
 

 

 

 

 

 

                                                                                

 

 

Eduardo de Souza Pais 

 

 

 

Intelligent Document Validation 

INTELLIGENT DOCUMENT VALIDATION USING NATURAL LANGUAGE  

                                                                                                                             PROCESSING AND COMPUTER VISION 

 

                    Internship report in the context of the Master in Informatics Engineering, Specialization in 
                    Intelligent Systems made at Critical Software, advised by Doctor Tiago Baptista (Critical 

Software) and by Professor Doctor António Dourado (DEI-FCTUC) and presented  

at Faculty of Sciences and Technology / Department of Informatics Engineering. 

 

 

 

                      September 2021 

Ed
u

ar
d

o
 d

e 
So

u
za

 P
ai

s 
IN

TE
LL

IG
EN

T 
D

O
C

U
M

EN
T 

V
A

LI
D

A
TO

R
 

IN
TE

LL
IG

EN
T 

D
O

C
U

M
EN

T 
V

A
LI

D
A

TI
O

N
 U

SI
N

G
 N

A
TU

R
A

L 
LA

N
G

U
A

G
E 

P
R

O
C

ES
SI

N
G

 A
N

D
 C

O
M

P
U

TE
R

 V
IS

IO
N

 



 

 

 

 

 

Faculty of Sciences and Technology 

Department of Informatics Engineering 

Intelligent Document Validation  
Intelligent Document Validation using Natural 

Language Processing and Computer Vision 

 

Eduardo de Souza Pais 

 

Internship report in the context of the Master in Informatics Engineering, Specialization in 

Intelligent Systems made at Critical Software, advised by Doctor Tiago Baptista (Critical 

Software) and by Professor Doctor António Dourado (DEI-FCTUC) and presented at Faculty of 

Sciences and Technology / Department of Informatics Engineering. 

 

September 2021 

 



 

ii 

 

 

 

 

 

  



 

iii 

 

Abstract 

Processes in organizations over the past few years have been increasingly automated. 

In order to make them more efficient and practical. However, one area in which 

manual work is still common is document analysis. In this area, due to the ubiquity 

brought by electronic means, the submission of documents has been made, primarily, 

in digital format. Human intervention is still frequent in the analysis of these 

documents for tasks such as validation, information extraction and classification. 

This manual analysis has high costs in terms of time, performance, and possibility of 

human error which could have serious consequences in critical environments. 

Critical Software (CSW) has currently under development a solution that 

addresses this problem, using technologies in the area of Computer Vision (CV), 

Machine Learning (ML) and Natural Language Processing (NLP). The solution 

consists of an Intelligent Document Validation (IDV) system that validates the 

authenticity of the submitted documents and also extracts useful information from 

them in order to make the process more efficient and less susceptible to errors.  

At this internship the objective was to develop a hybrid IDV solution, which uses 

both textual and visual characteristics for document classification, and that ensures 

performance in relation to current models and, simultaneously, ensure robustness in 

the training of the IDV for new types of documents.  This challenge is the main focus 

of the internship at CSW company lasting one academic year. In summary, the stages 

of development are:  individual training and optimization of textual and image-based 

models using transfer learning with convolutional neural networks and transformer 

models, followed by the creation of ensemble models using voting and finally hybrid 

modelling using a late fusion method, ending on results analysis. 

Keywords 

Machine Learning, Deep Learning, Computer Vision, Natural Language Processing, 

Optical Character Recognition  
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Resumo  

Processos em organizações ao longo dos últimos anos têm sido cada vez mais 

automatizados de forma a torná-los mais eficientes e práticos. No entanto, uma área 

em que o trabalho manual ainda é comum é a de análise de documentos. Nesta área, 

devido à ubiquidade trazida por meios eletrónicos, a submissão de documentos tem 

sido feita principalmente em formato digital. Intervenção humana ainda é frequente 

na análise destes documentos para tarefas como validação, extração de informação e 

classificação. Esta análise manual tem custos elevados em termos de tempo, 

desempenho e possibilidade de erro humano que pode ter consequências graves em 

ambientes críticos. 

Critical Software (CSW) tem atualmente em desenvolvimento uma solução que 

aborda este problema, utilizando tecnologias da área de Visão Computacional (CV), 

Aprendizagem Computacional (ML) e Processamento de Linguagem Natural (NLP). 

A solução consiste num sistema de Validação Inteligente de Documentos (IDV) que 

valida a autenticidade dos documentos submetidos e também extrai informação útil 

dos mesmos de forma a tornar o processo mais eficiente e menos suscetível a erros.  

Neste estágio o objetivo foi de desenvolver uma solução IDV híbrida, que utilizou 

características textuais e visuais para a classificação de documentos de forma a 

melhorar o desempenho em relação aos modelos atuais e que assegure robustez em 

relação a novos tipos de documentos. Este desafio foi o foco principal do estágio na 

empresa CSW com duração de um ano letivo. Em resumo, as etapas de 

desenvolvimento foram: treino e otimização individual de modelos textuais e visuais 

recorrendo a aprendizagem por transferência com redes convolucionais e 

transformadores, seguido da criação de modelos de ensemble a partir de métodos de 

votação e por último a criação de modelos híbridos recorrendo a um processo de fusão 

tardia, e terminou com uma análise dos resultados. 
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Chapter 1 Introduction 

 

This project is integrated in the Master of Informatics Engineering course with 

specialization in Intelligent Systems with estimated duration of one academic year. 

 The presented curricular internship took place at Critical Software (CSW) and 

is supervised by advisor Doctor António Dourado, professor at University of Coimbra 

and by Doctor Tiago Baptista, tutor at CSW. 

In this internship I will integrate the current Intelligent Document Validation 

(IDV) Team and help develop new models to classify documents using both its image 

and extracted text.  

In this first chapter it is presented a general overview of the document: in section 

1.1 the context in which the internship takes place as well as the motivations for 

tackling its respective challenges; in section 1.2 it is described the internship’s main 

objectives; in section 1.3 it is detailed the work done as well the knowledge gained 

during the academic year, as well as the planning; in section 1.4 it is described the 

general structure of the document. 

 

1.1 Context and Motivations 

Following the mass digitalization of information in many organizations, there has 

been a growing need for documentation management. This process involves two major 

challenges: document classification and extraction. Document classification consists 

of labelling documents in a certain category based on their textual or visual 

attributes. Document or data extraction consists of the extraction of a document’s 

relevant data which is often unstructured because of the common use of natural 
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language on them. A need for the automation of these processes has risen throughout 

the years due to the fact that they are still, largely, laboured manually which is prone 

to significant errors. This manual labour is also highly repetitive and often slow. In 

the effort of reducing error susceptibility and increasing efficiency and confidence, 

many of these processes are gradually becoming automated, complementing or 

completely replacing the previous manual labor.  

Documents, unlike general images, have varied and structured forms which 

makes difficult the task of accurately extracting information from different types of 

documents. A lot of research has been done on this issue and has resulted in the 

development of applications such as intelligent document classifiers and processors 

with the purpose of accurately classifying and analyzing documents such as CSW 

IDV. 

  

1.2 Goals 

The main objective of this internship is to create and integrate in the current IDV 

platform, new machine learning solutions and models that improve the existing ones 

and allow automation of the training process as well, if possible, for new types of 

documents, in regard to their classification. 

As a brief overview of CSW IDV platform, the IDV has three major services: 

classification, extraction and validation. Classification service is achieved by relying 

on either the document’s visual or textual features to predict and classify a 

document’s category. While document data extraction services are achieved through 

the collection of relevant data, often structured and categorized. Document 

validation, the final service, checks if the last two procedures were successful. 

 At the moment the platform has many document classification algorithms 

ranging from textual classifiers, image classifiers as well as rule-based classifiers and 

has the versatility to integrate new and different types of classifiers.  
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The CSW IDV platform is currently being used, mainly, on structured 

documents, where data is organized and its relations are well defined, such as in a 

form format which is the case of passports, certificates, invoices, citizen cards and 

other types of documents. Having said this, the platform is also able to deal with 

unstructured data through the use of natural language processing algorithms.  

The main goal is to provide this service with a classifier that follows a hybrid 

feature learning approach using both textual and visual data to achieve document 

classification. This hybrid approach has been the target of research in recent works 

with promising results, detailed in section 2.5. The models, if successful, will be 

considered for integration into the current IDV classification service. 

 

1.3 Internship Plan 

In the first semester the first task, defined in the initial Sprint session, was to define 

the scope of the project. This included establishing an initial plan of work as well as 

getting adapt with CSW tools of communication, resource management and 

development. The second task was to acquire theoretical and practical knowledge 

about the fundamental areas of study regarding document classification, more 

specifically on machine learning, computer vision and natural language processing. 

The third task was to study the state of the art of document classification. This 

included the study of works regarding textual document classification, visual 

document classification and also existing hybrid classification approaches. The fourth 

task, to be done simultaneously, was to study the current IDV platform in how it 

operates, its features and functionalities and how the created machine learning 

models would need to be fit for integration. The fifth task was to start writing the 

intermediate dissertation, including the technical specification. In Figure 1 it is 

presented the GANTT diagram, created during planning, regarding the previous first 

semester. 
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For the second semester, in first sprint, a planning meeting was held to discuss 

future work. Followed by another review sprint and the main task during these initial 

sprints will be to set up the research and development environments. The next task 

was to develop a baseline model to be reviewed in the following sprints. Afterwards 

development of the models will begin alongside with simultaneous experimentation. 

Three phases of development are expected with each representing the development 

of one of three main components: textual, visual and hybrid components. In the first 

phase it is expected the development of one of two main components (textual or 

visual). The second version consists of the development of the next component and 

finally the third consists of the development of the hybrid component. All sprints in 

between will serve to review work done and dynamically plan the development of 

each component. The next step planed after development is a final round of testing 

and validation. If successful, possible integration into CSW IDV was considered. The 

final task was to write the internship report. In Figure 2 it is presented the GANTT 

diagram, created during planning, regarding the second semester. 
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Figure 1 - GANTT 1st Semester 
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Figure 2 - GANTT 2nd Semester 
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1.4 Thesis Outline 

The remainder of the dissertation is structured as follows: Chapter 2, Theoretical 

Foundation and State of the Art, presents fundamental theoretical concepts and 

related work regarding the main supporting themes of this project; Chapter 3, 

Technical Specification, presents an overview of CSW IDV platform followed by the 

analysis of the risks and high-level requirements; Chapter 4 – Experimentation and 

Results detailing the development of the overall project as well as results and 

respective analysis and lastly Chapter 5 – Conclusion and Future Work which 

concludes with some last remarks regarding the project as well as possible 

contributions that can be done in the immediate future regarding the project. 
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Chapter 2 Theoretical Foundation and 

State of the Art 

 

In this chapter it is presented the theoretical foundation regarding document 

classification and the state of the art. Starting with the theoretical foundation 

sections 2.1, 2.2, 2.3, 2.4, these provide an overview of the concepts and fields of study 

surrounding document classification and 2.5 consists of the study of related work. 

More specifically, in section 2.1 it is presented an overview of ML, including its most 

common concepts and its implementation in this project’s context, document 

classification. In section 2.2 is presented an overview of deep learning methods. In 

section 2.3 an overview of transformer models. In section 2.4 an overview of natural 

language processing methods, including optical character recognition. Lastly, in 

section 2.5 it is presented related works ranging from text-based document 

classification, image-based document classification and existing hybrid approaches.  

2.1 Machine Learning 

Machine learning (ML) is a field of Artificial Intelligence (AI) that allows a computer 

program to learn and adapt to new data without human intervention (Mitchell, 1997). 

ML algorithms are generally composed of three components: a representation method 

for knowledge such as decision trees, sets of rules, instances, graphical models, neural 

networks, support vector machines (SVM); an evaluation method in which to evaluate 

and compare candidate programs (hypotheses), examples include accuracy, 

prediction, recall, squared error and others and an optimization method, for example 

convex optimization and constrained optimization.  

There are many different types of ML algorithms, the most common ones are: 

supervised learning, unsupervised learning, semi-supervised learning and 
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reinforcement learning. In supervised learning (also known as inductive learning), 

the training data includes the desired outputs which the main task of the learning 

function is to map an input to the output based on the examples given with input-

output pairs (Russell & Norvig, 2020 (4th Ed.)), inferring a function from labelled 

training data consisting of a set of trained examples. In unsupervised learning the 

data does not include the desired outputs and instead relies on detecting patterns in 

the dataset, typically with no human supervision, and models probability densities 

over inputs (Hinton & Sejnowski, 1999). Semi-supervised learning is a ML approach 

that combines where the data is only partially labelled, often being used when the 

acquisition of fully labelled proves to be unfeasible due to its cost (Ratner, et al., 

2017). The final type is reinforcement learning, usually employed in software agent 

models, in which the objective is to teach agents to take actions in an environment in 

order to increase a defined reward focusing on finding a balance between exploration 

and exploitation (Kaelbling, et al., May 1, 1996). 

Several machine learning methods have been used for document classification 

and related tasks such as text classification (Lim, 2019). Examples of ML methods 

are Naïve Bayes, decision trees, support vector machines, k-Nearest Neighbours, 

Hidden Markov models, Maximum entropy, Rocchio’s algorithm and Deep Learning 

(DL) methods which are covered individually in section 2.2. Most non deep learning 

methods used for document classification follow a two-step procedure of hand-crafted 

feature extraction from documents followed by a prediction step where the extracted 

features are fed into a classifier (Minaee, et al., 2020).  

This two-step approach has limitations such as the reliance on hand-crafted 

features which requires heavy feature engineering and analysis. Also, dependence on 

domain knowledge for feature designing makes the created models more difficult to 

generalize to new data, in this project’s context, to new document types. Another 

significant limitation is the fact that these models cannot benefit from the large 

amounts of training data available because of the features or its templates being pre-
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defined. This has led to the rise of ML methods based on artificial neural networks 

(ANN) and also DL methods to address some of these limitations. 

 

2.2 Deep Learning 

 This following section covers relevant deep learning methods and techniques 

used throughout the project as well as some theoretical basis regarding the relation 

between deep learning and document classification task. Section 2.2.1 introduces 

basic concepts of Neural Networks; section 2.2.2 covers convolutional neural 

networks and details its relevancy to the area of Computer Vision as well as provides 

some relevant CNN concepts discussed throughout the project; finally, section 2.2.3 

covers Recurrent Neural Networks and its ability to learn long term dependencies 

and its relevancy to the project. 

2.2.1 Neural Networks 

One of the main ML methods are ANN whose main utility has been to model complex 

patterns and in solving prediction and classification problems.  

 One of the first successful models was the perceptron model by Frank R., it had 

a significant impact as it is essentially a precursor to neural networks and it is still 

used and taught today (Lopez, 2020). It presented a device inspired in biological 

principles that had the ability to learn. A generalized version of the model is 

exemplified in Figure 3 (left), it is composed by inputs, a bias, weights, a combination 

function, an activation function and an output. Learning relies on correctly varying 

the weight values of the active inputs, when the model misclassifies a given examples, 

in order to change the learning function parameters. This model, although only 

capable of classifying linearly separable inputs, was able at the time to tackle real 

world problems such as recognizing printed letters. The model is represented 

mathematically in Equation (1): 

𝑦 =  𝑓(𝑥) =  𝑔 (∑ 𝑥𝑖𝑤𝑖 + 𝑏𝑛
𝑛=1 )   (1) 
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, where y represents the output result, x  = (𝑥1, … , 𝑥𝑛) refers to the vector of input 

features, w the vector of weights, b is the bias term and 𝑔(.) is the activation function.  

 

Figure 3 - The perceptron model (left) and the multi-layer perceptron model (right)   

The training process of the perceptron consists of given a training set of inputs x and 

the respective outputs y, the model adapts the weights, w, and bias, b, to their optimal 

values through a learning function, resulting in an optimal equation 𝑓∗(𝑥). 

 To address the limitation of only solving linear models, an extension to the 

perceptron model was made to include layers of interconnected neurons resulting in 

multi-layer perceptron’s. In this multi-layer architecture, the learning mechanism 

relies on the weights of the perceptron’s hidden layers where every node can influence 

the output. In order to optimize the learning procedure, methods such as 

backpropagation and gradient descent are used. Multi-layer perceptrons are more 

commonly referred to as Feed-forward networks (detailed further in the following 

section 2.2.2.). 

Multi-layer perceptrons, or feed-forward neural networks (FFNN), are composed 

of multiple nodes and allow the representation of more complex and non-linear 

models. Mathematically, a feed-forward network, with just one hidden layer (2 layers 

in total), can be represented by the following Equation (2): 

𝑦 = 𝑓(𝑥) = 𝑔(𝑔′(𝐗′ ∙ 𝐀 + 𝐚) ∙ 𝐁 + 𝐛)  (2) 
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A and B represent the weights of the first and second layer, respectively; functions 

𝑔(. ) and 𝑔′(. ) represent an element-wise, the result of the activation functions 

associated to specific nodes in the layers of network (hidden and output layers).  

 Neural network training in this case is supervised and the goal consists of 

driving f(x) to correspond to 𝑓∗(𝑥). The training data is organized in a way, that for 

every example x, exists a corresponding label 𝑦 ≈ 𝑓∗(𝑥). This value y is the value that 

output needs to correctly produce for each example x value in the input layer. The 

model through adequate methods must obtain the desired value or an approximation 

of it. The most standard methods consist of iteratively apply optimization via 

gradient-based methods. These methods are linked to a cost function. A cost function 

is a measure of similarity between the true (desired) distribution and the predicted 

distribution. Examples of cost functions are the mean squared error for regression 

problems and cross-entropy for classification. The goal of the optimization method, 

like gradient descent, is to decrease the value produced by the cost function, 

minimizing it by updating the parameter in the opposite way of the gradient, making 

the overall model more precise.  

 There are many types of optimization methods, generally referred to as 

“backpropagation”, and many sub-types of them as well, such as gradient descent 

having many variants. These variants differ in training data required to produce a 

gradient and time necessary to produce precise results among others. One of the most 

common optimization methods is the Adaptive Moment Estimation, or simply Adam, 

which is used recurrently throughout this project’s model’s training. This method 

computes the adaptive learning rates for each parameter. Adam, stores an 

exponentially decaying average of past squared gradients v𝑡. This method also keeps 

an exponentially decaying average of past gradients m𝑡, like momentum, represented 

in Equation (3) (Ruder, 2017). 

m𝑡 = β1m𝑡−1 + (1 − 𝛽1) − g𝑡 ,  (3) 

     v𝑡 = B2v𝑡−1 + (1 − β2)g𝑡
2     
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In Equation (3), m𝑡 and v𝑡 are estimates of the first and second moment of the 

gradients, respectively while g𝑡 is the gradient of the objective function at time step 

t. Equation (4) represents the Adam rule. 

θ𝑡+1 = θ𝑡 −
𝜂

√v𝑡+ϵ 
 m𝑡  (4) 

 The algorithm used to apply gradient descent is typically backpropagation, fully 

known as backpropagation of sensitivities, or of gradients, which calculates the 

gradient of the error function with respect to the neural network’s weights. The 

calculation of the gradients proceeds backwards through the network, with the 

gradient of the final layer of weights being calculated first and the gradient of the 

first layer of weights being calculated last. Computations of the gradient from one 

layer are partially reused in the computation of the gradient of the previous layer. 

This approach allows for efficient computation of gradient at each layer (McGonagle, 

et al., 2020). 

 

2.2.2 Convolutional Neural Networks and its relation to Computer Vision 

One of the main fields in AI currently being researched is Computer Vision (CV). This 

field is one of many that aims to bridge the gap between the capabilities of humans 

and machines by enabling machines to view the world as closely as a human would 

perceive it. CV allows for a great number of tasks to be performed such as image and 

video recognition, media recreation, recommendation systems and natural language 

processing. Computer Vision and Deep learning have been linked in recent times with 

CV solutions being developed based on DL methods, one such method being 

convolutional neural networks. 

 A convolutional neural network (CNN), also known as ConvNet, is a Deep 

Learning algorithm (Saha, 2018), being a specialization of neural networks, that 

processes data that has a grid-like topology, e.g., images or sequential time-series 

data. Given an input in the form of an image or equivalent, the CNN assigns 



2.2 Deep Learning 

 

15 

 

relevance, such as weights and biases, to various objects in the input data in order to 

differentiate between them.   

 A CNN is preferred over a traditional neural network such as FFNN for image 

classification. A FFNN might be able to correctly classify simple binary images but it 

doesn’t have the means necessary to handle complex images with pixel dependencies 

throughout. This is because most traditional neural networks use a dense interaction, 

where every output unit interacts with every input unit through the multiplication 

by a matrix of parameters in every layer. CNN use a kernel, also known as filter, with 

smaller size than the input and because of it has sparser interactions which results 

in the ability to detect smaller but more meaningful features. Through the application 

of relevant filters, a CNN is able to capture spatial and temporal dependencies in an 

image. These filters allow for the model to fit to an image dataset due to reduced 

number of parameters and reusable weights.  

 The typical input example for a CNN is an image with RGB (e.g., Figure 4) model 

and the goal with a CNN is to reduce an image into a form that is more easily 

processable but at the same time capturing or keeping features that are relevant for 

prediction as well as to provide scalability to the learning model.  

 

Figure 4 - Input Image of CNN (Saha, 2018) 

 Given an input image, multiple convolutions are performed on it through the 

use of different filters for each one (kernels) typically on layers called a convolutional 

layer resulting in a feature map. The final output of a convolutional layer is a stack 
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of all those feature maps. With these feature maps the network is able to describe 

complex relations between variable by building them upon simpler building blocks 

describing sparce interactions.  

Mathematically, a convolution can be represented by the following Equation (9), 

where images are discrete, which represents an operation of two functions of a real-

valued argument. In Equation (9) x is the input and w the kernel and by changing 

kernel value or matrix it is possible to obtain different kinds of convoluted data, or 

feature maps. 

s(t) = (𝑥 ∗ 𝑤)(𝑡) =  ∫ 𝑥(𝜏)𝑤(𝑡 − 𝜏)𝑑𝜏
∞ 

−∞
 (9) 

The convolutional process in a Convolutional Layer is exemplified in Figure 5, 

with a 5x5x1 image (e.g., greyscale) being convoluted using a 3x3x1 kernel to get a 

3x3x1 convolved feature (or feature map). The way the kernel traverses through the 

image is dependent on a previously defined stride and padding. The kernel shifts 9 

times because the stride’s length is 1 (non-stride), also exemplified in Figure 5 (right).  

Generally, in the convolutional layer it is possible to specify the size and the numbers 

of kernels to be applied, the stride as in how much the convolutional filter at each 

step is traverses with bigger strides meaning less overlap. In images with multiple 

channels (e.g., RGB) the kernel has the identical depth to the input image. The 

general purpose of a convolutional operation is to extract high level features such as 

edges from the input image and there can be multiple convolutional layers in a CNN. 

The first convolutional layer typically extracts edges, gradient orientation colours and 

others while additional layers contribute to the extraction of more high-level features 

thus providing the model with the ability to understand images in a dataset. 



2.2 Deep Learning 

 

17 

 

    

Figure 5 - Convoluting a 5x5x1 image with a 3x3x1 kernel to get a 3x3x1 convolved feature (left); three-

dimensional representation of the movement of the kernel with stride = 1 (right) (Saha, 2018) 

 Another important aspect of CNN is padding. Padding is used in order to gain 

control over the resulting size of the feature map throughout the network, e.g., to 

preserve the size of the features maps as to not have them shrink at each layer. If 

goal is to have a resulting feature map with a smaller dimensionality from the input 

than valid padding needs to be applied; if the goal is to retain the original 

dimensionality than same padding is applied. Figure 6 illustrates the different types 

of padding. 

   

 

 

Figure 6 - Different types of padding (El-Amir & Hamdy, 2019) 

After a convolutional layer there is usually a pooling layer. This layer’s goal is 

to reduce the dimensionality, reducing the number of parameters, by down sampling 
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each feature map individually, reducing the width and height but keeping the depth 

(number of channels) intact. This reduction is useful because it decreases the 

computational power required to process the data and at the same time extracting 

the more discriminative features. There are two main types of pooling: max pooling 

and average pooling. Max pooling returns the maximum value from the portion of the 

image covered by the kernel while average pooling returns the average of all those 

values, exemplified in Figure 7. Max pooling also discards unnecessary activations 

and performs de-noising as well dimensionality reduction. Average pooling only 

performs dimensionality reduction and usually max pooling performs betters than it. 

 

Figure 7 - Types of pooling (Saha, 2018) 

 With convolutional layers and pooling layers, the CNN is able to understand 

image features. They are followed by a flatten layer which flattens the final output 

into a column vector in order for it to be compatible as an input for a neural network. 

After the conversion the output is fed into a regular neural network to perform 

classification or prediction. Finally, the output of the flatten layer can be introduced 

to a fully connected (FC) layer, associated with an activation function such as the 

rectified linear unit (ReLU) (Nair & Hinton, 2010) to learn non-linear combinations 

of the high-level features extracted with the previous convolutional layer. 

Backpropagation can then be applied to every iteration of training over a series of 

epochs, meanwhile, the algorithm is distinguishing between discriminative and 

lower-level features and classifying them using an activation function (e.g., softmax) 

in a final layer. Figure 8 exemplifies this architecture. The last soft-max layer would 

then be followed by a classification layer. 
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Figure 8 - Example of a full CNN (Saha, 2018) 

 The first major CNN architecture wasLeNet5 (Lecun, et al., 1998). In LetNet5, 

pooling is performed with 2x2 windows, a stride of 2 and no padding while 

convolutions are done with 3x3 windows, stride of 1 and with padding. This first 

major CNN was designed for classification of digits and letters. Other common 

architectures are: AlexNetl, VGGNet, GoogLeNet, ResNet and ZFNet (Saha, 2018). 

CNN have also been applied to natural language processing (Goldberg & Hirst, 2017) 

by resorting to 1D convolution operations and using vectorial representation of words 

through the use of word embeddings techniques (Li & Yang, 2017).  

Recently, CNNs have been employed for image classification, mostly resorting 

to convolutional neural networks. Simonyan and Zisserman (2014) presented the 

Visual Geometry Group network (VGGNet) architecture for the Image Net Large 

Scale Visual Recognition Challenge (Simonyan & Zisserman, 2014) in 2014. This 

architecture achieved first place on the image localization task and a second place on 

the image classification task. Generally speaking, deep learning architectures for 

modelling visual contents consist in stacking convolutional and pooling layers 

throughout the network, followed by fully-connected layers. As Convolutional Neural 

Networks (CNN) become deeper, the number of parameters continues to grow, and 

thus making the training more difficult (e.g., vanishing-gradient problem). 
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 He, et al., 2016, presented the Residual Network (ResNet) architecture, aiming 

to avoid the vanishing gradient problem in very deep neural networks. Given the 

repeated multiplications of the gradient while back-propagating to earlier layers, its 

value becomes significantly small, saturating the performance of the network. The 

authors introduced the concept of identity shortcuts, a direct connection that skips 

one or more layers, forming a residual block.  

 

2.2.3 Recurrent Neural Network – Long Short Term Memory 

Recurrent neural network (RNN) is a type of neural networks that allow previous 

outputs to be used as inputs while having hidden states (Amidi & Amidi, 2020) 

making it possible to learn long-term dependencies. RNNs are commonly used for 

ordinal or temporal problems such as language translation, natural language 

processing (NLP), speech recognition and image captioning. In similarity to other 

neural network architectures, such as FFNN and CNN, RNN uses training data in 

order to learn. What makes them distinct, is the usage of “memory” as they take 

information from prior inputs to influence the current input and output. Elements 

within a sequence, in a RNN are dependent of previous elements.  

 RNNs take as input an ordered list of input vectors 𝑥1, … , 𝑥𝑛, an initial state 𝑠0 

and returns an ordered list of state vectors 𝑠1, … , 𝑠𝑛 and the list of outputs 𝑦1, … , 𝑦𝑛. 

The resulting vectors, state vector 𝑠𝑖 and output vector 𝑦𝑖, both represent the state in 

which the RNN is in after observing inputs 𝑥1:𝑖. The RNN provides a framework for 

conditioning on the history 𝑥1:𝑖 for use in modelling sequences. 

 RNNs shares parameters across each layer of the network, unlike traditional 

neural networks. RNN share the same weight parameters within each layer of the 

network and these are adjusted with resource to processes such as backpropagation 

and gradient descent. Two main parameters are R and O. R is a recursively defined 

function that, given as input a state vector 𝑠𝑖 and an input vector 𝑥1+1, results in a 

new state vector 𝑠𝑖:1. Parameter O is a function that maps a state vector 𝑠𝑖 to an 
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output vector 𝑦1. The shared parameters are denoted by the symbol θ. These 

parameters are shared across time-steps and 𝑠𝑛 encodes the entire input sequence. 

The goal of a RNN is to set the parameters R and O such that the state encodes 

relevant information within the context of the current problem.  

 RNNs when unrolled can be seen as deep neural network (Figure 9) with 

parameter sharing. The training of the network can be done by using a variant of the 

backpropagation algorithm referred to as backpropagation through time (BPTT). 

Given an input sequence, it is created the unrolled computation graph, then appended 

a loss node and then BPTT is applied to compute the gradients concerning the loss. 

 

Figure 9 - Graphical representations of an RNN, recursive (left) and unrolled (right) (Nunes, 2019)   

 Some advantages of using RNNs are: possibility of processing input of any 

length; model size not increasing with the size of input; computation takes into 

account historical information; weights are shared across time. Some of its drawbacks 

are: computation may be slow; difficulty of accessing long past information; does not 

consider future input for the current state (but can be bidirectional, where in this 

case it considers, during training, the future in the current state). 

There are several RNN architectures. The architecture of a traditional RNN is 

represented in Figure 10 (for each time step t where 𝑎𝑡 represents the activation and 

𝑦𝑡 is the output). Equations (10) and (11) show the activation and output functions, 

respectively, for each time-step t where 𝑊𝑎𝑥, 𝑊𝑎𝑎, 𝑊𝑦𝑎, 𝑏𝑎, 𝑏𝑦 are shared parameters 

and  𝑔1, 𝑔2 activation functions (visualized in Figure 11).  
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Figure 10 - RNN Architecture (Amidi & Amidi, 2020) 

a𝑡 = 𝑔1(𝑊𝑎𝑎a𝑡−1 + 𝑊𝑎𝑥a𝑡 + 𝑏𝑎)  (10) 

y𝑡 = 𝑔2(𝑊𝑦𝑎a𝑡 + 𝑏𝑦)    (11) 

 

Figure 11 - Single time step RNN (Amidi & Amidi, 2020) 

 Traditional RNNs typically suffer from the vanishing and exploding gradient 

phenomena. These problems happen because of the difficulty to capture long term 

dependencies of multiplicative gradient that can be exponentially 

decreasing/increasing with respect to the number of layers. There are some solutions 

to avoid or cope with these problems such as Gradient clipping and “gating”. Gradient 

clipping is a technique used to cope with the exploding gradient problem encountered 

when performing backpropagation. This technique caps the maximum value of the 

gradient in the attempt of controlling it. “Gating” refers to the creation of specific 

gates with the purpose of remedying the vanishing gradient problem and are 

implemented in some RNN variants’ architectures such as Long Short-Term Memory 

(LSTM) and Gated Recurring Unit (GRU). 
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 LSTM is a state-of-the-art RNN architecture for several sequence modelling 

tasks (Hochreiter & Schmidhuber, 1997). In order to address the issue of long-term 

dependencies LSTMs have cells in the hidden layers of the neural network, which 

have four gates: an input gate, an output gate, a forget gate and an update gate. These 

gates control the flow of information which is needed to predict the output in the 

network. LSTM units are formally defined in Equation (12) (  denotes component-

wise product or Hadamard operations). A state is composed of the memory component 

𝑐𝑡  and the output ℎ𝑡.

 

 

 

(12)

 Symbols i, f and o represent the three gates controlling the input, forget and 

output, respectively. The values for these gates are calculated based on linear 

combinations of the current input x𝑡 and the previous state ℎ𝑡−1, passed through a 

sigmoid activation function. An update candidate g is computed as a linear 

combination of 𝐗𝒕 and ℎ𝑡−1, passed through a hyperbolic tangent activation function. 

Then, the memory 𝑐𝑡 is updated, and the forget gate controls the amount of the 

previous memory that is kept by 𝑐𝑡−1  f, while the input gate controls how much of 

the proposed update is kept through 𝑔 i. At last, the value of ℎ𝑡 is calculated based 

on the values of the memory 𝑐𝑡, passed through an activation function, and controlled 

by the output gate. 
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2.3 Attention-based and Transformer Models 

Sequence-to-sequence deep learning models have risen in popularity in the last five 

years, being used in many NLP tasks such as machine translation and text 

summarization. Such models take as input a sequence of items (such as words or 

letters) and outputs another sequence of items.   

This type of models consists of an encoder and a decoder (Sutskever, et al., 

2014). The encoder processes each item in the input sequence, going through all of 

them compiling the captured information of each into a vector (known as the 

context). This context is usually, in NLP tasks, treated as an array of numbers (a 

vector). The model proceeds to send this context over to the decoder which produces 

a respective output sequence. The encoder and the decoder are typically RNNs with 

the size of the context vector being the number of hidden units in the network.  

As seen in the previous section, RNNs typically take two inputs at each time 

step: an input (e.g.: a word from a sentence) and a hidden state. To transform a 

particular word into a vector, an algorithm called word embeddings is used. 

These can capture the semantic information of words (i.e., its meaning Figure 12). 

Word embeddings can be used as a pre-trained embedding, or they can be created and 

trained using data. Since the encoder and decoder are both RNNs, each time step one 

of the RNNs does some processing, it updates its hidden state based on its inputs 

and previous inputs it has seen.  

Context, in the form of vectors, made it difficult to deal with long sentences and 

a solution as proposed by (Luong, et al., 2015) in the form of a technique called 

“Attention”. It allows the model to focus on relevant words as is necessary, increasing 

overall model performance. Instead of the RNN encoder passing one hidden state at 

a time to the decoder, it passes all of them and before producing an output 

it computes each hidden state softmax score based on their original value (amplifying 

hidden states with high scores) and produces a context vector by summing up the 

weighted vectors. This vector is concatenated (C4 - Figure 13) with the last hidden 
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state (H4) and passed to a FFNN (Forward Neural Networks) thus producing an 

output.  

 

Figure 12 - Individual words conversion into vectors (Alammar, 2021) 

 

 

Figure 13 - Sequence to Sequence model with Attention (Alammar, 2021) 

 

Transformer models also use attention techniques, specifically to increase their 

respective training speed and were first proposed in the work of Vaswani et 

al. (Vaswani, et al., 2017). These models follow the encoder-decoder stacks 

format. Each encoder is made of a Self-Attention layer and a FFNN layer. The self-

attention layer allows the encoder to take into context other words as it encodes a 
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specific word and The FFNN layer receives its output. The decoder along with the 

two mentioned layers also possesses between them an Encoder-Decoder Attention 

layer, which similarly to Sequence-to-sequence models, helps the model focus on 

relevant words. Also, similarly to sequence-to-sequence models the input is converted 

to vectors using an embedding algorithm. The embedding only happens in the 

bottom-most encoder.  

The embedded words flow through the two layers of the encoder and in parallel 

in the case of the FFNN layer. The word (x1, x2, etc.) at each position passes through 

a self-attention process (z1, z2, etc.) - this process allows the algorithm to 

contextualize a word regarding the others in a sentence. Then, they each pass 

through a feed-forward neural network (r1, r2, etc.) - the exact same network with 

each vector flowing through it separately (Figure 14).  

 

Figure 14 - Transformer encoding process (Alammar, 2021) 
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Transformer model also uses positional encoding to track the order of words in 

an input sequence. It does this by adding a vector to each input embedding which the 

pattern followed by these vectors are learned by the model allowing to track 

the position of each word (Figure 15).  

 

Figure 15 - Example of positional embedding with an embedding of size ‘4’ (Alammar, 2021) 

The output of the encoder is a set of attention vectors K and V which are used 

by each decoder in its encoder-decoder attention layer to focus on particular words 

in the context of others.     

The final layers of a transformer models are usually a FFNN layer and a 

softmax layer. The Linear layer is a fully connected neural network that projects the 

vector produced by the stack of decoders, into a larger vector called a logits 

vector. Each vector value corresponds to a score of a unique word in the model’s 

vocabulary. The softmax layer turns those scores into probabilities, adding to 1.0. The 

cell with the highest probability is chosen, and the word associated with it is produced 

as the output for this time step.  

One example of a widely used transformer model is BERT. BERT is 

a contextualized bidirectional word embedding capable of capturing the meaning of 

words in a sentence in their respective context. Models such as word2vec or GloVe 

don’t take into account context. These generate a single word embedding 

representation for each word in the vocabulary while BERT takes into account the 

context for each occurrence of a given word. BERT will provide a contextualized 

embedding that will be different according to the sentence. This transformer model 
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was used in this project to both individually train a textual-based model as well as to 

serve as input to a hybrid model. 

 

2.4 Natural Language Processing 

Natural Language Processing (or NLP) is a field of Artificial Intelligence that gives 

machines the ability to read, understand and derive meaning from human languages 

(Yse, 2019). The ultimate objective of NLP is to read, decipher, understand, and make 

sense of the human languages in a manner that is valuable. Through natural 

language, a person can generate dozens, hundreds or thousands of words in a 

declaration, each sentence with its corresponding complexity, ambiguity and 

interpretation by others. Scaling and analysing several examples of natural language 

results in a very complex problem.  

 Data generated from conversations, declarations or even informal situations 

such as in social media (e.g.: tweets) are examples of unstructured data. Unstructured 

data represents the vast majority of data in the real world. It doesn’t fit into 

traditional relational databases often requiring pre-processing in order to be useful. 

NLP along with ML have paved the way for a new way to understand text or speech, 

it being no longer dependent on keywords (previous, mechanical way) instead being 

about understanding the text’s meaning (cognitive way). This allows for more 

advanced analysis such as detecting figures of speech, irony and sentiment analysis. 

 Some of NLP applications are: disease prediction and diagnostics based on 

electronic records and patient’s speech; sentiment analysis for marketing purposes or 

recommendation systems; language translation; word processors that employ NLP to 

check for grammatical accuracy of texts; interactive voice responses (e.g.: call 

centres); personal assistant applications (e.g.: Siri, Cortana).  

 Most basic tasks in NLP can be divided between syntactic and semantic tasks. 

Syntax refers to the arrangement of words in a sentence such that they make 
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grammatical sense. In NLP, syntactic analysis is used to assess how the natural 

language aligns with the grammatical rules. Semantics refers to the meaning that is 

conveyed by a text. It is one of the main challenges in NLP and it involves applying 

computer algorithms to understand the meaning and interpretation of words and how 

sentences are structured. 

Some examples of syntactic NLP tasks are: tokenization, Part-of-speech tagging 

and lemmatization. Tokenization is a syntax approach and consists of segmenting 

text into tokens1. It is usually a required step for other base NLP tasks. Part-of-speech 

tagging is the process of automatically assigning a part-of-speech (PoS) to a word in 

context. Words with the same PoS likely have similar grammatical properties. 

Lemmatization reduces a word to its base form and groups together different forms 

of the same word. For example, verbs in past tense are changed into present (e.g., 

“went” is changed to “go”) and synonyms are unified (e.g., “best” is changed to “good”), 

hence standardizing words with similar meaning to their root. 

A few basic NLP tasks related to semantic analysis are: Named Entity 

Recognition and Word Sense disambiguation. Named entity recognition (NER) is a 

semantic task and it consists of determining the parts of a text that can be identified 

and categorized into categorical groups. These categories can be names, locations and 

organizations. Word sense disambiguation involves giving meaning to a word based 

on the context, more specially, identifying which sense of a word is used in a sentence. 

It does this by maps an occurrence of a word with the most suitable entry in a sense 

repository (e.g., dictionary or an ontology2).  

NLP has been widely used for text classification. This includes automatic 

document classification based on textual data, typically through machine learning 

algorithms (Tolpygo, 2016). One simple way of achieving this is through a bag of 

 

1 Token: A token is the smallest meaningful unit of information in a natural language string. E.g.: 

“Modern NLP.”, tokens: |Modern| |NLP||.| 
2 Ontology: An ontology, in NLP or in a semantic web context, is a formal collection of terms used to 

describe a particular area of interest. 
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words representation. This method allows to transform raw text into features by 

creating a count for the number of times each word appears. This method can be 

complemented by other NLP related methods such as N-grams and term frequency-

inverse document frequency (TF-IDF). These features can then be introduced as 

variables in a classification problem in order to train a model for automatic document 

classification. Another way NLP has been used is for data preparation, typically in 

the form of a list of documents, for training or feature extraction. Common NLP tasks 

for data preparation are n-grams3, punctuation and stop word removal, 

lemmatization and stemming.    

NLP also allows for a vectorized representation of words. This process is 

commonly achieved through word embeddings. Word embeddings allows words with 

similar meaning to have a similar representation, being represented by real-valued 

vectors in a predefined vector space. This approach to representing words and 

documents may be considered one of the key breakthroughs of deep learning on 

challenging natural language processing problems (Brownlee, 2019). Each word is 

mapped to one vector and the vector values are learned in a way that resembles a 

neural network, and hence the technique is often lumped into the field of deep 

learning. The distributed representation is learned based on the usage of words. This 

allows words that are used in similar ways to result in having similar 

representations, naturally capturing their meaning. This can be contrasted with the 

crisp but fragile representation in a bag of words model where, unless explicitly 

managed, different words have different representations, regardless of how they are 

used. 

Before applying the above-mentioned NLP tasks to a textual input derived from 

a document, first the textual data from that document needs to be extracted. This 

process is referred to as Optical Character Recognition (OCR). It is a subset of pattern 

 

3 The text is often split into words or grams. The grams, that are often referred to as n-grams are a 

sequence of n words from the text (Tolpygo, 2016). 
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recognition area and computer vision which deals with the problem of recognizing 

optically processed characters (Eikvil, 1993). OCR electronically converts typed, 

handwritten or printed text images into machine-encoded text. With OCR it is 

possible to digitalize a varied number of paper-based documents, across multiple 

languages and formats, into machine-readable text improving these documents 

storage, accessibility, editability, translatability and searchability. 

 Similarly, to pattern recognition, the main principle is to train a machine to 

identify and classify patterns such as letters, numbers or symbols and their respective 

features. This teaching is performed, during training, by showing the machine 

examples of characters of all the different classes. Based on these examples the 

machine builds a prototype or a description of each class of characters. Then, during 

recognition, the unknown characters are compared to the previously obtained 

descriptions, and assigned the class that gives the best match (Eikvil, 1993).  

 Recent OCR technology is capable of recognizing both hand-written and printed 

characters but are heavily dependent of the submitted document’s structural 

complexity and quality as well as the artifacts introduced during scanning 

(Abdulkader & Casey, 2009). Regarding document classification, OCRs are capable of 

recognizing scanned or photographed documents, images and documents in Portable 

Document Format (PDF), in each specific pre-processing techniques may be required. 

Most OCR tools are able to achieve a value of recognition precision of 90-99% and so 

it is not a perfect process as some words or symbols are not well recognized still 

(Abdulkader & Casey, 2009) with human intervention still being necessary in some 

situations. 

  

2.5 Document Classification – Overview and Related Work 

With the rise of digitalization, understanding and analysing data, in digital form, 

from documents has become a common activity, mostly done by humans, in order to 

validate the documents, extract information from its fields, check structure and its 
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submissions. This manual management of documents is time consuming and 

expensive and has resulted in the need for automation, with many of its tasks such 

as document classification and document recognition to become automated in order 

to help with making this process faster and more efficient while also assisting and 

making lighter the burden of this slow and repetitive work for human workers.  

To differentiate documents based only on their broad class (such as banking 

documents from passports) a visual-only approach may provide decent results but in 

order to perform fine-grained recognition, textual content of the documents is often 

necessary. For example, in the case of a particular type of document, such as a tax 

form, documents of this type may share the same structure or layout, logos, templates 

or forms and differ mostly by their textual content. Deep learning has in recent years 

been used for both image classification and natural language processing, both areas 

that can be applied to document classification. Even though some multimodal 

approaches have used both visual and textual content in this task, it still remains an 

open problem. Documents classification can therefore be achieved through image 

classification, text classification (using an OCR) and multimodal classification. The 

model proposed in this project aims to leverage both textual and visual information 

for document classification for possible integration into CSW IDV platform. 

Early studies, from the field of Computer Vision, have been using deep neural 

networks for document analysis tasks focused primarily on a document’s visual 

features and structure. Byun & Lee, 2000, used a dynamic programming algorithm 

for partially matching, in which form structure recognition and form classification 

are performed for only some areas of the input form. Kumar et al., 2012 used a method 

based on statistics of patch-codewords over different regions of image for document 

classification. Kumar, et al., 2014, proposed a method to study structural similarity 

for document classification based on spatial features. Most studies for document 

classification that use visual features only treat the task as a conventional image 

classification. However, visual features alone tend to have problems such as low inter-

class discrimination, i.e., images of different classes may share the same structure, 
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and high intra-class structural variations of highly overlapped document images, i.e., 

images in the same category have similar structures and therefore visual features 

alone have difficulty discriminating them (Afzal, et al., 2015).  

From a natural language processing perspective, Yang, et al., 2017, presented a 

multimodal neural network to extract semantic information based on word 

embeddings from pretrained natural language models. This and others multimodal 

approaches have achieved promising results. The need for both a document image 

and its textual content have given rise to other multimodal approaches, with the 

textual component commonly being extracted by an OCR with post semantic analysis 

and its visual content most commonly being treated by a convolutional neural 

network. 

In the following sections it will be presented related work regarding the three 

main types of document classification: in section 2.5.1 related work about textual 

document classification; in section 2.5.2 about image document classification and in 

section 2.5.3 related work about known multimodal approaches. 

 

2.5.1 Textual Document Classification 

Document images can be characterized based on their textual content. Their textual 

content can be extracted via OCR techniques. Initial textual based approaches, such 

as Shin, et al., 2001, worked with structure-based features to classify document 

pages. Their work was based on visual similarity of the layout structure of documents. 

They used image features such as percentages of text and non-text (graphics, images, 

tables and rulings) content regions, column structures, sizes of fonts, etc. In order to 

achieve this classification, they relied on supervised classifiers in the form of decision 

trees and self-organizing maps.  

 More recently, in regards to natural language processing, the appearance of 

learned word embeddings approaches such as Word2Vec (Mikolov, et al., 2013), 

Glove, ELMO (Peters, et al., 2018), FastText, XL-Net (Yang, et al., 2019 ) have led to 
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significant improvements in document classification. The different types of static and 

dynamic word embeddings aim to learn lexicon related to the words or vocabulary of 

a language, syntactic to create well-formed sentences in a language, semantic related 

to meaning in language, and pragmatic approach related to proximity between words 

and documents.  

Word embedding approaches have led to numerous works based on recurrent 

and attention mechanisms for text classification. One example of such works is Yang, 

et al., 2016, “Hierarchical Attention Networks for Document Classification”, which 

proposes a bidirectional recurrent network with a hierarchical attention mechanism 

that learns both at a word and sentences level, mirroring the natural hierarchical 

structure of most documents (e.g., documents are composed of sentences, sentences 

are composed of words). The reasoning behind this approach was to increase 

classification performance and, simultaneously, provide interpretability by giving 

insight into which words and sentences contributed to the classification decision. 

 

2.5.2 Image Document Classification 

Computer vision and deep learning have been recently suggested as a first solution 

to classify documents based on their visual appearance. Document image analysis 

was one of the first areas where modern deep learning has been applied with the first 

CNN originally being designed for classification of digits and letters (Lecun, et al., 

1998). From a computer visions perspective, it has been one of their general goals in 

this area to achieve image-based document classification without the need for textual 

content extracted by an OCR as stated in 2007 survey (Chen & Blostein, 2006). Other 

early attempts in document image classification focused on region-based analysis by 

detecting and analysing certain parts of a document (as in the work of Hao et. al., 

2016). 
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Deep learning approaches specific to image document classification also became 

even more prevalent, inspired by the success in of these networks on the ImageNet4 

dataset introduced by Harley et al. (Harley, et al., 2015). This work sought to 

demonstrate the effectiveness of deep CNNs over handcrafted alternatives in 

document image classification and retrieval tasks. It also showcased many 

advantages of deep learning in this task such as the following: CNN’s features 

robustness to compression; how CNNs trained on non-document images transfer well 

to document analysis tasks and how region-specific feature-learning is unnecessary 

given sufficient training data.  

The way to approach an image document classification has also been a topic of 

discussion, with transfer learning of a model trained with regular images being 

common. A study on this was made, on whether general CNN architectures employed 

for image classification were appropriate for document image classification 

(Tensmeyer & Martinez, 2017). They performed a large empirical study to discover 

what aspects of CNNs most affect performance on document images. They exceeded 

previous results on the RVL-CDIP dataset by using data augmentation and an 

architecture designed for a larger input image. A major discovery was evidence that 

CNNs trained on RVL-CDIP learn region-specific layout features and also that by 

using transfer learning they were able to improve accuracy in relation to previous 

architectures on the RVL-CDIP. In this approach they used an AlexNet, Krizhevsky, 

et al.’s (2012) architecture pre-trained on ImageNet dataset. 

 

2.5.3 Hybrid / Multimodal Classification 

Visual features alone tend to have problems such as low inter-class discrimination 

and high intra-class structural variations of highly overlapped document images and 

therefore visual features alone have difficulty discriminating them. Because of this, 

 

4 The ImageNet project is a large visual database designed for use in visual object recognition 

software research. 
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recently there has been a rise of multimodal approaches in order to achieve fine-

grained document classification. These hybrid approaches combine textual and visual 

features in a multimodal network to perform document image classification.  

An approch designed to be a baseline for others is that of Audebert, et al., 2019. 

They propose a baseline approach with a hybrid deep model. In order to classify post-

OCR document images, the authors present a pragmatic pipeline to perform visual 

and textual feature extraction using typical architectures. To leverage the 

complementary information present in both modalities, they designed an end-to-end 

network that jointly learn from text and image while trying to keep computation cost 

at its minimum. They build on existing deep models, MobileNet and FastText, and 

demonstrate significant improvements using their fusion strategy on two document 

images dataset. 

Regarding visual features, Audebert, et al., fine-tuned a CNN pretrained on 

ImageNet in order to extract visual features on their images as it had been suggested 

in previous related works (e.g.: Tensmeyer & Martinez, 2017). In order to reduce time 

and cost constraints they decided to use a lightweight architecture with competitive 

classification performance, the MobileNetV2 model (Sandler, et al., 2018). This 

architecture consists of a stack of bottleneck blocks. each bottleneck block transforms 

a feature map first by expanding it by increasing its number of channels with a 1∗1 

convolutional layer with identity activation. Then, a 3∗3 depth wise convolution is 

performed, followed by a ReLU and a final 1∗1 convolution with ReLU. To improve 

efficiency this block inverts the traditional residual block since the expansion is 

performed inside the block, whereas residual blocks compress and then re-expand the 

information (illustrated in Figure 16). The MobileNetV2 used had 19 residual 

bottleneck layers.  
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Figure 16 - MobileNetV2 uses inverted residual blocks (Sandler, et al., 2018) 

 In this work text had not been transcribed and therefore the authors had to 

resort to an OCR to extract textual data from the documents. They used Tesseract 

OCR engine version 4 which is based on a LSTM neural network. Tesseract is able to 

detect text orientation and rotation and act accordingly, if necessary. It also deals 

with image binarization to identify black text on a white background. However, it 

does have limitations such as its output being noisy if proper conditions are not met 

such as an unflatten page, curved text or exotic fonts but a crucial issue is that they 

do not deal with out-of-vocabulary words (OOV). The author’s solution was to use 

character-based word embeddings that are able to deal with OOV words by assigning 

them plausible word vectors that preserve both a semantic and a spelling similarity. 

They went with FastText since no OCR extracted OOV were absent from this 

embedding. They then convert the word embeddings into a document embedding 

using the open-software SpaCy5 to also perform tokenization and punctuation 

removal. Individual word embeddings are then inferred using FastText pretrained on 

the Common Crawl dataset. 

 After textual and visual features extraction they proceed to feed these to a multi-

layer perceptron, combining both feature vectors into one. They tested two fusion 

methods: one involving an adaptive averaging of both feature vectors and the other 

the concatenation of both vectors. The latter proved to perform best when compared 

 

5 SpaCy: open-source software library for advanced natural language processing, written in the 

programming languages Python and Cython (Honnibal, 2015). 
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to the pure image model. The authors conclude that aligning text and image feature 

spaces resulted at a loss of discriminative power. 

 The datasets used by the authors are the Tobacco34826 dataset with 3482 black 

and white documents with annotations for 10 classes of documents (e.g.: Email, Form, 

Letter, Memo, etc.). They perform training with 800 documents and the rest for 

testing. They also used the RVL-CDIP dataset7 with 400000 grayscale digitized 

documents with annotations for 16 classes documents (e.g.: Email, Letter, Invoice, 

etc.) each containing 25000 examples. They used the standard split with 320000 

documents for training, 40000 for validation and 40000 for testing. For text 

generation, they considered Tesseract OCR library to extract text from greyscale 

images from both datasets and is publicly available8.  

 The models were implemented using Tensorflow 1.12 and Keras API with 

manual selection of hyperparameters. Their text model consists of one-dimensional 

convolutional neural network.  The CNN is 4-layers deep and interlaces 1D 

convolutions with a window of size 12 with max pooling with a stride of 2. Each layer 

consists in 512 channels with ReLU activation. The final feature map is processed by 

a max pooling-through-time layer that extracts maximal features on the sequence 

with Dropout regularization. A fully connected layer then maps the features to the 

softmax classifier. The input word sequence is zero-padded up to 500 words for 

documents with less 500 words. Their image model is based on the MobileNetV2, a 

lightweight CNN architecture that focuses on computing efficiency. The CNN is 

trained on grayscale document images resized at 384 by 384 with grayscale channel 

being duplicated three times to adjust to the model’s RGB style of images. The CNN 

is initialized with pretrained weights on ImageNet which accelerated converge and 

 

6 Tobacco3482: a subset from the Truth Tobacco Industry Documents archives of legal proceedings 

against large American tobacco companies. https://www.kaggle.com/patrickaudriaz/tobacco3482jpg  
7 RVL-CDIP: a subset from Truth Tobacco Industry Documents. 

https://www.cs.cmu.edu/~aharley/rvl-cdip/ 
8 The extracted text dataset (QS-OCR dataset) is available at: https://github.com/Quicksign/ocrized-

text-dataset 

https://www.kaggle.com/patrickaudriaz/tobacco3482jpg
https://www.cs.cmu.edu/~aharley/rvl-cdip/
https://github.com/Quicksign/ocrized-text-dataset
https://github.com/Quicksign/ocrized-text-dataset
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improving accuracy through transfer learning. The final fusion model considers the 

previous two models but with the final layers cut-off in order to fuse them together. 

For the text-based model, the last layer produces an output vector of dimension 128 

instead of the number of classes. For the image-based model, an aggregation of the 

last convolutional features using global average pooling on each channel was made, 

which produced a feature vector of dimension 1280. Finally, they then map this 

feature vector using a fully connected layer to a representation space of dimension 

128. The full hybrid model’s architecture is illustrated in Figure 17. This work 

achieved an overall accuracy result value of 90.6% on the RVL-CDIP dataset and an 

overall F1-score of 0.86 (0 to 1 scale) and an overall accuracy value of 87.8% in the 

Tobacco3482 datasets confirming the proposed idea that the two sources, text and 

image, give complementary information in for document classification.  

Some limitations and observations on this approach can be made. The model 

was tested on public document image datasets. Real world derived images may not 

be as clean or as well orientated as the images presented on datasets such the Tobacco 

subsets. The scanning process was also performed by experts and real-world 

experience may generate poor quality scans. Data augmentation was not performed 

and may be necessary in order to classify documents that may have deteriorated due 

to natural or artificial reasons previous to their digitalization.  Post-OCR word 

embeddings can create noise and a semantic analysis of its output may be necessary. 

One of the more recent approaches is that of Bakkali, et al., 2020. They proposed 

a cross-modal network to perform image and text feature extraction relying on off-the 

shelf image-based deep networks and word embedding algorithms. The authors 

attempted to bridge the two modalities in an end-to-end network to simultaneously 

learn from image and text features. The built-in network is based on the performance 

of lightweight, heavyweight architectures used in their experiments for image 

stream, and static, dynamic word embeddings used to perform text classification. 
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Figure 17 – Multimodal end-to-end, classifier for hybrid text/image (Audebert, et al., 2019) 

 

 In regards to image data, they explored two architectures: NasNet and 

Inception-ResNet. The NasNet (Zoph, et al., 2018) architecture is composed of two 

types of layers: Normal layer, and Reduction layer. The Normal layer is a 

convolutional layer that returns a feature map of the same dimension, where the 

Reduction layer is a convolutional layer that returns a feature map, where the feature 

map height and width is reduced by a factor of two. Two variations of this network 

were experimented on with 88.02 million (M) and 4.23 M parameters, respectively. 

Inception-ResNet-v2 (Szegedy, et al., 2017) is a convolutional neural network that 

achieved state-of-the-art results. Inception-ResNet-v2 is a variation of the earlier 

Inception V3 model by introducing the bypass connection as in ResNet. The model 

has 54.36 M parameters. All three CNNs are pre-trained on the ImageNet weights. 

For the text component they explore the usage of three recent word embedding 

approaches: Glove, Bert and FastText.  

The proposed network consists of two streams: an image stream and a text 

stream. In the first, they feed input document images and in the second they extract 

textual data using an OCR of which the text strings produced are then fed as input 

to the word embedding algorithm. They considered a late fusion process.  
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The image stream extracts visual features that are passed to a global average 

pooling layer to reduce the spatial dimensions of a three-dimensional tensor. It 

performs also a more extreme type of dimensionality reduction. For the final layers 

of the three deep CNNs, the global average pooling layer is passed to the last fully 

connected layer to perform classification with a softmax layer. In regards to textual 

features, all documents were processed by Tesseract’s OCR engine. They analysed 

the three different words embeddings and focused on Bert’s because of the advantage 

of dynamic word embeddings over static ones in capturing semantic meaning. Bert 

also has means to deal with OOV. The input embeddings are passed to the attention 

based bidirectional transformer. After pre-processing the textual content extracted 

by the OCR engine form document images, they pass the input embeddings of both 

Glove and FastText to a GRU network of 32 nodes and 3 hidden layers. The final 

layers of the three models are passed to a softmax layer with categorical cross-entropy 

loss function. 

They explored two different approaches to achieve a late fusion process. In the 

first, equal concatenation, they add a fully connected layer to the image stream, 

having the same dimensional output vector as the text stream. In the second, they 

employ a pixelwise addition between the image and text embedding features, i.e., 

superposing directly the two embeddings to generate the cross-modal features. The 

resulting cross-modal features have the same dimension as the text or image text 

embedding features. The network’s parameters are learned through the learning of 

the individual stream’s parameters and a later optimization of joined parameters by 

the global cross-entropy loss function. They used the RVL-CDIP dataset as well, being 

a popular dataset for research on document classification. The full model architecture 

is illustrated in  Figure 18. 

They used many pre-processing methods in order to increase performance. In 

order to minimize intra-class similarity, they applied a shear transform process to 

augment the data.  Random image shifting was also used for better generalization. 
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Cutout data augmentation9 was also used to improve regularization. As a final pre-

processing step, they also convert the grayscale images to RGB images.  

Their hybrid model achieved an overall accuracy of 96.94% using the equal 

concatenation modality for fusion and 97.05% using the average ensemble modality 

for fusion. The results are higher than previous state-of-the-art results by a margin 

of 2.63%. They were also higher than the single modal approaches tested by the 

authors as well proving that a combined feature approach improves the result of 

using only either visual or textual features. 

 

Figure 18 - Cross-modal network with a text stream and an image stream (Bakkali, et al., 2020) 

Another work is that of Dauphinee, et al., 2019. This work consists of modular 

multimodal architecture is presented in for document classification followed with a 

XGBoost meta-classifier. Being also a modular archicteture, it allows for the 

swapping of different classifiers to be more acessible. 

Similar to previously mentioned works they also use an OCR to perform text 

extraction, specifically Tesseract OCR. Overall there are three model components in 

this work: an image classifier, a text classifier and a meta-classifier that joins the two 

 

9 It consists of randomly masking a square region in an image at every training step, thus removing 

the redundancy of the images and augmenting the dataset by partially occluded versions of existing 

samples. (Bakkali, et al., 2020) 
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prior components into one. Also similarly to the aforementioned works they use a late 

fusion method. To achieve this their meta-classifiers map two outputs, of dimension 

equal to the number of classes, to one.  

For their image model they experimented with two different CNN architectures: 

AlexNet and VGG16 both with input dimensions of 277 by 277. The output layer is a 

16 neuron softmax layer (corresponding to the 16 classes of the RVL-CDIP dataset). 

With the images being greyscale from RVL-CDIP they convert to RGB and rescale 

the data to fit the range [-1,1]. Their textual model differs from the previous two 

mentioned works as the authors of this work do not use word embeddings. They opt 

for the raw text to be preprocessed into one-hot vectors, i.e., a document is 

represented by binary vector whose components indicate the presence of the word 

corresponding to that index, denoted by the authors as a Bag-of-Words followed by 

the input dimension (e.g.: BoW-100K). These document vectors are fed into a 

relatively shallow network. Their meta-classifier is a XGBoost model. This model is 

based on decision tree ensembles. They do not use any regularization parameters 

instead opting to limit the depth of the trees to control overfitting (to a maximum 

depth of 3). The authors justify their choice for an XGBoost model by pointing out the 

minimal tuning required for the classifier. The abstract model architecture is 

illustrated in Figure 19. 

 

Figure 19 - Abstract Model Architecture (Dauphinee, et al., 2019) 
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They perform shear transformations and small rotations during training for a 

better generalization performance. For otimization they use SGD with warm restarts 

adjusting the learning rate over batches. This otimization method, also used by 

previous work, tends to find a strong local minimum however it can accelerate past a 

global minimum. 

Their best model was a multimodel consisting of a VGG16 image component and  

bag of words model with 200 000 vocabulary words used as features. This model 

achieved a 93.03% test accuracy on the RVL-CDIP dataset, a result higher than many 

state-of-the-art single model architectures and their own tested single model 

architectures, with this work also proving that combining both types of features, 

image and text, improves performance in the document classification task. A final 

observation by the authors is that the transcriptions errors that ocorred in textual 

classification component may be accounted for by using more recent word embeddings 

methods instead of a bag-of-words approach.



 

 

 

 

Chapter 3 Technical Specification 

This chapter covers the general structure and services of the CSW IDV platform, 

high-level requirements followed by a risk analysis and the tools and methodology 

adopted during development. 

3.1 CSW IDV Platform 

The platform, Intelligent Document Validation (IDV), developed by CSW, provides 

services in the area of document analysis. It uses as a framework, Flask Python and 

has a REST API as application programming interface that allows the integration of 

services in backend or frontend. 

 This platform was created with the objective of facilitating processes of 

organization and management of documents, processes that are still done, largely, 

manually. It is therefore beneficial that the platform is as versatile as possible, so 

that it can be integrated in several different situations, being able to analyze multiple 

types of documents. The format or type of file must become redundant aspects for 

execution of the services, that is, the execution of these must be possible and efficient 

for different types of documents. 

 The services provided by the IDV platform, and a brief description of them, are 

as follows: 

• Classification Service:  

o Categorizes a document relative to its type and tells the confidence 

of the forecast (prediction). Tells whether the document is 

handwritten or printed, if it is in text or form (document with 

spaces, named fields or placeholders) format. 

o Allows a binary or multi-class classification. In binary 

classification it is possible to check (binarily) whether the 

document is of a particular type; in multi-class classification, the 
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service classifies the document according to a given set of possible 

categories and indicates confidence for each. 

o The service has text classifiers, image classifiers, rule-based 

classifiers and a composite classifier. As a text classifier, it has a 

classifier developed using the spaCy library; the image classifier 

was developed on Keras and Tensorflow. The service can also be 

adjusted to include and add different types of classifiers. 

• Extraction Service: 

o Extracts relevant fields for each document type and uses 

techniques, used according to context. The techniques used are 

techniques based on the definition of standards and rules as in the 

case of rules-based systems; NLP and OCR techniques. 

o The service also has several features of image processing and 

natural language processing. 

• Validation Service: 

o Validates classification and extraction services. Analyzes the other 

two services in terms of their performance in their tasks. The 

process consists of validating the classification of the document into 

a given category or whether the extraction of all relevant 

characteristics of a submitted document has been carried out. 

 

3.2 High-Level Requirements 

The developed hybrid system, and its models, after being validated is intended to 

integrate in the current IDV Classification Service. 

From a high-level point of view the main goals of the internship are: 

• The hybrid, multimodal, classifiers must improve the performance upon 

currently in use single modal classifiers by CSW at document 

classification; 
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• Allow, whenever possible, for the automatic training of the IDV platform 

for new document types, regarding their classification, effectively making 

the platform more robust to new and different types of documents. 

In order to achieve these goals, it is proposed the creation, training and fine-

tuning of a multimodal classifier architecture. This multimodal classifier must use 

current and/or competitive state-of-the-art techniques to be able to apply its 

multimodal architecture efficiently in a critical environment. The model must also be 

fine-tuned in order to better classify specific types of documents of interest to CSW 

while at the same time, if possible, generalize to new and different types of 

documents.  

Given the research heavy nature of this project, high level requirements have 

proven hard to define, especially given that hybrid architectures are still quite novel 

in the document classification task, with most relevant works being at most 3 to 4 

years old. Still some early (and possibly flexible) high-level requirements can be 

defined by following the example of recent research done on multimodal classifiers 

for document classification. The requirements are presented as follows: 

• The model(s) must be able to receive, as input data, annotated document 

images in order to perform supervised learning; 

• The multimodal classifier needs to have at the least 3 components: a 

textual component, a visual component and a hybrid component; 

• The textual component must be able to process textual data and extract 

relevant textual features and feed them to a text-based classifier (the 

textual data can be obtained via text extraction using CSW own OCR, 

currently in use in the IDV platform); 

• The visual component must be able to process document images and 

extract from them relevant visual features and feed them to an image-

based classifier (e.g., via deep learning methods such as CNNs); 
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• The hybrid component must be able to join both textual and visual 

features previously obtained (e.g.: through a late fusion process) in order 

to accurately use both for document classification; 

• The model(s) must be able to output the predicted class for each document 

example as well the respective confidence in each prediction. 

The requirements presented above may not apply to all different approaches 

that were tested during development. In section 3.4 Methodology and Tools a further 

detailing of how to achieve these goals and requirements will be presented supported 

by research and related works on the document classification task. 

 

3.3 Risk Analysis 

Risk analysis is an important step in project development in order for it to be 

successful and a few have been identified and must be taken into consideration during 

the next phase of this project. Next, it is presented the main risks that have been 

identified for this project along with a description and a possible mitigation plan: 

• Dataset: The datasets used for training, validation and testing present a 

possible risk especially considering that most architectures used for document 

classification are deep nets and therefore heavily rely on a good quality 

dataset. Publicly available datasets often consider an ideal, but not realistic, 

scenario. As an example, in some datasets used in recent literature, images are 

typically well orientated. This is not a guarantee in a real scenario, among 

other unique scenarios such as images having curved text or be even slightly 

folded in some areas. Most of these datasets are made with benchmark and 

research purposes in mind and may not fare as well in a more dynamic and 

real scenario. As a counter-measure, pre-processing of the data must be taken 

into account in order to deal with unique variations of the documents (this 

includes data augmentation such as including shear-transforming or rotating 
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images slightly). Experimenting in the future with more than one dataset may 

also prove useful, possibly with a CSW dataset; 

• Inexperience with some of the more recent and complex architectures 

and methods: Most of the development techniques currently being 

implemented in recent hybrid approaches are relatively novel and inexperience 

using them is highly possible. A counter-measure for this is to study the 

available literature, practice with these techniques in both the project and in 

other applications and also talking to fellow CSW colleagues with more 

experience in these subjects as well as in professional application development. 

• Lack of information in literature and/or related work: Most multimodal 

systems studied in section 2.5.3 provide relevant detail about their hybrid 

approach and architecture but in a few areas, they can be rather vague about 

specific topics. Fortunately, most of the individual techniques used by the 

authors have been studied in detail and there is relevant information online so 

this risk is possibly not as severe as the others. Mitigation may involve 

studying the techniques or other aspects individually to better understand and 

tune them correctly when combining them during the classification task. 

 

3.4 Methodology and Tools 

The project methodology was based on SCRUM (Schwaber, 1997). This development 

methodology (also known as a management framework) has been adopted by CSW 

for multiple projects including the IDV platform development.  

 SCRUM was created because of the unpredictable nature of systems 

development. It does not assume a development cycle can be entirely planned and 

estimated from the start. SCRUM defines the systems development process as a loose 

set of activities that combines known, workable tools and techniques with the best 

that a development team can devise to build systems. An overview of the process is 

illustrated on Figure 20.  
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Figure 20 - SCRUM software development process Overview (Anon., 2017) 

 SCRUM is an iterative (the product is produced during small development 

cycles) and incremental (product functionality increases during each iteration by 

adding new features) methodology that aims to make project management a more 

agile process and adaptable to new and unpredictable situations that may eventually 

occur during development.  

 There are three major roles in SCRUM: product owner, scrum master and team 

member. Product owner acts as a bridge between the client and the development 

team. This person is responsible for documenting and prioritizing product 

requirements as well as producing the product backlog. This role is performed, in this 

project, by CSW’s Doctor Tiago Baptista. Scrum master is responsible for team 

management including team coordination of the team activities, processes 

implementation and solving problems that may obstruct accomplishing sprint goals, 

also performed by Doctor Tiago Baptista. Team members consists of the group of 

developers responsible for completing project tasks. This role is performed by 

engineers Ana Guarino, Diana Mendes, me and also our technical leader Doctor Rui 

Lopes.  

SCRUM has three main phases: planning and architecture, development and 

closing. In the first phase, planning and architecture, the product backlog is built. 

This artifact represents a list of project requirements with descriptions of desired 
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functionalities as well as risk analysis and initial design of the project’s architecture. 

Development phase consists of an iterative cycle, known as Sprint. Each Sprint starts 

with a planning meeting where a discussion is had by the team members about 

ongoing and completed tasks as well as the discussion of any problems or unique 

situations that rose during the previous Sprint and possible solutions. It is also 

defined a list of tasks to be performed in the next Sprint (known as the sprint 

backlog). A Sprint’s duration is typically 2 weeks but may be shorter (1 week) or 

longer (3 to 4 weeks) if necessary. The closing phase consists steps are taken to 

prepare for the launch of the main deliverable (a product or service) including 

documentation and development data (such as testing). Daily meetings are also a 

unique component of SCRUM. They consist of 10 to 15min meetings with all team 

members and Scrum master where team members discussed tasks performed as well 

as problems encountered during the previous day and tasks to be performed during 

the current day. This meeting ensures agreeability between team members in regards 

to the tasks, problems and effort during a regular basis. Other complementary 

meetings are the review meeting and the retrospective meeting. In the review 

meeting, a demonstration of the work is shown to the product owner, at the end of a 

sprint, and the product owner reviews the work done. In the retrospective meeting, 

usually taken place at the end of a sprint or at the end of the project, the team reviews 

the work done and decides on possible strategies, if necessary, to increase 

effectiveness and improve the current work. 

A list of the tools used for project management are as follows: 

• Jira – Agile projects management software that allows monitoring of 

development work. This tool is used throughout CSW by most teams for 

project management; 

• Bitbucket – Version control tool for Git repositories. This tool is also widely 

in-use by CSW for version control. 

• Confluence – Project documentation management tool. Also, a common tool 

used by CSW for documentation management. 



3.4 Methodology and Tools 

 

52 

 

• Docker – Tool that allows running applications in containers. This tool 

contains a virtual development environment that uses resource isolation, 

which allows developers to develop and run their applications more easily. 

This tool is used by the CSW IDV team. 

The list of technical tools to be used in this project are as follows: 

• Python – Interpreted, high-level and general-purpose programming 

language. Common language in AI projects because of its vast collection of 

development libraries including specific Data Science and Machine Learning 

libraries.  

• TensorFlow and Keras – Two open-source libraries available in Python 

known for their vast number of features related to ML. They’re widely used 

by AI scientific community. They contain many useful tools to create and 

train a hybrid document classification model, specifically, they allow the 

creation and use of deep learning methods useful for both text-based and 

image-based classification. These libraries are also used by CSW IDV team. 

• SpaCy – Open-source software library for advanced natural language 

processing, available in Python. This tool allows for a number of basic and 

advanced NLP tasks to be performed and will be useful for textual data 

processing. This tool is also already in-use in CSW IDV platform. 

• Tesseract OCR – Open-source optical character recognition tool. It is one of 

most widely used OCR tools, primarily in Python. It uses many AI related 

techniques, such as CV techniques, to extract textual data from scanned 

images. This tool will be useful to extract and prepare data for later textual 

feature extraction. This tool is also already in-use in CSW IDV platform. 
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Chapter 4 Experimentation and Results 

 This chapter will detail the experiments performed during the development of 

the hybrid model. It focused mainly on two principal stages: development of a baseline 

ensemble model detailed in section 4.1 and development of the multi-input, mixed 

data (hybrid), model detailed in section 4.2. 

 In order to achieve the goals and high-level requirements set out in section 3.2, 

it is necessary to create, train and fine-tune a multimodal classifier. From the 

analysis of literature work it is possible to observe that the implementation of 

multimodal classifiers has been done successfully in the recent past. All three models 

studied in section 2.5.3 have used different architectures and yet it is possible to 

denote a shared high-level structure – all three architectures have three components: 

a text-based component, a visual-based component and finally a hybrid component. 

These components work as individual models that can be trained, fine-tuned and 

tested, especially against their hybrid fusion model as well as the later mentioned 

baseline model. This allows for direct comparison between the models and to assure 

the ensemble process for the baseline model and fusion process for the hybrid model 

are well performed. 

  

 

4.1 Ensemble Model (Baseline) 

 The first step in development was to build a baseline. The purpose of this 

baseline is to represent a solution currently possible to implement using already in-

use methods in CSW such as using Tensorflow Keras created image-base models and 

Spacy text-based models, both already in use in CSW’s IDV platform.  

A natural approach was then to create an ensemble solution of the problem. 

Ensemble learning is a process involving multiple models, such as classifiers, where 
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models are generated and combined in order to improve an original single model-

based task. They can improve these tasks by increasing its performance or simply by 

reducing the number of model candidates for a specific problem. This approach is a 

simple alternative to constructing a full hybrid classifier since it is not required to 

fuse textual features with visual features (which is the main challenge when building 

a hybrid classifier with mixed types of data) and allowed for the use of platforms 

already in use by CSW.  

 

4.1.1 Dataset Selection 

 In order to build this ensemble solution and make it comparable to a hybrid 

approach, the annotated dataset, Tobacco3482, was chosen. This dataset is part of 

the bigger collection Truth Tobacco Industry Documents. This collection has two 

major datasets: RVL-CDIP and Tobacco3482. There are significant reasons to 

consider these candidate sets. The first being the datasets size – annotated document 

data is usually scarce but these sub-sets (jointly) provide a large number of image 

examples with over 400000 document image examples. Another reason is class 

coverage. Tobacco3482 covers 10 different document categories (ADVE, Email, Form, 

Letter, Memo, News, Note, Report, Resume, Scientific) and RVL-CDIP covers 16 

categories (letter, memo, email, file folder, form, handwritten, invoice, advertisement, 

budget, news article, presentation, scientific publication, questionnaire, resume, 

scientific report and specification). This high number of classes is important to 

provide the model with generalization capabilities. A third reason has been their 

adoption in recent literature to benchmark and compare many document image 

classification approaches. CSW IDV platform classifiers have in the past been applied 

to the following document types: passports, receipts, invoices, birth certificates, 

citizen cards (personal identification), green cards (insurance) and “accident-friendly 

statements”. Even though there is no overlap between CSW IDV’s tested document 

types these are still one of the best publicly available options. It is also important to 
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note that textual content of these datasets was also made publicly available10 which 

was useful during the textual model development for either the baseline or hybrid 

approaches. 

 Both sub-sets above mentioned were considered but ultimately only one was 

used, the Tobacco3482 sub-set, in order to minimize training time and resource 

consumption overall but also because this dataset is unbalanced and more akin to a 

“real” dataset derived from an IDV application scenario. Due to class unbalance, 

classification bias for a ruling class was expected to occur which can in turn cause 

overfitting, especially with an image-based CNN approach which requires a high 

amount of data. This allows to test whether a hybrid or an ensemble approach is 

better for a scenario such as this. 

           

Figure 21 - Sample of the Tobacco3482 dataset, from left to right: examples of 'Resume', 'Memo' and 'Form' 

 

4.1.2 Ensemble Text-based Model 

 Before producing the ensemble model, previous generation of the individual 

models is required, starting with the text-based model. The textual content of the 

Tobacco3482 dataset was extracted via Tesseract OCR, the same OCR used by CSW. 

 

10  Textual data from the Tobacco3482 and RVL-CDIP datasets using Tesseract OCR v4.0: 

https://github.com/QuickSign/ocrized-text-dataset/releases/tag/v1.0 

https://github.com/QuickSign/ocrized-text-dataset/releases/tag/v1.0
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With Tesseract it is possible to detect text orientation, perform transformations and 

rotations if needed and can also identify black text on a white background. To create 

a text-based model it was used the relatively new Spacy3 library. This library 

contains a pre-built model of BERT.  BERT (Bidirectional Encoder Representations 

from Transformers) is a powerful transformer that analyses both sides of the sentence 

with a randomly masked word to make a prediction. In addition to predicting the 

masked token, BERT predicts the sequence of the sentences by adding a classification 

token [CLS] at the beginning of the first sentence and tries to predict if the second 

sentence follows the first one by adding a separation token [SEP] between the two 

sentences. Its architecture is illustrated in Figure 22. 

 

Figure 22 - BERT architecture (Fierro, 2020) 

 

 In order to perform classification with Spacy’s BERT, pre-processing the data 

was necessary. The textual data is initially presented in .txt files in directory format. 

Using a Python script, it was possible to load the textual data into .csv format and 
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then converting from .csv to the Spacy own’s binary file to serve as input for a pre-

trained BERT model. Using Spacy Command Line interface, it was possible to train 

the model with the data being split as such: 80% for training, 10% for validation and 

10% for testing. For training it was used a batch size of 16, a pre-built bag of words 

architecture to process the resulting input vectors from the BERT model, Adam 

optimizer and a total of 20000 steps. This model achieved an accuracy result of 

91.12% for the validation set and 85.91% for the test set.  

 A second textual classifier was also built using Spacy3 but this time using the 

RoBERTa transformer variant of BERT. It builds on BERT and modifies key 

hyperparameters, removing the next-sentence pretraining objective and training 

with much larger mini-batches and learning rates. This model configured the same 

way as BERT and resulted in an accuracy 89.31% for the validation set and 82.53% 

for the test set, worse results than BERT. 

 

4.1.3 Image-based Model 

  For image classification, two main configurations were used, both using pre-

trained CNN architecture models as a base model. The first uses the lightweight 

MobileNetV2 while the second uses the VGG16 architecture, both pre-trained on the 

ImageNet dataset. Using these models with transfer learning it is possible to classify 

images. Given these are both deep neural networks it was predicted that these 

model’s performances were going to be inferior in comparison to the text model 

configurations described in the previous section 4.1.2. This was expected because the 

deep neural networks used for image classification are dependent on a high number 

of image examples for which the dataset size does not suffice. Overfitting was also 

expected given the class unbalance present in the dataset but such a phenomenon 

was helpful to analyse whether ensemble could mitigate this issue in a document 

classification task. 
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 For both configurations raw image data from the Tobacco3482 was loaded and 

split into an 80% for training, 10% for validation and 10% for testing distribution. 

Data augmentation was also performed to compensate slightly for the lack of data 

and to also take into account that in a real scenario resulting scanned images 

wouldn’t be in the “adequate” conditions that the original Tobacco3482 presents. This 

augmentation consisted of techniques such as shear, zooming randomly 20% of the 

dataset and vertically flipping the images in order to artificially increase the dataset 

size. 

Starting with MobileNetV2 based model (Table 1), the model consists of the pre-

trained MobileNetV2 with its trainable parameters frozen (non-trainable) and fed to 

a CNN consisting of GlobalAveragePooling2D layer, three Dense layers with ‘relu’ 

activation and a 50% chance dropout layer, a Fully Connected Layer layer with 

‘softmax’ activation followed by a classification layer. Its accuracy performance was 

of 77.79% on the training set, 72.41% for the validation set and 65.35% for the testing 

set. The number of trainable parameters is 2.8 M along 8 layers. The model’s loss and 

accuracy plots represented in Figure 25, for the first 25 epochs where the loss function 

stabilizes for both training and validation while accuracy stops increasing for the 

validation set but not for training (overfits). 

 

 

Figure 23 - VGG16 CNN architecture (Thakur, 2019) 
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Figure 24 - MobileNetV2 architecture (Seidaliyeva, et al., 2020) 

  

Table 1 - Image-based model #1 archicteture 

 

 VGG16 variant model also had its base model’s layers frozen and was 

followed by a Flatten layer, Dense layer with ‘relu’ activation and 50% Dropout and 
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a Fully Connected Layer with ‘softmax’ activation followed by a classification layer. 

Its accuracy performance was 94.53% for training set, 74.14% for the validation set 

and 67.88% for test set, slightly better results than MobileNetV2 but still with 

noticeable overfitting. 

Both models were trained in 100 epochs, learning rate of 0.00005 and with Adam 

optimizer using Tensorflow Keras. 

    

Figure 25 - Model Loss and model Accuracy during training using transfer learning with MobileNetV2 as the 

base model for 25 epochs 

 

4.1.4 Ensemble Results 

Finally, having generated and tuned the individual models, it was possible to perform 

an ensemble method. The ensemble method used was the classification voting 

ensemble method. It has two variants: hard-voting and soft-voting.  In classification, 

a hard voting ensemble involves summing the votes for crisp class labels from both 

the models (a text-based model and an image-based model) and predicting the class 

with the most votes. A soft voting ensemble involves summing the predicted 

probabilities for each of the class labels and predicting the class label with the largest 

sum probability. 

  Two configurations were used to provide a clearer analysis. The first being an 

ensemble with MobileNetV2 based image model and the BERT based text model. The 

second configuration consisted of the VGG16 base image model and Roberta text-
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based model. Only the soft voting ensemble was used since it is the appropriate option 

when the models used in the voting ensemble predict the probability of class 

membership. 

 The full results of this baseline approach can be viewed in Table 2. 

 

Table 2 - Ensemble Full Results - Training / Validation Accuracy / Text Model Testing Metrics / Visual Model 

Testing Metrics / Ensemble Testing Metrics / Accuracy per class for testing set for image-based, text-based, 

ensemble models, respectively. 

 

 

An analysis of Table 2 for both Configuration #1 and Configuration #2 is as follows: 

Configuration #1  

• Ensemble overall improved performance across categories but had a neutral 

effect on others, resulting in a model with higher performance than both text 

(no overfitting or underfitting) and much higher than image (overfitting). 

• Scientific, News and ADVE performance had a neutral effect. News and ADVE 

have both poor results with image classifier but high with text, ensemble has 

similar performance to text. 

• Report had its performance slightly reduced. 
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• All other 6 categories had their performance increased even if just slightly. In 

all these categories the image classifier performance was lower than text 

classifier performance. 

• Other relevant notes: News and ADVE have very low performance with image 

classifier and low performance with text classifier. Report has low performance 

on both with image being the worst. 

Configuration #2 

• Ensemble overall improved performance across categories but also had it 

reduced for a small number of categories resulting in a model which is better 

than the image-based model (which suffers from overfitting) but similar in 

performance to the text classifier (which does not suffer from overfitting or 

underfitting) 

• Scientific and ADVE had a neutral impact, i.e., the ensemble performance was 

not the highest 

• Report and Form had their performance reduced. They both share the fact that 

one native model does very well and the other does poorly 

• The remaining 6 categories had their performance increased. Significant 

improvement is in the News category which both models provide poor results. 

• Other relevant notes: ADVE, News very low perf. on Image Classifier and low 

on Text Classifier; Report in uniquely low on Text but high on Image 

From the analysis above it is possible to conclude that ensemble helped mitigate 

the overfitting phenomenon happening with the image-based and managing to 

achieve higher performances than the powerful transformer models. 

 

4.2 Hybrid (Multi-Input) Model 

To generate a hybrid model resulting from both textual and visual features it was 

chosen to adopt the literature stance on the use of late fusion process. This method 
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consists of both models, after individual training and fine-tuning, join together 

through a fusion process, i.e., both text and visual feature vectors need to be combined 

into a single feature vector and once again trained by a classifier. 

To achieve late fusion two main methods, exist: concatenation of feature vectors 

or averaging of feature vectors. Averaging is dependent of the alignment of both 

feature vectors but does tend to produce slightly better results while concatenating is 

more straightforward and leaves it up to the hybrid classifier to combine both 

domains. The method used was concatenation because averaging the alignment of 

both classifiers would prove a complex task, given not only the different nature of the 

features used but also different layer types used to produce each input. 

 The dataset used for the hybrid model training, validation and testing was also 

Tobacco3482. The image-based model used was the same configuration used for the 

baseline ensemble model, which used MobileNetV2 base model with transfer learning 

described in section 4.1.2. 

 Tensorflow and respective Keras API provided the required methods in order to 

generate end-to-end hybrid models, i.e., models with mixed types of data, textual and 

visual, as well as with multiple-input, single-output. An obstacle though was that a 

new text-based individual model needed to be generated in order to be compatible 

with the concatenation fusion process available in Tensorflow’s Keras which will be 

detailed in the following section 4.2.1. 

 

4.2.1 Hybrid Text-based Model 

 The new text-based model needed to create the hybrid model was generated via 

Tensorflow Keras, more specifically, the repository Tensorflow Hub. Tensorflow Hub 

is a repository with available ready-to-use models. One of these models is the BERT 

model, more specifically, the bert english cased variant. The model loaded from this 

repository. Next, the text input data was transformed into numeric token arranged 

in several Tensors before being put into BERT. After being processed by the BERT 
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model, tensorflow returns a custom keras layer with the model’s output. By doing this 

it is possible to use this layer, as transfer learning, to have the result BERT model 

output as input for a new text-based classifier. The model is then added upon with a 

10% Dropout layer and a Dense layer with ‘softmax’ activation ().  

 

Figure 26 - Hybrid Text-based model 

 Training of this model was performed using a custom Adam with weigh decay 

optimizer, learning rate of 0.00003 and only 5 epochs.  

 The model’s performance was 93.78% accuracy on training, 86.67% on validation 

and 79.15% on the test set. Good results given the relatively simple architecture used. 

The training and validation loss and accuracy plots are represented in Figure 27. In 

this figure, for training, it is possible to see that the loss consistently decreases over 

time and stabilizes at the end while the accuracy consistently increases over time also 

stabilizing at the end. For the validation set both the loss and accuracy stabilize much 

sooner and decrease and increase, respectively, at a much slower pace, a possible sign 

of overfitting due to lack of data. 

 

4.2.3 Late Fusion process 

 As stated above, the late fusion process was achieved via Tensorflow Keras 

library which allowed for the generation of an end-to-end hybrid model on mixed data 
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inputs. The way this achieved is by loading both models and setting its parameters 

to non-trainable (freeze layers). This way the model only trains the new introduced 

layers. Removal of the last layer of both models (Dense layer with ‘softmax’ 

activation) was also performed in order to concatenate both feature vectors resulting 

on the penultimate layer. The concatenated output of both these feature vectors can 

then be used as the input for a follow-up layer able to perform inference on combined 

feature vector input, effectively producing a hybrid end-to-end classifier. The 

resulting model architecture is illustrated in Figure 28. The presented architecture 

is then followed by a SoftMax layer and a classification layer. 

 Unfortunately, due an error regarding the input data for the hybrid model, 

resulting in the model failing to adapt both inputs into the required format 

specificized by the TensorFlow API it was not possible to proceed with the hybrid 

training and consequent testing. This error was left unfixed due to time. Further 

discussion and conclusion of results will made taking this fact into consideration. 

 

Figure 27 - Loss and Accuracy plots for both training and validation using the Tensorflow Keras Pre-trained 

BERT Model 
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Figure 28 - Hybrid Model Architecture With Multiple Inputs 
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Chapter 5 Conclusion and Future Work   

In this work it was presented multiple ways to consider the use of both textual and 

visual data for document classification. The first being individual training of each 

model in regards to its feature type followed by the employment of an ensemble 

method and finally with an end-to-end multiple-input, hybrid, model. It was possible 

to conclude by analysing the ensemble classifier results that this technique is simpler 

and yet effective in achieving good results if at least one of the models is well tuned 

such as BERT textual model. Therefor it presents itself as good choice if there’s not a 

significant amount of available data and if a deep learning model might prove 

insufficient, allowing for the use of an ensemble method paired with, per example, a 

text-based model generated via powerful transformers such as the ones used – which 

were able to achieve good results with low fine-tuning and with the small, 

unbalanced, dataset provided. Even tough unable to prove it in this work, the 

literature in section 2.5.3 concludes that hybrid models are effective in increasing 

individual model’s performance via a fusion process. This process however is much 

more complex than a simple ensemble and requires both models to be, at least, 

acceptable for it to concatenate both feature vectors in a way that will favour 

performance. This said, hybrid models are ideal over ensemble models when using 

deep learning, if high amount of data is available, and both models can benefit from 

it.  

 Some final remarks: it is regrettable that training and evaluation of the hybrid 

model was not possible in this project lifespan and the immediate future work would 

be to fix the error stated in section 4.2.3. Other possible future work would be to test 

both ensemble and hybrid models on a large dataset such as RVL-CDIP which was 

originally intended but due to time and other reasons stated in section 4.1.1 was 

scrapped in favour for the Tobacco3482 smaller dataset. And finally, also testing both 

models with a CSW specific dataset would be interesting to see how the model 

performs in a “real” scenario and compare it to Tobacco3482 and RVL-CDIP.
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