
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 
 
 
 
 
 

Nuno André de Matos Lopes Cardoso 
 
 
 
 

USER BEHAVIOR ANALYTICS IN THE CONTACT CENTER 
INSIDER THREAT ASSESSMENT AND FRAUD DETECTION 

 
 
 
 
 
 

Dissertation in the context of the Master in Informatics Security, 
 advised by Professor Marco Vieira and presented to  

Faculty of Sciences and Technology / Department of Informatics Engineering. 
 
 
 
 

July 2021 

U
SE

R
 B

EH
A

V
IO

R
 A

N
A

LY
TI

C
S 

IN
 T

H
E 

C
O

N
TA

C
T 

C
EN

TE
R

 
IN

SI
D

ER
 T

H
R

EA
T 

A
SS

ES
SM

EN
T 

A
N

D
 F

R
A

U
D

 D
ET

EC
TI

O
N

 
N

u
n

o
 A

n
d

ré
 C

ar
d

o
so

 



Faculty of Sciences and Technology

Department of Informatics Engineering

User behavior analytics in the
contact center

Insider threat assessment and fraud detection

Nuno André de Matos Lopes Cardoso

Dissertation in the context of the Master in Informatics Security,
advised by Prof. Marco Vieira and presented to

the Faculty of Sciences and Technology / Department of Informatics Engineering.

July 2021



This page is intentionally left blank.



Acknowledgments

First of all, I really appreciate all the help given by my advisor at Talkdesk, Pedro Ro-
drigues. It is hard to express de patience and all the helpful advice Pedro gave me during
this period, and for that I am really grateful.

I would also like to thank my supervisor from DEI, professor Marco Vieira, for all the
availability to help and excellent follow-up of the work being done.

Furthermore, I would like to say a big thank you for professor Nuno Antunes, José Flora
and José Diogo, for all their importance in my academic path, patience and help throughout
all these years.

I am grateful for my friends and colleagues at Talkdesk, namely Pedro Neves and Daniel
Antunes, as well as Jorge Vieira for giving me the opportunity to do this work along
with my activities at Talkdesk, and also the entire Guardian team for creating a great
environment to work in.

Last but not least, I would like to thank my family and friends, for keeping me motivated,
believing in me, and being there for me no matter what.

iii



This page is intentionally left blank.



Abstract

With the continuous growth of cyber-crime in the past few years, the need for innovative
and effective cybersecurity strategies is fundamental for every organization. Founded in
2011, Talkdesk is building a cloud-based contact-center product, which reached more than
1800 customers in 2020. Contact-center jobs are known to be precarious and with high
turnover rates and, along with the ongoing trend of working from home posed by the
pandemic of COVID-19, there is an increased risk concerning the likelihood of fraud by an
insider actor (in the case, a contact-center agent).

Typical cybersecurity controls adopted by organizations, such as security information event
management (SIEM), tend to focus on external threats, using rule-based matching mech-
anisms to create alerts on potential incidents. However, such mechanisms are unable to
detect novel threat scenarios, reason why new approaches are necessary, such as those
utilising artificial intelligence. User and entity behavior analytics (UEBA) is an emerging
solution to complement the security controls of an organization, which leverages machine
learning and, more specifically, anomaly detection, to create baselines of normal behavior
of users or entities and attempts to detect significant deviations from those baselines, which
could represent threats.

The main goal of this work consists in assessing the viability of using a UEBA framework to
protect the customers of Talkdesk, with which contact-center staff would be monitored with
the objective of detecting threats related to sensitive information theft, cyber fraud, insider
abuse, and others. To achieve this, we started by exploring the most appropriate raw data
sources (for UEBA) available and defining threat scenarios to tackle, followed by obtaining
the data and implementing transformation pipelines to convert raw data into a format
suitable for anomaly detection. We proceeded with exploratory data analysis and feature
engineering and decided on the appropriate anomaly detection algorithms to evaluate and
the validation strategy to use. We created a labeled dataset with domain knowledge
expertise, defined several settings to vary (baseline period, feature set, contamination),
and applied them with 5 different algorithms. We evaluated each combination of the
settings defined using supervised classification metrics, with the autoencoder and principal
components analysis (PCA) achieving the highest F1-scores: 0.97 and 0.95, respectively.
We also evaluated 3 different interpretability methods, to explain the anomalies reported.

Finally, we deployed the framework using PCA and 1 month of real data from 2 clients, in
a staging environment, registering a total of 76 anomalies incurred by 45 different agents,
with 67 true positives and 9 false positives. We believe the framework is ready for pro-
duction, requiring minor adjustments on the interpretability algorithm and a strategy to
suppress anomalies similar to past ones reported as false positives through feedback from
the clients.

Keywords

UEBA, Artificial intelligence, Machine learning, Cybersecurity, Anomaly detection, Fraud
detection
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Resumo

Com o crescimento contínuo do cibercrime em anos recentes, a necessidade de estratégias
de cibersegurança inovadoras e eficazes tornam-se cada vez mais importantes para todo
o tipo de organizações. Fundada em 2011, a Talkdesk está a desenvolver um produto de
contact-center na nuvem, que chegou aos 1800 clientes em 2020. As carreiras em contact-
center são conhecidas pela precariedade e alta rotatividade de agentes que, agravada pela
tendência de trabalho remoto imposta pela pandemia de COVID-19, aumenta o risco de
ocorrência de fraude.

As abordagens de cibersegurança tipicamente adotadas pelas organizações, como gestão e
correlação de eventos de segurança (SIEM), têm o seu foco em ameaças externas, através
de um motor de regras que resulta em alertas indicativos de potenciais incidentes. No
entanto, esses mecanismos têm a limitação da incapacidade de detetar modelos de ameaça
inovadores, razão pelo qual abordagens que utilizam inteligência artificial são necessárias.
A análise comportamental de utilizadores e entidades (UEBA) é uma solução emergente
utilizada para complementar as estratégias de segurança de uma organização, que utiliza
machine learning e, mais especificamente, algoritmos de deteção de anomalias, para criar
perfis de comportamento normal de utilizadores e entidades. Desvios significativos a esses
perfis são posteriormente registados, potencialmente correspondentes a ameaças.

O principal objetivo deste trabalho consiste em avaliar a aplicabilidade de uma framework
de UEBA para proteger os clientes da Talkdesk, através da monitorização do staff dos
contact-centers para detetar ameaças relacionadas com o roubo de dados sensíveis, ciber-
fraude, abuso interno, entre outros. Começámos o trabalho pela exploração das fontes de
dados mais apropriadas (para UEBA) disponíveis, e pela definição de cenários de ameaça,
seguido da obtenção dos dados e implementação de pipelines de transformação, para con-
verter dados os dados originais num formato adequado para os algoritmos de deteção de
anomalias. De seguida, procedemos a uma análise exploratória dos dados, bem como se-
leção de features, e decidimos quais os algoritmos de deteção de anomalias a utilizar, bem
como a estratégia de validação a implementar. Criámos um dataset artificial, através de
conhecimento de domínio, e definimos parâmetros para variar (período de treino, feature
set, contaminação), que aplicámos com 5 algoritmos distintos. Seguidamente, avaliámos
cada combinação de parâmetros utilizando métricas de classificação supervisionada, com os
algoritmos autoencoder e PCA a registar o F1-score mais alto: 0.97 e 0.95, respetivamente.
Também avaliámos 3 métodos de interpretabilidade distintos, para explicar as anomalias
reportadas.

Por fim, fizémos deploy da framework utilizando PCA e um mês de dados de 2 clientes,
num ambiente de staging, registando um total de 76 anomalias causadas por 45 agentes
distintos, com 67 verdadeiros positivos e 9 falsos positivos. Nós acreditamos que a frame-
work está preparada para produção, requerendo apenas pequenos ajustes no algoritmo de
interpretabilidade e uma estratégia para suprimir anomalias similares a outras anteriores,
reportadas como falsos positivos através de feedback dos clientes.

Palavras-Chave

UEBA, Inteligência artificial, Machine learning, Cibersegurança, Deteção de anomalias,
Deteção de fraude
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Chapter 1

Introduction

Cybersecurity poses huge challenges in today’s digital world, aggravated by the central-
ization of organizations’ infrastructures in cloud environments and the growing trend for
remote work accelerated by the pandemic of COVID-19.

Typical enterprise security operations centers (SOCs) tend to focus on external threats, by
using rule-based monitoring tools such as security information event management (SIEM)
along with several security products deployed over the network: firewalls, intrusion detec-
tion system (IDS), data loss prevention (DLP), and others. However, rule-based tools are
becoming less and less effective, due to the emergence of new threat models that make
perimeter-based security obsolete [1, 2]. According to the HIMSS’s "2019 Cybersecurity
Survey" [3], the biggest threat actor groups are "online scam artists", which include
cases of phishing, spear phishing, business email compromise, responsible for 28% of all
the security incidents, and negligent insiders (those who mean well but are negligent
and facilitate or cause data breaches), which are responsible for 20% of all the incidents in
2019. Furthermore, 6% of the incidents are caused by malicious insiders, which on the
contrary of "negligent insiders", intentionally steal information or compromise the infras-
tructure, and 11% of the threats are caused by hackers (e.g., cybercriminals, bug bounty
hunters).

With the traditional approaches, based on rules and thresholds, lacking the capability to
detect novel threat scenarios, such as zero-day attacks, and fight insider threats, such as a
compromised insider attempting lateral movement [4], novel strategies, based on artificial
intelligence, are required to protect organizations, especially in domains with high exposure,
such as contact centers.

1.1 UEBA for contact centers

In the last few years, artificial intelligence strategies in the cybersecurity domain are being
adopted on a growing trend, with good results. One emerging approach to detect and
prevent (mainly) insider threat scenarios is user and entity behavior analytics (UEBA),
a cybersecurity process focused on defining baselines for user behavior. These baselines
are then used to detect anomalies, indicating possible threats [5]. UEBA leverages ma-
chine learning in the form of statistical analysis and outlier detection to perform anomaly
detection. With this approach, it is possible to detect security use cases such as com-
promised users, when users’ credentials are stolen due to phishing strategies or use of
weak passwords, sensitive information theft, when a user deliberately downloads/steals

1
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sensitive data from customers or the organization, host compromise, concerning enti-
ties/hosts being monitored to detect suspicious activity, cyber fraud, concerning financial
data (treasury, payments), among others.

Founded in 2011, Talkdesk is a software engineering company, building an innovative cloud-
based contact center product, with the mission of drastically improving customer experi-
ence. In 2020, Talkdesk has more than 1800 customers in 75 countries, which include IBM,
Acxiom, 2U, Trivago, Canon, Glintt, and many others [6].

Talkdesk’s contact center product is a critical point of contact between client companies and
their customers. Contact centers are crucial channels that organizations have to acquire
new customers, help customers with any issues they may have, know more about the way
customers feel about them, and employ marketing strategies. Thus, the contact center and
its agents have this major role in improving customer experience.

Moreover, there has been an increase in the popularity of cloud-based contact centers such
as Talkdesk’s. However, contact center jobs are usually considered to be precarious and
with high turnover rate (agents tend to leave after a short period of time). With a
high number of agents that do not see their job as a long-term career, contact centers
have an increased risk of suffering security breaches in the form of the use cases
mentioned above, such as agents granting their credentials to someone else, deliberately
giving access to customers’ personally identifiable information (PII).

According to "Cisco Contact Center Global Survey 2020" [7], where Cisco interviewed 700
contact center executives, 77% of the respondents agree that "Security and data privacy
are key challenges in the contact center". Furthermore, Cisco describes contact centers as
“low hanging fruit for fraud", in the sense that a lot of customers’ sensible information
is accessible to agents that do not have a stable job.

Even though we are able to find and explore several successful general-purpose UEBA
products in the market, such as Exabeam [8], IBM’s QRadar [9] or Gurucul [10], we
did not find any application to the contact center domain, which requires several
specificities to monitor both the behavior concerning agents’ call activity as well as actions
performed in Talkdesk’s application (e.g., access to contacts’ PII).

Considering all the reasons above, Talkdesk’s product is a great opportunity for implement-
ing a UEBA framework. The main objective of this work is thus to assess the applicability
of such a framework in the contact center domain.

The framework proposed should be able to create baselines of the typical behavior of
contact center staff (agents, supervisors, etc.), detect and alert on events that deviate
significantly from those baselines, and provide an accessible interpretation for the causes
of these events. To do so, we started by analysing two log sources of data considered to
be relevant in the security and business perspective, that we expect to be also suitable for
UEBA baselining: call logs, which contain information regarding each call, such as the
agent to who the call was assigned, time metrics such as the waiting and talk time, and
other data such as if the call was missed by the agent or abandoned by the customer, the
call cost, etc.; and audit logs, which contain security-related information concerning the
activity of users in Talkdesk’s application, such as login events, accesses to sensitive data
(customer PII) and call recordings, and others.

Using domain knowledge and in-depth analysis of our data sources, we defined example
threat scenarios (combining typical UEBA use-cases with the contact center data used in
this work) that we aim to be able to detect with the algorithms employed.

2



Introduction

We proceeded with the implementation of data pipelines capable of aggregating the data
over a determined time period, extract features and merge the sources into one single
dataset. We then conducted a process of exploratory data analysis (EDA) on the features
extracted, used to identify features that could be representative of user behavior, so that it
is possible to use unsupervised anomaly detection models to create a behavior baseline and
detect relevant deviations (from the security or business perspective). Several aggregation
periods to model user behavior can be employed (e.g., real-time detection with cumulative
aggregation, 3-hour or 24-hour aggregation, and aggregate each user session - from login
to logout), from which we choose to focus on users’ daily activity (24 hours).

After finishing EDA, we used different libraries containing the anomaly detection algo-
rithms we selected for this analysis, namely histogram-based outlier score (HBOS), the
Mahalanobis method, isolation forest, principal components analysis (PCA) and a neural
network algorithm, the autoencoder.

While explainability (or interpretability) of the detected anomalies is one of the require-
ments of the framework we aim to test, it is also one of the biggest challenges that emerge
with more complex detection mechanisms. When an action or a group of actions is marked
as an anomaly by any of the algorithms, it is of major importance to be able to explain the
decision in a way that it is easy to understand without the need for technical knowledge
of the data or the algorithms.

Interpretability of machine learning outputs is a known challenge in academia and in the
industry, with the field of eXplainable artificial intelligence (XAI) providing several inno-
vating approaches to overcome the interpretability issue associated with the more complex
machine learning problems (e.g., neural networks) [11], which creates distrust at various
levels due to the inability of end-users to understand and easily interpret the outputs of the
models. While XAI is making a lot of progress in the supervised domain, interpretability
in unsupervised problems such as the anomaly detection algorithms typically employed
in UEBA still lacks exploration. Nevertheless, we researched the different model-agnostic
and model-specific interpretability approaches suitable for our problem and evaluated how
three of them (z-score based, depth-base feature importance for the isolation forest (DIFFI)
and Shapley additive explanation (SHAP)) perform in our problem.

Finally, we defined and applied an ambitious validation strategy, which consisted of several
stages, namely:

• the creation of labeled examples of malicious behavior, to perform validation with
classification metrics, such as AUC-ROC and F1-score;

• sampling behavior vectors from supervisors and administrators, as we expected a
significantly different behavior when comparing to agents, using those as the posi-
tive class (and agents’ vectors as the negative) for the same classification metrics,
and assess whether the algorithm is capable of accurately distinguish between the
behaviors of different roles;

• deployment in a staging environment, using data from 2 distinct clients with a differ-
ent number of staff elements and working settings, in which we analysed the anomalies
and tuned the system with a simulated feedback mechanism.

For this work, we were given access to a period of 3 months of real call and audit log
events, required to ensure we begin this exploratory path using data that is representative
and relevant to our goals. However, and even though all data studied in this work results

3
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of aggregations, the raw data contains sensitive information, a reason why we chose to
exclude some of the visualization representations we used during EDA.

1.2 Objectives and contributions

As stated, the main objective of this work consists in the evaluation of the applicability
of UEBA framework to deploy in Talkdesk’s contact center environment. By modeling
the contact centers’ staff activity based on application and call logs, we should be able to
detect abnormal deviations from the baselines defined, thus constituting possible security
threats.

The main objective is subdivided into 4 fine-grained goals, namely:

• Explore and select, between the data sources available, the most relevant
indicators of potential threats, suitable for behavioral profiling (in the contact
center context) and anomaly detection. The log sources used and respective extracted
fields are determinant in the success of the framework, reason why it is important
to explore and understand how they can be used to model contact center users’
behavior.

• Select and compare different state-of-the-art anomaly detection algorithms.
There is a vast number of anomaly detection algorithms we can choose from, however,
it is of utter importance to research and understand how the algorithms work, what
assumptions they make (mainly regarding the data), whether they can scale up to
the volume of data generated by Talkdesk’s biggest clients and, ultimately, evaluate
and compare multiple of them using our data.

• Provide alerts (anomalies) that are easy to interpret by end-users, namely
the supervisors of the contact center. The ability to easily interpret an anomaly is a
critical requirement in the cybersecurity domain, as it provides the insights necessary
for analysts (that are not security experts) to clearly understand what triggered an
alarm. Explainability in unsupervised anomaly detection problems is challenging
but extremely necessary, reason why researching the techniques available and their
applicability in our scenario is also a crucial objective.

• Define and implement a validation strategy that ensures that the frame-
work is applicable in a production environment. All the objectives above
require a strong validation strategy, that ensures the correctness of the results, a
low false positive rate and that allows to detect improvement points. Validation in
unsupervised machine learning is a familiar challenge in academia, but it is still pos-
sible to identify and apply different approaches capable of assessing the quality of
the framework.

As for the main contributions, and to the best of our knowledge, this work is the first
application of a UEBA approach in the contact center domain, one that is highly
susceptible to security threats. We present an end-to-end assessment of the applicability
of an ambitious framework, from data collection, transformation and analysis, to the com-
parison of several anomaly detection algorithms, as part of a heterogeneous strategy of
validation.

Our work has the ambition of a production deployment, reason why we tackle important
requirements such as the interpretability of the anomalies and scalability to a continu-
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ously growing volume of data. We also present the results of a deployment in a staging
environment with real data, from two distinct contact center clients.

1.3 Thesis outline

The remaining of the document is divided into 5 chapters.

Chapter 2 contains the state-of-the-art analysis on anomaly detection and interpretability
algorithms suitable for our problem. We also present a research on the UEBA solutions
currently in the market, the advantages and disadvantages of UEBA when compared to
the traditional cybersecurity solutions, as well as scientific articles on the topic.

Chapter 3 contains the analysis of the raw data collected for this work (3 months of real
data), from different log sources, as well as the data transformation pipelines required to
create a final dataset containing daily aggregated user behavior, followed by the exploratory
analysis of that dataset.

Chapter 4 details the anomaly detection and interpretability algorithms selected to eval-
uate and compare. It also presents the characteristics of the final dataset used in the
experiments.

Chapter 5 contains the implementation of the validation strategy defined, with the main
discussion and results obtained. We present the experiments where we compare the algo-
rithms selected, using synthetic anomalies created for that purpose, as well as an automated
approach based on negative sampling. The chapter also contains the evaluation of the inter-
pretability algorithms adopted and a mechanism used to collect feedback from the clients
and monitor the quality of the models. Finally, a deployment in a staging environment is
presented, using 1 month of real data from two distinct customers.

Chapter 6 details the conclusions and some of the plans of future activities to conduct.
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Chapter 2

Background and related work

This chapter contains an introduction on the topic of anomaly detection, followed by
an analysis of the state-of-the-art unsupervised anomaly detection algorithms, a subsec-
tion with an investigation on some explainability/interpretability methods, and finally an
analysis of user and entity behavior analytics (UEBA), from typical security use-cases to
products in the market and scientific approaches.

2.1 Anomaly detection

An anomaly is an event, set of events, or pattern that differs significantly from a pre-
determined baseline [12]. Anomalies can appear in data due to several reasons, such as
malicious activity (credit card fraud, cyber-attacks, and others). If an event is anomalous
regarding the baseline but has no interest for the analyst and the specific problem (e.g.,
it could be introduced due to a measurement error) it is considered as noise. Since noise
is typically an obstacle for data analysis, an approach for noise removal is often used
before analysing the data. Figure 2.1 depicts example anomalies (marked in red).

Anomaly detection consists of building baselines/patterns of the normal behavior of a
system, and detect any event that is anomalous when compared to that baseline [12, 13].
The topic is used extensively in fields such as credit card fraud detection, intrusion detection
systems (IDSs) and fault detection.

This section focuses on concepts around anomalies, the main state-of-the-art challenges in

Figure 2.1: Example of anomalous points in a 2-dimension problem
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Figure 2.2: Example of a contextual anomaly.

anomaly detection, and possible validation strategies for unsupervised anomaly detection
are also discussed.

2.1.1 Types of anomalies

Regarding the nature and properties of the data, an anomaly can be distinguished between
a point anomaly, a contextual anomaly and a collective anomaly [12, 14]:

• Point anomalies: individual data instances that are anomalous with regard to the
baseline, independently of the context. This is the most common approach in the
anomaly detection domain.

• Contextual anomalies: when an anomaly is considered as such only in a specific
context, based on the neighbors of the instance. A common contextual attribute is
time, for instance in a time-series dataset. In the example of figure 2.2, there is an
anomaly in June of the third year, and the temperature is similar to those seen in
December of the first year. In June, there is a contextual anomaly, and time is seen
as the contextual attribute.

• Collective anomalies: when a combination of many instances (points) is an anomaly,
and the points by themselves are not. It typically occurs in datasets where instances
are related, such as a sequence of logs in the security context.

Transforming contextual and collective anomaly problems into point anomaly
problems

In security-related anomaly detection problems such as credit card fraud detection, the
contextual attribute time of a transaction is relevant, as well as past transactions [15] and,
in UEBA the same applies, as the typical approach is to detect anomalies consisting of a
user’s session. Furthermore, it may be relevant to determine if a user is interacting with
the system in abnormal periods (e.g., in the contact center domain, if the user is logging
in out of the normal functioning hour of the contact center). Thus, it is necessary to
transform contextual/collective anomaly problems into point anomaly problems, which is
typically done with aggregation and discretization strategies [14]. In UEBA, users’ logs
can be aggregated with respect to several contexts, such as time (1 hour, the user session
period, 24hours) the user’s location, role within the organization, and others.

When it comes to the distance between the anomalies and other data points or clusters,
anomalies can also be classified as global anomalies or local anomalies [13]:

8



Background and related work

• Global anomalies: In figure 2.1, the points x1 and x2 are clearly isolated and far from
every other data point/cluster. Thus, they are considered global anomalies.

• Local anomalies: Still in figure 2.1, but now focusing on x3, the point has some
distance from the cluster C2, but not too far as to be considered a global anomaly.
Thus, x3 may be regarded as a local anomaly.

In UEBA applications, both global and local anomalies can be relevant. While global
anomalies may indicate a clear different behavior from the population, a local anomaly
may indicate that specific users are changing their behavior with regard to their baseline
or their cluster.

2.1.2 Supervised vs. unsupervised anomaly detection

Regarding the presence or absence of labeled anomalies/normal instances in the dataset, the
problem of learning to detect anomalies can be classified as supervised or unsupervised.

In supervised learning, each data instance contains a label indicating whether it is an
anomaly or not. Having access to such labels has advantages such as facilitating both
the process of feature engineering, since the main goal of feature selection is to im-
prove a pre-determined metric (such as ROC, precision, recall,...), and the validation of
the model, since we can quantify how well the model works on training and test sets
(bias/variance trade-off). On the other hand, there are two big disadvantages with super-
vised approaches: the skewness of the positive class, which means the portion of anomalies
is far lower compared to the normal instances, which raises the so-called "imbalanced class
issues" (addressed with strategies such as undersampling, as explored in [16]); and the chal-
lenge posed by obtaining useful and representative anomalies of all the different possible
anomalous behaviors.

Unsupervised learning, on the contrary, does not require labels, and there is the assumption
that normal instances are way more frequent than anomalies. In the UEBA problem we
are trying to solve, due to the impossibility of acquiring labels representative of several
anomalous behaviors, as well as the goal of detecting threats never seen before (which
supervised approaches could fail to accomplish), unsupervised learning will be used.

2.2 Unsupervised anomaly detection

This section focuses on the main algorithms considered for the task of unsupervised
anomaly detection suitable formultivariate data, which is the case of UEBA. We present
these algorithms regarding how they work, the pros and cons, computational complexity
regarding the need of scalability, which of them are suitable when it comes to explaining
the outputs, and finally a summary comparison between them, which helps to decide which
are the most appropriate for the problem of UEBA.

These algorithms work on two basic assumptions: anomalies are somehow different than
regular events (either they are more distant to some reference point, or do not belong to
any cluster, or become isolated with a decision boundary), and; the portion of anomaly
events is much lower than the normal events in the data (e.g., a ratio of 99% normal to
1% anomalies).
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2.2.1 Anomaly detection algorithms

The following algorithms are detailed in the subsection below: histogram-based outlier
score (HBOS), Mahalanobis method, k-nearest neighbor (kNN), local outlier factor (LOF),
cluster-based local outlier factor (cbLOF) one-class support vector machine (ocSVM), prin-
cipal components analysis (PCA), isolation forest and the autoencoder [12, 13, 14].

Histogram-based Outlier Score

histogram-based outlier score (HBOS) [17] is a statistical algorithm used in anomaly de-
tection, and is characterized by its simplicity and scalability. HBOS is the only algorithm
analysed in this work that assumes feature independence, this is, it applies a combina-
tion of univariate methods and does not model correlations between features.

The algorithm starts by computing a histogram for each feature. Different methods are
applied depending on the nature of the data (for categorical data, simple counting is used;
for numerical features, the algorithm allows either fixed or dynamic bin width), and the
height of each bin corresponds to the density estimation.

After obtaining one histogram for each feature f , the histograms are normalized so that
the maximum height is equal to 1.0, ensuring equal weight for all the features, and the
anomaly score of instance x is calculated as shown in equation 2.1, where histi corresponds
to the height of the bin x corresponds to, in the histogram of feature i.

HBOS(x) =

f∑
i=0

log(
1

histi(x)
) (2.1)

According to the authors, the complexity of HBOS is O(n) if a fixed-bin width is used,
and O(nlog(n)) in the case of dynamic bins.

Mahalanobis method

Statistical and probability models were the earliest methods for anomaly detection. Such
models are typically used in detecting univariate extreme values (at the tails of the prob-
ability distribution of the data). Even though such methods have limitations in detecting
multivariate and more "subtle" anomalies, there is one that stands out, which is the Ma-
halanobis method.

The Mahalanobis method [18, 19] assumes the (n x m) data to have a (multivariate)
Gaussian distribution, and the distance between the points and the centroid of the data is
calculated as follows:

Mahalanobis(Xi, µ,Σ) =
√

(Xi − µ)Σ−1(Xi − µ)T (2.2)

Where µ is the m-dimensional mean vector and Σ is the (m x m) covariance matrix. In
the case that the covariance matrix Σ is not invertible, it is possible to compute a pseudo-
inverse, using for instance singular value decomposition, as the authors do in [20]. After
computing the inverse of the covariance matrix, the Mahalanobis distances of each point
in the training set are calculated with equation 2.2, and the anomaly could be classified
based on the statistical distribution of the training distances.
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The main advantage of the Mahalanobis distance is the use of the inner-correlations of the
data, which is ensured by the covariance matrix, allowing to overcome the main drawbacks
of other extreme-value analysis statistical methods. Furthermore, the method is parameter-
free, and is also effective in detecting outliers coming from extreme values. For the main
drawbacks, the method assumes a specific data distribution (Gaussian), which could be a
big limitation in real-world complex scenarios such as behavioral profiling, and requires a
complexity of at least O(m2) to invert the covariance matrix, both in time and space.

K-nearest neighbors (kNN)

The kNN algorithm for anomaly detection is one of the most simple and straightforward,
used to detect global anomalies. The procedure consists of finding the k closest records
for each record in the dataset. After that, an anomaly score is calculated either by using
the distance to the kth neighbor (referred to as kth-NN) or the average distance to all k
neighbors (referred to as kNN) [13].

The parameter k should not be too low, as the density estimation (number of neighbors)
may not be reliable, nor too large. The complexity of finding the k -nearest neighbors is
O(n2).

Local outlier factor (LOF)

LOF [21] is a popular anomaly detection algorithm, and is capable of detecting both local
and global anomalies. It uses kNN in the first step to obtain the k closest points to an
instance (Nk), and uses the relative density for the detection of outliers, which makes the
algorithm capable of detecting local anomalies.

The reachability distance, RDk, between two points, x and x’, is given by equation 2.3,
where Dk represents the distance to the k-th nearest neighbor and D is a distance such as
the Euclidean distance.

RDk(x, x′) = max(Dk(x′), D(x, x′)) (2.3)

The inverse of the average reachability distance from the point x from its neighbors is given
by the local reachability density (LRDk), calculated using equation 2.4, where |Nk(x)|
denotes the total number of points present in the neighboorhood of x (which is equal or
higher than Nk(x), if there are multiple points at the same distance as the k-th neighbor
of x).

LRDk(x) =
1∑

x′∈Nk(x)

RD(x, x′)

|Nk(x)|

(2.4)

Finally, the LOF score is calculated with equation 2.5, which uses a ratio between the
average density of x’s local density. The score of normal instances takes values of 1.0 or
less, while outliers take larger values (higher than 1.0) as the local density of x lowers.

LOFk(x) =

∑
x′∈Nk(x)

LRDk(x′)

LRDk(x)

|Nk(x)|
(2.5)
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Regarding complexity, the cost of the first step is O(n2), and the cost of the remaining 2
steps can be neglected.

Cluster-based local outlier factor (cbLOF)

CbLOF [22] uses clustering as a strategy to determine the most dense areas (clusters) in
the data and performing density estimation for each cluster afterwards. It assumes that
outliers appear in small sparse clusters or on the peripheral of a cluster [23]. Even though
any clustering algorithm can be used for the first step, k-means is the most common choice,
due to its popularity along with having low computational complexity.

After the first step, cbLOF classifies the clusters according to their dimension, and an
anomaly score is computed based on the distance of each instance to its cluster center
multiplied by the instances belonging to its cluster [13].

Similarly to k -nearest neighbors, the predefined number of clusters is critical for the success
of the algorithm, and several experiences must be made.

CbLOF’s computation cost is linear [22] (O(n)), faster than the distance-based approaches
covered, especially when k-means is used as the clustering algorithm.

A variation of cbLOF, proposed as Unweighted-CBLOF or u-CBLOF, mitigates the effect
of too small or large clusters in cbLOF. In this approach, the number of instances in the
cluster is not used.

One-class support vector machine (ocSVM)

OcSVM is an extension of support vector machine (SVM) typically used in semi-supervised
problems, due to its sensitiveness to the presence of outliers in the dataset. However, the
approach can also be used in unsupervised problems.

When used for a classification task in supervised learning, SVM attempts to separate two
classes (positive and negative) using a decision boundary. However, this one-class variation
is named as such due to the assumed existence of only one class (normal or non-anomalous
instances). Therefore, the boundary in this case (a hyper-plane or hyper-sphere) attempts
to separate the data points as much as possible from the origin, after a transformation of
the input points into a high-dimensional space, using a kernel [24].

Kernels are functions that map the input space into a high-dimensional feature space,
where the data is more easily separable. Kernels can be of several types, which include
linear, polynomial, sigmoid, or one of the most popular, the radial-basis function (RBF).

OcSVM also leverages the soft-margin approach, which allows the model to misclassify
some examples to keep the margin as wide as possible, making the algorithm capable of
accounting for outliers in the training dataset [23].

Even though it is hard to estimate the computation complexity of ocSVM, according to
[23], it can range between a little less than quadratic to quadratic (O(n2)), depending for
example on the kernel chosen.
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Figure 2.3: Example projection from the original feature space to a high-dimensional
feature space where data is easily separable from outliers, using a kernel K.

Principal component analysis (PCA)

PCA is a common algorithm for detecting subspaces in the data, a technique known as
dimensionality reduction, and is also suitable for anomaly detection, based on the as-
sumptions that instances that deviate from the derived subspaces may indicate anomalies.
PCA has the limitation of assuming that the data is highly correlated and aligned in
lower-dimensional subspaces [19], which is most properly not verified in several real-world
scenarios. The algorithm consists of the following steps:

1. Data standardization: a critical preprocessing step for PCA consists of standardizing
the data (calculated by subtracting to the instance’s the population mean and divide
it by the population standard deviation), to ensure all the variables are in the same
range;

2. Calculate the covariance matrix, which contains the covariance between each pair of
variables, with the variance of each variable in the diagonal;

3. Calculate the principal components (also known as eigenvectors) of the covariance
matrix, which represent the directions of the maximum variance in the data, done
in an iterative fashion: the first component represents the direction of the maximum
variance, the second component represents the second-highest variance direction, and
so on. These components are orthogonal and thus uncorrelated;

4. Choose the number of principal components to preserve (the d first components
that preserve the most variance), and discard the remaining (for example, a typical
threshold would be: keep the d components that retain 90% of the variance);

5. Project the original standardized dataset into the new subspace given by the com-
ponents, done by multiplying the original dataset by the matrix of the principal
components.

After applying these steps, the points that lie further away from the hyperplane given by
the principal components are classified as outliers.

13



Chapter 2

Figure 2.4: Example of a binary tree partitioning in isolation forest, from [28]. In the
example, the point marked in red is isolated in just one iteration, while the point in blue
(the mediod) takes 5 iterations to isolate.

Instead of explicitly removing the principal components (eigenvectors) that retain the least
of the variance, as explained in step 4. (referred to sometimes as hard-PCA), we could use
weighted distances across all the eigenvectors. This soft approach would be similar to the
Mahalanobis method. The anomaly score for each instance is computed by calculating
a squared sum of the normalized distance of each point to the centroid of the data along
the direction of each eigenvector, weighted by the eigenvalue of that eigenvector [19].

The principal components (eigenvectors of the covariance matrix) are highly affected by
outliers, which may lead to a poor estimation of the most appropriate directions to project
the data. To solve this issue, a robust-PCA version (such as the one in [25]) could be used,
in which the original data matrix M is decomposed into a low-rank matrix L0 (the true
values) and a sparse matrix S0, as equation 2.6 shows.

M = L0 + S0 (2.6)

To achieve this decomposition, and recover the low-rank matrix L0, techniques such as
principal components pursuit [25] or the augmented Lagrange multiplier method [26] are
used.

The computation complexity of PCA is typically linear regarding the number of rows in
the dataset, but quadratic regarding the number of dimensions O(n+ d2) [12].

Ensemble: isolation forest

Isolation forest [27, 28] is an algorithm designed for unsupervised anomaly detection, based
on the assumption that by representing the data as a binary search tree, anomalies are more
susceptible to isolation, meaning being inserted as leaves at a lesser depth than normal
instances. An example of this assumption is present in figure 2.4.

In isolation forest, n samples of a dataset D with N dimensions are used to build an
ensemble of n trees. Each tree is built by selecting a random dimension xi with i ∈
{1, 2, ..., N}, selecting a random value v within the minimum and maximum values that
dimension takes. All the instances with a value smaller than v for xi go through the
left branch, while instances with higher values than v go through the right. This is done
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Figure 2.5: Autoencoder architecture (from [19])

recursively until a tree like the one in Figure 2.4 is built or a limit depth is reached.

After several trees are built with the steps above, the evaluation of whether a new instance
is an anomaly or not consists of running it through all the trees and averaging the insertion
depth for that instance.

The authors in [29] propose an "Extended Isolation Forest" approach, which uses a random
slope for branch cut, and not horizontal or vertical cuts only, as seen in figure 2.4.

Isolation forest has a linear computational complexity [27] (O(n)), which makes it a great
candidate for the UEBA problem at hand.

Autoencoder

Autoencoders are deep neural networks that use a bottleneck architecture to create a
representation of the data with lower dimensionality, and then attempt to reconstruct the
input.

Figure 2.5 shows an example of an autoencoder with 3 hidden layers and an output layer
with the same dimension as the input layer. The goal is to train the network to minimize
the aggregated reconstruction error given by

∑n
i=1(xi−x′i)2, where x′i is the reconstruction

of xi. The main assumption is that outliers have higher reconstruction errors, while normal
instances have errors closer to 0.

The architecture of the autoencoder is typically symmetric on both sides of the middle
layer (code), thus being possible to divide the autoencoder into two parts, the encoder and
the decoder.

The autoencoder is also suitable for dimensional reduction but, when compared with PCA,
the first does not assume a linear compression, thus being able to apply a nonlinear re-
duction of the dimensionality, which makes the autoencoder a more powerful approach.
However, drawbacks such as the difficulty in effective training (avoiding overfitting, com-
plex parameterization), the training time (neural networks are slow to train, even though
it is difficult to estimate a time complexity), and the sensitivity to outliers in the train-
ing data could make it difficult to apply such architecture on early stages of the UEBA
framework.
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2.2.2 Anomaly explainability/interpretability

One of the most important challenges/difficulties in applying anomaly detection in the
cybersecurity field is the ability to explain the anomalies reported, especially with complex
models such as SVM, neural networks, or ensemble methods (isolation forest), where it
can be difficult to associate an output of the model to the features most important in
the decision. EXplainable artificial intelligence (XAI) is a field with the goal of providing
solutions for the interpretability problem: the problem of producing AI results that can be
interpreted easily by humans.

The most straightforward way of ensuring explainability of the results would be to use
models that are interpretable by nature, which include linear regression, logistic regression,
and decision trees. However, such models are used in supervised learning tasks. For the
models covered in section 2.2, which are, all of them, not interpretable by nature, more
advanced techniques are required.

It is possible to find vast bibliography on explainability for supervised models, but the same
does not happen for unsupervised problems such as the anomaly detection domain. How-
ever, some relevant approaches exist, mainly model-agnostic (such as local interpretable
model-agnostic explanations (LIME), Shapley additive explanation (SHAP)), but also a
model-specific approach proposed recently, DIFFI for isolation forest.

LIME and SHAP

LIME [30] and SHAP [31] are two popular model-agnostic approaches to AI explainability.

LIME consists of using an explainable linear model g (even though other explainable
models could be possible, such as decision tree or rule list), a measure of complexity of the
explanation provided by g, Ω(g) and a measure of how unfaithful g is in approximating
the model being explained, f, in the locality defined by πx, given by L(f, g, πx).

The goal of LIME is to minimize the loss, given by L(f, g, πx) + Ω(g), to ensure both
local fidelity and interpretability. Sampling is used to learn the local behavior of f, by
extracting instances around the one being explained (x ), weighted by πx (higher weights
for instances closer to x ). The authors validate LIME by using it for selecting between
different classifiers (explainability may prove a classifier with higher accuracy to be worst),
providing trustworthiness for the predictions and the model, detecting leakage in the model
features, and feature engineering tasks.

Similar to LIME, SHAP also uses local explainability, along with cooperative game theory
concepts. SHAP values are used as a measure of feature importance, based on the Shapley
values of a conditional expectation function of the original model. The SHAP values for a
feature represent the change in the expected prediction when conditioning on that feature,
and explain how to get from the average model prediction if no features were known to the
actual prediction.

Even though model-agnostic techniques have the great advantage of being highly portable
throughout different models, they also contain limitations such as the increased compu-
tational costs and not leveraging the internal structure of the algorithms. Model-specific
approaches, on the other hand, are able to circumvent these disadvantages.
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DIFFI for isolation forest

Even though we were not able to find a significant number of model-specific interpretability
methods for anomaly detection, we did find a recent approach called depth-base feature
importance for the isolation forest (DIFFI) [32] which stands out. The authors present
DIFFI as a global interpretability method, which provides global feature importance for
the isolation forest, but also include a local version of DIFFI, for interpretation of individual
predictions and a procedure to perform unsupervised feature selection.

DIFFI starts with two assumptions to consider a feature as ’important’ to the anomaly
detection task: a split associated with that feature should both induce the isolation of
anomalous instances at small depths and produce higher imbalance on anomalous instances
while being useless on regular points. The approach consists in computing cumulative
feature importances (CFIs), real values for both inliers and outliers that are combined to
produce the final feature importance measures, obtained based on the assumptions above.

Regarding the experimental results, the authors of DIFFI use synthetic and real-world
data to evaluate the local interpretability model and the feature selection method. They
conclude that local-DIFFI performs as effectively as the upper-mentioned SHAP, at a
much lower computational cost, making it more suitable for applications in production
environments.

2.2.3 Algorithm comparison and summary

Table 2.1 contains a summary comparison of the algorithms described above. It summarizes
the most important requirements for the UEBA framework, which consist of the time com-
plexity of the model (the time it takes to train), the robustness to high dimensionality (an
increase of the number of features/dimensions), whether it is possible to interpret/explain
the anomalies reported, and the python libraries that have an implementation of each
algorithm.

By observing the table, the isolation forest is probably the algorithm that stands out
the most, due to a linear time complexity, by being the only one with an interpretability
method available, being robust to high dimensionality, and with availability in the libraries
scikit-learn and pyOD. However, this does not mean that other algorithms should not be
applied and compared, as these advantages are not enough to predict if the isolation forest
will have better results than the other approaches.

2.3 UEBA - machine learning for cybersecurity

As stated in [33], nowadays it is "impossible to deploy effective cybersecurity technology
without relying heavily on machine learning". In fact, domains such as spam email classi-
fication, IDSs, credit card fraud detection, all rely on machine learning to detect security
threats with a growing effectiveness [34]. While in spam classification, typically, supervised
classification is used to predict if a new coming email is spam or ham, based on millions
of previously labeled emails, IDSs and fraud detection often use unsupervised anomaly
detection to detect deviations from a typical behavior: the former looks at the behavior
in the network, and attempts to detect suspicious traffic, and the latter tries to identify
suspicious credit card transactions based on past transactions.

UEBA is a cybersecurity process focused on building profiles (baselines) of user and entity
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Table 2.1: Algorithm comparison

Algorithm Time
complexity

Explainability
algorithms

Robustness to
dimensionality Other limitations/observations Python

implementations

HBOS O(n) Not needed Yes Assumes feature independence pyOD

Mahalanobis
method O(d2) - Yes Assumes underlying data distribution. scikit-learn

kNN O(n2) - No - pyOD

LOF O(n2) - No - pyOD

cbLOF O(n) - No - pyOD

ocSVM O(n2)* - Yes
Difficult parametrization;
* hard to estimate the complexity due to the
parametrization options

scikit-learn
pyOD

PCA O(n+ d2) - Yes
Assumes the data is highly correlated and aligns
in a lower dimension subspace;
Difficult to interpret the outputs.

pyOD

Isolation
forest O(n) DIFFI Yes - scikit-learn

pyOD

Autoencoder - - Yes

Slow to train (high time complexity, even though
it is hard to estimate);
Hard to train (high parametrization);
Difficult to interpret the outputs.

pyOD

Table 2.2: UEBA vs. SIEM, adapted from [35]

UEBA SIEM

Threat detection based on machine learning Threat detection based on a set of rules

Capable of detecting novel threats Not capable of detecting novel threats, due to the
limitations imposed by the rule definition

A better option for insider threat detection A better option for external threat detection

Generates risk scoring for users and entities Generates alerts on security events

Automated threat detection, thanks to machine learning Needs a manual analysis on the reported information

(hosts, applications, endpoints, data storage) behaviors throughout time, and detect signif-
icant deviations, either from the user or the peers’ baseline. UEBA systems typically collect
data from several sources (raw logs, security information event management (SIEM) data,
data loss prevention (DLP) data, network traffic packets) and leverage anomaly detection
machine learning models to create alarms/visualization for suspicious events [4, 35].

As stated in [35], it is important to distinguish between UEBA and SIEM when it comes
to the capabilities of each of them. SIEM consists of a complex set of tools and processes
with the goal of giving a complete view over an organization’s security. It monitors and
aggregates events from firewalls, OS logs, network traffic logs, etc., and uses a threat de-
tection model based on rules inserted by security practitioners to create alerts representing
potential threats. Since several organizations adopt SIEM solutions for their security strat-
egy, it may not be clear how advantageous a UEBA solution may be to complement it.
Table 2.2 contains the main differences between UEBA and SIEM when it comes to their
functionality.

UEBA has important advantages, that make its adoption more and more relevant for
organizations exposed to threats posed by insiders:

• Capability of detecting unknown/never seen threats (novelty detection): with the
unsupervised learning strategy defined, the anomalies reported consist of significant
deviations of any type from a baseline; in contrast, either rule-based approaches
such as those widely seen in SIEM tools, and supervised approaches, are designed to
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Figure 2.6: The three pillars of UEBA (from [4])

detect threats seen previously, due to the intrinsic formulation of the approaches;

• Appropriate for detecting both internal and external threats. Rule-based systems
tend to fail for internal threat detection, as malicious insiders’ activity is typically
less explicit than external attacks, reason why it is harder to express insider threats
with rules. On the other hand, by analysing and monitoring the users’ behavior, it
is possible to detect meaningful and potentially malicious deviations;

• Provide risk-based scoring/analysis over users and entities, based on how much the
behaviors deviate from their baseline. This allows to quantify how likely a user is to
incur in new threats.

On the other hand, some disadvantages include the possibility of a high false positive
rate, especially when there is not enough data to train the models and create baselines,
or when specific jobs are not easy to baseline. UEBA is not a replacement for other
cybersecurity controls (such as firewalls, anti-virus, security operations center (SOC), etc.)
and it is a complex system to adopt and deploy, probably making it less suitable to smaller
businesses.

Figure 2.6 contains the "Three Pillars of UEBA", as presented in Gartner’s 2018 "Market
Guide for User and Entity Behavior Analytics" [4]. The pillar corresponding to "Data"
represents several sources of data, which is ingested and processed in feature vectors to
feed Machine Learning models.

The models, part of the "Analytics" pillar, consist of supervised or unsupervised machine
learning, depending on the availability of labels, or even simpler models such as statistical
or rule-based systems. In the future, it is expected that neural network-based models
replace the current models.

The use cases pillar is approached in detail in the next subsection.
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2.3.1 Typical use-cases and threat scenarios

As mentioned in the previous section, the first pillar of UEBA, as described by Gartner, is
the use cases such systems can identify. Exabeam [36] and Gurucul [37], both vendors of
UEBA products, provide a list of use cases, which are described in detail in this subsection.
With this analysis, we have the goal of being able to identify some threat scenarios we think
may happen in the context of the UEBA framework for the contact center environment,
and which will hopefully explain some of the anomalies reported.

Account compromise/hijacking

In this use case, it is assumed that an attacker gains access to the credentials of a user, by
exploiting vulnerabilities such as remote code execution or brute force. The UEBA machine
learning models can use features such as location, IP address, device, and network packets
to detect such anomalies. This allows a more advanced detection than the one performed
by rule/signature-based systems.

High Privilege Abuse

This use case is related to irregular actions on accounts with high privileges. The UEBA
framework ingests account data (including permissions), from identity and access manage-
ment systems, directory services (such as Active Directory), and monitors those accounts
to detect anomalous actions such as assigning high privileges to other accounts, access to
classified/sensitive information, different IP addresses or locations. The detection of such
threat scenarios is crucial to prevent attackers from gaining access to sensitive information
and initiate other attack avenues.

Data exfiltration

This use case is related to anomalous extractions of sensitive data (such as personally
identifiable information (PII)). The UEBA framework ingests data from DLP or other
important data storage locations. The Machine Learning models can detect irregular
extraction of sensitive documents, copying these to USB drives, as well as email content,
source code, and others. By creating baselines of access to sensitive data, which include
the normal quantity of data extractions, it is possible to detect anomalies with regard to
those parameters.

Insider threats

Thanks to the capability of creating user behavior baselines and compare users with peers,
UEBA is capable of detecting malicious insiders, assuming their actions are different from
the peers. The framework is capable of assigning risk scores to users based on how much
they deviate from peers and provides important insights through dashboards and alarms.

Cyber fraud

UEBA systems are capable of detecting cases of fraud in financial areas (treasury, account-
ing, payments). The system should ingest and monitor data concerning payments and
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other financial transactions, and detect anomalies. It is thus possible for an organization
to integrate its fraud models with user and entity analysis.

Trusted Host compromise

Not only is it crucial for organizations to monitor the users, but it is also as important
to monitor hosts and entities connected to the network, since if compromised, they are a
source of access for attackers. To do so, UEBA integrates logs/data from security alerts,
vulnerability scan results, common vulnerability scoring system (CVSS) and others, to
detect anomalies concerning activity in hosts/entities.

2.3.2 Existent UEBA products and applications

Even though UEBA is a recent approach in cybersecurity, there are some vendors that
offer UEBA products, either integrated with SIEM or as standalone offers. Example of
such vendors are Gurucul [2], Varonis [35] and IBM [9].

In Gurucul’s UEBA data sheet [38], they describe the process of real-time user risk scoring,
which starts with the ingestion of data from several sources (security data from firewalls,
IDSs, anti-virus software, infrastructure logs from servers, DNS, network logs from Netflow
and Packet Capture, application audit logs, device attributes and details), processed and
fed to machine learning models to identify anomalous behavior. Even though Gurucul does
not disclose the machine algorithms used, they indicate some appropriate algorithms for
unsupervised learning in [39], which include DBSCAN, LOF and ocSVM.

The capabilities of the product include: predicting and preventing both known and
unknown threats by identifying activities deviating from baseline behaviors established
by several machine learning models; take action on alerts based on the risk severity,
to allow security analysts to prioritize the issues; supporting several sources of big
data, to enable data ingestion from the customers’ data lakes; automating risk-based
response, through automation of the decisions based on the risk scores generated, such
as increasing security controls for high-risk users.

IBM’s QRadar is a popular SIEM that offers UEBA capabilities. The key features an-
nounced in [9] are the ability to detect insider threats based on behavioral anomalies, the
integration with the SIEM product, and the generation of risk scores for each user under
monitoring. Figure 2.7 shows the main dashboard for UEBA, which includes the monitored
users along with a risk score, the risk categories, and alerts for new events.

Aside from released and available products, other relevant contributions in academia on
UEBA exist.

The authors in [40] attempt to detect anomalous user behavior in mobile wireless networks,
by using k-means clustering and hierarchical clustering to model call and SMS activity of
users and detect anomalies. They use the aggregation of events into one-hour intervals
to detect contextual and collective anomalies, by summing call and SMS activity for each
user. Since this was an unsupervised approach, no objective results are presented, but the
authors claimed to have compared the anomalous events with ground truth information,
and that they correspond in fact to highly populated events, thus confirming high network
traffic demand.

In [20], the authors present an overview of the Niara (Cybersecurity firm bought by HPE
in 2017 [41]) UEBA modules. In the paper, they attempt to perform anomaly detection
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Figure 2.7: IBM QRadar’s UEBA dashboard (from [9])

on users based on the access and interaction with a specific server. To do so, they create
two distinct baselines: an historical baseline, which only uses data from each specific
user, to detect deviations from their own behavior; and a peer baseline, which allows
the comparison of users with their peers (other users that behave similarly). To define the
behavior baselines, the authors use the following daily aggregated features:

• timestamp of the first access of the day;

• timestamp of the last access of the day;

• duration between last and first access;

• sum of the duration of all eflows of the day;

• number of eflows during the day;

• total download bytes;

• total upload bytes of the day.

The authors use an enhanced version of the Mahalanobis distance, featuring one-sided
deviations, which consists in ignoring deviations from the positive or negative side of the
mean (e.g., the download data below the mean may not be too relevant in a security per-
spective, while high quantities of download are highly concerning); variable weighting,
which allows customers to give more relevance to determined features they are more con-
cerned with, either in a business or security purpose; robustness to outliers, leveraging
an implementation of robust PCA (rPCA); explainable results, by calculating the
contribution of each feature to the anomaly; learning from user feedback, allowing to
improve the models continuously.

Regarding Niara’s UEBA workflow, the authors divide it into four steps: data prepa-
ration, where data is ingested from the available sources and grouped by entities; fea-
ture extraction, in which the relevant fields for UEBA are extracted and grouped by
user/entity and aggregated per day; behavior profiling, corresponding to applying the
Mahalanobis method to generate behavior profiles for each user; and finally anomaly de-
tection, where the test values are scored against the profiles, generating anomalies and
alerts. The validation approach presented is empirical, as the system is deployed in a
real-world scenario, and anomalies are evaluated manually to assess the correctness of the
results.
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In [42], the authors propose an ensemble approach of three unsupervised algorithms: iso-
lation forest, ocSVM and a neural network model similar to an autoencoder to detect
anomalous user behavior. They collect data from system logs, application logs (such as
DLP logs), user directory logs and others, from a software company and for a period of
3 months, consisting of normal behavior of 4 different users. Afterwards, the authors
are able to simulate and label anomalies. The feature extraction steps consist in 24-hour
aggregation of a total of 24 features, which include:

• total number of connections;

• timestamp of the first login;

• timestamp of the last login;

• total download bytes;

• total upload bytes;

• number of mkdir success;

• number of mkdir fail;

• number of delete success;

• number of delete fail.

Other features include mostly the success and failure of several operations (rename, down-
load, upload, rmdir,...). These feature vectors are fed to each of the three models, and an
ensemble approach with strictly filtering is applied to get the final result.

The authors have access to labeled data, and thus explore different scenarios when it
comes to testing and validation: they train with different contamination rates (0%, 2.06%,
and 4.03%). They conclude that ocSVM is the best performer with an anomaly-free
dataset, but suffers a lot when the training data contains outliers (the recall and accuracy
drop from 100% and 96.72% to 75.86% and 81.39%, respectively, when the dataset contains
a 4.03% percentage of contamination). A similar scenario is observed with the neural
network algorithm, with a drop from 95.62% and 97.70% to 79.56% and 72.41%, in the
same conditions. In this study, isolation forest is the model that performs the worst,
with an accuracy below 80% independently of the contamination rate in the training data.

In [43], the authors (from Exabeam) represent a user’s daily traffic (collected from multiple
sources, such as active directory, VPN logs, proxies) as an array of event counters. A
table with more than 60 events is present in the paper, which includes:

• account-related events (account creation, deletion, lockout, password change or re-
set);

• authentication events (failed, successful);

• database events (database alert, login, query);

• DLP events (dlp alerts, dlp email alerts);

• operations on files (file delete, file permission change, file read, file write);

• privileged access operations;
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• remote access operations;

• security alerts (from other security products);

• usb activity;

• and many others.

As explained, an array with a count for each of the events is stored as a user’s activity for
each day. The authors weigh each event by giving more importance to events that do not
occur often (such as password changes), and use PCA to model user behavior and detect
anomalies. A hard-PCA (presented in subsection 2.2.1) is used, meaning only the top
eigenvalues are retained, bounded by a threshold h.
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Data analysis and threat scenarios

This chapter contains the steps conducted with the goal of obtaining, from the raw data
which we were given access, a final dataset of grouped behavior activity, to feed the anomaly
detection algorithms, and is summarized by the following steps/sections:

• Analysis of the data available for this work, in which we present the raw data
collected;

• Definition of some example threat scenarios that we should be capable of detecting
with the data selected in the first step;

• Implementation of the data transformation pipelines, in which data is aggregated
to represent the behavior of users in determined periods (e.g., 24h);

• Exploratory data analysis, in which we obtain insights and attempt to select the most
appropriate features for behavioral profiling, from the whole set of features extracted
from the original data.

3.1 Analysis of the data sources available

A successful user and entity behavior analytics (UEBA) implementation is characterized
by the usage of rich and varied sources of data, containing several behavior indicators suit-
able for profiling/baselining. Therefore, it is of utter importance to start with data from
which we are able to retrieve several metrics characterizing different patterns of interaction
between the user and the contact center application. At this point, we have access to three
distinct data sources: call history data, which contains information regarding every call,
with several metrics presented below; audit logs, in which several different activities per-
formed by users (create a session, change password, read a recording, etc.) are registered;
and roles, which contains the role an agent is assigned (agent, supervisor, administrator).

Call logs

From the call logs, we extract the fields in table 3.1 (the field name does not correspond
to the actual name in the logs). Each event (row in the data) corresponds to a call.

With the call data, we intend to model and detect anomalies regarding changes in the call
behavior, such as when talk/wait times or the number of missed calls change abruptly,
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Table 3.1: Fields from calls historical data

Field Description

Call start time Timestamp of the start time of a call

Call finish time Timestamp of the finish time of a call

Call direction "inbound" for calls received and "outbound" for calls sent)

Call missed Takes the value "True" if the call was missed by the agent

Call duration Total duration of the call

Call talk time Total time a customer is effectively talking to an agent

Call out of working hours True if the time of the call is outside the working hours of the contact center

Call cost Cost of the call, in unknown unit/currency

Call waiting time Time that the customer waits for the call to be answered

Table 3.2: Audit log operations used in this work.

Operation Description

login_submit User submits a login form, from any of the possible platforms.

create_session A session is created (or renewed) for a user.

remove_session A session is revoked for a user.

change_password A (logged-in) user changes the password.

reset_password A (not logged-in) user resets the password.

read_contact An access to a contact’s PII.

read_recording An access to the recording file(s) of a call.

possibly indicating a decrease in performance or someone else using the application, and
calls in unexpected/inappropriate hours, such as the period when the contact center is
closed.

Audit logs

Audit logs consist of events corresponding to the activity of users. Table 3.2 contains some
of the audit events implemented in Talkdesk and used in this work (the operation names
were modified). Each event corresponds to a particular operation.

Even though this list (in table 3.2) is a short one when comparing to the whole list of
operations currently implemented, we started with a small number for two reasons: these
are, so far, the most appropriate operations related to the detection of security threats that
we have access to; also, some of the operations are currently not traceable to the agent
responsible, which makes them unusable in UEBA.

With the sequence of events associated with an agent in a determined period of time (e.g.,
24h), it should be possible to create a behavior baseline, capturing the typical rate of audit
logs for each operation and each user. Any significant deviations from that baseline can
indicate anomalies in the form of security threats. As an example, if a user, in a deter-
mined day, has far more login attempts or accesses to customers’ personally identifiable
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Table 3.3: Reference UEBA threat scenarios / misuse cases.

Name Actor profile Preconditions Severity Indicators
(daily)

Account
compromise External - High

nr. sessions
nr. countries
nr. devices

time of the first event

Data breach Insider
User login

User confirmed
Access to contacts

High nr. accesses to PII

Activity out of
working hours Insider User login

User confirmed Medium
nr. calls out of working hours

weekday or weekend
time of the first event

Performance
decrease Insider User login

User confirmed Low
nr. of missed calls
time to answer calls
session duration

Insider abuse Insider User login
User confirmed Low number of calls

time spent talking

information (PII) than expected, that could be indicative of a possible compromise or a
data breach/theft. From the audit logs, beyond the actual audit operation, we can also
collect important metadata in the security context:

• Origin/location/network: information extracted from the IP address allows iden-
tifying, with a certain confidence, the geolocation (latitude and longitude), country,
and network associated with that address;

• User agent: the browser, operating system, and device information from where the
event was performed.

Finally, we also extract the role of each user, typically one of the following: agent, supervi-
sor, administrator. This is a particularly important field, as it allows to perform clustering
on the contact center staff, as we expect users with the same role to have similar behavior
(due to them sharing the same work), but users from different roles to have more distinct
behaviors (e.g., it is not expected for supervisors to have the same amount of call activity
as agents do). Ideally, we should be able to create a baseline of behavior for each clus-
ter (role), avoiding the need of profiling each user with one model per user, and detect
anomalies for when users deviate significantly from the population they are inserted in.

3.2 Threat scenarios/misuse-cases

Contact center agents have access to several sensitive information while doing their daily
work and, with most organizations needing to shift their staff to remote work, it may be
harder to detect, without the help of a framework like the one we propose, whether agents
are incurring in malicious actions, either intentionally or by accident.

The security misuse-cases defined in this section consist of some of the typical threat
scenarios which we aim to detect with the UEBA framework under development. These
scenarios were obtained either by contacts with actual clients, or by researching about the
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typical use-cases covered in UEBA products (approached in chapter 2), or adapted from
the background knowledge of contact center security threats. We identified the following
misuse-cases, which are complemented with the information in table 3.3, including the
preconditions, the severity, and also the associated indicators of each scenario from the
aggregated behavior data:

• Account compromise: a user account’s credentials are compromised, granting an
attacker illegitimate access to Talkdesk’s application, or a user deliberately shares
their account credentials with a third party. This scenario can be identified by
comparing the hour, country, device, from which sessions of a determined user are
created.

• Data breach: a logged-in user accesses clients’ personal information at an abnormal
rate, and outside of the context of the calls she is assigned. This scenario can be
identified by tracking the number of accesses to contacts’ PII made by each user and
compare with the expected rates.

• Activity out of working hours: a logged-in user accesses the application during
periods in which the contact center is not operating, possibly for personal purposes.
This scenario can be identified by looking at user activity outside the working hours
of a contact center, namely on weekends.

• Performance decrease: a logged-in user is not active during her period of work for
long periods, exhibiting higher time to answer the calls assigned, missing several calls
or closing the session earlier than expected. We can use such indicators to identify
the scenario.

• Insider abuse: a logged-in user attempts to trick the system’s reporting metrics, for
instance, by answering many calls with low talk time, which could indicate the agent
is not solving the clients’ issues but instead aiming for personal success metrics.

Since one of the most promising capabilities of UEBA is detecting novel threats, this
section serves as a guideline to important scenarios for the algorithms to detect, due to
their relevance from a security and business perspective, and thus it does not intend to be
an exhaustive exposition of the possible threat scenarios.

3.3 Data transformation and feature extraction

The first step of the road to obtain feature vectors to feed the anomaly detection algorithms
consists of creating data transformation pipelines, responsible for ingesting the raw JSON
data and transforming it in dataframes with candidate features, representing aggregated
information on the behavior of users. Figure 3.1 contains the high-level steps involved in
this process, which are detailed throughout this section.

The raw data we collected consists of two JSON files, one corresponding to three months of
call logs, and the other corresponds to the audit logs collected during the same period, and
the same agents. The "calls" file contains one JSON object per row, populated with the
fields presented in table 3.1 (and some others less relevant), and each row in the "audits"
file is composed of one JSON object, containing the registered operation (from the table
3.2, as well as the associated metadata.

We created two transformation pipelines, following the structure in figure 3.1, one for calls
and one for audits, which transform the mentioned raw files into pandas dataframes, with
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Figure 3.1: Steps performed in the data transformation pipeline

Figure 3.2: Transformation pipeline example for the audit logs (with synthetic events)

each row corresponding to the activity of one user during a particular period (e.g., 1h, 3h,
8h, 24h, etc.). For the audit logs, the following steps are performed during the pipeline:

1. Explode (or parse) event: the JSON file is transformed into a dataframe by using
the schema of the data;

2. Preprocess: prepares the dataframe obtained in the previous step to the aggregation
step, by removing rows with errors or null values (does not happen frequently in this
dataset), perform type conversions on certain fields, derive new fields to utilize more
group functions after the aggregation, convert the timestamp of each event into the
pandas’ timestamp format;

3. Aggregate: we group the events by the user_id, which is followed by re-shaping the
dataframe according to the time period parameter t (the default value is 24h, which
we use in this work). This creates a multi-index aggregated object, to which we need
to apply the appropriate group or aggregation functions to summarize the activity
of a user in a particular period. The possible functions include sum, count (or count
distinct), mean, median, first, last, max, min, and in some cases, we apply multiple
functions to the same field (as present in tables 3.4 and 3.5). Each row in the resulting
dataframe contains a multi-level index composed by an user_id and a timestamp,
with values corresponding to the multiple aggregation strategies mentioned.

4. Postprocess: The final step consists of preparing the dataset for exploratory analysis.
We rename some of the columns, to properly express the aggregation functions used,
drop the empty rows inserted when re-sampling, and other minor changes.

Figure 3.2 contains an example of the transformations specified above. After being sent
through the pipeline, the JSON objects are transformed into the dataframe with summary
statistics of user activity. This process is analogous for the call data, except evident
differences such as the JSON schema and fields extracted.

Regarding the time period defined for the aggregations, we selected 24h as the most
appropriate bucket. The decision was taken due to the impossibility of properly defining a
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Table 3.4: Features extracted from the aggregated audit logs

Candidate Feature Description Extracted from Aggr. function
nr_ip_addresses No. different IP addresses registered IP address distinct count

nr_networks No. different networks the user logged-in from IP address distinct count

nr_usr_agents No. different user agents the user used user agent distinct count

nr_countries No. distinct countries the user logged-in from IP address distinct count

nr_sessions_created No. sessions created (number of login events) operation count

nr_contact_reads No. access to contacts/PII performed operation count

nr_pw_changes No. password changes performed operation count

nr_recordings_accessed No. call recordings accessed operation count

first_event_time Time of the 1st event of the day timestamp first

last_event_time Time of the last event of the day timestamp last

Table 3.5: Features extracted from the aggregated call logs

Candidate feature Description Extracted from Aggr. function
nr_calls Number of daily calls (inbound or outbound) - (raw) count

inbound_call_rate Percentage of received calls Call direction sum

total_talk_time Total time spent talking Call talk time sum

median_talk_time Median time (per call) spent talking Call talk time median

avg_talk_time Average time (per call) spent talking Call talk time mean

nr_missed_calls Number of calls missed by the agent Call missed sum

avg_waiting_time Average time customers waited for
calls to be answered Call waiting time mean

median_waiting_time Median time customers waited for
calls to be answered Call waiting time median

first_call_time Time of the first call of the day Call start time first

last_call_time Time of the last call of the day Call start time last

avg_call_cost Average cost spent in calls Call cost mean

median_call_cost Median cost spent in calls Call cost median

max_call_cost Maximum cost spent in a call Call cost max

total_calls_cost Total cost spent in calls Call cost sum

calls_out_working_hours Number of calls performed out of the
contact center’s working hours Call inside working hours sum

session as the unity (which would be, in our perspective, another appropriate approach), as
the time for the beginning and end of a session is not well defined in our data. Furthermore,
the decision also has in account other UEBA products that use the same bucket (such as
[20]), and the fact that sessions do not cross multiple days (the contact center data used
in this work is not opened 24h a day).

Tables 3.4 and 3.5 contain the features extracted, resulting from the transformations per-
formed, for audit logs and calls, respectively, as well as a description of each feature, the
original raw field where it was extracted from and the aggregation functions used. We also
introduced the field "approx_session_duration", calculated by subtracting the timestamp
of the first event of a day to the last one, giving an approximate duration of a determined
session.

The final step of the transformation step consists of joining the final calls and audits
dataframes. This is necessary as we aim to create one feature vector representative of user
behavior that is as complete and diverse as possible. Moreover, we want to be able to
correlate call-related candidate features (such as the number of calls in a day) with audit
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Figure 3.3: Full process to obtain one single dataframe, ready for EDA, from the multiple
sources.

log candidate features, such as the number of accesses to PII. Thus, we want to be able to
summarize the entire activity of a user concerning calls and audits in a single row, reason
why an outer join is necessary on the dataframes.

Figure 3.3 contains the whole transformation process, from the JSON files to the final
dataframe, which will be used for exploratory data analysis (EDA) and feature selection.
The figure introduces the join operation performed over the indexes of the dataframes
resulting from the calls and audits, as well as the "user database", from where we extract
the user roles.

3.4 Exploratory data analysis and feature selection

Selecting the best/most appropriate set of features for anomaly detection is one of the
biggest challenges in this project. In supervised learning, having a target makes it easier
to perform feature selection. However, the unsupervised nature of our problem hinders
the decision to discard or include features or even to assess the necessity of creating new
features [19]. Hence, we will use several approaches to select from the candidate features:

• Background knowledge: we use knowledge from the security domain on which
fields are relevant for detecting the threat scenarios defined in section 3.2, based on
the indicators for each scenario;

• Cluster analysis concerning the expected behavior/activity differences between
each of the roles in the contact center;

• Univariate analysis and the kurtosis measure: we analyse each feature individually,
by using plots (such as the feature’s distribution with histograms, box-plots, violin-
plots) and summary statistics (such as the mean, standard deviation, maximum and
minimum values, quartiles, and others). The kurtosis measure, as suggested in [19],
identifies distributions containing heavier tails;

• Correlation analysis: we analyse the Pearson correlation between each pair of
features, which gives fundamental insights on events that are performed with some
relation to others. It may allow us to create new features that explicitly represent
the correlation between two features (e.g., if feature A and B are strongly positively
correlated, we could use a ratio feature R, where R = A / B).

Before beginning with EDA, we removed the null values introduced by the join operation
performed in the previous section (e.g., days where users performed audit operations but
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Figure 3.4: Scatter-plot of the dataset based on user roles, using PCA with 2 components
(with a summed explained variance of 64%)

Figure 3.5: Number of events for each day of the week (plot on the left) and for each hour
of a day (plot on the right)

no call activity leads to all fields related to calls being null in that day, or vice-versa). As
all these null values correspond to the absence of activity by the user, the logic imputation
strategy is to replace the null values with 0.

We started this analysis by exploring the aggregated activity for each role a user can have.
Figure 3.4 contains the activity of users, obtained with the use of a subset of features and
principal components analysis (PCA), retaining the 2 principal components, after scaling
the aggregated audit and call data. The existence of three clusters is evident, one for each
of the roles present.

Due to the evident differences of behavior between the different roles in the contact center,
depicted in figure 3.4, this step of feature selection should be done individually for each
role, and different conclusions would be drawn from each analysis. Therefore, we decided
to perform this first analysis (used in this work) for the agents, and replicate it as future
work for the other roles, as the agents are the group that contains the most individuals
and that represents the higher activity in the contact center.

Univariate analysis

Due to the importance of time for some of the threats defined, we started the univariate
analysis by investigating how the events are distributed during each day of the week, as
well as during each hour of the day. This information is shown on figure 3.5. From the
plot on the left, we identify that the activity of the contact center is distributed almost
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uniformly during the weekdays (except for a little more activity on Monday and a little less
on Friday), but there is almost no activity on the weekends. This suggests that activity
on Saturdays or Sundays could be suspicious, and can be registered through the usage of
a boolean feature indicating if the day of the event is a Saturday or Sunday. From the
plot on the right, represented with a box-plot due to it having less information than the
distribution histogram (privacy concerns), we identify that 50% of the activity is registered
between the period after 10:00 and somewhere around 17:00, as well as some outliers around
midnight, confirming how important the time is for detecting activity outside the regular
working hours.

To proceed with the analysis of the individual features, we used both qualitative and
quantitative analysis of the distributions, including histograms, box-plots, and statistical
measures such as the kurtosis.

The kurtosis measure (K) identifies the presence of heavy tails in a statistical distribution.
High values of K indicate a very non-uniform distribution, which identifies features that
may be more prone to containing extreme values that could translate into suspicious be-
haviors. To calculate K for each feature, we start to calculate the mean µ and standard
deviation σ of that feature’s values, and standardize it, as shown in equation 3.1. After
that, the kurtosis K is calculated using equation 3.2, where N equals the number of data
points.

zi =
xi − µ
σ

(3.1)

K(z) =

∑N
i=1 z

4
i

N
(3.2)

Even though we are not able to show the visual representations, due to privacy concerns
associated with disclosing the statistical distributions of the fields, we present the main
conclusions of this step below (we refer to several features from tables 3.4 and 3.5):

• None of the data distributions resemble the normal distribution, which is an issue
for algorithms that assume a normal distribution of the data, such as the Maha-
lanobis method. The distributions are typically right-skewed with several 0 values,
corresponding to the absence of activity;

• The distributions and quartiles show significant similarities between the overall dis-
tribution of the number of calls ("nr_calls") and the number of contacts read
("nr_contact_reads"), with the latter having more extended outliers (heavier right
tail), and thus a higher kurtosis value. This relation should be further explored in
the next step (correlation analysis);

• Features related to the event times (e.g., timestamp of the first event of the day)
contain outliers exposed by the quartile values around midnight, suggesting activity
out of the working hours of the contact center;

• The number of missed calls ("nr_missed_calls") and number of calls out of working
hours ("nr_calls_out_working_hours") are the fields that exhibit the highest kur-
tosis values (around 386 and 3047, respectively). Both the fields have a mean value
close to 0 but significant outliers (e.g., more than 100 missed calls in one single day),
probably indicating these are two strong candidate features to select and use in the
models;
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• The fields related to the creation of sessions ("nr_sessions_created", "nr_countries",
"nr_networks") reveal a typical usage of one single concurrent session, with excep-
tions of up to 11 different sessions created. The number of countries and number of
networks seem to have a similar distribution with most of the values being equal to
1, as expected in a typical situation. These fields should probably not be included
in this multivariate approach, as a separate and univariate analysis of each of them,
or even a rule-base approach, would probably suffice;

• The feature "total_talk_time" contains the highest variability, with a near-uniform
distribution for values between 0 and 20.000, and consequently the smallest kurtosis
value. These factors indicate that such feature may not be particularly interesting
to be used by itself for anomaly detection;

• All the values related to access to call recordings are equal to 0, due to the agent role
not having permission to access such sensitive information, reason why such fields
should be excluded from further analysis.

The univariate analysis step allowed us to obtain insights on all the fields in the dataset.
We were able to identify fields to include in the evaluation as well as fields that should
be removed. The next step consists in analysing pairs of features to identify potential
correlation patterns.

Correlation analysis

Often, in simple supervised learning approaches, we look for features that by themselves
or together with other features can achieve high correlation values with the labels. In
an unsupervised scenario like this one, we can analyze the correlation between pairs of
candidate features, hoping to find interesting feature dynamics and to derive new features
that can ease the identification of anomalies.

For correlation analysis, we start by utilizing a heatmap of Pearson correlation for several
pairs of features from the final dataframe containing the joined sources, presented in figure
3.6, and with it we are able to extract valuable insights:

• The most interesting correlation (from a security perspective) happens between the
number of calls ("nr_calls") and number of contact reads, representing access to
clients’ PII ("nr_contact_reads"). It is possible to assume that the access to PII
is highly related to the number of calls an agent performs, meaning that an excess
number of contact reads when compared to the number of calls (the ratio) could
indicate an anomaly. This ratio could be used as a feature, enforcing the importance
of this correlation.

• The positive correlation between the number of calls ("nr_calls") and the approxi-
mate session duration ("approx_session_duration") shows that the longer the ses-
sion, the higher the number of calls an agent performs, which could imply that agents
with long session times and few calls could be suspicious.

• There is a really strong positive correlation between the number of calls and the
respective cost ("total_calls_cost") from those calls, as expected.

• Since the fields derived from the sessions created ("nr_countries", "nr_devices",
"nr_networks") are close to being colinear, we will be inclined to remove them on
account of speed and simplicity.
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Figure 3.6: Pearson correlation between pairs of example features extracted

The last step of correlation analysis consisted of using seaborn’s pair plots, which dis-
play scatter plots for pairs of features and the features’ distribution in the diagonals.
Even though it was not possible to include the plots in the document (due to privacy
concerns), the results enforce the correlations present in the heatmap from figure 3.6,
through the visible linear relation between pairs of fields such as "nr_calls" and "to-
tal_calls_cost" (positive correlation), "nr_calls" and "nr_contact_reads" (positive cor-
relation), "first_event_time" and "approx_session_duration" (negative correlation).

The analysis conducted in this section allowed us to obtain several important insights and
assumptions regarding the feature-set available for the definition of a behavioral profile.
These conclusions/assumptions do not exclude any features from being selected in
the algorithms, but are rather just an assumption of some of the most promising fields
in the data.
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Chapter 4

Algorithms

This chapter contains a description of the algorithms selected for anomaly detection and
for the interpretability task. Also, we present the final dataset (which resulted from the
work presented in the previous chapter) used in most of the steps of the validation process.

It is important to mention that all the algorithms used in this work, both for detecting and
interpreting the anomalies, are available in recognized python libraries, such as scikit-learn
and pyOD, or through official Github repositories. As such, the time and effort required for
us to be able to use the algorithms was not as extensive as the time spent on the analysis of
the results, which is presented in the next chapter. Nevertheless, details of the algorithms,
such as the parameters or important assumptions made are presented in this chapter.

4.1 Chosen anomaly detection algorithms

This section contains the details of the anomaly detection algorithms chosen for our prob-
lem. The selection was made based on the results of the analysis present in section 2.2.1,
and we decided to include a total of 5 algorithms, with different characteristics, presented
below. Table 4.1 contains a description of each algorithm, with information such as the
python library from where we imported the algorithm, the parameters it requires, and the
way the anomaly score is obtained. The following subsections contain a more detailed view
on each algorithm.

4.1.1 HBOS

Presented in section 2.2, histogram-based outlier score (HBOS) is a statistical algorithm,
which assumes feature independence. We expect it to be the most scalable with regards
to fitting and prediction time.

An implementation of HBOS is available in the library pyOD, which is used in this project.
The threshold between a normal instance and an anomaly is calculated based on the
parameter "contamination", present in all the algorithms under evaluation. The algorithm
is also parameterized by the number of bins in the histogram built. In this work, we use
the default value (10) and do not vary the parameter due to the lack of possibility of tuning
the parameter for each of the clients we intend to deploy the framework on.

The anomaly score of this implementation is calculated based on the density of the bin
that each feature value falls into, and for reasons of consistency with other algorithms in
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Table 4.1: Overview of the anomaly detection algorithms

Algorithm Library Parameters Anomaly
score

HBOS pyOD contamination
n_bins

probability of
the event

Mahalanobis
method scikit-learn contamination Mahalanobis

distance

Isolation
forest scikit-learn

contamination
n_estimators
n_samples

average
depth

PCA pyOD
contamination
n_components
n_selected_components

distance to
hyperplane

Autoencoder pyOD

contamination
hidden_neurons
hidden_activation
output_activation
loss
optimizer
epochs
batch size
dropout rate
l2 regularizer

reconstruction
error
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pyOD, the bigger the score, the higher the abnormality of the instance.

4.1.2 Mahalanobis method

The second algorithm we chose is the Mahalanobis method, a statistical algorithm pre-
sented in section 2.2.1 with two main advantages: it is a simple algorithm to implement
and at the same time powerful when compared to other statistical methods, because it
computes distances using the covariance matrix, which allows having a simpler but still
multivariate anomaly detection algorithm. Plus, this method is used successfully in a real
user and entity behavior analytics (UEBA) implementation [20]. The biggest disadvantage
consists of the assumption that the data has a multivariate Gaussian distribution, which
is not the case in our dataset, as we concluded in chapter 3.

An implementation of the Mahalanobis method is available in scikit-learn, which uses one
parameter, "contamination", widely seen in anomaly detection algorithms from this library.
It starts by calculating the Mahalanobis distance for all the elements in the data, and uses
the contamination to establish a distance offset that separates inliers from outliers. At
test time, the distances are calculated for the test examples, and each of them is classified
as an inlier or outlier based on whether the distance is smaller or bigger than the offset,
respectively.

4.1.3 Isolation forest

Isolation forest is one of the most popular algorithms when it comes to unsupervised
anomaly detection. The method, explained in detail in section 2.2.1 is fast, powerful and
an implementation is available in the popular python library scikit-learn. Similarly to the
implementation of the Mahalanobis method, the isolation forest in scikit is parameterized
by the contamination rate, but also by the number of estimators (number of trees in the
ensemble) and the maximum number of samples to draw from the training dataset for each
estimator, which defaults to 100.

At training time, the algorithm creates the ensemble of estimators which isolate the anoma-
lies as leafs close to the root of the tree. The anomaly score is calculated for each instance
in the dataset, using the mean anomaly score of the trees in the ensemble. The anomaly
score for each tree is given by the depth of the instance in that tree (the lower the score,
the more abnormal de instance is). Afterwards, the contamination rate is used to create
an offset anomaly score, which is subtracted in test time to the anomaly score of the test
instance, resulting in a classification of inlier or outlier whether the difference is bigger or
smaller than 0.

4.1.4 PCA

Principal components analysis (PCA) is another algorithm successfully applied in an UEBA
implementation [43]. In the anomaly detection library pyOD, an implementation of PCA
is available, which is based on [44] and [19].

The implementation starts by standardizing the data, proceeding to the projection of the
training matrix to a subspace that retains a determined amount of variance, typically 95%
or 99% (we went with 95%, after testing both options). Afterwards, the Euclidean distance
between a determined instance and the projection hyperplane (given by the eigenvectors) is
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calculated, weighted by the eigenvalues of the selected components, as presented in equation
4.1, where dist corresponds to the Euclidean distance, µ corresponds to the sample mean,
ej to the jth eigenvector with eigenvalue ej and d to the number of principal components
(eigenvectors).

Score(X) =
d∑

j=1

|dist(X − µ, ej)|2

λj
(4.1)

Higher distances result in more likelihood of the instance being classified as an outlier,
threshold that is given by the contamination parameter specified.

This implementation of PCA tends to be robust to some training contamination (outliers
in the training set), as the score associated with an instance is calculated with regard to
an optimal hyperplane, instead of a particular value [19].

4.1.5 Autoencoder

The autoencoder is a neural network with a bottleneck architecture, as explained in section
2.2.1. An implementation of the algorithm is available in pyOD, which we use in this work.
After standardizing and shuffling the data, the model is built using the Keras API, by
creating a sequence of "Dense" (fully connected) layers with the dimensions specified as a
parameter. The following parameters were chosen for the network:

• The dimensions of the network are specified as a list of the number of neurons for
each layer of the encoder (we set the parameter to [8, 4, 2], resulting in a neural
network with 6 hidden layers, with the number of neurons in equal to 8, 4, 2, 2, 4,
8);

• We use the default values for the activation function of the hidden layers (ReLU)
and also for the output layer (sigmoid);

• We also use the default optimizer approach (adam) and loss metric (mean squared
error);

• Regarding strategies to control overfitting, we use the default L2 regularization value
(0.1), as well as the dropout rate (0.2);

• We train with a batch size of 32 instances and for 100 epochs.

The contamination parameter is used to calculate a threshold for the reconstruction error,
which is obtained by subtracting the original instance to the reconstructed one. In test
time, if the reconstruction error of an instance is higher than this threshold, it is classified
as an anomaly.

As an important consideration, we should mention that we will not, at least in the first
iterations of the framework in production, have an autoencoder version in production, even
if it yields the best results. However, we thought it would be interesting to compare the
algorithms above with a neural network algorithm, and assess if we can reach the stability
of the model, if it is hard to train and if the results are significantly better than the other
algorithms.
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4.2 Chosen interpretability algorithms

As stated throughout the document, it is of utter importance for us to be able to pro-
vide context along with each anomaly or, more specifically, which were the features that
contributed the most to a determined alarm. In this section, we go through the imple-
mentation details of the three approaches which we will compare to achieve this important
goal: z-score relative importance, depth-base feature importance for the isolation forest
(DIFFI) and Shapley additive explanation (SHAP).

Z-score relative importance

In [20], the authors address the problem of interpretability with a simple strategy:
they start by calculating the z-score of a determined test instance, using equation 3.1,
where µ is the sample mean vector and σ is the sample standard deviation vector along
each dimension. Afterwards, the importance of each variable j in the vector z is given by
equation 4.2, where M is the number of dimensions in the dataset.

impj =
z2j∑M
i=1 z

2
i

(4.2)

This solution is straightforward to implement and apply in our data, and has the advantages
of being totally independent of the algorithm used for anomaly detection, as well as being
scalable due to its simplicity. On the other hand, the algorithm may struggle when an
anomaly is the consequence of an abnormality in the correlation between two features, such
as the case of the number of calls vs. the number of accesses to PII ("nr_contact_reads"),
with a strong positive correlation (figure 3.6), as the importance of each feature is calculated
independently.

DIFFI for the Isolation Forest

DIFFI [32], was mentioned in section 2.2.2, and the authors made available an implemen-
tation in python, with a reference present in the publication.

In test time, we use the algorithm to calculate the importance of each feature in each
instance in a determined batch. The function local_diffi_batch present in the algorithm’s
utilities file receives as input the fitted isolation forest object and the batch of examples to
interpret, and returns three different structures:

• a matrix containing in each row the interpretability score of each feature in each row;

• a matrix containing in each row the ranked features ordered in decreasing fashion for
each instance;

• the execution time of the batch.

DIFFI is a model-specific interpretability algorithm, meaning it can only be used to explain
instances classified by the isolation forest.
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Table 4.2: The different feature sets used

FS Description M (#) Features

1 Conservative feature set obtained from
background knowledge and EDA 8

nr_sessions_created, nr_calls, nr_missed_calls,
avg_waiting_time, calls_out_working_hours,
nr_contact_reads, is_weekend, first_event_time

2 Extended feature set with features
excluded from FS1 13 FS1 + total_calls_cost, approx_session_duration,

nr_devices

3 Extended feature set with additional
features engineered 15 FS2 + call_cr_ratio, call_session_ratio

SHAP values

SHAP can be used to explain the output of any machine learning model, and has a python
implementation available in [45].

The repository contains SHAP applications to several types of models, such as tree en-
sembles and deep learning. In our case, we use the KernelExplainer, which uses linear
regression to estimate the SHAP values, and is model-agnostic, and TreeExplainer, which
we use for interpretability of the isolation forest, which leverages the tree-based structure
of the anomaly detection algorithm.

We applied the model-agnostic variant of SHAP on different models (Mahalanbois method,
PCA and autoencoder), and the TreeExplainer on the isolation forest. The results of the
analysis are presented in the next chapter.

4.3 Training data

As mentioned in the previous chapter, our dataset consists of three months of real data,
collected from user activity in the Talkdesk application. After the transformation pipelines
presented in the previous chapter are ran on the original data, the final dataset contains,
in each row, the activity of one user U in a period of 24h inside the period of three months.
As such, we divided the dataset so that the number of training rows N is given by the
instances belonging to the first 60 out of the about 85 days for training, leaving the latest
24 days for testing/validation purposes (about 30%).

Regarding the number of dimensions, M, we will evaluate the framework on three distinct
feature sets, referred to as FS1, FS2, and FS3, specified in table 4.2. These feature sets were
chosen with the help of background knowledge along with the exploratory data analysis
(EDA) step performed in the previous chapter, with FS1 being the most conservative
(only what we believe to be the most important features), and the subsequent sets being
extensions of the previous, by adding some other interesting features to FS1, in the case
of FS2, and adding engineered features, in the case of FS3. During the validation process,
both the number of training rows and features vary according to different settings we
evaluated, such as the number of days used for the baselines (14, 30 and 60 days are the
possible settings), and the feature set used (we experiment with the 3 presented).
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Evaluation and deployment

Validation in unsupervised problems is another known challenge, as it is not directly pos-
sible to compute metrics such as accuracy, precision, recall, or others, as we do not have
readily available labeled datasets. Nevertheless, validation is probably the most important
and demanding step of this work, as a deployment in a production environment for several
customers implies confidence in the correctness of the outputs obtained.

We divided this chapter into two distinct parts, evaluation and deployment.

The testing steps conducted for the implementation of the extract, transform, load (ETL)
and the transformation pipelines are out of the scope of this work.

5.1 Evaluation

In this section, we present the steps conducted to evaluate the results of the framework
proposed, using the algorithms and the dataset presented in chapter 4.

The results of this analysis will determine the main settings to use in the staging deploy-
ment, presented in the next section.

This section is divided into 4 different steps: generation of anomalous instances, used
in some of the subsequent steps; validation of the threat scenarios, by using the labeled
dataset to evaluate the results of each individual model using supervised classification met-
rics; sampling from supervisor activity, an approached based on inspiration from other
user and entity behavior analytics (UEBA) solution [43], consisting in sampling instances
from roles that we expect to exhibit different behavior than agents and use supervised
classification metrics to evaluate the algorithms; evaluation of the interpretability
methods, by leveraging the labeled dataset created to assess whether the algorithms are
capable of identifying the most relevant feature(s) in a determined anomalous instance.

5.1.1 Generation/labeling of anomalous instances

The first strategy implemented to help assessing the results of the algorithms adopted
consisted in synthesizing malicious activity, by creating and labeling instances of aggregated
activity corresponding to the threat scenarios presented in table 3.3. Even though this is
a manual laborious task, it will allow us to use the metrics typically used in supervised
classification problems.
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Due to the laborious nature of creating labeled sequences of events that correspond to
anomalous sessions, we decided to go with a collaborative approach, where several members
with both security and product-related knowledge in the team contributed with their own
examples of anomalies.

In order to enable other team members to contribute, we provided them with a spreadsheet
containing a template with all the metadata necessary to create such sessions. To facilitate
the work as much as possible, the spreadsheet contained:

• the columns ready to fill, including a column for each of the fields present in FS2,
but also a column for the fields that explain the anomaly and the threat scenarios
associated;

• example anomalies already filled, to facilitate the understanding of the activity;

• a template of a typical audit log and call log, cleaned to only contain the fields
necessary (e.g., fields such as IDs or others less relevant to the anomaly detection
task were removed);

• the summary statistics of each field in our dataset (mean, standard deviation,
quartiles, minimum and maximum values), as well as box plots;

• a correlation heatmap and pair plots of fields with significant correlations to
highlight how the fields relate;

• a description of each threat scenario defined, present in table 3.3, along with
an example anomalous session (sequence of events) for each of the 5 scenarios.

After going through the spreadsheet with the team members, their task included creating
anomalous instances of aggregated activity, specifying the values for each of the aggregated
fields present in FS2 (table 4.2), and also relevant metadata of each instance, including the
feature(s) that cause the anomaly, used to evaluate the interpretability methods, as
well as the threat scenario(s) associated, if any, allowing us to detect if the algorithms
are equally successful in detecting different types of threats.

A total of 4 members contributed to the creation of heterogeneous anomalies, resulting in
about 150 instances, with different degrees of abnormality. Figure 5.1 shows the distribu-
tion of anomalies for each of the threat scenarios defined in table 3.3, showing the variety
achieved. One example of an instance related with the threat scenario "Account compro-
mise" would be an agent with, for instance, multiple sessions created in the same day from
multiple countries (feature "nr_countries"); an example of a "data breach" would be a
number of accesses to personally identifiable information (PII) that is both higher than
the user normally does, and also significantly higher than the number of calls performed
by the same agent; and so on.

5.1.2 Validation with the labeled examples

As mentioned in section 4.3, the dataset was split into train and test sets, with the instances
corresponding to the first 60 days being used for training. The testing set consists of the
latest 24 days in the data, which correspond to about 30% of the 85 days in the collected
dataset.

The task conducted in this subsection consisted in fitting each of the algorithms selected
with the training set (using all of it or just a part, depending on the baselining period
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Figure 5.1: Use-case distribution in the synthetic instances

setting, explained ahead in the section), and use the test set, after ensuring no outliers
are present, joined with the labeled instances, to evaluate each algorithm using supervised
classification metrics (F1-score, AUC-ROC, precision, recall).

The test set was manually analysed regarding the presence of outliers coming from the
contamination present in the data, by using box and scatter plots to identify outliers, and
all of the resulting 688 ’normal’ instances were labeled with the negative class. On the
other hand, the malicious instances resulting from the manual labeling process described
in the section above (150 instances) were assigned the positive class.

We performed experiments with several algorithms, along with different varying settings,
namely:

• The baselining period, corresponding to how many days of historical data are used
to fit the algorithm. The possible values are 14, 30, or 60 days (2 weeks, 1 month, and
2 months), from which we expect to understand how much the period of historical
data used to train the model affects its capability of detecting significant anomalies.
We assume 14 days to be the minimum from which it is possible to build a significant
baseline, but we expect more accurate results with more historical data;

• The feature set applied, between FS1, FS2 and FS3, as presented in table 4.2. We
assume that selecting the right set of features is of utter importance in the results,
but due to the unsupervised nature of the problem, we need to experiment with
different sets;

• Training contamination, which we attempt to vary by removing some of the
anomalous instances in the training data, using the robust PCA introduced in section
4.1.4 to score each instance, and remove instances with a score higher than a deter-
mined percentile. We defined three settings for contamination reduction, namely
"true", which corresponds to preserving the original contamination (no reduction is
performed); and the settings "med" and "max", which correspond to removing the
instances with the highest 1% and 5% anomaly scores;

• The contamination parameter, the parameter used to estimate the percentage of
outliers present in the training data, present in all the models applied. We experiment
with the values 2, 5, and 10 percent of estimated contamination.

We fit an instance of each of the 5 algorithms selected for each combination of the settings
described, leading to a total of 81 versions of each model (3 baselining periods, 3 feature
sets, 3 contamination reduction settings and 3 values for the contamination parameter),
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Table 5.1: The 4 settings of each algorithm with the highest F1-score, using the labeled
test set, sorted by decreasing order of the metric.

Training set parameters Model
parameters Metrics

Algorithm Baseline
period

Feature
set

Training
contam. Contam. F1 ROC Prec. Rec. FP FN

Autoencoder 30 FS2 true 0.05 0.947 0.973 0.935 0.96 10 6
Autoencoder 14 FS1 true 0.05 0.944 0.969 0.934 0.953 10 7
Autoencoder 60 FS2 true 0.05 0.944 0.972 0.929 0.96 11 6
Autoencoder 14 FS1 med 0.05 0.936 0.963 0.933 0.94 10 9

PCA 14 FS1 med 0.05 0.932 0.951 0.951 0.913 7 13
PCA 60 FS2 true 0.05 0.931 0.964 0.916 0.946 13 8
PCA 14 FS2 max 0.05 0.93 0.958 0.927 0.933 11 10
PCA 14 FS1 true 0.05 0.93 0.958 0.927 0.933 11 10

Mahalanobis 14 FS1 true 0.05 0.893 0.915 0.954 0.839 6 24
Mahalanobis 60 FS1 true 0.05 0.887 0.914 0.94 0.839 8 24
Mahalanobis 60 FS2 true 0.02 0.876 0.899 0.96 0.805 5 29
Mahalanobis 14 FS2 true 0.02 0.872 0.896 0.96 0.799 5 30

IForest 14 FS2 true 0.1 0.861 0.927 0.831 0.893 27 16
IForest 14 FS1 true 0.1 0.851 0.915 0.838 0.866 25 20
IForest 14 FS2 true 0.05 0.849 0.881 0.943 0.772 7 34
IForest 30 FS1 true 0.05 0.847 0.89 0.902 0.799 13 30
HBOS 30 FS1 max 0.02 0.757 0.831 0.837 0.691 20 46
HBOS 30 FS2 med 0.02 0.756 0.809 0.959 0.624 4 56
HBOS 14 FS1 true 0.02 0.741 0.806 0.912 0.624 9 56
HBOS 14 FS1 max 0.05 0.74 0.829 0.788 0.698 28 45

and thus a total of 405 instances of models trained. In Appendix C we present the results
obtained for all the trained instances, with the respective settings and classification scores.

Table 5.1 contains the 4 results with the highest F1-score between each of the 81 versions of
each algorithm, presented in decreasing order of the metric. With this information, we are
able to draw some conclusions regarding the impact of the algorithm, the baselining period
settings, the feature set applied, and the contamination present in the training set, which
are all factors of extreme relevance based on the need of generalization of this approach to
other clients.

Impact of the algorithm chosen

As expected, the machine learning algorithm applied has a strong impact on the results
obtained. We used, in this study, 5 different algorithms with different structures and
assumptions about the data. In fact, in table 5.1, where the 4 results with the highest
F1-score of each of the algorithms is presented, we notice that the best 4 versions of the
autoencoder have a higher F1-score than the highest score obtained with PCA, the 4
highest scored versions of PCA result in a higher score than the best setting of IForest,
and so on. This shows that the algorithm chosen is critical in obtaining more
accurate results, even when we vary several training set parameters, as the table shows.

Figure 5.2 present the AUC-ROC curves of the top-performing (highest ROC score) in-
stance of each of the models.

As, to some extent, expected, the autoencoder is the algorithm that achieves the more
consistent results and highest scores. However, surprisingly, the PCA implementation
appears very close to the neural network approach, with about 0.95 in its highest ROC-
score setting. This version of PCA is characterized by some robustness and scalability,
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Figure 5.2: AUC-ROC curves for the version of each model with the highest ROC score.

as mentioned in the previous chapter, making it one of the strongest candidates for the
production deployment.

The highest ROC score obtained with the isolation forest (IForest) is 0.927, explained
by several false positives, when compared with the highest scored principal components
analysis (PCA).

The best instance of the Mahalanobis method obtained a ROC score of 0.915, and a
significant increase in the number of false negatives, when compared to the PCA, which,
due to the similarities between the algorithms discussed in section 2.2, is most properly
explained by the strong assumption the former makes on the distribution of the data
(assumes a multivariate gaussian distribution).

Finally, the histogram-based outlier score (HBOS) achieves a maximum ROC score of 0.83,
which shows that, in our specific problem, the relations between the features are relevant
in determining whether instances are outliers or not, and thus they should not be modeled
independently.

Baseline period impact

The baseline period defines how many days of data are used to build the behavior baselines.
This parameter is extremely relevant to answer two questions: when processing data from
a new client, how many days do we need to wait to be able to build significant baselines;
and, does a two-month baseline improve significantly the results when comparing to a
model trained with a baseline of 1 month, requiring to train with a double amount of data.

The response to both questions was obtained by varying the baseline duration parameter
between 14 (the minimum number of days we defined), 30, and 60 days. This results in,
respectively, 648, 1508, and 3044 training instances in our dataset.

Figure 5.3 contains, on the left, box plots of the F1-score distributions for each model,
when varying the baseline duration setting and, on the right, the number of occurrences of
each setting in the top 20 performing models, independently of the model. Also, table 5.1
presents the baseline period (second column) used in the top-performing (highest F1-score)
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Figure 5.3: F1-score distribution for each algorithm and each value of the number of days
used to build the behavior baselines, for all the different combinations of settings used (all
the instances in the tables in appendix C)(on the left); and the number of occurrences of
each of the setting values in the top 20 algorithms with the highest F1-score (on the right)

versions of each algorithm.

From table 5.1, we observe that, surprisingly, 14 (a 2-week baseline) is the most common
value. As corroborated by figure 5.3, training with 2 weeks appears to be enough, for most
of the cases, and increasing the baselining period to 30 or even 60 days often results in
marginal improvements or even worse F1-scores.

The Autoencoder and PCA results show some similarities, such as no significant differences
in the maximum F1-score, regardless of the number of days used to baseline. However, the
median F1-score obtained with PCA using a 14-day baseline is significantly higher than
the 2 other settings.

In the Mahalanobis method and in the isolation forest, a 14-day baseline results in signif-
icantly higher F1-scores than the other 2 settings. Also, in the Mahalanobis method, the
best score obtained using a 30-day baseline is still significantly lower than both the best
score using 14 and 60 days, showing that, in this algorithm, there are multiple factors that,
along with the baselining period, influence the F1-scores, as expected.

The HBOS is the only algorithm that contradicts the supremacy of the 14-day setting,
with the maximum F1-score being observed with a 30-day baseline period, and the highest
median score being observed with 60-day baselines.

In conclusion, a 14-day baseline is not only sufficient to train most of the algorithms,
as it outperforms the other 2 possible settings (1 month and 2 months), in several
scenarios. Even though the best setting may be dependent on the algorithm applied, the
14-day setting appears to be highly consistent across most of the ones we experimented
on.

Using 30 days of historical data to train the models also seems to be a strong choice across
most of the algorithms, with the exception of the Mahalanobis method. On the other
hand, the longest period experimented (60 days) is probably unnecessary as it often leads
to worse results, requiring significantly more data and time needed to wait until we can
start training the models, if the client is new.

In subsection 5.1.2 we analyse, from a time perspective, the difference in training time
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Figure 5.4: F1-score distribution for each algorithm and each value of the contamination
reduction setting, for all the different combinations of settings used (all the instances in
the tables in appendix C)(on the left); and the number of occurrences of each of the setting
values in the top 20 algorithms with the highest F1-score (on the right)

when using the different baselining period settings.

Training contamination reduction impact

Contamination reduction is the procedure defined to remove some of the contamination
present in the training data, and is a strategy used in other UEBA approaches, such as
[20]. The way we attempt to achieve this is by running a robust version of PCA (the one
we also use for the actual task of anomaly detection) on the training data (similarly to
what the authors of the mentioned article do), and exclude the instances with the highest
anomaly scores, based on some threshold given by a percentile of the score distribution.
PCA was the best candidate for the application of this strategy due to its capability of
dealing with training contamination, and also to the scalability shown (fastest algorithm
both in training and in testing (table 5.2 and figure 5.8).

We defined three settings for this parameter: "true", which corresponds to not employing
the outlier removal approach (or, in other words, use the "true" contamination present in
the dataset); "med", which corresponds to removing from the training data the instances
with the 1% highest anomaly scores, and "max", which uses the highest 5% as the threshold
for removal. This parameter is present in the column "Training contam." in table 5.1, as
well as in the tables present in Appendix C, under the same column name.

From the histogram in figure 5.4 and table 5.1, we observe that both the "true" and the
"med" setting appear frequently, and the "max" setting is only seen twice, and far from
the top of the table.

The box plots on the left of figure 5.4 show the distribution of the F1-score, for each algo-
rithm, when the different contamination reduction settings are used. From these graphics,
it is possible to observe that the HBOS is the only algorithm on which the "true" setting
does not yield the highest F1-scores.

In general, the results seem to favor the setting in which no contamination reduction is
performed ("true" setting), and the "med" setting is also better than the most aggressive,
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Figure 5.5: F1-score distribution for each algorithm and each value of the contamination
parameter, for all the different combinations of settings used (all the instances in the tables
in appendix C)(on the left); and the number of occurrences of each of the setting values in
the top 20 algorithms with the highest F1-score (on the right)

"max" setting. In the autoencoder, the difference between the highest F1-score obtained
with the "true" and "med" is more significant than in PCA, with the latter showing
marginal differences in the top scores of each contamination reduction setting, but with a
median F1-score that clearly favors the "true" setting.

In the Mahalanobis method and the isolation forest, using the "med" setting results in a
significant decrease of both the maximum and median F1-score, when compared to the
"true" setting, and the "max" approach is even worse.

The HBOS’s results, on the contrary of all the other algorithms, obtain higher F1-scores
(both maximum and median) with the "med" setting, and the highest result with the
"max" setting is also higher than with no contamination reduction ("true"), showing once
again how the results of this algorithm diverge from the others.

In conclusion, the approach for reducing training data contamination with a robust al-
gorithm, is shown not to be beneficial in this scenario, with the evaluation scores
decreasing when the strategy is applied, most of the time. Therefore, the default setting
will be the "true" setting, but we will include the remaining possibilities in production
deployments, as we cannot be sure that these results will be observed for all the clients.

Model contamination impact

Contamination is one of the most relevant model parameters, and is required across all
the 5 models analysed in this work. When deploying the framework using data from the
different clients, we will not be able to estimate the training contamination, reason why it
is important to establish a default value that will not result in be balanced when it comes
to the false positive versus false negative rate.

We defined three values to experiment with: 0.02, 0.05 and 0.1 (1%, 2% and 10% of training
contamination, respectively). Similarly to the previous parameters, we analyse the impact
of varying the parameter with table 5.1 and figure 5.5.

From table 5.1, it is possible to observe that the 0.05 setting is by far the most frequent,
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Figure 5.6: Distribution of the number of false positives (on the left) and the number
of false negatives (on the right) in each algorithm and each value of the contamination
parameter

with 13 occurrences in the top 4 versions of each algorithm. On the other hand, the lowest
contamination value (0.02) appears five times in the table, and the 0.1 setting only 2 times,
far from the top results.

The histogram on the right of figure 5.5, which shows the setting used in the 20 setting
combinations which obtained the highest F1-score, regardless of the algorithm, contains 19
occurrences of the value 0.05, 1 occurrence of the value 0.02 and 0 of the value 0.1, once
again showing that 0.05 is probably the most appropriate value for our dataset.

The plot on the left of figure 5.5 shows the F1-score distribution for each contamination
setting, for each algorithm. The different box plots show that the 0.05 setting results in the
highest F1-scores in 3 out of the 5 algorithms. In the isolation forest, however, it is with
a 0.1 contamination setting that the highest F1-score is achieved, even though the median
score is higher with 0.05. Also, when HBOS is used, the highest scores are obtained with
a 0.02 contamination, contradicting what was observed in the other algorithms.

Even though the autoencoder is capable of achieving F1-scores of more than 0.9 with a
contamination parameter of 0.02, the same does not happen with 0.1. The median score is
also significantly lower in the latter setting. With PCA, however, the difference is not as
substantial, with a 0.1 contamination resulting in the highest F1-score of about 0.92, and
a median score marginally lower than the median score when 0.02 is used.

The contamination parameter seems to also affect the isolation forest quite significantly
since, with the value 0.02, the algorithm achieves at most about 0.76 F1-score. Also,
IForest is the only algorithm in which 0.1 results in a higher top score than 0.05, even
though the median score is lower.

In figure 5.6, we analyse how each contamination value affects the number of false positives
and false negatives, across all the algorithms, to draw the expected conclusions: indepen-
dently of the algorithm, the number of false positives raises as we raise the contamination
value specified (on the left of the figure) and, on the opposite direction, the number of false
negatives decreases (on the right of the figure). The plots show the importance of investing
in an appropriate estimation and further adjustments of the parameter, as an inaccurate
value may lead to several irrelevant alarms being created, or to important cases not being
reported at all.
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Figure 5.7: F1-score distribution for each algorithm and each feature set, for all the different
combinations of settings used (all the instances in the tables in appendix C)(on the left);
and the number of occurrences of each of the setting values in the top 20 algorithms with
the highest F1-score (on the right)

In conclusion, the analysis conducted shows that the contamination parameter has a very
strong impact on the results produced. Also, the results obtained suggest 0.05 (5%) as the
most appropriate value for a default contamination setting, based on the dataset analysed.
Also, this middle parameter is more conservative than 0.1 regarding the quantity of alerts
that will be generated, reducing the number of false positives, but also higher than the
minimum used in this experiment of 0.02, which could result in some threats being missed
by the algorithm (false negatives), as shown.

The value 0.05 results in the highest F1-scores for the most promising algorithms, such
as the autoencoder and PCA. However, the results also show that the most appropriate
estimation of the contamination value depends on the algorithm, and not only on
the actual outliers in the training data.

Finally, it is important to remember that we can tune the contamination parameter in
subsequent training iterations, through the feedback mechanism implemented, explained
in section 5.2.1.

Feature set impact

Due to the unsupervised nature of our problem, selecting the best set of features was a
challenge from the beginning of the project. With that in mind, we defined three different
feature sets, specified in table 4.2. With the goal of choosing the best between the three,
we can identify which are the predominant sets present in the top results. From table 5.1,
as well as from the histogram on figure 5.7, we are able to identify that both FS1 and FS2,
the smallest and the medium-sized sets stand out, with FS3 showing up zero times both
in the table and in the histogram.

From the left plot of figure 5.7, which shows the F1-score distribution for each model
and each feature set, it is also clear that FS3, composed by the features in FS2 with 2
additional engineered features, is the one with the worst performance, across every single
model. Even the algorithms with the best scores, in general (Autoencoder and PCA), are
barely capable of surpassing an F1-score of about 0.8 with this feature set.

The bad performance seen in models using FS3 is quite unexpected, and, from table 5.1
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and appendix C, it is possible to observe that the poor performance is due to a significant
increase of false positives, most properly introduced by these extra features. This shows
that the ratios introduced in the engineered features (ratio between the number of calls
and access to PII and the ratio between the session duration and the total cost) have a
high negative impact on the models’ performance, and even though the correlation between
the features used in the ratios are high, the violation of that correlation does not seem to
help in reducing the false negatives, but instead, in most cases, raises the number of false
positives dramatically. We can also draw some immediate conclusions on how important
the feature set chosen is, with our beliefs on what would be good candidate engineered
features, result in much worse performances than the feature sets composed of only raw
features.

The hard decision is in choosing between FS1 and FS2. Even though the highest F1-score of
3 models (PCA, Mahalanobis and HBOS) is achieved with FS1, FS2 yields a better median
F1-score across 4 out of the 5 models. The only exception is HBOS which, even with a
similar best F1-score between FS1 and FS2, the median score with FS1 is significantly
higher (about 0.04 points).

In general, the added features in FS2 do not seem to increase the number of false posi-
tives, showing that the features that, during exploratory data analysis (EDA), were not
considered the most important, are in fact auxiliary to obtain better results, in most cases.

In conclusion, FS2 will be used as the default feature set, to deploy for other clients,
especially if scalability is not a concern when the number of features grows, which we
analyse in section 5.1.2. However, FS1, with 3 fewer features, also achieves high results
across the different algorithms, and could be considered in specific situations and future
tests.

Execution times

Another important step of assessing the applicability of this framework into Talkdesk’s
production environment, which helps to decide between all the settings analysed before, as
well as the algorithm itself, is the performance (regarding time), during training and test.

Even though we do not expect that training and prediction time will be a concern in the
first iterations of the framework, whose algorithms will be retrained every week or every 15
days, and predictions will be made only once a day, these settings could be changed and the
goal is to prepare the framework to be suitable for different time granularity possibilities
(e.g., 1-hour batches or even-near real-time (streaming) with moving windows). Therefore,
prediction time could be a significant concern in the future, and that is the reason why it
is important to compare the different algorithms in that regard.

The setup we built to evaluate the time performance of each algorithm consisted of the
following steps, ran using an i3.xlarge AWS instance (4 vCPUs, 30.5GiB RAM), with the
same random seed across experiments:

1. Define a baseline set of parameters to use across all the models. The chosen param-
eters were: the use of the smallest feature set (FS1), no contamination reduction is
applied ("true" configuration), a 30-day baseline, and a 0.05 contamination (model
parameter);

2. Train every model with the configurations above, for 100 times, and calculate the
average and the standard deviation, for each model;
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Table 5.2: Mean and standard deviation train times from 100 runs of each model. The
second and third columns represent the "base" model (Feature set FS2, no contamination
reduction ("true" setting) and 30 days baseline time), and the subsequent columns (on
the right) contain the results of one single parameter modification, specified in the column
name. All the results are presented in seconds.

Algorithm Avg. train
time (s)

Std. train
time (s)

Avg. time
(FS3 (s))

Std. time
(FS3 (s))

Avg. time
("med" (s))

Std. time
("med" (s))

Avg. time
(60 days (s))

Std. time
(60 days (s))

HBOS 0.00975 0.00146 0.01089 0.00178 0.01512 0.00211 0.01108 0.00171
Mahalanobis 0.34097 0.02295 0.34357 0.02552 0.34429 0.01906 0.37437 0.01103

IForest 0.23825 0.02257 0.23443 0.01946 0.23868 0.01968 0.24022 0.02551
PCA 0.00820 0.00107 0.00898 0.00160 0.01317 0.00166 0.00918 0.00144

Autoencoder 1.67781 0.17669 1.71583 0.14453 1.84081 0.23758 2.25967 0.13440

Figure 5.8: Average train (on the left) and prediction (on the right) time from 100 runs of
each model.

3. Vary the parameters defined, one by one (change the feature set to the one with
the highest number of features (FS3), use a 60-day baseline to train, and the "med"
contamination reduction setting), and evaluate how each parameter modification
affects the training time, also by training for 100 times and calculating the mean and
standard deviation;

4. Evaluate the testing time performance on the base settings defined, for which we used
the full data available (about 5000 rows) as a batch to predict on, and predicted 100
times for each algorithm, averaging the results.

The results related to the training part of this analysis are presented in table 5.2, and are
summarized in the plot on the left of figure 5.8. On the right of the same image, we see
the results of the analysis during testing/prediction time.

When it comes to train times, there are two algorithms that stand out: HBOS and PCA.

As expected, HBOS is quite efficient, due to its simplicity, with PCA being even faster,
independently of the settings used. PCA also surprised by being about 40 times faster
than the Mahalanobis method, and more than 200 times faster than the autoencoder.

From the plot on the left of figure 5.8, we can also observe that the setting with the
highest impact on training time was changing from a 30 to a 60-day baseline, which ex-
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pectably doubles the amount of training instances. In the autoencoder the difference is
quite significant, raising the time required for training from 1.67 seconds to 2.25.

The contamination reduction component, which requires training PCA to remove (in the
case of the "med" setting) 1% of the contamination, and using the feature set FS3, instead
of the base FS1, are changes that result in marginal train time differences, in most of the
cases. The results show that the contamination reduction algorithm is efficient, and the
time consumed in training PCA is most properly compensated (in the final training time)
by the number of instances removed. Also, a certain increase in the number of dimensions of
training does not affect the training performance of these particular algorithms, especially
when compared to an increase of the number of instances.

The performance in testing time is currently more important for our use case, especially if
a near-real-time scenario is applied. The experiments were conducted with a simulation of
a batch of about 5000 instances, and the results, shown in the right plot of figure 5.8, show
that the prediction times are acceptable for a production scenario, in all the 5 models.
Even though the plot shows a significant difference between the autoencoder and the other
algorithms, we can observe that it takes, on average, a bit more than 47ms to process
the mentioned batch. Nevertheless, it is important to highlight that PCA is the fastest
algorithm also at test time, taking on average 1.6ms to compute the entire batch.

Key takeaways

In this section, we used a labeled test set to compare the different algorithms, as well as
settings such as the baselining period, the feature set and the contamination reduction
in the training data. The autoencoder achieved the highest F1-scores in the test set,
showing that the neural network approach is indeed the most powerful, in our scenario.
Nevertheless, the scores obtained with PCA are quite interesting as well, clearly standing
from the remaining algorithms.

The results also show that, in general, 14 days of training data is enough to achieve similar
or even higher F1-scores than the other baselining period settings, meaning that, when a
new client is added, there is a strong belief that we can start detecting anomalous behavior
after this period. Also, we concluded that the contamination parameter is dependent both
on the dataset and the algorithm, making it very hard to estimate the most appropriate
value for every client, in an automated fashion. Hopefully, the parameter can be adjusted
with the help of a feedback mechanism, introduced in 5.2.1.

We have also concluded that the feature set applied is determinant for the success of the
algorithms. The engineered features resulting from highlighting correlated pairs of features
(used in FS3) reveal significant worse results, reason to favor the raw features present in
FS1 and FS2.

With consistent results (the closest to the autoencoder’s) and a proven performance in train
and test time, PCA is the overall best performer of this analysis, making it the most
suitable algorithm for the deployment step, along with a 14-day baseline period, the "true"
setting corresponding to no contamination reduction, a 0.05 value for the contamination
parameter and, finally, the middle-sized feature set (FS2).
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Table 5.3: The 4 settings of each algorithm with the highest F1-score, using data from
supervisors as the positive class, sorted by decreasing order of the metric.

Training set parameters Model
parameters Metrics

Algorithm Baseline
period

Feature
set

Training
contam. Contam. F1 ROC Prec. Rec. FP FN

IForest 14 FS3 true 0.02 0.945 0.958 0.964 0.926 6 13
Mahalanobis 14 FS2 true 0.02 0.944 0.956 0.97 0.92 5 14

PCA 14 FS1 true 0.02 0.944 0.954 0.976 0.914 4 15
Mahalanobis 30 FS1 true 0.02 0.942 0.956 0.964 0.92 6 14
Mahalanobis 14 FS1 true 0.05 0.942 0.956 0.964 0.92 6 14

PCA 30 FS1 true 0.02 0.941 0.954 0.97 0.914 5 15
Mahalanobis 14 FS1 true 0.02 0.941 0.954 0.97 0.914 5 15

PCA 60 FS1 true 0.02 0.941 0.954 0.97 0.914 5 15
Autoencoder 14 FS2 true 0.05 0.939 0.959 0.948 0.931 9 12
Autoencoder 14 FS2 true 0.02 0.938 0.953 0.964 0.914 6 15
Autoencoder 60 FS1 true 0.02 0.938 0.953 0.964 0.914 6 15
Autoencoder 14 FS1 true 0.02 0.938 0.953 0.964 0.914 6 15

PCA 14 FS2 true 0.02 0.938 0.953 0.964 0.914 6 15
IForest 14 FS2 true 0.05 0.936 0.952 0.958 0.914 7 15
IForest 14 FS2 true 0.02 0.929 0.942 0.969 0.891 5 19
IForest 14 FS1 true 0.05 0.929 0.946 0.958 0.903 7 17
HBOS 30 FS3 true 0.02 0.86 0.917 0.845 0.874 28 22
HBOS 14 FS3 max 0.02 0.857 0.91 0.857 0.857 25 25
HBOS 60 FS3 max 0.02 0.85 0.914 0.827 0.874 32 22
HBOS 14 FS3 true 0.02 0.848 0.904 0.851 0.846 26 27

5.1.3 Sampling from supervisor activity

In [43], the authors take inspiration in an approach called negative sampling, used in
fields such as natural language processing (NLP) and computer vision, to evaluate their
unsupervised UEBA solution. The authors employ this strategy when modeling single
users, and start by assuming the test data put aside for testing each user’s model is free of
anomalies (thus belonging to the negative class), and replace some of that data with the
daily activity of other random users, labeled with the positive class. The approach
allows evaluating whether each model can properly distinguish the activity of a user or if
it fails to do so.

In section 3.4 we have identified differences between the behavioral vectors collected for
users, supervisors and administrators, confirming the assumption that different roles in the
contact center behave differently, within our set of features. Thus, evaluating whether the
trained models can properly distinguish agents from supervisors or administrators can be
an automated complementary effort to ensure the baselines established are solid and
effective.

In our dataset, about 10% of the data (≈ 500 rows) correspond to supervisor and admin-
istrator vectors. To do this procedure, we add to our testing set (labeled with the negative
class), corresponding to about 30% of the total data, a sample of 150 instances from the
supervisor/administrator behavior vectors (labeled with the positive/anomalous class), to
preserve the ratio between classes used in subsection 5.1.2.

We conducted this experiment on the top-performing settings (highest F1-score) of each
algorithm, present in table 5.1, producing the results shown in table 5.3.

Similarly to what was done in section 5.1.2, table 5.3 shows the settings used in each of
the algorithms, as well as several metrics (F1, precision, recall, AUC-ROC, the number of

56



Evaluation and deployment

Figure 5.9: Scatter plot between the F1-scores obtained with the labeled dataset and the
sampling from supervisor activity

false positives and false negatives).

From table 5.3, we can conclude that most of the settings get similar scores and a high rate
of success in distinguishing between agents and superior roles. We were able to confirm
that the false negatives are related to days with an absence of significant activity, (e.g., a
session, with none or few events), which makes it hard to distinguish between the roles,
with the feature sets employed. The false positives are also explained by days with less
activity from agents, but with some events occurring more spread throughout the day,
leading to bigger sessions, which is more typically seen in supervisors’ behavior.

Even though it is the isolation forest (IForest) that achieves the highest F1-score in this
experiment, the advantage over Mahalanobis and PCA is negligible as they are behind by
only 0.001 points.

The biggest curiosity is observed with the presence of FS3 in the best result, which we
observed to worsen the results significantly in the evaluation with labeled data. However,
it only appears in the top isolation forest score and the HBOS’s scores, with both the re-
maining feature sets also being present in the selected algorithm from the previous analysis
(PCA), with high scores.

Even though this approach is not conclusive on determining the algorithm’s capa-
bility of detecting relevant security threats, it has the advantage of not requiring
ground truth labels, making it a possible easily automated evaluation strategy for the
production deployments, which should be capable of reporting whether the baselines can
accurately capture the behavior of agents.

Also, we were able to identify a significant positive correlation between the results of the
labeled activity and those of this approach, as demonstrated in figure 5.9. The scatter plot
shows that especially in the algorithms with higher F1-scores, such as the autoencoder,
PCA and the Mahalanobis method, this correlation appears to be stronger, which shows
that this is, indeed, an helpful automated way of assessing the models deployed.

Finally, we can also, in the future, compare the results of the strategy applied throughout
this section with the results obtained from the feedback mechanism, which we present in
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Table 5.4: Evaluation of the interpretability methods

Algorithm Score
top N

Score
top N+1

Score
top N+2

Batch
time (s)

z-score relative
importance 0.817 0.898 0.944 0.01

DIFFI 0.687 0.753 0.844 3.33

Isolation forest SHAP
(TreeExplainer) 0.739 0.781 0.798 0.36

Mahalanobis SHAP
(KernelExplainer) 0.522 0.611 0.667 7.46

PCA SHAP
(KernelExplainer) 0.815 0.885 0.922 7.58

Autoencoder SHAP
(KernelExplainer) 0.822 0.891 0.930 30.8

section 5.2.1.

5.1.4 Evaluation of the interpretability methods

In this section, we evaluate the interpretability methods used along with each algorithm to
explain the anomalies outputted. When creating labeled instances of threats to evaluate
the algorithms and other settings (section 5.1, we also created labels containing the feature
or set of features that contributed to each anomaly.

The strategy used in this section consists of evaluating three interpretability algorithms,
presented in section 4.2 (z-score, depth-base feature importance for the isolation forest
(DIFFI) and Shapley additive explanation (SHAP)) using our labeled anomalies, ranking
the features by the metric of importance yielded by the algorithms in decreasing fashion,
and comparing to the top N rated features (the most important according to the algorithm)
to the ground truth features.

Our metric consists of the average percentage of the N ground-truth features present in the
top-ranked features. Therefore, if the ground truth consists of only one feature, the score
for that instance will either be 1 if that feature is ranked in the first place by the algorithm,
or 0 if any other feature places first. If the ground truth consists of two features, the score
will be 1 if the algorithm places both the features at the top, 0.5 if it places only one of
them at the top, and 0 if none are present. The final score for an algorithm consists of the
average of the score obtained for each of the 150 instances.

Table 5.4 contains the average score obtained when varying the size of the ranked list of
features. The "score top N" column corresponds to the mentioned score metric when the
ground truth is compared to the N top-ranked features by the algorithm, and the columns
to the right correspond to increasing this N by 1 and 2. The "Batch time" was measured by
running the 150 instances through each algorithm 100 times on the same i3.xlarge machine
used in subsection 5.1.2, and averaging the results. Both DIFFI and SHAP require a
trained instance of each algorithm to be provided, and we decided to use the combination
of settings with the highest F1-score (present in table 5.1).
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The results obtained are quite surprising, in the sense that the most simple approach (z-
score) is the one that obtains the best score at top N + 1 and top N + 2, also having the
lowest time to provide the interpretations.

In the second row we have DIFFI, and the model-specific approach also surprised by the
low score when compared to some of the KernelSHAP tests. However, the TreeSHAP on
isolation forest also shows a poor performance, even with a bit higher result than DIFFI
on top N and N + 1, performing worse on top N + 2. This could be explained by the worse
performance of the isolation forest in our UEBA scenario when comparing to the PCA and
the autoencoder. Finally, DIFFI is about 10x slower to process our batch of about 150
instances than the TreeExplainer.

When we use KernelSHAP to interpret the Mahalanobis method’s outputs, the results are
the worst across all the experiments, when it comes to the scores obtained. The score at
top N is about 0.52, which is about 0.3 points lower than the most simple approach, z-score.
Also, the highest score with the Mahalanobis version is about 0.28 points lower than the
best-performing approach. We were not able to find a reason to justify the discrepancy of
scores between the Mahalanobis SHAP and the PCA SHAP.

The best results using SHAP’s KernelExplainer were obtained for PCA and the Autoen-
coder, which are also the better performing algorithms in the anomaly detection evaluation.
Explaining the anomalies with the autoencoder and KernelSHAP gives the best results at
top N (0.822), and it results in a bit of improvement comparing to the results with PCA
+ KernelSHAP. The biggest concern with both these methods is related to the time taken
to process the batch, especially with the autoencoder (about 30s, 100x more than z-score).

With the results observed, we have no significant doubts that the z-score approach,
employed in [20], is the one we will preferably use. However, this is a problem in
which we intend to invest more time in the future.

5.2 Deployment

The last stage of the validation consisted of deploying the framework in a staging environ-
ment, using real data from two distinct clients with different characteristics, monitoring
the results for a period of two weeks. We included in the deployment a feedback mechanism
(in which we act as the analyst in the client), which we present at the beginning of the
section.

5.2.1 Feedback mechanism

With the absence of ground truth labels to help validating the models for multiple clients,
we expect feedback to be a central way to monitor and evaluate how effective the framework
is.

The feedback mechanism consists of introducing the analyst on the customer side in the
loop, providing information on whether each specific anomaly is relevant or not. Figure
5.10 shows how this is accomplished.

In the first iteration, the only possibility for feedback will be: positive, not sure, and
negative, as we assume the simpler the feedback the more chances we have of the analyst
participating in the initiative. Positive feedback implies the anomaly is a true positive
which was easily interpreted by the analyst. A neutral answer indicates the analyst was not
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Figure 5.10: Feedback mechanism loop

capable of assessing whether the alarm was in fact something relevant, possibly indicating
issues in the interpretability methods, and a negative response indicates a false positive.

In this scenario, the provided feedback is stored along with the anomaly identifier in the
Feedback table.

The anomalies reported as true positives by the client, corresponding to correctly reported
cases, are not used to in the subsequent training iterations of the model, hope-
fully leading to a successive contamination reduction over time. On the other hand, the
anomalies with negative feedback, corresponding to false positives, are included in training
instances, even when they surpass the baselining period (e.g., if an anomaly was reported
as a false positive 2 months ago, and the baseline period is 14 days, the instance will still
be included in the training set).

In the future, we also expect to use the feedback to create and explore labeled datasets,
which we could use to turn the problem into a supervised one.

Finally, the feedback can also be used for reporting purposes, as well as to tune the
contamination parameter of the anomaly detection algorithm in subsequent training
phases.

Reporting feedback

The feedback table will be used to monitor each account’s ratio between positive, neutral,
and negative feedback. To do so, we will calculate this ratio periodically (e.g., once a day)
and define thresholds that, when exceeded, we should be notified. Some immediate actions
on excessive neutral or negative feedback include:

• Analyse the anomalies with neutral and negative feedback for the account. Evaluate
manually each anomaly to identify potential issues, either with the interpretability
method (more important in the case of neutral feedback) or the anomalous record
itself (try to understand why the algorithm made the decision);

• Stop the model, retrain and used the feedback as labels to test and tune the model;

• Request more detailed feedback and adjust the interpretability ranking.
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Hyper-parameter tuning based on feedback

The feedback obtained from customers will also allow readjusting the models’ parameters,
namely the training contamination. As explained in previous sections, contamination is
a parameter present in all the algorithms assessed, and its influence was found to be very
significant. Also, different training sets used for the various clients will contain different
contamination rates, which are hard to estimate without manual effort.

Due to the need of automatic deployment of the models, we start with the same default
contamination parameter for every client (defined empirically as 5%), and that is when
feedback becomes strongly relevant, as it allows to readjust the parameter in subsequent
training activities, having in account the feedback provided, in one of two ways:

• if any false positives are registered, we reduce the contamination parameter by the
percentage of the negative feedback received, as shown in equation 5.1, where ε
corresponds to the percentage of false positives reported by the client, during the
period t which, by default, corresponds to one week, a period after which the models
are retrained. The contamination for the following week ct is thus given by the
contamination of the previous week multiplied by one minus ε;

• if no false positives are reported, we increase the contamination by 1%.

ct = (1− ε) ct−1 (5.1)

This approach, which relies totally on the contamination parameter of the model deployed,
has some drawbacks, such as the lack of guarantee that reducing the contamination will
address the issue of a specific false positive. One different approach, used in [20], consists
in assigning weights to each of the features, and use the interpretability methods, which
identify the features responsible for a determined anomaly, to decrease the weight of fea-
tures contributing to the false positives reported. This is an approach we intend to explore
in the future, and is out of the scope of this work due to the sensitivity of the feature
weighting topic.

A specific example to compare the two approaches would be a client that is not interested
in the number of sessions a user creates. If several anomalies on the number of sessions are
reported, the analysts in the client will send negative feedback every time, and reducing
the contamination may not help in this case, especially if those anomalies have high scores.
On the other hand, reducing the importance of the features related to the sessions created
is more likely to help significantly.

5.2.2 Staging deployment

The last empirical validation step consists of assessing how well the framework generalizes
to different Talkdesk clients. To do so, we implemented and deployed it in a staging
(STG) environment, and trained it independently for 2 different clients, to which we refer
in this document as client A and client B, monitoring and evaluating the results for two
consecutive weeks.

The implementation of the ETL process, as well as the adaption from the exploratory
code to make it ready for deployment was highly time-consuming, contrarily to what
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Figure 5.11: Model deployment and evaluation process

we expected when planning the work. Nevertheless, we believe that having results of a
deployment, even if it is not in production, enriches the analysis of the results.

In this section, we present and analyse the metrics related to the anomalies detected.

Figure 5.11 shows the end-to-end process developed for this deployment. It starts with
the consumption of the two streams containing call and audit logs data, which are sinked
into separate tables in our relational database. When the Spark training job is triggered,
the latest 14 days of data for each client are retrieved, processed and merged following
a pipeline similar to the one presented in section 3.3, a process which results in a spark
dataframe with each row corresponding to the activity of a user in a determined day, ready
for training.

The data is fitted on pyOD’s PCA, selected as the most promising algorithm for deploy-
ment, which uses the implementation of scikit-learn. We use MLflow to help with deploy-
ment and monitoring, and sink the anomalies into a relational table, for further evaluation.
We used the default settings defined empirically in section 5.1, namely a 14-day baseline,
no contamination reduction (the "true" setting), a 0.05 (5%) contamination parameter,
and the feature set FS2.

We were able to do this experiment over a 30 day period, which we divide into 4 weeks,
meaning 2 cycles of training (with a 2-week baseline), and 2 weeks of evaluation: in the
first cycle, PCA is fitted with the data from week 1 and 2, using the default parameters,
and evaluated on week 3; in the second cycle, the fit operation happens on the data from
week 2 and 3, with an adjustment of the contamination parameter, based on the feedback
mechanism, and the anomalies from week 4 are registered and evaluated.

Results for client A

The first client used for deployment purposes, referred to as client A, is composed of about
100 users, similarly to the data used in the analysis throughout the document. However,
the contact center of client A is open at the weekends, and the working hours are radically
different compared to those of our first dataset, mainly due to timezone differences.

The results for client A, after following the mentioned procedure for training, deployment,
and evaluation are present in table 5.5.

From the table, we can extract the most important results from the two-week deployment,
with 14 days of training in each week (corresponding to about 900 rows of data).
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Table 5.5: Results of applying PCA to client A along 2 weeks

Week # rows
train contam. # anomalies # distinct

users # TP # FP Interp. score
@ 2

1 910 0.05 18 8 16 2 1.0
2 890 0.044 12 6 10 2 1.0

Figure 5.12: Number of times each feature was ranked as the most important in the
anomalies reported throughout the 2 weeks, for client A

From the first to the second week, we notice a smaller amount of anomalies reported,
either due to the contamination parameter used (0.045 instead of 0.05, due to the feedback
mechanism), or due to the users incurring in less anomalous activity. Nevertheless, there
was an increase in the percentage of false positives in week 2, from about 11% to 16%,
which is not conclusive as we need more time (more weeks) to be able to draw more
representative conclusions, mainly on the feedback approach.

The results also show a strong amount of what we believe to be true positives, after careful
analysis of the anomalies. Also, the interpretability method employed, given by the z-score,
obtained a score of 1.0 in pointing to the features responsible for the anomalies, when we
use the 2 top-ranked features to do the explanation.

Figure 5.12 shows the distribution of the top feature for each of the 30 anomalies registered
during the 2 weeks, or, in other words, the feature that the interpretability method used
considered as the most important for each of the anomalies reported. The figure shows
that, for client A, there is a relative balance between the features that contribute the most
to the different anomalies and, in this case, the alerts tend to be related to threat scenarios
such as performance decrease (caused by a high number of missed calls), data breach
(caused by an unexpected number of access to personal data), and account compromise
(caused by a high number of sessions, from multiple devices).

The key takeaways from the experiment on client A include a reasonable ratio between
true positives and false positives, great results on the interpretability of alerts, and a lack of
effectiveness of the feedback approach in reducing the false positives. Also, the anomalies
reported may relate to some of the threat scenarios identified in table 3.3, according to our
manual analysis.
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Table 5.6: Results of applying PCA to client B along 2 weeks

Week # rows
train contam. # anomalies # distinct

users # TP # FP Interp. score
@ 2

1 1135 0.05 27 19 26 1 0.953
2 1147 0.048 19 12 15 4 0.875

Figure 5.13: Number of times each feature was ranked as the most important in the
anomalies reported throughout the 2 weeks, for client B

Results for client B

Table 5.6 contains the results of the framework deployment for client B, which is a larger
client, composed of about 500 agents. Even though there are about 5 times more agents
than in client A, the training data consisting of 2 weeks of activity contains about 1100
rows (only 200 more), which is probably explained by client B having fewer full-time agents,
and not a significantly higher amount of concurrently active agents.

Similar to what was done for client A, we used two weeks to train PCA, corresponding to
1135 rows of behavior instances, with the default 0.05 contamination parameter. During
the first week after training, 27 anomalies were observed and analysed, with us reaching
the conclusion that only 1 of those was a false positive. Also, when we use the two highest
scored features to explain the anomalies with the z-score method, we got a 0.953 score.

Moving to week 2, we use the two previous weeks to retrain, with a contamination of 0.048,
resulting of the contamination adjustment from equation 5.1. However, we observe a sig-
nificant rise in the false positive ratio, which is about 20% (4 out of 19 anomalies). Also,
the interpretability score is the lowest, with the z-score approach not being capable of ex-
plaining about 12% of the true positive anomalies with the 2 highest rated features, mostly
due to the anomalies being caused by feature correlations. In particular, according to our
manual analysis, some of the anomalies that z-score was not able to explain are caused by
data access (under the "nr_contact_reads" feature) during the weekend ("is_weekend"
feature).

Similarly to the procedure with client A, we show, with figure 5.13, the feature that was
ranked at the top by the interpretability method on each of the anomalies. The features
that contribute the most to the anomalies reported, during the 2 weeks, for client B do
not follow the tendencies observed for client A: in this case, more than half of the alerts
are explained by activity during the weekends, most of the time along with accesses to PII
and/or calls out of working hours.

64



Evaluation and deployment

In conclusion, for client B it would be particularly useful for us to collect real feedback from
the analysts/supervisors in the client, since, even though weekend activity is rare for this
client, we are not capable of being 100% sure that this is, in fact, potentially fraudulent
behavior.

Current limitations

The experiment conducted and presented in this section allowed us to take some final
conclusions before the expected production deployment. With this approach, we were
capable of preparing the infrastructure to process the activity of Talkdesk’s clients, create
grouped vectors representing agents’ behavior across several dimensions and, finally, use
PCA to detect potential threats.

During the 2 weeks for which we conducted a manual analysis of the anomalies reported for
2 different clients, with several distinct characteristics, the results show that the framework
is indeed capable of detecting relevant insights of potential threats, even with the default
settings defined. Even though we did not identify any conclusive/definitive fraud practice,
the algorithms are capable of identifying, with high accuracy, several signs of anomalous
behavior, both at the security and business level.

Furthermore, the interpretability method used was capable of correctly identifying most of
the features responsible for the anomalies, especially if the anomalies are caused by one or
more univariate extreme values. However, there is a margin for improvement concerning
the employed method, as we have identified some weakness in interpreting anomalies
caused by the correlation of two or more features (in client B).

Although we were not able to properly test the feedback mechanism’s impact on the con-
tamination parameter, due to the need for real feedback from the analysts on the client-side,
we reckon that the approach implemented can be significantly improved. After de-
ploying the framework in production, we intend to analyse the results of a pre-determined
amount of feedback, and identify potential strategies to act based on the insights. Also, we
do not yet have a strategy to suppress subsequent anomalies similar to those reported as
false positives: if a user behaves differently than the whole population continuously, and
that is not seen as a problem by the client’s analyst - expressed through feedback - we
need to ensure that we do not send that same alert every day.

The data sources used in this experiment are only a subset of the possible interactions
between users and Talkdesk’s application, and do not cover, for example, activity related
to permissions, associated with threat scenarios related to privilege escalation or abuse;
and interaction with call recordings, which contain sensitive information (potentially PII)
and should also be monitored. In the future, it is desirable to include more variate data
sources and features.

Finally, despite the results for client A and client B not showing significant issues with
the ratio between the true and false positives reported, we need to experiment with more
clients (with different configurations and working hours) and ensure that we have this
expected consistency across all of them, which is yet to be accomplished. Nevertheless,
from the results obtained in this work, we have all the confidence on the value the clients
will extract from the framework.
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5.3 Threats to validity

In this chapter, we analysed and compared how several algorithms and settings performed
on the exploratory dataset we had available for this work. Since we used this dataset to
extract most of the decisions and conclusions, we must recognize that some threats to the
validity exist.

In the contact-center domain, each client organization has its own specificities, working
rules, dimension, location (resulting in different time zones and working cultures). Thus,
it is possible that some of our conclusions may not generalize or apply to every Talkdesk’s
customer, reason why we need, in the future, to extend the exploratory analysis to several
different clients, and identify significant divergences.

As it will not be possible to explore all the clients for which we intend to deploy the
framework, we expect the feedback mechanism to be an automated way for us to monitor
the quality of the framework in each individual customer.
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Conclusions and future work

In this work, we evaluated the applicability of a user and entity behavior analytics (UEBA)
framework to use in Talkdesk, to give customers the awareness of suspicious behavior
incurred by the staff, which could be related to security threats. We aimed at a multivariate
scalable approach, and also capable of providing interpretable results.

With the exploratory data analysis (EDA) conducted, along with background knowledge,
we were able to identify, from multiple data sources, the most relevant features to moni-
tor user behavior. Afterwards, we selected several different anomaly detection algorithms
(histogram-based outlier score (HBOS), Mahalanobis method, principal components anal-
ysis (PCA), isolation forest and autoencoder), along with 3 distinct interpretability algo-
rithms (z-score, depth-base feature importance for the isolation forest (DIFFI) and Shapley
additive explanation (SHAP)) to compare.

The most laborious step of the work consisted in the validation, where we used differ-
ent strategies, some of them oriented towards future improvements, such as a feedback
mechanism, from which we can collect metrics of the relevance of the anomalies reported,
provided by analysts on the client-side.

We also created a labeled dataset with several examples of threats with different levels
of abnormality, which we used to evaluate the different algorithms, along with different
settings, including the period of historical data used to train the models, the feature set
applied, and others. In this experiment, the autoencoder and PCA were the algorithms
with the best results (0.97 and 0.95 ROC score, respectively), and we identified that 14 days
of historical data is enough, in this dataset, to obtain such results. Also, we verified that
both the feature set used and the contamination parameter (that estimates the percentage
of outliers present in the training set) are critical for obtaining high classification scores.

With a method based on negative sampling, we used supervisor and administrator ac-
tivity to perform an automated way to evaluate if the anomaly detection algorithms can
accurately distinguish between activity vectors of different roles. In this experiment, the
algorithms showed a good capacity in distinguishing between activity vectors from agents
and supervisors, with the isolation forest, PCA, Mahalanobis method, and autoencoder
achieving maximum ROC-scores of about 0.95.

Finally, we deployed the framework on a staging environment, using PCA along with the
settings that resulted in the highest F1-score in the analysis with the labeled dataset. We
used data from two different clients for a period of 1 month, and analysed the anomalies
reported, as well as the results of the interpretability algorithm (z-score based). In a period
of two weeks, a total of 76 anomalies were registered, incurred by 45 distinct agents, and
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caused by several different types of behaviors, such as a high number of accesses to personal
data, activity outside of the working hours of the organization, a high number of calls
missed, between others. From the 76 anomalies, 67 were identified as true positives, and
the remaining 9 as false positives. The interpretability algorithm was capable of pointing
to the fields that explain the anomalies reported in most cases, with the exception of cases
in which the correlation of multiple fields was the cause.

Based on the results obtained, we strongly believe that the UEBA framework implemented
is capable of providing significant value to Talkdesk’s clients, and provide relevant alerts
of potential security threats, especially since agents are, in most cases, working from home
due to the pandemic of COVID-19, which is most likely to endure. After some minor im-
provements, mainly regarding the interpretability algorithm and the feedback mechanism,
the framework will be ready for the first production deployment, aligned with the project’s
deadlines and activities.

This work was an introductory step of an ambitious and complex framework to monitor
user behavior. Even though we were able to build most of the structure to make it ready
for production, there is still plenty of work to be done, related to deployment, monitoring,
and developing new capabilities. The main challenges we intend to tackle in a near future
include:

• Production deployment: the sooner we have clients using the framework and provid-
ing feedback, the sooner we will be able to define more concrete actions to improve
the results.

• Implement a risk-score calculation formula/strategy capable of indicating the security
risk associated with each user monitored. This formula should have into account the
past anomalies detected for the user as well as other indicators out of the scope of this
work, such as alerts issued by a rule-based system. The risk score should accurately
indicate how likely a determined user is to incur in new anomalies/security threats.

• Refactor the direct impact of the feedback on the models, as the naive strategy
implemented will most likely continue to prove ineffective.

• Continue EDA activities, and add more features and threat scenarios to the current
capabilities;

• Research, simulate, and evaluate the impact of attacks to the framework and, more
specifically, the anomaly detection algorithms applied, such as an attacker being able
to impersonate and mimic the behavior of a compromised legitimate user.

• Evaluate the applicability of supervised or semi-supervised learning, based on the
feedback collected and stored.

• Explore different time granularity’s for the aggregations performed on user activity
(e.g., 8h or 12h, instead of the employed 24h), as well as (near) real-time use-cases.

• As the amount of data grows, it is possible that the current settings and specifically
PCA may not be enough. Therefore, we need to monitor for model degradation
and, if necessary, invest in researching other approaches, such as the autoencoder or
generative adversarial network (GAN).
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Appendix A

Risk analysis

This appendix contains the risk analysis conducted for this work.

Due to the exploratory nature of this work, a risk analysis capable of summarizing the
most relevant risks was conducted, whose results are presented in table A.1. This anal-
ysis occurred without recurring to any specific risk methodology, but rather an infor-
mal assessment of the potential issues and their consequences during the planning of the
work/internship theme. The table contains the risks prioritized in a decreasing fashion,
where each row contains one condition (which is true now) and the respective consequence.

Looking at the conditions identified before the work began, the only one that was actually
verified, and that had a significant impact on the results, was the third condition stated,
related to the deadlines and dependency on other teams, such as for the infrastructure
to be in place. Nevertheless, we were able to include real results and tackle most of the
challenges required to reach production.

Table A.1: Risk analysis

Condition Consequence

We use data that is specific of one contact center,
and may not representative of the activity of
others.

The results obtained may not be reproducible for all
Talkdesk’s clients.

The rate of false positives regarding the
anomalies identified is not neglectable.

Users may be accused of something they did not to,
which has a major impact on the confidence in the
system.

The release date of the project may fall behind
the internship’s deadline, due to circumstances
external to this work.

We will not be able to include real results in the
report.

We did not find any other approach of a
successful implementation of UEBA in the
contact center domain.

UEBA may be unsuitable for detecting threats in
contact centers (the activity of users is hard to
profile or baseline)
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Appendix B

Plan of activities

This section contains a Gantt diagram of the main activities developed, along the period
of time in which the work was conducted.

Figure B.1: Gantt diagram containing the timeline of activities conducted.
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Appendix C

Results with the labeled dataset

This appendix contains the results of the analysis of the algorithms, using labeled data, as
presented in section 5.1. It contains one table per algorithm.

Table C.1: HBOS results

Training set parameters Model
parameters Metrics

Baseline
period

Feature
set

Training
contam. Contam. F1 ROC Precision Recall FP FN

30 FS1 max 0.02 0.757 0.831 0.837 0.691 20 46
30 FS2 med 0.02 0.756 0.809 0.959 0.624 4 56
14 FS1 true 0.02 0.741 0.806 0.912 0.624 9 56
14 FS1 max 0.05 0.74 0.829 0.788 0.698 28 45
30 FS1 med 0.02 0.733 0.795 0.947 0.597 5 60
30 FS1 med 0.05 0.733 0.816 0.818 0.664 22 50
30 FS2 med 0.05 0.732 0.805 0.87 0.631 14 55
30 FS1 true 0.02 0.729 0.805 0.862 0.631 15 55
60 FS3 med 0.02 0.728 0.838 0.719 0.738 43 39
30 FS1 max 0.05 0.724 0.826 0.745 0.705 36 44
60 FS2 max 0.02 0.717 0.804 0.819 0.638 21 54
14 FS1 max 0.02 0.714 0.794 0.858 0.611 15 58
60 FS1 max 0.02 0.713 0.807 0.789 0.651 26 52
14 FS1 true 0.05 0.712 0.8 0.817 0.631 21 55
14 FS1 med 0.02 0.711 0.782 0.944 0.57 5 64
60 FS2 true 0.02 0.705 0.792 0.835 0.611 18 58
30 FS1 true 0.05 0.704 0.798 0.797 0.631 24 55
60 FS3 true 0.02 0.704 0.788 0.856 0.597 15 60
30 FS1 med 0.1 0.7 0.833 0.655 0.752 59 37
60 FS1 true 0.02 0.7 0.789 0.833 0.604 18 59
14 FS2 true 0.02 0.7 0.775 0.943 0.557 5 66
60 FS3 med 0.05 0.695 0.855 0.596 0.832 84 25
30 FS2 true 0.02 0.695 0.773 0.922 0.557 7 66
60 FS3 med 0.1 0.695 0.871 0.571 0.886 99 17
14 FS2 true 0.05 0.689 0.772 0.902 0.557 9 66
60 FS2 true 0.1 0.688 0.843 0.604 0.799 78 30
14 FS3 med 0.05 0.681 0.795 0.722 0.644 37 53
60 FS1 true 0.1 0.68 0.834 0.604 0.779 76 33
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14 FS1 max 0.1 0.677 0.815 0.641 0.718 60 42
60 FS3 true 0.05 0.677 0.827 0.611 0.758 72 36
30 FS2 med 0.1 0.676 0.801 0.68 0.671 47 49
60 FS2 med 0.02 0.675 0.772 0.825 0.57 18 64
30 FS2 max 0.02 0.672 0.764 0.88 0.544 11 68
60 FS2 max 0.05 0.669 0.801 0.66 0.678 52 48
60 FS1 max 0.05 0.669 0.801 0.66 0.678 52 48
60 FS1 med 0.02 0.667 0.768 0.816 0.564 19 65
14 FS2 max 0.02 0.664 0.754 0.928 0.517 6 72
14 FS2 med 0.02 0.664 0.752 0.95 0.51 4 73
14 FS1 med 0.05 0.662 0.772 0.763 0.584 27 62
30 FS3 max 0.02 0.659 0.777 0.726 0.604 34 59
14 FS1 true 0.1 0.655 0.783 0.681 0.631 44 55
30 FS3 max 0.05 0.655 0.787 0.667 0.644 48 53
30 FS2 true 0.05 0.654 0.764 0.778 0.564 24 65
30 FS1 max 0.1 0.651 0.81 0.586 0.732 77 40
14 FS3 max 0.05 0.65 0.776 0.695 0.611 40 58
60 FS2 med 0.1 0.649 0.809 0.583 0.732 78 40
30 FS1 true 0.1 0.648 0.783 0.66 0.638 49 54
60 FS1 true 0.05 0.648 0.776 0.689 0.611 41 58
14 FS3 max 0.02 0.646 0.76 0.769 0.557 25 66
14 FS3 med 0.02 0.646 0.758 0.781 0.55 23 67
60 FS1 med 0.1 0.645 0.804 0.585 0.718 76 42
14 FS3 med 0.1 0.641 0.788 0.619 0.664 61 50
60 FS2 true 0.05 0.637 0.774 0.657 0.617 48 57
30 FS2 max 0.05 0.637 0.765 0.702 0.584 37 62
60 FS2 max 0.1 0.636 0.804 0.562 0.732 85 40
14 FS2 max 0.05 0.628 0.753 0.732 0.55 30 67
30 FS3 true 0.02 0.628 0.751 0.743 0.544 28 68
30 FS3 true 0.1 0.627 0.778 0.611 0.644 61 53
30 FS3 true 0.05 0.624 0.763 0.662 0.591 45 61
60 FS3 max 0.02 0.624 0.752 0.719 0.55 32 67
60 FS3 max 0.05 0.623 0.766 0.643 0.604 50 59
30 FS3 med 0.05 0.621 0.758 0.672 0.577 42 63
60 FS3 true 0.1 0.613 0.815 0.492 0.812 125 28
60 FS1 med 0.05 0.612 0.753 0.659 0.57 44 64
14 FS3 true 0.1 0.611 0.765 0.605 0.617 60 57
14 FS3 true 0.02 0.611 0.739 0.748 0.517 26 72
60 FS2 med 0.05 0.61 0.754 0.647 0.577 47 63
30 FS3 med 0.1 0.608 0.767 0.588 0.631 66 55
14 FS2 med 0.05 0.608 0.737 0.752 0.51 25 73
14 FS3 true 0.05 0.607 0.747 0.678 0.55 39 67
14 FS2 true 0.1 0.606 0.75 0.656 0.564 44 65
60 FS1 max 0.1 0.605 0.785 0.53 0.705 93 44
14 FS3 max 0.1 0.604 0.771 0.564 0.651 75 52
30 FS3 max 0.1 0.599 0.771 0.551 0.658 80 51
30 FS3 med 0.02 0.59 0.728 0.725 0.497 28 75
14 FS1 med 0.1 0.586 0.748 0.588 0.584 61 62
30 FS2 max 0.1 0.586 0.753 0.57 0.604 68 59
60 FS3 max 0.1 0.585 0.762 0.536 0.644 83 53
30 FS2 true 0.1 0.581 0.741 0.6 0.564 56 65
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14 FS2 med 0.1 0.566 0.728 0.608 0.53 51 70
14 FS2 max 0.1 0.564 0.735 0.564 0.564 65 65
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Table C.2: Mahalanobis method results

Training set parameters Model
parameters Metrics

Baseline
period

Feature
set

Training
contam. Contam. F1 ROC Precision Recall FP FN

14 FS1 true 0.05 0.893 0.915 0.954 0.839 6 24
60 FS1 true 0.05 0.887 0.914 0.94 0.839 8 24
60 FS2 true 0.02 0.876 0.899 0.96 0.805 5 29
14 FS2 true 0.02 0.872 0.896 0.96 0.799 5 30
30 FS1 true 0.02 0.864 0.892 0.952 0.792 6 31
60 FS2 true 0.05 0.863 0.91 0.881 0.846 17 23
14 FS1 true 0.02 0.863 0.889 0.959 0.785 5 32
14 FS2 true 0.05 0.857 0.909 0.869 0.846 19 23
60 FS2 med 0.05 0.848 0.885 0.921 0.785 10 32
30 FS1 true 0.05 0.846 0.902 0.861 0.832 20 25
14 FS1 med 0.05 0.846 0.88 0.935 0.772 8 34
60 FS1 true 0.02 0.842 0.872 0.957 0.752 5 37
60 FS2 med 0.02 0.84 0.867 0.973 0.738 3 39
14 FS1 true 0.1 0.838 0.942 0.747 0.953 48 7
30 FS2 true 0.05 0.833 0.882 0.886 0.785 15 32
30 FS2 med 0.02 0.832 0.863 0.965 0.732 4 40
30 FS2 max 0.02 0.83 0.865 0.948 0.738 6 39
14 FS2 max 0.05 0.83 0.888 0.857 0.805 20 29
14 FS2 med 0.05 0.827 0.876 0.891 0.772 14 34
30 FS1 med 0.02 0.826 0.857 0.973 0.718 3 42
14 FS2 med 0.1 0.824 0.928 0.742 0.926 48 11
14 FS2 max 0.02 0.822 0.854 0.972 0.711 3 43
30 FS2 med 0.05 0.822 0.881 0.855 0.792 20 31
30 FS1 max 0.02 0.821 0.867 0.903 0.752 12 37
30 FS1 med 0.05 0.817 0.875 0.859 0.779 19 33
14 FS1 max 0.02 0.817 0.85 0.972 0.705 3 44
60 FS2 max 0.02 0.817 0.85 0.972 0.705 3 44
14 FS2 med 0.02 0.817 0.85 0.972 0.705 3 44
14 FS1 med 0.1 0.814 0.925 0.726 0.926 52 11
60 FS1 max 0.02 0.812 0.851 0.946 0.711 6 43
14 FS1 med 0.02 0.812 0.847 0.972 0.698 3 45
14 FS1 max 0.05 0.807 0.88 0.815 0.799 27 30
60 FS2 max 0.05 0.804 0.865 0.856 0.758 19 36
14 FS2 true 0.1 0.799 0.909 0.723 0.893 51 16
30 FS2 true 0.1 0.799 0.896 0.751 0.852 42 22
60 FS1 med 0.05 0.797 0.848 0.906 0.711 11 43
14 FS2 max 0.1 0.791 0.918 0.69 0.926 62 11
30 FS2 max 0.05 0.79 0.882 0.762 0.819 38 27
14 FS3 med 0.05 0.779 0.91 0.68 0.913 64 13
14 FS1 max 0.1 0.779 0.91 0.68 0.913 64 13
60 FS1 true 0.1 0.778 0.903 0.689 0.893 60 16
60 FS2 true 0.1 0.776 0.907 0.678 0.906 64 14
60 FS3 true 0.05 0.767 0.897 0.677 0.886 63 17
60 FS3 true 0.1 0.766 0.912 0.65 0.933 75 10
14 FS3 med 0.1 0.763 0.92 0.633 0.96 83 6
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60 FS2 med 0.1 0.762 0.887 0.684 0.859 59 21
30 FS3 true 0.05 0.761 0.895 0.667 0.886 66 17
14 FS3 med 0.02 0.76 0.89 0.674 0.872 63 19
14 FS3 max 0.05 0.758 0.896 0.658 0.893 69 16
14 FS3 true 0.05 0.753 0.901 0.642 0.913 76 13
30 FS1 true 0.1 0.752 0.886 0.665 0.866 65 20
60 FS1 max 0.05 0.75 0.853 0.735 0.765 41 35
60 FS1 med 0.1 0.75 0.872 0.687 0.826 56 26
30 FS1 max 0.05 0.749 0.861 0.711 0.792 48 31
30 FS3 med 0.05 0.749 0.887 0.657 0.872 68 19
30 FS3 true 0.1 0.743 0.899 0.623 0.919 83 12
60 FS3 max 0.05 0.742 0.887 0.642 0.879 73 18
14 FS3 max 0.1 0.741 0.912 0.603 0.96 94 6
30 FS2 true 0.02 0.741 0.799 0.957 0.604 4 59
30 FS1 med 0.1 0.741 0.876 0.66 0.846 65 23
30 FS2 med 0.1 0.741 0.876 0.66 0.846 65 23
30 FS3 true 0.02 0.739 0.867 0.674 0.819 59 27
14 FS3 true 0.02 0.736 0.861 0.678 0.805 57 29
30 FS3 max 0.02 0.735 0.871 0.654 0.839 66 24
60 FS2 max 0.1 0.733 0.879 0.635 0.866 74 20
60 FS3 max 0.02 0.732 0.866 0.658 0.826 64 26
60 FS3 med 0.1 0.732 0.889 0.618 0.899 83 15
60 FS3 med 0.05 0.732 0.868 0.653 0.832 66 25
60 FS3 true 0.02 0.731 0.862 0.665 0.812 61 28
30 FS3 med 0.1 0.729 0.901 0.596 0.94 95 9
30 FS2 max 0.1 0.725 0.885 0.61 0.893 85 16
30 FS3 med 0.02 0.725 0.86 0.654 0.812 64 28
14 FS3 max 0.02 0.723 0.857 0.656 0.805 63 29
30 FS1 max 0.1 0.723 0.884 0.607 0.893 86 16
60 FS1 max 0.1 0.722 0.871 0.626 0.852 76 22
60 FS1 med 0.02 0.72 0.784 0.977 0.57 2 64
30 FS3 max 0.05 0.714 0.878 0.597 0.886 89 17
30 FS3 max 0.1 0.714 0.897 0.573 0.946 105 8
60 FS3 max 0.1 0.714 0.895 0.576 0.94 103 9
60 FS3 med 0.02 0.696 0.826 0.665 0.732 55 40
14 FS3 true 0.1 0.678 0.872 0.54 0.913 116 13
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Table C.3: Isolation forest results

Training set parameters Model
parameters Metrics

Baseline
period

Feature
set

Training
contam. Contam. F1 ROC Precision Recall FP FN

14 FS2 true 0.1 0.861 0.927 0.831 0.893 27 16
14 FS1 true 0.1 0.851 0.915 0.838 0.866 25 20
14 FS2 true 0.05 0.849 0.881 0.943 0.772 7 34
30 FS1 true 0.05 0.847 0.89 0.902 0.799 13 30
30 FS2 true 0.1 0.84 0.931 0.774 0.919 40 12
30 FS1 true 0.1 0.834 0.919 0.782 0.893 37 16
60 FS2 true 0.05 0.829 0.874 0.905 0.765 12 35
60 FS1 true 0.05 0.829 0.878 0.885 0.779 15 33
30 FS2 true 0.05 0.827 0.869 0.918 0.752 10 37
60 FS1 true 0.1 0.825 0.915 0.772 0.886 39 17
14 FS3 true 0.05 0.822 0.886 0.839 0.805 23 29
14 FS2 med 0.1 0.822 0.907 0.782 0.866 36 20
60 FS2 med 0.1 0.822 0.914 0.767 0.886 40 17
60 FS2 true 0.1 0.821 0.92 0.75 0.906 45 14
14 FS1 true 0.05 0.818 0.857 0.939 0.725 7 41
30 FS3 med 0.05 0.813 0.888 0.808 0.819 29 27
14 FS1 med 0.1 0.813 0.893 0.795 0.832 32 25
60 FS2 med 0.05 0.812 0.856 0.923 0.725 9 41
14 FS1 max 0.05 0.809 0.864 0.875 0.752 16 37
14 FS2 max 0.05 0.801 0.856 0.886 0.732 14 40
60 FS3 med 0.05 0.799 0.896 0.751 0.852 42 22
14 FS1 med 0.05 0.797 0.843 0.929 0.698 8 45
14 FS2 med 0.05 0.792 0.835 0.953 0.678 5 48
30 FS2 med 0.05 0.789 0.839 0.92 0.691 9 46
14 FS2 max 0.1 0.784 0.887 0.735 0.839 45 24
30 FS2 med 0.1 0.778 0.892 0.711 0.859 52 21
60 FS3 true 0.05 0.778 0.896 0.703 0.872 55 19
14 FS1 max 0.1 0.775 0.877 0.735 0.819 44 27
30 FS3 max 0.05 0.774 0.873 0.745 0.805 41 29
30 FS1 med 0.1 0.766 0.873 0.725 0.812 46 28
14 FS3 med 0.1 0.766 0.916 0.644 0.946 78 8
14 FS2 true 0.02 0.763 0.815 0.95 0.638 5 54
30 FS1 med 0.05 0.762 0.823 0.892 0.664 12 50
30 FS3 true 0.05 0.759 0.892 0.668 0.879 65 18
60 FS2 max 0.05 0.758 0.842 0.794 0.725 28 41
60 FS1 med 0.05 0.757 0.827 0.856 0.678 17 48
60 FS2 max 0.1 0.756 0.895 0.655 0.893 70 16
14 FS3 med 0.05 0.752 0.868 0.699 0.812 52 28
14 FS3 true 0.1 0.752 0.905 0.633 0.926 80 11
60 FS3 true 0.1 0.752 0.911 0.624 0.946 85 8
60 FS1 med 0.1 0.751 0.857 0.725 0.779 44 33
60 FS3 max 0.05 0.749 0.88 0.668 0.852 63 22
14 FS1 max 0.02 0.746 0.809 0.913 0.631 9 55
60 FS2 max 0.02 0.741 0.806 0.912 0.624 9 56
30 FS2 max 0.05 0.74 0.835 0.764 0.718 33 42
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14 FS3 max 0.1 0.74 0.907 0.608 0.946 91 8
60 FS3 med 0.1 0.738 0.908 0.602 0.953 94 7
30 FS3 true 0.1 0.738 0.906 0.605 0.946 92 8
30 FS3 med 0.1 0.734 0.905 0.6 0.946 94 8
30 FS3 true 0.02 0.732 0.812 0.836 0.651 19 52
14 FS3 true 0.02 0.73 0.794 0.937 0.597 6 60
60 FS3 max 0.1 0.722 0.896 0.589 0.933 97 10
60 FS3 max 0.02 0.719 0.814 0.775 0.671 29 49
30 FS1 true 0.02 0.718 0.781 0.988 0.564 1 65
60 FS1 true 0.02 0.718 0.781 0.988 0.564 1 65
14 FS3 max 0.05 0.717 0.863 0.629 0.832 73 25
14 FS3 max 0.02 0.716 0.807 0.795 0.651 25 52
14 FS1 true 0.02 0.716 0.779 1.0 0.557 0 66
30 FS2 max 0.1 0.715 0.862 0.626 0.832 74 25
14 FS3 med 0.02 0.709 0.799 0.81 0.631 22 55
30 FS2 true 0.02 0.707 0.774 0.988 0.55 1 67
30 FS3 max 0.02 0.704 0.8 0.785 0.638 26 54
60 FS1 max 0.1 0.7 0.835 0.649 0.758 61 36
60 FS1 max 0.05 0.7 0.805 0.748 0.658 33 51
60 FS3 true 0.02 0.695 0.787 0.818 0.604 20 59
30 FS3 max 0.1 0.686 0.869 0.556 0.893 106 16
60 FS2 true 0.02 0.678 0.758 0.987 0.517 1 72
60 FS2 med 0.02 0.673 0.754 0.987 0.51 1 73
60 FS3 med 0.02 0.672 0.771 0.817 0.57 19 64
30 FS1 max 0.05 0.671 0.789 0.718 0.631 37 55
30 FS1 max 0.1 0.667 0.814 0.617 0.725 67 41
30 FS3 med 0.02 0.664 0.767 0.808 0.564 20 65
14 FS2 max 0.02 0.661 0.751 0.938 0.51 5 73
30 FS1 max 0.02 0.656 0.756 0.859 0.53 13 70
30 FS2 max 0.02 0.655 0.752 0.895 0.517 9 72
14 FS2 med 0.02 0.652 0.744 0.973 0.49 2 76
30 FS2 med 0.02 0.646 0.742 0.948 0.49 4 76
60 FS1 max 0.02 0.638 0.744 0.872 0.503 11 74
30 FS1 med 0.02 0.628 0.732 0.946 0.47 4 79
14 FS1 med 0.02 0.627 0.73 0.972 0.463 2 80
60 FS1 med 0.02 0.609 0.722 0.944 0.45 4 82
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Table C.4: PCA results

Training set parameters Model
parameters Metrics

Baseline
period

Feature
set

Training
contam. Contam. F1 ROC Precision Recall FP FN

14 FS1 med 0.05 0.932 0.951 0.951 0.913 7 13
60 FS2 true 0.05 0.931 0.964 0.916 0.946 13 8
14 FS2 max 0.05 0.93 0.958 0.927 0.933 11 10
14 FS1 true 0.05 0.93 0.958 0.927 0.933 11 10
14 FS2 med 0.05 0.928 0.951 0.944 0.913 8 13
30 FS2 true 0.05 0.928 0.966 0.904 0.953 15 7
60 FS2 med 0.05 0.927 0.958 0.921 0.933 12 10
14 FS2 true 0.05 0.926 0.952 0.932 0.919 10 12
14 FS2 true 0.1 0.92 0.966 0.883 0.96 19 6
14 FS1 med 0.1 0.918 0.958 0.897 0.94 16 9
30 FS1 true 0.05 0.918 0.958 0.897 0.94 16 9
30 FS2 med 0.05 0.914 0.952 0.902 0.926 15 11
60 FS1 true 0.05 0.914 0.955 0.897 0.933 16 10
14 FS1 max 0.05 0.914 0.955 0.897 0.933 16 10
14 FS2 max 0.02 0.913 0.935 0.949 0.879 7 18
60 FS1 med 0.05 0.913 0.95 0.907 0.919 14 12
14 FS2 med 0.1 0.912 0.957 0.886 0.94 18 9
14 FS1 true 0.1 0.908 0.963 0.861 0.96 23 6
30 FS1 med 0.05 0.907 0.948 0.895 0.919 16 12
60 FS2 true 0.02 0.905 0.925 0.955 0.859 6 21
30 FS2 true 0.02 0.901 0.922 0.955 0.852 6 22
30 FS1 true 0.02 0.9 0.919 0.962 0.846 5 23
60 FS1 true 0.02 0.9 0.919 0.962 0.846 5 23
30 FS2 max 0.02 0.899 0.936 0.905 0.893 14 16
14 FS1 true 0.02 0.899 0.917 0.969 0.839 4 24
14 FS2 true 0.02 0.897 0.918 0.955 0.846 6 23
60 FS2 max 0.05 0.897 0.95 0.863 0.933 22 10
30 FS2 true 0.1 0.897 0.963 0.837 0.966 28 5
60 FS2 true 0.1 0.897 0.963 0.837 0.966 28 5
60 FS2 max 0.02 0.896 0.926 0.928 0.866 10 20
14 FS1 max 0.02 0.895 0.913 0.969 0.832 4 25
60 FS1 max 0.02 0.89 0.917 0.94 0.846 8 23
14 FS2 max 0.1 0.889 0.951 0.843 0.94 26 9
60 FS1 true 0.1 0.885 0.957 0.822 0.96 31 6
60 FS2 med 0.1 0.883 0.949 0.833 0.94 28 9
30 FS2 med 0.1 0.881 0.949 0.828 0.94 29 9
30 FS2 max 0.05 0.88 0.946 0.832 0.933 28 10
14 FS1 max 0.1 0.879 0.951 0.82 0.946 31 8
30 FS1 true 0.1 0.877 0.955 0.808 0.96 34 6
60 FS1 max 0.05 0.876 0.943 0.831 0.926 28 11
60 FS2 med 0.02 0.875 0.896 0.967 0.799 4 30
60 FS1 med 0.1 0.873 0.949 0.81 0.946 33 8
30 FS2 med 0.02 0.873 0.898 0.952 0.805 6 29
30 FS1 max 0.02 0.87 0.915 0.888 0.852 16 22
14 FS2 med 0.02 0.868 0.892 0.959 0.792 5 31
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30 FS1 med 0.02 0.867 0.89 0.967 0.785 4 32
60 FS1 med 0.02 0.866 0.887 0.975 0.779 3 33
14 FS1 med 0.02 0.865 0.884 0.983 0.772 2 34
30 FS1 med 0.1 0.862 0.946 0.792 0.946 37 8
30 FS1 max 0.05 0.854 0.937 0.793 0.926 36 11
60 FS2 max 0.1 0.843 0.939 0.765 0.94 43 9
60 FS1 max 0.1 0.829 0.937 0.738 0.946 50 8
30 FS1 max 0.1 0.822 0.935 0.727 0.946 53 8
30 FS2 max 0.1 0.819 0.931 0.725 0.94 53 9
14 FS3 med 0.02 0.807 0.932 0.7 0.953 61 7
14 FS3 true 0.05 0.805 0.931 0.696 0.953 62 7
14 FS3 med 0.05 0.804 0.936 0.689 0.966 65 5
30 FS3 true 0.02 0.8 0.925 0.697 0.94 61 9
60 FS3 true 0.02 0.797 0.922 0.695 0.933 61 10
14 FS3 true 0.02 0.795 0.919 0.697 0.926 60 11
14 FS3 med 0.1 0.793 0.937 0.667 0.98 73 3
60 FS3 true 0.05 0.791 0.932 0.67 0.966 71 5
30 FS3 true 0.05 0.788 0.928 0.668 0.96 71 6
14 FS3 true 0.1 0.788 0.933 0.662 0.973 74 4
14 FS3 max 0.05 0.786 0.932 0.659 0.973 75 4
60 FS3 med 0.05 0.784 0.927 0.662 0.96 73 6
30 FS3 med 0.05 0.784 0.927 0.662 0.96 73 6
14 FS3 max 0.02 0.783 0.913 0.682 0.919 64 12
30 FS3 med 0.02 0.781 0.906 0.691 0.899 60 15
30 FS3 true 0.1 0.781 0.933 0.649 0.98 79 3
30 FS3 max 0.02 0.78 0.923 0.66 0.953 73 7
60 FS3 max 0.05 0.78 0.93 0.65 0.973 78 4
60 FS3 med 0.02 0.779 0.905 0.687 0.899 61 15
60 FS3 true 0.1 0.777 0.931 0.643 0.98 81 3
60 FS3 max 0.02 0.776 0.917 0.66 0.94 72 9
14 FS3 max 0.1 0.773 0.928 0.642 0.973 81 4
30 FS3 max 0.05 0.773 0.928 0.642 0.973 81 4
60 FS3 med 0.1 0.771 0.927 0.639 0.973 82 4
30 FS3 med 0.1 0.769 0.926 0.636 0.973 83 4
60 FS3 max 0.1 0.74 0.915 0.597 0.973 98 4
30 FS3 max 0.1 0.734 0.913 0.589 0.973 101 4
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Table C.5: Autoencoder results

Training set parameters Model
parameters Metrics

Baseline
period

Feature
set

Training
contam. Contam. F1 ROC Precision Recall FP FN

30 FS2 true 0.05 0.947 0.973 0.935 0.96 10 6
14 FS1 true 0.05 0.944 0.969 0.934 0.953 10 7
60 FS2 true 0.05 0.944 0.972 0.929 0.96 11 6
14 FS1 med 0.05 0.936 0.963 0.933 0.94 10 9
14 FS2 true 0.05 0.936 0.963 0.933 0.94 10 9
30 FS2 med 0.05 0.936 0.96 0.939 0.933 9 10
30 FS1 true 0.05 0.935 0.97 0.911 0.96 14 6
60 FS2 med 0.05 0.933 0.959 0.933 0.933 10 10
14 FS2 med 0.05 0.932 0.951 0.951 0.913 7 13
60 FS1 true 0.05 0.932 0.969 0.905 0.96 15 6
30 FS1 med 0.05 0.927 0.96 0.915 0.94 13 9
60 FS1 med 0.05 0.927 0.96 0.915 0.94 13 9
14 FS1 max 0.02 0.927 0.945 0.957 0.899 6 15
60 FS2 max 0.02 0.922 0.946 0.938 0.906 9 14
30 FS2 max 0.02 0.921 0.956 0.908 0.933 14 10
60 FS1 max 0.02 0.914 0.94 0.937 0.893 9 16
30 FS2 true 0.02 0.913 0.935 0.949 0.879 7 18
14 FS2 max 0.02 0.912 0.932 0.956 0.872 6 19
30 FS1 max 0.02 0.911 0.954 0.891 0.933 17 10
60 FS2 max 0.05 0.908 0.953 0.885 0.933 18 10
14 FS2 true 0.02 0.905 0.925 0.955 0.859 6 21
60 FS2 true 0.02 0.905 0.925 0.955 0.859 6 21
30 FS2 max 0.05 0.901 0.956 0.86 0.946 23 8
30 FS1 true 0.02 0.901 0.922 0.955 0.852 6 22
60 FS1 true 0.02 0.9 0.919 0.962 0.846 5 23
14 FS1 max 0.05 0.898 0.956 0.855 0.946 24 8
14 FS1 true 0.02 0.897 0.918 0.955 0.846 6 23
14 FS1 med 0.02 0.891 0.91 0.969 0.826 4 26
14 FS2 med 0.02 0.888 0.909 0.961 0.826 5 26
60 FS2 med 0.02 0.888 0.909 0.961 0.826 5 26
30 FS1 max 0.05 0.883 0.949 0.833 0.94 28 9
14 FS2 max 0.05 0.882 0.954 0.821 0.953 31 7
60 FS1 max 0.05 0.881 0.949 0.828 0.94 29 9
30 FS2 med 0.02 0.877 0.902 0.953 0.812 6 28
30 FS2 true 0.1 0.875 0.954 0.803 0.96 35 6
30 FS1 med 0.02 0.872 0.896 0.96 0.799 5 30
14 FS2 true 0.1 0.87 0.948 0.806 0.946 34 8
14 FS2 med 0.1 0.87 0.948 0.806 0.946 34 8
60 FS2 true 0.1 0.869 0.953 0.794 0.96 37 6
60 FS1 med 0.02 0.867 0.89 0.967 0.785 4 32
60 FS2 med 0.1 0.867 0.952 0.79 0.96 38 6
30 FS2 med 0.1 0.867 0.952 0.79 0.96 38 6
14 FS2 max 0.1 0.861 0.951 0.781 0.96 40 6
14 FS1 med 0.1 0.859 0.95 0.777 0.96 41 6
30 FS1 true 0.1 0.856 0.949 0.773 0.96 42 6
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60 FS1 true 0.1 0.856 0.949 0.773 0.96 42 6
14 FS1 true 0.1 0.849 0.947 0.761 0.96 45 6
60 FS1 med 0.1 0.849 0.947 0.761 0.96 45 6
30 FS1 med 0.1 0.841 0.945 0.749 0.96 48 6
60 FS2 max 0.1 0.839 0.944 0.745 0.96 49 6
14 FS1 max 0.1 0.839 0.944 0.745 0.96 49 6
30 FS2 max 0.1 0.824 0.94 0.722 0.96 55 6
60 FS1 max 0.1 0.817 0.938 0.711 0.96 58 6
14 FS3 med 0.02 0.805 0.931 0.696 0.953 62 7
14 FS3 true 0.05 0.801 0.933 0.688 0.96 65 6
30 FS3 true 0.02 0.8 0.925 0.697 0.94 61 9
14 FS3 med 0.05 0.799 0.936 0.678 0.973 69 4
30 FS1 max 0.1 0.799 0.932 0.684 0.96 66 6
60 FS3 true 0.02 0.797 0.922 0.695 0.933 61 10
30 FS3 true 0.05 0.793 0.932 0.673 0.966 70 5
60 FS3 true 0.05 0.793 0.932 0.673 0.966 70 5
14 FS3 true 0.02 0.793 0.919 0.693 0.926 61 11
60 FS3 max 0.02 0.791 0.932 0.67 0.966 71 5
14 FS3 max 0.05 0.79 0.934 0.665 0.973 73 4
30 FS3 max 0.02 0.789 0.931 0.667 0.966 72 5
30 FS3 med 0.05 0.789 0.931 0.667 0.966 72 5
60 FS3 med 0.05 0.788 0.928 0.668 0.96 71 6
60 FS3 max 0.05 0.788 0.933 0.662 0.973 74 4
14 FS3 max 0.02 0.787 0.921 0.676 0.94 67 9
30 FS3 med 0.02 0.786 0.912 0.69 0.913 61 13
14 FS3 med 0.1 0.785 0.934 0.655 0.98 77 3
14 FS3 true 0.1 0.782 0.931 0.653 0.973 77 4
30 FS3 max 0.05 0.78 0.93 0.65 0.973 78 4
60 FS3 true 0.1 0.779 0.932 0.646 0.98 80 3
60 FS3 med 0.1 0.777 0.929 0.647 0.973 79 4
30 FS3 med 0.1 0.775 0.928 0.644 0.973 80 4
30 FS3 true 0.1 0.775 0.93 0.64 0.98 82 3
60 FS3 med 0.02 0.775 0.904 0.68 0.899 63 15
14 FS3 max 0.1 0.769 0.926 0.636 0.973 83 4
60 FS3 max 0.1 0.755 0.921 0.617 0.973 90 4
30 FS3 max 0.1 0.746 0.918 0.604 0.973 95 4

89


	Introduction
	UEBA for contact centers
	Objectives and contributions
	Thesis outline

	Background and related work
	Anomaly detection
	Types of anomalies
	Supervised vs. unsupervised anomaly detection

	Unsupervised anomaly detection
	Anomaly detection algorithms
	Anomaly explainability/interpretability
	Algorithm comparison and summary

	UEBA - machine learning for cybersecurity
	Typical use-cases and threat scenarios
	Existent UEBA products and applications


	Data analysis and threat scenarios
	Analysis of the data sources available
	Threat scenarios/misuse-cases
	Data transformation and feature extraction
	Exploratory data analysis and feature selection

	Algorithms
	Chosen anomaly detection algorithms
	HBOS
	Mahalanobis method
	Isolation forest
	PCA
	Autoencoder

	Chosen interpretability algorithms
	Training data

	Evaluation and deployment
	Evaluation
	Generation/labeling of anomalous instances
	Validation with the labeled examples
	Sampling from supervisor activity
	Evaluation of the interpretability methods

	Deployment
	Feedback mechanism
	Staging deployment

	Threats to validity

	Conclusions and future work
	Risk analysis
	Plan of activities
	Results with the labeled dataset

