learn a new one within

the DNN predictive model. ECFPs have been successfully used in the works of

Liu et al. [47] and Uesawa [48]. Lusci et al. took the first steps in the concept of

learning a molecular representation directly from the data by translating molecular

configurations into fixed length vectors that were then used to feed a fully connected

neural network [16, 49]. Duvenaud et al. explored a convolutional neural network

that receives graphs as inputs and creates a learnable neural fingerprint that can then

be used as input to a Fully Connected Neural Network (FCNN) predictive model.

This method showed improved performance and interpretability [16,50]. The graph-

based approach has the advantage that during the training of the full model, the

molecular representation is also optimized to the current specific task [16].

Recently, Popova et al. implemented Recurrent Neural Networks (RNNs) with

LSTM untis to predict biological properties by directly resorting to SMILES strings

[51]. This approach has the main advantage of directly using SMILES strings from a

dataset without requiring any additional process to obtain the molecular descriptors.

Although different methodologies have been employed, the general trend clearly

points towards the direct use of chemical structures and the avoidance of feature

engineering techniques [42].

2.4 Approaches to Molecular Generation and Optimization

Deep Learning techniques, mainly generative models, have emerged as a promising

solution for de novo drug design, whose aim is to generate novel molecules with

specific predefined properties [6]. This process can typically be seen as two-fold:

creating a general model that learns the distribution of the training data, and then

optimizing this model to the desired property. The optimization is usually employed

using Reinforcement Learning (RL), a reward-based approach, or Transfer Learning

(TL) which requires the model to be trained on a smaller dataset that only includes

samples with the desired properties (Figure 2.6).

14

2. Artificial Intelligence in Drug Discovery

Figure 2.6: Transfer Learning vs Reinforcement Learning.

Earlier approaches to solve this problem resorted to the use of RNNs, which can learn

the syntax of sequences of data, in a manner similar to what is done in the field

of Natural Language Processing (NLP). They were used to generate new molecules

represented as SMILES [36]. Olivecrona et al. and Liu et al. combined RNNs with

the REINFORCE algorithm [52], a policy-based RL method, to bias the generation

process towards the space of the desired properties [9] [47]. In the former, a Genera-

tor network is pre-trained and then tuned according to the defined reward function.

The latter introduced the use of two Generator Networks, one for Exploration (the

pre-trained model) and another for Exploitation (the optimized model), in order to

ensure higher variability of the generated molecules by sampling a random number

at each training step that defines which of the generators will be used. Popova et

al. approached this problem by pre-training two independent networks: a stack-

augmented RNN Generator and a Predictor, that are then used jointly through RL

in order to optimize the generator. They showed that their model could be effec-

tively biased towards physical properties like the melting temperature and partition

coefficient, specific biological activity, and chemical complexity [51].

Zheng et al. trained an RNN model with GRU cells on a biogenic dataset that

includes stereo-chemical information to learn the grammar of these SMILES strings

with higher complexity, and then fine-tuned it employing TL; they used an em-

bedding layer, and both normal tokens and combined tokens, which resulted in an

increased vocabulary [10]. Gupta et al. and Segler et al. drew similar conclusions

by implementing the same method but using LSTM cells [53] [54]. The former also

showed that its method could be applied to low-data drug discovery and fragment-

growing, while advocating that TL avoids the introduction of errors or unwanted

bias when compared to RL.

15

2. Artificial Intelligence in Drug Discovery

The aforementioned approaches can suffer from exposure-bias [55,56] which prompted

the appearance of other DL-based alternatives for targeted generation of compounds,

mainly adversarial approaches.

Gómez-Bombarelli et al. proposed the use of a Variational Autoencoder (VAE)

that transforms the discrete data (SMILES) into a latent real-valued continuous

vector [57]. The VAE is trained together with a Predictor, that given a latent

vector, predicts certain properties. They were able to generate new structures by

perturbing latent vectors, to interpolate between molecules and also to guide the

search for optimized compounds using gradient-based methods. Similarly, Blaschke

et al. compared VAEs with Adversarial Autoencoders and showed that, in both

cases, the latent space preserves the chemical similarity of the input molecules [58].

Sanchez et al. proposed the ORGANIC framework [59], which builds on Seq-

GAN [56] and ORGAN [55] and uses a Generative Adversarial Network (GAN) [60]

to generate new molecules. A GAN comprises a Generator that is responsible for gen-

erating new samples that resemble the training data and a Discriminator that aims

to distinguish between real and generated samples. Due to the inability to backprop-

agate through categorical samples (like SMILES Strings), the GAN is combined with

RL, which is responsible for updating the generator’s weights during training. The

already implemented RL can also be adapted to optimize the generated molecules.

Putin et al. improved this architecture by using a differentiable neural computer

as a more robust and powerful generator [61]. Their framework outperformed the

ORGANIC.

In the work of Prykhodko et al. [11], this differentiation problem was surpassed

by first finding a numerical representation of the SMILES strings through an Au-

toencoder, as initially proposed by Bjerrum and Sattarov [62], and then using this

newfound representation to train the GAN. Once the GAN is trained, it can gener-

ate multiple numerical vectors that must then be decoded into SMILES strings by

the decoder part of the trained Autoencoder. In this way, the GAN can focus on

optimizing the sampling process while the Autoencoder is responsible for learning

the SMILES syntax. The generation process can be optimized by Transfer Learning.

2.5 Evaluation Metrics

When working with generative computational models applied to the field of drug

discovery, it is of the utmost importance to have scoring metrics that can evaluate a

16

2. Artificial Intelligence in Drug Discovery

given property. It is not just important that the generated molecule has the atoms

and their connections correctly and properly arranged according to the chemical

rules (validity) but also that several other properties are present. In the following

sections, some of the most commonly used scoring metrics are introduced.

Molecular Weight

An important property that can be easily computed through RDKit [35] is the

Molecular Weight (MW) of a compound. The optimization of a molecule towards

a specific target typically requires an increase in the molecular weight so that the

desired features are present [63]. Nevertheless, a lower molecular weight has been

associated with increased likelihood of absorption and blood brain barrier perme-

ability, making this an important property to monitor and to keep as low as possible

in most scenarios [64].

Lipophilicity

Lipophilicity is another important physicochemical property that has a major im-

pact on absorption, distribution, metabolism, excretion, and toxicity (ADMET) of

drugs [65]. It can be easily estimated by resorting to the logarithm of the partition

coefficient between n-octanol and water (logP). The logP value indicates whether

the molecule will dissolve more in a lipid or water-based environment. Higher posi-

tive (logP) values imply a lipophilic compound (increased lipid bilayer permeability

and decreased solubility in water) while negative values are associated with a hy-

drophilic compound (decreased lipid bilayer permeability and increased water solu-

bility) [65,66]. This metric is particularly useful as it approximates how a molecule

will behave in the human body, with cytosol (the fluid part of the cytoplasm) instead

of water and the lipid membranes taking the place of octanol [67].

According to Lipinski’s Rule of Five, in order to have an acceptable absorption or

permeation, a compound’s logP should not exceed the value of 5 [64].

Drug-Likeness

Drug-Likeness is a concept that encompasses a series of properties that must be

present in order for a molecule to be considered a drug candidate and survive Phase I

clinical trials [68]. Such a molecule must not only show pharmacological activity, but

also ADMET properties [69]. By considering the Drug-Likeness of the compounds

17

2. Artificial Intelligence in Drug Discovery

in the early stages of drug discovery, it becomes possible to reduce the high costs

and attrition often associated with this process [65]. By analyzing the distribution

of these critical properties, it has been found that most drug-like molecules fall into

a very narrow range of values [70]. Lipinski’s “Rule of 5” (ROF) has been widely

used as a guideline for drug-likeness since it was first introduced in 1997 due to its

simplicity and straightforwardness [64]. It states that a molecule will likely exhibit

poor absorption and permeation if two or more of the following properties are met:

• more than 5 hydrogen-bond donors;

• more than 10 hydrogen-bond acceptors;

• molecular weight greater than 500;

• logP greater than 5.

It should be noted that these criteria do not apply to natural products or subtracts

of biological transporters [64].

Despite the fact that the ROF was proposed as a guideline, it has often been used

to filter datasets of compounds, which is similar to assigning a molecule to one

of two groups: drug-like or not. To solve this issue, Bickerton et al. proposed

the Quantitative Estimate of Drug-Likeness (QED) as a metric that is able to rank

molecules according to their drug-likeness whether or not they have passed the ROF.

QED combines several molecular properties including the ones in the ROF in order

to produce a value in the range of 0 to 1, where a QED of 0 means that all properties

are unfavorable and a QED of 1 stands for all properties being favorable. The fact

that all compounds can be ranked according to their QED allows the researcher not

to outright exclude a molecule because of exhibiting one unfavorable property when

the remaining are near ideal [71].

Synthetic Accessibility Score

Synthetic Accessibility (SA) Score, proposed by Ertl and Schuffenhauer, is a method

that estimates the synthesizability of a drug-like molecule as a value between 1 and

10, where the lower the score, the easier it is to make the compound. The synthetic

accessibility, or ease of synthesis, is an extremely important property, particularly

in de novo drug design, as it gives an indication of how feasible it will be to actually

develop the molecule in the laboratory. If a molecule is not likely to be synthetic

accessible, then it can be dropped in the early stages of the drug discovery process,

18

2. Artificial Intelligence in Drug Discovery

saving time and costs [72].

Binding Affinity

Binding affinity is crucial in Drug Discovery as it measures the strength of the in-

teraction between a target and a ligand or drug. Therefore, the higher the binding

affinity, the stronger the non-covalent interactions between the target and the drug

and the more difficult it is to dissociate the created complex. By attributing a con-

tinuous binding affinity value, instead of a binary one, to a drug-target interaction,

it becomes possible to rank a set of molecules according to how tightly they bind to

the desired target. This property is typically measured by resorting to one of the

following: inhibition constant (Ki), dissociation constant (Kd) or the half maximal

inhibitory concentration (IC50). The lower these values, the stronger the interaction

between the target and the ligand [73]. The IC50 is the concentration that is needed

to inhibit 50% of a biochemical function and is the preferred measure during the

early stages of drug discovery as it is the least time-consuming of the processes [74].

It is worth noting that IC50 values are frequently converted to a different scale by

doing the negative logarithm of the IC50 (pIC50), which implies that the higher the

pIC50, the higher the binding affinity.

19

2. Artificial Intelligence in Drug Discovery

20

3

Deep Learning Models

3.1 Artificial Neural Networks

Artificial Neural Networks (ANNs) are a set of varied computational models that

are inspired by and attempt to simulate the biological neural networks found in

many organisms. While the networks themselves are highly complex, their most

straightforward unit, the neuron, can be easily explained [75].

A biological neuron is an idiosyncratic cell: it has a cell body with a nucleus and

a set of cellular extensions called dendrites; from the cellbody protrudes the axon,

a long structure covered in myelin that, among other functions, isolates it from its

surroundings; at the opposite end, the axon branches to form a structure denoted by

axon terminal. Due to being highly branched, the dendrites receive information from

many other nerve cells, mainly relating to the presence of neurotransmitters in the

environment. If their quantity can create a stimulus above a certain threshold, the

neuron is activated. An action potential is generated and propagated through the

axon until it reaches its terminals, causing the release of neurotransmitters, which

might activate other neurons. It is worth noting that the neurons operate under the

all or none law, which means that the action potential that results from an activated

neuron is approximately the same independently of the number of neurotransmitters

detected by the dendrites. If this quantity is below the threshold, then the neuron

simply does not activate. This implies that the output of the neuron is not a linear

function of its input [75,76].

An artificial neuron, based on a single biological neuron, is the basic building block

of an ANN and is depicted in Figure 3.1 alongside its biological counterpart. A

single neuron requires [77]:

• inputs (xi): independent values that are given to the neuron.

21

3. Deep Learning Models

Figure 3.1: Biological neuron and artificial neuron1.

• Bias (b): extra input that shifts the activation function.

• Weights (wi): there is a weight associated with each input that defines its

importance.

• Activation Function (f): analogous to the all or none law, it is responsible for

activating the neuron and it is usually a non-linear function.

• output (ŷ): is the result of the weighted sums of the inputs and the bias

passed through the activation function f . The output of a single neuron can

be mathematically defined as:

ŷ = f(b+
∑
i

wixi). (3.1)

Biological neurons don’t occur in isolation. They are typically close to many other

neurons, with the axon terminals of a neuron being close to the dendrites of others.

This allows them to pass information to one another, forming a network [75]. In the

same way, while a single artificial neuron may not be particularly useful, the combi-

nation and interconnection of several artificial neurons gives rise to ANNs, which are

a powerful modeling tool able to solve extremely complex real-life problems. The

manner by which the neurons are interlinked defines the architecture or topology of

the ANN [77]. Nevertheless, one can typically identify the input layer, one or more

hidden layers, and an output layer, where each layer contains a set of neurons. The

input layer corresponds to the first layer of neurons that receives the independent

values. The output of this layer is then fed to the following hidden layer and so on

until the output layer is reached. The more hidden layers, the deeper the network,

hence the term Deep Learning (DL).

Training the network is the process by which the best set of weights for each layer

1Figure adapted from [77]

22

3. Deep Learning Models

is found. For that, a loss function must be defined and computed at the end of

each iteration. This loss compares the output of the network to the real value and,

therefore, measures the cost incurred from incorrect predictions. The weights of

the network are then modified in order to reduce the loss by backpropagation. The

backpropagation algorithm corresponds to computing the gradient of the loss with

respect to each parameter in the NN and then shifting the parameters in order to

minimize that loss. The manner by which the parameters or weights are updated

depends on the chosen optimizer. Still, theoretically, it will lead to a better model

resulting in a decrease in the loss. The choice of the loss function and the optimizer

depends heavily on the problem that needs to be solved [7, 78].

One of the advantages of DL methods like ANN is their ability to learn multiple

levels of different representations of the raw input data. This means that there

is no need for feature engineering, removing any previous assumptions required in

traditional Machine Learning. The fact that activation functions are able to include

non-linearities in the model allows it to learn extremely complex functions that

learn to ignore irrelevant information and reveal hidden patterns in the data that

can be represented in an abstract space and used, for example, for classification

tasks. These outstanding characteristics have made DL state of the art for several

applications, ranging from image recognition to language translation [78].

3.2 Fully Connected Neural Networks

Fully Connected Neural Networks (FCNN) or Dense Neural Networks NNs are very

similar to the aforementioned ANN but comprise of several fully connected layers,

i.e. every neuron in a layer is connected to every single neuron in the previous layer,

as can be seen in Figure 3.2. This can be mathematically defined as:

zk,i = b
(k)
i +

nk−1∑
j=1

f(zk−1,j)w
(k)
j,i (3.2)

where zk,i corresponds to the value at node i in hidden layer k.

23

3. Deep Learning Models

Figure 3.2: Schematic representation of a Fully Connected Neural Network 2.

3.3 Recurrent Neural Networks

Recurrent Neural Networks (RNNs) are a type of ANN devised to process sequences

of data, where the order in which the data is presented is of the utmost importance,

for example, when handling time series, text, music, or molecules [7]. They can be

applied both to sequence generation and classification problems.

Their ability to process sequential data comes from the fact that RNNs have loops

that allow the information to persist throughout time, keeping a sort of memory.

This memory is kept in a vector called the hidden state, ht. The output at each

time step t, ŷt, depends not only on its current input xt but also on the previous

hidden state ht−1; the RNN cell will also produce a new updated hidden state, ht,

that will be taken into consideration in the next time step. This recurrence relation

can be mathematically described for each time step by equations 3.3 and 3.4 [27].

ht = σ1(Whxxt +Whhht−1 + bh) (3.3)

ŷt = σ2(Wyhht + by) (3.4)

where σ1 and σ2 are activation functions (traditionally, tanh and softmax, respec-

tively), Whx, Whh and Wyh are weight matrices (input-to-hidden, hidden-to-hidden

and hidden-to-output, respectively) and bh and by are bias vectors.

Depending on the goal of the problem, it is possible to output all the hidden states

throughout time or just the final hidden state. Figure 3.3 represents an RNN with

a single recurrent layer on the left, and its equivalent unfolded representation on

the right. An unfolded RNN allows the visualization of how a single sequence is

processed by the layer and how the hidden state is updated by the RNN cell at each

time step. It is also worth noting that all the RNN cells in the diagram are, in

fact, the same cell, and therefore share the same weights which are learned during

2Figure adapted from http://introtodeeplearning.com/slides/6S191_MIT_

DeepLearning_L1.pdf

24

http://introtodeeplearning.com/slides/6S191_MIT_DeepLearning_L1.pdf
http://introtodeeplearning.com/slides/6S191_MIT_DeepLearning_L1.pdf

3. Deep Learning Models

training [28].

Figure 3.3: Diagram of a recurrent layer and its unfolded representation.

As explained in Section 3.1, to train a network, one must first compute the loss and

then backpropagate it. In the case of RNNs, the total loss is considered as the sum

of the losses at each individual time step, and backpropagation is done at each point

in time (Backpropagation Through Time) as shown by equation 3.5 [79].

∂L(T)

∂W
=

T∑
t=1

∂L(T)

∂Wt

(3.5)

where the left side stands for the derivative of the loss L w.r.t. the weight matrix

W at time step T .

RNNs distinguish themselves from other types of ANN mainly due to being capable

of dealing with variable length sequences by including the previously mentioned

memory and the fact that an increase in the input size does not lead to an increase

in model size [79]. The main drawback of these models is that they have difficulties

in handling long-term dependencies, which can lead to exploding and vanishing

gradients [80]. Vanishing gradients occur when the gradients become increasingly

smaller and approach zero, making it impossible to train the network. Exploding

gradients correspond to the opposite problem, in which the norm of the gradients

constantly increases [81].

3.3.1 Long Short-Term Memory

Long Short-Term Memory (LSTM) networks [82] are a type of RNN designed to

handle long-term dependencies by including a set of computational blocks with

gates that control the flow of information. Gates resort to a sigmoid neural net layer

and pointwise multiplication to decide how much information should be retained.

With sigmoid activation function, the values are forced to be in the range [0,1] and,

25

3. Deep Learning Models

Figure 3.4: LSTM Architecture 3.

the higher the value, the more information is retained. Figure 3.4 represents the

computational blocks that make up an LSTM and how they are interlinked. Note

that a pointwise operation can be either a sum “+” or a multiplication “×”.

The key feature of an LSTM is its cell state Ct (Figure 3.5), which can be thought

of as the current status of the sequence or the memory, and is regulated by the

gates [83]. It depends on the previous cell state Ct−1, the previous hidden state

ht−1 and the input at the current time step xt. It’s the existence of this cell state

that allows for an uninterrupted gradient flow during training that mitigates the

vanishing gradients problem.

Figure 3.5: LSTM Cell state 4.

There are four steps in an LSTM cell, highlighted in Figure 3.6, that are ruled by

six equations (equations 3.6 to 3.11) [28,83]:

3Figure from [83].
4Figure from [83].

26

3. Deep Learning Models

1. Forget (Figure 3.6a): the forget gate forgets irrelevant information from the

previous hidden layer ht−1 and from the current input xt, since some of it might

not be important. The forget gate is a dense layer with a weights matrix Wf

and bias bf followed by a sigmoid activation function σ.

ft = σ (Wf · [ht−1, xt] + bf) (3.6)

2. Store (Figure 3.6b): in this step, that includes two phases, the cell decides

what new information will be stored in the cell state. First, the vector that

results from the concatenation of ht−1 and xt is fed to an input gate which,

similarly to the previously mentioned gate, comprises a weights matrixWi, bias

bi and a sigmoid activation function. The output of this gate, it determines

how much new information will be added to Ct−1. Second, the aforementioned

concatenated vector goes through another dense layer (with weights matrix

Wc and bias bc) and a tanh activation function which results in vector C̃t that

contains the new information that the cell considers keeping.

it = σ (W
i
· [ht−1, xt] + bi) (3.7)

C̃t = tanh (WC · [ht−1, xt] + bC) (3.8)

3. Update (Figure 3.6c): the cell state Ct is updated by forgetting what has been

decided in step 1. (first term of equation 3.9) and adding the new information

scaled by how much it was decided to update each value in step 2 (second

term of the same equation).

Ct = ft ∗ Ct−1 + it ∗ C̃t (3.9)

4. Output (Figure 3.6d): the concatenated vector also goes through the output

gate (with weights matrix Wo, bias bo and a sigmoid activation function) which

results in the vector ot that represents how much of Ct should be outputed.

This vector is then multiplied pointwise with the result of passing Ct through

a tanh activation function resulting in the current hidden state ht that will be

sent to the next cell along with the previously found Ct.

ot = σ (Wo · [ht−1, xt] + bo) (3.10)

ht = ot ∗ tanh(Ct) (3.11)

27

3. Deep Learning Models

(a) Forget (b) Store

(c) Update (d) Output

Figure 3.6: Steps to update a single LSTM cell 5.

3.3.2 Gated Recurrent Units

Over the years, several variants of LSTMs have been proposed. The most successful

one is the Gated Recurrent Units (GRUs) which are simpler to compute and imple-

ment [84]. They differ from the LSTM units by replacing the forget and input gates

with reset and update gates, and removing the cell state and the output gate [28].

Therefore, the only output of the cell is its hidden state. This hidden state ht is

obtained using the following four expressions (equations 3.12 to 3.15):

rt = σ (Wr · [ht−1, xt] + br) (3.12)

h̃t = tanh (W · [rt ∗ ht−1, xt] + b) (3.13)

zt = σ (Wz · [ht−1, xt] + bz) (3.14)

ht = (1− zt) ∗ ht−1 + zt ∗ h̃t (3.15)

The reset gate is responsible for producing the rt vector which, due to the sigmoid

activation function, contains values between 0 and 1 that represent how much of

the previous hidden state ht−1 should be considered for the new state of the cell.

From rt, and using equation 3.13, the vector h̃t is obtained and it stores the new

state of the cell (values between -1 and 1 due to the tanh activation function). The

5Figure from [83].

28

3. Deep Learning Models

update gate, in a manner similar to the previously mentioned gates, outputs a vector

zt whose values determine how much of the new state h̃t should be blended with

ht−1. Finally, the output of the cell, i.e. its updated hidden state, ht is computed by

blending in h̃t with ht−1 in the proportion determined by the update gate zt [28,84].

Figure 3.7 shows a diagram of these computations.

Figure 3.7: GRU Architecture 6.

3.3.3 Bidirectional RNNs

The aforementioned types of RNNs process the sequence only in a single direction,

the forward direction, which means that the state at a given time t, and therefore the

prediction yt, depend only on past values, x1,...xt−1. Bidirectional RNNs solve this

by combining two RNNs, one that evaluates the sequence in the forward direction

and another that evaluates it in the backward direction making yt dependent on

both the past and future values of the sequence through the two sets of hidden

states that are stored. A bidirectional RNN can be made up of traditional RNNs,

LSTMs or GRUs [27, 28, 85]. A schematic representation of a bidirectional RNN is

shown in Figure 3.8 with the forward direction represented by the blue line and the

backward one by the green line.

3.4 Autoencoder

An Autoencoder is a neural network that consists of two distinct and often symmet-

rical networks: the encoder and the decoder. The encoder is responsible for mapping

the input data into a lower-dimensional representation vector (also denoted bottle-

neck or latent vector), and the decoder has to reconstruct the original data from

6Figure from [83].

29

3. Deep Learning Models

Figure 3.8: Bidirectional RNN 7.

this representation vector. The autoencoder is trained using backpropagation to

find the weights for both networks that minimize the loss between the input x and

its reconstruction x̂ (figure 3.9). Since it compares the input to its reconstruction,

there is no need for previously defined labels, and therefore this is an unsupervised

technique. Root mean squared error and binary cross-entropy are the most often

used loss functions [28].

Figure 3.9: Schematic representation of an Autoencoder.

The representation vector is a compression of the original data into a lower dimen-

sional space, called the latent space, and so, it can be seen as an encoding of the

data that retains its most important features. The lower the dimensionality of this

latent space, the lower the quality of the reconstruction. It is important to note that

the model is not required to work for any possible input, it works only for inputs

that belong to the same distribution as the training data, so, in a way, it learns

to compress data from this distribution into the latent vector and then reconstruct

it [7].

The idea is that by randomly picking a point in the latent space, the decoder is able

to convert it into a viable data instance. Since there are no stochastic nodes in this

7Figure adapted from [83].

30

3. Deep Learning Models

network, once the autoencoder is trained it works as a deterministic encoding of the

data.

3.4.1 Encoder-Decoder Sequence to Sequence

Encoder-Decoder Sequence to Sequence models, commonly known as seq2seq, are

typically used when the goal is to predict a new sequence of words that is in some

way related to the given input sequence and where both sequences can have different

lengths. This type of network is used for tasks such as Language Translation [86],

Question Generation [87] and Text Summarization [88]. The original model was

independently proposed by Cho et al. and Sutskever et al. and the process can be

summarized in three main steps [28,84,86]:

1. An encoder RNN maps the input sequence into a fixed-length vector: the

context or latent vector. This context vector is usually a function of the final

hidden state of the RNN and so it can be seen as a summary of the input

sequence.

2. The context vector is then used to initialize the hidden state of the decoder

RNN.

3. Given a <start>token as input, the decoder RNN, with its previously initial-

ized hidden state, produces a new hidden state which is followed by a dense

layer that outputs a probability distribution over the vocabulary, from which

the next token can be retrieved. At each timestep, the decoder RNN takes the

previous hidden state and predicted token in order to produce the next. In

doing so, it is able to generate a novel sequence of tokens that terminates ei-

ther by sampling a <stop>token or achieving a pre-defined maximum allowed

length of the sequence.

During training, teacher forcing is employed so that the output of the decoder at

each timestep is compared to the real token and the loss can be calculated [28].

Due to the fact that seq2seq works with variable length sequences it could suffer

from problems associated with long-term dependencies. To minimize this, Cho et

al. proposed the use of GRU cells instead of standard RNN cells [84] and Sutskever

et al. proposed the use of LSTM cells and also found that deep LSTMs outperformed

shallow ones and that better results could be obtained when reversing the order of

tokens in the input sequence [86].

31

3. Deep Learning Models

Figure 3.10: Schematic of an Encoder-Decoder network for English-German trans-
lation.

When using LSTM cells, since they output both an hidden state and a cell state,

the context vector can be obtained from combining both of these vectors.

An example of a simple seq2seq model employed for Language Translation is depicted

in Figure 3.10.

3.5 Generative Adversarial Networks

Generative Adversarial Networks (GANs) [60] are a type of unsupervised deep gen-

erative model that aims to implicitly define the probability density function of the

training data, making it possible to sample from its high dimensional complex distri-

bution. They achieve this by pairing two competing neural networks with opposing

objectives. In this section, three types of GANs are explored: vanilla GAN, Wasser-

stein GAN, and Wassertein GAN with Gradient Penalty, with each model building

up on the previous one.

3.5.1 Vanilla GAN

The first GAN, commonly referred to as vanilla GAN, was proposed by Goodfel-

low et al. [60] and consists of two competing neural networks: a generator and a

discriminator. The generator is responsible for converting a random noise vector

zzz into synthetic samples that resemble the training data, while the discriminator,

given a sample, attempts to identify it as real or synthetic/fake. The output of

the discriminator is, therefore, the probability of the input sample belonging to the

training/real data.

These two networks have different and opposing objectives since while the discrim-

inator D aims to correctly label the data, the generator G wants to fool D into

32

3. Deep Learning Models

believing that its data is real. This translates into a minimax game with the follow-

ing objective [60]:

min
G

max
D

Exxx∼pdata(xxx) [logD(xxx)] + Ezzz∼pzzz(zzz) [log (1−D(G(zzz)))] . (3.16)

where pdata is the data distribution and pzzz is a simple noise distribution from which

we sample zzz (e.g., the uniform distribution or the normal distribution). In this way,

the generator G maps the noise distribution pzzz to the model distribution pg. zzz is

the source of randomness in the model, allowing the generator to output a different

variety of vectors.

Figure 3.11: Schematic representation of a Generative Adversarial Network.

Figure 3.11 represents a GAN, where ŷ is the output of the discriminator and

therefore, ŷ = D(xxx) and ŷ = D(G(zzz)) for real and synthetic samples, respectively.

In short, the discriminator wants to maximize the objective in equation 3.16 so that

D(xxx) is close to 1 and D(G(zzz)) is close do 0. The generator, on the other hand, has

no influence on the first term of the objective and wants to minimize the second term

so that D(G(zzz)) is close to 1, implying that the generated data has been perceived

as real by the discriminator.

The process of training GANs requires a delicate balance between training the dis-

criminator and training the generator. Ideally we would like the discriminator to be

trained to optimality before switching to training the generator but this is computa-

tionally prohibitive and could lead to overfitting. In practice, we resort to training

33

3. Deep Learning Models

the discriminator for k steps, and the generator for a single step [60] since it has also

been shown that if the discriminator gets too strong, then it can lead to vanishing

gradients on the generator [89]. The GAN is trained until it reaches a point at

which neither the generator nor the discriminator can improve because pg = pdata,

and thus, the discriminator cannot distinguish between the two distributions and it

constantly outputs a value of 0.5.

It should be noted that while training the generator, the weights of the discriminator

must be frozen, and vice-versa. Otherwise, the generated data would be predicted

as real because of having a weak discriminator and not a strong generator, which is

the goal [28].

In practice, and as stated by Goodfellow et al., during the beginnings of training, the

generator is weak and therefore, the discriminator can easily distinguish between

generated and real samples which can lead to the saturation of log(1−D(G(zzz))) [60].

To solve this, instead of minimizing log(1−D(G(zzz))) when training the generator,

Goodfellow et al. propose maximizing logD(G(Z)) which is able to provide stronger

gradients in the early stages of training but was later shown to cause unstable

updates [89].

Overall, GANs attempt to minimize the divergence between the real data distribu-

tion and the generated distribution, so that once the model is trained, the generator

is able to generate new data instances that resemble the training data.

While GANs can be seen as a major breakthrough in the field of generative modeling

and promptly became a popular method, they are particularly difficult to train and

present several specific challenges [28]:

• Mode Collapse: can occur when the generator collapses and finds an output

(i.e. mode) or a limited set of outputs that constantly fool the discrimina-

tor and is therefore, unable to diversify its output. This is often associated

with the discriminator being stuck in a local minimum and leads to a poor

generalization of the model.

• Vanishing Gradients: this can occur when the discriminator becomes so good

at distinguishing samples that the generator’s gradients vanish and it is unable

to learn.

• Uninformative Loss: since the generator is evaluated against the current best

discriminator and this discriminator is constantly being updated, the loss

34

3. Deep Learning Models

function cannot be compared at different points during the training process.

This results in a lack of correlation between the generator loss and the quality

of the generated samples making it impossible to monitor the quality of the

training by its loss. In fact, sometimes the loss function of the generator can

increase throughout the epochs and be accompanied by an increase in the

quality of the generated samples.

• Failure to Converge: there are several known and unknown reasons for a GAN

to fail to converge, some of them associated with the above mentioned prob-

lems, but it typically happens when the loss of both the discriminator and

generator starts to oscillate and spiral out of control instead of achieving long-

term stability. It is worth noting that, unlike other DL models, stability in

GANs can also be a gradually increase or decrease of the loss, due to its un-

informative loss. Moreover, GANs have a great number of hyper-parameters

that need to be tuned and are highly sensitive to the slightest change to any

of them which means that achieving stability is a process of trial and error.

3.5.2 Wasserstein GAN

The Wassertein-GAN (WGAN), proposed by Arjovsky et al., is an alternative algo-

rithm to the traditional GAN that reduces mode collapse, provides a meaningful loss

metric and shows improved stability [90]. They propose the use of the Earth-Mover

distance or Wassertein-1 as the distance metric between both probability distribu-

tions, pdata and pg, W (pdata, pg), which provides a specific value for the distance, no

matter how far apart the distributions are8. This distance can be interpreted as the

minimum cost of transporting mass required to transform pdata into pg [12].

However, the Wassertein distance is intractable but by resorting to the Kantorovich-

Rubinstein duality [91], it is possible to obtain the following WGAN value function

[12,90]:

min
G

max
D∈D

Exxx∼pdata [D(xxx)]− Ezzz∼pzzz [D(G(zzz))] (3.17)

where D is the set of 1-Lipschitz functions. A function is considered to be 1-Lipschitz

8The traditional GAN resorts to the Jensen-Shannon Divergence which, for two non-overlaping
distributions (frequently the case at the beginning of training), is always equal to log 2. This results
in the fact that, for an ideal discriminator, the gradient will be zero, resulting in a generator that
is unable to learn due to vanishing gradients [89].

35

3. Deep Learning Models

if it satisfies inequality 3.18:

|D(xxx1)−D(xxx2)|
|xxx1 − xxx2|

≤ 1 (3.18)

where xxx1 and xxx2 are any two input samples. This means that there is a limit

enforced on the rate at which the discriminator’s predictions can change between

two samples, i.e. the absolute value of the gradient must never surpass 1 [28]. This

is of the utmost importance since when using the Wassertein loss, real samples are

compared to the label 1 and fake samples to the label -1. This means that the

output of the discriminator, denoted by critic in this context, is no longer bound

to the range [0,1] and so its predictions can fall anywhere in the range]−∞,+∞[.

If the Lipschitz constraint was not enforced, this could lead to extremely large loss

values, which must be avoided in NN [28]. Arjovsky et al. propose the use of weight

clipping after each gradient update so that the weights of the critic will lie in the

range [-0.01, 0.01]. They also state that this is a “terrible way” of enforcing the

Lipschitz constraint because it diminishes the critic’s capacity to learn [90].

Another important thing to notice is that with WGANs the critic can be trained to

optimality giving rise to more reliable gradients for the generator which, not only

removes the difficulty in balancing the training of the discriminator and generator

in GANs, but also reduces mode collapse [90]. Typically, the critic is updated five

times (to ensure it is close to convergence) and the generator only one.

Overall, the greatest contributions of the WGAN are its meaningful loss (which

correlates with sample quality) and its improved stability.

3.5.3 Wasserstein GAN with Gradient Penalty

The Wasserstein GAN with Gradient Penalty (WGAN-GP) (Figure 3.12), proposed

by Gulrajani et al., solves the following two problems of WGAN that are inherited

from the use of weight clipping as a way to enforce the 1-Lipschitz constraint: the

Discriminator has reduced capacity and is unable to model complex functions, and

without careful tuning of the clipping threshold, the interactions between weight

clipping and the cost function can lead to either exploding or vanishing gradients [12].

The use of weight clipping is avoided by directly including a gradient penalty in the

overall loss function that encourages the model to satisfy the Lispschitz constraint

by penalizing it whenever the gradient norm of the critic deviates from 1 [12, 28].

36

3. Deep Learning Models

Figure 3.12: Schematic representation of a Wasserstein Generative Adversarial
Network with Gradient Penalty

This loss function is expressed by:

L = Ezzz∼pzzz [D(G(zzz))]− Exxx∼pdata [D(xxx)] + λEx̂̂x̂x∼px̂̂x̂x
[
(‖∇x̂̂x̂xD(x̂̂x̂x)‖2 − 1)2

]
(3.19)

where the first two terms correspond to the original critic loss from the WGAN and

the third to the gradient penalty with λ as its weight factor (typically λ = 10). If

we consider x̃xx = G(zzz) then x̂xx is obtained by:

x̂xx = ε ∗ x̃xx+ (1− ε) ∗ xxx with 0 ≤ ε ≤ 1 (3.20)

where ε is uniformly sampled between 0 and 1. In practice, this means that we use

a set of interpolated samples, that result from randomly choosing points that lie on

the lines that connect the batch of real samples to the batch of fake samples, and

evaluate its gradients [28].

As a final note, batch normalization should not be employed in the critic since

it creates correlation between samples in the same batch and therefore decreases

the effectiveness of the gradient penalty loss. Nevertheless, WGAN-GP has shown

improved performance and stability during the training process when compared to

the previously presented methods [12,28].

3.6 Regularization Techniques

Regularization techniques are a set of strategies that aim to improve the general-

ization of a model, i.e. its capacity to perform well on new unobserved data, and

37

3. Deep Learning Models

in doing so, reduce overfitting (the situation in which a model performs well on the

training set but poorly on the test set) [27]. The following are some of the more

commonly used regularization techniques:

• Dropout is a very simple and effective regularization technique. It consists of

setting a user-defined percentage of units in a network layer to 0, which reduces

overfitting by making sure that the network doesn’t rely solely on a certain

group of units or memorizes the input data. During training, the dropped

units are picked randomly and change for every batch. While testing, all the

units are active and the weights are scaled-down according to the probability

of the unit being retained during training [27,28,92,93].

• Batch Normalization (BN) [94] is a technique that aims to reduce a phe-

nomenon known as covariate shift, which occurs when, during training, as the

previous layers change, the distribution of the input to a layer also changes.

This impairs training by requiring careful parameter initialization and lower

learning rates to avoid a possible collapse of the network. A batch normal-

ization layer normalizes its inputs by subtracting the mean and dividing by

the standard deviation of each training mini-batch. To preserve the model’s

capacity, β and γ are introduced as two trainable parameters, which shift and

normalize the values, respectively. The BN algorithm, as presented by Ioffe

and Szegedy [94], is as follows:

µB ←−
1

m

m∑
i=1

xi mini-batch mean (3.21)

σ2
B ←−

1

m

m∑
i=1

(xi − µB)2 mini-batch variance (3.22)

x̂i ←−
xi − µB√
µ2
B + ε

normalize (3.23)

yi ←− γx̂i + β ≡ BNBNBNγ,β(xi) scale and shift (3.24)

where B = {xi...m} is the mini-batch, and γ and β are parameters to be

learned. It is worth noting that this technique frequently eliminates the need

for dropout, with recent works resorting only to batch normalization [28,93,94].

• Early Stopping consists on monitoring a specified metric and stopping the

training procedure when it hasn’t improved in a user-defined number of epochs.

38

3. Deep Learning Models

The weights of the best epochs are saved, so that once the training is halted, it

is possible to retrieve the best recorded set of parameters. This technique has

the advantage of requiring no change to the architecture and overall training

procedure of the model. It should be noted, however, that as the performance

of the model is typically evaluated on a validation set using the defined metric,

the number of available training samples decreases [27].

39

3. Deep Learning Models

40

4

RNN Generator

4.1 Introduction

Recurrent architectures are amongst the most promising methods for generating

new molecules [9, 10, 47, 53, 54]. However, one current challenge consists in finding

the optimal architecture and parameters for the recurrent network that assures the

generation of valid molecules that span the chemical space. Also, with the exception

of the work of Zheng et. al [10], previous approaches have not explicitly considered

stereo-chemistry which is of the utmost importance in drug design. Moreover, to op-

timize the probability of finding interesting hits for a given target, drug candidates

should be produced chemically diverse while containing similar chemical properties

to already known ligands [47]. Although many researchers have studied DL’s ap-

plication to produce molecules as drug candidates, most of the existing generative

models do not consider diversity (Tanimoto similarity) as one of the objectives in

the generated libraries [95].

This chapter presents a comprehensive study on different RNN frameworks applied

to molecule generation with SMILES notation. More specifically, the impact of

different recurrent architectures and its inherent parameters are analyzed in terms

of the rate of valid molecules, diversity in the generated compounds, and the time

required to train the models. The effect of applying embedding layer or one-hot

encoding in the validity, diversity of the generated compounds, and speed of gen-

erating the results is also studied. Further, the effect of using a different type of

tokenization for the SMILES strings is explored, such as character by character (to-

ken by token), as proposed in the work of Olivecrona et al. [9], or by considering

the stereo-chemistry notations with combined tokens grouped by a pair of square

brackets [10]. This molecular information is vital in medicinal chemistry, but most

works often overlook it due to its complexity in terms of increased vocabulary for

41

4. RNN Generator

Figure 4.1: General workflow of the proposed Generator based on Recurrent Neural
Network.

computational models.

4.2 Methods

This study is divided into three main parts. Firstly, three different types of Recurrent

Neural Networks are explored: Long Short-Term Memory (LSTM), Gated Recurrent

Units (GRU), and Bidirectional LSTM (BiLSTM) (see Section 3.3 on Page 24 for

more details). Secondly, the effect of the various hyperparameters on the efficiency

of the model is evaluated. Finally, the use of two different types of encoding in

the structure of the DL model: embedding and one-hot encoding and the effect of

using datasets with and without stereo-chemical information is analyzed. Figure

4.1 describes the general schema of the proposed model in order to generate valid

plausible drug compounds.

4.2.1 Preprocessing Data

There are two main ways of encoding categorical data: embedding and one-hot en-

coding. The first preprocessing steps are common to both techniques and correspond

42

4. RNN Generator

to steps 1 through 3 in Figure 4.2. First, the SMILES strings must be tokenized.

This tokenization is performed character by character, with the atoms ‘Cl’ and ‘Br’

being previously substituted by the characters ‘L’ and ‘R’, respectively. In this way,

each chemical symbol corresponds to a single token. As a second step, two extra

tokens are added; the character ‘G’ is added at the beginning of each SMILES, and

the character ‘A’ is added at the end and is also used for padding to the length of

the longest allowed SMILES string. The set of these characters comprises the vo-

cabulary. Thirdly, a dictionary with as many entries as the length of the vocabulary,

voc, is created, which associates each token to an integer so that the SMILES string

can be encoded as a list of integers. To perform one-hot encoding, each encoded

token is transformed into a binary vector filled with zeros, except for the index that

corresponds to the encoded token. This results in a matrix where each column is a

one-hot vector. The size of this matrix is voc × `, where ` is the maximum length

of the sequence (defined by the user). As an example, Figure 4.2 shows the one-hot

encoding of a molecule of Acetylsalicylic Acid. An embedding layer can be seen as a

lookup table that converts each encoded token into a dense vector of a user-defined

length and is an alternative to one-hot encoding. Therefore it results in a matrix of

size |voc × e|, where e is the embedding dimension. The values of the embedding

are trainable parameters which allows the model to find its own representation for

each token. After passing the sequence through the embedding layer, one obtains

a matrix of size |` × e|, which is then passed on to the following layers. It should

be noted that for the biogenic dataset, the tokenization process is slightly different

since it includes combined tokens, meaning that we consider sections of the SMILES

string that are enclosed in brackets (for example, ‘[C@@H]’ and ‘[N+]’) as a single

token, which results in a extended vocabulary [10].

4.2.2 Training Models

RNN models [96] can be used to generate sequences one token at a time, as these

models can output a probability distribution over all possible tokens at each time

step, therefore, they can predict the next token based on all the tokens seen so far.

Eight different model structures are analyzed: GRU [84], LSTM [82], and BiLSTM;

for the first two, 1, 2, and 3 layers are considered, for the last one, only the influence

of 1 and 2 layers is studied. Figure 4.3 shows the main structure of an RNN model.

In this example,the RNN model processes a sequence of data X = x1x2 . . . x` by

taking as input each item xi in the sequence, passing it through a series of gates and

43

4. RNN Generator

Figure 4.2: Data preprocessing for the molecule of Acetylsalicylic Acid using One-
hot Encoding.

creating the output vector Y = y1y2 . . . y`.

The RNN layers are followed by a dense layer and a neuron unit with a softmax

activation function with temperature. A dense layer is a linear operation in which

every input is connected to every output by a set of weights. After each RNN layer,

dropout is also added as a regularization technique [92]. During the training step,

this type of layer randomly sets a user-defined percentage of the input units to 0,

which reduces overfitting by making sure that the network doesn’t rely solely on a

certain group of units. The loss L is calculated at each position as the categorical

cross-entropy between the predicted and actual next token and the network’s weights

are updated based on the gradient of this loss function by the optimizer. As a

starting point, the ‘Adam’ optimizer is used and then the performance of three other

optimizers are also evaluated: “Adam clip” (the Adam optimizer with the gradients

clipped to a maximum value of 3), “SGD” and “RMSProp”. The remaining models

44

4. RNN Generator

Figure 4.3: General structure of RNN Models for producing SMILES strings.

are implemented in the same way, differing only in the type of neural network and

its layers.

The “Teacher Forcing” algorithm [27] is used during the training of the RNN and

corresponds to always inserting the correct token at the following time step, inde-

pendently of the predicted token at the current step. By doing so, we prevent the

accumulation of errors due to wrong predictions, which in turn allows the model to

converge faster. Early stopping is a regularization technique that can be employed

during the training of a model, and it is used in some of the experiments. It essen-

tially monitors the performance at the end of each epoch and stops training when it

hasn’t improved in the last n epochs, where n is user-defined. In doing so, it avoids

overtraining the model and prevents overfitting. Overfitting occurs when the model

resorts to “memorizing” the training data and therefore it is unable to generalize

well to new data samples [97].

45

4. RNN Generator

Figure 4.4: Workflow for generating the SMILES with a trained network. At every
time step t, the model samples the next token of the SMILES yt from the probability
distribution and introduces it as the next input xt+1.

4.2.3 Output Generation

RNN models generate sequences one token at a time, as these models can output a

probability distribution over all possible tokens at each time step. Given a certain

input, the RNN predicts the next token; it is worth noting that this input can be one

or more tokens in length. Figure 4.4 shows a general workflow for this process for

an example of SMILES string “GCNC(C)=OA”. We start by feeding the network

with x0 = ‘G’ and then it predicts the next token x̃1= ‘C’. The network will then

predict x̃2=‘N’ given {x0, x̃1}=‘GC’, and so forth until the ‘A’ token is predicted or

the maximum length of the sequence ` is reached, at which point the generation of

the sequence ends.

4.2.4 Validation Strategy

The SMILES generated by the proposed RNN models are syntactically and bio-

chemically validated by RDkit [35]. It is also important for a model to generate

diverse SMILES strings both in terms of Internal Diversity (the diversity inside the

generated compounds set) and External Diversity (the diversity between the gener-

ated and the training dataset). To evaluate the diversity, we resort to the Tanimoto

Similarity Ts, which computes the similarity between two molecules in terms of their

circular fingerprints. The Tanimoto distance can be defined as 1− Ts. From it, we

can define the diversity between two sets of generated molecules A and B as the

46

4. RNN Generator

average of the Tanimoto distance between every single pair of molecules:

Div(A,B) =
1

|A| · |B|

|A|∑
a∈A

|B|∑
b∈B

(1− Ts) (4.1)

Therefore, to obtain the internal diversity we simply compute Div(A,A) and for the

external diversity we compute Div(A,B), where A is the set of generated SMILES

and B is the set of the training data.

4.3 Experimental Results and Discussion

This section describes the exhaustive analysis that has been done to find the best set

of hyperparameters for the proposed RNN model. The goal is to find a model that

can generate new compounds with a high percentage of valid molecular structure

while simultaneously being as diverse as possible and different from the training

dataset.

4.3.1 Datasets

To do the experiments, two different datasets are considered. The first and the one

that is used for most of the experiments, is analogous to the one used by Olivecrona

et al. [9] which was obtained from the ChEMBL database [98] and contains 1,179,477

SMILES Strings previously filtered and canonicalized by RDKit. The molecules in

this dataset contain only the elements {H, B, C, N, O, F, Si, P, S. Cl, Br, I } and

have between 10 and 50 heavy atoms. The second dataset is from the ZINC biogenic

library [99] and is the same used in the work of Zheng et al. [10]. It comprises 153,733

biogenic structures in canonicalized SMILES format, therefore, unlike the previous

dataset, this one includes stereo-chemical properties. This dataset does not contain

metal elements, or molecules with less than 10 non-hydrogen atoms or more than

100.

4.3.2 Performance Analysis and Results

The primary purpose of the first set of tests is to analyse and evaluate the set of

network hyper-parameters that generates the highest ratio of valid SMILES for the

ChEMBL dataset. Table 4.1 shows the obtained results for the 8 proposed models.

It contains the percentage of valid and unique SMILES and the training time. A

47

4. RNN Generator

SMILES is considered “valid” if it passes the validation process (see Section 4.2.4)

and “unique” if it is not repeated in the generated set. The models are trained on

100,000 SMILES strings from the ChEMBL dataset by using embedding as the type

of data encoding. The results are obtained from evaluating 1,000 generated SMILES

strings. The models are trained for 25 epochs with a batch size of 16, a dropout

rate of 0.2, and using the Adam optimizer. The network units are set to 512, the

embedding dimension to 256, and the maximum length of a sequence to ` = 100.

For the sampling process, the temperature is fixed at 0.75. The highest validity

values are obtained using the LSTM cells, reaching a maximum of 96.20% for Model

3 and 100% of unique SMILES strings. Regarding the GRU cells (models 4 to 6),

the validity decreased from 92.70% when using 1 layer to 0.80% for 3 layers. The

BiLSTM based models performed the poorest with 0.70% and 0.0% of validity for

1 and 2 layers, respectively, often generating empty SMILES strings or constantly

generating the same non-valid SMILES. In total, they were not able to capture the

complexities of the SMILES syntax. From the results presented in Table 4.1, we

discarded the use of GRU and BiLSTM cells and chose the two best models: model

2 and 3 with a validity of 95.70% and 96.20%, respectively, to use in the following

experiments.

Table 4.1: The training time and percentage of valid and unique SMILES generated
with 8 different models.

Model Description Valid % Unique % Time (hh:mm:ss)
Model 1 LSTM - 1 Layer 94.6% 100.0% 0:39:56
Model 2 LSTM - 2 Layer 95.7% 100.0% 1:08:38
Model 3 LSTM - 3 Layer 96.2% 100.0% 1:38:09
Model 4 GRU - 1 Layer 92.7% 99.9% 0:38:16
Model 5 GRU - 2 Layer 11.9% 99.9% 1:00:13
Model 6 GRU - 3 Layer 0.8% 100.0% 1:21:26
Model 7 BiLSTM -1 Layer 0.7% 1.6% 0:58:38
Model 8 BiLSTM -2 Layer 0.0% 9.0% 1:39:31

The effect of validity and uniqueness through the epochs was analyzed. In particular,

epochs 4, 8, 12, 16, 20, 24 and 28 were examined for the two best models from the

previous experiment. Fig 4.5 shows these results. It can be observed that the

percentage of unique generated molecules stays close to 100% for the evaluated

epochs and for both models, while the percentage of valid molecules is more erratic,

reaching 97.2% at epoch 16 for the first model and 96.8% at epoch 12 for the second

model.

The number of epochs was fixed at 16 and the impact of using the optimizers men-

tioned in 4.2.2 was evaluated. As shown in Table 4.2, for both models, “Adam”,

48

4. RNN Generator

Figure 4.5: Training epochs and percentage of valid and unique molecules for
Models 2 and 3.

“Adam clip”, and “RMSprop” performed well, keeping the uniqueness close to 100%

and the validity higher than 94% but the use of “RMSprop” yielded a higher num-

ber of valid molecules: 97.5% and 96.8% for model 2 and 3, respectively. Therefore,

from here onwards, the “RMSprop” optimizer was used.

Table 4.2: The training time and percentage of valid SMILES and diversity with
4 different optimizers for models 2 and 3.

Model Optimizer Valid % Internal Diversity External Diversity
Model 2 Adam 95.9% 0.864 0.875
Model 2 Adam clip 94.5% 0.863 0.874
Model 2 SGD 4.6% 0.876 0.899
Model 2 RMSProp 97.5% 0.862 0.875
Model 3 Adam 94.6% 0.859 0.872
Model 3 Adam clip 95.2% 0.861 0.873
Model 3 SGD 4.2% 0.874 0.899
Model 3 RMSProp 96.8% 0.866 0.876

The effect of using different batch sizes: 16, 32, 64, 128 and 256 for models 2 and

3 was then tested. These models were set to run for 24 epochs using early stopping

with a patience of 5, though it should be noted that early stopping was never applied

because all models ran until the final epoch. From the observed results in Table 4.3,

we can conclude that the highest percentage of validity was obtained when using a

batch size of 16, yielding 97.5% and 96.9% for models 2 and 3, respectively. It is also

worth noting that, by comparing Table 4.2 with Table 4.3, an increase in training

epochs from 16 to 24 was not accompanied by an increase in validity for model 2,

and for model 3 there was only an increase of 0.01%.

49

4. RNN Generator

Table 4.3: The training time and percentage of valid and unique SMILES with
different batch sizes for models 2 and 3.

Model Batch Size Valid % Unique % Time (hh:mm:ss)
Model 2 16 97.5% 99.9% 1:08:31
Model 2 32 94.7% 99.9% 0:38:51
Model 2 64 94.7% 99.8% 0:29:29
Model 2 128 94.6% 100.0% 1:23:49
Model 2 256 93.7% 99.9% 0:21:21
Model 3 16 96.9% 100.0% 1:38:07
Model 3 32 96.2% 100.0% 0:56:55
Model 3 64 95.3% 99.9% 0:44:03
Model 3 128 94.9% 99.9% 0:35:27
Model 3 256 95.8% 100.0% 0:31:43

To study the impact of the number of training samples on the quality of the generated

data, Model 2 was trained for 16 epochs and with a batch size of 16 on successively

increasing datasets. The results are presented in Table 4.4 where it is clear that

an increase in the training samples results in a higher percentage of valid molecules

without negatively affecting the external diversity, with the downside that it takes

longer to train.

Table 4.4: The percentage of valid SMILES and diversity for Model 2 with different
number of training samples.

Samples Number Valid % Int Div Ext Div Time (hh:mm:ss)
10,000 85.0% 0.858 0.873 0:04:49
50,000 92.8% 0.861 0.873 0:23:27
100,000 95.4% 0.868 0.876 0:45:19
200,000 96.7% 0.864 0.874 1:30:15
500,000 98.7% 0.869 0.877 3:41:24

Table 4.5 presents the results from evaluating the effect of different sampling temper-

atures during the generation phase when using Model 2 trained on 100,000 samples.

We can observe that there is a trade-off between diversity and validity, the lower the

sampling temperature, the higher the percentage of valid molecules and the lower

the diversity. We kept on using a sampling temperature of 0.75 as a compromise

between diversity and validity.

Table 4.5: The percentage of valid SMILES and diversity for different values of
Sampling Temperatures

Model Sampling Valid Internal External
Temperature % Diversity Diversity

Model 2 0.50 98.1% 0.844 0.873
Model 2 0.75 94.9% 0.862 0.874
Model 2 1.00 88.6% 0.877 0.879
Model 2 1.20 75.3% 0.885 0.884

50

4. RNN Generator

To compare between the use of one-hot encoding and embedding, all the parameters

were kept fixed as in the previous experiment but with the number of epochs set

to 24 without early stopping. As can be seen in Table 4.6, the results were quite

similar both in terms of validity of the generated data and diversity. They were

better when using model 3, and the percentage of valid molecules slightly higher for

the embedding, at 96.5% when compared to the OHE, with 96.1%. It should also

be noted that the percentage of unique SMILES was constantly close to 100.0%.

Table 4.6: The percentage of valid SMILES and diversity for two different models
and two types of input encoding.

Model Encoding Valid % Internal Diversity External Diversity
Model 2 OHE 94.2% 0.863 0.874
Model 2 Embedding 95.9% 0.867 0.876
Model 3 OHE 96.1% 0.864 0.875
Model 3 Embedding 96.5% 0.865 0.875

Table 4.7: Comparison of the results obtained for model 3 when applied to two
different datasets: “Biogenic” and “ChEMBL” and using two types of encoding
“Embedding” and “OHE” with Number of Samples equal to 100,000.

Dataset Encode Ep Valid% Uni% IntDiv ExtDiv Time
ChEMBL Embed 43 97.2% 100.0% 0.868 0.877 3:02:17
Biogenic Embed 18 93.6% 99.1% 0.859 0.899 1:19:31
ChEMBL OHE 62 94.8% 100.0% 0.859 0.873 3:58:40
Biogenic OHE 61 94.7% 99.1% 0.866 0.902 4:00:30

The best model found (model 3 with “RMSProp” as the optimizer and a batch

size of 16) was applied to both of the previously mentioned datasets and using two

different types of encoding: Embedding and One-hot Encoding. The models were

trained on 100,000 SMILES and until convergence. The results are represented

in Table 4.7 where we can observe that, when using ‘Embedding’ as the encoding

process, 97.2% and 93.6% of the generated SMILES were valid for the “ChEMBL”

and “Biogenic” dataset, respectively. It is interesting to note that, even though the

hyper-parameters for our model had been tuned for the “ChEMBL” dataset, the

model was able to return a really high validity for only 18 epochs of training for

the “Biogenic” dataset, which contains more complex information relating to the

stereo-chemical properties of the molecules. For an encoding process of OHE, both

datasets reported similar results in terms of percentage of valid molecules, with

94.8% and 94.7% for the “ChEMBL” and “Biogenic” datasets, respectively. For

OHE both datasets converged at around the same epoch taking, therefore, a similar

time to train, while for ‘Embedding’, these values were clearly distinct.

51

4. RNN Generator

4.4 Conclusions

From the comprehensive study of RNN architectures for molecular generation pre-

sented in this chapter, it was possible to conclude that LSTM cells outperform other

types of RNN when it comes to generating molecules as SMILES strings. Also, as

expected, lower batch sizes and an increased number of training data resulted in

a better performance. Regarding the optimizer, “RMSProp” yielded the best re-

sults while “SGD” performed extremely poorly producing only about 4% of valid

molecules. The chosen strategy produced an optimized model that is able to gener-

ate 98.7% of valid SMILES strings with high internal and external diversity which

shows improved performance when compared to the current literature [9]. When

considering the “Biogenic” dataset, known for its higher level of complexity, a va-

lidity of 94.7% and a diversity of 0.90 were obtained. Regarding the use of either

embedding or OHE as the input layer, the differences in validity and diversity were

not particularly significant but it is worth mentioning that the use of an embedding

layer required significantly less epochs and therefore, less training time.

Overall, the results presented in this chapter indicate not only that RNN generators

are powerful tools for learning and generating new molecules but also that it is

possible to obtain good results when considering stereo-chemical information. As

this type of information is of the utmost importance in drug design, we believe that

further frameworks that resort to RNNs for molecular generation should take in

consideration the stereo-chemistry of the molecules.

Technical notes: The results shown in this chapter were coded in Python 3.8.3.

The models were coded using Tensorflow 2.3. The chemistry library used throughout

is RDKit 2020 09 2 [35]. The GPU hardware used to train and sample the models

was Nvidia RTX 2070 8GB of GDDR6 VRAM using CUDA 10.1.

52

5

GAN-based Framework

5.1 Introduction

GANs have been successfully employed in a variety of research fields, but their

application to drug design is only at the beginning. This is due to the fact that GANs

cannot be straightforwardly applied to discrete data like SMILES strings. The reason

being that the process of generating discrete samples introduces a non-differentiable

layer, which implies that the backpropagation algorithm cannot be applied [100].

In order to do so, and as explored in Section 2.4 on Page 14, researchers have

resorted to RL or finding an alternative continuous representation for the discrete

data [11]. The former has a tendency to focus on local minima and therefore return

very similar and sometimes duplicate molecules while the latter, even though it is a

novel approach, does not consider stereo-chemistry nor the diversity of the generated

compounds.

In this Chapter, the aforementioned issues are addressed. Firstly, an exhaustive

grid search of an Encoder-Decoder model is performed so that a continuous repre-

sentation of the SMILES strings can be found. SMILES strings that contain stereo-

chemical information are included in the training data, which is vital when working

in drug design but often overlooked due to its higher complexity. Secondly, a GAN

is trained on the latent space vectors created by the Encoder-Decoder model, and its

capability to create diverse molecules is evaluated. Lastly, two approaches are stud-

ied to optimize the framework: TL and a FeedbackGAN-inspired method [13] with

53

5. GAN-based Framework

the goal of producing molecules that exhibit a high affinity to the KOR receptor.

5.2 Methods

The general proposed framework is illustrated in Figure 5.1 and is composed of an au-

toencoder, more specifically, an encoder-decoder architecture based on RNNs [84,86],

and a Wasserstein GAN with gradient penalty [12]. The encoder-decoder architec-

ture allows the model to learn a context vector (Figure 5.1-C) that summarizes the

SMILES strings in such a way that they can be reconstructed only from their con-

text vectors. By passing a dataset that consists of SMILES through the encoder

(Figure 5.1-A), an equivalent dataset made up of context vectors is obtained. This

new dataset is used as real data to train the GAN so that, once trained, its generator

is able to generate new samples from the same distribution as the context vector’s

dataset. These samples are then passed through the decoder (Figure 5.1-B) in order

to obtain the corresponding SMILES strings. By combining these two models, it be-

comes possible to train the GAN, surpassing the differentiation problem associated

with categorical data, such as SMILES strings, that would otherwise arise [8].

5.2.1 Encoder-Decoder Model

The encoder-decoder model is an autoencoder that works with sequences of data

by resorting to recurrent networks. The encoder-decoder architecture allows the

learning of a context vector. The model summarizes the input SMILES in such a

way that it can reconstruct them only from the context vector. The encoder, Figure

5.2-A, contains an embedding layer and two bidirectional LSTM layers with batch

normalization in between. From these bidirectional layers, the final cell and hidden

states, from both directions, are retrieved and concatenated. Then the result is

passed through a dense layer with a size equal to the desired length of the context

vector. Next, there is a dense layer followed by batch normalization and a Gaussian

noise layer (during training) to make the model more flexible and the context vec-

tor more robust. Regarding the decoder, Figure 5.2-B, the context vector serves as

input to four independent dense layers whose goal is to reconstruct the hidden and

cell states that will be given as initial states to two LSTM layers. These stacked

LSTM layers, with batch normalization in between, are followed by a dense layer

with softmax activation function so that it outputs the probabilities associated with

the next token. It should be noted that, during training, the “Teacher Forcing”

54

5. GAN-based Framework

Figure 5.1: The general workflow of the proposed model that is composed of an
Encoder-Decoder that converts SMILES into latent space vectors that are then used
as real data in the training of a WGAN-GP network that comprises a Generator
and Critic.

algorithm is employed, and so the target output of the decoder is the same as its

input but shifted by one time step. The complete model is trained using the categor-

ical cross-entropy between the input and the predicted output as the loss function.

The network’s weights are then updated by the Adam optimizer, considering the

gradient of the loss.

5.2.2 Wasserstein GAN with Gradient Penalty

The second part of the framework is based on a Wasserstein GAN with gradient-

penalty (WGAN-GP) (see Section 3.5 on Page 32) since this type of model has

better performance and stability during the training process [12] when compared to

the traditional GAN as proposed by Goodfellow et al. [8]. GANs cannot be directly

applied to categorical data, like SMILES strings, due to the fact that the sampling

process at the end of the generator does not allow for the backpropagation of the

errors through that layer. However, since the previously mentioned encoder-decoder

55

5. GAN-based Framework

Figure 5.2: The detailed structure of the Encoder (A) and Decoder (B) applied in
the framework. This model is used to convert the SMILES strings into vectors in
the latent space (context vector (C)).

model can find an alternative continuous representation for said SMILES strings,

this new latent space representation can be used as real data to train the WGAN-

GP without requiring intrinsic changes to the model. As the training data now

comprises of vectors, both the Critic and the Generator can be simple Feed Forward

Neural Networks.

5.2.3 Case-study: Kappa Opioid Receptor

The Kappa Opioid Receptor (KOR) is one of four opioid receptors that belong to

the G-protein-coupled receptors (GPCR) superfamily. Research on opioid receptors,

particularly on KOR, has been gaining momentum as it mediates affective disorders

such as depression and anxiety, neurological diseases like epilepsy, but also pain

and drug addiction making it a promising pharmacological target [101–104]. It is

possible to identify two main groups of ligands that bind to the KOR: antagonists

and agonists. An agonist is a drug that binds to the receptor and activates it

triggering a biological response. An antagonist is a drug that also binds to the

receptor but blocks its biological response.

The goal of the current experiment is to find ligands that bind antagonistically to

the KOR as evidence suggests that KOR antagonists may serve as treatment for

depression [102], anxiety [105], and psychostimulant disorders by attenuating, for

example, cocaine consumption [106].

In order to attain it, the generator of the WGAN-GP model must be optimized to

56

5. GAN-based Framework

generate compounds with a high affinity to bind antagonistically to the KOR. To

measure this, the pIC50 is used, which is the negative logarithm of the half maximal

inhibitory concentration. Therefore, the higher the pIC50, the more potent the

inhibition will be.

5.2.4 KOR Binding Affinity Predictor

So that the following optimization processes can be evaluated, a QSAR model,

henceforth denominated by Predictor, based on the work of Pereira et al. was

implemented [107]. This work also showed that a RNN Predictor has improved

performance when compared to standard QSAR approaches [107]. This particular

Predictor aims to predict the binding affinity of a given molecule for the KOR

as measured by the pIC50. The Predictor is a LSTM-based model that receives

tokenized and padded SMILES strings (see Section 4.2.1 on Page 42) as input which

are then passed through an embedding layer followed by two LSTM layers and two

dense layers. Since this is a regression problem the last layer has a single unit and

a linear activation function. The use of RNN-based QSAR models is of particular

interest for two reasons: first, this type of model works with inputs with different

lengths and second, it also works with SMILES strings which means that there is

no need to find other types of molecular representations that might add human

bias [108].

Before training the Predictor, the labels were normalized using percentile normal-

ization which reduces the impact of outliers in the overall performance of the model.

The dataset was randomly split into training/validation (85%) and testing (15%).

A 5-fold cross-validation strategy was implemented This results in 5 trained models

that are combined and evaluated using the Mean Squared Error on the hold-out

test set. In this way, when given a new molecule, the final prediction of the overall

model is the average of the predictions from the 5 independent models.

To avoid overfitting, early stopping was employed (see Section 3.6 on Page 37) with

a patience of 15 epochs which stops the training of the model if there has been no

improvement in the last 15 epochs.

5.2.5 Optimization through Transfer Learning

After training the implemented WGAN-GP model, the generator is able to produce

context vectors that are then decoded into SMILES strings that span the chemical

57

5. GAN-based Framework

space. In order to optimize the framework, Transfer Learning was employed to bias

the model towards specific properties by retraining the WGAN-GP model with a

smaller dataset containing only molecules with the desired property.

In order to do this, the KOR dataset (dataset that contains SMILES strings and

their corresponding pIC50 values) (ChEMBL identifier 237) was split in two subsets:

one with only pIC50 values higher than 7 and another with values lower than 7. By

doing so, two different scenarios can be evaluated: maximization and minimization

of the KOR affinity, respectively.

Once TL has been employed, 1,000 SMILES strings are sampled and evaluated by

resorting to the Predictor.

5.2.6 Optimization through FeedbackGAN

As a second approach to fine-tune the WGAN-GP model, a strategy based on Feed-

backGAN [13] was implemented. FeedbackGAN is an optimization framework pro-

posed by Gupta and Zou [13] that resorts to a feedback-loop and a function analyzer

to optimize a GAN towards the space of desirable properties.

In the context of the current problem, the Predictor (see Section 5.2.4 on Page 57)

takes the place of the function analyzer. After training the WGAN-GP model, the

Predictor is linked to the GAN through a feedback mechanism. The GAN then

enters a retraining phase in which, at the end of each epoch, the Generator is used

to sample a set of new molecules that are fed to the Predictor to be evaluated.

Taking in consideration the predictor’s output, the n best SMILES strings replace

the worst n SMILES strings from the training data that is used in the following

epoch. By doing so, the training data is constantly being updated with new and

better molecules according to the goal that has been set (either maximization or

minimization). This results in a fine-tuned Generator that gradually approaches the

space of the desired property. Figure 5.3 represents this optimization mechanism.

The framework is evaluated by sampling 1,000 SMILES strings and comparing them

to 1,000 SMILES sampled from the WGAN-GP before optimization.

5.2.7 Validation Strategy

The encoder-decoder is a deterministic model; therefore, it is evaluated based on the

percentage of molecules that it can correctly reconstruct. It is worth noting that a

58

5. GAN-based Framework

Figure 5.3: Implemented optimization mechanism via FeedbackGAN.During the
optimization phase, at the end of each epoch, a set of new SMILES strings are
sampled, evaluated and ranked according to the output of the Predictor. The best
scoring samples are then incorporated into the “Real Data” by replacing the worst
molecules.

correctly reconstructed SMILES string is automatically valid.

The generated SMILES are syntactically and biochemically validated by RDkit [35].

From the group of valid molecules, its uniqueness is also computed as the percent-

age of different generated valid molecules. Since it is not just important that the

generated molecules are unique but also that they are diverse, the Internal Diversity

(Int Div) and External Diversity (Ext Div) are also computed using the Tanimoto

Similarity, similar to the previous experiment (see Section 4.2.4 on Page 46).

5.3 Experimental Results and Discussion

5.3.1 Datasets

The dataset used to do the experimental analysis on the Encoder-Decoder model in

order to find the best architecture and set of parameters was the ChEMBL dataset

[98].

59

5. GAN-based Framework

Once the best architecture and set of hyperparameters had been defined, the model

was trained on two other more complex datasets: composed dataset 1 and com-

posed dataset 2 which contain 100,000 and 500,000 drug-like molecules, respectively,

that were retrieved from the remaining datasets mentioned in Table 5.1. This re-

sulted in datasets that include a wider variety of compounds and molecules with

and without sterochemestry.

All the SMILES strings were canonicalized, and there were no duplicates. The

SMILES strings are preprocessed by being tokenized character by character, adding

‘G’ as the first token of each SMILES and ‘A’ at the end and for padding. The

SMILES are then either One-hot Encoded (OHE), where each token becomes a

binary vector or passed through an embedding layer that converts each token into

a dense vector that is learned by the model (Decoder).

Table 5.1: Summary of the datasets used throughout the experiment.

Dataset # Compouds Labeled Observations
ChEMBL [98] 1,178,946 No -

Zinc Biogenic [10] 108,283 No -
ad2a 4,729 Yes ChEMBL ID 251
KOR 5,262 Yes ChEMBL ID 237
jak2 1,697 Yes ChEMBL ID 2971

bbbp [109] 1,340 Yes -
composed dataset 1 100,000 No -
composed dataset 2 500,000 No -

5.3.2 Encoder-Decoder Model

This section explains the experimental analysis and exhaustive grid search strat-

egy that was employed to find the best structure and set of hyper parameters for

the Encoder-Decoder model. The aim of this model is to convert the molecular

compounds into continuous latent space vectors and reconstruct them correctly. It

should be noted that two different structures for the Encoder input layer were con-

sidered: one with One Hot Encoding (OHE) and the other with Embedding (see

Section 5.2.1 on Page 54 for more details).

Encoder-Decoder with OHE Structure

This section presents the results for the model with the structure that contains

OHE layer as input to the Encoder. Table 5.2 shows the set of parameters that were

60

5. GAN-based Framework

studied in this part. The models are evaluated on their ability to correctly recon-

struct 1,000 SMILES strings from the training set and 1,000 SMILES strings from

the hold-out test set. This approach was chosen in order to analyse the generaliza-

tion capability of the model. The closer the percentage of correctly reconstructed

molecules in the test set to the one in the train set, the better the generalization of

the model.

Table 5.2: Search space for finding the optimal set of parameters of the proposed
Encoder-Decoder model.

Parameters Search Space
Number of Layers [1,2,3]

Number of LSTM/BiLSTM Units [256,512,1024]
Batch Size [16,32,64,128,256]

Batch Normalization Momentum [0.7,0.8,0.9,0.95]
Latent Dimension [64,128,512,1024]

Noise Standard Deviation [0.1,0.15,0.2,0.25]
Training Data [10,000, 100,000, 200,000, 500,000]

In order to independently evaluate the effect of each hyperparameter, several exper-

iments were conducted and evaluated on an hold-out test set that contained 1,000

SMILES strings.

Table 5.3 shows the results obtained when keeping all the hyperparameters fixed

with the exception of the number of encoder BiLSTM layers which is always the

same as the number of decoder LSTM layers. The number of training data was

fixed at 100,000 SMILES strings, 512 units were used for the BiLSTM layers (256

for each direction) and for the LSTM layers. The batch normalization momentum

was set to 0.9 and the Noise standard deviation to 0.1. The model was trained

using the Adam Optimizer with a batch size of 128. As it can be seen, regard-

ing the percentage of correctly reconstructed SMILES in the train set, all models

performed well with 99.7%, 100.0% and 100.0% for 1, 2, and 3 layers, respectively.

However, regarding the test set, the model with two layers clearly outperformed the

remaining models by reaching 94.1% of correctly reconstructed compounds, showing

its improved generalization capability. The use of two encoder BiLSTM layers was

chosen for the following experiments and a structure of this model is represented in

Figure 5.2 on page 56.

Regarding the number of BiLSTM/LSTM units, the results of the experiments are

shown in table 5.4 from which it can be concluded that 512 units produces the model

61

5. GAN-based Framework

Table 5.3: Results for different number of encoder BiLSTM layers and de-
coder LSTM layers (Encoder-Decoder with OHE structure). Dataset# =100,000
test#=1000 BiLSTM/LSTM units=512 Latent dimension=512 Batch size=128
Batch normalization momentum=0.9 Optimizer=Adam Noise std=0.1

Encoder Decoder Last %Correctly %Correctly %Valid %Valid Train Total
BiLSTM LSTM Ep. Reconstruc Reconstruc (Train) (Test) Time Run Time
layers# Layers# (Train) (Test) (hh:mm:ss) (hh:mm:ss)

1 1 48 99.7 90.5 100.0 96.2 00:35:10 02:05:03
2 2 33 100.0 94.1 100.0 97.7 00:55:55 02:30:45
3 3 27 100.0 91.2 100.0 97.7 01:12:11 02:48:49

with better generalization capabilities.

Table 5.4: Results for different number of BiLSTM/LSTM units (Encoder-Decoder
with OHE structure). Dataset#=100,000 test#=1000 BiLSTM/LSTM layers=2
Latent dimension=512 Batch size=128 Batch normalization momentum=0.9 Opti-
mizer=Adam Noise std=0.1

BiLSTM Last Correctly Correctly Valid Valid Train Total
/LSTM Ep. Reconstruct Reconstruct (Train) (Test) Time Run Time
units (Train)% (Test)% % % (hh:mm:ss) (hh:mm:ss)

256 38 100.0 92.9 100.0 97.5 00:40:17 02:13:37
512 33 100.0 94.1 100.0 97.7 00:55:55 02:30:45
1024 45 99.6 89.6 99.8 94.7 03:03:34 04:34:52

After setting the number of units to 512, the effect of using different batch sizes:

16, 32, 64, 128 and 256 was evaluated. According to table 5.5, a batch size of 64

returned the best results with 93.7% of correctly reconstructed molecules in the test

set. It is interesting to note that the worst result, both in terms of train and test

set, was obtained for a batch size of 16.

Table 5.5: Results for different number of batch size (Encoder-Decoder
with OHE structure) Dataset#= 00,000 test#=1000 BiLSTM/LSTM layers=2
BiLSTM/LSTM units=256 Latent dimension=512 Batch normalization momen-
tum=0.9 Optimizer=Adam Noise std=0.1

Batch Last Correctly Correctly Valid Valid Train Total
Size Ep. Reconstruct Reconstruct (Train) (Test) Time Run Time

(Train)% (Test)% % % (hh:mm:ss) (hh:mm:ss)

16 20 94.3 86.0 98.3 96.4 01:38:46 03:12:46
32 28 99.0 92.0 99.9 97.5 01:48:40 03:20:16
64 44 99.9 93.7 100.0 98.4 01:26:39 03:01:33
128 38 100.0 92.9 100.0 97.5 00:40:17 02:13:37
256 45 99.9 92.7 100.0 96.6 00:28:44 02:00:16

The proposed structure for the Encoder-Decoder model (see Figure 5.2 on Page 56)

includes a Batch Normalization Layer between every other type of layer. This type

62

5. GAN-based Framework

of layer requires the user to define the value for the Batch Normalization Momentum

(BNM) which is the momentum of the moving average used during inference. Table

5.6 shows the results for four different BNM values: 0.95, 0.9, 0.8 and 0.7. The

four models performed fairly similar, indicating that this parameter does not have

a critical effect on the overall performance. Nevertheless, this parameter was set to

0.9 from here onwards.

Table 5.6: Results for different values Batch Normalization Momentum (BNM)
(Encoder-Decoder with OHE structure). Dataset#=100,000 test#=1000 BiL-
STM/LSTM layers=2 BiLSTM/LSTM units=256 Latent dimension=512 Batch
size=128 Optimizer=Adam Noise std=0.1

Batch Last Correctly Correctly Valid Valid Train Total
Normalization Ep. Reconstruct Reconstruct (Train) (Test) Time Run Time
Momentum (Train)% (Test)% % % (hh:mm:ss) (hh:mm:ss)

0.95 38 99.9 92.6 99.9 97.5 00:40:57 02:15:51
0.9 30 100.0 92.7 100.0 96.3 00:32:51 02:06:20
0.8 27 99.8 92.4 100.0 97.4 00:28:57 02:00:46
0.7 29 99.2 92.2 99.6 96.9 00:29:39 01:48:29

The Latent Dimension defines the dimension of the context vectors. The lower this

value, the more the information will have to be compressed and potentially lost.

Table 5.7 summarizes the performance of models with different latent dimensions:

64, 128, 256, 512 and 1024. Even though the best model in terms of the percentage

of correctly reconstructed molecules was the one with a latent dimension of 1024

(with 93.9%), this parameter was fixed at 256 for two reasons: the performance was

similar (93.2%) and a latent dimension of 256, as opposed to 1024, would require

less running time when implementing the full framework.

Table 5.7: Results for different latent dimensions (Encoder-Decoder with
OHE structure). Dataset#=100,000 test#=1000 BiLSTM/LSTM layers=2 BiL-
STM/LSTM units=512 Batch size=128 Batch normalization momentum=0.9 Opti-
mizer=Adam Noise std=0.1

Latent Last Correctly Correctly Valid Valid Train Total
Dimension Ep. Reconstruct Reconstruct (Train) (Test) Time Run Time

(Train)% (Test)% % % (hh:mm:ss) (hh:mm:ss)

64 41 100.0 91.5 100.0 96.6 01:08:07 02:41:29
128 35 99.9 91.9 99.9 96.0 00:58:19 02:31:33
256 35 100.0 93.2 100.0 97.4 00:58:40 02:33:03
512 30 100.0 92.7 100.0 96.3 00:32:51 02:06:20
1024 34 100.0 93.9 100.0 97.6 00:57:08 02:30:53

The last layer of the Encoder part of the model is responsible for adding Gaussian

Noise to the vector so that the model can become more robust at translating between

63

5. GAN-based Framework

SMILES strings and context vectors. Therefore, the effect of the standard deviation

of the distribution was studied and the results are shown in Table 5.8. The model

with a standard deviation of 0.2 returned the highest performance with 92.7% of

correctly reconstructed molecules in the test set.

Table 5.8: Results for different values of Noise Standard Deviation (Encoder-
Decoder with OHE structure). Dataset#=100,000 test#=1000 BiLSTM/LSTM
layers=2 BiLSTM/LSTM units=512 Latent dimension=256 Batch size=128 Batch
normalization momentum=0.9 Optimizer=Adam

Noise Last Correctly Correctly Valid Valid Train Total
Std Ep. Reconstruct Reconstruct (Train) (Test) Time Run Time

(Train)% (Test)% % % (hh:mm:ss) (hh:mm:ss)

0.1 36 100.0 91.3 100.0 97.3 01:00:35 02:31:44
0.15 27 99.9 91.2 100.0 96.6 00:46:17 02:17:11
0.2 31 100.0 92.7 100.0 98.1 00:52:02 02:26:19
0.25 30 100.0 90.8 100.0 97.3 00:50:21 02:25:24

As a final experiment, the impact of the number of training data was also eval-

uated and the results are summarized in Table 5.9. As expected, the higher the

number of training data, the higher the performance of the model. With 500,000

SMILES strings it was possible to achieve 100.0% and 99.1% of correctly recon-

structed molecules in the train and test sets, respectively.

Table 5.9: Results for different number of SMILES in dataset (Encoder-Decoder
with OHE structure). Test#=1000 BiLSTM/LSTM layers=2 BiLSTM/LSTM
units=512 Latent dimension=256 Batch Size=128 Batch normalization momen-
tum=0.9 Optimizer=Adam Noise std=0.1

SMILES Last Correctly Correctly Valid Valid Train Total
Num Ep. Reconstruct Reconstruct (Train) (Test) Time Run Time

(Train)% (Test)% % % (hh:mm:ss) (hh:mm:ss)

10000 49 25.5 8.5 63.0 53.7 00:08:29 01:44:47
100000 34 99.8 83.4 100.0 95.2 00:56:39 02:29:42
200000 44 100.0 96.5 100.0 98.7 02:25:00 03:59:04
500000 33 100.0 99.1 100.0 99.8 07:01:27 09:10:33

Encoder-Decoder with Embedding Structure

As OHE is known to be a sparse and high-dimensional type of encoding [110], the

use of an embedding layer as the input layer to the Encoder is studied in this section.

An Embedding layer is expected to be a more computationally efficient approach

and to retain information about the relations between atoms that would not be

present when employing OHE.

64

5. GAN-based Framework

Therefore, this section summarizes the results for the model that contains an em-

bedding layer as input following a strategy similar to the previous section. Table

5.10 shows the set of parameters that are studied in this part.

Table 5.10: Search space for finding the optimal set of parameters of the proposed
Encoder-Decoder model (with Embedding structure).

Parameters Search Space
Number of Layers [1,2,3]

Number of BiLSTM Units [256,512,1024]
Batch Size [16,32,64,128,256]

Embedding Dimension [64,128,256,512]
Latent Dimension [64,128,256,512,1024]

Training Data [50,000, 100,000, 500,000, 1,000,000]

Table 5.11 shows the results obtained for a different number of encoder BiLSTM

layers (which is equal to the number of decoder LSTM layers): 1, 2 and 3. From it

we can conclude that, as with the previous section, a model with two layers returns

the highest percentage of correctly reconstructed molecules with 100.0% and 94.3%

for the train and test sets, respectively. For this experiment the number of training

data was set to 100,000, the number of BiLSTM/LSTM units and latent dimension

were both set to 512 and the embedding dimension to 256. The models were trained

with a batch size of 128 and using the Adam Optimizer. The BNM was set to 0.9

and the noise standard deviation to 0.1.

Table 5.11: Results for different number of encoder BiLSTM layers and decoder
LSTM layers (Encoder-Decoder with Embedding structure). Dataset#=100,000
test# =1000 BiLSTM/LSTM units=512 Embedding dimension=256 Latent dimen-
sion=512 Batch size=128 Batch normalization momentum=0.9 Optimizer=Adam
Noise std=0.1

Encoder Decoder Last Correctly Correctly Valid Valid Train Total
BiLSTM LSTM Ep. Reconstruct Reconstruct (Train) (Test) Time Run Time
Layers # Layers # (Train)% (Test)% % % (hh:mm:ss) (hh:mm:ss)

1 1 23 99.9 90.5 100.0 96.9 00:21:04 01:51:14
2 2 33 100.0 94.3 100.0 98.3 01:00:56 02:33:26
3 3 29 100.0 91.7 100.0 98.2 01:22:05 02:58:28

The next step was to evaluate the number of BiLSTM/LSTM units. A summary of

the results is shown in Table 5.12 where 256, 512 and 1024 units were considered.

The model with 512 BiLSTM/LSTM units clearly outperformed the competing ones

by reaching 100.0% and 94.3% of correctly reconstructed molecules from the train

and test sets, respectively.

65

5. GAN-based Framework

Table 5.12: Results for different number of BiLSTM/LSTM units (Encoder-
Decoder with Embedding structure). Dataset#=100,000 test#=1000 BiL-
STM/LSTM layers=2 Embedding dimension=256 Latent dimension=512 Batch
size=128 Batch normalization momentum=0.9 Optimizer=Adam Noise std=0.1

BiLSTM Last Correctly Correctly Valid Valid Train Total
/LSTM Ep. Reconstruct Reconstruct (Train) (Test) Time Run Time
units (Train)% (Test)% % % (hh:mm:ss) (hh:mm:ss)

256 27 99.9 92.8 100.0 97.2 00:30:15 02:04:32
512 33 100.0 94.3 100.0 98.3 01:00:56 02:33:26
1024 32 99.7 83.0 99.8 95.3 02:28:34 04:05:02

Table 5.13 shows the results obtained for different batch sizes: 16, 32, 64, 128 and

256. The percentages of correctly reconstructed train and test molecules were similar

for batch sizes of 64 and 128. A batch size of 64 was used from here onwards.

Table 5.13: Results for different number of batch size (Encoder-Decoder with Em-
bedding structure). Dataset#=100,000 test#=1000 BiLSTM/LSTM layers=2 BiL-
STM/LSTM units=512 Embedding dimension=256 Latent dimension=512 Batch
normalization momentum=0.9 Optimizer=Adam Noise std=0.1

Batch Last Correctly Correctly Valid Valid Train Total
Size Ep. Reconstruct Reconstruct (Train) (Test) Time Run Time

(Train)% (Test)% % % (hh:mm:ss) (hh:mm:ss)

16 36 35.3 70.0 98.5 93.5 04:05:51 05:37:50
32 12 18.7 17.0 81.5 78.9 00:52:41 02:24:09
64 35 100.0 92.2 100.0 98.5 01:26:57 03:01:01
128 31 99.7 92.2 100.0 97.6 00:57:14 02:30:01
256 29 100.0 91.0 100.0 96.3 00:47:11 02:19:49

Regarding the choice of the embedding dimension, the results are presented in table

5.14. There was no outstanding model which prompted the experiment showed

in Table 5.15 where an exhaustive comparison between the values chosen for the

embedding and latent dimensions is performed. From Table 5.15, the model with

an embedding dimension of 256 and a latent dimension of 256 was chosen due to its

higher performance and better generalization capability by correctly reconstructing

95.2% of the molecules in the test set.

Lastly, an evaluation regarding the size of the training data was performed. Once

again, and as shown in Table 5.16, using a larger dataset results in an higher per-

formance of the model.

66

5. GAN-based Framework

Table 5.14: Results for different number of embedding dimension in encoder
(Encoder-Decoder with Embedding structure). Dataset#=100,000 test#=1000
BiLSTM/LSTM layers=2 BiLSTM/LSTM units=512 Latent dimension=512 Batch
Size=128 Batch normalization momentum=0.9 Optimizer=Adam Noise std=0.1

Embedding Last Correctly Correctly Valid Valid Train Total
Dimension Ep. Reconstruct Reconstruct (Train) (Test) Time Run Time

(Train)% (Test)% % % (hh:mm:ss) (hh:mm:ss)

64 39 100.0 94.5 100.0 97.9 01:11:27 02:44:08
128 31 100.0 94.2 100.0 98.1 00:57:22 02:22:57
256 31 99.7 92.2 100.0 97.6 00:57:14 02:30:01
512 30 99.9 94.6 99.9 98.2 00:55:26 02:28:16

Table 5.15: Results for comparison between embedding dimension and la-
tent dimension (Encoder-Decoder with Embedding structure). Dataset#=100,000
test#=1000 BiLSTM/LSTM layers=2 BiLSTM/LSTM units=512 Batch size=128
Batch normalization momentum=0.9 Optimizer=Adam Noise std=0.1

Embedding Latent Last Correctly Correctly Valid Valid Train Total
Dimension Dimension Ep. Reconstruct Reconstruct (Train) (Test) Time Run Time

(Train)% (Test)% % % (hh:mm:ss) (hh:mm:ss)

64 64 34 100.0 92.1 100.0 97.1 00:27:48 01:02:32
64 128 32 100.0 92.3 100.0 97.3 00:26:15 01:01:07
64 256 33 100.0 93.7 100.0 98.0 00:27:04 01:01:59
64 512 25 99.9 91.7 100.0 97.1 00:20:44 00:55:37
64 1024 27 99.7 92.9 99.9 97.3 00:22:23 00:57:13
128 64 50 100.0 93.2 100.0 97.4 00:40:32 01:15:26
128 128 46 100.0 92.0 100.0 96.7 00:37:25 01:12:13
128 256 25 99.9 90.7 100.0 98.0 00:20:44 00:55:38
128 512 33 100.0 92.6 100.0 96.5 00:27:08 01:02:04
128 1024 33 100.0 92.1 100.0 97.4 00:27:06 01:01:55
256 64 35 100.0 91.2 100.0 97.7 00:28:39 01:03:32
256 128 35 100.0 93.2 100.0 97.6 00:28:31 01:03:21
256 256 39 99.9 95.2 100.0 97.8 00:31:54 01:06:47
256 512 37 100.0 93.3 100.0 98.3 00:30:26 01:05:14
256 1024 26 99.9 94.1 100.0 97.9 00:21:24 00:56:20
512 64 38 99.9 91.3 99.9 96.6 00:31:01 01:05:57
512 128 44 100.0 92.7 100.0 97.5 00:35:48 01:10:40
512 256 36 100.0 90.7 100.0 96.6 00:29:28 01:04:25
512 512 27 100.0 92.2 100.0 96.7 00:22:21 00:57:28
512 1024 31 100.0 93.5 100.0 97.6 00:25:33 01:00:35
1024 64 34 100.0 92.6 100.0 96.8 00:27:56 01:03:00
1024 128 29 99.9 93.8 100.0 98.0 00:24:00 00:59:00
1024 256 30 99.8 92.1 99.8 97.3 00:24:41 00:59:40
1024 512 31 100.0 93.4 100.0 98.2 00:25:30 01:00:34
1024 1024 32 100.0 93.6 100.0 97.2 00:26:16 01:01:21

67

5. GAN-based Framework

Table 5.16: Results for different number of SMILES in dataset (Encoder-
Decoder with Embedding structure). Test#=1000 BiLSTM/LSTM layers=2 BiL-
STM/LSTM units=512 Embedding dimension=256 Latent dimension=512 Batch
Size=128 Batch normalization momentum=0.9 Optimizer=Adam Noise std=0.1

SMILES Last Correctly Correctly Valid Valid Train Total
Ep. Reconstruct Reconstruct (Train) (Test) Time Run Time

(Train)% (Test)% % % (hh:mm:ss) (hh:mm:ss)

50000 38 100.0 84.5 100.0 93.8 00:15:22 00:49:55
100000 37 99.9 94.5 99.9 98.0 00:29:44 01:04:28
500000 21 99.9 98.8 100.0 99.8 01:26:54 02:01:49

The Proposed Encoder-Decoder Model

Taking in consideration the previous results, the chosen encoder-decoder model con-

tains two bidirectional LSTM layers with 512 units each, 256 for each direction. Both

the embedding dimension and latent dimension were set to 256. All the batch nor-

malization layers had a batch normalization momentum of 0.9. The Gaussian noise

layer added noise with a standard deviation of 0.1. The model was trained using

the Adam optimizer with a learning rate of 0.01, a batch size of 128, and the total

number of epochs was set to 100, but only the best models regarding the validation

loss were kept (10% of the training data was set as validation data).

This model was trained using the “composed dataset 1” and “composed dataset 2”

(see Section 5.3.1 on Page 59 for more details). The results from training with these

datasets which are more complex due to including a wider range of molecules and

also stereo-chemical information are summarized in Table 5.17.

In both cases, the model reaches high percentages of correctly reconstructed molecules

for the train and test sets. As expected, the model trained with 500,000 molecules

learned to generalize better (with 99.2% and 99.0% for the train and test set, re-

spectively) when compared to the one trained on only 100,000. It should be noted

that molecules that are correctly reconstructed are automatically valid. Validity

(evaluated by RDkit [35]) is constantly higher than the percentage of correct recon-

struction, which means that some molecules are reconstructed into valid molecules

but not the intended ones.

5.3.3 WGAN-GP

The composed dataset 2 with 500,000 SMILES strings was passed through the

Encoder-Decoder model presented in the previous section in order to separate the

68

5. GAN-based Framework

Dataset #Training Data %Correct R. %Correct R. %Validity %Validity
(train set) (test set) (train set) (test set)

composed dataset 1 100,000 98.6 96.8 99.7 99.1
composed dataset 2 500,000 99.2 99.0 99.9 99.8

Table 5.17: Performance of the Encoder-Decoder model for 100,000 and 500,000
training data.

correctly reconstructed molecules from the ones that the model could not properly

reconstruct. From the set of correctly reconstructed molecules, 100,000 were used

as training data for the WGAN-GP. This is an important step so that the WGAN-

GP would not train on vectors that the Encoder-Decoder would not be able to

reconstruct.

The implemented WGAN-GP comprises a critic made up of three dense layers with

256 units and with Leaky-Relu as the activation function (with α = 0.3), except

for the final layer, which does not include an activation function. A vector of 64

dimensions is drawn from the uniform distribution and then passed through the

Generator that contains five dense layers with 256 dimensions each, except for the

first layer, which contains 128 dimensions; between these layers, Leaky-Relu acti-

vation function (α = 0.3) and batch normalization (momentum of 0.9) layers are

applied. Both the Generator and the Critic are trained using the Adam optimizer

with a learning rate of 0.0001 and include dropout layers with a value of 0.2. The

WGAN-GP was trained on 100,000 molecules and for 10,000 epochs. The results

of sampling 1,000 valid molecules using the full framework are presented in table

5.18 and Figure 5.4 from which it is possible to conclude that the GAN effectively

learned the training data distribution as it generates data that follows that same

distribution regarding the values of predicted pIC50. It is worth noting that the

validity of the generated data was only of 30.2%. This low value is attributed to the

fact that the WGAN-GP is learning to mimic a distribution of continuous vectors

that are then converted into a series of discrete tokens that need to abide to certain

rules to be considered valid SMILES strings, hence the difficulty in generating valid

molecules.

To further compare the generated data to the original training data in terms of

general drug-like properties, Figure 5.5 shows the relationship between the QED and

SA score (Figure 5.5a) and the relationship between logP and MW (Figure 5.5b).

By interpreting them, it is possible to conclude that the original data and generated

data are clearly overlapping which means that the GAN successfully learned the

69

5. GAN-based Framework

Table 5.18: Comparison of the Original Data with the Generated Data in terms
of predicted pIC50 and performance of the WGAN-GP model.

Original Data Generated Data
pIC50 Maximum 9.974 8.454
pIC50 Mean 6.003 5.984
pIC50 Minimum 4.548 5.083
pIC50 Standard Deviation 0.684 0.577
External Diversity - 0.890
Internal Diversity - 0.887
% Unique - 100.0
% Valid - 30.2

Figure 5.4: Comparison of the predicted pIC50 distributions for the original data
and generated data.

training data distribution in terms of several of its properties. It should be noted

that, to make the plots more perceptive, instead of resorting to the 100,000 molecules

in the training data, only 5,000 were used but care was taken to make sure that the

distribution of this smaller set in terms of predicted pIC50 was kept the same.

5.3.4 Performance of the Predictor

The optimal architecture for the KOR predictor consisted of an embedding layer

with 128 units, followed by two LSTM layers and a dense layer (128 units each) and

a final layer with a single unit. The model was trained using the Adam optimizer

(with β1 = 0.9 and β2 = 0.999) with a learning rate of 0.0001 and a batch size of

16. The maximum number of epochs was set to 100 but, as explained in Section

5.2.4 on Page 57, early stopping was employed and all the models stopped training

before reaching the 100th epoch. Figure 5.6 shows the scatter plot that results from

applying the predictor to the hold-out test set where it can be observed that the

model performs constantly well for the complete range of values.

70

5. GAN-based Framework

(a) QED vs. SA score (b) logP vs. MW

Figure 5.5: Evaluation of properties (QED, SA score, logP and MW) for the
original training data and generated data.

Figure 5.6: Predicted pIC50 versus true pIC50 and regression line for the test set.

5.3.5 Optimization through Transfer Learning

As a first approach to optimize the model towards the space of the desired properties,

Transfer Learning was employed.

Two experiments were devised: one that aims to maximize the affinity for KOR and

another that aims to minimize it. The affinity of a molecule for KOR is measured in

terms of pIC50 which is obtained by − log(IC50) where IC50 is the half-maximal

inhibitory concentration. Therefore, the higher the pIC50 value, the higher the

affinity for the receptor and the more powerful the inhibition will be.

Maximizing KOR affinity

From the KOR dataset, a subset with only molecules with a pIC50 higher than 7 was

created. This dataset was used to bias the WGAN-GP model with Transfer Learning

71

5. GAN-based Framework

towards the space of higher KOR affinities by retraining the trained model for 4,000

additional epochs. After employing TL, 1,000 valid SMILES strings were sampled.

Figure 5.7 shows the comparison of the KOR pIC50 distribution produced by the

unbiased and biased models where it is clear that the employed strategy resulted in

a shift towards the desired region of the chemical space which implies that the model

is generating molecules with an higher probability of inhibiting the KOR receptor.

Table 5.19 presents a comparison between these two models regarding distribution

metrics, diversity, uniqueness and validity. It should be highlighted that the mean

of the pIC50 distribution increased over 1.3 points for the biased model and the

maximum also increased from 8.896 to 10.444. It is also important to note that

the uniqueness and the internal and external diversity remained high for the biased

model.

Figure 5.7: Distribution of the predicted pIC50 values for the biased and unbiased
model (maximization through TL).

Table 5.19: Comparison of the performance of the biased and unbiased models
(maximization through TL).

Unbiased Biased
pIC50 Maximum 8.896 10.444
pIC50 Mean 5.961 7.317
pIC50 Minimum 5.055 5.178
External Diversity 0.891 0.896
Internal Diversity 0.891 0.868
% Unique 100.0 98.2
% Valid 34.5 44.5

Minimizing KOR affinity

To study the versatility of the framework, an experiment with the goal of minimizing

KOR affinity was also devised. From the KOR dataset, a subset with only molecules

with a pIC50 lower than 7 was created and used to train the model for an additional

72

5. GAN-based Framework

4,000 epochs; 1,000 valid molecules were sampled, and their pIC50 were predicted.

As observed in Table 5.20, the biased model retains high levels of uniqueness and

diversity. Figure 5.8 shows the pIC50 distribution plots for both models. From it we

can conclude that 4,000 epochs were not enough to provide an effective distribution

shift towards lower values of pIC50 since the molecules from the unbiased model

already had fairly low pIC50 values when compared to the subset used for the TL

procedure.

Figure 5.8: Distribution of the predicted pIC50 values for the biased and unbiased
model (minimization through TL).

Table 5.20: Comparison of the performance of the biased and unbiased models
(minimization through TL).

Unbiased Biased
pIC50 Maximum 8.896 8.912
pIC50 Mean 5.961 6.506
pIC50 Minimum 5.055 5.122
External Diversity 0.891 0.890
Internal Diversity 0.891 0.878
% Unique 100.0 99.3
% Valid 34.5 40.0

5.3.6 Optimization through FeedbackGAN

The previous approach biases the model towards a space where the desired property

belongs to the range of values presented in the dataset used to retrain the model.

This does not result in an effective minimization or maximization of the property of

interest but in a moderate shift of the overall distribution. In order to have a finer

control of the maximization/minimization of the desired property, a feedbackGAN-

based framework was employed. Since this strategy constantly updates the training

data by replacing the worst scoring molecules by the best, it gradually shifts the

73

5. GAN-based Framework

distribution towards the desired property. At the end of each epoch, 200 valid

molecules are sampled and the 20 best replace the worst molecules in the “real data”

training set. So that the changes in the dataset may be significant to effectively bias

the distribution that is being learned, only 5,000 molecules were used as “real data”

for the optimization process. These 5,000 molecules were sampled from the dataset

used to train the WGAN-GP taking in consideration the distribution of the original

dataset in terms of pIC50.

Maximizing KOR affinity

The unbiased WGAN-GP model (see Section 5.3.3 on Page 68) was optimised for 500

epochs considering that the best scoring molecules were the ones with the highest

pIC50. 1,000 valid molecules were sampled in intervals of 50 epochs and evalu-

ated in terms of distribution of predicted pIC50, validity, uniqueness and diversity.

These results are presented in table 5.21. Figure 5.9 shows the distribution of pre-

dicted pIC50 values in terms of a probability density for intervals of 100 epochs of

optimization where it can be observed that the implemented strategy results in a

successive shift of the overall distribution towards higher values of predicted pIC50.

The same conclusion can be drawn from Table 5.21 where it is clear that the mean of

the distributions is constantly increasing from 5.984 for the unbiased model to 7.283

for the model optimised for 500 epochs. It is important to note that the oscillations

in the minimum and maximum values of the distributions are expected as sampling

is a stochastic process.

Regarding the internal diversity of the generated molecules, it remains fairly con-

stant, at around 0.88. Also, the percentage of unique molecules in the sampled set

is almost always 100.0%. This implies that the model is not getting stuck on a local

minimum and collapsing into a restricted set of outputs.

Interestingly, the external diversity increases from 0.890 to 0.938. This means that

the model is not only generating diverse molecules but also constantly finding new

valid molecules as it moves towards a new area of the chemical space.

The increase in the percentage of valid molecules as the optimization process pro-

gresses is explained by the fact that, as this process starts, the training data is

reduced from 100,000 to 5,000 molecules, which means that the model can better

focus on learning between what is “real” and “fake” data. While the low validity is

clearly a downside of this method, it is counterbalanced by the high diversity and

74

5. GAN-based Framework

uniqueness.

Table 5.21: Comparison of pIC50 distribution measures throughout the optimiza-
tion process (maximization of KOR affinity).

Unbiased 50 100 150 200 250 300 350 400 450 500
epoch epoch epoch epoch epoch epoch epoch epoch epoch epoch

Max pIC50 8.454 8.341 8.852 9.340 9.354 8.911 9.149 9.000 8.939 9.241 9.179
Mean pIC50 5.984 6.501 6.719 6.791 6.851 7.015 7.074 7.168 7.204 7.273 7.383
Min pIC50 5.083 5.198 5.205 5.380 5.181 5.496 5.271 5.340 5.522 5.380 5.380
Int Div 0.887 0.890 0.890 0.887 0.891 0.886 0.885 0.885 0.883 0.878 0.877
Ext Div 0.890 0.900 0.909 0.908 0.915 0.923 0.922 0.926 0.930 0.937 0.938
% Unique 100.0 100.0 100.0 100.0 100.0 100.0 99.9 100.0 100.0 99.8 100.0
% Valid 30.2 15.1 25.7 32.0 38.7 44.0 46.9 51.6 52.1 60.4 62.3

Figure 5.9: Distribution of the predicted pIC50 values for the unbiased model and
the biased model at every 100 epochs (maximization of KOR affinity).

Although, as it as been shown, the proposed model was successful in maximizing

the overall KOR affinity of the generated molecules, for them to be considered as

potential drugs it is also important to evaluate metrics such as QED, logP , MW and

SA score (see Section2.5 on Page 16 for more details). Figure 5.10 shows the scatter

plots and distributions of these properties of 1,000 molecules generated after 500

epochs of optimization; the red square represents the region of drug-like properties.

From Figure 5.10a it can be concluded that most of of the molecules are outside the

desired region (high QED and low SA score), with most of them exhibiting a SA

score higher than 5 which implies that they are difficult to synthesize. From Figure

5.10b it can be observed that a significant amount of the generated molecules have

good values for both logP and MW, even though there is a general tendency towards

higher molecular weights.

75

5. GAN-based Framework

(a) QED vs SA score (b) logP vs. MW

Figure 5.10: Evaluation of properties (QED, SA score, logP and MW) for the bi-
ased model (500 epochs). The red square represents the region of desired properties.

Figure 5.11 shows the highest scoring molecules together with their properties for

the sets generated with the unbiased model (at the top) and the optimized models

at epochs 100, 200, 300, 400 and 500. It can be observed that as the pIC50 in-

creases, there seems to be a tendency to generate more complex molecules which is

in agreement with the generally high SA score values in Figure 5.10a.

Minimizing KOR affinity

Once again, to evaluate the versatility of the framework and also to study possible

off-target effects, the unbiased WGAN-GP model was optimised for 500 epochs

with the goal of shifting the probability distribution towards the minimization of

the predicted pIC50. Figure 5.12 shows the distribution of predicted pIC50 values

in terms of a probability density for intervals of 100 epochs while Table 5.22 presents

more detailed information regarding the distributions of predicted pIC50, diversity,

uniqueness and validity of the sampled molecules for every 50 epochs. From this

information it is possible to conclude that there was a first shift towards higher

predicted pIC50 values at the beginning of the optimization process before it started

to move towards the goal of minimization. This can be attributed to the fact that,

as previously explained, before starting the optimization process we reduced the

training dataset from 100,000 to 5,000 compounds effectively breaking the flow of

training. We also believe that this is the reason for the decrease in validity from

76

5. GAN-based Framework

Figure 5.11: Best scoring examples in terms of predicted pIC50 generated by the
proposed framework for every 100th epoch of optimization (maximization).

30.2% (unbiased) to 15.2% (epoch 50) which is then followed by a constant increase

as the model adapts to the new training data.

The internal and external diversity remain high throughout the optimization reach-

ing the highest values for the 500th epoch with 0.904 and 0.906, respectively. This

77

5. GAN-based Framework

implies that this optimization framework is capable of generating new valid molecules

while maintaining high values of uniqueness which is constantly close to 100.0%.

The overall shift between the unbiased and the optimized model (500 epochs) is

significantly less than the one observed for the maximization experiment This can

be largely attributed to the fact that the unbiased distribution is positively skewed

which makes it less likely to sample a high number of molecules with low pIC50

therefore slowing down the optimization process. In this sense, to achieve better

optimization results, one would either have to train the model for a higher number

of epochs or sample more molecules at each optimization epoch.

Table 5.22: Comparison of pIC50 distribution measures throughout the optimiza-
tion process (minimization of KOR affinity).

Unbiased 50 100 150 200 250 300 350 400 450 500
epoch epoch epoch epoch epoch epoch epoch epoch epoch epoch

Max pIC50 8.454 8.611 8.201 8.110 8.202 7.990 8.025 8.110 7.591 7.603 7.837
Mean pIC50 5.984 6.485 6.265 6.177 6.110 6.013 5.925 5.894 5.830 5.814 5.737
Min pIC50 5.083 5.133 5.141 5.140 5.091 5.052 4.971 4.995 5.058 5.030 5.001
Int Div 0.887 0.884 0.887 0.886 0.897 0.893 0.896 0.900 0.903 0.897 0.904
Ext Div 0.890 0.894 0.896 0.893 0.899 0.897 0.900 0.901 0.905 0.901 0.906
% Unique 100.0 100.0 100.0 100.0 99.9 99.9 99.7 99.9 99.7 99.7 99.2
% Valid 30.2 15.2 25.5 27.8 32.1 35.5 38.2 39.1 38.1 39.3 41.12

Figure 5.12: Distribution of the predicted pIC50 values for the unbiased model
and the biased model at every 100 epochs (minimization of KOR affinity).

Figure 5.13 shows the scatter plots and distributions of 1,000 molecules sampled

from the optimised model (500 epochs) regarding evaluation metrics such as the

QED, SA score, MW and logP with the red squares representing the region of

78

5. GAN-based Framework

desired drug-like properties. When comparing to the maximization experiment, we

can conclude that the molecules obtained from the minimization experiment are

typically less complex, having lower SA scores, MW and logP values. The same

can be deduced from observing Figure 5.14 which shows the evolution of the samples

compounds with the lowest predicted pIC50 throughout the optimization process.

(a) QED vs SA score (b) logP vs. MW

Figure 5.13: Evaluation of properties (QED, SA score, logP and MW) for the bi-
ased model (500 epochs). The red square represents the region of desired properties.

5.4 Conclusions

The devised framework effectively integrates the phases of generation and evalua-

tion of new molecules. We can consider three stages for training the framework,

with the first two being generic and the final one being goal-specific. Firstly, an

Encoder-Decoder model was trained to map SMILES strings to a latent space with

fixed-length vectors. The trained Encoder-Decoder model was able to successfully

reconstruct 99.0% of the hold-out test set. Secondly, resorting to this newfound

representation as the training data, the WGAN-GP model was trained to learn and

mimic its distribution. While the trained WGAN-GP model generates a low percent-

age of valid SMILES strings, they are constantly diverse and unique which implies

that the model did not suffer from mode collapse. Also, by evaluating the distribu-

tion of predicted pIC50 and scatter plots for QED, SA score, MW and logP , we

concluded that the generated distribution follows the original distribution in terms

of all of these properties; therefore, effectively learning the underlying characteristics

79

5. GAN-based Framework

Figure 5.14: Best scoring examples in terms of predicted pIC50 generated by the
proposed framework for every 100th epoch of optimization (minimization).

of the drug-like molecules that comprise the training data. As the Encoder-Decoder

and the WGAN-GP models are generic, they only need to be trained once.

For the optimization step, two approaches were considered: TL and feedbackGAN.

While TL obtained the highest predicted pIC50 value with 10.44 and a clear shift

80

5. GAN-based Framework

of the distribution shape was observed for the maximization experiment, the same

didn’t occur for the minimization experiment. Overall, we concluded that the feed-

backGAN approach was more successful as the shift in the generated distribution

was more prominent for both of the experiments while maintaining high levels of

diversity and uniqueness. Also, as the optimization process developed, there was

an increase in the validity of the generated molecules. Lastly, it is interesting to

note that the maximization experiment resulted in more complex molecules while

the minimization experiment typically produced less complex compounds.

The overall framework has the advantage that only the optimization step needs to be

adapted to different problems and goals, requiring for that a scoring metric function

which in this case-study was the KOR Predictor.

Technical notes: The models implemented in this chapter were coded in Python

3.9.4 using Tensorflow 2.5. They were trained on a computer with AMD Ryzen

9 3900x 12-core processor, 64 GB RAM and GPU Nvidia RTX 3080 using CUDA

10.1 and Ubuntu 20.04.3 LTS. The chemistry library used throughout is RDKit

2020 09 2 [35].

81

5. GAN-based Framework

82

6

Conclusions and Future work

6.1 Conclusions

In this work, a comprehensive study on RNN architectures and its most common

hyper-parameters was performed, including a comparison between different types

of encoding (OHE and embedding) and datasets (with and without stereo-chemical

information). We concluded that LSTM cells clearly outperform the competing

types of RNN and drew several comparisons that may serve as guidelines for future

experiments. The strategy applied gave rise to a model with as high as 98.7% of

valid SMILES with high diversity when not considering stereo-chemical information.

When applying it to the Biogenic dataset, we obtained 94.7% of validity and a

diversity of 0.90, proving that this is a viable way of generating new compounds,

even when considering stereo-chemical information.

A GAN-based framework that aims at generating and optimizing new molecules

was also developed. As GANs cannot be straightforwardly applied to discrete data,

which is the case of SMILES strings, an Encoder-Decoder model was implemented

in order to obtain a new and continuous representation of the molecules. This

model reached 98.8% of correctly reconstructed SMILES strings on an hold-out test

set and 99.9% on the train set, which shows an improvement when compared to

similar approaches presented in the literature. By passing the training data, that

comprises SMILES strings, through the Encoder, an equivalent dataset is obtained

that, instead of SMILES, contains fixed length continuous vectors. It’s this new-

found dataset that is then used to train the GAN, more specifically a WGAN-

GP. This type of model is able to implicitly learn the distribution of the training

data and generate new points following that same distribution by pairing up two

competing neural networks: a Generator and Discriminator. Once the WGAN-

GP is trained, the Generator network is used to generate new vectors that are then

83

6. Conclusions and Future work

converted into SMILES strings by the Decoder network. We showed that the trained

WGAN-GP was able to replicate the distribution of the training data in terms of

the predicted binding affinity for the KOR while still generating molecules with

high levels of diversity (0.890 for the external diversity and 0.887 for the internal

diversity). Even though the low percentage of valid generated molecules (30.2%)

and the time required to train the models is clearly a drawback of this method, the

diversity of the generated compounds and the percentage of their uniqueness (100%)

makes up for it.

Once the WGAN-GP was trained on the dataset created by the Encoder,an opti-

mization strategy was employed that consisted on continuing the training of the

model and generating new molecules at every epoch. These new molecules were

then evaluated according to their binding affinity for the KOR and the best scoring

generated molecules replaced the worst scoring entries in the training data resorting

to a feedback loop. We proved that this strategy successfully resulted in a shift of

the generated distribution with its mean moving from 5.984 for the unbiased model

to 7.383 when aiming to maximize the predicted pIC50 of the generated molecules.

Along with this, there was also an increase in the validity of the generated com-

pounds from 30.2% to 62.3% with the internal diversity oscillating around 0.88

which implies that the model did not suffer from mode collapse. Interestingly, the

external diversity increased as the optimization process proceeded meaning that the

framework was indeed able to generate novel compounds with binding affinities as

high as 9.18. In this sense, the devised framework was effectively maximized though

it should be noted that this was accompanied by an increase in the complexity of

the generated compounds proved by the synthetic accessibility scores of the gen-

erated molecules. Moreover, we also showed that this optimization framework can

be successfully applied to a different goal such as the minimization of the binding

affinity.

In summary, this work contributed with an improved RNN generator and with a

novel GAN-based framework that integrates drug generation and evaluation and is

therefore able to successfully optimize the desired property. Moreover, as stereo-

chemical information, which is imperative when working with potential drug com-

pounds, was considered in both cases, we showed that, even though most works

overlook it, it can be successfully included in the models without significantly re-

ducing their performance.

84

6. Conclusions and Future work

6.2 Future Work and Open Issues

One of the main limitations of the proposed GAN-based framework lies in the fact

that we are only optimizing the model towards a single property (in this case, the

binding affinity for the KOR) whereas it has been explained that, for a molecule to

be considered a candidate lead, it must not only bind to the chosen target but also

exhibit a set of desired drug-like properties. In light of this, it would be interesting

to create and evaluate the viability of a Predictor that would produce a scoring that

takes in consideration several other metrics such as the SA score, QED, logP and/or

MW. By optimising the model in such a way, we would likely be able to generate

molecules with high binding affinities but also strong drug-like properties and easily

synthesizable.

It would also be important to compare the devised framework with other published

works on DL applied to drug design. In order to do so, we could take advantage

of freely available evaluation frameworks such as Guacamol [111] which provides a

dataset, benchmarks for evaluating the distribution learning and the goal-directed

optimization, and the results obtained by the most widely known works. In doing

so, we would be able to rank and compare our model with the competing strategies.

It is worth mentioning that we believe that our model will perform particularly well

on most of the evaluated metrics as the results presented in this dissertation were

obtained with datasets that include stereo-chemical information and are, therefore,

more complex, while the Guacamol dataset doesn’t include this type of information.

In addition, a comparison between the molecules generated by the unbiased GAN-

based framework and the RNN generator could be made in order to conclude on

whether different models are able to generate different types of molecules or not. A

similar study could be taken for the optimized GAN and an optimized version of

the RNN generator (with either TL or RL).

Lastly, and as the continuous representation of the SMILES strings created by the

Encoder-Decoder model has shown promising results, we could further explore the

information present in this type of representation and attempt to train several pre-

dictive models with it and search for specific properties in that latent space.

85

6. Conclusions and Future work

86

Bibliography

[1] J. A. DiMasi, H. G. Grabowski, and R. W. Hansen, “Innovation in the phar-

maceutical industry: new estimates of r&d costs,” Journal of health economics,

vol. 47, pp. 20–33, 2016.

[2] M. B. M. A. Rashid, “Artificial intelligence effecting a paradigm shift in drug

development,” SLAS TECHNOLOGY: Translating Life Sciences Innovation,

vol. 26, no. 1, pp. 3–15, 2021.

[3] H. Xue, J. Li, H. Xie, and Y. Wang, “Review of drug repositioning approaches

and resources,” International journal of biological sciences, vol. 14, no. 10, p.

1232, 2018.

[4] T. Rodrigues, D. Reker, P. Schneider, and G. Schneider, “Counting on natural

products for drug design,” Nature chemistry, vol. 8, no. 6, p. 531, 2016.

[5] V. D. Mouchlis, A. Afantitis, A. Serra, M. Fratello, A. G. Papadiamantis,

V. Aidinis, I. Lynch, D. Greco, and G. Melagraki, “Advances in de novo drug

design: from conventional to machine learning methods,” International journal

of molecular sciences, vol. 22, no. 4, p. 1676, 2021.

[6] G. Schneider and U. Fechner, “Computer-based de novo design of drug-like

molecules,” Nature Reviews Drug Discovery, vol. 4, no. 8, pp. 649–663, 2005.

[7] B. Ramsundar, P. Eastman, P. Walters, and V. Pande, Deep learning for the

life sciences: applying deep learning to genomics, microscopy, drug discovery,

and more. O’Reilly Media, Inc., 2019.

[8] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,

S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial networks,”

arXiv preprint arXiv:1406.2661, 2014.

87

Bibliography

[9] M. Olivecrona, T. Blaschke, O. Engkvist, and H. Chen, “Molecular de-novo de-

sign through deep reinforcement learning,” Journal of cheminformatics, vol. 9,

no. 1, pp. 1–14, 2017.

[10] S. Zheng, X. Yan, Q. Gu, Y. Yang, Y. Du, Y. Lu, and J. Xu, “Qbmg: quasi-

biogenic molecule generator with deep recurrent neural network,” Journal of

cheminformatics, vol. 11, no. 1, pp. 1–12, 2019.

[11] O. Prykhodko, S. V. Johansson, P.-C. Kotsias, J. Arús-Pous, E. J. Bjerrum,

O. Engkvist, and H. Chen, “A de novo molecular generation method using

latent vector based generative adversarial network,” Journal of Cheminfor-

matics, vol. 11, no. 1, pp. 1–13, 2019.

[12] I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and A. C. Courville,

“Improved training of wasserstein gans,” in Advances in Neural Information

Processing Systems, I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach,

R. Fergus, S. Vishwanathan, and R. Garnett, Eds., vol. 30. Curran

Associates, Inc., 2017. [Online]. Available: https://proceedings.neurips.cc/

paper/2017/file/892c3b1c6dccd52936e27cbd0ff683d6-Paper.pdf

[13] A. Gupta and J. Zou, “Feedback gan (fbgan) for dna: a novel feedback-loop

architecture for optimizing protein functions,” 2018.

[14] B. P. Santos, M. Abbasi, T. Pereira, B. Ribeiro, and J. P. Arrais, “Optimizing

recurrent neural network architectures for de novo drug design,” in 2021 IEEE

34th International Symposium on Computer-Based Medical Systems (CBMS),

2021, pp. 172–177.

[15] E. Rich, “Artificial intelligence and the humanities,” Computers and the Hu-

manities, pp. 117–122, 1985.

[16] G. Hessler and K.-H. Baringhaus, “Artificial Intelligence in Drug Design,”

Molecules, vol. 23, no. 10, p. 2520, oct 2018.

[17] R. Wu, S. Yan, Y. Shan, Q. Dang, and G. Sun, “Deep image: Scaling up image

recognition,” arXiv preprint arXiv:1501.02876, vol. 7, no. 8, 2015.

[18] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation by jointly

learning to align and translate,” arXiv preprint arXiv:1409.0473, 2014.

[19] H.-W. Dong, W.-Y. Hsiao, L.-C. Yang, and Y.-H. Yang, “Musegan: Multi-

track sequential generative adversarial networks for symbolic music genera-

88

https://proceedings.neurips.cc/paper/2017/file/892c3b1c6dccd52936e27cbd0ff683d6-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/892c3b1c6dccd52936e27cbd0ff683d6-Paper.pdf

Bibliography

tion and accompaniment,” in Thirty-Second AAAI Conference on Artificial

Intelligence, 2018.

[20] G. Skinner and T. Walmsley, “Artificial intelligence and deep learning in video

games a brief review,” in 2019 IEEE 4th International Conference on Com-

puter and Communication Systems (ICCCS). IEEE, 2019, pp. 404–408.

[21] H. Chen, O. Engkvist, Y. Wang, M. Olivecrona, and T. Blaschke, “The rise

of deep learning in drug discovery,” Drug Discovery Today, vol. 23, no. 6, pp.

1241–1250, jun 2018.

[22] E. Alpaydin, Introduction to machine learning. MIT press, 2014.

[23] S. Russell and P. Norvig, “Artificial intelligence: a modern approach,” 2010.

[24] J. M. De Sa, Pattern recognition: concepts, methods, and applications.

Springer Science & Business Media, 2001.

[25] W. Ertel, Introduction to artificial intelligence. Springer, 2017.

[26] C. C. Aggarwal, Neural Networks and Deep Learning. Springer International

Publishing, 2018. [Online]. Available: https://doi.org/10.1007%2F978-3-319-

94463-0

[27] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press, 2016,

http://www.deeplearningbook.org.

[28] D. Foster, Generative deep learning: teaching machines to paint, write, com-

pose, and play. O’Reilly Media, 2019.

[29] S. Sinha and D. Vohora, “Drug discovery and development: An overview,”

Pharmaceutical Medicine and Translational Clinical Research, pp. 19–32, 2018.

[30] A. B. Deore, J. R. Dhumane, R. Wagh, and R. Sonawane, “The stages of

drug discovery and development process,” Asian Journal of Pharmaceutical

Research and Development, vol. 7, no. 6, pp. 62–67, 2019.

[31] R. Gupta, D. Srivastava, M. Sahu, S. Tiwari, R. K. Ambasta, and P. Kumar,

“Artificial intelligence to deep learning: Machine intelligence approach for

drug discovery,” Molecular Diversity, pp. 1–46, 2021.

89

https://doi.org/10.1007%2F978-3-319-94463-0
https://doi.org/10.1007%2F978-3-319-94463-0
http://www.deeplearningbook.org

Bibliography

[32] L. David, A. Thakkar, R. Mercado, and O. Engkvist, “Molecular representa-

tions in ai-driven drug discovery: a review and practical guide,” Journal of

Cheminformatics, vol. 12, no. 1, pp. 1–22, 2020.

[33] D. Weininger, “Smiles, a chemical language and information system. 1. intro-

duction to methodology and encoding rules,” Journal of chemical information

and computer sciences, vol. 28, no. 1, pp. 31–36, 1988.

[34] D. C. Elton, Z. Boukouvalas, M. D. Fuge, and P. W. Chung, “Deep learning

for molecular design—a review of the state of the art,” Molecular Systems

Design & Engineering, vol. 4, no. 4, pp. 828–849, 2019.

[35] “Rdkit open-source cheminformatics and machine learning, version

2020.09.01,” https://www.rdkit.org/.

[36] Author, “Smiles - a simplified chemical language,” https://www.daylight.com/

dayhtml/doc/theory/theory.smiles.html, last accessed 29 January 2021.

[37] D. Rogers and M. Hahn, “Extended-connectivity fingerprints,” Journal of

chemical information and modeling, vol. 50, no. 5, pp. 742–754, 2010.

[38] B. J. Neves, R. C. Braga, C. C. Melo-Filho, J. T. Moreira-Filho, E. N.

Muratov, and C. H. Andrade, “Qsar-based virtual screening: Advances and

applications in drug discovery,” Frontiers in Pharmacology, vol. 9, p. 1275,

2018. [Online]. Available: https://www.frontiersin.org/article/10.3389/fphar.

2018.01275

[39] U. Muhammad, A. Uzairu, and D. Ebuka Arthur, “Review on: quantitative

structure activity relationship (qsar) modeling,” J Anal Pharm Res, vol. 7,

no. 2, pp. 240–242, 2018.

[40] G. B. Goh, N. O. Hodas, C. Siegel, and A. Vishnu, “Smiles2vec: An inter-

pretable general-purpose deep neural network for predicting chemical proper-

ties,” ArXiv, vol. abs/1712.02034, 2017.

[41] S. Pushpakom, F. Iorio, P. A. Eyers, K. J. Escott, S. Hopper, A. Wells, A. Doig,

T. Guilliams, J. Latimer, C. McNamee, A. Norris, P. Sanseau, D. Cavalla, and

M. Pirmohamed, “Drug repurposing: progress, challenges and recommenda-

tions,” Nature Reviews Drug Discovery, vol. 18, no. 1, pp. 41–58, jan 2019.

90

https://www.rdkit.org/
https://www.daylight.com/dayhtml/doc/theory/theory.smiles.html
https://www.daylight.com/dayhtml/doc/theory/theory.smiles.html
https://www.frontiersin.org/article/10.3389/fphar.2018.01275
https://www.frontiersin.org/article/10.3389/fphar.2018.01275

Bibliography

[42] S. K. Chakravarti and S. R. M. Alla, “Descriptor Free QSAR Modeling Using

Deep Learning With Long Short-Term Memory Neural Networks,” Frontiers

in Artificial Intelligence, 2019.

[43] C. Cortes and V. Vapnik, “Support-Vector Networks,” Machine Learning,

1995.

[44] V. Svetnik, A. Liaw, C. Tong, J. C. Culberson, R. P. Sheridan, and B. P.

Feuston, “Random Forest: A Classification and Regression Tool for Compound

Classification and QSAR Modeling,” Journal of Chemical Information and

Computer Sciences, vol. 43, no. 6, pp. 1947–1958, nov 2003.

[45] W. Cedeño and D. K. Agrafiotis, “Using particle swarms for the development

of QSAR models based on K-nearest neighbor and kernel regression,” Journal

of Computer-Aided Molecular Design, 2003.

[46] T. S. Schroeter, A. Schwaighofer, S. Mika, A. Ter Laak, D. Suelzle, U. Ganzer,

N. Heinrich, and K.-R. Müller, “Estimating the domain of applicability for ma-

chine learning QSAR models: a study on aqueous solubility of drug discovery

molecules,” Journal of Computer-Aided Molecular Design, vol. 21, no. 12, pp.

651–664, dec 2007.

[47] X. Liu, K. Ye, H. W. van Vlijmen, A. P. IJzerman, and G. J. Van Westen,

“An exploration strategy improves the diversity of de novo ligands using deep

reinforcement learning: a case for the adenosine a 2a receptor,” Journal of

cheminformatics, vol. 11, no. 1, pp. 1–16, 2019.

[48] Y. Uesawa, “Quantitative structure–activity relationship analysis using deep

learning based on a novel molecular image input technique,” Bioorganic &

Medicinal Chemistry Letters, vol. 28, no. 20, pp. 3400–3403, 2018.

[49] A. Lusci, G. Pollastri, and P. Baldi, “Deep Architectures and Deep Learning

in Chemoinformatics: The Prediction of Aqueous Solubility for Drug-Like

Molecules,” Journal of Chemical Information and Modeling, vol. 53, no. 7, pp.

1563–1575, jul 2013.

[50] D. Duvenaud, D. Maclaurin, J. Aguilera-Iparraguirre, R. Gómez-Bombarelli,

T. Hirzel, A. Aspuru-Guzik, and R. P. Adams, “Convolutional networks on

graphs for learning molecular fingerprints,” in Advances in Neural Information

Processing Systems, 2015.

91

Bibliography

[51] M. Popova, O. Isayev, and A. Tropsha, “Deep reinforcement learning for de

novo drug design,” Science advances, vol. 4, no. 7, p. eaap7885, 2018.

[52] R. J. Williams, “Simple statistical gradient-following algorithms for connec-

tionist reinforcement learning,” Machine learning, vol. 8, no. 3-4, pp. 229–256,

1992.

[53] A. Gupta, A. T. Müller, B. J. Huisman, J. A. Fuchs, P. Schneider, and

G. Schneider, “Generative recurrent networks for de novo drug design,” Molec-

ular informatics, vol. 37, no. 1-2, p. 1700111, 2018.

[54] M. H. Segler, T. Kogej, C. Tyrchan, and M. P. Waller, “Generating focused

molecule libraries for drug discovery with recurrent neural networks,” ACS

central science, vol. 4, no. 1, pp. 120–131, 2018.

[55] G. L. Guimaraes, B. Sanchez-Lengeling, C. Outeiral, P. L. C. Farias, and

A. Aspuru-Guzik, “Objective-reinforced generative adversarial networks (or-

gan) for sequence generation models,” arXiv preprint arXiv:1705.10843, 2017.

[56] L. Yu, W. Zhang, J. Wang, and Y. Yu, “Seqgan: Sequence generative adver-

sarial nets with policy gradient,” in Proceedings of the AAAI conference on

artificial intelligence, vol. 31, no. 1, 2017.

[57] R. Gómez-Bombarelli, J. N. Wei, D. Duvenaud, J. M. Hernández-Lobato,

B. Sánchez-Lengeling, D. Sheberla, J. Aguilera-Iparraguirre, T. D. Hirzel,

R. P. Adams, and A. Aspuru-Guzik, “Automatic chemical design using a data-

driven continuous representation of molecules,” ACS central science, vol. 4,

no. 2, pp. 268–276, 2018.

[58] T. Blaschke, M. Olivecrona, O. Engkvist, J. Bajorath, and H. Chen, “Ap-

plication of generative autoencoder in de novo molecular design,” Molecular

informatics, vol. 37, no. 1-2, p. 1700123, 2018.

[59] B. Sanchez-Lengeling, C. Outeiral, G. L. Guimaraes, and A. Aspuru-Guzik,

“Optimizing distributions over molecular space. an objective-reinforced gener-

ative adversarial network for inverse-design chemistry (organic),” ChemRxiv,

vol. 2017, 2017.

[60] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,

A. Courville, and Y. Bengio, “Generative adversarial nets,” in Advances

in Neural Information Processing Systems, Z. Ghahramani, M. Welling,

92

Bibliography

C. Cortes, N. Lawrence, and K. Q. Weinberger, Eds., vol. 27. Curran

Associates, Inc., 2014. [Online]. Available: https://proceedings.neurips.cc/

paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf

[61] E. Putin, A. Asadulaev, Y. Ivanenkov, V. Aladinskiy, B. Sanchez-Lengeling,

A. Aspuru-Guzik, and A. Zhavoronkov, “Reinforced adversarial neural com-

puter for de novo molecular design,” Journal of chemical information and

modeling, vol. 58, no. 6, pp. 1194–1204, 2018.

[62] E. J. Bjerrum and B. Sattarov, “Improving chemical autoencoder latent

space and molecular de novo generation diversity with heteroencoders,”

Biomolecules, vol. 8, no. 4, 2018. [Online]. Available: https://www.mdpi.

com/2218-273X/8/4/131

[63] D. F. Veber, S. R. Johnson, H.-Y. Cheng, B. R. Smith, K. W. Ward, and K. D.

Kopple, “Molecular properties that influence the oral bioavailability of drug

candidates,” Journal of medicinal chemistry, vol. 45, no. 12, pp. 2615–2623,

2002.

[64] C. A. Lipinski, F. Lombardo, B. W. Dominy, and P. J. Feeney, “Experimental

and computational approaches to estimate solubility and permeability in drug

discovery and development settings,” Advanced drug delivery reviews, vol. 23,

no. 1-3, pp. 3–25, 1997.

[65] L. Di and E. H. Kerns, Drug-like properties: concepts, structure design and

methods from ADME to toxicity optimization. Academic press, 2015.

[66] M. P. Gleeson, P. D. Leeson, and H. van de Waterbeemd, “Physicochemical

properties and compound quality,” in The Handbook of Medicinal Chemistry,

2014, pp. 1–31.

[67] R. P. Schwarzenbach, P. M. Gschwend, and D. M. Imboden, Environmental

organic chemistry. John Wiley & Sons, 2016.

[68] F. Mao, W. Ni, X. Xu, H. Wang, J. Wang, M. Ji, and J. Li, “Chemi-

cal structure-related drug-like criteria of global approved drugs,” Molecules,

vol. 21, no. 1, p. 75, 2016.

[69] O. Ursu, A. Rayan, A. Goldblum, and T. I. Oprea, “Understanding drug-

likeness,” Wiley Interdisciplinary Reviews: Computational Molecular Science,

vol. 1, no. 5, pp. 760–781, 2011.

93

https://proceedings.neurips.cc/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf
https://proceedings.neurips.cc/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf
https://www.mdpi.com/2218-273X/8/4/131
https://www.mdpi.com/2218-273X/8/4/131

Bibliography

[70] T. I. Oprea, “Property distribution of drug-related chemical databases,” Jour-

nal of computer-aided molecular design, vol. 14, no. 3, pp. 251–264, 2000.

[71] G. R. Bickerton, G. V. Paolini, J. Besnard, S. Muresan, and A. L. Hopkins,

“Quantifying the chemical beauty of drugs,” Nature chemistry, vol. 4, no. 2,

pp. 90–98, 2012.

[72] P. Ertl and A. Schuffenhauer, “Estimation of synthetic accessibility score of

drug-like molecules based on molecular complexity and fragment contribu-

tions,” Journal of cheminformatics, vol. 1, no. 1, pp. 1–11, 2009.

[73] H. Öztürk, A. Özgür, and E. Ozkirimli, “DeepDTA: deep drug–target binding

affinity prediction,” Bioinformatics, vol. 34, no. 17, pp. i821–i829, 09 2018.

[Online]. Available: https://doi.org/10.1093/bioinformatics/bty593

[74] Y. Parmentier, M.-J. Bossant, M. Bertrand, and B. Walther, “5.10 - in

vitro studies of drug metabolism,” in Comprehensive Medicinal Chemistry

II, J. B. Taylor and D. J. Triggle, Eds. Oxford: Elsevier, 2007, pp.

231–257. [Online]. Available: https://www.sciencedirect.com/science/article/

pii/B008045044X001255

[75] H. Blockeel, Machine Learning and Iductive Inference. Acco, 2018.

[76] G. Pocock and C. D. Richards, Human physiology: The basis of medicine.

Oxford university press, 1999.

[77] K. Suzuki, Artificial neural networks: methodological advances and biomedical

applications. BoD–Books on Demand, 2011.

[78] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521, no.

7553, pp. 436–444, 2015.

[79] A. Amidi and S. Amidi, “Recurrent neural networks cheatsheet,”

2019, https://stanford.edu/∼shervine/teaching/cs-230/cheatsheet-recurrent-

neural-networks. [Online]. Available: https://stanford.edu/∼shervine/

teaching/cs-230/cheatsheet-recurrent-neural-networks

[80] Y. Bengio, P. Simard, and P. Frasconi, “Learning long-term dependencies with

gradient descent is difficult,” IEEE transactions on neural networks, vol. 5,

no. 2, pp. 157–166, 1994.

94

https://doi.org/10.1093/bioinformatics/bty593
https://www.sciencedirect.com/science/article/pii/B008045044X001255
https://www.sciencedirect.com/science/article/pii/B008045044X001255
https://stanford.edu/~shervine/teaching/cs-230/cheatsheet-recurrent-neural-networks
https://stanford.edu/~shervine/teaching/cs-230/cheatsheet-recurrent-neural-networks
https://stanford.edu/~shervine/teaching/cs-230/cheatsheet-recurrent-neural-networks
https://stanford.edu/~shervine/teaching/cs-230/cheatsheet-recurrent-neural-networks

Bibliography

[81] R. Pascanu, T. Mikolov, and Y. Bengio, “On the difficulty of training recurrent

neural networks,” in International conference on machine learning. PMLR,

2013, pp. 1310–1318.

[82] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural com-

putation, vol. 9, no. 8, pp. 1735–1780, 1997.

[83] C. Olah, “Understanding lstms,” 2015, https://colah.github.io/posts/2015-

08-Understanding-LSTMs/. [Online]. Available: https://colah.github.io/

posts/2015-08-Understanding-LSTMs/

[84] K. Cho, B. Van Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares,

H. Schwenk, and Y. Bengio, “Learning phrase representations using

rnn encoder-decoder for statistical machine translation,” arXiv preprint

arXiv:1406.1078, 2014.

[85] M. Schuster and K. K. Paliwal, “Bidirectional recurrent neural networks,”

IEEE transactions on Signal Processing, vol. 45, no. 11, pp. 2673–2681, 1997.

[86] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence learning with

neural networks,” arXiv preprint arXiv:1409.3215, 2014.

[87] T. Wang, X. Yuan, and A. Trischler, “A joint model for question answering

and question generation,” arXiv preprint arXiv:1706.01450, 2017.

[88] R. Nallapati, B. Zhou, C. Gulcehre, B. Xiang et al., “Abstractive text

summarization using sequence-to-sequence rnns and beyond,” arXiv preprint

arXiv:1602.06023, 2016.

[89] M. Arjovsky and L. Bottou, “Towards principled methods for training gener-

ative adversarial networks,” arXiv preprint arXiv:1701.04862, 2017.

[90] M. Arjovsky, S. Chintala, and L. Bottou, “Wasserstein generative adversarial

networks,” in Proceedings of the 34th International Conference on Machine

Learning, ser. Proceedings of Machine Learning Research, D. Precup and

Y. W. Teh, Eds., vol. 70. International Convention Centre, Sydney,

Australia: PMLR, 06–11 Aug 2017, pp. 214–223. [Online]. Available:

http://proceedings.mlr.press/v70/arjovsky17a.html

[91] C. Villani, Optimal transport: old and new. Springer Science & Business

Media, 2008, vol. 338.

95

https://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://proceedings.mlr.press/v70/arjovsky17a.html

Bibliography

[92] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov,

“Dropout: a simple way to prevent neural networks from overfitting,” The

journal of machine learning research, vol. 15, no. 1, pp. 1929–1958, 2014.

[93] C. Zhang, S. Bengio, M. Hardt, B. Recht, and O. Vinyals, “Under-

standing deep learning requires rethinking generalization,” arXiv preprint

arXiv:1611.03530, 2016.

[94] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network

training by reducing internal covariate shift,” in International conference on

machine learning. PMLR, 2015, pp. 448–456.

[95] T. Pereira, M. Abbasi, B. Ribeiro, and J. P. Arrais, “End-to-end deep rein-

forcement learning for targeted drug generation,” in In ICCBB 2020: 2020

4th International Conference on Computational Biology and Bioinformatics

(ICCBB 2020), 2020.

[96] T. Mikolov, M. Karafiát, L. Burget, J. Černockỳ, and S. Khudanpur, “Recur-

rent neural network based language model,” in Eleventh annual conference of

the international speech communication association, 2010.

[97] S. Salman and X. Liu, “Overfitting mechanism and avoidance in deep neural

networks,” arXiv preprint arXiv:1901.06566, 2019.

[98] A. Gaulton, L. J. Bellis, A. P. Bento, J. Chambers, M. Davies, A. Hersey,

Y. Light, S. McGlinchey, D. Michalovich, B. Al-Lazikani et al., “Chembl: a

large-scale bioactivity database for drug discovery,” Nucleic acids research,

vol. 40, no. D1, pp. D1100–D1107, 2012.

[99] T. Sterling and J. J. Irwin, “Zinc 15–ligand discovery for everyone,” Journal

of chemical information and modeling, vol. 55, no. 11, pp. 2324–2337, 2015.

[100] E. Jang, S. Gu, and B. Poole, “Categorical reparameterization with gumbel-

softmax,” 2017.

[101] H. Schmidhammer, F. Erli, E. Guerrieri, and M. Spetea, “Development of

diphenethylamines as selective kappa opioid receptor ligands and their phar-

macological activities,” Molecules, vol. 25, no. 21, p. 5092, 2020.

[102] L. Lalanne, G. Ayranci, B. L. Kieffer, and P.-E. Lutz, “The kappa opioid

receptor: from addiction to depression, and back,” Frontiers in psychiatry,

vol. 5, p. 170, 2014.

96

Bibliography

[103] K. L. Mores, B. R. Cummins, R. J. Cassell, and R. M. Van Rijn, “A re-

view of the therapeutic potential of recently developed g protein-biased kappa

agonists,” Frontiers in pharmacology, vol. 10, p. 407, 2019.

[104] Y. Shang and M. Filizola, “Opioid receptors: Structural and mechanistic in-

sights into pharmacology and signaling,” European journal of pharmacology,

vol. 763, pp. 206–213, 2015.

[105] S. Page, M. M. Mavrikaki, T. Lintz, D. Puttick, E. Roberts, H. Rosen, F. I.

Carroll, W. A. Carlezon, and E. H. Chartoff, “Behavioral pharmacology of

novel kappa opioid receptor antagonists in rats,” International Journal of Neu-

ropsychopharmacology, vol. 22, no. 11, pp. 735–745, 2019.

[106] M. Valenza, K. A. Windisch, E. R. Butelman, B. Reed, and M. J. Kreek,

“Effects of kappa opioid receptor blockade by ly2444296 hcl, a selective short-

acting antagonist, during chronic extended access cocaine self-administration

and re-exposure in rat,” Psychopharmacology, vol. 237, no. 4, pp. 1147–1160,

2020.

[107] T. Oliveira Pereira, M. Abbasi, B. Ribeiro, and J. P. Arrais, “End-to-end

deep reinforcement learning for targeted drug generation,” in 2020 4th

International Conference on Computational Biology and Bioinformatics, ser.

ICCBB 2020. New York, NY, USA: Association for Computing Machinery,

2021, p. 7–13. [Online]. Available: https://doi.org/10.1145/3449258.3449260

[108] S. K. Chakravarti and S. R. M. Alla, “Descriptor free qsar modeling

using deep learning with long short-term memory neural networks,”

Frontiers in Artificial Intelligence, vol. 2, p. 17, 2019. [Online]. Available:

https://www.frontiersin.org/article/10.3389/frai.2019.00017

[109] T. Pereira, M. Abbasi, J. L. Oliveira, B. Ribeiro, and J. Arrais, “Optimizing

blood–brain barrier permeation through deep reinforcement learning for de

novo drug design,” Bioinformatics, vol. 37, pp. i84–i92, 07 2021. [Online].

Available: https://doi.org/10.1093/bioinformatics/btab301

[110] A. L. Beam, B. Kompa, A. Schmaltz, I. Fried, G. Weber, N. Palmer, X. Shi,

T. Cai, and I. S. Kohane, “Clinical concept embeddings learned from massive

sources of multimodal medical data,” in PACIFIC SYMPOSIUM ON BIO-

COMPUTING 2020. World Scientific, 2019, pp. 295–306.

97

https://doi.org/10.1145/3449258.3449260
https://www.frontiersin.org/article/10.3389/frai.2019.00017
https://doi.org/10.1093/bioinformatics/btab301

Bibliography

[111] N. Brown, M. Fiscato, M. H. Segler, and A. C. Vaucher, “Guacamol:

Benchmarking models for de novo molecular design,” Journal of Chemical

Information and Modeling, vol. 59, no. 3, pp. 1096–1108, 2019. [Online].

Available: https://doi.org/10.1021/acs.jcim.8b00839

98

https://doi.org/10.1021/acs.jcim.8b00839

Bibliography

99

	List of Tables
	List of Figures
	Acronyms
	Introduction
	Context and Motivation
	Objectives
	Contributions
	Scientific Outcomes
	Dissertation Structure

	Artificial Intelligence in Drug Discovery
	Introduction
	Artificial Intelligence
	Drug Discovery and Development
	Artificial Intelligence in Drug Discovery

	Molecular Representation
	Molecular Graphs
	SMILES
	Molecular Fingerprints

	Review of Approaches to Property and Activity Prediction
	Review of Approaches to Molecular Generation and Optimization
	Evaluation Metrics

	Deep Learning Models
	Artificial Neural Networks
	Fully Connected Neural Networks
	Recurrent Neural Networks
	Long Short-Term Memory
	Gated Recurrent Units
	Bidirectional RNNs

	Autoencoder
	Encoder-Decoder Sequence to Sequence

	Generative Adversarial Networks
	Vanilla GAN
	Wasserstein GAN
	Wasserstein GAN with Gradient Penalty

	Regularization Techniques

	RNN Generator
	Introduction
	Methods
	Preprocessing Data
	Training Models
	Output Generation
	Validation Strategy

	Experimental Results and Discussion
	Datasets
	Performance Analysis and Results

	Conclusions

	GAN-based Framework
	Introduction
	Methods
	Encoder-Decoder Model
	Wasserstein GAN with Gradient Penalty
	Case-study: Kappa Opioid Receptor
	KOR Binding Affinity Predictor
	Optimization through Transfer Learning
	Optimization through FeedbackGAN
	Validation Strategy

	Experimental Results and Discussion
	Datasets
	Encoder-Decoder Model
	WGAN-GP
	Performance of the Predictor
	Optimization through Transfer Learning
	Optimization through FeedbackGAN

	Conclusions

	Conclusions and Future work
	Conclusions
	Future Work and Open Issues

	Bibliography

