

Jessica Mégane Taveira da Cunha

PROBABILISTIC GRAMMATICAL EVOLUTION

Dissertation in the context of the Master in Informatics Engineering, Specialization in
Intelligent Systems, supervised by Professor Nuno Lourenço and Penousal Machado

presented to the
Faculty of Sciences and Technology / Department of Informatics Engineering.

September 2021

PR
O

BA
BI

LI
ST

IC
 G

RA
M

M
AT

IC
AL

 E
VO

LU
TI

O
N

Je
ss

ic
a

M
ég

an
e

Ta
ve

ira
 d

a
Cu

nh
a

Faculty of Sciences and Technology

Department of Informatics Engineering

Probabilistic Grammatical Evolution

Jessica Mégane Taveira da Cunha

Dissertation in the context of the Master in Informatics Engineering, Specialization in
Intelligent Systems, supervised by Professor Nuno Lourenço and Professor Penousal Machado

and presented to the
Faculty of Sciences and Technology / Department of Informatics Engineering.

September 2021

This page is intentionally left blank.

Abstract

Grammatical Evolution (GE) [1] is one of the most popular variants of Genetic Program-
ming (GP) [2] and has been successfully used in a wide range of problem domains. Since
the original proposal, many improvements have been introduced in GE to improve its per-
formance by addressing some of its main issues, namely low locality and high redundancy
[3, 4].

In grammar-based GP methods the choice of the grammar has a significant impact on
the quality of the generated solutions, since it is the grammar that defines the search
space [5]. In this work, we present four variants of GE, which during the evolutionary
process perform an exploration of the search space by updating the weights of each rule
of the grammar. These variants introduce two alternative representation types, two gram-
mar adjustment methods, and a new mapping method using a Probabilistic Context-Free
Grammar (PCFG).

The first method is Probabilistic Grammatical Evolution (PGE), in which individuals are
represented by a list of real values (genotype), each value denoting the probability of select-
ing a derivation rule. The genotype is mapped into a solution (phenotype) to the problem
at hand, using a PCFG. At each generation, the probabilities of each rule in the grammar
are upated, based on the expansion rules used by the best individual. Co-evolutionary
Probabilistic Grammatical Evolution (Co-PGE) employs the same representation of indi-
viduals and introduces a new technique to update the grammar’s probabilities, where each
individual is assigned a PCFG where the probabilities of each derivation option are changed
at each generation using a mutation like operator. In both methods, the individuals are
remapped after updating the grammar.

Probabilistic Structured Grammatical Evolution (PSGE) and Co-evolutionary Probabilis-
tic Structured Grammatical Evolution (Co-PSGE) were created by adapting the mapping
and probabilities update mechanism from PGE and Co-PGE to Structured Grammatical
Evolution (SGE), a method that was proposed to overcome the issues of GE while improv-
ing its performance [6]. These variants use as genotype a set of dynamic lists, one for each
non-terminal of the grammar, with each element of the list being the probability used to
map the individual with the PCFG.

We analyse and compare the performance of all the methods in six benchmarks. When
compared to GE, the results showed that PGE and Co-PGE are statistically similar or
better on all problems, while PSGE and Co-PSGE are statistically better on all problems.
We also highlight Co-PSGE since it is statistically superior to SGE in some problems,
making it competitive with the state-of-the-art. We also performed an analysis on the
representations, and the results showed that PSGE and Co-PSGE have less redundancy,
and PGE exhibited better locality than GE, which allows for a better exploration of the
search space.

The analyses conducted showed that the evolved grammars help guide the evolutionary
process and provides us information about the most relevant production rules to generate
better solutions. In addition, they can also be used to generate a sampling of solutions
with better average fitness.

iii

Chapter 0

Keywords

Genetic Programming, Grammatical Evolution, Probabilistic Context-Free Grammar, Genotype-
Phenotype Mapping, Co-evolution.

iv

This page is intentionally left blank.

Chapter 0

Resumo

Evolução Gramatical (GE) [1] é uma das variantes mais populares de Programação Genética
(GP) [2] e tem sido utilizada com sucesso em problemas de vários domínios. Desde a pro-
posta original, muitas melhorias foram introduzidas na GE para melhorar a sua perfor-
mance abordando alguns dos seus principais problemas, nomeadamente a baixa localidade
e a alta redundância [3, 4].

Nos métodos de GP baseados em gramáticas, a escolha da gramática tem um papel impor-
tante na qualidade das soluções geradas, uma vez que é a gramática que define o espaço
de procura [5]. Neste trabalho, propomos quatro variantes da GE, que durante o processo
evolucionário realizam uma exploração do espaço de procura alterando os pesos de cada re-
gra da gramática. Estas variantes introduzem dois tipos de representação alternativas, dois
métodos diferentes de ajustar a gramática e um novo método de mapeamento, utilizando
uma Gramática Livre de Contexto Probabilistica (PCFG).

O primeiro método é a Evolução Gramatical Probabilistica (PGE), no qual os indivíduos
são representados por uma lista de probabilidades (genótipo), onde cada valor representa a
probabilidade de selecionar uma regra de derivação. O genótipo é mapeado numa solução
para o problema em questão (fenótipo), recorrendo a uma PCFG. A cada geração, as prob-
abilidades de cada regra da gramática são atualizadas, com base nas regras de expansão
usadas pelo melhor indivíduo. A Evolução Gramatical Probabilistica Co-Evolucionária
(Co-PGE) utiliza a mesma representação dos indivíduos e introduz uma nova técnica
de atualização das probabilidades da gramática onde as probabilidades de cada regra de
derivação são alteradas a cada geração usando um operador semelhante à mutação. Em
ambos os métodos os indivíduos são remapeados após atualização da gramática.

A Evolução Gramatical Estruturada Probabilistica (PSGE) e a Evolução Gramatical Estru-
turada Probabilistica Co-Evolucionária (Co-PSGE) foram criadas adaptando a Evolução
Gramatical Estruturada (SGE), um método que foi proposto para superar os problemas da
GE melhorando a sua performance [6]. Estas variantes usam como genótipo um conjunto
de listas dinâmicas, uma para cada não-terminal, em que cada elemento da lista é uma
probabilidade usada para mapear o indivíduo, usando uma PCFG.

Analisamos e comparamos o desempenho dos métodos em seis problemas benchmark.
Quando comparados com a GE, os resultados mostraram que a PGE e a Co-PGE são
estatisticamente semelhantes ou melhores em todos os problemas, enquanto que a PSGE e
a Co-PSGE foram estatisticamente melhores em todos os problemas do que a tradicional
GE. Destacamos também a Co-PSGE por superar estatisticamente a SGE em alguns prob-
lemas, tornando-a competitiva com o estado da arte. Também realizamos uma análise nas
representações, e os resultados mostraram que a PSGE e a Co-PSGE tem menos redun-
dancia, e o PGE apresenta localidade mais elevada que o GE, o que permite uma melhor
exploração do espaço de procura.

As análises efetuadas mostraram que as gramáticas evoluidas ajudam a guiar o processo
evolucionario, e fornecem-nos informações sobre as regras de produção mais relevantes
para gerar melhores soluções. Além disso, também podem ser utilizadas para gerar uma
amostragem de soluções com melhor fitness médio.

vi

Palavras-Chave

Programação Genética, Evolução Gramatical, Gramática Livre de Contexto Probabilistica,
Mapeamento Genótipo-Fenótipo, Co-evolução.

vii

This page is intentionally left blank.

Acknowledgements

I would like to thank my supervisors, Professor Nuno Lourenço and Professor Penousal
Machado for their guidance, support and the opportunity to work with them. Professor
Penousal, I never told you but I became a fan of yours in the Introduction to Artificial
Intelligence classes, so it was an honour for me when you joined this project. I learned a lot
from you, and for that, thank you! Professor Nuno, by talking to you I made the decision
to work with Artificial Intelligence for the rest of my life. When I entered the Masters I
had the opportunity to do a three-month fellowship with you, and start this project. I
never thought that two years later this decision would lead me to have a published paper
and a thesis written, and a whole potential for improvement ahead of me. You taught me
what it is to be a scientist, and especially how to deal when the results are not what I
expected. Thank you for your availability, and above all, for your patience.

To my parents and sister, thank you for everything. You still ask me "After all, what is
the purpose of what you are doing?" and even if you still do not understand, you never
doubted and are always the first to support me. Mom and Dad, you have worked hard all
your lives to give us the opportunity to study, and for that I will be eternally grateful, and
it is my mission to make you proud.

Victor, Catarina, Marco, Isabel and Eduardo, thank you for being my "rubber ducks" and
for all the emotional support you give. Thank you for listening to me when things are
not going so well, for listening to me when things are going well, for always being willing
to help, for the random revisions to the thesis that I asked for, and especially for making
me leave the house once in a while. Without you these last years would have been much
harder to get through.

I would also like to thank my childhood friends from Coura, the ones I made in Coimbra
and Emily, you may not realize it but your support and friendship helped me to keep my
spirits up and mentally sane.

This work was partially funded by the project grant DSAIPA/DS/0022/2018 (GADgET)
and by national funds through the FCT - Foundation for Science and Technology, I.P.,
within the scope of the project CISUC - UID/CEC/00326/2020 and by European Social
Fund, through the Regional Operational Program Centro 2020. We also thank the NVIDIA
Corporation for the hardware granted to this research.

ix

This page is intentionally left blank.

Contents

1 Introduction 1
1.1 Motivation . 2
1.2 Contributions . 2
1.3 Structure . 3

2 Background 5
2.1 Evolutionary Computation . 5
2.2 Related Work . 12
2.3 Validation Metrics . 18

3 Probabilistic Grammatical Evolution 22
3.1 Representation and Mapping . 22
3.2 Co-evolutionary Approach . 25

4 Probabilistic Structured Grammatical Evolution 29
4.1 Representation and Mapping . 29
4.2 Co-evolutionary Approach . 33

5 Validation 36
5.1 Performance Analysis . 36
5.2 The Usefulness of Grammars . 44
5.3 Representation Analysis . 54

6 Conclusion 63
6.1 Future Work . 64

xi

This page is intentionally left blank.

Acronyms

πGE Position Independent Grammatical Evolution. 12, 14

(GE)2 Grammatical Evolution by Grammatical Evolution. 14

ADF Automatically Defined Functions. 9

AI Artificial Intelligence. 5

CDT Conditional Dependency Tree. 13

CFG Context-Free Grammar. 1, 10, 11

CFG-GP Context-Free Grammar Genetic Programming. 1, 9, 10

Co-PGE Co-evolutionary Probabilistic Grammatical Evolution. iii, 3, 22, 25, 34, 36,
40–43, 45, 51–54, 63, 64

Co-PSGE Co-evolutionary Probabilistic Structured Grammatical Evolution. iii, 3, 33,
36, 40–43, 45, 51–54, 63, 64

DSGE Dynamic Structured Grammatical Evolution. 14, 15

EA Evolutionary Algorithm. 1, 5, 6, 8

EC Evolutionary Computation. 5

EDA Estimation Distribution Algorithm. 13

GE Grammatical Evolution. iii, 1, 2, 9–15, 19, 22, 23, 25, 29, 36, 40–43, 49, 51–56, 58–60,
63, 64

GP Genetic Programming. iii, 1, 8–11, 13, 15, 20, 37, 44, 63

mGGA meta-Grammar Genetic Algorithm. 14

MI Mutation Innovation. 18, 19, 54, 55, 59, 60

PCFG Probabilistic Context-Free Grammar. iii, 2, 3, 13, 22, 23, 25, 26, 29, 30, 32–34,
44, 45, 47, 51, 55, 56, 60, 63, 64

PGE Probabilistic Grammatical Evolution. iii, 2, 22, 25, 26, 29, 30, 32, 36, 40–45, 49–60,
63, 64

PI Grow Position Independent Grow. 14

PMBGE Probabilistic Model Building Grammatical Evolution. 13

PSGE Probabilistic Structured Grammatical Evolution. iii, 2, 25, 29, 32, 33, 36, 40–44,
51–60, 63, 64

xiii

Chapter 0

PTC2 Probabilistic Tree Creation 2. 14

RRSE Root Relative Squared Error. 36

SGE Structured Grammatical Evolution. iii, 2, 3, 12–15, 17, 29, 30, 33, 36, 40–43, 51–54,
56–60, 63, 64

TAG Tree-Adjunct Grammar. 13

TAGE Tree-Adjunct Grammatical Evolution. 13

xiv

This page is intentionally left blank.

List of Figures

2.1 Example of one-point crossover generating two offspring. 7
2.2 Example of bitwise mutation. 8
2.3 Example of syntax tree. 8
2.4 Example of sub-tree crossover generating one offspring. 10
2.5 Example of sub-tree mutation. 10
2.6 Example of representation of individuals. 11
2.7 Example of the genotype-phenotype mapping of GE. 12
2.8 Example of a SGE genotype . 15
2.9 Example of SGE’s crossover between two individuals, generating one offspring. 18
2.10 Example of SGE’s mutation on two codons of the genotype. 18

3.1 Example of genotype-phenotype mapping with PCFG. 23
3.2 Example of grammar update in PGE. 25
3.3 Example of Co-PGE individual. 26
3.4 Example of grammar mutation in Co-PGE 27

4.1 Example of the genotype-phenotype mapping of PSGE with a PCFG. . . . 32
4.2 Example of PSGE’s mutation on one codon of the genotype. 33

5.1 The Santa Fe trail. 39
5.2 Performance results for the Quartic Polynomial. Results are the mean best

fitness of 100 runs. 41
5.3 Performance results for the Pagie Polynomial. Results are the mean best

fitness of 100 runs. 42
5.4 Performance results for the Boston Boston Housing problem. Results are

the mean best fitness of 100 runs. 42
5.5 Performance results for the 5-Bit Even Parity problem. Results are the

mean best fitness of 100 runs. 43
5.6 Performance results for the 11-bit Boolean Multiplexer problem. Results

are the mean best fitness of 100 runs. 43
5.7 Performance results for the Santa Fe Artificial Ant problem. Results are the

mean best fitness of 100 runs. 44
5.8 Evolution of grammar probabilities of non-terminals used for the Quartic

Polynomial. Results are averages of 100 runs. 45
5.9 Evolution of grammar probabilities of non-terminals used for the Pagie Poly-

nomial. Results are averages of 100 runs. 46
5.10 Evolution of grammar probabilities of non-terminals used for the Boston

Housing. Results are averages of 100 runs. 47
5.11 Evolution of grammar probabilities of non-terminals used for the 5-bit Par-

ity. Results are averages of 100 runs. 48
5.12 Evolution of grammar probabilities of non-terminals used for the 11-bit Mul-

tiplexer. Results are averages of 100 runs. 49

xvi

List of Figures

5.13 Evolution of grammar probabilities of non-terminals used for the Santa Fe
Ant Trail. Results are averages of 100 runs. 50

5.14 Evolution of the non-terminal < expr > of the Pagie Polynomial, using
different methods. Results are averages of 100 runs. 51

5.15 Evolution of the non-terminal < var > of the Boston Housing problem,
using different methods. Results are averages of 100 runs. 52

5.16 Evolution of the non-terminal < B > of the 5-bit Parity problem, using
different methods. Results are averages of 100 runs. 53

5.17 Distribution of the phenotypic distances between an original solution and
mutants iteratively generated over a random walk with 20 steps, using GE.
Results are averages of 10000 runs. 55

5.18 Distribution of the phenotypic distances between an original solution and
mutants iteratively generated over a random walk with 20 steps, using PGE.
Results are averages of 10000 runs. 56

5.19 Distribution of the phenotypic distances between an original solution and
mutants iteratively generated over a random walk with 20 steps, using SGE.
Results are averages of 10000 runs. 57

5.20 Distribution of the phenotypic distances between an original solution and
mutants iteratively generated over a random walk with 20 steps, using
PSGE. Results are averages of 10000 runs. 57

5.21 Evolution of MI over a random walk with 20 steps, composed just by effective
mutations (MI > 0). Results are averages of 10000 runs. 60

xvii

This page is intentionally left blank.

List of Tables

2.1 SGE genotype-phenotype mapping example. 16

5.1 Parameters used in the experimental analysis for GE, PGE, Co-PGE, SGE,
PSGE, and Co-PSGE. 36

5.2 Results of the Mann-Whitney post-hoc statistical tests between the proposed
methods and GE. Bonferroni correction is used and the significance level α
= 0.05 is considered. Values in bold mean that the proposed method is
statistically better than GE. 40

5.3 Results of the Mann-Whitney post-hoc statistical tests between the proposed
methods and SGE. Bonferroni correction is used and the significance level
α = 0.05 is considered. Values in bold mean that the proposed method is
statistically better than SGE. 40

xix

This page is intentionally left blank.

Chapter 1

Introduction

Evolutionary Algorithms (EAs) is the name given to a set of stochastic search proce-
dures that are loosely inspired by the principles of natural selection and genetics. These
methods iteratively improve a set of candidate solutions, usually referred to as the pop-
ulation, guided by an objective function. The improvement is obtained by selecting the
most promising solutions (taking into account the objective function), and applying some
stochastic variations using operators similar to mutations and recombinations that take
place in biological reproduction. Individuals with higher fitness are more likely to survive
and reproduce. The application of these elements is repeated for several generations and
it is expected that, over time, the quality of individuals improves.

Genetic Programming (GP) [2] is a branch of EAs used for the automatic evolution of
programs. Over the years many variants of GP have been proposed, namely concerned with
how individuals (i.e., computer programs) are represented. Some of these variants make
use of grammars to enforce syntactic constraints on the individual solutions. The most well
known grammar-based GP approaches are Context-Free Grammar Genetic Programming
(CFG-GP), introduced by Whigham [7], and Grammatical Evolution (GE) introduced by
Ryan et al. [1, 8]. The main distinction between the two approaches is the representation
of the individual’s solution in the search space. CFG-GP uses a derivation-tree based
representation, and the mapping is made by reading the terminal symbols (tree leaves),
starting from the left leaf to the right. In GE the individuals are represented as a variable-
length string of integers (i.e., the genotype), which are mapped into the solution of the
problem (i.e., phenotype). The mapping resorts to a Context-Free Grammar (CFG) in the
genotype-phenotype mapping to specify the syntax and search space of the solutions. Each
value of the genotype (i.e., codon) is used to choose a production rule of the grammar until
it forms a valid program.

GE is one of the most widely used GP variants, but it presents some problems, namely low
locality and high redundancy [3, 4]. The redundancy corresponds to the existence of several
genotypes that represent the same phenotype and the locality describes how changes in
the genotype affect the phenotype. GE suffers from low locality because small changes in
the genotype often cause large changes in the phenotype. This causes exploitation to be
exchanged for exploration, which can lead to a behaviour similar to random search [9].

To overcome some of the main criticisms of GE, numerous methods have been proposed
in the literature. Most of these methods perform changes in grammars [5, 10, 11, 12],
representation of individuals [13, 14, 15, 16, 17, 18] or population initialization [19, 20, 21,
22, 23].

1

Chapter 1

One of the approaches that has proven to be effective in addressing the locality and re-
dundancy issues of GE is Structured Grammatical Evolution (SGE) [6, 24]. SGE uses
dynamic lists of ordered integers as genotype of individuals, with one list for each non-
terminal of the grammar used to perform the mapping. Each value in the list (i.e., codon)
represents which production rule to choose from the respective non-terminal. This repre-
sentation allows genotypic changes to not affect the production rules chosen by the other
non-terminals, resulting in a higher locality and lower redundancy, while achieving a better
performance in fewer generations [16, 25].

1.1 Motivation

When one wants to apply GE to a problem, it is necessary to design a grammar and
the fitness function to evaluate the solutions. The choice of grammar has a big impact
on the algorithm’s behaviour, because it constrains the search space of possible solutions
by restricting it to its syntax [5]. The motivation for this work arose in the interest of
creating a probabilistic version of GE that throughout the evolutionary process would
conduct a biased exploration of the search space, adjusting the weights of each symbol of
the grammar.

We hypothesise that a biased grammar may serve a purpose other than simply guide the
evolution. By analysing the probabilities assigned to each production rule of an evolved
grammar for a specific problem one could potentially have a better comprehension of the
problem, as well as serve as a blueprint for generating individuals with better fitness in
fewer generations. It would also be interesting to know if a grammar, resulting from the
evolution of a population within a specific problem, could be used in other problems of the
same family.

1.2 Contributions

This work resulted in four different contributions, which resort to a Probabilistic Context-
Free Grammar (PCFG) to perform the mapping between the genotype and phenotype.
The novelty of these algorithms lies in the new representation introduced and in the way
the probabilities of the grammar evolves over generations. We start by proposing two
variants of GE which were subsequently adapted to SGE, creating two more new methods.
The main contributions can be summarised as follows:

• Probabilistic Grammatical Evolution (PGE) is a new GE variant in which at the
end of each generation the probabilities of the PCFG are updated based on the
phenotype of a selected individual and a learning factor. The updated grammar is
used to map the individuals of the next generation. This method was published and
presented at EuroGP 2021 [18], one of the most prestigious conferences from the
Genetic Programming field. We also have the source code of this method publicly
available on GitHub1.

• Probabilistic Structured Grammatical Evolution (PSGE) is a variant of SGE, that
combines the representation of individuals and the mapping of SGE and PGE, using
the same probability update mechanism introduced.

1https://github.com/jessicamegane/pge

2

https://github.com/jessicamegane/pge

Introduction

• Co-evolutionary Probabilistic Grammatical Evolution (Co-PGE) is a method in which
each individual co-evolve a PCFG. In the initialization, each individual is constituted
by its genotype and a PCFG with each production having equal probability of be-
ing chosen. At each generation individuals suffer variation as well as their grammar
which can be mutated to change the probabilities of each derivation option.

• Co-evolutionary Probabilistic Structured Grammatical Evolution (Co-PSGE) is a
variant of Co-PGE, that uses the same mechanism of co-evolution proposed, adapted
to the representation of individuals used by SGE.

All methods are evaluated in terms of performance, locality and redundancy, following the
frameworks proposed by Whigham et al. [9], Raidl et al. [26], and Lourenço et al. [16].
Afterwards, an analysis of the evolution of probabilities in different problems is performed.

1.3 Structure

The remainder of this thesis is structured as follows: Chapter 2 presents the background
necessary to understand the work presented, introducing the basics of Evolutionary Com-
putation and GE, as well as related work. Furthermore, validation metrics are also pre-
sented. Chapter 3 and 4 present the four proposed methods, detailing the representation
and mapping methods used by each. Chapter 5 details the experimentation framework
used, as well as the experimental results regarding performance, locality and redundancy.
Additionally, an analysis of the evolution of the probabilities of the grammars for the dif-
ferent problems is performed. Chapter 6 gathers the main conclusions and provides some
insights regarding future work.

3

This page is intentionally left blank.

Chapter 2

Background

2.1 Evolutionary Computation

Evolutionary Computation (EC) is an Artificial Intelligence (AI) branch that is inspired by
the biological processes of natural evolution. The analogy followed is that evolution starts
with a population of individuals with each individual representing a candidate solution
and having different capabilities of survival and reproduction. To measure the quality of
the solutions, each individual is evaluated with a fitness function, specific to the domain
problem. Individuals with better fitness have more chances for survival and are the most
suited to breed and create the next generation.

2.1.1 Evolutionary Algorithms

Evolutionary Algorithms (EAs) are metaheuristic algorithms driven by an objective func-
tion that follows a trial-and-error approach to problem-solving. The goal is to explore
possible solutions in the search space in a stochastic way and find the best solution possi-
ble to the problem at hand. Although EAs do not guarantee that they will find the best
solution, they can find near-optimal solutions to complex problems.

Darwin’s theory of evolution [27] explains the differences between individuals in the same
population as a result of natural selection, where the most capable individuals survive
through competition between individuals and genetic changes, such as mutation and crossover.
These processes have been adapted to computational models called EAs, to simulate the
natural behavior of evolution. Alg. 1 shows the main structure of an EA.

The algorithm begins by generating the initial population of individuals (i.e., candidate
solutions). Each individual’s genetic representation is randomly generated and consists of
a collection of codons that form the genotype. The genotype is mapped into the phenotype
which represents a possible solution to the problem at hand. The choice of representation
is directly linked to the search space. Different EAs can have different genotypic represen-
tations, such as binary strings or real values strings.

To assess the performance of each individual on the given problem it is necessary to design
a fitness function. This function plays an important role as it evaluates quantitatively
the quality of the solutions. The fitness value determines how close the solution is to the
objective and is used to compare individuals. Typically, if the genotype does not provide
a valid solution to the problem, the fitness function offer a penalty in the quality of the

5

Chapter 2

Algorithm 1 Simple Evolutionary Algorithm
1: procedure main(population_size, prob_crossover, prob_mutation,

max_generations)
2: population = initialize_population(population_size)
3: generation = 0
4: while generation < max_generations do
5: evaluate_population(population)
6: new_population = []
7: while size(new_population) < population_size do
8: ind = select_individual(population)
9: if random() < prob_mutation then

10: ind = mutate(ind)
11: end if
12: if random() < prob_crossover then
13: ind2 = select_individual(population)
14: ind = crossover(ind, ind2)
15: end if
16: new_population.append(ind)
17: end while
18: population = new_population
19: generation += 1
20: end while
21: return best_individual(population)
22: end procedure

individual.

To introduce diversity in the population, to escape from local optima, and explore the
search space, EAs adapted biological evolutionary processes, such as selection, crossover,
and mutation.

It is possible to divide the selection process into parent selection and survivor selection.
Parent selection is used to choose individuals to reproduce, generating new individuals for
the next generation. This is a stochastic and fitness-biased strategy since individuals with
better fitness are more likely to be chosen, but it does not prevent the selection of worse
individuals, making it more likely that the offspring will have good characteristics in the
genotype. The most used selection methods are the tournament selection and roulette
wheel [28]. In tournament selection (Alg. 2), a sample of individuals is randomly picked
from the population, and the individual with the highest fitness is selected. In the roulette
wheel (Alg. 3), each individual has a probability of being selected proportional to his
fitness.

Algorithm 2 Tournament Selection Pseudo-code
1: procedure tournamentSelection(population, tournament_size)
2: tournament_pool = random(population, tournament_size)
3: sort(tournament_pool)
4: return tournament_pool[0]
5: end procedure

Survivor selection occurs after the offspring is generated. This is the method used to
choose which individuals to keep for the next generation. Although the selection can be

6

Background

Algorithm 3 Roulette Wheel Selection Pseudo-code
1: procedure rouletteSelection(population)
2: sum = 0
3: cumulative_sum = 0
4: for individual in population do
5: sum = sum + individual.fitness
6: end for
7: for individual in population do
8: individual.probability = cumulative_sum + individual.fitness

sum
9: cumulative_sum = individual.probability

10: end for
11: r = random(0,1)
12: for individual in population do
13: if individual.probability > r then
14: return individual
15: end if
16: end for
17: end procedure

made from various criteria, the most used are based on fitness or age [28]. A fitness-based
approach is elitism, which passes a certain number of the best individuals to the next
generation, allowing the best solutions not to be lost and increasing the chances of good
features appearing in the offspring in the following generations. In the age-based approach,
each individual has a maximum limit of generations to exist. This method does not take
into account the value of fitness, so the individual can be eliminated even if he has higher
fitness.

The individuals chosen by the selection method are used to create descendants and/or mu-
tate. One of the variation operators is crossover. In crossover we take evolved individuals,
called parents, and their genetic material is exchanged, taking into account one or more
random points of the genotype [28]. The crossover can produce one or two children, but
because it is stochastic, if the execution of crossover is repeated with the same parents
several times, it does not generate the same offspring. The objective of the crossover is to
try to pass the best features, i.e., codons, to the offspring. Fig. 2.1 shows an example of
one-point crossover on binary genotypes, producing two offspring.

Figure 2.1: Example of one-point crossover generating two offspring.

The mutation operator is applied to an individual and causes changes directly to the
genotype, introducing new genetic material. There are several types of mutation and these
also vary according to the representation of the genotype. The mutation most used for
binary strings is the bitwise mutation [28]. In this type of mutation, one or more codons
are randomly chosen to flip the bit. An example of bitwise mutation is represented in Fig.
2.2, where only one codon with value 0 was chosen to mutate, and changed to 1.

7

Chapter 2

Figure 2.2: Example of bitwise mutation.

Both mutation and crossover have a probability of application associated. A random
number is generated, and if it is smaller than the probability, the mutation or crossover
occurs. The probability of mutation is usually a low value (ranging from 1% to 10%), since
it is applied to each gene of the genotype, and the probability of crossover is usually a high
value (ranging from 80% to 100%) since it helps in the exploitation of solutions.

The algorithm is repeated until the number of generations previously established has been
reached, and the individual with the best fitness is chosen as the solution.

2.1.2 Genetic Programming

Genetic Programming (GP) [2] is an EA with a particular way of representing the individ-
uals, which is syntax trees. This type of algorithm allows computers to evolve programs
to solve problems without the need to program the solution explicitly.

As in EAs, the algorithm is based on the theory of evolution, in which a population
is initially generated to create viable solutions to a given problem, represented by the
individuals of the population. In GP, the genotype of the individuals is a syntax tree
that represents a computer program. The tree nodes represent functions and the leaves
represent constants, also called terminals. The functions and terminals used are defined
according to the domain of the problem. An example of a GP tree for the function set
F = {+,−, ∗, /} and the terminal set T = {x, y, 1} is depicted in Fig. 2.3.

Figure 2.3: Example of syntax tree.

The first startup methods for individuals that have appeared in the literature are the
full and the grow methods. First, a depth limit must be defined. This value defines the
maximum size of the branches, i.e., the maximum number of edges possible to reach from
the root of the tree to any node. The full method (Alg. 4) generates whole trees, and
the nodes are chosen randomly within the set of functions until the depth limit is reached.
This way, all the leaves have the same depth. The grow method (Alg. 5) allows different
distances to the leaves since the nodes are chosen within the set of functions and terminals.

The most popular method of generating trees is the ramped half-and-half [29, 30], which
is a combination of full and grow approaches. Usually, a depth limit range is used, and for
each value, half of the initial population is created using the full method and half using
the grow method, creating different tree sizes.

The fitness of the individuals is usually the error produced by the program in a set of

8

Background

Algorithm 4 Full Method Pseudo-code
1: procedure fullMethod(function_set, terminal_set, depth_limit)
2: if depth_limit == 0 or random() < |terminal_set|

|terminal_set|+|function_set| then
3: expr = choose_random(terminal_set)
4: else
5: func = choose_random(function_set)
6: expr = (func)
7: for i = 1 in range(arity(func)) do
8: expr.append(fullMethod(function_set, terminal_set, depth_limit - 1))
9: end for

10: end if
11: return expr
12: end procedure

Algorithm 5 Grow Method Pseudo-code
1: procedure growMethod(function_set, terminal_set, depth_limit)
2: if depth_limit == 0 then
3: expr = choose_random(terminal_set)
4: else
5: func = choose_random(function_set)
6: expr = (func)
7: for i = 1 in range(arity(func)) do
8: expr.append(growMethod(function_set, terminal_set, depth_limit - 1))
9: end for

10: end if
11: return expr
12: end procedure

examples. The best programs are those with fitness closest to zero.

Because the representation is a syntax tree, genetic operators are implemented differently.
To perform the crossover, two nodes are randomly chosen from each parent. The descen-
dant is generated by merging a sub-tree of each parent. In Fig. 2.4 it is visible an example
of sub-tree crossover. We can notice that a sub-tree has root in one of the chosen nodes,
and the other sub-tree has root in the main tree root. Although it is possible to generate
two children, the most common in GP is to generate only one [29].

The mutation is simulated by randomly choosing a point from the individual’s tree and
changing the sub-tree whose root is the selected point, for a new randomly generated one.
Fig. 2.5 shows an example of a sub-tree mutation.

Two main problems of GP are modularity [29, 31, 32] and constraints [29]. To help with
these issues, some GP variants and improvements have been introduced over the years.
Automatically Defined Functions (ADF) was proposed by Koza in [33] and is the most
popular modularization method used [29, 31]. To incorporate syntactic constraints, some
methods use grammars in the representation of individuals.

The most well known grammar-based GP approaches are Context-Free Grammar Genetic
Programming (CFG-GP), introduced by Whigham [7], and Grammatical Evolution (GE)
introduced by Ryan et al. [1, 8, 34]. The main distinction between the two approaches
is the representation of the individual’s solution (genotype) in the search space. Fig. 2.6
shows the representation of the same individual in both approaches, using Grammar 2.1.

9

Chapter 2

Figure 2.4: Example of sub-tree crossover generating one offspring.

Figure 2.5: Example of sub-tree mutation.

CFG-GP uses a derivation-tree based representation (Fig. 2.6a), and the mapping is made
by reading the terminal symbols (tree leaves), starting from the left leaf to the right. In GE
there is a distinction in the individual’s representation. The individuals are represented as
a variable-length string of integers (i.e., genotype), which are mapped into the solution of
the problem (i.e., phenotype) (Fig. 2.6b). In this example, it was not necessary to use all
codons of the genotype to generate a valid individual. The mapping between the genotype
and the phenotype is performed through a Context-Free Grammar (CFG).

There is some debate in the literature regarding the performance of GE compared to other
grammar-based variants [9], however GE has become one of the most famous GP variants.

2.1.3 Grammatical Evolution

GE [1, 8, 34] is a grammar-based GP approach where the individuals are presented as a
variable length string of integers. To create an executable program, the genotype (i.e., the

10

Background

〈expr〉 ::= 〈expr〉 〈op〉 〈expr〉 | 〈var〉

〈op〉 ::= + | -

〈var〉 ::= x | y | 1.0

Grammar 2.1: Example of Context-Free Grammar.

(a) CFG-GP

Genotype: [62, 33, 54, 88, 13, 142, 25, 202]

<expr>→<expr><op><expr> 62mod2 = 0

<expr><op><expr>→<var><op><expr> 33mod2 = 1

<var><op><expr>→ x<op><expr> 54mod3 = 0

x<op><expr>→ x+<expr> 88mod2 = 0

x+<expr>→ x+<var> 13mod2 = 1

x+<var>→ x+1.0 142mod3 = 1

Phenotype: x+ 1.0

(b) GE

Figure 2.6: Example of representation of individuals.

string of integers) is mapped to the phenotype (i.e., program) via the productions rules
defined in a CFG. A grammar is a tuple G = (NT, T, S, P) where NT and T represent the
non-empty set of Non-Terminal (NT) and Terminal (T) symbols, S is an element of NT
called the axiom, in which the derivation sequences start, and P is the set of production
rules. The rules in P are in the form A ::= α, with A ∈ NT and α ∈ (NT ∪ T)∗. The NT
and T sets are disjoint. Each grammar defines a language L(G) = {w : S

∗⇒ w, w ∈ T ∗},
that is the set of all sequences of terminal symbols that can be derived from the axiom. ∗
represents the unary operator Kleene star.

Similar to how genetics works in nature, the representation of the individual is separated
into genotype and phenotype. This approach allows genetic operators to be applied directly
to the genotype. The genotype-phenotype mapping is the key issue in GE, and it is
performed in several successive steps. In concrete, to select which derivation rule should
be selected to replace a non-terminal, the mapping relies on the modulo operator (mod).
An example of this process is shown in Fig. 2.7, with the left panel showing an example of
grammar (Fig. 2.7a), and the right panel showing the mapping process (Fig. 2.7b), using
the genotype and grammar example.

The genotype is composed of integers values (i.e., codons) randomly generated in the
interval [0, 255]. The mapping starts with the axiom, in this case, < expr >. Since this
non-terminal has two possible expansion rules available, we need to select which one will
be used. We start by taking the first unused value of the genotype, which is 54, and divide
it by the number of possible options. The remainder of this operation indicates the option
that should be used. In our example, 54mod2 = 0, which results in the first production
being selected. This process is performed until there are no more non-terminal symbols to
expand or there are no more integers to read from the genotype.

In this last case and if we still have non-terminals to expand, a wrapping mechanism
can be used, where the genotype will be re-used until it generates a valid individual or
the predefined number of wraps is over. If after all the wraps we still have not mapped

11

Chapter 2

<expr> ::=<expr><op><expr>
|<var>

<op> ::= +

| −
| ∗
| /

<var> ::= x
| y
| 1.0

(a) Example of Grammar.

Genotype
[54, 7, 83, 237, 71, 123, 67, 142, 25, 195, 202, 153]

<start>→<expr>
<expr>→<expr><op><expr> 54mod2 = 0

<expr><op><expr>→<var><op><expr> 7mod2 = 1

<var><op><expr>→ 1.0<op><expr> 83mod3 = 2

1.0<op><expr>→ 1.0 -<expr> 237mod4 = 1

1.0 -<expr>→ 1.0 -<var> 71mod2 = 1

1.0 -<var>→ 1.0 - x 123mod3 = 0

Phenotype: 1.0− x

(b) Genotype-phenotype mapping.

Figure 2.7: Example of the genotype-phenotype mapping of GE.

all the non-terminals, the mapping process stops, and the individual will be considered
invalid. The phenotype of each individual is evaluated with the fitness function and then
the population goes through the selection mechanisms.

2.2 Related Work

In this section are presented some variants of GE and their improvements. Despite its
popularity, GE has been criticized for having high redundancy [4] and low locality [3]. A
representation has high redundancy when several different genotypes correspond to one
phenotype. Locality is concerned with how changes in the genotype are reflected on the
phenotype. These criticisms have triggered many researchers into looking how GE could
be improved [6, 13, 15, 17, 35].

2.2.1 Representation Variants

O’Neill et al. [13] proposed Position Independent Grammatical Evolution (πGE), intro-
ducing a different mapping mechanism that removes the positional dependency that exists
in GE. In πGE each codon is composed of two values (nont, rule), where nont is used to
select the next non-terminal to be expanded and the rule selects which production rule
should be applied from the selected non-terminal. In Fagan et al. [36] several different
mapping mechanisms were compared, and πGE showed better performance over GE, with
statistical differences.

Another attempt to make GE position independent is Chorus [17]. In this variant, each
gene encodes a specific grammar production rule, not taking into consideration the position.
This proposal did not show significant differences when comparing with standard GE.

Structured Grammatical Evolution (SGE) [6] is a recent proposal that tackles the locality
and redundancy issues of GE [16], at the same time achieving better performance results
[37]. SGE proposes an one-to-one mapping between the genotype and the non-terminal
symbols of the grammar. Each position in the genotype of SGE is a list of integers as-
sociated with a non-terminal, where each element of this list is used to select the next
derivation rule of the respective non-terminal. This genotype structure, ensures that the
modification of a codon does not affect the chosen productions of other non-terminals, re-
ducing the overall changes that can occur at the phenotypical level, which results in higher

12

Background

locality.

In [37] different grammar-based GP approaches were compared, and the authors showed
that SGE achieved a good performance when compared with several grammar-based GP
representations. These results were in line with Fagan et al. [36], which showed that differ-
ent genotype-phenotype mapping mechanisms can improve the performance of grammar-
based GP.

Some GP probabilistic methods have been proposed to try to understand more about the
distribution of fitter individuals and have been effective in solving complex problems [38].
Despite its potential, fewer attempts have been made to use probabilities in GE.

Kim et al. [14] implemented a Probabilistic Context-Free Grammar (PCFG) to do the
mapping process of GE, where the genotype of the individual is a vector of probabilities
used to choose the productions rules. This approach also implements Estimation Distri-
bution Algorithm (EDA) [39], a probabilistic technique that replaces the mutation and
crossover operators, by sampling the probability distribution of the best individuals, to
generate the new population, each generation. The probabilities start all equal and are
updated each generation, based on the frequency of the chosen rules of the individuals
with higher fitness. The proposed approach had a similar performance when compared
with GE.

Later, Kim et al. [15] proposed Probabilistic Model Building Grammatical Evolution
(PMBGE), which utilises a Conditional Dependency Tree (CDT) that represents the re-
lationships between production rules used to calculate the new probabilities. Similar to
[14], the EDA mechanism was implemented instead of the genetic operators. The results
showed no statistical differences between GE and the proposed approach.

2.2.2 Improvements to GE

To address some of the main criticisms of GE, several improvements have been proposed
in the literature related to the population initialisation [19, 20, 21, 22, 23], grammar design
[5, 10, 11, 12, 40] and the representation of individuals [13, 14, 15, 16, 17, 18, 37].

The main method of population initialisation used in GE is random initialisation that
consists of generating random genotypes with a fixed size and then perform the mapping.
Although commonly used, this has been criticized for creating many invalid individuals
[11].

One of the first improvements that emerged was the adaptation of ramped half-and-half
[30] to GE, also referred to as sensible initialisation [20]. The adaptation was done using
the GE grammar to choose the branches. The expansion is made from the leftmost leaf
to the right. Despite having shown that it produces dense trees for some problems (some
programs have asymmetric shapes, which is difficult to achieve with dense trees), this
approach is the most recommended in the literature [34].

The Tree-Adjunct Grammatical Evolution (TAGE) [23] uses a Tree-Adjunct Grammar
(TAG) [41] so that the language has an influence on the algorithm. A TAG is defined by a
quintuple (Σ, NT, I, A, S) where Σ is a finite set of terminal symbols, NT is a finite set of
non-terminal symbols with Σ∩NT = ∅, S is the start symbol with S ∈ NT , I is the finite
set of finite trees called initial trees and A is the finite set of finite trees called auxiliary
trees. The initial and auxiliary trees interior nodes are labeled by non-terminal symbols,
and the frontier nodes labeled by terminal and non-terminal symbols. The non-terminal
symbols on the frontier of the trees are marked for substitution, except the foot node in

13

Chapter 2

the auxiliary trees set. The individual’s derivation tree is made up of several elementary
trees. A better explanation of this algorithm can be found in the literature [23, 41]. This
approach did not show significant differences in relation to GE, however in some problems
it generated better solutions.

Position Independent Grow (PI Grow) [21] is an initialisation method inspired by πGE
[13] mapping. This process uses a queue, in order to randomly choose the non-terminal
symbols to be expanded. This approach showed to remove some bias that is present in
sensible initialisation and that start with fewer invalid individuals [19, 21].

The Probabilistic Tree Creation 2 (PTC2) was initially proposed by Sean Luke [22]. This
approach takes into account tree size rather than depth, which has proved to be an ad-
vantage in the creation of individuals [19]. Another advantage of these methods is that
their computational complexity is relatively low. This algorithm keeps a list of the non-
terminal symbols in the parse tree and randomly chooses which to expand until the tree
size limit is reached. In [11] Harper compared different initialisation methods and showed
that PTC2 achieved better performance in some problems, when comparing with Sensible
Initialisation.

The choice of the grammar used in the problems showed to improve the performance, at
the level of the search space used by the solutions [5, 42]. Because it has a big impact
on the size of the solutions, some grammar design alternatives have been studied. Two
methods that have shown significant improvements in the performance of GE are the use
of recursively balanced grammars [5, 11] and the reduction of non-terminal symbols [5, 12].

The use of recursive grammars has been shown to generate many invalid individuals [11].
The recursively balanced grammars [5] add for each recursive production a non recursive
production, in order to increase the probability of the non recursive productions being
chosen. Although it has shown improvements over classic grammars, this results in more
individuals consisting only of a non-terminal symbol [5].

An approach used to reduce the non-terminal symbols is to replace them by all their
productions [12]. This method had a slight increase in performance, however it has the
disadvantage of generating very complex and difficult to read grammars.

Grammatical Evolution by Grammatical Evolution ((GE)2) [10] is an approach in which
there is co-evolution of grammar and genetic code. The method uses two distinct grammars,
the universal grammar and the solution grammar. The universal grammar dictates the
structure of the solution grammar, that is used to map the individuals. This method
has shown to be effective in evolving biases towards some non-terminal symbols. Later,
was implemented into a new algorithm, meta-Grammar Genetic Algorithm (mGGA) [40],
which obtained performance improvements.

2.2.3 Structured Grammatical Evolution

In this section we will present the SGE algorithm in detail, since it plays an essential role
in the development of the proposed work. The Dynamic Structured Grammatical Evolu-
tion (DSGE) [6] was created to overcome some of the limitations presented by SGE [16].
Both versions were compared, and DSGE had equal or superior performance, statistically
validated, in all the problems studied. Thus, from now on we will refer to DSGE by SGE.

SGE [6] is an alternative genotypic representation to GE, which tackles its limitations,
resulting in higher locality and lower redundancy [16, 25]. In [37] different grammar-
based GP approaches were compared, and the authors showed that SGE achieved a good

14

Background

performance when compared with several grammar-based GP representations.

In SGE the genotype is a set of lists of ordered integers. Each list is associated to a
non-terminal symbol and each element of the list represents the index of a derivation rule
to be expanded to create the individual. An example of the genotype of an individual is
depicted in Fig. 2.8 using the grammar presented in Fig. 2.7a. All the elements of the list
are necessary to create the phenotype of the individual. In order to limit the size of the
solutions, a maximum tree-depth value is previously defined from which only non-recursive
productions can be chosen.

< expr > < op > < var >

[0, 1, 1] [1] [2, 0]

Figure 2.8: Example of a SGE genotype

The genotype is generated recursively, simulating the mapping into a phenotype until only
terminal symbols remain. The pseudocode for creating the genotype for an individual is
depicted in Algorithm 6. The algorithm receives as parameter the individual’s genotype
(which initially is empty), the non-terminal symbol to be expanded (which initially is the
axiom of the grammar), the depth value of the symbol to be expanded (which begins at
0), the maximum depth limit of the trees defined, and the grammar to be used.

Algorithm 6 Random Candidate Solution Generation
1: procedure createIndividual(genotype, symbol, current_depth,max_depth, grammar)
2: if current_depth > max_depth then
3: if is_recursive(symbol) then
4: selected_rule = generate_terminal_expansion(symbol, grammar)
5: end if
6: else
7: selected_rule = generate_expansion(symbol, grammar)
8: end if
9: if symbol in genotype then

10: genotype[symbol].append(selected_rule)
11: else
12: genotype[symbol] = [selected_rule]
13: end if
14: expansion_symbols = grammar[symbol][selected_rule]
15: for sym in expansion_symbols do
16: if not is_terminal(sym) then
17: createIndividual(genotype, sym, current_depth + 1, max_depth, grammar)
18: end if
19: end for
20: end procedure

The elements of the genotype (i.e., codons) are chosen randomly from among the avail-
able production rules of a certain non-terminal (Alg. 7). To avoid generating large so-
lutions, only non-recursive productions can be chosen when the maximum depth limit is
exceeded (Alg. 6 lines 2-5) using Alg. 8. After choosing the derivation rule, the codon
(selected_rule) is added to the list of the respective non-terminal present in the genotype
(Alg. 6 lines 9-13).

The mapping function (Alg. 9) is similar to the genotype initialisation function, and
the productions are expanded according to the codons of the genotype. The mapping is

15

Chapter 2

Algorithm 7 SGE function to select a expansion rule
1: procedure generate_expansion(symbol, grammar)
2: selected_rule = randint(0, len(grammar[symbol] - 1))
3: return selected_rule
4: end procedure

Algorithm 8 SGE function to select a non-recursive expansion
1: procedure generate_terminal_expansion(symbol, grammar)
2: non_rec = grammar.non_recursive(symbol)
3: selected_rule = choice(non_rec)
4: return selected_rule
5: end procedure

done by always expanding the leftmost non-terminal. The rule whose index is in the first
position of the list associated with the non-terminal to be expanded is chosen. As in the
initialisation, if the maximum depth limit has been reached, only non-recursive productions
can be selected.

Table 2.1: SGE genotype-phenotype mapping example.

Derivation Step Integers left
<expr> [[0,1,1],[1],[2,0]]
<expr><op><expr> [[1,1],[1],[2,0]]
<var><op><expr> [[1],[1],[2,0]]
1.0<op><expr> [[1],[1],[0]]
1.0-<expr> [[1],[],[0]]
1.0-<var> [[],[],[0]]
1.0-x [[],[],[]]

Table 2.1 shows an example of the mapping, using the example genotype of Fig. 2.8 and
the grammar of Fig. 2.7a. The mapping starts with the axiom of the grammar, in this
case < expr >, and is expanded to the production rule of index 0, since this is the first
codon in the list associated with the non-terminal < expr >. The index corresponds to
the production rule < expr >< op >< expr >, so the next token to expand is < expr >.
The next codon in the list is 1, it will be expanded to the respective rule, i.e., < var >.
Because this is the leftmost non-terminal, to expand < var > we have to take the first
element of this non-terminal list, which is 2. Index 2 corresponds to derivation rule 1.0,
and as this is a terminal symbol, it becomes definitive, moving on to the next non-terminal
< op >. The process is repeated until there are no more non-terminals to expand.

In case genotypic changes have occurred, and there are no more available integers in the
list of the non-terminal to be expanded, new codons are generated and added as needed
(Alg. 9, lines 9-16).

The crossover method applied in SGE uses two parents to generate the offspring. A binary
mask of the size of the number of lists of the genotype (the same number of non-terminals
of the grammar) is randomly generated. The genotype of the offspring is created according
to the values of the mask.

Fig. 2.9 shows an example of a crossover between two individuals (Fig. 2.9a), generating
one offspring. Fig. 2.9b shows the randomly generated mask for the procedure. In the
example shown, the descendant inherits the non-terminal < expr > list from the second

16

Background

Algorithm 9 SGE mapping function.
1: procedure mapping(genotype, positions_to_map, symbol, current_depth,max_depth, grammar)
2: phenotype = ""
3: if symbol not in positions_to_map then
4: positions_to_map[symbol] = 0
5: end if
6: if symbol not in genotype then
7: genotype[symbol] = []
8: end if
9: if positions_to_map[symbol] >= len(genotype[symbol]) then

10: if current_depth >= max_depth then
11: selected_rule = generate_terminal_expansion(symbol, grammar)
12: else
13: selected_rule = generate_expansion(symbol, grammar)
14: end if
15: genotype[symbol].append(selected_rule)
16: end if
17: gen_int = genotype[symbol][positions_to_map[symbol]]
18: expansion = grammar[symbol][gen_int]
19: positions_to_map[symbol] += 1
20: for sym in expansion do
21: if is_terminal(sym) then
22: phenotype += sym
23: else
24: phenotype += mapping(genotype, positions_to_map, sym, current_depth

+ 1, max_depth, grammar)
25: end if
26: end for
27: return phenotype
28: end procedure

17

Chapter 2

parent, and the remaining ones from the first. In case two descendants are generated, the
other would get the opposite lists.

Parent 1:
< expr > < op > < var >

[0, 1, 1] [1] [2, 0]

Parent 2:
< expr > < op > < var >

[0, 0, 0, 1, 1, 1] [2, 3] [2, 0, 1]

(a) Genotype before crossover.

Mask:
< expr > < op > < var >

1 0 0

Offspring:
< expr > < op > < var >

[0, 0, 0, 1, 1, 1] [1] [2, 0]

(b) Genotype after crossover.

Figure 2.9: Example of SGE’s crossover between two individuals, generating one offspring.

Unlike crossover, mutation occurs within genotype lists. Only lists that contain more than
one expansion possibility are considered. The values to be mutated are chosen randomly,
and are replaced by another valid possibility. Fig. 2.10 shows an example of a mutation
in an individual. Considering that the first element of the list of the non-terminal < op >,
and the second list element of the non-terminal < var > have been randomly selected,
these codons will be replaced by a valid option other than the original (Fig. 2.10b).

< expr > < op > < var >

[0, 1, 1] [1] [2, 0]

(a) Genotype before mutation.

< expr > < op > < var >

[0, 1, 1] [3] [2, 1]

(b) Genotype after mutation.

Figure 2.10: Example of SGE’s mutation on two codons of the genotype.

2.3 Validation Metrics

To effectively evaluate an algorithm, different metrics can be used. In this work we will
consider performance, locality, and redundancy as metrics to make a more complete anal-
ysis of the algorithms. The performance, allows us to compare algorithms based on the
fitness assigned to individuals, giving an overview of their behaviour in a given prob-
lem. The locality and redundancy metrics analyse the representation of individuals and
the genotype-phenotype mapping process along with the impact of genetic operators, to
examine the effectiveness of the evolutionary search.

Within the literature, different approaches have already been used to study locality and
redundancy, so the work done by Raidl et al. [26] and Lourenço et al. [16] will be fol-
lowed. To understand how these two metrics will be analysed, it is necessary to introduce
some concepts first. The phenotypic distance (i.e., the distance between two phenotypes),
dp, is calculated by recurring to the metric edit distance. This metric calculates the sim-
ilarity between two trees, i.e., the minimum number of operations required to turn one
tree into another. Different operations can be considered, such as insertion, deletion and
replacement, which are applied to the tree nodes.

Since locality and redundancy reflect the impact of genetic operators on the mapping
process, they are therefore studied based on the Mutation Innovation (MI) criteria [26].
The MI is calculated with the phenotypic distance before and after mutation occurs. This
variable allows the analysis of the frequency with which a mutation causes alterations in
the phenotype and its impact. Let x be a solution in the search space and xm the solution

18

Background

after applying mutation. Considering X and Xm the respective phenotypes, we can define
MI as:

MI = dp(X,Xm) (2.1)

2.3.1 Redundancy

The redundancy corresponds to the existence of several genotypes that can represent the
same phenotype. This is a phenomenon that can also be observed in nature through neutral
mutations, however in excess it can decrease the exploration of the search space, reducing
the efficiency of the algorithm. Past research shows that GE suffers from high redundancy
[4, 25].

Based on the definition, redundancy can be studied by analysing the proportion of non-
effective mutations (MI = 0).

2.3.2 Locality

Locality refers to how changes in genotype affect the phenotype. It is considered strong if
small changes in genotype result in small changes in the phenotype, resulting in a better
local search for solutions. It has been extensively studied in the literature that GE suffers
from low locality [3, 24, 25].

The analysis of the locality can be done by calculating the phenotypic distance between
a random individual and a individual resulting from a mutation that caused changes in
phenotype (MI > 0) [26].

2.3.3 Performance

The analysis of an algorithm can be evaluated with different metrics, depending on the
intended analysis. These metrics usually relate to the quality of the solutions (i.e., ef-
fectiveness) or speed of the algorithm (i.e., efficiency) [28]. Due to the stochasticity of
evolutionary algorithms, each experiment has to be repeated over several independent
runs, keeping the same parameters, and then make a statistical analysis of the results to
reject, or not, the null hypothesis. The type of statistical test performed depends on the
data used.

Depending on the desired metric, different values can be collected. Following we will show
some of the most commonly used measures. In the case of effectiveness, this can be studied
with the success rate, i.e., the percentage of runs in which the success criterion is achieved
is verified. This success criterion can be, for example, finding the solution to the problem
or when the fitness exceeds a defined value. Another measure of effectiveness, is to analyse
the best fitness ever at each generation of all runs, which can be useful especially when
the main interest is to obtain the best possible result. The same analysis can be done with
the worst fitness ever. The most used metric for comparing evolutionary algorithms is the
mean best fitness, in which the best fitness of each generation of all runs is averaged.

The design of the fitness function is important for the evolution of solutions, it varies
according to the problems, and can be designed with the objective of maximizing or min-
imizing the fitness of the solutions. Although it is possible to adapt the algorithms to

19

Chapter 2

real world problems, being only necessary to design the fitness function and, in the case of
grammar-based GP, the grammar, it is important to test the algorithms in known prob-
lems, with different degrees of difficulty to be able to evaluate their behaviour in different
known environments. McDermott et al. [43], made a collection of the most used prob-
lems by the GP community and their fitness functions, which covers problems of symbolic
regression, classification, model prediction and others.

20

This page is intentionally left blank.

Chapter 3

Probabilistic Grammatical Evolution

In this chapter two new probabilistic variants of Grammatical Evolution (GE) are pro-
posed, namely Probabilistic Grammatical Evolution (PGE) and Co-evolutionary Proba-
bilistic Grammatical Evolution (Co-PGE). The main distinction between these methods
and the original GE, is concerned with the representation of individuals and the mapping
method.

3.1 Representation and Mapping

PGE is the first representation and mapping mechanism proposal for GE. In PGE the
genotype-phenotype mapping is performed by using a Probabilistic Context-Free Grammar
(PCFG) and the genotype of individuals is a list of real values, where each value represents
the probability of choosing a certain derivation rule.

A PCFG is a quintuple PG = (NT, T, S, P, Probs) where NT and T represent the non-
empty set of Non-Terminal (NT) and Terminal (T) symbols, S is an element of NT called
the axiom, P is the set of production rules, and Probs is a set of probabilities associated
with each production rule.

The overall mapping procedure is shown in Alg. 10. The algorithm takes as argument the
genotype of the individual and the PCFG, and starts at the axiom of the grammar (Alg.
10, lines 2-3). One iteration is performed for each codon of the genotype (Alg. 10, line
4), which is used to choose the production rule to expand from the leftmost non-terminal.
The algorithm goes through the productions of the non-terminal, and checks to which rule
the codon corresponds (Alg. 10, lines 8-14). The process ends when the phenotype is valid
(i.e., only terminal symbols) (Alg. 10, lines 16-17) or when there are no more codons in
the genotype.

Fig. 3.1 shows an example of the application of the PGE mapping mechanism. The
panel on the left (Fig. 3.1a) shows a PCFG, where each derivation rule has a probability
associated. The set of non-terminals is composed of < expr >, < op > and < var >. The
right panel (Fig. 3.1b) shows how the mapping procedure works.

We start by taking the first value of the genotype, which is 0.2, and the axiom of the
grammar, < expr >, which has two possible rules for expansion. In the beginning of the
mapping process, all derivation options for each production rule have the same probability
of being selected. In the case of the axiom, we have two derivation options, each one
having a probability of 0.5 of being selected. Projecting the value of the codon on that

22

Probabilistic Grammatical Evolution

<expr> ::=<expr><op><expr> (0.5)

|<var> (0.5)

<op> ::= + (0.25)

| − (0.25)

| ∗ (0.25)

| / (0.25)

<var> ::= x (0.33)

| y (0.33)

| 1.0 (0.33)

(a) Example of a PCFG.

Genotype
[0.2, 0.8, 0.45, 0.62, 0.37, 0.19, 0.98]

<expr>→<expr><op><expr> (0.2)

<expr><op><expr>→<var><op><expr> (0.8)

<var><op><expr>→ y<op><expr> (0.45)

y<op><expr>→ y *<expr> (0.62)

y *<expr>→ y *<var> (0.37)

y *<var>→ y * x (0.19)

Phenotype: y ∗ x

(b) Genotype-phenotype mapping.

Figure 3.1: Example of genotype-phenotype mapping with PCFG.

scale, it would be in the first range (0.2 < 0.5), which results in the first rule being chosen
(< expr >< op >< expr >) to rewrite < expr >. The next symbol to expand is < expr >
because it is the leftmost non-terminal, and the codon to use is 0.8. As we have seen in
the previous expansion, there are two options available. Since 0.8 is in the second range,
the second production is chosen (< var >). This process is repeated until there are no
more non-terminals left to expand, or no more codons left in the genotype. When this last
situation occurs, we can use a wrapping mechanism similar to the standard GE, where
the genotype will be reused a certain number of times. If after the wrapping we still have
not mapped the individual completely, the mapping process stops, and the individual is
considered invalid.

Algorithm 10 Mapping with PCFG
1: procedure generateIndividual(genotype, grammar)
2: start = grammar.getStart()
3: phenotype = [start]
4: for codon in genotype do
5: symbol = phenotype.getNextNT()
6: productions = grammar.getRulesNT(symbol)
7: cum_prob = 0.0 . Cumulative Sum of Probabilities
8: for prod in productions do
9: cum_prob = cum_prob+ prod.getProb()

10: if codon ≤ cum_prob then
11: selected_rule = prod
12: break
13: end if
14: end for
15: phenotype.replace(symbol, selected_rule)
16: if phenotype.isValid() then
17: break
18: end if
19: end for
20: end procedure

Initially, all productions of the PCFG have the same probability of being chosen, however,
each generation, after evaluating the population, the probabilities are adjusted according

23

Chapter 3

to the productions used to generate the best individual of the current generation or the best
individual overall. Alternating between these two bests helps us to avoid using the same
individual in consecutive generations to adjust the probabilities of the PCFG, balancing
global exploration with local exploitation. Additionally, we use a learning factor to make
the transitions on the search space smoother.

To update the probabilities in the grammar, we use Alg. 11, where j is the number of
productions of a non-terminal symbol of the grammar, i is the index of the production
which probability is being updated and λ is the learning factor. All probabilities of the
productions of each non-terminal symbol are updated. If the production was used to
create the individual, the probability is increased (Alg. 11, line 5) else, if a production
is not present in the individual, then this value will be reduced (Alg. 11 line 7). The
min operator ensure that when we update the probabilities they are not greater than 1.
After updating the probabilities of the PCFG, it is used to update the phenotype of the
individuals for the next generation.

Algorithm 11 Probabilistic Grammatical Evolution
1: procedure updateProbabilities(individual, grammar)
2: counter = individual.getCounter()
3: for NT, productions in grammar do
4: for each production rule i of prods do
5: if counteri > 0 then
6: probi = min(probi + λ ∗ counteri∑j

k=1 counterk
, 1.0)

7: else
8: probi = probi − λ ∗ probi
9: end if

10: end for
11: while

∑j
k=1 probi 6= 1.0 do

12: extra = (1.0 -
∑j

k=1 probi) / j
13: for each production rule i of prods do
14: probi = probi + extra
15: end for
16: end while
17: end for
18: end procedure

After the update of the probabilities for each derivation rule, we make sure that the sum
of the probabilities of all derivation rules, for each non-terminal, is 1. If the sum surpasses
this value, the excess is proportionally subtracted from the derivation options for a non-
terminal. If the sum is smaller than one, the missing amount is added equally to the
production rules of the non-terminal.

We are going to use the example presented in Fig. 3.1, to show how the probabilities are
updated. On the left panel of Fig. 3.2 we can see the derivation tree of the individual used
(Fig. 3.2a) to update the probabilities of the PCFG on the right panel (Fig. 3.2b). The
learning factor used was λ = 0.01 (1%).

Looking at the derivation tree (Fig. 3.2a), we can see that the first derivation rule (<
expr >< op >< expr >) of the non-terminal < expr > was expanded once, and the second
derivation rule (< var >) was expanded twice. Using the Alg. 11, the new probability
for the first derivation option is, approximately, 0.503(3) (min(0.5 + 0.01 ∗ 1

3 , 1)), and
for the second rule, approximately, 0.506(6) (min(0.5 + 0.01 ∗ 2

3 , 1)). As the sum of the

24

Probabilistic Grammatical Evolution

(a) Derivation tree of the individual
used to update the PCFG.

New Grammar
<expr> ::=<expr><op><expr> (0.498)

|<var> (0.502)

<op> ::= + (0.247)

| − (0.247)

| ∗ (0.259)

| / (0.247)

<var> ::= x (0.336)

| y (0.336)

| 1.0 (0.328)

(b) Updated grammar.

Figure 3.2: Example of grammar update in PGE.

probabilities surpass 1, the excess ((0.506(6) + 0.503(3) − 1)/2 = 0.00495) is subtracted
from both probabilities and the value is rounded to 3 decimal places. Then we distribute
the excess for the derivations rules: the first rule is updated to 0.498 and the second rule
is updated to 0.502.

This process is applied to the other symbols. For the non-terminal < op > the rules +, −,
and / were never chosen so they will update equally to 0.2475 (0.25− 0.01 ∗ 0.25), and the
multiplication operator, ∗, was selected once, updating to 0.26 (min(0.25 + 0.01 ∗ 1

1 , 1)).
As the sum of the four probabilities surpasses one, the excess (0.0025) must be divided by
four and subtracted equally. The result is rounded, staying with 0.247 for the +, −, and
/ symbols, and 0.259 for the ∗ symbol.

The non-terminal< var > was expanded once for the terminal x and y, and never expanded
for the terminal 1.0. By applying the algorithm, the rules x and y should be updated to
0.335 (min(0.33 + 0.01 ∗ 1

2 , 1)) and the terminal 1.0 to 0.3267 (0.33− 0.01 ∗ 0.33, 0), being
the sum of the probabilities different than one, the adjustment and rounding should be
done and they are updated to 0.336 and 0.328, respectively.

After the population is subjected to the genetic operators and the PCFG is updated, the
population is remapped using the new updated grammar.

3.2 Co-evolutionary Approach

Co-PGE is a new variant of GE that uses the same genotype representation and mapping
method introduced by PGE. The genotype of the individuals is an array of floats, and the
mapping is done using a Probabilistic Structured Grammatical Evolution (PSGE). The
difference between the methods is in the way the probabilities of the PCFG are updated.
In Co-PGE, each individual has an associated PCFG and both the genotype and the PCFG
co-evolve as they are subjected to selective pressure. An example of an individual and its
PCFG is presented in Fig. 3.3.

In the beginning of the evolutionary process, the genotype, which is a list of floats, is
randomly generated, and to each individual is assigned a PCFG whose probabilities are
equal for all productions rules of each non-terminal. Then, at each generation, individuals
are subjected to selection and variation operators, as well as the associated grammar.

25

Chapter 3

<expr> ::=<expr><op><expr> (0.73)

|<var> (0.27)

<op> ::= + (0.43)

| − (0.25)

| ∗ (0.0)

| / (0.32)

<var> ::= x (0.07)

| y (0.33)

| 1.0 (0.60)

(a) Individual’s mutated PCFG.

Genotype
[0.2, 0.8, 0.45, 0.62, 0.37, 0.19, 0.98]

<expr>→<expr><op><expr> (0.2)

<expr><op><expr>→<var><op><expr> (0.8)

<var><op><expr>→ 1.0<op><expr> (0.45)

1.0<op><expr>→ 1.0 -<expr> (0.62)

1.0 -<expr>→ 1.0 -<var> (0.37)

1.0 -<var>→ 1.0 - x (0.19)

Phenotype: 1.0− y

(b) Genotype-phenotype mapping.

Figure 3.3: Example of Co-PGE individual.

Alg. 12 shows the pseudo-code of the mutation process of the PCFG in an individual.
The algorithm takes as parameters the individual whose grammar is to be mutated, the
probability of mutation occurring (between 0 and 1) and the Gaussian standard deviation
to use. For each production rule of each non-terminal is generated a random value to verify
if the mutation should occur (Alg. 12, line 5). At most, only one production rule of each
non-terminal can be mutated, per generation. For each production rule selected to mutate,
is added a value generated with a Gaussian distribution to its probability (Alg. 12, lines
6-7). Gaussian mutations have been widely used in the literature and have showed to be
a good approach to make small changes in the search space [44, 45, 46]. The values of the
other productions of the same non-terminal are changed according to the new probability,
until the sum equals one (Alg. 12, line 9). During crossover, the offspring inherits the
grammar of the parent with the best fitness. At the end of each generation, the phenotype
of the individual is updated using the new grammar and genotype, following the mapping
process presented for PGE in Alg. 10.

Algorithm 12 Co-evolutionary Probabilistic Grammatical Evolution
1: procedure mutateGrammar(individual, prob_mutation_grammar,

sd_normal_distribution)
2: grammar = individual.getGrammar()
3: for NT, prods in grammar do
4: for each production rule i of prods do
5: if random() < prob_mutation_grammar then
6: gauss_value = random_Gaussian(0, sd_normal_distribution)
7: probi = min(probi + gauss_value, 1.0)
8: probi = max(probi, 0.0)
9: adjust_probabilities(prods)

10: break
11: end if
12: end for
13: end for
14: end procedure

Fig. 3.4 shows an example of a grammar before (Fig. 3.4a) and after (Fig. 3.4b) suffering
a mutation. Assuming that the non-terminal < expr > production rule < var > has been
randomly selected to be mutated, and that the random number generator of a Gaussian

26

Probabilistic Grammatical Evolution

<expr> ::=<expr><op><expr> (0.5)

|<var> (0.5)
<op> ::= + (0.25)

| − (0.25)

| ∗ (0.25)

| / (0.25)

<var> ::= x (0.33)
| y (0.33)

| 1.0 (0.33)

(a) PCFG grammar before mutation.

<expr> ::=<expr><op><expr> (0.73)

|<var> (0.27)
<op> ::= + (0.25)

| − (0.25)

| ∗ (0.25)

| / (0.25)

<var> ::= x (0.45)
| y (0.27)

| 1.0 (0.27)

(b) PCFG grammar after mutation.

Figure 3.4: Example of grammar mutation in Co-PGE

distribution of mean 0 and standard deviation 0.50 (N(0, 0.50)) has generated the number
−0.23, the new probability of that production becomes 0.27 (0.50− 0.23). The probability
of the other production of the non-terminal < expr > is adjusted to 0.73. As a maximum of
one mutation can occur in one production of each non-terminal, other mutations can occur
in other non-terminals, for example, if the production rule x of the non-terminal < var >
suffers a mutation of +0.12, it will have a value of 0.45, and the remaining outputs need
to be adjusted, having a probability of 0.27.

27

This page is intentionally left blank.

Chapter 4

Probabilistic Structured
Grammatical Evolution

Mainly due to its flexibility, Grammatical Evolution (GE) has been widely used by re-
searchers and practitioners from various research fields, obtaining good results in multiple
applications. However it is not exempt from some known issues, such as low locality and
high redundancy. These issues have been targeted by several works in the literature, and
in recent years some proposals have emerged that addresses them. One method that has
shown to be able to overcome these problems and outperform is Structured Grammatical
Evolution (SGE).

Given the benefits in terms of performance, the methods proposed in the previous chapters
were adapted to SGE, creating two new variants that introduce a new representation and
mapping method.

4.1 Representation and Mapping

Probabilistic Structured Grammatical Evolution (PSGE) is an hybrid approach between
the representation and mapping mechanism used by SGE and Probabilistic Grammatical
Evolution (PGE). The process of generating the individuals and the mapping are similar
to that of SGE, but the representation of the individuals is different, with the codons
being probabilities rather than integers. The genotype-phenotype mapping relies on a
Probabilistic Context-Free Grammar (PCFG), and the probabilities of the grammar are
updated every generation, using the mechanism proposed for PGE.

Similarly to SGE, the genotype of the individuals is a set of dynamic lists, each being
associated with a non-terminal of the grammar. Each list has an ordered sequence of real
values, that correspond to the probability of selecting production rules. The pseudo-code
of the initialization of individuals in PSGE is presented in Alg. 13.

The initialization of individuals is done recursively, and at each iteration a codon is ran-
domly generated (Alg. 13, line 2) and added to the genotype list of the non-terminal that
is being expanded (Alg. 13, lines 10-14). The algorithm takes as arguments the genotype
(which starts empty), the non-terminal symbol to expand (in the first iteration it is the
axiom of the grammar), the current depth (starts at 0), the maximum depth limit, and the
grammar. The function simulates the mapping process (Alg. 13, lines 3-9), to know which
are the next non-terminals to expand. The algorithm ends when all the non-terminals

29

Chapter 4

symbols have been expanded until only terminals remain, i.e., the genotype corresponds
to a valid individual.

Algorithm 13 Random Candidate Solution Generation of PSGE
1: procedure createIndividual(genotype, symbol, current_depth,max_depth, grammar)
2: codon = random()
3: if current_depth > max_depth then
4: if is_recursive(symbol) then
5: selected_rule = generate_terminal_expansion(symbol, codon, grammar)
6: end if
7: else
8: selected_rule = generate_expansion(symbol, codon, grammar)
9: end if

10: if symbol in genotype then
11: genotype[symbol].append(codon)
12: else
13: genotype[symbol] = [codon]
14: end if
15: expansion_symbols = grammar[symbol][selected_rule]
16: for sym in expansion_symbols do
17: if not is_terminal(sym) then
18: createIndividual(genotype, sym, current_depth + 1, max_depth, grammar)
19: end if
20: end for
21: end procedure

The pseudo-code of the genotype-phenotype mapping is presented in Alg. 14. The algo-
rithm receives as argument the genotype, a counter called positions_to_map (initialised
empty), the symbol to expand (starts in the axiom), the current depth, the maximum depth
limit and the grammar. The positions_to_map counter is used to store the genotype po-
sition of the next codon to be used to expand each non-terminal. If, during mapping, more
codons are needed to create a valid individual, they will be randomly generated and added
to the genotype (Alg. 14, lines 9-12). The dynamic genotype is one of the advantages of
the representation proposed by SGE. With the depth limit, it is possible to add produc-
tions whenever necessary, without the risk of bloat (a considerable growth in the size of
the solutions [28]), always creating valid individuals.

The process of selecting an expansion rule from a real value with a PCFG (Alg. 14, line
17) is similar to the one used in PGE, however, if the defined maximum tree depth limit is
exceeded, only non-recursive productions will be selected (Alg. 14, lines 14-16). The func-
tion to choose the production rule to expand is depicted in Alg. 15. The function receives
as parameter the non-terminal symbol to be expanded, the codon, and the grammar. It is
verified whether the codon belongs to the probability range of each production rule of the
non-terminal to be expanded. When this condition is verified, the rule is chosen. When the
defined maximum tree depth limit is exceeded we use the function presented in Alg. 16.
The function receives as parameter the non-terminal symbol to be expanded, the codon,
and the grammar. The algorithm considers only non-recursive rules (Alg. 16, line 3), and
adjusts the probabilities of each of them, so that the sum is 1. To accomplish this, we
first sum the value of the current probabilities of the non-recursive rules (Alg. 16, line 3),
which is used to perform the adjustment (Alg. 16, line 6). Using the new probabilities, the
production rule is chosen with the normal procedure: the production rule whose interval
the codon lies in is chosen.

30

Probabilistic Structured Grammatical Evolution

Algorithm 14 Genotype-Phenotype Mapping Function of PSGE
1: procedure mapping(genotype, positions_to_map, symbol, depth,max_depth, grammar)
2: phenotype = ""
3: if symbol not in positions_to_map then
4: positions_to_map[symbol] = 0
5: end if
6: if symbol not in genotype then
7: genotype[symbol] = []
8: end if
9: if positions_to_map[symbol] >= len(genotype[symbol]) then

10: codon = random()
11: genotype[symbol].append(codon)
12: end if
13: codon = genotype[symbol][positions_to_map[symbol]]
14: if depth >= max_depth then
15: selected_rule = generate_terminal_expansion(symbol, codon, grammar)
16: else
17: selected_rule = generate_expansion(symbol, codon, grammar)
18: end if
19: expansion = grammar[symbol][selected_rule]
20: positions_to_map[symbol] += 1
21: for sym in expansion do
22: if is_terminal(sym) then
23: phenotype += sym
24: else
25: phenotype += mapping(genotype, positions_to_map, sym, depth + 1,

max_depth, grammar)
26: end if
27: end for
28: return phenotype
29: end procedure

Algorithm 15 PSGE function to select a expansion rule
1: procedure generate_expansion(symbol, codon, pcfg)
2: cum_prob = 0.0 . Cumulative Sum of Probabilities
3: productions = pcfg[symbol]
4: for prod in productions do
5: cum_prob = cum_prob+ prod.getProb()
6: if codon ≤ cum_prob then
7: selected_rule = prod
8: break
9: end if

10: end for
11: return selected_rule
12: end procedure

31

Chapter 4

Algorithm 16 PSGE function to select a non-recursive expansion
1: procedure generate_terminal_expansion(symbol, codon, pcfg)
2: cum_prob = 0.0 . Cumulative Sum of Probabilities
3: non_recursive_prods = get_non_recursive_prods(pcfg[symbol])
4: total_non_recursive_prods = sum(terminal_prods.getProd()) . Sum of

probabilities of Non Recursive prods
5: for prod in productions do
6: new_prob = prod.getProb()/total_terminal_prods
7: cum_prob = cum_prob+ new_prob
8: if codon ≤ cum_prob then
9: selected_rule = prod

10: break
11: end if
12: end for
13: return selected_rule
14: end procedure

Fig. 4.1 shows an example of the mapping process in PSGE. The left panel (Fig. 4.1a)
shows the PCFG used, and the right panel (Fig. 4.1b) shows the genotype of the individual
and the mapping procedure. The mapping starts with the axiom of the grammar, <
expr >, and at the first element of its respective list in the genotype, 0.29. The value of
the codon is compared with the probabilities of the rules of the non-terminal. In this case
we have two options, with equal probability. As 0.29 falls within the range of probabilities
of the first production, the non-terminal will be expanded to < expr >< op >< exp >.
Following the leftmost derivation rule, the next non-terminal to expand is < expr >. We
repeat the process and this time the codon, 0.73, corresponds to the second derivation rule,
< var >. The next non-terminal to expand is < var >, which has three derivation rules,
and, since it has not yet been expanded, we take the first codon in the < var >’s list,
which is 0.41. Looking at the probabilities of the derivation rules, we see that the codon
falls within the range of the second rule, y. The process is repeated until a valid individual
is formed.

<expr> ::=<expr><op><expr> (0.5)

|<var> (0.5)

<op> ::= + (0.25)

| − (0.25)

| ∗ (0.25)

| / (0.25)

<var> ::= x (0.33)

| y (0.33)

| 1.0 (0.33)

(a) PCFG example.

Genotype
< expr > < op > < var >

[0.29, 0.73, 0.52] [0.86] [0.41, 0.15]

<expr>→<expr><op><expr> (0.29)

<expr><op><expr>→<var><op><expr> (0.73)

<var><op><expr>→ y<op><expr> (0.41)

y<op><expr>→ y /<expr> (0.86)

y /<expr>→ y /<var> (0.52)

y /<var>→ y / x (0.15)

Phenotype: y/x

(b) Genotype-phenotype mapping procedure.

Figure 4.1: Example of the genotype-phenotype mapping of PSGE with a PCFG.

At the end of each generation the best overall individual and the best individual from the
current generation are used alternately to update the PCFG probabilities, using the same
mechanism proposed for PGE.

32

Probabilistic Structured Grammatical Evolution

For each production i of each non-terminal j we have a counter with the number of
times that each production was chosen, and the probability (prob) of the PCFG for that
production. If the counter is greater than zero, that is, the production rule was used to
map the individual, we use Equation 4.1. If the counter is zero, that is, the production
rule has not been used by the individual, we use Equation 4.2.

probi = min(probi + λ ∗ counteri∑j
k=1 counterk

, 1.0) (4.1)

probi = probi − λ ∗ probi (4.2)

where λ is the learning factor, with λ ∈ [0, 1].

After updating the probabilities using the equations, these are adjusted until the sum of
the probabilities of each production rule of each non-terminal is 1.

4.1.1 Variation Operators

Individuals can be modified using genetic operators. Mutation occurs at the level of prob-
ability, that is, a new codon is randomly generated, which is later used to choose the new
expansion rule. A Gaussian mutation [44, 45, 46] is applied in the chosen values, having
this new value to be contained in the interval [0,1].

Fig. 4.2 shows an example of Gaussian mutation in an individual. Assuming that randomly
only the first codon in the list of the non-terminal < var > was selected for mutation and
that the value generated with a Gaussian distribution of mean 0 and standard deviation
0.50 (N(0, 0.50)) was 0.23, the codon will be changed to 0.64 (0.41 + 0.23).

< expr > < op > < var >

[0.29, 0.73, 0.52] [0.86] [0.41, 0.15]

(a) Genotype before mutation.

< expr > < op > < var >

[0.29, 0.73, 0.52] [0.86] [0.64, 0.15]

(b) Genotype after mutation.

Figure 4.2: Example of PSGE’s mutation on one codon of the genotype.

The crossover is the same as the SGE’s. After being submitted to the genetic operators and
updating the grammar, the individuals are remapped before passing to the next generation.

4.2 Co-evolutionary Approach

Co-evolutionary Probabilistic Structured Grammatical Evolution (Co-PSGE) is a method
that uses the same representation and mapping introduced in the previous section, but
each individual co-evolves a PCFG.

At initialisation, a genotype is generated for each individual as well as a PCFG. The
genotype is a list of ordered lists, with one list for each non-terminal, and each element
of the list is a real value. The genotype is initialized in the same way as in PSGE, and
the pseudocode is present in Algorithm 13. The grammar assigned to the individual at
initialization has the same probability for each production rule of each non-terminal. At
each generation, individuals are subjected to selection and variation operators as well as
the associated grammar of each individual.

33

Chapter 4

The mutation performed in the PCFG is the same as proposed for Co-evolutionary Proba-
bilistic Grammatical Evolution (Co-PGE), which occurs in the probabilities, with a maxi-
mum of one mutation per non-terminal symbol. The probabilities of the production rules
selected for mutation are modified adding a random value generated from a Gaussian distri-
bution. The probabilities of the remainder productions of each non-terminal that suffered
mutation must be adjusted until the sum of the probabilities is 1. After updating the
grammar, the individual’s phenotype is remapped.

During crossover between two individuals, the offspring inherits the grammar of the parent
with better fitness.

34

This page is intentionally left blank.

Chapter 5

Validation

The validation of the proposed methods will be done based on three different metrics:
performance, redundancy, and locality. These metrics allow fair comparison between the
proposed methods, Grammatical Evolution (GE) [1] and Structured Grammatical Evolu-
tion (SGE) [6].

5.1 Performance Analysis

The performance of different algorithms will be conducted by examining the evolution of
the mean fitness of the solutions in different problems. For this, we rely on the framework
proposed by Whigham et al. [9], in which six problems of different scopes are considered.

Table 5.1: Parameters used in the experimental analysis for GE, PGE, Co-PGE, SGE,
PSGE, and Co-PSGE.

Parameters GE PGE Co-PGE SGE PSGE Co-PSGE
Population Size 1000
Generations 50
Elitism Count 100
Mutation Rate 0.05
Crossover Rate 0.90
Tournament 3

Size of Genotype 128 -
Max Depth - 10

Table 5.1 presents the experimental settings used by all the approaches. Regarding the
genetic operators used by SGE, Probabilistic Structured Grammatical Evolution (PSGE)
and Co-evolutionary Probabilistic Structured Grammatical Evolution (Co-PSGE), these
methods all use the same crossover, which is the one presented in Section 2.1.3. Regarding
the mutation operator, in the case of SGE, the mutated codon is replaced with a different
valid option, while in PSGE and Co-PSGE, a Gaussian mutation with N(0, 0.50) in the
codon value is performed. In what concerns the variation operators of GE, Probabilistic
Grammatical Evolution (PGE) and Co-evolutionary Probabilistic Grammatical Evolution
(Co-PGE), they use a one point crossover. The mutation of GE replaces the selected
codons by a new one generated in the interval [0, 255] and in the case of PGE and Co-PGE
a float mutation is used, in which the codons are replaced by new ones generated in the
interval [0, 1]. The wrapping mechanism was removed from GE, PGE and Co-PGE.

36

Validation

Additionally, PGE and PSGE use a learning factor of λ = 1.0%, and, Co-PGE and Co-
PSGE use a probability of occurring a mutation in the grammar of 5%, with a random
value drawn from a N(0, 0.50).

The fitness functions used to evaluate the individuals were designed with the objective of
minimizing the error. In the case of Symbolic Regression and classification problems, the
fitness is the Root Relative Squared Error (RRSE) (Equation 5.1) between the individual’s
solution (P) and the target (T) on a data set, with n being the number of samples. For
the Boolean functions, the error is the number of incorrect predictions, and for the Path
finding problem, the fitness is the number of pieces remaining after exceeding the step
limit. All the problems are detailed bellow as well as the grammars used.

RRSE = 2

√∑n
i=1(Pi − Ti)2∑n
i=1(Pi − T̄)2

, with T̄ =
1

n

n∑
i=1

Ti (5.1)

The results are the mean best fitness of each generation over 100 independent runs.

5.1.1 Symbolic Regression

Popular benchmark problem for testing Genetic Programming (GP) algorithms, with the
objective of finding the mathematical expression that best fits a given dataset, using Gram-
mar 5.1.

〈start〉 ::= 〈expr〉

〈expr〉 ::= 〈expr〉 〈op〉 〈expr〉 | (〈expr〉 〈op〉 〈expr〉)
| 〈pre_op〉 (〈expr〉) | 〈var〉

〈op〉 ::= + | - | * | /

〈pre_op〉 ::= sin | cos | exp | log | inv

〈var〉 ::= x[..] | 1.0

Grammar 5.1: Symbolic Regression grammar.

where inv = 1
f(x) . The division and logarithm functions are protected, i.e., 1/0 = 1 and

log(f(x)) = 0 iff(x) ≤ 0.

Quartic polynomial

The goal of this problem is to find the expression defined by:

x4 + x3 + x2 + x. (5.2)

The function is sampled in the interval [-1, 1] with a step of 0.1.

37

Chapter 5

Pagie polynomial

The aim is to find the following mathematical expression:

1

1 + x[1]−4
+

1

1 + x[2]−4
. (5.3)

The function is sampled with x[1], x[2] ∈ [-5, 5] with a step of 0.4.

5.1.2 Boston Housing Problem

This is a famous Machine Learning problem to predict the prices of Boston Houses. The
dataset comes from the StatLib Library [47] and has 506 entries, with 13 features. It was
divided in 90% for training and 10% for testing. The grammar used for the Boston Housing
regression problem is Grammar 5.2.

〈start〉 ::= 〈expr〉

〈expr〉 ::= 〈expr〉 〈op〉 〈expr〉 | (〈expr〉 〈op〉 〈expr〉)
| 〈pre_op〉 (〈expr〉) | 〈var〉

〈op〉 ::= + | - | * | /

〈pre_op〉 ::= sin | cos | exp | log | inv

〈var〉 ::= x[1] |...| x[13] | 1.0

Grammar 5.2: Boston Housing grammar.

5.1.3 5-bit Even Parity

The objective of this problem is to evolve a boolean function that takes as input a binary
string with length 5, and returns 0 if the string is even or 1 if it is odd. Considering b0,
b1, b2, b3, and b4 the input bits, the grammar used is presented in Grammar 5.3.

〈start〉 ::= 〈B〉

〈B〉 ::= 〈B〉 and 〈B〉 | 〈B〉 or 〈B〉
| not (〈B〉 and 〈B〉) | not (〈B〉 or 〈B〉)
| 〈var〉

〈var〉 ::= b0 | b1 | b2 | b3 | b4

Grammar 5.3: 5-bit Even Parity grammar.

38

Validation

5.1.4 11-bit Boolean Multiplexer

The aim of the 11-bit Multiplexer is to decode a 3-bit binary address and return the value of
the corresponding data register (d0 to d7). The function receives as input three addresses
(s0 to s2) and eight data registers (i0 to i7). For this problem we used Grammar 5.4.

〈start〉 ::= 〈B〉

〈B〉 ::= 〈B〉 and 〈B〉 | 〈B〉 or 〈B〉 | not 〈B〉
| 〈B〉 if 〈B〉 else 〈B〉 | 〈var〉

〈var〉 ::= s0 | s1 | s2 | i0 | i1 | i3 | i4| i5 | i6 | i7

Grammar 5.4: 11-bit Boolean Multiplexer grammar.

5.1.5 Santa Fe Artificial Ant

The Santa Fe Artificial Ant Problem is a path finding problem, whose goal is to evolve a
program to guide an artificial ant in an environment, so it can collect food. The Santa Fe
trail contains 89 food pellets distributed in a 32x32 grid and is depicted in Fig. 5.1. The
agent starts at the top left corner, and can execute at most 650 steps. The set of rules to
follow is defined by Grammar 5.5.

Figure 5.1: The Santa Fe trail.

5.1.6 Results

To better understand and compare the performance of all approaches we performed a
statistical analysis. Since the results did not follow any distribution, and the populations
were independently initialised, we employed the Kruskal-Wallis non-parametric test to
check if there were meaningful differences between the different groups, i.e., approaches.
When this happened we used the Mann-Whitney post-hoc test with Bonferroni correction to
ascertain in which pairs this difference existed. For all the statistical tests we considered
a significance level of α = 0.05. The statistical tests were made between the proposed

39

Chapter 5

〈start〉 ::= 〈code〉

〈code〉 ::= 〈line〉
| 〈code〉
〈line〉

〈line〉 ::= if ant.sense_food():
〈line〉
else:
〈line〉

| 〈op〉

〈op〉 ::= ant.turn_left() | ant.turn_right() | ant.move_forward()

Grammar 5.5: Santa Fe Artificial Ant grammar.

methods (PGE, Co-PGE, PSGE, and Co-PSGE), and the standard methods from the
literature GE, shown in Table 5.2 and SGE, shown in Table 5.3.

Table 5.2: Results of the Mann-Whitney post-hoc statistical tests between the proposed
methods and GE. Bonferroni correction is used and the significance level α = 0.05 is
considered. Values in bold mean that the proposed method is statistically better than GE.

p-value PGE Co-PGE PSGE Co-PSGE
Quartic Polynomial 0.017 0.101 0.000 0.000
Pagie Polynomial 0.000 0.023 0.017 0.002

Boston Housing Train 0.000 0.000 0.000 0.000
Boston Housing Test 0.000 0.000 0.000 0.000
5-bit Even Parity 0.000 0.000 0.000 0.000
11-bit Multiplexer 0.222 0.046 0.000 0.000
Santa Fe Ant Trail 0.567 0.052 0.000 0.000

Table 5.3: Results of the Mann-Whitney post-hoc statistical tests between the proposed
methods and SGE. Bonferroni correction is used and the significance level α = 0.05 is
considered. Values in bold mean that the proposed method is statistically better than
SGE.

p-value PGE Co-PGE PSGE Co-PSGE
Quartic Polynomial 0.000 0.000 0.149 0.013
Pagie Polynomial 0.290 0.007 0.006 0.077

Boston Housing Train 0.001 0.301 0.000 0.111
Boston Housing Test 0.030 0.256 0.288 0.023
5-bit Even Parity 0.000 0.000 0.066 0.000
11-bit Multiplexer 0.000 0.000 0.000 0.000
Santa Fe Ant Trail 0.000 0.000 0.158 0.044

Focusing on the statistical results of Tables 5.2 and 5.3, several observations about the
approaches proposed in this work can be drawn. In bold are the p-values of the compar-
isons where the proposed methods are statistically better than GE (Table 5.2) and SGE
(Table 5.3). Comparing the methods with GE (Table 5.2), we see that PGE and Co-PGE

40

Validation

are always better or equivalent, and that PSGE and Co-PSGE are always better in the
problems considered. When comparing the approaches to SGE (Table 5.3), we can observe
that PGE and Co-PGE have more statistical differences, making them worse, although
they perform equally well in some problems. When we look at the PSGE column, we
can see that it has never outperformed SGE, being statistically similar in four of the six
problems; nevertheless, Co-PSGE has statistical differences and is better in three problems.

Figure 5.2: Performance results for the Quartic Polynomial. Results are the mean best
fitness of 100 runs.

Fig. 5.2 shows the evolution of the mean best fitness for the quartic polynomial. Looking
first at PGE and Co-PGE, we notice that both have a different behaviour. PGE starts with
better fitness, however, around the 8th generation, it is overtaken by Co-PGE, and it has a
much slower growth compared to the other methods. Around generation 30, PGE manages
to recover and ends with better fitness than GE and Co-PGE. Co-PGE fitness decreases
much faster, but stagnates around generation 20, and by the end of the evolutionary process
it is caught by GE. This can be an indication that Co-PGE is converging faster, and that
we might need to adjust the probabilities update mechanism. Looking at the statistical
results between the methods and GE (Table 5.2), we can say that PGE is better than GE
in this problem, presenting statistical differences. The Co-PGE presents a p-value greater
than 0.05, which is an indication that the methods are statistically similar in this problem.

As for SGE and its variants, we note that SGE shows better growth at the beginning of the
evolutionary process, having the best fitness for over 30 generations. It is then surpassed
by Co-PSGE, with presenting statistical differences (Table 5.3). PSGE has a slightly slower
growth, ending with results similar to SGE, with no significant differences.

Looking at the results concerning the Pagie polynomial (Fig. 5.3), we observe that all
methods perform better than GE, with their curves decreasing faster and ending with a
large difference. This is confirmed by the statistical analysis, where all methods present
significant differences in comparison to GE (Table 5.2). The method that stands out the
most in this problem is PGE, since it is the one that ends with the best performance. On
the other hand, we highlight negatively PSGE, because it presents statistical differences
in relation to SGE (Table 5.3), and looking at the curve, it means that SGE has better
performance in this problem. Co-PSGE does not present statistical differences in relation
to SGE, and we can say that in this problem, they are similar, although SGE ends with a
better value.

Fig. 5.4 shows the results for the Boston Housing problem. Looking at the training results
(Fig. 5.4a), it is possible to see that the fitness of SGE, Co-PGE and Co-PSGE individuals

41

Chapter 5

Figure 5.3: Performance results for the Pagie Polynomial. Results are the mean best fitness
of 100 runs.

(a) Results for Boston Housing - Training (b) Results for Boston Housing - Testing

Figure 5.4: Performance results for the Boston Boston Housing problem. Results are the
mean best fitness of 100 runs.

rapidly decrease and continue too over the entire evolutionary process, with no statistical
differences among them (Table 5.3). The performance of GE is in line with what we
observed previously (Fig. 5.2 and 5.3), i.e., a slow decrease on the fitness. As for the PGE
and PSGE results, we observe that these are better than those of GE, but worse than
the others. This analysis is confirmed by the statistical results, which show that in the
training, all methods present statistical differences from GE (Table 5.2).

Even though the training results are important to understand the behaviour of the methods,
the testing results are more relevant, because they allow us to evaluate the generalisation
ability of the models evolved by each approach. Looking at the test results (Fig. 5.4b)
we can see that Co-PGE and Co-PSGE are building models that can generalise better to
unseen data. Looking at the statistical tests on Table 5.3, we see that Co-PGE remains
statistically similar to SGE, however Co-PSGE shows statistical differences, outperforming
SGE. Looking at the graph we notice that SGE is slightly worse in the test than in the
training, keeping the statistical differences between PGE and being statistically similar to
PSGE (Table 5.3).

Fig. 5.5 shows the evolution of the mean best fitness of the individuals for the 5-bit even

42

Validation

Figure 5.5: Performance results for the 5-Bit Even Parity problem. Results are the mean
best fitness of 100 runs.

parity problem. At first, we see that Co-PSGE behaviour stands out, managing to obtain
a fitness twice as good as the other methods in fewer generations, presenting statistical
differences with GE and SGE (Tables 5.2 and 5.3). The curve has a large slope until
generation 10, and then stabilizes. Looking at the results of GE, PGE and Co-PGE, we
observe that they start with worse fitness than SGE and its variants. PGE and Co-PGE
have a slightly faster decrease, ending with better fitness and being statistically better than
GE (Table 5.2). PSGE decreased slightly faster than SGE, however by the 30th generation,
it was caught up by SGE, having similar performance, presenting no statistical differences.

Figure 5.6: Performance results for the 11-bit Boolean Multiplexer problem. Results are
the mean best fitness of 100 runs.

The results for the 11-bit Multiplexer are presented in Fig. 5.6. GE, PGE and Co-PGE
have a very similar decrease, and initially PGE has a slightly worse behaviour, recovering
along the evolutionary process, ending with values very close to the GE, showing no sta-
tistical differences (Table 5.2). The Co-PGE has a growth similar to that of GE, gradually
moving away to better values with statistical differences. For the remaining methods, the
behaviour was different. We see that SGE stands out, having a much more accentuated
decrease, with statistical differences in relation to its two variants, Co-PSGE and PSGE.
These two methods have a very similar behaviour, which despite not approaching the
exceptional performance of SGE, is still statistically better than GE, PGE and Co-PGE
(Table 5.3).

43

Chapter 5

It is interesting to note that the No Free Lunch Theorem [48] is reflected in the behaviour
observed in some problems by the approaches. This is the case for PGE on Pagie Symbolic
Regression, Co-PGE on 5-bit Parity and SGE on 11-bit Multiplexer. The theorem is
stated in the original paper by Wolpert et al. [48] as "for any algorithm, any elevated
performance over one class of problems is offset by performance over another class", which
can be interpreted as that no algorithm is equally good on all problems.

Figure 5.7: Performance results for the Santa Fe Artificial Ant problem. Results are the
mean best fitness of 100 runs.

The last analysis studies the performance on the Santa Fe Ant problem. We can observe
that SGE, PSGE and Co-PSGE quickly decrease their fitness, diverging from GE, PGE
and Co-PGE. Looking at the statistical tests in Table 5.3, we see that PSGE and SGE are
statistically similar, and Co-PSGE shows statistical differences from SGE, being slightly
worse, with a p-value of 0.044. As the p-value is very close to the significance level (α =
0.05), we see that the differences between these methods are minimal. PGE and Co-PGE
have no statistical differences with GE (Table 5.2), however, looking at the curve of the
graph, we can see that Co-PGE ends up with better average fitness than PGE and GE.

5.2 The Usefulness of Grammars

In this section, we will analyse the evolution of the probabilities of the Probabilistic
Context-Free Grammar (PCFG) for each problem. The choice of grammars in grammar-
based GP methods plays an important role in the algorithm’s behaviour [5, 11], since it
defines the search space for the solutions, so this study gives a first insight into the impact
of grammars’ update on the proposed algorithms.

The methods proposed in this work, present different ways to modify the probabilities of
a PCFG. By evolving the population together with the grammar, we are introducing bias
with respect to some production rules, guiding the exploration of the search space. We
have already seen in the previous section that updating the productions across generations
improved the quality of solutions and speed of convergence, in some problems.

PGE and PSGE evolve the probabilities of the PCFG alternating between using the pro-
duction rules of the best individual of the current generation and the best overall. Each
production of the grammar is updated taking into account the number of times it has
been expanded by the individual, the number of times its non-terminal symbol has been
expanded and a learning factor, λ. The learning factor is used to make the transitions in

44

Validation

the search space smoother.

In Co-PGE and Co-PSGE, each individual co-evolves with a grammar. At each generation
the individuals are prone to the processes of variation, and also the grammar can mutate.

5.2.1 Probabilities Evolution

In this section we present an analysis on how the probabilities of certain derivation rules
progress over the generations for each problem. This analysis will give us insights into
what are the rules that the methods consider more relevant to create better solutions. The
values presented are the average of the probabilities of the PCFG at each generation of the
100 runs. The grammars were evolved using PGE, with a learning factor of 1.0%.

(a) Evolution of grammar probabilities of non-
terminal < expr >.

(b) Evolution of grammar probabilities of non-
terminal < pre_op >.

(c) Evolution of grammar probabilities of non-
terminal < op >.

(d) Evolution of grammar probabilities of non-
terminal < var >.

Figure 5.8: Evolution of grammar probabilities of non-terminals used for the Quartic
Polynomial. Results are averages of 100 runs.

The evolution of probabilities for the quartic problem is shown in Fig. 5.8. In the non-
terminal < expr >, all production rules end up with different probabilities, with the largest
growth in the < var > production rule (≈ 24%). The grammar used (Grammar 5.1) has
three recursive and one non-recursive production rules for the non-terminal < expr > so
is considered explosive [5], as it has more recursive productions than non-recursive ones.
Nicolau et al. [5] showed that explosive grammars have a tendency to create very small
individuals by choosing terminals too early, or choose many non-terminal symbols in a
row, which can lead to many large and/or invalid individuals. By inserting bias in the
non-recursive rule (< var >) (Fig. 5.8a), the algorithm is evolving towards balancing the

45

Chapter 5

grammar. Harper [11] showed that balanced grammars produce more diverse individuals,
and in [5] Nicolau et al. showed that the use of balanced grammars results in performance
improvements.

Looking at the evolution of the probabilities for the remaining non-terminal symbols, we
see that there are productions more prominent than others. In the case of the non-terminal
< pre_op >, we see that the terminal exp has a greater change in its probability, ending
with approximately 40.3%. The remaining productions end with 18.6% in the case of sin,
16.4% in the case of cos, 12.3% for log, and lastly, 12.4% for inv. The fact that the terminal
exp has such a difference from the remaining productions can imply that, although this
token does not belong to the optimal solution, it is favourable for the creation of better
solutions.

In what concerns the non-terminal < op >, we see that there are two operators that stand
out, namely multiplication (∗) and sum (+), which end with 44.5% and 26.4% respectively.
The trend for these symbols is in line with what was expected, since it is possible to reach
the optimal solution using only these two. The division symbol (/), and the subtraction
(−) end with 15.5% and 13.6%, respectively.

The remaining non-terminal is < var >, which has only two productions, has one symbol
that stands out, x (≈ 68.5%), as expected, since the other, 1.0 (≈ 31.5%) is not needed to
obtain the optimal solution.

(a) Evolution of grammar probabilities of non-
terminal < expr >.

(b) Evolution of grammar probabilities of non-
terminal < pre− op >.

(c) Evolution of grammar probabilities of non-
terminal < op >.

(d) Evolution of grammar probabilities of non-
terminal < var >.

Figure 5.9: Evolution of grammar probabilities of non-terminals used for the Pagie Poly-
nomial. Results are averages of 100 runs.

46

Validation

For the Pagie Polynomial, Fig. 5.9 presents the evolution of the PCFG’s probabilities
for the different non-terminals over the generations. Looking at the graphs, we can see
that different production rules have different growths. Starting with the analysis of the
rules of the symbol < expr > (Fig. 5.9a), we notice that production rules that contain two
recursive options have much lower probability (≈ 17%) than the remaining two productions
(≈ 33%).

Fig. 5.9c, presents the results for the non-terminal < op >, and we can see that the
probabilities associated with the operators needed to solve the problem are higher, with
the sum (+) standing out with about 39%, followed by division (/) with 25%, multiplication
(∗) with 21%, and lastly, subtraction (−) with 15%.

As observed in the quartic problem, although not required for the optimal solution, there
is a production of the non-terminal token < pre_op > that stands out. In this case, it is
cos, which ends approximately with 40.7%, with the remaining symbols, inv, sin, exp and
log, ending with 22.3%, 16.4%, 10.8%, 9.8%, respectively.

In the non-terminal < var >, at the end of the evolution, the different symbols end with
different probabilities, however we notice that their evolution is more accentuated in the
first 10 generations, and then they stabilize, almost not undergoing changes. In this case,
the symbol with the highest probability is 1.0 (≈ 45%), followed by y (≈ 29.7%) and x
(≈ 25.3%).

(a) Evolution of grammar probabilities of non-
terminal < expr >.

(b) Evolution of grammar probabilities of non-
terminal < pre− op >.

(c) Evolution of grammar probabilities of non-
terminal < op >.

(d) Evolution of grammar probabilities of non-
terminal < var >.

Figure 5.10: Evolution of grammar probabilities of non-terminals used for the Boston
Housing. Results are averages of 100 runs.

47

Chapter 5

Concerning the Boston Housing, the progression of the probabilities are depicted in Fig.
5.10. The probabilities of the rules of the non-terminal symbol < expr > show very similar
behaviour to that analysed by the Quartic Symbolic Regression (Fig. 5.8a). The non-
recursive production has a sharp increase (≈ 42%), while the remaining production rules
decrease slowly.

Contrary to the other problems of symbolic regression, for the Boston Housing there is not
much difference between the different symbols of the non-terminal < pre_op >, and at the
end there is a slight increase of the log probability, which ends with 24.2%. The remaining
outputs have very close values, with sin and inv, having approximately 20% each (which
is the initial value), followed by exp with 18.1% and finally cos with 17.7%.

In relation to the symbol < op > we see that the terminal of sum (+) and division (/)
stand out, with 41.5% and 25%, respectively, and multiplication (∗) and subtraction (−),
end with 17.3% and 16.2%, respectively.

The results of the probabilities for the derivation options of the non-terminal < var > are
the most interesting because it contains the features that describe the problem. Looking at
the evolution of the probabilities associated with each production, we can understand which
of these features are more relevant to accurately predict the price of houses. Looking at
the results (Fig. 5.10d), one can see that PTRATIO stands out in terms of the probability
of being selected. PTRATIO represents the pupil-teacher ratio by town. This is in line
with the results reported by Che et. al. [49]. Another interesting result is to see that the
feature RM (the third most important feature in [49]), which is the average number of
rooms per dwelling, is also on the top three of our results.

These results confirm not only the relevance of these features to the Boston Housing prob-
lem, but also allow us to perform feature analysis and provide an explanation to the results
achieved. This means that at the end of the evolutionary process one can look at the final
distribution of the probabilities in the grammar, and analyse the relative importance of
each production and derivation rules, and see how they are used to create the best models.

(a) Evolution of grammar probabilities of non-
terminal < B >.

(b) Evolution of grammar probabilities of non-
terminal < var >.

Figure 5.11: Evolution of grammar probabilities of non-terminals used for the 5-bit Parity.
Results are averages of 100 runs.

Looking at the evolution of the probabilities of the non-terminal < B > of both 5-bit
Parity Problem (Fig. 5.11a) and the 11-bit Multiplexer (Fig. 5.12a), we can again observe
a biased growth of the non-recursive production, <var> (≈ 45%, for 5-bit Parity, and
≈ 39%, for 11-bit Multiplexer). In 5-bit Parity, the remaining productions decrease to
approximately 13.5%, while in the 11-bit Multiplexer there is a small difference in the

48

Validation

(a) Evolution of grammar probabilities of non-
terminal < B >.

(b) Evolution of grammar probabilities of non-
terminal < var >.

Figure 5.12: Evolution of grammar probabilities of non-terminals used for the 11-bit Mul-
tiplexer. Results are averages of 100 runs.

probabilities of the remaining productions. Three of the productions, which contain one or
two recursive rules, decrease to approximately 16%, while the other rule, which contains
three recursive rules, decreases to 13%. Once again we can observe an adjustment of the
probabilities in order to balance the grammar.

As for the non-terminal < var > of 5-bit Parity (Fig. 5.11b), there is little variation
between the different probabilities, at the end of the 50th generation b4 has the lowest
value, with about 18%, and the highest belonging to b0 and b2, with about 21% each.
Because there are no meaningful differences in the probabilities of these terminal symbols,
it could mean that they all have the same impact on the quality of the solutions generated.

In the case of the 11-bit multiplexer (Fig. 5.12b), there is also little discrepancy between
the different variables, however, the s[0..2] variables are slightly higher, the highest being
s1 with approximately 11.8% and the lowest being s0 with around 10.4%. Within the
i[0..7] variables, the highest is the i4 with 9.4% and the lowest is i7 with 6.4%.

In both problems there is little difference between the probabilities of the different variables,
which may mean that none excels in creating better solutions, or else it may need more
generations and/or a different learning factor, to be able to introduce bias in the rules. It is
also important to note that in the performance analysis, in the 11-bit problem, there were
no significant differences between GE and PGE, showing that the evolution of probabilities
for this problem does not result in a improvement of performance, with the parameters
used.

Before proceeding to the analysis of the probabilities of the different non-terminals of the
Santa Fe Ant problem, it is important to highlight that in this problem, PGE had no
significant differences with respect to GE, that is, the updating of the probabilities did
not make the exploration of the search space more effective. It is also interesting to note,
that the grammar used in this problem, unlike the grammars used in the other problems,
is not considered explosive, because the non-terminal symbols have the same number of
recursive and non-recursive productions. Additionally, this grammar contains two non-
terminal symbols with recursive options, < code > and < line >.

For the non-terminal < code > (Fig. 5.13a) we observe a different behaviour of the
evolution of probabilities, compared to the other problems, as the production containing
a recursive rule (< code > \n < line >) ends with higher probability (≈ 61%) than the

49

Chapter 5

(a) Evolution of grammar probabilities of non-
terminal < code >.

(b) Evolution of grammar probabilities of non-
terminal < line >.

(c) Evolution of grammar probabilities of non-
terminal < op >.

Figure 5.13: Evolution of grammar probabilities of non-terminals used for the Santa Fe
Ant Trail. Results are averages of 100 runs.

non-recursive production (< line >, with ≈ 39%). Langdon et al. [50] showed, through
the generation of random solutions, that the average fitness of the solutions increases with
their size, while the variance decreases. In the paper by Wilson et al. [51], was studied
the relationship between the program generated to solve the trail, its behaviour and the
fitness of the solutions evolved for the Santa Fe Ant problem. The analysis showed that
the least prevalent approach followed by the solutions is the one that follows the optimal
path, and one of the most prevalent approaches followed by the solutions, is to visit the
largest number of cells, which eventually leads to find more food. This last approach may
be the reason why PGE favours the recursive production of the non-terminal < code >. By
choosing recursive productions more often, it makes it more likely that larger individuals
will be generated, thus visiting more cells.

In the case of the non-terminal < line > (Fig. 5.13b) we find that the non-recursive
production has a higher growth, ending with 56% while the non-recursive one ends with
43%. This may be a mechanism to prevent bloat from occurring in the solutions. Finally,
looking at the graph concerning the non-terminal < op > (Fig. 5.13c), we see that there
is a slow growth, with the production of moving forward ending with higher probability
(≈ 37%), while the productions concerning the left turn and the right turn end with
approximately 32% and 31%, respectively.

To complete this analysis of the evolution of grammars, we show the evolution of probabil-
ities using the different proposed methods. As showing the evolution for all non-terminals

50

Validation

with all methods would be too exhaustive and extensive, we selected some non-terminals
in which we observe more differences in the evolution of probabilities.

The graphs for PGE and PSGE show the average PCFG probabilities of the 100 runs,
evolved with a learning factor, λ of 1%. In the graphs of the evolution of the Co-PGE
and Co-PSGE probabilities, the values shown are the average of the grammars of the best
individual of each generation, from the 100 runs, and were evolved using a probability of
occurring a mutation of 5% and the Gaussian mutation of N(0, 0.50).

(a) PGE λ = 1%. (b) Co-PGE N(0, 0.50).

(c) PSGE λ = 1%. (d) Co-PSGE N(0, 0.50).

Figure 5.14: Evolution of the non-terminal < expr > of the Pagie Polynomial, using
different methods. Results are averages of 100 runs.

The first non-terminal selected was the < expr > of the Pagie polynomial (Fig. 5.14).
Looking at the graphs of the evolution of probabilities, we see that there are two rules,
< expr >< op >< expr > and (< expr >< op >< expr >), which are the ones that
contain two recursive symbols, that end with less probability (with approximately the
same value) in all methods. As we saw in the previous analyses, this may be a mechanism
to prevent bloat from occurring in individuals. The biggest difference in the adjustments
of probabilities between the methods is in the remaining productions: < var > and <
pre_op > (< expr >).

In this problem we saw that all the proposed methods present statistical differences in
relation to GE (Table 5.2). Despite not surpassing statistically the performance of SGE,
PGE finished with the best mean best fitness (Fig. 5.3). In Fig. 5.14a and 5.14c, referring
to PGE and PSGE, respectively, we see that the evolution of probabilities between the
two methods is very similar. In PSGE the non-terminal < var > ends with slightly higher
probability than < pre_op > (< expr >), with 33% and 30%, respectively, while in PGE
it is the non-terminal < pre_op > (< expr >) that ends with higher probability, with 34%

51

Chapter 5

while < var > ends with 32%.

The co-evolutionary approaches present a very different evolution. In the case of Co-PGE
(Fig. 5.14b), the rule with only one recursive option, < pre_op > (< expr >) stands
out right from the beginning, ending with about 40%, followed by < var > with 27%,
and the remaining productions with 17% and 16%. In the case of Co-PSGE (Fig. 5.14d),
we see a big increase in the probability of selecting < pre_op > (< expr >), in the
first 20 generations, then stabilizes, ending with 63%. The production < var > ends
with 14%, slightly more than the remaining productions < expr >< op >< expr > and
(< expr >< op >< expr >), which end with 12% and 11%, respectively.

In spite of following different approaches to evolve the probabilities of the grammar, none of
the methods was able to surpass the performance of SGE in the Pagie Symbolic Regression
problem.

(a) PGE λ = 1%. (b) Co-PGE N(0, 0.50).

(c) PSGE λ = 1%. (d) Co-PSGE N(0, 0.50).

Figure 5.15: Evolution of the non-terminal < var > of the Boston Housing problem, using
different methods. Results are averages of 100 runs.

For the Boston Housing problem we selected the non-terminal < var > because it is in-
teresting to see which features were considered more relevant to generate better solutions,
among the different methods. The evolution of the probabilities using the different pro-
posed methods is depicted in Fig. 5.15. In this problem all methods were statistically
better than GE (Table 5.2) in test and training, with Co-PSGE being statistically better
than SGE in the test data (Table 5.3).

We can see that the approach followed by PGE (Fig. 5.15a) and PSGE (Fig. 5.15c) is
quite similar, in which the PTRATIO feature ends with higher probability, followed by
RM . In PGE there is a slightly larger difference between the final probabilities than in

52

Validation

PSGE.

In the case of the co-evolutionary strategies, there is a much higher prominence of the
RM feature, ending with 38% in Co-PGE (Fig. 5.15b) and with 44% in Co-PSGE (Fig.
5.15d). This prominence in the RM variable by these two methods might be advantageous
to generate better individuals, since in the training results, the performance of the two
methods was statistically similar compared to SGE, and in the test results, Co-PSGE
managed to overcome the performance of SGE, with statistical differences.

(a) PGE λ = 1%. (b) Co-PGE N(0, 0.50).

(c) PSGE λ = 1%. (d) Co-PSGE N(0, 0.50).

Figure 5.16: Evolution of the non-terminal < B > of the 5-bit Parity problem, using
different methods. Results are averages of 100 runs.

Lastly, we selected the non-terminal < B > of the 5-bit Parity problem. We can observe
through the graphs of Fig. 5.16, that the evolution of the probabilities of the productions
is quite similar between GE, PGE and Co-PGE, being that the non-recursive produc-
tion, < var >, ends with higher probability, and the remaining productions with similar
probabilities among them.

In this problem the behaviour of Co-PSGE stood out (Fig. 5.5), being statistically better
than SGE, and we can see through the evolution of the probabilities on Fig. 5.16d that
it presents a different behaviour in comparison to the other approaches: the probability of
the rule not(< B > or < B >) increases very quickly, stabilizing around generation 15 and
ends with about 96%, while the rule not(< B > and < B >) ends with 3%, and the others
with a value very close to 0%. In the performance analysis we also saw the mean best
fitness of the solutions decreasing rapidly in the first 15 generations and then decreasing
more slowly. The most prominent rule has two recursive productions which encourages the
creation of very large individuals.

53

Chapter 5

In both the Pagie and 5-bit Parity analysis, we saw that Co-PSGE introduced too much
bias in a recursive production, which leads to the creation of large individuates. However,
while in PGE and Co-PGE bias in recursive productions can lead to the creation of many
invalid individuals (because the solutions are limited by the genotype size, and the codons
may end before creating a valid individual), in PSGE and Co-PSGE this does not happen
because the genotype is dynamic and, in case the depth limit is reached, only non-recursive
productions can be chosen, creating a valid individual.

In the 5-bit Parity problem, Co-PSGE (Fig. 5.16d) evolved the grammar so that the only
non-recursive option of the non-terminal < B > (< var >) ends with probability of being
selected very close to zero. When the depth limit is reached this is the only rule that can
be chosen, so even though it has probability close to zero it does not prevent the rule from
being chosen.

5.3 Representation Analysis

To study the redundancy and locality of the different methods, we resort to the metric
Mutation Innovation (MI) which represents the phenotypic distance between two individ-
uals. This distance will be calculated using the dynamic programming algorithm proposed
by Zhang et al. [52] in which three types of operations are considered: edit (in which the
label of a node is modified), remove (a node is eliminated and its children become children
of the parent) and insert (a node is added to the tree, and the children of its parent node
become its children). This study is based on the work developed by Raidl et al. [26] and
Lourenço et al. [16].

In this analysis we will consider GE, SGE, PGE and PSGE. The proposed approaches will
be studied with and without updating the probabilities, to allow an analysis of the pro-
posed representation without the biased grammar interfering. Note that without updating
the probabilities, the algorithm becomes the same as the co-evolutionary versions if no
mutations are performed on the grammars used to generate each individual, because both
approaches use the same individual’s representation. Moreover, we do not consider co-
evolutionary variants due to the stochasticity that exists simultaneously in the mutations
in the individuals and in the grammar used to map each individual.

The parameters used for this analysis are the same as those presented in Table 5.1. In the
graphics where the probabilities of the PGE and PSGE grammars are updated, a learning
factor of 5% was used. Regarding the mutation, for GE, the selected codon is replaced by a
new generated one in the interval [0, 255], for PGE is performed a float mutation, in which
the codon is replaced by a new one generated in the interval [0, 1]. In the case of SGE,
the mutated codon is replaced with a different valid option, while in PSGE, a Gaussian
mutation with N(0, 0.50) in the codon value is performed.

This analysis was done for the Quartic polynomial of Symbolic Regression using Grammar
5.6.

5.3.1 Redundancy

Redundancy is related to how changes in genotype result in the same phenotype. The
GE is known for having high redundancy [4], which means that in most cases genotypic
changes result in the same phenotype.

54

Validation

〈start〉 ::= 〈expr〉

〈expr〉 ::= 〈expr〉 〈op〉 〈expr〉 | (〈expr〉)
| 〈pre_op〉 (〈expr〉) | 〈var〉

〈op〉 ::= + | - | * | /

〈pre_op〉 ::= sin | cos | exp | log

〈var〉 ::= x | 1.0

Grammar 5.6: Symbolic Regression grammar for locality and redundancy analysis.

Redundancy will be studied by analysing the frequency of mutations that do not generate
a phenotypic change, that is, whose MI is equal to zero. For this, 10000 repetitions were
made, in which 20 successive mutations were applied to a randomly generated individual.
After each mutation, we compute the phenotypic distance between the new individual and
the original. To better analyse the results, we created an heatmap, where the values of
the distances were placed in 14 intervals on the vertical axis [16], and the 20 mutations,
k, on the horizontal axis. For each position in the graph there is a shaded square, which
represents the percentage of mutated individuals whose MI is in the respective interval
range. The higher the percentage, the darker the square.

Regarding the analysis made to PGE and PSGE, a learning factor of 5% was used with
the best individual resulting from each step, k, used to updated the PCFG probabilities.
After suffering the mutation and the grammar updated, the individuals were remapped.

Fig. 5.17 and 5.18 show the average of the 10000 repetitions, obtained over 20 consecutive
mutations, for GE and PGE. From the graphs we can observe that the MI values in both
methods are very similar. In both methods the percentage of mutations that did not result
in phenotypic changes after a mutation has occurred in the genotype is 92%. This value is
in line with the analysis made by Lourenço et al. [24]. This percentage decreases as more
mutations occur, but at the end of 20 mutations this value is still high, being 50.1% in the
case of GE and 48.9% in the case of PGE.

Figure 5.17: Distribution of the phenotypic distances between an original solution and
mutants iteratively generated over a random walk with 20 steps, using GE. Results are
averages of 10000 runs.

55

Chapter 5

(a) PGE without PCFG update. (b) PGE with PCFG update (λ = 5%).

Figure 5.18: Distribution of the phenotypic distances between an original solution and
mutants iteratively generated over a random walk with 20 steps, using PGE. Results are
averages of 10000 runs.

The gradient of the colour of the graphs is very similar between the GE graph (Fig.
5.17) and the PGE graph without updating probabilities (Fig. 5.18a), however there is
a small difference in the distribution of the gradients with respect to the graph in which
the probabilities were adjusted (Fig. 5.18b). At the end of 20 consecutive mutations
(k = 20), we see that GE and PGE without probability updating have about 5.4% and
5.2%, respectively, of individuals with MI > 100, while PGE with update of the grammar
has only 2.8%. On the other hand, in GE and PGE without probability updating, about
50.1% and 49.5%, respectively, are non-effective mutations (MI = 0), while in the PGE
with grammar updating has about 58%. These values are still very high, as it means that
half of the solutions remained the same as the initial ones.

Through the performance results, we saw that the update of the PCFG probabilities proved
to be valuable for the evolution of solutions. In this analysis, we see that PGE presents
slightly more redundancy after executing the 20 mutations. Although this is normally seen
as a problem, in this case it might be a feature, since the number of mutations where
MI > 100 decreased. Having a MI > 100 may imply that the trees of the individual are
very large, and bigger differences between the k-mutated individual and the original means
we lost the exploitation, trading it with exploration.

Looking at the plot of the distribution of phenotypic distances of SGE (Fig. 5.19), we see
that it does not show redundancy after a mutation, which is justified since in this algorithm
the type of mutation used forces a different production rule to be chosen. In the case of
PSGE (Fig. 5.20), we see that approximately 39% of mutations are not effective (MI = 0).

Although PSGE does not eliminate redundancy completely, it shows lower redundancy
when compared with GE and PGE, showing that the representation used (a set of dynamic
lists, with each list containing the probabilities used to choose the productions of each non-
terminal) reduces the number of non-effective mutations. Furthermore, as k-mutations are
made, the percentage of cases in which MI = 0 diminishes gradually, being very close to
zero after 5 consecutive mutations.

PSGE also presents higher percentage of k-mutated individuals whose phenotypic changes
exceed the distance of 100 (MI > 100) when compared to the original individual, which
indicates that PSGE is favouring the emergence of larger individuals. In the case of SGE,
at the end of 20 mutations it ends with approximately 7% of individuals with MI > 100,

56

Validation

Figure 5.19: Distribution of the phenotypic distances between an original solution and
mutants iteratively generated over a random walk with 20 steps, using SGE. Results are
averages of 10000 runs.

(a) PSGE without grammar update. (b) PSGE with grammar update (λ = 5%).

Figure 5.20: Distribution of the phenotypic distances between an original solution and
mutants iteratively generated over a random walk with 20 steps, using PSGE. Results are
averages of 10000 runs.

whereas PSGE without updating probabilities ends with approximately 26.5%. Looking
at the PSGE graph in which the grammar was updated (Fig. 5.20b), we see that the
percentage of MI > 100 is lower when compared to the plot where the grammar was not
updated (Fig. 5.20a), as observed in PGE, ending with 16.4%.

It is also important to highlight that in PSGE (Fig. 5.20a) there is a smoother transition in
the colour of the gradient in the diagonal, with a higher percentage of individuals with more
phenotypic differences in relation to the original individual. By having individuals with
different trees sizes, we have variety in the solutions, which results in a better exploration
of the search space. In SGE we can see a higher percentage of individuals with phenotypic
distances between 10 and 40 (10 < MI < 40).

In the PSGE graph with grammar update (Fig. 5.20b), we see a break in the gradient at
steps k= 5, 6, and 15. To better understand this behaviour, we repeated the analysis using
different seeds, and verified that the breaks are common, and there is no pattern to its
occurrence, i.e., it can happen at any step. Although a more detailed analysis is needed to

57

Chapter 5

understand this behaviour, for example, analysing the size of the trees, see the distribution
of solutions by the search space at the beginning and compare it with the evolution of the
probabilities, we can assume that this behaviour is related to the update of the grammars
themselves. Besides the fact that at each step a mutation occurs, the phenotype of the
individual may change due to the change of the probabilities of the grammar, for example,
if the mutation performed is not effective, the phenotype may change anyway.

In the redundancy analysis of GE (Fig. 5.17), PGE (Fig. 5.18a) and PSGE (Fig. 5.20a)
without the grammar update, we highlight that the methods have higher percentage of
individuals with phenotypic differences compared to the original (greater than 100). We
will now explain why we do not see the same behaviour in SGE.

The first factor to take into consideration, is that the type of mutation used by the methods
is different. In GE and PGE the codon is replaced by a randomly generated value within
the established range. In PSGE, a Gaussian mutation is performed to the codon, with
N(0, 0.50). The mutation of these three methods despite changing the codon value of the
genotype, does not prevent the codon from being mapped again into the same derivation
rule, hence the redundancy. SGE mutation randomly selects a codon (an integer value
representing a derivation rule) and randomly replaces it with a different valid option,
resulting in no redundancy. Also note that solutions are limited in all methods. In the
case of GE and PGE, they are limited by the size of the genotype, and in the case of SGE
and PSGE, they are bounded by the depth limit.

Taking this into account, we can also say that GE, PGE, and PSGE mutation is indepen-
dent, i.e., the probability of choosing a derivation rule does not depend on the previous
derivation rule, and SGE mutation is dependent. The difference in the type of mutation
can affect the size of individual’s trees and therefore, when mutations occur, cause more
differences between phenotypes.

We will now study the probabilities of selecting different production rules, using p(A),
to represent the probability of an event A occurring, and p(A|B) to define a conditional
probability that refers to the probability of an eventA happening, knowing thatB occurred.
It is also worth noting that p(A|B) = p(A) is true if A and B are independent events.
Using the productions of the non-terminal < expr > of the grammar presented as example
(Grammar 5.6), let us consider R the event of choosing a recursive production, and R̄ the
event of choosing a non-recursive production. When generating the individuals for the
methods, p(R) = 75% and p(R̄) = 25%, because the non-terminal < expr > has three
recursive and one non-recursive production rules. In case a mutation occurs in the list
referring to the non-terminal < expr >, the probabilities between the methods will be
different. In SGE, we have to consider conditional probabilities, as the new production to
be chosen randomly depends on the previous one. Since the previous production cannot
be chosen again, we have: p(R|R) = 2/3 ≈ 66%, p(R|R̄) = 100%, p(R̄|R) = 1/3 ≈ 33%,
and p(R̄|R̄) = 0%. In GE, PGE, and PSGE, R and R̄ are independent events, because
the occurrence of one event, does not affect the probability of the next event, so p(R|R) =
p(R|R̄) = p(R) = 3/4 = 75%, and p(R̄|R) = p(R̄|R̄) = p(R̄) = 1/4 = 25%.

In the generation of individuals, the probability of whether or not a recursive production
occurs is the same in all methods (because it does not depends on the previous production
rule chosen), so the individuals are more likely to have a lot of recursive productions in the
phenotype, as these have 75% probability of being expanded. This is verified by examining
the graphs (Fig. 5.17, 5.18, 5.19 and 5.19), as at the first step (k = 1) the percentage of
MI > 100 is very similar between the methods: 0.32% for GE, 0.39% for PGE, 3.01% for
SGE, and 3.13% for PSGE.

58

Validation

Considering the case in which is selected a production rule of the non-terminal < expr >
to mutate, there is 75% probability that the rule is recursive. If the rule is replaced with
another recursive production (p(R|R)), the tree will either maintain its size or increase,
whereas if it is replaced with a non-recursive production (p(R̄|R)), its size will decrease.
In the case of GE, PGE, and PSGE p(R̄|R) = p(R̄) = 25%. In SGE, p(R̄|R) = 1/3 ≈
33%. SGE has higher probability of reducing the individual’s tree, which may result in
SGE producing smaller individuals and, therefore, fewer differences between individuals.
These results require further research to analyse the size of the trees between the different
methods, and other possible causes for this difference in the behaviour.

As for the analysis of PGE and PSGE when updating probabilities (Fig. 5.18b and 5.20b),
we saw that the percentage of individuals with MI > 100 went from 5.2% to 2.8% in
the case of PGE, and from 26.5% to 16.4%, in the case of PSGE. We also showed from
the prior performance analysis that these methods present better or equivalent to their
variants in most problems. The analysis of updating the probabilities of PGE (Section 5.2)
showed that for the explosive grammars, the probabilities evolve to favour non-recursive
production rules, balancing the weights of the grammar. We also noticed that, despite a
decrease in the percentage of cases whenMI > 100, the percentage of redundancy increased
somewhat, rising from 48.9% to 58.9% in the case of PGE and from 0.2 percent to 1% in
the case of PSGE. This behaviour is expected in grammars with only one non-recursive
option, because by increasing the probability of this rule being selected, in addition to
balancing the bias of the non-recursive and recursive symbols of the grammar, we are also
increasing the probability of choosing that production again, hence the slightly increase in
the redundancy.

5.3.2 Locality

Locality refers to how changes in genotype affect the phenotype. A representation is said
to have high locality if small changes in genotype result in small changes in the phenotype,
resulting in a better exploration of the search space. It has been extensively studied in the
literature that GE suffers from low locality [3].

The analysis of the locality will be done by calculating the MI between a random individual
and a individual resulting from a mutation that caused effective changes in the phenotype
[26]. This process was repeated 10000 times, and 20 effective mutations (MI > 0) were
performed iteratively. At each iteration the MI value of the new and original individual
was calculated, saving the average of all repetitions.

Two separate graphs were made, one in which PGE and PSGE were run without updating
the probabilities of the grammar (Fig. 5.21a), and another in which the probabilities were
updated with the best individual of the 10000 at each k-mutation, using a learning factor,
λ, of 5% (Fig. 5.21b).

A line representing the average value of 10000 measurements of the phenotypic distance
between two randomly generated solutions was placed horizontally to serve as a guide.

By looking at Fig. 5.21a, we notice that the lines for GE and PGE are very similar. After
5 successive mutations (k = 5), the solutions start to have higher MI than the average of
the phenotypic differences between two random solutions. This behaviour is considered
as low locality since the trees already start to be very different. The SGE line presents
a smoother MI increase, and at the end of 20 consecutive mutations, this value is below
the line that represents the distance between two random solutions. This means that each
mutation causes few changes in the phenotype of the individual, resulting in high locality,

59

Chapter 5

(a) PGE and PSGE without PCFG probabili-
ties update.

(b) PGE and PSGE with PCFG probabilities
update (λ = 5%).

Figure 5.21: Evolution of MI over a random walk with 20 steps, composed just by effective
mutations (MI > 0). Results are averages of 10000 runs.

which allows more exploitation of the search space.

In the redundancy analysis PSGE had a different behaviour from the other methods,
presenting less redundancy than GE and PGE, but higher than SGE, so it was expected
that the MI line in the locality analysis would be between the line of SGE and GE, which
does not happen. In PSGE the MI has a much more accentuated rise, surpassing the line
of the average distance between two random solutions around mutation 4, before GE and
PGE. Unlike the other methods, the PSGE line does not seem to stabilize.

The results of the evolution of MI, in which the grammar of PGE and PSGE was updated
(Fig. 5.21b), show what we verified in the redundancy analysis: with the updating of
the probabilities of the grammar, the MI growth is slower than without updating the
probabilities (Fig. 5.21a). For PGE, we see that around the 7th mutation (k = 7) the
growth of the line changes, slowly starting to decrease, and approaching the line of the
average between two random individuals. In PSGE we see that with the probabilities’
update the line growth is slower, being similar with the growth of GE and PGE until
approximately k = 7 however it still ends with higher values than the other methods.

In the redundancy analysis, we exposed a theory to explain why GE, PGE and PSGE
have higher percentage of mutated individuals with MI > 100 with respect to the original
individuals. In the locality analysis, only effective mutations are considered (MI > 0), so
by removing the redundancy from the mutations, the probabilities of generating recursive
productions after a mutation is the same between the methods, and therefore we can say
that there are more factors contributing to mutations causing many differences between
phenotypes.

From the graphs (Fig. 5.21), we saw that GE and PGE have higher mean of MI than
SGE, i.e., less locality. This difference had already been studied by Lourenço et al. [24],
who argued that the high locality of SGE is a consequence of the representation used
by the individuals. In GE and PGE the genotype is a list of codons, and in SGE and
PSGE it is a set of dynamic lists, one list for each non-terminal. PSGE uses the same
representation as SGE, however the codons are different: in SGE they are the indexes
of production rules, while in PSGE they are real values representing the probability of
choosing a production rule from the PCFG. Another difference between PSGE and SGE,
which may be related to the fact that PSGE has very low locality, is that PSGE uses

60

Validation

a Gaussian mutation. While the other methods use random mutation, i.e. the codon
is replaced by a random value, PSGE mutation adds a value generated with a Gaussian
distribution to the value of the codon selected for mutation. This difference in the mutation
used may be favouring recursive rules, however further research is required to understand
the impact of the representation and type of mutation used (different parameters of the
Gaussian distribution and different types of mutation such as random should be considered)
in terms of performance, redundancy and locality.

61

This page is intentionally left blank.

Chapter 6

Conclusion

Grammatical Evolution (GE) is a grammar-based Genetic Programming (GP) variant that
has attracted the attention of many researchers and practitioners, since its proposal in the
late 1990s and it has been applied with success to many problem domains. However, it
has been shown that it suffers from some issues, such as low locality and high redundancy
[3, 4].

In grammar-based GP, the choice of the grammar has a significant impact on the quality
of the generated solutions as it is the grammar that defines the space of possible solutions.
Our goal work was to create a variant of GE that could guide the search towards better
solutions, inserting bias in the production rules that generate better individuals, in order
to achieve a better overall performance, and at the same time overcome the problems of
GE.

In this work we proposed four different variants of GE, introducing alternative represen-
tations of individuals, a new mapping mechanism relying on a Probabilistic Context-Free
Grammar (PCFG), and two techniques to evolve the grammar’s probability. In concrete,
we present Probabilistic Grammatical Evolution (PGE), in which the genotype of an in-
dividual is a variable length sequence of floats, and the genotype-phenotype mapping is
performed using a PCFG. Each derivation rule is assigned a probability, which is updated
based on the number of times that each rule was expanded by the chosen individual. We
alternate between the best individual overall and the best individual of the current gen-
eration in order to maintain a balance between global and local exploration. Later on
we adapted PGE to Structured Grammatical Evolution (SGE), resulting in Probabilistic
Structured Grammatical Evolution (PSGE). The genotype in PSGE is a set of dynamic
lists, one for each non-terminal of the grammar. Each codon in the list represents the like-
lihood of selecting a production rule. The PCFG is updated and individuals are remapped
at the end of each generation, same as in PGE.

Co-evolutionary Probabilistic Grammatical Evolution (Co-PGE) uses as representation of
individuals a list of probabilities, which are mapped into production rules using a PCFG.
Each individual co-evolves with its own grammar, and at each generation the grammar
can be mutated, changing the probabilities of the production rules. Co-evolutionary Prob-
abilistic Structured Grammatical Evolution (Co-PSGE) was created by adapting this co-
evolutionary process to PSGE. The individuals of Co-PSGE have a set of dynamic lists as
their genotype, and each list contains the probabilities that are mapped into production
rules for each non-terminal, using the PCFG. At the end of each generation the individuals
are remapped.

63

Chapter 6

The proposed methods were compared to the standard versions of GE and SGE on different
benchmark problems, analysing the evolution of the mean best fitness. In four of the
six problems studied, PGE and Co-PGE were statistically better than GE, while in the
remaining two were statistically similar. Despite being better than GE for most problems,
the approaches were only able to match SGE’s performance in one problem each.

In terms of PSGE and Co-PSGE performance, in all problems they were statistically better
than GE. In four cases, PSGE performed statistically similar to SGE, and in two problems,
it performed slightly worse. In three instances, the Co-PSGE performed statistically better,
in one problem it performed similarly, and in two problems it performed slightly worse.

The results showed that evolving a grammar’s probabilities along the evolutionary process
can help to guide the solutions towards better fitness, creating an approach that is able to
compete with SGE (Co-PSGE).

We were able to validate the usefulness of the evolved PCFG by analysing the evolution of
probabilities over generations. We observed a marginal increase in the probability of the
non-recursive rule when explosive grammars were used (more recursive than non-recursive
production rules). This pattern was observed in all five explosive non-terminals symbols
examined. By inserting bias in the minority rule, we are balancing the grammar, which
allows us to generate more individuals of varying sizes, which is beneficial for sampling
different solutions from the search space [11].

After the evolutionary process, we are left with a grammar specialized for a certain problem,
which can be reused to generate a sample population with better initial fitness. In addition,
it gives us an idea of which production rules are more relevant to generate better individuals
and helps to better understand the characteristics of the problem. On the other hand, in
case we have information about the problem, we can also manually adjust the probabilities
to guide the search process.

We investigated the methods’ locality and found that PGE presents higher locality than
GE, which is beneficial for exploitation an exploration of the search space. We also looked at
redundancy, and observed that the variants of GE have similar issues of high redundancy.
On the other hand, SGE variants showed lower redundancy, being almost zero after 4
consecutive mutations.

6.1 Future Work

We present two different mechanisms to change the bias of grammars. For future work, it
would be interesting to explore other approaches.

After the analysis performed, there are some behaviours of the methods that are interest-
ing to explore. Given the results obtained in the locality and redundancy study, future
research will be needed to better understand the impact of the representation and variation
operators used, and how we can improve the results. We should also conduct an analysis
of the distribution of individuals over the search space, and analyse the effect that the
parameters (i.e., learning factor, in the case of PGE and PSGE, and mutation probability
and standard deviation of Gaussian mutation, in Co-PGE and Co-PSGE) have on the
exploration of the solutions. To complete this analysis, it would be interesting to examine
the size and shape of the solution trees.

The study carried out on the evolution of probabilities showed us that the methods tend
to balance the weights of non-recursive and recursive productions, and introduce bias in

64

Conclusion

the most important rules to create better solutions. Taking this into account, it will be
interesting to examine the response of the algorithms to different types of grammars. One
suggestion is to use grammars with different numbers of productions for the same non-
terminal, or redundant productions, following, for example, an analysis like the one done
by Nicolau et al. [5], in which explosive, balanced, unlinked, with a single non-terminal
symbol, and more grammars were used. It will also be interesting to see the behaviour
with randomly generated grammars, or grammars biased to generate bad solutions.

65

References

[1] C. Ryan, M. O'Neill, and J.J. Collins, editors. Handbook of Grammatical Evolu-
tion. Springer International Publishing, 2018. doi: 10.1007/978-3-319-78717-6. URL
https://doi.org/10.1007/978-3-319-78717-6.

[2] J. R. Koza. Genetic programming as a means for programming computers by natural
selection. Statistics and Computing, 4(2), June 1994. doi: 10.1007/bf00175355. URL
https://doi.org/10.1007/bf00175355.

[3] F. Rothlauf and M. Oetzel. On the locality of grammatical evolution. In Lecture
Notes in Computer Science, pages 320–330. Springer Berlin Heidelberg, 2006. doi:
10.1007/11729976_29. URL https://doi.org/10.1007/11729976_29.

[4] F. Rothlauf and D. E. Goldberg. Redundant representations in evolutionary com-
putation. Evolutionary Computation, 11(4):381–415, December 2003. doi: 10.1162/
106365603322519288. URL https://doi.org/10.1162/106365603322519288.

[5] M. Nicolau and A. Agapitos. Understanding grammatical evolution: Grammar de-
sign. In Handbook of Grammatical Evolution, pages 23–53. Springer International
Publishing, 2018. doi: 10.1007/978-3-319-78717-6_2. URL https://doi.org/10.
1007/978-3-319-78717-6_2.

[6] N. Lourenço, F. Assunção, F. B. Pereira, E. Costa, and P. Machado. Structured gram-
matical evolution: A dynamic approach. In Handbook of Grammatical Evolution, pages
137–161. Springer International Publishing, 2018. doi: 10.1007/978-3-319-78717-6_6.
URL https://doi.org/10.1007/978-3-319-78717-6_6.

[7] P. A. Whigham and Department Of Computer Science. Grammatically-based genetic
programming, 1995.

[8] C. Ryan, J.J. Collins, and M. O Neill. Grammatical evolution: Evolving programs for
an arbitrary language. In Lecture Notes in Computer Science, pages 83–96. Springer
Berlin Heidelberg, 1998. doi: 10.1007/bfb0055930. URL https://doi.org/10.1007/
bfb0055930.

[9] P. A. Whigham, G. Dick, J. Maclaurin, and C. A. Owen. Examining the "best of
both worlds" of grammatical evolution. In Proceedings of the 2015 Annual Conference
on Genetic and Evolutionary Computation. ACM, July 2015. doi: 10.1145/2739480.
2754784. URL https://doi.org/10.1145/2739480.2754784.

[10] M. O’Neill and C. Ryan. Grammatical evolution by grammatical evolution: The
evolution of grammar and genetic code. In Lecture Notes in Computer Science, pages
138–149. Springer Berlin Heidelberg, 2004. doi: 10.1007/978-3-540-24650-3_13. URL
https://doi.org/10.1007/978-3-540-24650-3_13.

66

https://doi.org/10.1007/978-3-319-78717-6
https://doi.org/10.1007/bf00175355
https://doi.org/10.1007/11729976_29
https://doi.org/10.1162/106365603322519288
https://doi.org/10.1007/978-3-319-78717-6_2
https://doi.org/10.1007/978-3-319-78717-6_2
https://doi.org/10.1007/978-3-319-78717-6_6
https://doi.org/10.1007/bfb0055930
https://doi.org/10.1007/bfb0055930
https://doi.org/10.1145/2739480.2754784
https://doi.org/10.1007/978-3-540-24650-3_13

References

[11] R. Harper. GE, explosive grammars and the lasting legacy of bad initialisation. In
IEEE Congress on Evolutionary Computation. IEEE, July 2010. doi: 10.1109/cec.
2010.5586336. URL https://doi.org/10.1109/cec.2010.5586336.

[12] M. Nicolau. Automatic grammar complexity reduction in grammatical evolution.
2004.

[13] M. O’Neill, A. Brabazon, M. Nicolau, S. McGarraghy, and P. Keenan. grammatical
evolution. In Genetic and Evolutionary Computation – GECCO 2004, pages 617–
629. Springer Berlin Heidelberg, 2004. doi: 10.1007/978-3-540-24855-2_70. URL
https://doi.org/10.1007/978-3-540-24855-2_70.

[14] H. Kim and C. W. Ahn. A new grammatical evolution based on probabilistic context-
free grammar. In Proceedings in Adaptation, Learning and Optimization, pages 1–12.
Springer International Publishing, 2015. doi: 10.1007/978-3-319-13356-0_1. URL
https://doi.org/10.1007/978-3-319-13356-0_1.

[15] H. Kim, H. Kang, and C. W. Ahn. A conditional dependency based probabilistic model
building grammatical evolution. IEICE Transactions on Information and Systems,
E99.D(7):1937–1940, 2016. doi: 10.1587/transinf.2016edl8004. URL https://doi.
org/10.1587/transinf.2016edl8004.

[16] N. Lourenço, F. B. Pereira, and E. Costa. SGE: A structured representation for
grammatical evolution. In Lecture Notes in Computer Science, pages 136–148. Springer
International Publishing, 2016. doi: 10.1007/978-3-319-31471-6_11. URL https:
//doi.org/10.1007/978-3-319-31471-6_11.

[17] C. Ryan, A. Azad, A. Sheahan, and M. O’Neill. No coercion and no prohibition, a posi-
tion independent encoding scheme for evolutionary algorithms – the chorus system. In
Lecture Notes in Computer Science, pages 131–141. Springer Berlin Heidelberg, 2002.
doi: 10.1007/3-540-45984-7_13. URL https://doi.org/10.1007/3-540-45984-7_
13.

[18] J. Mégane, N. Lourenço, and P. Machado. Probabilistic grammatical evolution. In
Ting Hu, Nuno Lourenço, and Eric Medvet, editors, Genetic Programming, pages
198–213, Cham, 2021. Springer International Publishing. ISBN 978-3-030-72812-0.

[19] M. Nicolau. Understanding grammatical evolution: initialisation. Genetic Pro-
gramming and Evolvable Machines, 18(4):467–507, July 2017. doi: 10.1007/
s10710-017-9309-9. URL https://doi.org/10.1007/s10710-017-9309-9.

[20] C. Ryan and R. M. A. Azad. Sensible initialisation in grammatical evolution. In Al-
wyn M. Barry, editor, GECCO 2003: Proceedings of the Bird of a Feather Workshops,
Genetic and Evolutionary Computation Conference, pages 142–145, Chigaco, 11 July
2003. AAAI.

[21] D. Fagan, M. Fenton, and M. O'Neill. Exploring position independent initialisation in
grammatical evolution. In 2016 IEEE Congress on Evolutionary Computation (CEC).
IEEE, July 2016. doi: 10.1109/cec.2016.7748331. URL https://doi.org/10.1109/
cec.2016.7748331.

[22] S. Luke. Two fast tree-creation algorithms for genetic programming. IEEE Transac-
tions on Evolutionary Computation, 4(3):274–283, 2000. doi: 10.1109/4235.873237.
URL https://doi.org/10.1109/4235.873237.

67

https://doi.org/10.1109/cec.2010.5586336
https://doi.org/10.1007/978-3-540-24855-2_70
https://doi.org/10.1007/978-3-319-13356-0_1
https://doi.org/10.1587/transinf.2016edl8004
https://doi.org/10.1587/transinf.2016edl8004
https://doi.org/10.1007/978-3-319-31471-6_11
https://doi.org/10.1007/978-3-319-31471-6_11
https://doi.org/10.1007/3-540-45984-7_13
https://doi.org/10.1007/3-540-45984-7_13
https://doi.org/10.1007/s10710-017-9309-9
https://doi.org/10.1109/cec.2016.7748331
https://doi.org/10.1109/cec.2016.7748331
https://doi.org/10.1109/4235.873237

Chapter 6

[23] E. Murphy, E. Hemberg, M. Nicolau, M. O’Neill, and A. Brabazon. Grammar
bias and initialisation in grammar based genetic programming. In Lecture Notes in
Computer Science, pages 85–96. Springer Berlin Heidelberg, 2012. doi: 10.1007/
978-3-642-29139-5_8. URL https://doi.org/10.1007/978-3-642-29139-5_8.

[24] N. Lourenço, F. B. Pereira, and E. Costa. Unveiling the properties of structured
grammatical evolution. Genetic Programming and Evolvable Machines, 17(3):251–
289, February 2016. doi: 10.1007/s10710-015-9262-4. URL https://doi.org/10.
1007/s10710-015-9262-4.

[25] E. Medvet. A comparative analysis of dynamic locality and redundancy in gram-
matical evolution. In Lecture Notes in Computer Science, pages 326–342. Springer
International Publishing, 2017. doi: 10.1007/978-3-319-55696-3_21. URL https:
//doi.org/10.1007/978-3-319-55696-3_21.

[26] G. R. Raidl and J. Gottlieb. Empirical analysis of locality, heritability and heuristic
bias in evolutionary algorithms: A case study for the multidimensional knapsack
problem. Evolutionary Computation, 13(4):441–475, December 2005. doi: 10.1162/
106365605774666886. URL https://doi.org/10.1162/106365605774666886.

[27] C. Darwin. On the Origin of Species by Means of Natural Selection. Murray, London,
1859. or the Preservation of Favored Races in the Struggle for Life.

[28] A. E. Eiben and J. E. Smith. Introduction to Evolutionary Computing. Springer Berlin
Heidelberg, 2015. doi: 10.1007/978-3-662-44874-8. URL https://doi.org/10.1007/
978-3-662-44874-8.

[29] R. Poli, W. B. Langdon, and N. F. McPhee. A Field Guide to Genetic Programming.
Lulu Enterprises, UK Ltd, 2008. ISBN 1409200736.

[30] E. Burke, S. Gustafson, and G. Kendall. Ramped half-n-half initialisation bias in
GP. In Genetic and Evolutionary Computation — GECCO 2003, pages 1800–1801.
Springer Berlin Heidelberg, 2003. doi: 10.1007/3-540-45110-2_71. URL https://
doi.org/10.1007/3-540-45110-2_71.

[31] J. R. Woodward. Modularity in genetic programming. In Lecture Notes in Com-
puter Science, pages 254–263. Springer Berlin Heidelberg, 2003. doi: 10.1007/
3-540-36599-0_23. URL https://doi.org/10.1007/3-540-36599-0_23.

[32] G. Gerules and C. Janikow. A survey of modularity in genetic programming. 2016
IEEE Congress on Evolutionary Computation (CEC), pages 5034–5043, 2016.

[33] J. R. Koza. Genetic Programming II: Automatic Discovery of Reusable Programs.
MIT Press, Cambridge, MA, USA, 1994. ISBN 0262111896.

[34] M. O’Neill and C. Ryan. Grammatical Evolution: Evolutionary Automatic Program-
ming in an Arbitrary Language. Springer US, 2003. doi: 10.1007/978-1-4615-0447-4.
URL https://doi.org/10.1007/978-1-4615-0447-4.

[35] A. Bartoli, M. Castelli, and E. Medvet. Weighted hierarchical grammatical evolution.
IEEE Transactions on Cybernetics, 50(2):476–488, November 2018. doi: 10.1109/
tcyb.2018.2876563. URL https://doi.org/10.1109/tcyb.2018.2876563.

[36] D. Fagan, M. O’Neill, E. Galván-López, A. Brabazon, and S. McGarraghy. An
analysis of genotype-phenotype maps in grammatical evolution. In Lecture Notes
in Computer Science, pages 62–73. Springer Berlin Heidelberg, 2010. doi: 10.1007/
978-3-642-12148-7_6. URL https://doi.org/10.1007/978-3-642-12148-7_6.

68

https://doi.org/10.1007/978-3-642-29139-5_8
https://doi.org/10.1007/s10710-015-9262-4
https://doi.org/10.1007/s10710-015-9262-4
https://doi.org/10.1007/978-3-319-55696-3_21
https://doi.org/10.1007/978-3-319-55696-3_21
https://doi.org/10.1162/106365605774666886
https://doi.org/10.1007/978-3-662-44874-8
https://doi.org/10.1007/978-3-662-44874-8
https://doi.org/10.1007/3-540-45110-2_71
https://doi.org/10.1007/3-540-45110-2_71
https://doi.org/10.1007/3-540-36599-0_23
https://doi.org/10.1007/978-1-4615-0447-4
https://doi.org/10.1109/tcyb.2018.2876563
https://doi.org/10.1007/978-3-642-12148-7_6

References

[37] N. Lourenço, J. Ferrer, F. B. Pereira, and E. Costa. A comparative study of dif-
ferent grammar-based genetic programming approaches. In Lecture Notes in Com-
puter Science, pages 311–325. Springer International Publishing, 2017. doi: 10.1007/
978-3-319-55696-3_20. URL https://doi.org/10.1007/978-3-319-55696-3_20.

[38] K. Kim, Y. Shan, N. X. Hoai, and R. I. McKay. Probabilistic model building in genetic
programming: a critical review. Genetic Programming and Evolvable Machines, 15
(2):115–167, September 2013. doi: 10.1007/s10710-013-9205-x. URL https://doi.
org/10.1007/s10710-013-9205-x.

[39] P. Larrañaga and J. A. Lozano, editors. Estimation of Distribution Algorithms:
A New Tool for Evolutionary Computation. Springer US, 2002. doi: 10.1007/
978-1-4615-1539-5. URL https://doi.org/10.1007/978-1-4615-1539-5.

[40] M. O’Neill and A. Brabazon. mGGA: The meta-grammar genetic algorithm.
In Lecture Notes in Computer Science, pages 311–320. Springer Berlin Heidel-
berg, 2005. doi: 10.1007/978-3-540-31989-4_28. URL https://doi.org/10.1007/
978-3-540-31989-4_28.

[41] A. Joshi. Tree-adjoining grammars and lexicalized grammars ms-cis-91-22 linc lab
197. 1991.

[42] E. Anders and P. Hemberg. An exploration of grammars in grammatical evolution.
2010.

[43] J. McDermott, K. De Jong, U. O'Reilly, D. R. White, S. Luke, L. Manzoni, M. Castelli,
L. Vanneschi, W. Jaskowski, K. Krawiec, and R. Harper. Genetic programming needs
better benchmarks. In Proceedings of the fourteenth international conference on Ge-
netic and evolutionary computation conference - GECCO '12. ACM Press, 2012. doi:
10.1145/2330163.2330273. URL https://doi.org/10.1145/2330163.2330273.

[44] T. Bäck, G. Rudolph, and H. Schwefel. Evolutionary programming and evolution
strategies: Similarities and differences. In In Proceedings of the Second Annual Con-
ference on Evolutionary Programming, pages 11–22, 1997.

[45] R. Hinterding. Gaussian mutation and self-adaption for numeric genetic algorithms.
In Proceedings of 1995 IEEE International Conference on Evolutionary Computation,
volume 1, pages 384–, 1995. doi: 10.1109/ICEC.1995.489178.

[46] H. Beyer and H. Schwefel. Evolution strategies – a comprehensive introduction. Nat-
ural Computing, 1:3–52, 2004.

[47] D. Harrison and D. Rubinfeld. Boston Housing Data. http://lib.stat.cmu.edu/
datasets/boston, 1993. [Online; accessed 27-December-2020].

[48] D. H. Wolpert and W. G. Macready. No free lunch theorems for optimization. 1(1):
67–82. doi: 10.1109/4235.585893.

[49] J. Che, Y. Yang, L. Li, X. Bai, S. Zhang, and C. Deng. Maximum relevance minimum
common redundancy feature selection for nonlinear data. Information Sciences, 409-
410:68–86, October 2017. doi: 10.1016/j.ins.2017.05.013. URL https://doi.org/10.
1016/j.ins.2017.05.013.

[50] W. B. Langdon and R. Poli. Why ants are hard. In John R. Koza, Wolfgang Banzhaf,
Kumar Chellapilla, Kalyanmoy Deb, Marco Dorigo, David B. Fogel, Max H. Garzon,
David E. Goldberg, Hitoshi Iba, and Rick Riolo, editors, Genetic Programming 1998:

69

https://doi.org/10.1007/978-3-319-55696-3_20
https://doi.org/10.1007/s10710-013-9205-x
https://doi.org/10.1007/s10710-013-9205-x
https://doi.org/10.1007/978-1-4615-1539-5
https://doi.org/10.1007/978-3-540-31989-4_28
https://doi.org/10.1007/978-3-540-31989-4_28
https://doi.org/10.1145/2330163.2330273
http://lib.stat.cmu.edu/datasets/boston
http://lib.stat.cmu.edu/datasets/boston
https://doi.org/10.1016/j.ins.2017.05.013
https://doi.org/10.1016/j.ins.2017.05.013

Chapter 6

Proceedings of the Third Annual Conference, pages 193–201, University of Wisconsin,
Madison, Wisconsin, USA, 22-25July 1998. Morgan Kaufmann. ISBN 1-55860-548-
7. URL http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/papers/WBL.antspace_
gp98.pdf.

[51] D. Wilson and D. Kaur. How santa fe ants evolve. arXiv: Neural and Evolutionary
Computing, 2013.

[52] K. Zhang and D. Shasha. Simple fast algorithms for the editing distance between trees
and related problems. SIAM Journal on Computing, 18(6):1245–1262, December 1989.
doi: 10.1137/0218082. URL https://doi.org/10.1137/0218082.

70

http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/papers/WBL.antspace_gp98.pdf
http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/papers/WBL.antspace_gp98.pdf
https://doi.org/10.1137/0218082

	Introduction
	Motivation
	Contributions
	Structure

	Background
	Evolutionary Computation
	Related Work
	Validation Metrics

	Probabilistic Grammatical Evolution
	Representation and Mapping
	Co-evolutionary Approach

	Probabilistic Structured Grammatical Evolution
	Representation and Mapping
	Co-evolutionary Approach

	Validation
	Performance Analysis
	The Usefulness of Grammars
	Representation Analysis

	Conclusion
	Future Work

