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Abstract

The first hyperpolarizability tensor β is a central quantity for several technological
applications, and its maximization in one-dimensional systems has been a target for
numerical optimizations in an attempt to gain insight into how to build linear-chain
molecules with the largest response possible. Previous work by Kuzyk et. al. has
shown that a limit for the intrinsic hyperpolarizability (βint), the quotient between the
hyperpolarizability of the system (β) and the maximum hyperpolarizability within a
3-level ansatz assumed to optimize the non-linear response (βmax), appears to exist,
and that within that framework and the models for interaction considered the universal
properties observed in the non-interacting systems are preserved in the interacting ones.
In this work we do an optimization procedure for these one-dimensional systems using
a genetic algorithm and working within the framework of TDDFT (Time-Dependent
Density Functional Theory) in order to study what happens when going from a two
non-interacting electron system to an interacting one. The goal for this study is to see
how the presence of interaction changes not only the values of β but also the behavior of
the system’s wavefunctions and potential. With this approach we are able to find that
when interactions are turned on there is a sharp (11 orders of magnitude) increase on the
maximum value of |β|, the wavefunction becomes more localized in one of the regions of
the potential and that region itself becomes wider when compared to the non-interacting
case.





Resumo

O tensor da primeira hiperpolarizabilidade β é uma quantidade central para diversas
aplicações tecnológicas, tendo a sua maximização em sistemas unidimensionais vindo a
ser um alvo para otimizações numéricas numa tentativa de compreender como construir
moléculas lineares com a maior resposta posśıvel. Trabalhos anteriores de Kuzyk et.
al. provaram a existência de um limite para a hiperpolarizabilidade intŕınseca (βint), o
quociente entre a hiperpolarizabilidade do sistema (β) e a hiperpolarizabilidade máxima
dentro da ansatz de 3-ńıveis que se assume que otimiza a resposta não linear (βmax),
aparenta existir, e que dentro desse framework e com os modelos considerados para
modelar a interação, as propriedades universais observadas nos sistemas não-interatuantes
são preservadas nos interatuantes. Neste trabalho é feito um processo de otimização
para estes sistemas unidimensionais usando um algoritmo genético e trabalhando dentro
do framework da TDDFT (Time-Dependent Density Functional Theory) por forma a
estudar o que acontece quando se passa de um sistema de dois eletrões não-interatuantes
para um interatuante. O objetivo para este estudo é verificar como é que a presença de
interação muda não só os valores de β como também o comportamento das funções de
onda e do potencial do sistema. Com esta abordagem conseguimos verificar que quando
as interações são ligadas há um aumento brusco (11 ordens de grandeza) no valor máximo
de |β|, a função de onda torna-se mais localizada numa das regiões do potencial e essa
mesma região é alargada em comparação com o caso não-interatuante.
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Chapter 1

An Overview On TDDFT

1.1 Runge-Gross Theorem
The time evolution of a system of N interacting non-relativistic electrons is determined

by the time-dependent Schrödinger equation:

ĤptqΨpx1,x2, ...,xN , tq “ i
B

Bt
Ψpx1,x2, ...,xN , tq “ EΨpx1,x2, ...,xN , tq (1.1)

with (in the Born-Oppenheimer approximation)

Ĥptq “ T̂ ` V̂ee ` V̂extptq, (1.2)

Ψpx1,x2, ...,xN , tq the N-fermion wavefunction and E the eigenvalues of the Hamilto-
nian operator Ĥ. We use the shorthand notation xi ” pri, σiq for the space and spin
coordinates of the ith electron, and units of c “ ~ “ 1. In both the time-dependent
and time-independent cases, the kinetic energy and electron-electron interaction energy
operators T̂ and V̂ee are given by (choosing the Coulomb interaction for V̂ee):

T̂ “ ´
1
2

N
ÿ

i“1
∇2
i (1.3)

V̂ee “
1
2

N
ÿ

i‰j

1
|ri ´ rj |

. (1.4)

On the other hand, the external potential V̂ext differs between both cases: in the time-
independent case we write

V̂ext “
N
ÿ

i“1
vextpriq, (1.5)

while in the time-dependent case
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V̂ext “
N
ÿ

i“1
vextpri, tq. (1.6)

Solving equation (1.1) and thus obtaining the exact N-electron wavefunction would
lead to the knowledge of the expectation value of every time-dependent observable of the
system. This comes from the fact that for a given time-dependent operator Ôptq, the
corresponding observable Optq is given by

Optq “ xΨptq|Ôptq|Ψptqy, (1.7)

where the space-spin dependency is omitted in Ψ. The N interacting electron problem
can therefore be seen as the problem of finding the N-electron wavefunction, as this is
the object which will allow us to bridge the gap between the operators, which are general,
and the system.

In the case of the time-independent Schrödinger equation, the simplest approach to
the problem is to assume that Ψ is a Slater determinant of the one-electron orbitals, i.e.
the simplest fermionic wavefunction one can write:

Ψpx1,x2, ...,xN q “
1
?
N !

∣∣∣∣∣∣∣∣∣
ϕipx1q ϕjpx1q ... ϕkpx2q
ϕipx2q ϕjpx2q ... ϕkpx2q
... ... ...

ϕipxN q ϕjpxN q ... ϕkpxN q

∣∣∣∣∣∣∣∣∣ . (1.8)

Here 1?
N ! is a normalization factor so that the integral over all space of |Ψ|2 is 1, and ϕ

are one-electron orbitals, each of them being a solution of the one-electron Schrödinger
equation. This Ψ leads us to a simplified form of the expectation value of Ĥ,

xΨ|Ĥ|Ψy “
N
ÿ

i“1
xϕi|T̂ ` V̂ext|ϕiy `

N
ÿ

i‰j

xϕi|V̂ee|ϕiy

“

N
ÿ

i“1

ż

ϕipxq

˜

´
∇2

2 ` vextpriq

¸

ϕipxqdx`
1
2

N
ÿ

i,j“1
pJij ´Kijq, (1.9)

with J “ 1{2
ř

i,j“1 Jij the classical electrostatic repulsion energy and
ř

i,j“1Kij the
exchange energy, given by

Jij “

ż

ϕipx1qϕ
˚
i px1q

1
|ri ´ rj |

ϕjpx2qϕ
˚
j px2qdx1dx2 (1.10)

Kij “

ż

ϕ˚i px1qϕjpx1q
1

|ri ´ rj |
ϕipx2qϕ

˚
j px2qdx1dx2, (1.11)

with
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ż

dxi “
ÿ

σi

ż

dri (1.12)

The Slater determinant Ψ that minimizes the expectation value xΨ|Ĥ|Ψy is the
Hartree-Fock wavefunction (ΨHF ) and it describes the ground-state of the system within
this approximation, with the self-consistent method used to calculate ΨHF known as the
Hartree-Fock (HF) approximation. With ϕi being the HF single-particle wavefunctions,
|ΨHF y is the lowest energy eigenfunction of the HF Hamiltonian:

ĤHF “

N
ÿ

i

˜

´
∇2
i

2 ` vextpriq `
1
2
ÿ

j

ż

dx2|ϕjpx2q|
2 1
|ri ´ rj |

`
ÿ

j

K̂j

¸

, (1.13)

where the third term is the classical electrostatic energy operator (also known as the
Hartree potential operator) and K̂i is the exchange-energy operator defined by its action
on ϕi:

K̂jϕipx1q “

ż

dx2ϕ
˚
j px2q

1
|ri ´ rj |

ϕipx2qϕjpx1q. (1.14)

The problem with this approach is that to take Ψptq as a simple Slater determinant
is equivalent to neglecting most of the electron correlation (the remaining correlation is
occurs when dealing with same-spin electrons), which is in no way a general statement
one can make about a many-body system. Taking correlation into account, the exact
Ψptq can be written as a linear combination of all possible N-electron Slater determinants
formed from a complete set of spin orbitals [16].

Although complex post-HFA methods like CI (Configuration Interaction) or MPPT
(Møller-Plesset Perturbation Theory) exist, the issue of working with the wavefunction
as an object does not stop at the fact that it has to be approximated for the N-electron
case; in fact, one of the most crucial issues of these methods is that of the size of Ψ, as
this object scales exponentially with the number of electrons, making systems beyond a
given size not viable to analyze even computationally.

A major paradigm shift regarding this problem was done through the formulation
of Density Functional Theory (DFT), that with its fundamental pieces (the Hohenberg-
Kohn theorem and the Kohn-Sham scheme) manages to (for the ground-state of the
system) not only change the problem into an artificial but equivalent one that is solved
exactly by a Slater determinant, but also prove that any observable O can be written as
an explicit functional of an object far simpler than Ψ: the electron-density.

Just as in ground-state DFT, the time-dependent version of DFT (TDDFT) arises as
an alternative to solving the Schrödinger equation for the full many-body wavefunction,
and its intention is again to reduce the exponential scaling with number of electrons that
is associated with both equation (1.1) and its time independent version in order to make
it viable computationally. This scaling is replaced by a N3 one in DFT and TDDFT,
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which allows for the study of much larger systems than would otherwise be possible with
the same computational power.

Despite the fact DFT and TDDFT look very similar due to both being solved in the
Kohn-Sham scheme, to derive TDDFT one must rely on entirely different theorems than
the ones used in the ground-state case; it is neither the case that the time-dependent
theorems are just generalizations of the ground-state ones nor that they necessarily
reduce to them in a static case. The time-dependent case does however make very good
use of ground-state DFT, as we will see many times below.

We start our showing of the foundations of TDDFT with the Runge-Gross theorem,
which fulfills the role of the Hohenberg-Kohn theorem in the time-dependent case. Its
statement is that for a given initial many-body state Ψ0 there is a one-to-one mapping
between the time-dependent external potential and the time-dependent one-particle
electronic density, built from the many-body wavefunction Ψptq from equation (1.1) as

npr, tq “ N
ÿ

σ

ż

dx2...

ż

dxN |Ψpr, σ,x2, ...xN , tq|
2, (1.15)

with N the number of particles, so that the density is normalized to N. Just like in DFT
(the only difference being the time-dependency), npr, tq represents the probability of
finding an electron at position r and instant t, regardless of its spin. The proof here is
done for the spin unpolarized case, with the spin polarized one being very similar.

To prove the aforementioned one-to-one mapping, the Runge-Gross theorem attempts
to show that two time-dependent external potentials vextpr, tq and v1extpr, tq, differing
by more than a time-dependent function (which is the analogue of having two potential
that differ by more than a constant in the ground-state theory) such that

v1extpr, tq ‰ vextpr, tq ` cptq, (1.16)

acting on a system with a given initial state Ψ0 will always lead to two different densities
npr, tq and n1pr, tq. It is crucial to note that the initial state is not necessarily the ground-
state nor any eigenstate of the initial potential, which means the case of a potential that
is abruptly switched on is covered by the theorem.

This proof requires us to impose a crucial condition on the potentials: they are
required to be time analytic, i.e., that we can expand them in a Taylor series centered
around an initial time (that for the sake of simplicity we take to be t0 = 0) such that

vextpr, tq “
8
ÿ

k“0

1
k!vext,kprqt

k. (1.17)

Given the analytic form of the potentials, equation (1.16) is equivalent to saying that
there exists an integer q beyond which (i.e., for k ě q) v1ext,kprq and vext,kprq differ by
more than a constant. We are now in condition to proceed with the proof.

The first step is to prove that different external potentials lead to different current-
densities jpr, tq, with
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jpr, tq “ xΨptq|̂prq|Ψptqy (1.18)

and the paramagnetic current-density operator ̂

̂prq “
1
2i

N
ÿ

i“1
r∇iδpr ´ riq ` δpr ´ riq∇is. (1.19)

Applying the equations of motion of the expectation value of an operator in the
Heisenberg picture to ̂prq and ̂1prq, we get (since B̂prq{Bt = 0)

B

Bt
jpr, tq “ ´ixΨptq|r̂prq, Ĥptqs|Ψptqy (1.20)

B

Bt
j1pr, tq “ ´ixΨ1ptq|̂prq, Ĥ 1ptqs|Ψ1ptqy. (1.21)

Taking the difference between (1.20) and (1.21) at initial time, and since we take Ψ
= Ψ1 = Ψpt “ 0q at t “ 0, we arrive at

B

Bt
rjpr, tq ´ j1pr, tqs

ˇ

ˇ

ˇ

t“0
“ ´ixΨpt “ 0q|r̂prq, Ĥpt “ 0q ´ Ĥ 1pt “ 0qs|Ψpt “ 0qy

“ npr, t “ 0q∇rvextpr, t “ 0q ´ v1extpr, t “ 0qs
(1.22)

with the last equality coming from the fact that the primed and unprimed Hamiltonians
are identical with the exception of the external potentials (since the kinetic and the
electron-electron operators are identical by definition of the Hamiltonians and their
values are taken for the same wavefunction).

Equation (1.22) thus implies that if condition (1.16) is met for k “ 0, then

vextpr, t “ 0q ´ v1extpr, t “ 0q ‰ 0, (1.23)

with

vextpr, t “ 0q “ vext,0prq (1.24)
v1extpr, t “ 0q “ v1ext,0prq, (1.25)

and therefore, since the right-hand side of (1.22) doesn’t vanish, the current-densities
j and j1 will differ infinitesimally later than t “ 0. If (1.16) is met only for an integer
k ą 0, we apply the equation of motion another k times, leading us to

´

B

Bt

¯k`1
rjpr, tq ´ j1pr, tqs

ˇ

ˇ

ˇ

t“0
“ ´npr, t “ 0q∇wkprq, (1.26)

where
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wkprq “
´

B

Bt

¯k
rvextpr, tq ´ v

1
extpr, tqs

ˇ

ˇ

ˇ

t“0
(1.27)

“ vext,kprq ´ v
1
ext,kprq,

and we get yet again that the currents are different infinitesimally after t “ 0.
Now that a map from the density currents to the external potentials for a given initial-

state has been established, we have to prove the same mapping but from the one-particle
electronic density npr, tq to the current-densities. We do this again by proving that
different current-densities mean that the particle densities themselves are different, and
use that to connect npr, tq to the external potential. Beginning by taking the continuity
equation which relates both quantities

´

B

Bt

¯

npr, tq “ ´∇ ¨ jpr, tq, (1.28)

taking its time derivative pk`1q times at t “ 0 and subtracting the resulting expressions
for npr, tq and n1pr, tq, we get

´

B

Bt

¯k`2
rnpr, tq ´ n1pr, tqs

ˇ

ˇ

ˇ

t“0
“ ´∇ ¨

´

B

Bt

¯k`1
rjpr, tq ´ j1pr, tqs

ˇ

ˇ

ˇ

t“0
, (1.29)

which, after applying (1.22), reduces to
´

B

Bt

¯k`2
rnpr, tq ´ n1pr, tqs

ˇ

ˇ

ˇ

t“0
“ ∇ ¨ rnpr, t “ 0q∇wkprqs. (1.30)

It remains for us to show that if (1.16) holds, then the right-hand side of (1.27) doesn’t
vanish and different external potentials do in fact lead to different particle densities, which
now due to the divergence operator is less trivial than before. To do so, we consider the
following integral relationship (Green’s integral theorem):

ż

d3rnpr, t “ 0qp∇wkprqq2 “ ´

ż

d3rwkprq∇ ¨ rnpr, t “ 0q∇wkprqs (1.31)

`

¿

dS ¨ rnpr, t “ 0qwkprq∇wkprqs.

For all physically reasonable potentials (ones that arise from normalizable external
charge distributions, that do not diverge for large |r|) the surface integral vanishes.
Therefore, since the integrand function on the left-hand side of (1.30) is strictly non-
negative and wk ‰ 0 by definition, we get that

∇ ¨ rnpr, t “ 0q∇wkprqs ‰ 0 (1.32)

and thus prove the right-hand side of (1.30) doesn’t vanish. This finishes the proof for
the Runge-Gross theorem, showing how different external potentials for the same initial
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wavefunction lead to different densities immediately after t “ 0. Since by solving the
time-dependent Schrödinger equation for a fixed initial state we have the map

Ψpt “ 0q : vextpr, tq Ñ npr, tq, (1.33)

what the Runge-Gross theorem does is to show that for a certain set of conditions it can
be inverted, thus allowing us to write

Ψpt “ 0q : vextpr, tq Ø npr, tq. (1.34)

There is therefore a one-to-one correspondence between the external potential and the
time-dependent density.

Figure 1.1: Illustration of the time evolution of the density when subjected to
different time-dependent potentials [18]

An immediate consequence of the theorem is that both the Hamiltonian and the
many-body wavefunction are functionals of the density and the initial state [1]. From
this dependency, we get that every physical observable is a functional of the density and
initial state:

Optq “ xΨrn,Ψ0s|Ôptq|Ψrn,Ψ0sy “ Orn,Ψ0sptq. (1.35)

As powerful as equation (1.35) is, since it tells us that we can in principle obtain
any and every observable uniquely through npr, tq and |Ψ0y, we would still like to use
a scheme analogous to the Kohn-Sham one, due to the advantages it brings us already
demonstrated in ground-state DFT. This is however not covered in the Runge-Gross
theorem, and it thus needs to be proven, which is done using the van Leeuwen theorem
[12].

The van Leeuwen theorem proves that (for additional conditions besides the ones
for the Runge-Gross theorem, like the density being time analytic) the same npr, tq can

7



be reproduced for two systems with differing electron-electron and external potentials,
as well as initial states (on the condition that they yield the same density and its time
derivative at t “ 0). In the specific case where one system is the real, interacting one and
the other is a non-interacting system, we get our desired Kohn-Sham approach in the
time-dependent case. The question of whether or not this can be done for all cases and,
if not, when can it be done, is called the non-interacting v-representability problem and
is an open problem. Regarding this issue, the van Leeuwen theorem only assures that
this system exists for the time-dependent part of the potential if it is time analytic and
the initial state is compatible with the requirements mentioned above; whether or not
this initial state exists is the ground-state non-interacting v-representability problem.

Another specific case of interest is the case where the interactions and initial states
are the same for both systems. For this scenario, the van Leeuwen theorem reproduces
the Runge-Gross theorem, i.e. that there is a one-to-one map between density and
external potential, thus proving that the second is a special case of the first.

With this, we have all the fundamental basis to proceed to the time-dependent
Kohn-Sham scheme.

1.2 Time-Dependent Kohn-Sham Equations
In order to get the time-dependent version of the Kohn-Sham equations, we assume

that the non-interacting system mentioned in the previous section does exist and we do
not run into the v-representability problem. Therefore, there exists an external potential
(which we refer to as the Kohn-Sham potential) vsrn,Ψ0,Φ0spr, tq, with |Ψ0y the initial
many-body state and |Φ0y the initial state of the non-interacting system, under which
this fictitious system evolves and in a way that exactly reproduces the correct charge
density npr, tq.

In many practical cases, like the linear-response regime, the functional dependence
of vs on the initial state can be dropped. This simplification arises when the system of
interest is initially in its ground state. If that is the case, then through the Hohenberg-
Kohn theorem of ground-state DFT (as long as |Ψ0y and |Φ0y are non-degenerate ground-
states) the initial states are functionals of the ground-state density n0prq and therefore
the Kohn-Sham potential is a functional only of that quantity.

When the time dependent potential is turned on, the system is forced to leave its
ground-state. As such, instead of obeying the ground-state Kohn-Sham equations, it
must obey their time-dependent version:

i
B

Bt
ϕjpr, tq “

«

´
∇2

2 ` vsrnspr, tq

ff

ϕjpr, tq, (1.36)

with ϕj the Kohn-Sham orbitals such that

8



Φ0pr1, r2, ..., rN , tq “
1
?
N !

∣∣∣∣∣∣∣∣∣
ϕipr1, tq ϕjpr1, tq ... ϕkpr2, tq
ϕipr2, tq ϕjpr2, tq ... ϕkpr2, tq

... ... ...
ϕiprN , tq ϕjprN , tq ... ϕkprN , tq

∣∣∣∣∣∣∣∣∣ . (1.37)

and obeying the initial-time condition ϕjpr, t “ t0q “ ϕ0
j prq, i.e corresponding to the

ground-state Kohn-Sham orbitals. The time-dependent charge density is then given by

npr, tq “
N
ÿ

j“1
|ϕjpr, tq|2. (1.38)

The potential vs that appears in (1.36) is the sum of three parts just like in the
ground-state case:

vsrnspr, tq “ vextpr, tq `

ż

d3r1
npr1, tq

|r ´ r1|
` vxcrnspr, tq, (1.39)

with the first term being the time-dependent external potential, the second one the time-
dependent Hartree potential and the third one the time-dependent exchange-correlation
potential.

Equation (1.39) defines the exchange-correlation potential: it is the difference between
the external potential of the non-interacting system vs, which generates the same density
npr, tq as the interacting one by definition, and both the one from the interacting system
vext and the time-dependent Hartree potential. If we know the initial state of our system,
this will be the unknown functional that we need to approximate in TDDFT (if we need
to calculate the initial state as well, then an approximation for the ground-state vxc is also
required, with the condition that they have to match at the instant the time-dependent
part of vext is turned on).

1.3 Linear Response In TDDFT
Now that we have a Kohn-Sham scheme for TDDFT, we can move along to linear

response and, in particular, the calculation of linear response functions.
Response functions describe the way a system changes when perturbed by an external

source. Because these functions are non-local both in space and in time, TDDFT is a
natural framework for their calculation (although there are other frameworks who are
equally valid for that purpose) [15]. They are also of extreme importance since it is
through them that we can calculate very important observables, such as neutral (that
conserve number of electrons) excitation energies (as we will see soon) and optical spectra
[1].

If we consider our interacting system of interest to be initially in its ground state,
and that at t “ t0 a time dependent perturbation is turned on, we can write our external
potential as
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vextpr, tq “ vextprq ` δvextpr, tqΘpt´ t0q, (1.40)

with the Heaviside function Θ guaranteeing that the time-dependent part of the potential
is only turned on at t “ t0. The system will therefore be forced to leave the ground-state
by δvextpr, tq as soon as it is turned on. This means that both until t “ t0, via the
Hohenberg-Kohn theorem, and after t “ t0, via the Runge-Gross theorem, we guarantee
a one-to-one map between the time-dependent density and vext, which shows that we
can write npr, tq as a functional of vextpr, tq exclusively, i.e. npr, tq “ nrvextspr, tq.

If we consider δvextpr, tq to be a weak time-analytic perturbation to the system, we
can then write npr, tq as a Taylor series relative to δvextpr, tq. We therefore write

npr, tq “ n0prq ` n1pr, tq ` n2pr, tq ` ..., (1.41)
n0prq being the ground-state density, with the guarantee that higher-order terms are
smaller than lower-order ones and therefore npr, tq does not diverge.

In this chapter we are concerned with linear response, which means we are dealing with
the first time-dependent correction to the ground-state density n1pr, tq. This correction
can be written as

n1pr, tq “

ż

dt1
ż

d3r1χpr, t, r1, t1qδvextpr
1, t1q. (1.42)

Here,

χpr, t, r1, t1q “
δnpr, tq

δvextpr1, t1q

ˇ

ˇ

ˇ

ˇ

ˇ

vextprq

(1.43)

and it corresponds to the density-density linear response function; it represents the
system’s first-order response to the external time-dependent perturbation, and it is
calculated at the initial time-independent external potential vextprq as it is a characteristic
of the system and not of the perturbation.

From ordinary time-dependent perturbation theory relative to vext [15] we can write

χpr, t, r1, t1q “ ´iΘpt´ t1q xΨ0| rn̂Hgspr,tq, n̂Hgspr1,t1qs |Ψ0y (1.44)

,
with n̂ the density-operator in the interaction picture and Hgs the ground-state hamil-
tonian. By inserting an identity in the form of a completeness of interacting state, i.e.
inserting

ř

λ |Ψλy xΨλ|, we can Fourier transform (1.44) with respect to t´ t1 to obtain
the expression for χ in the Lehmann representation:

χpr, r1, ωq “ lim
ηÑ0`

ÿ

λ

«

xΨ0|n̂prq|ΨλyxΨλ|n̂pr
1q|Ψ0y

ω ´ pEλ ´ E0q ` iη
´
xΨ0|n̂pr

1q|ΨλyxΨλ|n̂prq|Ψ0y

ω ` pEλ ´ E0q ` iη

ff

,

(1.45)
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Here, the sum is for all excited states, Ψ0 corresponds to the ground-state of the inter-
acting system, Ψλ to an excited state, and the difference Eλ ´ E0 corresponds to the
excitation energy from the ground-state to the excited state λ. This is an important
feature of the density-density linear response function: its poles are the exact excitation
energies for neutral excitations.

Calculating this function within the interacting system is a very difficult task, as
it requires the knowledge of the many-body wavefunction which is what we have been
avoiding from the beginning. However, we have the formal justification to calculate it
through the Kohn-Sham scheme, which makes the calculation easier in principle.

In the Kohn-Sham scheme, due to the external potential in the case of the non-
interacting system being vsrnspr, tq given by (1.39), and since npr, tq (as shown previously)
can be calculated exactly in it, we get that the first-order perturbation to the density
n1pr, tq is given by

n1pr, tq “

ż

dt1
ż

d3r1χspr, t, r
1, t1qδvspr

1, t1q, (1.46)

where δvs is the analogue to δvext from (1.40) in the Kohn-Sham scheme and χs is the
density-density response function for the non-interacting system:

χspr, t, r
1, t1q “

δnpr, tq

δvspr1, t1q

ˇ

ˇ

ˇ

ˇ

ˇ

vsrn0s

. (1.47)

Writing χs in the Lehmann representation and in the basis set of the Kohn-Sham
orbitals, we arrive at

χspr, r
1, ωq “ lim

ηÑ0`

ÿ

j,k

pfk ´ fjq
ϕ
p0q˚
k prqϕ

p0q
j prqϕ

p0q˚
j pr1qϕ

p0q
k pr

1q

ω ´ pεj ´ εkq ` iη
, (1.48)

where fj and fk are occupation numbers and εj ´ εk are the Kohn-Sham excitation
energies. These energy differences, unlike the ones in (1.45), don’t correspond to the real
excitation energies, which reinforces the fact that χs is not in fact the same as χ from
(1.43). This is obvious from the fact that if that were the case, δvs would be equal to
δvext.

In order to get the interacting system’s response function from the Kohn-Sham
scheme, we begin by writing out δvs explicitly from (1.39):

δvspr, tq “ δvextpr, tq ` δvHpr, tq ` δvxcrnspr, tq, (1.49)
with

δvHpr, tq “

ż

d3r1
n1pr

1, tq

|r ´ r1|
. (1.50)

The last term of (1.49) is the first-order change in the exchange-correlation potential,
and in order to write it explicitly we do a Taylor expansion on the functional and define
the xc kernel fxc as

11



fxcpr, t, r
1, t1q “

δvxcrnspr, tq

δnpr1, t1q

ˇ

ˇ

ˇ

ˇ

ˇ

n“n0

. (1.51)

This leads us to

δvxcrnspr, tq “

ż

dt1
ż

d3r1fxcpr, t, r
1, t1qn1pr

1, t1q, (1.52)

and, therefore, we get for δvs:

δvspr, tq “ δvextpr, tq `

ż

d3r1
n1pr

1, tq

|r ´ r1|
`

ż

dt1
ż

d3r1fxcpr, t, r
1, t1qn1pr

1, t1q. (1.53)

By substituting (1.53) into (1.46) and setting it equal to (1.42), we get a Dyson-
like equation for the linear response function χ. Defining the Hartree-xc kernel for
convenience as

fHxc “
δpt´ t1q

|r ´ r1|
` fxcpr, t, r

1, t1q, (1.54)

and after some algebra, we arrive at

χpr, t, r1, t1q “χspr, t, r
1, t1q`

`

ż

dt1

ż

d3r1

ż

dt2

ż

d3r2 χspr, t, r1, t1qfHxcpr1, t1, r2, t2qχpr2, t2, r
1, t1q.

(1.55)

It is this Dyson-type equation for the linear response function (usually in frequency space)
that allows us to calculate observables of the interacting system like the aforementioned
excitation energies.

Even though equation (1.55) is exact, in practice we have to approximate χs and fHxc
since we do not know the exact ground-state xc-potential and xc-kernel. The quality of
the calculated χ is thus determined by how good the approximations used are, making
this task a crucial one since if a good approximation cannot be reached, then this whole
process has no practical value (at least not for the purposes mentioned in this chapter).

One of the most common approximations used for the xc-kernel is the adiabatic
approximation, meaning that we remove all memory dependence from fxc. While in
general, as mentioned previously, the xc-potential is a functional of the density, the
initial interacting state |Ψ0y and the initial non-interacting state |Φ0y, for our purposes
of linear response it is a functional exclusively of the density since we take our system to
be initially in its ground-state. By making an adiabatic approximation to the xc-kernel,
we are effectively removing its memory dependence by replacing the time-dependent
vxcrnspr, tq at every instant t by the ground-state vxc of a system with density npr, tq:

12



vadiarnspr, tq “ vp0qxc rnpr, tqsprq. (1.56)

This in turn leads to a static version of the xc-kernel, which can be written in a simple
form as:

fxcpr, r
1q “

δv
p0q
xc rn0sprq

δn0pr1q
“

δExcrn0s

δn0prqδn0pr1q
. (1.57)

The adiabatic approximation is a good one from a fundamental point-of-view when
the time-dependence on the external potential is slowly-varying and the system begins
in the ground state (since this allows for the initial state dependence to be removed). An
example of one of these adiabatic approximations is the ALDA, which is local in both
space and time and is perhaps the simplest approximation for a non-zero xc-kernel.

An example of a linear response function is the first-order dynamic polarizability
αpωq of an atom or a molecule, the system’s dipole moment µ’s linear response when
perturbed by an external dipolar electric field E :

αijpωq “
Bµipωq

BEjpωq
. (1.58)

However, in order to calculate this quantity, we need to use a method based on
perturbation theory, like the Sternheimer equations. This discussion will be done in a
later chapter.

1.4 Higher-Order Response
The same thought-process applied to obtain the first-order density-density response

in the previous chapter can be used in order to get higher-order response functions,
like the second-order one which allows us to calculate a correction to the ground-state
density like n2pr, tq from (1.41). From here on out we will assume implicit integration on
bar-variables in order to simplify expressions, e.g.

ş

fpr, r1qgpr1, r2qdr1 “ fpr, r̄1qgpr̄1, r2q.
In order to obtain the second-order density-density response function, let us begin by

considering the time-dependent part of the external potential can be written as a sum
of a linear and a quadratic component (if such a component exists), i.e. that

vextpr, tq “ vextprq ` δv
p1q
extpr, tq ` δv

p2q
extpr, tq. (1.59)

In linear response we had that the first-order change in density n1pr, tq is a result
of first-order perturbations by the time-dependent potential, which is simply δvp1qextpr, tq.
For n2pr, tq however, it is the result of second-order perturbations, which are now not
only due to δvp2qextpr, tq but also due to δvp1qextpr, tqδv

p1q
extpr

1, t1q, as this is also second-order
in the field strength. In the time-domain we thus get
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n2pr, tq “
1
2χ

p2qpr, t, r̄1, t̄1, r̄2, t̄2qδv
p1q
extpr̄

1, t̄1qδv
p1q
extpr̄

2, t̄2q ` χp1qpr, t, r̄1, t̄1qδv
p2q
extpr̄

1, t̄1q.

(1.60)

As for the Kohn-Sham second-order response, we get

n2pr, tq “
1
2χ

p2q
s pr, t, r̄

1, t̄1, r̄2, t̄2qδv
p1q
extpr̄

1, t̄1qδv
p1q
extpr̄

2, t̄2q`

`χp1qs pr, t, r̄
1, t̄1qδv

p2q
extpr̄

1, t̄1q`

`
1
2χ

p1q
s pr, t, r̄

1, t̄1qkxcpr̄1, t̄1, r̄2, t̄2, r̄3, t̄3qn1pr̄2, t̄2qn1pr̄3, t̄3q`

`χp1qs pr, t, r̄
1, t̄1qfHxcpr̄1, t̄1, r̄2, t̄2qn2pr̄2, t̄2q, (1.61)

with fHxc as defined in (1.43) and with kxc the second-order xc-kernel:

kxcpr
1, t1, r2, t2, r3, t3q “

δ2vxcrnspr
1, t1q

δnpr2, t2qδnpr3, t3q

ˇ

ˇ

ˇ

ˇ

ˇ

n“n0

. (1.62)

As we can see in (1.61), in order to calculate second-order response we need the first-order
calculation (as well as the ground-state). This is a characteristic of response functions:
they form a hierarchy where the higher order response functions depend on lower order
ones and thus require them to be calculated beforehand.

An example of a second-order response function would be the first hyperpolarizability,
the second-order version of the change in dipole moment mentioned in the previous
chapter:

βijkpω “ ω1 ` ω2q “
B2µipωq

BEjpω1qEkpω2q2
(1.63)

Again, in order to calculate this quantity we need to use a method like the Sternheimer
one. This is the next chapter’s goal.

1.5 The Sternheimer Method
In order to see how we can calculate response-functions of various orders using

the Sternheimer method, we begin by again considering our time-dependent external
potential is a weak one and that it depends on a frequency ω. Then, we can write it as

vextpr, tq “ λv`ωext prqe
`iωt ` λv´ωext prqe

´iωt, (1.64)

with λ the strength of the perturbation.
Our goal with this method is to take advantage of the fact that, due to the potential

being weak, we can take the time-dependent Kohn-Sham equations
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i
B

Bt
ϕjpr, tq “ ĤKSrnspr, tqϕj , (1.65)

with

ĤKSrnspr, tq “ ´
∇2

2 ` vsrnspr, tq (1.66)

and with vs defined by (1.39), and do a perturbative expansion on both ϕ and ĤKS with
respect to λ. By doing this and setting members with the same perturbation strength
equal, we hope to obtain a set of equations that allow us to calculate the corrections to
the orbitals and therefore the various orders of the density response.

Considering, for simplicity, that we are working within the adiabatic approximation,
and that our system is spin-unpolarized, has integer occupations and the ground-state
Kohn-Sham orbitals are real, we begin by writing our Kohn-Sham states and Hamiltonian
in a perturbative expansion:

ϕjpr, tq “ ϕ
p0q
j pr, tq ` λϕ

p1q
j pr, tq ` λ

2ϕ
p2q
j pr, tq ` ... (1.67)

ĤKSrnspr, tq “ Ĥ
p0q
KSrn

p0qspr, tq ` λv
p1q
extpr, tq ` λĤ

p1q
KSrnspr, tq ` λ

2v
p2q
extpr, tq`

λ2Ĥ
p2q
KSrnspr, tq ` ...

(1.68)

Here H
p0q
KS is the ground-state Hamiltonian, which means we can remove its time-

dependence and write it simply as Hp0qKSprq. The H
pkq
KS are the k-th order response

Hamiltonians, and they reflect the fact that when the system is perturbed by vextpr, tq
the system’s internal potentials (Hartree and xc) are affected and change due to it.

Setting the terms of (1.67) and (1.68) with the same order λ equal, we get a time-
dependent Kohn-Sham equation for every order of the response. For example, for zeroth
and first-order we get

i
B

Bt
ϕ
p0q
j pr, tq “ Ĥ

p0q
KSrn

p0qspr, tqϕ
p0q
j pr, tq (1.69)

and

i
B

Bt
ϕ
p1q
j pr, tq “ Ĥ

p0q
KSrn

p0qspr, tqϕ
p1q
j pr, tq `

!

Ĥ
p1q
KSrnspr, tq ` v

p1q
extpr, tq

)

ϕ
p1q
j pr, tq (1.70)

respectively.
If we assume that in our case we only have one frequency dependence ω in the

potential as just described, we can write it as in (1.64) and ϕp1q’s frequency dependence
will be on just ω as well. This means our first-order wavefunction can be written as

ϕpr, tq “ e´iε
p0qt

!

ϕp0qprq ` λ
”

ϕ
p1q
`ωprqe

`iωt ` ϕ
p1q
´ωprqe

´iωt
ı)

`Opλ2q ` ..., (1.71)
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where we approximate the time-dependence on the wavefunction due to the Hamiltonian
as e´iEptq “ e´iε

p0qt´iλ∆εp1qptq, with

∆εp1qrnsptq “
ż t

´8

dtxϕp0q|Ĥ
p1q
KSrnsptq ` v

p1q
extptq|ϕ

p0qy. (1.72)

This allows us to write ϕp1q˘ω with only a spatial dependence while keeping it orthogonal
to ϕp0q.

Substituting (1.71) in (1.65), we obtain for the l.h.s.:

i
B

Bt
ϕjpr, tq “ e´iε

p0qt´iλ∆εp1qptq

#«

ε
p0q
j ` λ

B

Bt
∆εp1qj ptq

ff

ϕ
p0q
j prq`

` λpε
p0q
j ´ ωqϕ

p1q
j,`ωprqe

iωt ` λpε
p0q
j ` ωqϕ

p1q
j,´ωprqe

´iωt

+

`Opλ2q. (1.73)

As for the r.h.s., we get:

ĤKSrnspr, tqϕjpr, tq “ e´iε
p0qt´iλ∆εp1qptq

#

Ĥ
p0q
KSrn

p0qsprqϕ
p0q
j prq ` λĤ

p0q
KSrn

p0qsprqˆ

«

ϕ
p1q
j,`ωprqe

iωt ` ϕ
p1q
j,´ωprqe

´iωt

ff

` λ

«

ż

d3r1fHxcrn
p0qspr, r1qnp1qpr1, tq ` v

p1q
extpr, tq

ff

ϕ
p0q
j prq

+

`Opλ2q

(1.74)

In order to write this equation in terms of the ϕ
p0q
j and ϕ

p1q
j we need to know the

time-dependent ground-state and first-order response densities. Using

npr, tq “
ÿ

j

nj |ϕjpr, tq|2 (1.75)

and replacing ϕj with (1.67), we get

npr, tq “
ÿ

j

nj

!∣∣∣ϕp0qj pr, tq∣∣∣2`λ”ϕp0q˚j pr, tqϕ
p1q
j pr, tq`ϕ

p1q˚
j pr, tqϕ

p0q
j pr, tq

ı

`Opλ2q` ...
)

.

(1.76)
Now using the simplified notation

n
p1q
˘ωpr, tq “

ÿ

j

nj

!

ϕ
p0q˚
j prqϕ

p1q
j,˘ωprq ` ϕ

p1q˚
j,¯ωprqϕ

p0q
j prq

+

e˘iωt, (1.77)

v
p1q
Hxc,˘ωe

˘iωt “

ż

d3r1fHxcrn
p0qspr, r1qn

p1q
˘ωpr

1, tq, (1.78)
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taking the Fourier transform of B
Bt∆ε

p1q
j ptq

ε
p1q
j,˘ω “ xϕ

p0q
j |v

p1q
Hxc,˘ω ` v

p1q
ext,˘ω|ϕ

p0qy, (1.79)

and gathering terms proportional to the exponentials, we finally arrive to:

pĤ
p0q
KS ´ ε

p0q
j ˘ ωqϕ

p1q
j,˘ω “ ´pv

p1q
Hxc,˘ω ` v

p1q
ext,˘ω ´ ε

p1q
j,˘ωqϕ

p0q
j (1.80)

Equation (1.80) comprises a set of non-linear equations that must be solved self-consistently,
as vp1qHxc,˘ω depends on n

p1q
˘ω and therefore on ϕ

p1q
j,˘ω.

We can simplify the calculation required by adding a projector to the unoccupied
space P̂unocc, obtaining:

pĤ
p0q
KS ´ ε

p0q
j ˘ ω ` iηqϕ

p1q
j,˘ω “ ´P̂unoccpv

p1q
Hxc,˘ω ` v

p1q
ext,˘ωqϕ

p0q
j (1.81)

The additional term iη serves as regulator and corresponds to introducing an artificial
lifetime to vext and ϕ

p1q
j that forces the system to return to the ground-state after a

certain amount of time and has the effect of both removing singularities from (1.80) and
stopping the response from becoming infinite at resonance frequencies.

The projector added in (1.81) is also very important. Since from perturbation theory
we have

|ϕ
p0q
j |

2 “ 1 (1.82)

pϕ
p0q˚
j ` λϕ

p1q˚
j qpϕ

p0q
j ` λϕ

p1q
j q “ 1

ô|ϕ
p0q
j |

2 ` λϕ
p1q˚
j ϕ

p0q
j ` λϕ

p0q˚
j ϕ

p1q
j ` λ2|ϕ

p1q˚
j | “ 1

ϕ
p1q˚
j ϕ

p0q
j ` ϕ

p0q˚
j ϕ

p1q
j “ 0. (1.83)

This means that in the subspace of the occupied ϕ
p0q
j , the components of ϕp1qj cancel

out and therefore do not contribute to (1.77). This is equivalent to saying we are only
interested in response orbitals that do not include the ground-state orbitals in them,
i.e. we only want the variation relative to these orbitals. The projector therefore avoids
doing these calculations, while also removing the εp1qj ’s as they were included in order to
orthogonalize the ϕp1qj ’s with respect to the ϕp0qj ’s, which the projector now takes care of.

The Sternheimer equation, together with the 2n ` 1 theorem [5], are what allows
us to calculate hyperpolarizabilities in an efficient way. The Sternheimer equation has
the very useful characteristic of not needing the explicit calculation of a large number of
unoccupied states in order to work, as it relies on the subspace of occupied ground-state
Kohn-Sham orbitals, in contrast to other methods that might rely on an infinite sum
over states. On the other hand the 2n` 1 theorem shows that the 2n` 1’st derivative
of the total energy depends only on the solution of the n-order Sternheimer equation. In
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the case of the first hyperpolarizability, which is the third-order derivative of the total
energy with respect to the perturbing electric field, we only need to solve the first-order
Sternheimer equation and obtain ϕ

p1q
j . Its expression is then given by

β “
occ
ÿ

j

xϕ
p1q
j |Ĥ

p1q ´ ε
p1q
j |ϕ

p1q
j y ` xϕ

p0q
j |v

p2q
ext|ϕ

p1q
j y ` xϕ

p1q
j |v

p2q
ext|ϕ

p0q
j y ` xϕ

p0q
j |v

p3q
ext|ϕ

p0q
j y`

`
1
6kxcpr̄, r̄

1, r̄2qn1pr̄qn1pr̄
1qn1pr̄

2q, (1.84)

where kxc is (1.62) in the adiabatic approximation, Ĥp1q “ v
p1q
ext`fHxc with fHxc given by

(1.54) and fxc by (1.57) and where εp1qj “ xϕ
p0q
j |Ĥ

p1q|ϕ
p0q
j y. Eq. (1.84) is the expression

that will be used from now on in order to calculate hyperpolarizabilities.
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Chapter 2

Genetic Algorithms

Genetic algorithms are a subset of evolutionary algorithms that attempt to mimic
natural selection in order to solve optimization problems. In these kinds of algorithms
the goal is to start from an initial set of individuals (a population) that we represent
as a string of numbers (genes), and that have a given fitness associated to them that
depends on these numbers and their order on the string, and to evolve it in such a way
that this fitness is minimized or maximized (depending on the problem in hand).

This evolution is to be done iteratively, where in between generations the current
population is subjected to a selection process where a subset of individuals is selected
based on their fitness to reproduce and generate the next generation’s population. The
evolution is then stopped when either a certain predefined condition is achieved, like a
maximum number of generations being hit, or the fitness of the individuals plateaus, and
therefore no significant improvement is obtained by continuing with this process.

A number of operators can be used in order to improve and diversify each new
generation of individuals relative to the previous one. Of these, the two most common
ones are the crossover and mutation operations.

After the selection process occurs, those individuals that were selected due to their
fitness are now subject to a process where two or more of them “breed”, forming “child”
individuals that are now part of a new generation (either together with the set of
“parents” that generated them or just other “children”, depending on the choice of
recombination). It is to this breeding process that combines the information of two
of the current population’s fittest individuals in order to generate offspring that is called
crossover. This attempts to imitate the way reproduction works in nature, with its
effect being that it generates new individuals who will tend to increase (in the case of a
maximization problem) the population’s average fitness, moving it towards the goal of
an optimal solution.

The mutation operation comes after crossover is done, and it consists on choosing
random individuals from the newly formed generation population (including parents if
those remain) and altering a set of its genes according to some predefined operation
(e.g. turning each gene chosen to be mutated into their symmetric). This ensures more
diversity in the population as it can not only allow the set of possible individuals to be
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larger than the set of possible combinations of genes existing in the initial population,
but also stops the system from losing diversity due to evolving in such a way that
newer generations are too alike the older ones. The probability of a given individual
being mutated is therefore a very important parameter for genetic algorithms: a too low
mutation probability will lead to the aforementioned problems, while a too high one may
lead to overly random newer generations (although this might not be an issue depending
on the problem).

The problem of being tuned to the right value is, however, not exclusive to the
mutation probability. If it is the case that crossover is probability reliant (e.g. if new
generations are built by pairing individuals and then having a certain probability to
either mate them or leave them as they were), then that is also an important parameter
to adjust as it can have an effect on how much diversity of individuals is generated before
convergence. Another important parameter to tune is the initial population size, as too
small of a population can lead to not enough genetic diversity and therefore less optimal
solutions. These are however all problem dependent and therefore there is not always a
clear indication on what the correct values for each parameter are without testing.

As an example, let us consider we have two individuals A and B of length 5 that we
represent as A = (1,0,1,0,1) and B = (0,1,0,1,0) that have passed the process of selection.
Let us also consider that our crossover operator consists on selecting two individuals
and a gene position and then switching the corresponding gene between them, and that
our mutation operator has a chance for each individual to select a gene position and
doing a bit-flip on the corresponding gene, i.e. if the gene is a 0 it is changed to a 1 and
vice-versa. If A and B are selected as a pair for crossover and, for example, gene position
1 is selected in the crossover operator, the two individuals will produce the offspring A’
= (0,0,1,0,1) and B’ = (1,1,0,1,0) as a result.

Let us now suppose that only A’ is selected for mutation and B’ is left unchanged,
with the mutation operator choosing gene position 4. The bit-flip then changes A’ into
(0,0,1,1,1), while B’ remains written as (1,1,0,1,0). It is this A’ and B’ that are the
offspring that will now be part of the next generation’s population, and will again be
subjected to the selection process, as well as the crossover and mutation operations in
case they survive again.

20



Chapter 3

State Of The Art

The hyperpolarizability is an important quantity from a technological point of view,
as systems with high values of β are often desired in order to improve the efficiency
of certain processes. An example for this is the case of second-harmonic generation
(also known as frequency doubling), a non-linear optical process with applications like
the conversion of common 1064 nm laser beams into higher energy 532 nm ones. The
importance of the second-order response in frequency doubling is easily seen by Fourier
transforming (1.60), leading us to

n2pr, ωq “
1
2δpω ´ ω̄

1 ´ ω̄2qχp2qpr, ω, r̄1, ω̄1, r̄2, ω̄2qδv
p1q
extpr̄

1, ω̄1qδv
p1q
extpr̄

2, ω̄2q`

χp1qpr, ω, r̄1, ω̄1qδv
p2q
extpr̄

1, ω̄1q. (3.1)

We can see from (3.1) that the second-order response function (the first hyperpolar-
izability in our case) will mix the two field frequencies ω1 and ω2 and generate a third
one that will be the frequency of the density response, with energy being conserved as
expressed by δpω´ ω̄1 ´ ω̄2q. In case the field has a single frequency ω (and is, therefore,
monochromatic) like the case of 1064 nm laser beams, a non-zero χp2q will generate a
response with frequency 2ω, effectively doubling the frequency (and, consequently, the
energy) of the initial field. Since the response field with doubled frequency is proportional
to χp2q and the optical intensity Ip2ωq of this same field is proportional to the electric
field squared, we get that the larger χp2q is the larger the Ip2ωq of the frequency doubled
beam will be. We are therefore interested in searching for systems where the hyper-
polarizability is maximized. Throughout this work, we will be considering specifically
second-harmonic generation in the off-resonant case ω “ ω1 “ ω2 “ 0, where we can
safely apply perturbation theory without worrying about resonant response.

The problem with attempting to maximize β from either (1.84) or any other expression
for this quantity is that it is too complex of a process to do analytically. This makes
it a good target for optimization schemes, in particular ones that do not depend on
derivatives of the function to be optimized, in an attempt to find optimal solutions (as a
maximum is not guaranteed with these schemes). We can therefore turn to a method of
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this kind, using the potential energy of the system as the optimization variable which is
to be iteratively altered until an optimal value of β is found.

The search of the maximum for the off-resonant hyperpolarizability for one-electron
systems is the subject of research of several publications [10, 17, 21, 22] by Mark Kuzyk
and others. In their work, the focus is on the search of a maximum for the intrinsic
hyperpolarizability βint,

βint “
β

βmax
, (3.2)

a quantity used as a figure of merit that consists on the normalization of the calculated
hyperpolarizability with respect to the maximal value a diagonal component of β can
take when a 3-level ansatz is assumed for the system in the off-resonant case [7, 8, 11],
given by

βmax “
4?3

˜

e~
?
m

¸

N3{2

E
7{2
10

, (3.3)

with N the number of electrons of the system under analysis and E10 its energy gap
between the ground and first excited-states. This was always done for the case of 1-
dimensional systems, as the authors found that for higher-dimensional cases the same or
worse results are found.

The Nelder-Mead minimization method with potentials described by piecewise func-
tions starting from some analytic expression (e.g. v0 = x2, tanhpxq, etc) are used
throughout these publications. In them, the conclusion was that, regardless of the initial
function and the different conditions used for the potential, the maximal β seemed to
always fall short of βmax, with βint taking the apparent limit |βint| ă 0.709. Another
important conclusion to take from this series of papers is that several different potentials
seem to yield a value for βint close to this apparent fundamental limit. This means that
β appears to have more than one maximum, something that we will return to later on.
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Figure 3.1: Plot of βpω “ 0q normalized to N3{2 vs wavelength of the maximum
absorbance of the first excited state within Kuzyk’s 3-level approximation. The
red line represents the theoretical limit within this framework, the green line
corresponds to the case of the clipped harmonic oscillator, the dashed blue line is
the apparent limit (βint “ 0.709 in the off-resonant case) and the green dots are
experimental data.[9]

In the present work, the goal is to study what happens to the maximum β when
interactions are switched on, i.e. what differs between a system with two non-interacting
electrons and one with two interacting electrons. For a system where the two electrons
are independent the value of beta will double when compared to the one electron case;
the effect interactions have however is not obvious and thus demands a closer look. This
is done strictly for the 1-dimensional case.

A study on this kind of systems has been done in [20], where the authors work
within the same framework as the one mentioned above, optimizing βint instead of β and
assuming the 3-level ansatz. In it, a simple model is assumed for the interactions where
they are composed of piecewise linear expressions of electrostatic and spin interaction
terms, and it is concluded by the authors that the same universal properties previously
observed for the one-electron systems are preserved, in particular that |βint| ă 0.709.

In this work, we aim to do a more general study of both the independent electrons
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case and of what happens with interactions allowed. In order to do this, we use a genetic
algorithm with the goal of maximizing the absolute value of β. This algorithm generates
the potentials as Lagrange interpolations of a set of numbers chosen from a given range
(the individuals); this allows for a wide range of potentials to be considered initially
instead of a fixed function as the aforementioned work has done. Together with the
fact that they are usually much faster at finding optimal solutions when compared to
optimization methods like the Nelder-Mead simplex-based one, genetic algorithms are in
theory great tools for this kind of problem, especially when dealing with such a complex
function like β.

Another approach that differs from previously mentioned work is the framework from
which calculations are done. Instead of using an approach based on finite differences in
order to calculate β (Eq. (3) of [22]), we work in the TDDFT framework, where we do
the calculation using the Sternheimer method and the p2n` 1q theorem. The difference
between these methods comes from the fact that in the case of finite differences we require
the knowledge of the exact (or at least a very good approximation) wavefunction for every
value of the electric field considered, whereas using (1.84) requires only the ground-state
and first-order response wavefunctions (since we calculate the ground-state at zero field),
as well as kxc from (1.62) in the case of the interacting system. Using TDDFT also
means that interactions between electrons can be dealt with without resorting to models
like what was done in [20].

As working within TDDFT can lead to some time consuming calculations in the
case of interacting electrons, it is interesting to compare the Nelder-Mead algorithm and
our genetic algorithm on how time consuming they are. Let us suppose we are only
interested in the most optimal value returned by the genetic algorithm for the sake of
a direct comparison between the methods. Let us also suppose we have a population
with size N , in which each individual has size S and which takes G generations to reach
the optimum value. If each TDDFT calculation takes an amount of time T from start
to finish, then the genetic algorithm takes a total amount of time TGA “ N ˆ T ˆ G.
In the case of using the Nelder-Mead algorithm, building the potential from our size S
individual as well and with the same amount of time per TDDFT calculation T , the
time required to reach the optimum value is given by TNM “ pS ` 1q ˆ T ˆ I, where I
is the number of iterations it takes for the algorithm to converge and pS ` 1q is the size
of the simplex. This means that as long as N ˆG is smaller than pS ` 1q ˆ I (which in
general is the case), the genetic algorithm is faster, and is therefore a good approach to
this optimization problem if it manages to reach optimal values similar to those obtained
via the Nelder-Mead method.
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Chapter 4

Results And Discussion

4.1 The Genetic Algorithm
The genetic algorithm used for this optimization procedure consists on two Python

scripts, one for generating the individuals and building the file hierarchy needed for the
DFT and TDDFT calculations and one for applying the GA operators and creating the
next generation’s population, and one Linux shell script that both runs the calculations
and ensures the scripts are ran automatically in a correct order. The algorithm is
summarized in Figure 4.1:

Figure 4.1: Flowchart with the summary of the genetic algorithm. The process is
to be repeated until convergence.

The DFT and TDDFT calculations occur immediately after each of the population
generation processes (the “Generate initial population” and “New population” boxes in
Figure 4.1).

The individuals of the initial population are defined as follows. First, a “box”, which
due to the problem being one-dimensional is just a straight line, is generated, ranging
from -10 to 10 a0 (a0 being the Bohr radius). The size of this “box” is the size of the
system. Then, we define n points along this line using the n zeros of the Chebyshev
polynomial of the first kind and degree n, Tnpxq. The degree n is the size of the individual.
Finally, a potential value is attributed to each of this n points, with these values being
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randomly generated from within a given range. It is the values of the potential in these
fixed points that defines the individual.

Having a set of pairs of points in the “box” representing our system and corresponding
potential values, we do a Langrange interpolation in order to have an analytic expression
for the potential, which will allow us to do the necessary DFT and TDDFT calculations.
Generating the points from the zeros of the aforementioned Chebyshev polynomial will
be helpful for the calculations since this method has the desired feature of generating
more points towards the ends of the mesh, thus making the polynomial less likely to
blow up to extremely large values in those points and therefore making it more likely to
be well behaved. This analytic expression for the potential will be the individual from
the physical point-of-view.

This algorithm relies only on crossover and mutations as its GA operators. The
crossover operator is defined in the following way:

1. two individuals are selected for crossover;

2. aq 50% of the time a two-point crossover (where two gene positions in the two
individuals selected for crossover are randomly chosen, and the genes in those
positions are interchanged) is executed;
bq the other 50% of the time there is a 50% chance for each gene position that a
different crossover operation occurs. For this, there is a 50% chance for each gene
position selected that the corresponding gene in each individual is changed into
the sum of the genes in that position for both individuals and a 50% chance that
it is changed to their average value.

The goal for this crossover operator is for a larger part of the search space to be run
through via crossover than the possible combinations of genes from the initial population.

As for the mutation operator, a gaussian mutation centered on zero and with a σ
of 40% of the maximum potential value allowed is used. This operator will have a 50%
chance to be applied to each individual. When an individual is selected for mutation,
each of its genes then has a 10% chance to be mutated. This means that for an individual
with 29 genes, on average 2.9 of its genes will be mutated. It is worth noting that the
mutation being based on a gaussian distribution means that it has the possibility of
generating genes outside of the range defined for the individuals of the initial population,
just like the crossover operator, giving it the possibility to broaden the search space for
the genetic algorithm.

The selection process used for this algorithm is an elitist one, where the best 50%
individuals, i.e. the ones with largest β, are selected for breeding. Before this process
occurs there is however a previous screening done in order to exclude individuals with
unwanted characteristics regarding their ground-states, like them being degenerate. This
is done by setting their β to 0 in case the HOMO-LUMO gap is less than a certain
amount (in our case defined to be 0.5 eV). As the quantity to be optimized is the β’s
absolute value, these individuals are immediately excluded in the selection process.
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4.2 TDDFT Calculations
All calculations were done using the OCTOPUS code. A one-dimensional grid with

radius 10.0 a0 and a spacing of 0.01 a0 was used for all individuals. This means that
the systems considered have a fixed size of 20 a0. In the interacting cases, the LDA
exchange in one-dimension and the Casula, Sorella, and Senatore functional for the
one-dimensional correlation [2] were used, as well as the average-density self-interaction
correction [13]. In the ground-state calculations, the first excited-state is also calculated
in order to calculate the HOMO-LUMO gap, not only for the exclusion of degenerate
ground-states but also for an eventual calculation of the βint. All quantities presented
are in atomic units.

4.3 Results
Before going through what happens when going from two independent electrons to

two interacting ones, we first run the genetic algorithm for the case of one electron only.
This serves not only to see if the algorithm is working properly, but also to tune the
necessary hyperparameters like the population size, the length of the individuals, the
range of initial potential values allowed, etc. The optimal range found from this tuning
process was (-1,1) Hartree, with the results improving with increasing individual length.
The largest length admitted by the code while keeping the interpolation precise, 29, was
thus chosen. This was hinted already by Kuzyz et. al., noting in their work that a
substantial degree in complexity was needed for the potentials to be the most optimal.
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Figure 4.2: Potential energy vs position on the grid for the best individual after
convergence in the case of individual length 29 of a one-electron system. The
electron’s eigenvalue is also plotted, with its value being ´0.174592 Ha. The
absolute value of beta for this case was |β| “ 1.35ˆ 106 a.u.

From Figure 4.2 we can see that the wavefunction is very delocalized, growing in
absolute value in regions where the potential is decreasing and shrinking when it is
increasing. It is also worth to note that βint for the most optimal individual was found
to be larger than the reported apparent maximum value of |βint| “ 0.709. This goes
against what was found in the papers mentioned in Chapter 3.

Fixing the initial potential values range at (-1,1) and the length of the individuals
at 29, we now turn to see what happens when going from a system with 2 independent
electrons to a system with 2 interacting ones.

In the case of two non-interacting electrons, we find (as expected) that the value for |β|
approximately doubles, with nothing noteworthy changing regarding the wavefunctions
(which coincide for spin-up and spin-down, as expected) and potential.
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Figure 4.3: Potential energy vs position on the grid for the best individual after
convergence in the case of individual length 29 of a two independent-electron
system. The eigenvalue for both electrons is ´0.146545 Ha. The absolute value
of beta for this case was |β| “ 2.27ˆ 106 a.u.

When interaction is turned on, however, a massive (10 orders of magnitude) increase
of β occurs. As can be seen in Figure 4.4, the wavefunction is much more localized
(the spin-up and spin-down wavefunctions still coincide, as expected), with the region
of the potential where its majority is located being very wide in comparison to the
previous cases. The potential is also much less oscillating in general. There is therefore a
noticeable change in behaviour in the interacting case associated with the huge increase
in β, showing that it is in this framework that remarkably high hyperpolarizabilities can
be obtained.
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Figure 4.4: Potential energy vs position on the grid for the best individual after
convergence in the case of individual length 29 of a two interacting-electron system.
The eigenvalue for both electrons is 0.348287 Ha. The absolute value of beta for
this case was |β| “ 4.78ˆ 1016 a.u.

As in the one electron case, we find that βint is higher than what was obtained by
Kuzyk et. al.; however, in this case it not only surpasses the apparent limit of the 3-level
model but is also greater than the maximum value of βint “ 1 predicted in it by 11
orders of magnitude. The interacting optimal individual therefore appears to contradict
this model. We also note that the eigenvalue for the electrons is now positive. This is a
general trend for the best individuals of the interacting case (see Appendix B).

The sharp increase in the optimal values of β is not, however, without problems
for the algorithm. By turning the interactions on in our systems, a significant number
of individuals whose associated calculations were previously well behaved begin to not
converge. The reason for these anomalies can be seen by comparing the plots for a
given individual’s potentials and wavefunctions in the non-interacting and interacting
frameworks in the case of an individual whose calculation of β does not converge when
interactions are turned on. It is worth noting that the external potential is the same
in both cases, but in the non-interacting case it also coincides with the Kohn-Sham
potential, i.e. vext “ vs.
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Figure 4.5: Potential energy vs position on the grid for an individual of length 29
with non-converged β in the two interacting-electron case and converged in the
non-interacting one, with absolute value |β| “ 1.74ˆ 102 a.u.

Figure 4.5 shows that for this case the interaction makes the potential rise everywhere,
with this increase being more steep in the region where the wavefunction has higher values,
as expected from the Hartree term. The wavefunction itself is also changed, being less
localized than in the non-interacting case. It is also worth noting that the potential does
not change significantly in shape in the region where the wavefunction is higher valued
between both cases.

Figure 4.6, on the other hand, portrays the case of the individual that optimizes |β|
for two interacting-electrons, with the difference from Figure 4.4 being that we also plot
the non-interacting wavefunction. Contrary to the individual depicted in Figure 4.5, this
one also converges in the non-interacting case. Despite the fact that some characteristics
are the same as in the previous analysis (vertical shift in the potential when going from
the non-interacting system to the interacting one and less localized wavefunction), we
now get a major increase in |β|. This could be due to the change in the shape of the
potential that occurs when interactions are turned on.

To further emphasize how much the shape of the potential has an effect on the
hyperpolarizability, let us compare Figure 4.6 with a very similar potential arising from
this optimization procedure, depicted in Figure 4.7. Despite the similarities, we see an
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increase in |β| when going from Figure 4.7 to Figure 4.6 of 2 orders of magnitude. These
examples thus serve to show that β is a highly non-linear quantity, which can massively
change in value even when subjected to very similar potentials.

Figure 4.6: Potential energy vs position on the grid for the same individual as in
Figure 4.4, now in both the interacting and non-interacting cases. For the latter
we get |β| “ 8.69ˆ 10´3 a.u.
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Figure 4.7: Potential energy vs position on the grid for an individual similar
in shape to the most optimal one from the two interacting-electron case, with
|β| “ 3.64ˆ 1014 a.u.
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Chapter 5

Conclusions And Future Work

In summary, we are able to both show that the genetic algorithm implemented works
well as a tool for the optimization of the hyperpolarizabilty, and that interaction in a
two-electron system leads to a sharp (11 orders of magnitude in the optimization process
shown previously) increase in the value of |β| of the optimized individuals when compared
to the non-interacting case (see Appendix B). It is also found that despite there not being
a significant change in the behavior of the potential and the wavefunctions when going
from one to two non-interacting electron systems, when interaction is turned on there is
a clear increase in the localization of the wavefunction, with the potential increasing in
width in this same region.

Another interesting find was that the values of βint for the one-electron and two
interacting-electron cases are larger than the ones obtained by Kuzyk et. al., with the
value found when interaction is present even surpassing the maximum value of βint “ 1
predicted by the 3-level model, and thus appearing to contradict it. Further work on
this point is thus needed, especially a more direct comparison by using the optimized
individuals and calculate their hyperpolarizability the same way as in Kuzyk et. al.’s
work.

Additionally, by comparing the potentials and wavefunctions for a given individual
in the two-electron non-interacting and interacting cases we see that slight changes
in the shape of the potential and/or on its value can lead to massive changes in the
hyperpolarizability. This is a testament to how highly non-linear β is and how details
are crucial when dealing with the calculation and optimization of this quantity.

Finally, the transition of the eigenvalues from negative to positive values when going
from the non-interacting to the interacting case is also worth highlighting. Literature
suggests [19] there is a relationship between the increase in hyperpolarizability and
the existence of bound-states in the continuum. This cannot however be concluded to
happen for our case, since the asymptotic value of the potential is not conditioned a
priori. Furthermore, by imposing nullifying boundary conditions we make it difficult
to distinguish between continuum states and box states. Since the potential is given
by Lagrange interpolation, it is tricky to impose conditions that guarantee the desired
behavior to study this phenomena in the optimization procedure. An attempt to reduce

34



this problem was made by demanding the total energy of the individuals to be negative,
thus making the minimum value of the potential negative as well. This is, however, an
insufficient and artificial condition to impose and it has to be improved upon. This is
surely a path we ought to explore in the future in our search for a reason behind the
sharp increase in β observed.
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Appendix A

Density Functional Theory

A.1 The Hohenberg-Kohn Theorem
As stated previously (see chapter 1.1), Density Functional Theory works as an exact

reformulation of the time-independent many-body problem for the ground-state of the
system. The motivation for this is the same as in the time-dependent case: the wavefunc-
tion Ψ scales exponentially with the number of electrons, making its usage non-viable
in most cases. The fundamental theorems of DFT solve this issue by showing that the
charge-density nprq of the ground-state (the time-independent version of (1.15))is enough
to calculate any ground-state and excited-state expectation-value of the system. This is
done via the Hohenberg-Kohn theorem [6], which we prove next for the spin-unpolarized
case (see [14] for example for the spin-polarized case) in the case the ground-state is
non-degenerate (the extension to degenerate ground-states is straightforward and can be
seen in [3]).

From the solution of the time-independent Schrödinger equation we can establish
a map from the external potential vextprq to the ground-state wavefunction Ψ and
consequently to nprq:

vextprq Ñ Ψprq Ñ nprq. (A.1)

By showing that this map is one-to-one, and therefore fully invertible, we obtain the map

vextprq Ø nprq, (A.2)

thus showing that vextprq is a unique functional of nprq up to an additive constant.
In order to demonstrate the first arrow of (A.1), we begin by assuming that we have

two external potentials V̂ext and V̂ 1ext such that V̂ext ‰ V̂ 1ext ` c, with c a constant. The
respective Hamiltonians for the unprimed and primed systems are
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Ĥ “ F̂ ` V̂ext (A.3)
Ĥ 1 “ F̂ ` V̂ 1ext (A.4)

respectively, where F̂ represents all other operators from the Hamiltonian. This operator
is the same for both systems since it is independent of the external potential and depends
only on the number of electrons. If we assume both V̂ext and V̂ 1ext lead to the same ground-
state wavefunction Ψ0, then by applying Ĥ and Ĥ 1 to it and subtracting them we obtain

pF̂ ` V̂extq |Ψ0y ´ pF̂ ` V̂
1
extq |Ψ0y “ E |Ψ0y ´ E

1 |Ψ0y , (A.5)

and therefore,

pV̂ext ´ V̂
1
extq |Ψ0y “ pE ´ E

1q |Ψ0y . (A.6)

As both E and E1 are constants, this contradicts our initial statement about the potentials.
This proves that up to a constant the external potential determines the ground-state
wavefunction.

To prove the second arrow in (A.1), we now assume we have two different ground-
state wavefunctions Ψ0 and Ψ10 that lead to the same charge density nprq. Using the
Rayleigh-Ritz variational principle we get

E0 “ xΨ0| Ĥ |Ψ0y ă
@

Ψ10
∣∣ Ĥ ∣∣Ψ10D . (A.7)

We also have

@

Ψ10
∣∣ Ĥ ∣∣Ψ10D “ @

Ψ10
∣∣ Ĥ 1 ` V̂ext ´ V̂ 1ext ∣∣Ψ10D “ E10 `

@

Ψ10
∣∣ V̂ext ´ V̂ 1ext ∣∣Ψ10D , (A.8)

and therefore

E0 ă E10 `
@

Ψ10
∣∣ V̂ext ´ V̂ 1ext ∣∣Ψ10D . (A.9)

By a completely analogous way we get

E10 ă E0 ` xΨ0| V̂ 1ext ´ V̂ext |Ψ0y . (A.10)

Since we assumed both Ψ0 and Ψ10 lead to the same density, we have
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@

Ψ10
∣∣ V̂ext ´ V̂ 1ext ∣∣Ψ10D “ ż

n1prqpvextprq ´ v
1
extprqqd

3r

“

ż

nprqpvextprq ´ v
1
extprqqd

3r “ ´

ż

n1prqpv1extprq ´ vextprqqd
3r

“xΨ0| V̂ 1ext ´ V̂ext |Ψ0y . (A.11)

We can therefore sum (A.9) and (A.10) to obtain

E0 ` E
1
0 ă E0 ` E

1
0. (A.12)

This is again a contradiction, which proves that different ground-state wavefunctions
necessarily lead to different charge densities. We note however that this proof (particu-
larly the usage of the Rayleigh-Ritz variational principle) holds in this exact form only
because we are considering non-degenerate ground-states, and that the general proof is
not exactly the same.

We have therefore proven both right-pointing arrows in (A.1) are one-to-one in nature,
i.e. both the map from external potential to the ground-state wavefunction and from that
to the charge density are injective, and therefore the composite map from the potential
to the density is injective and thus invertible. This is represented by (A.2).

The Hohenberg-Kohn theorem can therefore be stated as follows: for a given interact-
ing many-body system, the external potential and the ground state density are related by
a one-to-one correspondence. This means that not only the charge density is a functional
of vextprq, which comes from the solution of the Schrödinger equation, but the inverse is
also true, and we can write the external potential as vextrn0sprq.

Since as stated before all other operators of the Hamiltonian are fixed, we immediately
conclude that Ĥ itself is a functional of the density. This leads us to a pivotal consequence
of the theorem: since we can write Ĥ as Ĥrn0s, from the Schrödinger equation we get
that every eigenstate of the system (not only the ground-state) is a functional of the
density as well. We can therefore conclude that n0 is in principle sufficient not only to
calculate every ground-state observable of a many-body static system, but every excited-
state observable as well, although this case is not very useful in practice since we do
not know to obtain most of them, and therefore have to rely on other frameworks (like
TDDFT) for their calculation.

The original paper by Hohenberg and Kohn also proves an important consequence
of the aforementioned theorem. If we take the Hamiltonian from (A.3) with a given
external potential v0prq, a unique ground-state wavefunction Ψ0rn0s and density n0prq,
we easily see using the Rayleigh-Ritz variational principle that

xΨ0rn0s| Ĥrn0s |Ψ0rn0sy “ Ern0s ă Ern1s “
@

Ψ10rn1s
∣∣ Ĥrn0s

∣∣Ψ10rn1sD . (A.13)

This means that the ground-state density minimizes the energy, yielding the ground-state
energy E0. As a consequence, we have that n0 can be found via minimization of the
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energy functional with the constraint that particle number is to be conserved. Writing
Erns as

Erns “ F rns `

ż

d3rnprqv0prq, (A.14)

we obtain the following Euler-Lagrange equation

δ

δnprq

«

F rns `

ż

d3r1npr1qv0pr
1q ´ µ

ż

d3r1npr1q

ff

“ 0, (A.15)

where µ is the Lagrange multiplier associated with the particle number constraint. This
finally leads us to

δF rns

δnprq
` v0prq “ µ, (A.16)

and the density which correctly solves this equation is then the ground-state density.

A.2 The Kohn-Sham Scheme
With (A.16) we see that the problem of finding the ground-state density is reduced

to finding an expression for F rns. This is however a very difficult task to do for our
interacting many-body system due to the inherent difficulties presented arising from
the electron-electron interactions, making this method unappealing for finding n0. The
ingenious step taken by Kohn and Sham was to realize that this problem could be solved
by rewriting the energy functional as follows:

Erns “ F rns ` vextrns “ T rns ` Veerns ` vextrns

“ Tsrns `
1
2

ż

d3r

ż

d3r1
nprqnpr1q

|r ´ r1|
`

ż

d3rnprqvextprq ` Excrns. (A.17)

In this last equality, the second and third terms correspond to the classical electro-
static electron-electron interaction and the external potential energies respectively; the
first term corresponds to the kinetic energy of a system with the density nprq if it were
non-interacting, and the last term is the remaining part of the energy, the exchange-
correlation energy. By rewriting the energy in this way, we are effectively considering
the system in a fictional frame, with the same density of the original interacting one but
non-interacting in nature, subject to an external potential vsrns only (the often-called
Kohn-Sham potential), comprised of the functional derivatives of the last three terms of
(A.17):
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vsrnsprq “

ż

d3r1
npr1q

|r ´ r1|
` vextpr

1q ` vxcrnsprq, (A.18)

with

vxcrnsprq “
δExcrns

δnprq
. (A.19)

With this now non-interacting system we can easily build the ground-state wavefunc-
tion, as it reduces to a Slater determinant (via the same arguments used for Hartree-Fock,
see chapter 1) built like in (1.8), but with the orbitals now satisfying the one-electron
Schrödinger equation

˜

´
∇
2 ` vsrnsprq

¸

ϕiprq “ εiϕiprq, (A.20)

and with the ground-state density calculated from the occupied orbitals via

n0prq “
ÿ

i

|ϕiprq|2. (A.21)

Equations (A.19) to (A.21) are the Kohn-Sham equations, and they constitute a much
simpler but equivalent method to calculate n0 than through (A.16).

A.3 The Local Density Approximation
The contents of the previous chapters show we can in principle deal with many-body

interacting systems by working in a non-interactive fictitious one with the same density;
this is however not without a cost. Although when working in the Kohn-Sham scheme
we can calculate Tsrns exactly, Excrns has to be approximated.

The simplest approximation one can make in order to calculate Excrns is the Local
Density Approximation (LDA) and it is based on the energy of the uniform electron gas.
Within this approximation, we get that for a gas of density nprq any energy component
Grns is given by

GLDArns “

ż

d3rnprqgLDApnprqq, (A.22)

with gLDApnprqq the corresponding energy component per particle.
This leads us to an exchange energy-density eLDAx given by [4]
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eLDAx “ ´
3

4π
p9π{4q1{3

rs
, (A.23)

with rs the Seitz radius, defined by

rs “

˜

3
4πn

¸1{3

. (A.24)

This corresponds to the radius of a sphere containing on average one electron.
As for the correlation energy, its expression is only known for two limiting cases. The

first, known as the high-density or weak-coupling limit (where rs Ñ 0), leads us to

eLDAc “ c0 lnprsq ´ c1 ` c2rs lnprsq ´ c3rs ` ..., (A.25)

with ci, i “ 0, 1, ... constants. The second case is the low-density or strong-coupling limit
(where rs Ñ8), which results in

eLDAc “ ´
d0
rs
`

d1

r
3{2
s

` ..., (A.26)

with di, i “ 0, 1, ... constants.
One can write the correlation energy in such a way that comprises both limits:

eLDAc “ ´2c0p1` α1rsq ln
˜

1` 1
2c0pβ1r

1{2
s ` β2rs ` β3r

3{2
s ` β4r2

sq

¸

. (A.27)

Here, we have

β1 “
1

2c0
e´c1{2c0 (A.28)

β2 “ 2c0β
2
1 , (A.29)

with the other coefficients constant found by fitting to accurate Quantum Monte Carlo
correlation energies for rs “ 2, 5, 10, 20, 50 and 100.[4]
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Appendix B

Hall Of Fame From The Genetic
Algorithm’s Optimization

Figure B.1: Potential energy vs position on the grid for the best individual after
convergence in the case of individual length 29 of a two interacting-electron system.
The eigenvalue for both electrons is 0.348287 Ha. The absolute value of beta for
this case was |β| “ 4.78ˆ 1016 a.u.
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Figure B.2: Potential energy vs position on the grid for the second-best individual
after convergence in the case of individual length 29 of a two interacting-electron
system. The eigenvalue for both electrons is 0.049821 Ha. The absolute value of
beta for this case was |β| “ 2.91ˆ 1015 a.u.

43



Figure B.3: Potential energy vs position on the grid for the third-best individual
after convergence in the case of individual length 29 of a two interacting-electron
system. The eigenvalue for both electrons is 0.052968 Ha. The absolute value of
beta for this case was |β| “ 2.42ˆ 1015 a.u.
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Figure B.4: Potential energy vs position on the grid for the fourth-best individual
after convergence in the case of individual length 29 of a two interacting-electron
system. The eigenvalue for both electrons is 0.049651 Ha. The absolute value of
beta for this case was |β| “ 1.97ˆ 1015 a.u.
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Figure B.5: Potential energy vs position on the grid for the fifth-best individual
after convergence in the case of individual length 29 of a two interacting-electron
system. The eigenvalue for both electrons is 0.053917 Ha. The absolute value of
beta for this case was |β| “ 1.28ˆ 1015 a.u.
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Figure B.6: Potential energy vs position on the grid for the sixth-best individual
after convergence in the case of individual length 29 of a two interacting-electron
system. The eigenvalue for both electrons is 0.066969 Ha. The absolute value of
beta for this case was |β| “ 1.19ˆ 1015 a.u.
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Figure B.7: Potential energy vs position on the grid for the seventh-best individual
after convergence in the case of individual length 29 of a two interacting-electron
system. The eigenvalue for both electrons is 0.133407 Ha. The absolute value of
beta for this case was |β| “ 7.11ˆ 1014 a.u.
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Figure B.8: Potential energy vs position on the grid for the eighth-best individual
after convergence in the case of individual length 29 of a two interacting-electron
system. The eigenvalue for both electrons is 0.355154 Ha. The absolute value of
beta for this case was |β| “ 3.64ˆ 1014 a.u.
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Figure B.9: Potential energy vs position on the grid for the ninth-best individual
after convergence in the case of individual length 29 of a two interacting-electron
system. The eigenvalue for both electrons is 0.121564 Ha. The absolute value of
beta for this case was |β| “ 3.63ˆ 1014 a.u.
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Figure B.10: Potential energy vs position on the grid for the tenth-best individual
after convergence in the case of individual length 29 of a two interacting-electron
system. The eigenvalue for both electrons is 0.049559 Ha. The absolute value of
beta for this case was |β| “ 2.40ˆ 1014 a.u.
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