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Resumo

A doença de Alzheimer é um transtorno neurodegenerativo progressivo cujo di-

agnóstico permanece um desafio, pois este só é posśıvel quando já ocorreram danos

neurológicos significativos. Dado que a retina e o cérebro têm a mesma origem em-

brionária, cada vez mais se tem vindo a utilizar a retina como uma janela para o

cérebro.

Este estudo teve como objetivo identificar alterações caracteŕısticas em imagens da

retina de modelos animais da doença de Alzheimer, imagens reconstrúıdas a partir

de dados de tomografia de coerência ótica nos estádios iniciais da doença.

Para alcançar este objetivo, foi utilizada uma abordagem de aprendizagem profunda.

Em primeiro lugar, foram criadas seis redes neuronais de convolução (CNNs) para

determinar se as imagens de cada camada ou conjunto de camadas agregadas da

retina eram distintas entre ratos do tipo selvagem e ratos transgénicos (modelos da

doença de Alzheimer). Em seguida, o método Gradient-weighted Class Activation

Mapping (Grad-CAM) foi utilizado para avaliar em que áreas (regiões) das imagens

se encontrava a informação conducente à distinção entre grupos. Adicionalmente,

foi também realizada uma experiência para verificar se os olhos direito e esquerdo

partilham as mesmas caracteŕısticas. Por último, uma rede neuronal foi desen-

volvida para avaliar se a combinação das classificações resultantes das seis CNNs

melhoraria o desempenho na distinção entre grupos. Com base nesta última tarefa,

duas técnicas (algoritmo de conexão de pesos e método de perturbação) foram uti-

lizadas para descobrir que camadas/conjunto de camadas mais contribúıram para a

classificação nos grupos de controlo e transgénico.

As CNNs provaram conseguir classificar corretamente as imagens usadas considerando

apenas uma camada/conjunto de camadas, com uma exatidão entre 79,0% e 89,2%

no grupo de teste, indicando assim que todas as camadas contêm informação sufi-

ciente para discriminar ratos do tipo selvagem de ratos transgénicos. Em geral, os

mapas de calor sugeriram que as caracteŕısticas essenciais estão presentes numa área
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mais extensa em imagens classificadas como transgénicas do que em imagens classi-

ficadas como do tipo selvagem, e que essas áreas não estão localizadas nas mesmas

regiões entre as várias camadas/conjunto de camadas da retina. Além disso, as ima-

gens do olho direito e esquerdo não partilham as mesmas caracteŕısticas. Por fim,

a combinação dos dados provenientes das seis camadas/conjunto de camadas não

melhorou o desempenho da classificação, atingindo uma exatidão de 85,4%. Nesta

tarefa, a camada nuclear interna (INL) foi a que mais contribuiu, ao contrário da

camada plexiforme interna (IPL) e das camadas das fibras nervosas e das células

ganglionares (RNFL-GCL) que tiveram uma contribuição residual.

Palavras-chave: Doença de Alzheimer, Redes Neuronais, Tomografia por

Coerência Ótica
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Abstract

Alzheimer's disease (AD) is a progressive neurodegenerative disorder whose diag-

nosis remains a considerable challenge as it is only possible when significant neuro-

logical damage has occurred. Given that the retina and the brain have the same

embryonic origin, increasing attention has focused on using the retina as a window

into the brain.

This study aimed to identify the characteristic changes in computed optical coher-

ence tomography ocular fundus images of animal models of AD in the early stages

of the disease.

To achieve this goal, a deep learning approach was used. Firstly, six Convolutional

Neural Networks (CNNs) were created to determine if the computed fundus images

of each retinal layer/layer-aggregate were distinct between wild-type and transgenic

mice. Afterwards, the Gradient-weighted Class Activation Mapping (Grad-CAM)

method was applied to assess which image areas were decisive to distinguish groups.

An additional experiment was also made to ascertain if the right and left eyes share

the same characteristics. Lastly, a neural network was developed to assess if com-

bining the six CNNs predictions would improve the performance. Based on this

last task, two techniques (connection weights algorithm and perturbation method)

were used to discover which layers/layer-aggregates had a higher contribution to

classification.

The CNNs proved able to classify correctly the fundus images belonging to only

one layer/layer-aggregate, with accuracies between 79.0% and 89.2% on the test

set, implying that all layers have helpful information to discriminate wild-type from

transgenic mice. In general, the heatmaps suggested that the meaningful character-

istics in images classified as transgenic were present in a more extensive area than

the wild-type, and those areas were not located in the same places between retinal

layers/layer-aggregates. Moreover, the right- and left-eye images did not convey the

same information. Finally, combining data from the six layers/layer-aggregates did
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Abstract

not improve further the classification performance, reaching an accuracy of 85.4%.

The Inner Nuclear Layer (INL) was the most contributing layer in this task, and

the Inner Plexiform Layer (IPL) and Retinal Nerve Fibre and Ganglion Cell Layers

(RNFL-GCL) had a residual contribution.

Keywords: Alzheimer's Disease, Neural Networks, Optical Coherence

Tomography
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1

Introduction

1.1 Context and Motivation

Alzheimer's Disease (AD) is the leading cause of dementia in the elderly, and

it is characterised by a progressive decline in cognitive functions [1]. It begins with

the difficulty in forming recent memories, as well as in completing simple daily

tasks. Patients have mood and personality changes, and they also complain about

decreased colour vision and contrast sensitivity [2]. In the late state, AD leads to

total dependence of caregivers to assist in activities of daily living [3].

The current process of AD diagnosis falls short of the ideal standards. Patients

are only diagnosed with AD when they are already showing signs of cognitive decline,

which means irreversible damage has occurred in the brain. Therefore, it is crucial

to perform an accurate diagnosis in the preclinical stage before permanent brain

damage occurs. This is the optimal time window to intervene with therapies to stop

or slow AD progression [4].

Up to the present, the current techniques used to support the AD diagnosis

are limited by high cost and low availability (Magnetic Resonance Imaging (MRI)

and Positron Emission Tomography (PET)) [5]. In addition, Cerebrospinal Fluid

(CSF) biomarkers have the invasiveness drawback. Furthermore, these modalities

have suboptimal sensitivity and specificity, especially in distinguishing between AD

and other dementia disorders.

Studies suggest that the neurodegeneration process observed in the brain may

also occur in the retina [6]. Indeed, histological evidence shows the accumulation of

amyloid-beta (Aβ) peptides and tau proteins in the retina - these being the brain

hallmarks of AD. Therefore, the retina can be considered a window to the brain since

retinal abnormalities may give valuable insights into pathological brain features. For

example, Aβ plaques were observed in the retina of mice 2.5 months earlier than
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detected in the brain, suggesting that Aβ deposition in the retina precede the brain

[7].

Within the scope of an ongoing project, the OCT4BRAIN project, the research

group gathered Optical Coherence Tomography (OCT) data from wild-type and

triple-transgenic mice model of AD. The retinal volume data was then segmented

into six different ocular fundus images for individual retinal layers or layer-aggregates

(Retinal Nerve Fibre and Ganglion Cell Layers (RNFL-GCL), Inner Plexiform Layer

(IPL), Inner Nuclear Layer (INL), Outer Plexiform Layer (OPL), Outer Nuclear

Layer (ONL), and Total Retina (TR)).

Previous studies conducted by the research group demonstrated that changes

in the individual layers/layer-aggregates were present. Moreover, these differences

were sufficient to distinguish both groups in the early stages of disease using Support

Vector Machine (SVM) with radial basis function kernel [8]. Besides, texture analysis

was applied to the computed fundus images and a substantial distinction between

groups at one- and two-months-old was found across all layers/layer-aggregates [9].

The study herein intends to embrace a deep learning approach to confirm previ-

ous findings stating that the computed fundus images of each particular layer/layer-

aggregate are distinct between groups. In addition, it aims to determine which

areas in the images convey relevant information for each layer/layer-aggregate. Fur-

thermore, it expects to ascertain if combining the information from all layers/layer-

aggregates results in higher classification performance and which layers had higher

importance in this classification task.

Using OCT to aid the AD diagnosis and to monitor AD progression would be

very beneficial. In addition to being non-invasive, it is fast, inexpensive, and has a

great potential to provide biomarkers of alterations at the early stages of AD.

1.2 Goals and Contributions

As aforementioned, the main goal of this study is to identify the characteristic

changes in retinal images of animal models in the early stages of AD. These findings

can then be sought in humans to determine whether there is a parallel between

retinal changes in the animal models and humans diagnosed with AD. In that case,

this study will subsequently contribute to an earlier diagnosis, hopefully, before ir-

reversible brain damage occurs.
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There are six objectives to fulfil in this thesis:

• exploit the dataset and develop a preprocessing phase to reduce variability

between images with no relevance for the task at hand;

• build six Convolutional Neural Networks (CNNs) to assess their ability in

distinguishing between wild-type and transgenic mice using images from a

particular layer;

• gain insights into the visual changes in the images between both groups by

exploring how the CNNs made the decisions using a back-propagation method;

• investigate whether both right and left eyes share the same information - this

will be achieved by developing CNN models that learn with images from one

eye and are tested on images from the other eye;

• build a Feed-Forward Neural Network (FFNN) to assess whether joining the

predictions of all six CNNs improves classification performance, and;

• determine which retinal layers or layer-aggregates have contributed the most

to the classification by applying algorithms that assess the input features im-

portance.

1.3 Document Structure

This document is structured in seven chapters.

Chapter 2 provides the basic knowledge about AD. It begins with a brief his-

torical context. Then, the epidemiology in the world and Portugal is presented.

Moreover, the pathophysiology and the current diagnosis are described.

Chapter 3 reviews the existing literature about the current techniques in study

to aid the AD diagnosis. These include CSF biomarkers and three imaging tech-

niques: PET, MRI, and OCT.

Chapter 4 describes deep learning models (FFNN and CNN), comprising their

learning process, regularisation methods, transfer learning and explainability meth-

ods.

Chapter 5 presents a description of the dataset, describing how the data was

collected and preprocessed.

In Chapter 6, the obtained results are reported and discussed.

3
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Finally, Chapter 7 concludes the thesis and presents some possibilities for future

work.

4



2

Alzheimer's Disease

2.1 Brief Historical Context

The first case of Alzheimer's disease traces back to the beginning of the 20th

century, when Alois Alzheimer, a German psychiatrist and neuropathologist, pre-

sented his patient's clinical case at the 37th Meeting of the Southwest German

Psychiatrists in Tübingen in November 1906 [10].

Alois Alzheimer was born in 1864 in Markbreit am Main, Germany, and showed

enormous enthusiasm for Natural Sciences from an early age [11]. He graduated

in medicine, and while working as a resident at the Frankfurt Institution of the

Mentally Ill and Epileptic, Ms Auguste Deter was admitted to the institution on

25th November 1901 [12].

Auguste Deter was a 51-year-old patient from Frankfurt, and when observed

by Alzheimer, she revealed decreased memory and comprehension, disorientation,

progressive aphasia, and significant psychosocial impairment [12]. Alzheimer's case

presentation stated that Ms Deter symptoms were so distinct from all the other

described diseases that it was impossible to label her condition based on known

mental illnesses.

Alzheimer moved to Munich in 1903 by invitation from a German psychiatrist

known today as the founder of modern scientific psychiatry, psychopharmacology,

and psychiatric genetic, Emil Kraepelin [10]. Indeed, it was Kraepelin who named

this disease after Alois Alzheimer.

Afar, Alzheimer kept following Auguste's disease state. When she died in 1906,

her brain was sent to Munich so Alzheimer could perform an autopsy to discover the

histological changes responsible for her clinical symptoms [11]. This examination

showed a massive loss of cells throughout the brain, deposits of an unidentified

substance in the form of plaques within the cerebral cortex, and peculiar thick and

5



2. Alzheimer's Disease

strongly staining fibrils in the remaining neurons [13].

Nowadays, it is known these are, in fact, the hallmarks of AD: loss of neurons,

and accumulation of Neurofibrillary Tangles (NFTs) and Aβ plaques [13].

Later on, between 1907 and 1908, Alzheimer took care of another three patients

experiencing similar symptoms to Ms Deter. Their brains' examination revealed

that they shared the same histopathological changes: deposition of plaques and

NFTs within the cerebral cortex [11]. The report Alzheimer wrote about the second

patient, Johann F., was the one that drew the scientists' attention, in contrast to

his former presentation in the 37th Meeting in Tübingen, which was even considered

“unsuitable for publication in the meeting proceedings by the organisers” [11].

2.2 Epidemiology

The World Alzheimer Report of 2015 estimated that 46.8 million people world-

wide lived with dementia that year, and these numbers are expected to increase to

74.7 million in 2030 and 131.5 million in 2050 [14]. These figures are approximately

13% higher than the estimations made in the 2009 report [15] due to the increasing

prevalence of dementia among those aged over 60 in Asia (from 3.9% in 2010 to 4.7%

in 2015) and Africa (from 2.6% to 4.6%). On the other hand, it was noticed a slight

decrease in Europe and America (6.2% to 5.9% and 6.5% to 6.4%, respectively)

[14, 15]. Although these figures account for all types of dementia, AD is estimated

to be responsible for 70% of the cases [16].

In what concerns the incidence, studies suggest that, since there is an expo-

nential increase with age, dementia is an imminent outcome of ageing [17]. The

incidence duplicates every 6.3 years among those aged 60 and over, increasing from

3.9 per 1000 person-years to 104.8 per 1000 person-years at 90+ years of age [14].

Moreover, while High-Income Countries (HIC) appear to have greater incidence,

doubling in age every 5.8 years from 3.5/1000 per year to 124.9/1000 per year, in

Low- and Middle-Income Countries (LMIC), there is a double increase every 8.6

years from 5.2/1000 per year to 58.0/1000 per year. Nevertheless, it was determined

that the overall incidence of dementia in HIC is only 10% higher than in LMIC,

which is not statistically significant [14].

In Portugal, 160 287 people had dementia in 2013, corresponding to 5.9% of the

population residing in the country and aged over 60 years. These values suggest an

increase in the prevalence over the past decade because, in 1991, it was ascertained
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Figure 2.1: Estimated age-specific annual incidence of dementia. Image from
“World Alzheimer Report 2015 The Global Impact of Dementia An analysis of
prevalence, incidence, cost and trends” [14].

at a 4.6% rate. Because Portugal is facing increasing demographic ageing, it is

expected that the number of dementia cases will grow in the coming years [18].

2.3 Pathophysiology

2.3.1 Brain

Pathologically, AD is characterised by extracellular deposition of fibrils of Aβ

in diffuse and neuritic plaques [16]. These are consistently distributed within the

cerebral cortex. It is thought that amyloid plaques contribute to the disruption of

cellular activities and communication in the brain resulting in neuroinflammation

and neuronal cell death [7].

The second hallmark of AD is the intracellular aggregation of hyperphosphory-

lated tau into NFTs [19]. NFTs, responsible for reducing the cytoskeleton integrity,

leading to neuronal dysfunction [20], are mainly present in the medial and lateral

temporal lobes and, sparingly, in the parietal, occipital, and frontal ones [21].

The third pathological feature of AD is the progressive decline in dendrites,

synapses, and neurons, that is, neurodegeneration, a consequence of the abnormal

Aβ and tau accumulation in the brain [22].
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2.3.2 Retina

The retina is an integral part of the Central Nervous System (CNS) and shares

an embryonic origin with the brain [23, 24]. Consequently, histological and clinical

research suggests that the brain's neurodegenerative process also affects the retina

[25]. Despite being smaller or having different shapes, Aβ plaques and NFTs were

identified in the retina of rodents and humans diagnosed with AD [4].

Several studies reported pathological changes in the retina, such as thinning

and degeneration of the macular layers, neuroinflammation, retinal ganglion cell

death and axonal loss [2, 4, 6]. It was observed a considerable thickness reduction

of the Retinal Nerve Fibre Layer (RNFL), the Ganglion Cell Layer (GCL) and the

OPL, compared to healthy subjects [25]. By contrast, the ONL revealed a significant

thickening [25]. These findings may result directly from Aβ and tau accumulation

and, secondarily, by the visual cortex degeneration [25].

These pathological changes were detected in the early stages of this disease, even

before causing damage in the hippocampal area, associated with memory formation

[26]. However, the mentioned retinal abnormalities also occur in different neurode-

generative diseases, such as glaucoma, ocular hypertension, multiple sclerosis, and

Parkinson's [25].

2.4 Diagnosis

The Alzheimer's disease diagnosis has been facing frequent revisions for the last

decades since its breakthrough in 1906 [1].

Nowadays, doctors and researchers commonly use the National Institute of

Neurological and Communicative Disorders and Stroke and Alzheimer's Disease and

Related Disorders Association (NINCDS-ADRDA) criteria proposed in 1984 [27]. It

categorises AD according to three labels: possible, probable, or definite, by linking

the clinical examination to the neuropathological patterns [16].

It is required that the patients meet the conditions for probable AD and show

supporting histopathologic evidence via autopsy or biopsy to classify AD as definite

[27]. When the typical symptoms are fulfilled, and no other disorder might be the

cause, it is characterised as probable [27]. Finally, it is diagnosed as possible when

the cognitive decline is unusual or no other conditions contribute to dementia [3].

Alzheimer's disease is only diagnosed when the patient exhibits significant cog-
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2. Alzheimer's Disease

nitive signs of Alzheimer's dementia, which affects the therapy success since it has

been shown to be more effective in earlier stages of the disease [28]. Besides, the

criteria accuracy is reasonably low, with a sensitivity of 80% and specificity of 70%

[28].

With the substantial progress in biochemical and genetic understanding of AD,

neuropsychological assessment, and brain imaging, the NINCDS-ADRDA criteria

were recently updated to include imaging biomarkers, such as PET, Structural Mag-

netic Resonance Imaging (sMRI), Functional Magnetic Resonance Imaging (fMRI),

and CSF biomarkers [3, 28]. They are vital to exclude other causes of dementia

such as brain tumour or subdural haematoma [28], therefore enhancing the diagno-

sis specificity.

Moreover, another diagnostic has been included: Mild Cognitive Impairment

(MCI). It represents a transitional state between normal cognition and dementia

[16]. Although MCI patients are not demented yet, they show a higher risk of

progression to dementia [21].
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Alzheimer's Disease State of the

Art Diagnosing Tools

The characteristic pathophysiological abnormalities of Alzheimer's disease, such

as Aβ plaques or tau-related neurodegeneration, precede the clinical symptoms by

many years [29], being detectable by several biomarkers1.

Different biomarkers are currently being sought, as they are precious in Alzheimer's
disease diagnosis, progression, and treatment. Firstly, AD biomarkers establish a

more reliable and accurate diagnosis since they are independent of patients' responses.

They may facilitate an early diagnosis, which is of the utmost importance to accom-

plish more promising results in AD therapies. They may also allow identifying

patients who are already developing the pathologic hallmarks of the disease but do

not yet show any signs of dementia. Finally, they help following the disease pro-

gression and the treatment effectiveness, and improve the current understandings of

AD neurophysiology [31].

Below, AD biomarkers widely used in clinical trials to support the updated

diagnostic criteria will be presented. These belong to two categories: body fluids

(CSF biomarkers) and imaging techniques (PET, MRI, and OCT).

3.1 Cerebrospinal Fluid Biomarkers

CSF is a clear liquid that surrounds the brain and the spinal cord. Among

other functions, it provides mechanical protection against shock – it is a shock

absorber – and transports active metabolic substances and waste products released

by the brain [32]. The tau proteins - total-Tau (t-Tau) and phosphorylate-Tau

1A biomarker is a “characteristic that is objectively measured and evaluated as an indicator
of normal biological processes, pathogenic processes, or pharmacologic responses to a therapeutic
intervention” [30].
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(p-Tau) - and Aβ peptides (Aβ42) levels in CSF give valuable insights into the

metabolic processes occurring within the brain. Thus, comparing CSF reference

and patients' values may contribute to a more flawless AD diagnosis at the early

stages. However, the correlation between CSF biomarkers and concentrations of Aβ

plaques and neurofibrillary tangles in the brain remains unclear [16].

A CSF sample is collected through a procedure called “lumbar puncture”. This

is an invasive test with some associated risks: discomfort during and after the pro-

cedure, headache, allergic reaction to the anaesthetic, and infection at the puncture

area [33].

The analysis of CSF samples belonging to healthy individuals and demented

patients led to the conclusion that the latter have lower levels of Aβ1−42 and higher

levels of t-Tau and p-Tau [16]. It was pointed out that the quantity of t-Tau in

CSF tends to increase with AD progression [1]. Moreover, studies suggest that Aβ42

CSF levels become abnormal earlier than detected on amyloid PET scans and before

neurodegeneration occurs in the brain [34].

Regarding the CSF diagnostic efficiency, it was determined that AD discrimina-

tion from healthy elderly individuals is highly accurate [35]. Additionally, essential

findings show that Parkinson's disease and depression present normal CSF levels

and p-Tau aids to distinguish AD from frontotemporal dementia and Lewy Body

dementia [35]. Furthermore, the combination of the three biomarkers, t-Tau, p-Tau,

and Aβ42, seems to improve further the capability of prediction of whether an MCI

diagnosis will progress to AD or other distinct conditions [35].

3.2 Positron Emission Tomography

PET is a non-invasive functional imaging technique that analyses the distribu-

tion of a radiotracer in the brain to assess the molecular abnormalities in enzyme

activity, receptor distribution, and brain metabolism. There are three different types

of PET scans that have been extensively used for in vivo imaging of AD pathol-

ogy: radioisotopes that trace the path of Aβ within the brain, isotopes that bind to

tau-proteins, and glucose metabolic tracers.

3.2.1 Amyloid PET

C-11 Pittsburgh compound B, F-18 florbetapir, and F-18 florbetaben tracers

bind preferentially to Aβ peptides. Therefore, the higher the Aβ deposition, the
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greater the activity observed in the brain cortex [36].

A negative amyloid PET scan implies that AD is quite unlikely. Since Aβ

plaques in the brain are hallmarks of AD, these tracers are very useful in excluding

AD diagnosis. However, it cannot be used as the only tool to confirm AD because

it overlaps with healthy individuals of the same age. Furthermore, it cannot differ-

entiate between different symptomatic stages [37].

3.2.2 Tau PET

Developing tau-specific tracers has been particularly challenging since it is more

difficult to access tau proteins than Aβ because the former aggregates intra- and

extra-cellularly. The tracers THK5317, THK5351, AV-1451, and PBB3 have re-

vealed promising tools to monitor tau-protein proliferation [37].

Concerning AD diagnosis, tau PET might not be as discriminating as needed

because tau deposition is also observed in other neurodegenerative diseases in-

volving the aggregation of tau proteins into neurofibrillary tangles (tauopathies),

such as chronic traumatic encephalography and progressive supranuclear palsy [36].

Nonetheless, it might be crucial to evaluate the treatments' efficacy in reducing the

tau burden in the brain.

3.2.3 Fluorine 18 fluorodeoxyglucose (18F-FDG) PET

18F-FDG PET is used to analyse brain activity, vascular deficits, and blood-

brain impairments by measuring the brain's glucose consumption. It was observed

that individuals diagnosed with MCI or AD have a reduced glucose metabolism rate

in the temporoparietal regions. [34]

Minoshima et al. (2001) [38] and Albin et al. (1996) [39] suggested that 18F-

FDG-PET markers can discriminate between AD and dementia with Lewy Bodies.

Moreover, Santens et al. (2001) [40] made an 18F-FDG-PET visual analysis of three

different brain regions, confirming asymmetric patterns between AD and frontotem-

poral dementia, suggesting, therefore, that it is possible to distinguish between these

two diseases based on 18F-FDG-PET. Indeed, the US Centre for Medicare Service

approved this imaging test to differentiate the two conditions (AD and frontotempo-

ral dementia), making this imaging technique the first to make a positive diagnosis

of dementia [41].
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3.2.4 Final remarks about PET

Overall, PET biomarkers are a valuable asset in the diagnosis and progression

analyses of AD. Since they assess the brain's metabolic functions and biochemical

processes, PET scans effectively detect the disease in its early stages or before the

first clinical symptoms.

On the downside, PET imaging is quite expensive. An amyloid PET scan costs

approximately 4000 US dollars [34], which is not affordable for all countries. More-

over, even though radioactive isotopes have short half-lives, exposure to radioactivity

is inevitable and, for that reason, it is not recommended in pregnant patients [42].

3.3 Magnetic Resonance Imaging

3.3.1 Structural Magnetic Resonance Imaging

MRI is a non-invasive medical imaging tool that produces three-dimensional

images. This technology is beneficial for the brain's examination, for example, the

shape, the volume of the total brain and its different regions, and the structural

integrity of the grey and white matter.

The most common findings in MRI of AD patients are medial temporal lobe

atrophy, including the amygdala, hippocampus, parahippocampal gyrus, entorhinal

cortex and ventricular hypertrophy, and total brain volume reduction [6].

A significant part of earlier studies was concentrated on volumetric approaches,

such as Voxel-based Morphometry (VBM), an automatic volumetric method for

comparing regional grey matter concentration between two groups of subjects [43].

Zhang et al. (2019) [44] developed an Extreme Learning Machine (ELM) model

to distinguish AD patients from healthy controls. To build the ELM diagnos-

tic model, the authors used VBM obtained from the hippocampal region in MRI

(three-dimensional features), patient information, and texture parameters (two-

dimensional features). Then, this ELM model was compared with SVM, Gaussian

Process Regression (GPR), and Partial Least Squares (PLS) models, showing to be

effective in distinguishing AD patients from healthy subjects.

As an alternative to volumetric methods, Khvostikov et al. (2018) [43] devel-

oped the design of a multimodal 3D Inception-based CNN with hippocampal sMRI

and Mean Diffusivity-Diffusion Tensor Imaging (MD-DTI) data for the diagnosis of

AD. The comparison with the conventional AlexNet-based network revealed a fewer
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number of weights and a higher performance level.

Predicting which patients diagnosed with MCI will progress to AD is a chal-

lenging task. Along this line, Li et al. (2019) [45] developed a deep learning model

of CNNs with residual connections using hippocampal MRI data to estimate the risk

of progression of MCI patients' to AD. This risk was then combined with clinical

information, such as age, sex, education, and Apolipoprotein E 4 (APOE4), a gene

associated with an increased risk for developing AD, to build a second prognostic

model that provides a cost-effective and accurate approach for prognosis and eases

the enrolment of patients in clinical trials likely to progress to AD.

Rebbah et al. (2018) [46] performed a study on the conversion of MCI to AD

based on regions of interest (ROIs) using a combination of two sMRI biomarkers:

cortical thickness and cortical curvature measures. The histogram analysis of the

sMRI biomarkers resulted in eight parameters that went through a feature selec-

tion process. Afterwards, the classification was performed through SVM using the

optimal feature subset.

Feng et al. (2021) [47] proposed an ROI-based contourlet sub-band energy

feature to represent sMRI images in the frequency domain for AD classification

since spatial analysis methods weaken the discrimination ability of spatial features.

Thus, each preprocessed sMRI image was segmented into 90 ROIs from which energy

sub-bands were obtained. Finally, an SVM classifier used the concatenation of the

sub-bands energy feature vectors of the 90 ROIs to classify subjects. This study

demonstrated that the ROIs' energy information could detect differences between

AD and healthy controls.

3.3.2 Functional Magnetic Resonance Imaging

While sMRI is used to analyse anatomical structures, fMRI is a helpful tool

for studying brain activity [16]. Commonly, fMRI relies on the Blood-Oxygen-level-

dependent (BOLD) method, which measures changes in blood flow by analysing

variations in the concentration of deoxyhemoglobin [1]. Active neurons consume

more energy, released by the blood in the form of oxygen and sugar, than inactive

neurons. Therefore, active brain regions have an increased blood flow [48].

Dickerson et al. (2005) [49] used fMRI to investigate differences between MCI,

AD, and controls in hippocampal and entorhinal activation during learning. In

comparison to healthy ageing, AD patients showed a reduced BOLD signal in hip-

pocampal and entorhinal regions. The authors also suggested an increased medial
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temporal lobe activation in an early phase of AD, followed by a subsequent decrease

as the condition progresses.

Similar findings were described by Celone et al. (2006) [43]. Less impaired MCI

subjects showed hyperactivation in the hippocampus compared to healthy controls,

while more impaired MCI revealed substantial hypoactivation.

Notwithstanding these conclusions, the BOLD signal is an indirect approach to

measuring brain activity [48]. It depends on physiological, anatomical, and imaging

factors, limiting its effectiveness as a differential diagnosis because of the BOLD

signal variation among individuals [1].

Because within the neuroimaging field the number of features is frequently nu-

merous, Bi et al. (2018) [50] proposed a new random SVM cluster to analyse fMRI

data and distinguish between AD and healthy controls. This method combines

several SVMs into a random SVM cluster. Each SVM is set up with random sam-

ples and features, leading to dimensionality reduction and increased generalisation

performance.

Functional MRI generates 4D data containing both spatial and time-varying

information of the brain. However, classification models usually transform the data

into 2D or 3D images, which might cause the neglect of crucial information. Thus,

Li et al. (2020) [51] presented a 4D deep learning model, named C3d-LSTM, for

AD detection. This model can deal with 4D fMRI data directly; therefore, no

spatial or time-varying information is lost. Results showed that spatial and temporal

information preserved in 4D fMRI data are, in fact, significant for AD discrimination,

leading to an increased classifier's performance when compared to a 2D or 3D fMRI

dataset.

Wang et al. (2018) [52] analysed brain network connectivity patterns. They

presented a classification method for AD, MCI, and healthy subjects, robust to a

limited number of fMRI data samples. Firstly, they selected the regions of interest

– the hippocampus and the isthmus of the cingulate cortex – and calculated the

Pearson coefficients for every ROI pair to form a feature vector for each subject. To

reduce the noise effect caused by the limited dataset, a linear discriminant analysis

(LDA) approach was proposed. It projects feature vectors onto a one-dimensional

axis to maximise differences between AD, MCI, and healthy subjects. Finally, the

classification task was performed by applying a decision tree based multi-class Ad-

aBoost classifier. The authors concluded that the hippocampus and the isthmus of

the cingulate cortex are closely related to the development of AD and MCI, and that
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the regularisation methods and the AdaBoost classifier can significantly improve the

classification performance.

3.4 Optical Coherence Tomography

OCT is a compelling imaging technique widely used in medicine, especially in

ocular imaging. This technique is used to gather the data considered in this work.

For this reason, the physical principle behind time- and frequency-domain OCT will

be explained in this section.

An OCT system allows obtaining a series of parallel 2D cross-section represen-

tations of the eye fundus based on the reflectivity of the different retinal layers [53].

This technology is now considered a clinical standard in ophthalmology and crucial

for diagnosing and monitoring several retinal diseases [54].

Current OCT technologies perform an optical biopsy in vivo and in situ, with

an axial resolution ranging from 1 to 15 µm, one or two orders of magnitude higher

than the standard ultrasound imaging [54]. These are evident assets when a standard

excisional biopsy is delicate or impossible, as in the human retina, nervous tissues,

or arteries [54]. Moreover, OCT is a non-contact method and a helpful tool for

the guidance of interventional procedures since it enables the visualisation of the

structural morphology beneath the surface [54].

The physical principle behind OCT is similar to that of ultrasound, except that

ultrasound makes use of a mechanical wave while OCT uses light. When a beam

of light or sound is directed onto a sample, it is backscattered or back-reflected

differently depending on the optical or acoustic properties of the sample. Therefore,

in ultrasound, the structure of the sample is estimated by measuring the time that

sound takes to return from different depths [54]. However, in OCT, there is a major

difference: as light travels much faster, a much higher time-resolution would be

required, on the order of femtoseconds (10−15 s), so that the backscattering optical

path could be detected with an axial resolution of 1-15 µm [53]. No current hardware

is available to measure such a short time. Hence, the principle of interferometry was

used in OCT to overcome this obstacle [53].

The Michelson interferometer splits the light emitted from a broadband source,

with a wide range of optical wavelengths, into two identical light beams. Each

beam travels a different path: the reference and the sample arm. The reference

beam (light beam directed to the reference arm) travels a known distance to a
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reference mirror and is backscattered. In contrast, the sample beam (light beam

directed to the sample arm) travels to the sample to be partially backscattered.

Both backscattered beams are recombined and the phase difference between them

creates an interference pattern possible to be measured by a detector. There is

a substantial interference signal when the backscattered light from the sample and

reference arms have travelled the same optical distance. The reference mirror can be

translated longitudinally, allowing the formation of the sample's reflectivity along its

optical axis. This is the principle behind Time-Domain OCT (TD-OCT) technology,

whose scheme is illustrated in Figure 3.1.

Figure 3.1: Scheme of time-domain OCT system. Image adapted from “Optical
coherence tomography: A concept review” [53].

The technology of the OCT model used in the present dissertation is not of the

time-domain type. Instead, it is based on the Spectral/Fourier domain technology

(SD-OCT), which allows the depth information of the sample to be obtained by

analysing the spectrum of the interferometer's output light by a spectrometer with-

out the need of moving the reference mirror. Therefore, all depth information within

a single A-scan is performed simultaneously, allowing for a much faster acquisition

of B-scans, hence reducing the chance of saccades [55].
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Figure 3.2: Scheme of frequency-domain OCT system. Image adapted from “Op-
tical coherence tomography: A concept review” [53].

Several studies have focused on assessing whether data provided by OCT allows

establishing biomarkers for the diagnosis and follow-up of AD. However, using ocular

fundus images generated from the 3D OCT data of mice model of AD is a pioneer

study rendering it impossible to compare it with other studies, as these are either

based on B-scans or thickness measurements.

Günes, et al. (2015) [56] compared the RNFL thickness of patients in an early

stage of AD with age-, sex- and education-matched healthy subjects. These results

demonstrated a significant thinning of the RNFL on average and in all quadrants

(inferior, superior, nasal, and temporal) of AD patients compared to healthy con-

trols.

Parisi et al. (2001) [57] reported similar findings. Compared to healthy controls,

AD patients showed a reduction not only in the overall RNFL thickness but also

in each quadrant. Moreover, the RNFL thickness reduction in AD patients was

correlated with functional retinal impairment.

Marziani et al. (2013) [58] also concluded that the RNFL and the aggregate

RNFL-GCL thickness was significantly reduced in the nine examined macular fields

(central, inner superior, inner temporal, inner inferior, inner nasal, outer superior,

outer temporal, outer inferior, and outer nasal) of AD patients in comparison to

healthy subjects.

On the other hand, Lad et al. (2018) [5] examined the aggregate Ganglion-

Cell/Inner-Plexiform Layers (GCIPL) and the RNFL thickness on the macula and

optic nerve of 15 MCI patients, 15 mild-moderate AD patients and 18 cognitively
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normal subjects and found no statistical differences between groups.

Furthermore, Pillai et al. (2016) [59] performed a study in which they measured

the RNFL thickness, the GCL thickness and macular volume among AD patients,

amnestic MCI patients, non-AD dementia, Parkinson's disease patients, and healthy

controls. This retinal thickness proved unable to distinguish AD from the remaining

groups since no statistical differences were found. Thus, no correlation was observed

between RNFL reduction and severity of cognitive impairment.

Ascaso et al. (2014) [60] performed a cross-sectional study using OCT. They

measured the RNFL macular thickness and volume of patients diagnosed with AD,

patients diagnosed with MCI, and healthy controls. Although an age-related thin-

ning of RNFL in healthy subjects has been reported, AD patients showed the most

significant reduction in RNFL thickness, followed by MCI patients. The analysis

of the macular measurements revealed that MCI patients had the highest macular

volume (considering the total retinal thickness) compared to healthy controls and

AD patients, and the controls' macular volume was also higher than in AD patients.

Finally, Berisha et al. (2007) [61] evaluated the retinal hemodynamic param-

eters in nine patients with mild to moderate probable AD and eight age-matched

controls. Patients diagnosed with AD revealed narrowed veins and a decreased ve-

nous blood flow relative to controls. They also found RNFL loss patterns in patients

early diagnosed with AD and a significant RNFL thinning in the superior quadrant.

Still, the inferior, temporal, and nasal quadrants showed no significant differences.
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Deep Learning Models

This chapter describes the methods used in this study to develop the proposed

deep learning approach to identify changes in retinal images in the early stages of

AD.

4.1 Feed-forward Neural Networks

FFNNs are inspired by the architecture of the human brain, in which electrical

signals are transmitted from one neuron to the next one across a synaptic gap via

action potentials (the cell either fires or it does not) and chemical neurotransmitters.

In a classification task, the main idea of a feed-forward network is to approxi-

mate a function f ∗ that maps an input x to a category y. The mapping y = f(x,θ)

is made by learning the parameter values θ that result in the best function approx-

imation [62].

FFNNs are composed of multiple layers. Each layer is organised in neurons

that are interconnected with the neurons of the previous and following layers.

The first layer is called the input layer and is responsible for receiving the

inputs that will be transmitted to the neurons of the hidden layers. These lie in

between the input and output layers. The output layer receives the outputs from the

previous layer and produces the final result. During training, the Neural Network

(NN) decides how to make the best use of these layers to generate a function f that

produces the closest value to y.
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(a) Biological Neuron.

(b) Artificial Neuron.

Figure 4.1: Similarity between biological and artificial neurons.

Figure 4.2: Illustration of an Artificial Neural Network architecture with multiple
hidden layers.

Each connection has an associated weight that determines the influence of the

neuron. Each neuron value is determined by summing the weighted input signals

and, subsequently, adding a bias (z = wTx + b). Then, the resulting value is fed

into an activation function f and the output a = f(z) determines whether the
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neuron should or should not be activated. One should note that the bias shifts the

activation function by adding a constant value, allowing for a better generalisation

of the neural network. Both the weights and biases are learned during training.

4.1.1 Hidden Layers

Defining the hidden layers and their hidden units is an essential part of the

model design process, although it does not have many guiding theoretical principles

[62].

As aforementioned, each hidden neuron receives a vector of inputs x (the pre-

vious layer's outputs) and performs the transformation z = wTx+ b.

Rectified Linear Unit (ReLU) is the typical activation function recommended

within most FFNNs [62]. ReLU is defined by the function r(z) = max{0,z} repre-

sented in figure 4.3.

Figure 4.3: ReLU activation function.

4.1.2 Output Layer

Similarly to the hidden units, the output neuron computes the linear function

z = wTh + b, where h is the vector of inputs that culminated from the last hidden

layer, and b is the bias. Next, an activation function is used to transform z.

For classification problems with two classes, the sigmoid function is a suitable

choice. It is a non-linear activation function that bounds the output into the interval

(0,1). Its mathematical expression is denoted below:

s(x) =
1

1 + e−x
(4.1)
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Figure 4.4 shows the sigmoid activation function.

Figure 4.4: Sigmoid activation function.

4.2 Convolutional Neural Networks

CNNs are a specialised kind of neural network inspired by the organisation of

the visual cortex in the animal world, where neurons are only activated by watching

lines at specific orientations. CNNs are designed to adaptatively identify spatial

hierarchies of features, from simpler (e.g., colours and edges) to more complex pat-

terns (e.g., faces, objects, and shapes). These neural networks can automatically

extract representations not easily identified in image data and, for this reason, they

are known as feature extractors.

The convolutional network architecture is typically built with three basic build-

ing blocks: Convolution Layer, Pooling Layer and Fully-Connected Layer. The con-

volution layer consists of filters, or kernels, that are moved across the entire input

image to create activation maps, that is, learnable feature maps that provide a help-

ful understanding of the internal representations of the input. These filters work as

feature detectors, and this operation is known as convolution.

Convolution is a specialised linear operation that performs the sum of element-

wise multiplication (Hadamard product) between the kernel and a specific location

of the input matrix (image/image channel). Similarly to the traditional feed-forward

network, an activation function is applied to every value of the feature map intro-

ducing the mandatory non-linearity into the model.
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Figure 4.5: Example of a convolution operation1.

Conversely to traditional neural layers, where each input unit interacts with

each output unit, convolution layers have sparse interactions. This is accomplished

by using kernels smaller than the input image. Since sparse interactions limit the

number of connections for each input, computing the output requires few operations,

which improves the statistical efficiency without undermining its performance [62].

In general, during the training phase, weights are initialised with random values

and updated until reaching the best accuracy possible. Therefore, unlike traditional

neural networks, where each element of the weighted matrix is used precisely once

when computing the layer's output, the kernel weights are used at every input

position. One should also note that filter weights remain fixed across the same

convolution layer - parameter sharing. Each filter identifies only one kind of feature;

hence, several filters should be applied in parallel to learn a wider variety of patterns.

Parameter sharing means that it is necessary to learn only one set of weights per

pattern for each layer, henceforth reducing the number of parameters to be learned.

A convolution layer is usually followed by a pooling layer, aiming to reduce

the spatial dimension by replacing the output at specific locations by combining

the nearby values into a single element. A popular pooling operation is the average

pooling, which calculates the average value within a selected region of the feature

map. This method helps to reduce the number of parameters to be learned and,

therefore, reduces the complexity of the network leading to a more robust model to

small changes (controlling overfitting) [63].

1Stride is the number of pixels the filter moves between positions along the input matrix and
padding is adding zeros to the borders of the input to preserve and control the size of the output.
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Figure 4.6: Example of an average pooling operation.

After the convolution and pooling layers, one or more fully-connected layers can

be added to wrap up the convolutional neural network architecture. Here, neurons

have full connectivity with all elements of the preceding and succeeding layers. In-

puts are flattened into a one-dimensional vector with the same number of parameters

(flattening layer). Fully-connected layers map high-level features computed by the

previous convolution and pooling layers to generate the final outputs of the network,

that is, the likelihood of each class in the case of a classification NN. Even though

an activation function follows each fully-connected layer, the one applied to the final

fully-connected layer is usually distinct and selected according to the specific task

at hand.

Figure 4.7: Illustration of a Convolutional Neural Network.

4.3 Gradient-based Optimisation

Deep learning algorithms solve the mathematical problems by iteratively up-

dating solution estimates, rather than analytically derive the equations that lead to

the optimal solution. In other words, deep learning algorithms imply optimisation

- the task of finding the parameters θ that minimise the loss function, cost function

or error function J(θ).

The optimisation is based on a few mathematical concepts. Suppose a 1D

function f = f(x), where x is a real value. Its derivative f ′(x) gives the slope of the

graphic of f(x) at point x. Hence, the derivative indicates how small changes in the
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input x produce changes in the output through the linear approximation: f(x + ε)

≈ f(x) + εf ′(x).

For functions with multiple inputs, the partial derivatives ∂f(x)
∂xi

are computed.

They measure how f changes with respect to each variable xi at point x. The partial

derivatives are stored in a vector called gradient, denoted as ∇xf(xt).

The loss function is decreased by moving the inputs in the opposite direction

of the gradient. This optimisation method is known as gradient descent, whose

expression is presented below:

θt+1 = θt − η∇θJ(θt), (4.2)

where η is the learning rate, a positive scalar that determines the size of the step,

and t is the time step. .

When ∇θJ(θt) = 0, the gradient lies in a critical or stationary point. This

can either be a local minimum if it is lower than all its neighbouring points; a

local maximum if it is higher than all the adjacent points or; a saddle point if its

neighbours are both higher and lower.

Ideally, the optimisation algorithm should find a global minimum - the lowest

value of the loss function. However, this can be challenging because there may be

many saddle points surrounded by flat regions and many local minima that may not

be optimal. Therefore, in deep learning, after a few epochs without improvements

on the loss function, the training is ceased, and the loss function value is accepted.

Before moving to a deeper explanation of the loss function, a summary of the

learning process will clarify the purpose of the methods involved.

During training, the inputs x propagate through the hidden layers until reaching

the output layer and producing the output y. This is known as forward propagation.

Then, the gradient ∇θJ(θt) of the loss function is computed backwards, i.e., from

the output to the input by the back-propagation method. Finally, an optimisation

algorithm is used to update the parameters θ - the weights and biases - using the

computed gradients. These steps are repeated at each iteration.

4.3.1 Loss Function

The loss function, also known as the objective function, compares the predicted

and actual values, measuring how well the model's prediction matches the correct
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value.

Binary cross-entropy is an appropriate loss function in binary classification

problems where the network's output lies between 0 and 1. It is defined as:

L = −(y log(p) + (1− y) log(1− p)) (4.3)

=

−log(1− p), if y = 0

−log(p) if y = 1,
(4.4)

where y is the true class (0 or 1), and p is the predicted probability between 0 and

1.

4.3.2 Optimisation Algorithms

In multi-dimensional problems, the learning rate is a difficult hyperparameter

to set because the loss function may increase rapidly in one direction and slowly

in another one. Hence, this section focuses on two optimisation techniques with

adaptive learning rates: Root Mean Square Propagation (RMSProp) and Adaptive

Moment Estimation (Adam). These algorithms choose a different learning rate for

each parameter, and they are updated separately throughout the learning course.

The RMSProp algorithm [64] adapts the learning rate of all model parameters.

The parameters with higher partial derivative values of the loss function have a more

rapid decrease in their learning rate. In contrast, parameters with lower partial

derivative values have a lower reduction in their learning rate. The learning rate is

updated using an exponentially decaying average of squared gradients to ignore the

history so that the algorithm can converge fast after finding a convex bowl. The

current average of squared gradients E[g2]t depends on the previous average E[g2]t−1

and the current gradient gt = ∇θJ(θt).

E[g2]t = 0.9E[g2]t−1 + 0.1g2t (4.5)

The parameters θ are updated according to the following equation:

θt+1 = θt −
α√

E[g2]t + ε
gt, (4.6)

where ε is a smoothing term that avoids division by zero (usually in the order of
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10−8).

The optimisation algorithms result from improvements on the gradient descent.

For example, the difference between the gradient descent (equation 4.2) and the

RMSProp (equation 4.6) is that, in the latter, the learning rate is divided by the

squared root of the average of squared gradients E[g2]t plus the smoothing term ε.

Adam [65] is a combination of RMSProp and Stochastic Gradient Descent

(SGD) with momentum. It uses estimators of the first and second moments of

the gradient, the mean mt and the uncentered variance vt, respectively, to adapt the

learning rate of each parameter, as denoted below:

θt+1 = θt −
α√
v̂t + ε

m̂t (4.7)

Training large training sets can be time-consuming. For that reason, at each

iteration, the loss function estimates are computed using only a small group of

samples.

These mini-batches are usually a small number of examples, ranging from 1 to

a few hundred. Their size is often a power of 2, especially when using GPUs, for a

shorter runtime. Mini-batches must be selected randomly and are independent of

each other to compute an unbiased estimate of the loss function.

4.4 Regularisation Methods

A fundamental problem in deep learning is how to create a NN that will perform

well not only on the training set but also on new (unseen) samples.

Thus, there are two factors crucial to determine whether an algorithm has good

performance:

1. achieving a small training error, and;

2. getting a small gap between training and test error.

The ability of a model to perform well on new data is called generalisation. It

is usually measured on a test set of samples that were collected separately from the

training set. The error computed on the test set is called generalisation or test error,

and it should be as low as possible.

28



4. Deep Learning Models

There are two terms related to the generalisation ability of a model. Underfit-

ting occurs when the model learns the underlying patterns of the data too poorly.

As a result, the model fails to obtain a small training set error. On the other hand,

overfitting occurs when a model fits too closely to the training data, therefore being

unable to generalise well and make correct predictions on new inputs. In this case,

the gap between the training error and test error is significantly large.

Some strategies to reduce the test error while maintaining the training error

can be applied to the learning process. These approaches are called regularisation.

Unfortunately, as there is no best form of regularisation, its choice is made according

to the task at hand.

There are many regularisation strategies for deep learning models, such as L1

and L2 regularisation, dropout, and sparse representations. In this section, only data

augmentation, early stopping, and batch normalisation will be described because

these were the ones used in the present study.

4.4.1 Data Augmentation

An effective way of improving the generalisation ability of a model is to learn

using a more extensive training set. However, the amount of data available is,

sometimes, quite limited. A practical solution to increase the number of training

examples is to apply transformations to the samples, creating new data.

In image classification problems, classic data augmentation techniques include

cropping, rotating, and resizing the images. By adding diversity to the training set,

overfitting is reduced.

However, one must be careful when applying the transformations not to change

the correct class. For example, rotating a “6” by 180 degrees would turn it into a

“9”.

4.4.2 Early Stopping

When training a model, a situation is frequently observed: over time,training

and validation errors gradually decrease at the beginning of the learning process.

However, as the learning process continues, the validation error begins to rise at

some point, indicating the model starts overfitting the training set.

The early stopping motivation is that the optimal model parameters would be

the ones when the validation error (and, hopefully, the test error) is the lowest.
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Every time the validation error decreases, a copy of the model parameters is

stored. When the training algorithm terminates, the parameters are returned rather

than those obtained at the last epoch. After a pre-specified number of iterations,

the learning ends if the error has not improved over the best-recorded validation

error.

Early stopping is a simple and popular technique with many advantages. Be-

sides reducing computational cost by limiting the number of training iterations, it

also does not require any changes to the learning procedure.

4.4.3 Batch Normalisation

Batch normalisation is a widely used technique in the field of deep learning to

improve optimisation. Although it is not considered a regularisation method, it is

computed over mini-batches instead of the entire dataset, adding some noise to the

model. As a result, it reduces overfitting and stabilises learning, thereby having a

slight regularisation effect [62]. For that reason, batch normalisation is included in

this section.

Batch normalisation standardises the mean and standard deviation of each unit

over mini-batches of training data through back-propagation. This way, the gradient

never suggests an operation such as increasing or decreasing the neuron's mean or

standard deviation.

This method is applied to the units within a layer after the transformation

z = wTx and before the activation function, in the following manner:

znormalised = (
z − µz
σz

) ∗ γ + β (4.8)

where µz is the neuron's mean, and σz is the standard deviation over the mini-batch.

β and γ are learned parameters that result in a layer that has a distribution

with mean β and standard deviation γ. This reparametrisation is easier to learn

with the gradient descent than normalising the layer to have zero mean and unit

variance [62].

One should note that the regular equation for computing the neuron's output

z = wTx + b was replaced by z = wTx. The bias term was omitted because it

becomes redundant due to adding the parameter β to the normalisation.

In CNNs, every spatial location within the feature map should have the same
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mean and standard deviation so that the feature map statistics remain the same

regardless of spatial location [62].

4.5 Design Methodology

When building a deep learning model, besides understanding the existing algo-

rithms and the underlying principles, it is imperative to carefully design the model,

always according to the task at hand.

The designing process includes the following steps:

• identify the objectives and consequently define the performance metrics to

use - this step is essential since the error metrics will guide future actions to

improve the model's performance;

• set up the dataset - the quality of data strongly influences the success of com-

plex data analysis. It reduces model complexity, making the training process

faster. Furthermore, it improves the generalisation ability of a model, thereby

enhancing its performance;

• design the NN architecture, and;

• make incremental changes such as gathering more data, adjusting hyperpa-

rameters or trying new algorithms based on the findings from the previous

step.

Before moving to the explanation of each step, it should be noted that the

recommendations were adapted from Goodfellow et al. (2016) [62] and Yu et al.

(2007) [63].

4.5.1 Performance Metrics

The performance metrics should be chosen according to the problem being

tackled and the distribution of the labels on the dataset. In binary classification

tasks, accuracy, sensibility, specificity, F1-score, and confusion matrix are commonly

used to evaluate the models' performance and their ability as class predictors.

The formulation of the metrics are denoted below:

1. Accuracy: rate of predictions correctly classified;

Accuracy =
TP + TN

TP + FP + TN + FN
(4.9)
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2. Sensitivity: rate of positives correctly classified;

Sensitivity =
TP

TP + FN
(4.10)

3. Specificity: rate of negatives correctly classified;

Specificity =
TN

TN + FP
(4.11)

4. F1-Score: harmonic mean between precision and recall;

Precision =
TP

TP + FP
(4.12)

Recall =
TP

TP + FN
(4.13)

F1− Score = 2 ∗ Precision ∗Recall
Precision+Recall

(4.14)

5. Confusion matrix: summarises the model's performance by providing the

correct and incorrect classifications for each class.

Figure 4.8: Confusion matrix.
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Accuracy is one of the most intuitive performance metrics. However, it can be

misleading when dealing with imbalanced datasets. For instance, a poor classifier

may achieve good performance by ignoring the underrepresented class. Sensitivity

and specificity are common metrics in binary problems to evaluate the ability of the

model to predict the presence or absence of a specific condition. F1-score is a widely

used metric, especially in imbalanced datasets, and it gives an overall idea of the

model's performance by combining precision and recall.

4.5.2 Data Preparation

Data preparation consists of three phases: data pre-analysis, data preprocess-

ing, and data post-analysis.

Data pre-analysis begins with understanding the kind of data required for a

specific task. Then, based on these requirements, the data is collected. Afterwards,

another two steps may be taken: feature selection to remove irrelevant or redundant

features and data integration for when the data were collected from multiple sources,

potentially being disordered and scattered.

The second phase, data preprocessing, identifies issues in the dataset such as

data missing, noisy data with outliers, or features with different ranges. Accord-

ingly, there are many processing techniques to fix the encountered problems - data

normalisation, data denoising, image histogram equalisation, etc.

Finally, the last phase consists of splitting the dataset into training, validation,

and test sets.

The training set is used to learn the parameters of the NN. Thus, the model

sees and learns from this subset of data.

The validation set is constructed from the training set, i.e., the training set is

divided into two disjoint subsets: the training set and the validation set. The latter

provides an unbiased evaluation during training, allowing the hyperparameters to

be selected accordingly. Thus, the model sees the data but never learns from it.

The test set is used to estimate the generalisation error of the model after the

learning process has terminated. It is used only once and provides an unbiased

evaluation of the final model, simulating how it would behave in the real-world, i.e.,

in unseen data.
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4.5.3 Model Design

After choosing the performance metrics and preparing the dataset, it is essential

to establish an end-to-end model [62].

Firstly, one should choose the NN based on the structure of the dataset. For

example, if the inputs are fixed-sized vectors, a reasonable choice would be FFNNs.

On the other hand, if the inputs are images, then a CNN would be a wise option.

Besides, it is also necessary to choose an optimisation algorithm. SGD, RMSProp,

or Adam are popular choices. Furthermore, the loss function should be selected ac-

cording to the type of task at hand. For example, in the case of a binary classification

problem, binary cross-entropy is a reasonable option.

If the collected dataset does not contain millions of samples, then some regu-

larisation methods should be included. For example, one can use early stopping in

almost any kind of task [62]. Data augmentation is also an attractive technique to

reduce the generalisation error in a wide range of computer vision models.

Lastly, if the problem is similar to another task already studied with success, a

good strategy is to use the model trained in that task and use it to solve the problem

at hand. This is called transfer learning.

4.5.4 Hyperparameters Optimisation

Deep learning models have parameters and hyperparameters. Parameters are

learned during training, while hyperparameters cannot be directly estimated from

the data and must be specified by the user. Thus, hyperparameters optimisation is

the process of finding the best combination of hyperparameters that maximises the

model performance on the validation set.

A common method is grid search. It methodically tries combinations of hy-

perparameter values and evaluates the model for each combination. This can be

implemented using k-fold cross-validation. This type of cross-validation works by

randomly splitting the training set into k-folds of roughly equal size, where each

observation is assigned to one group and remains in the group until the end of the

process. The model is then trained using k-1 folds and evaluated on the remaining

one. The process repeats k times, and the model performance estimate is the average

of the performance values obtained in each iteration. Figure 4.9 shows an illustration

of how this method works. Although it demonstrates a five-fold cross-validation, the

same principle applies to any k-fold cross-validation. The k-fold cross-validation is
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repeated to every combination of the hyperparameters to decide the best one.

Figure 4.9: Demonstration of a five-fold cross-validation.

4.6 Transfer Learning

Transfer learning can be defined as transferring the knowledge learned by a

network while solving a task and applying that knowledge to a new, but related,

problem.

As aforementioned, CNNs automatically generate powerful discriminative fea-

tures using a hierarchical learning approach [66]. Feature maps in the earlier layers

identify more simple patterns, such as lines, edges, and colours (for multichannel

images). The last layers progressively detect more specific details of the classes

contained in the dataset, integrating local and global information.

Pre-trained CNN models have been successfully applied to several computer

vision and medical imaging tasks as a feature generator or baseline for transfer

learning [67]. Training a deep CNN from scratch requires a substantial dataset to

ensure proper convergence and computational and memory resources. A promising

alternative is to fine-tune a CNN that has been trained using a different dataset

with a large number of labelled data.

Fine-tuning a model is the process of retraining some of the deeper layers of

the CNN. This way, the high-level features learned by the last layers are adjusted to
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make them more relevant to the specific domain at hand. The weights of the shallow

layers are kept frozen because, as already mentioned, they identify low-level features

independent of the target task, suitable for addressing a large set of domains.

Depending on the differences between the source and target datasets a deeper

fine-tuning may be required, i.e., retraining a higher number of the deep layers so

that the CNN learns relevant features needed to classify the new dataset.

CNNs have been applied to computer vision tasks since the late 80s. However,

very deep CNNs only gained tremendous popularity when Krizhevsky et al. (2012)

[68] won the ImageNet Large Scale Visual Recognition Challenge (ILSVRC) 2012

competition with “AlexNet”. This was in view of the developments in computing

power and substantial amounts of labelled data [69]. AlexNet was trained over one

million images from the ImageNet dataset containing one thousand object categories.

Since then, researchers have been focusing on finding higher-performing CNNs,

resulting in deeper and wider networks with significantly improved performance.

In the ILSVRC 2014 contest, the winners Szegedy et al. (2015) [70] introduced

a new architecture called Inception (also referred to as GoogleNet). It introduced

dimensionality reduction, achieving outstanding performance. The runners-up of

the same contest, Simonyan and Zisserman (2014) [71], presented another classic

deep network - VGGNet - that keeps the hyperparameters constant along with the

network's depth. The ILSVRC 2015 contest winners, He et al. (2015) [72], used an

even deeper CNN with a residual learning framework - the ResNet.

The Inception architecture has been modified over the years, culminating in

new versions: Inception-v2 [73] in which batch normalisation was combined with

the Inception architecture; Inception-v3 [73] that introduced factorised convolutions

and a more aggressive dimensionality reduction; Inception-v4 [74], a simplified ar-

chitecture with more Inception modules; and Inception-ResNet [74], an Inception

architecture integrated with residual functions.

In the following section, Inception-v3 architecture will be described. It was

developed for assisting in image analysis and object detection. As a result, this

network has learned valuable feature representations from a wide range of images

and objects.
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4.6.1 Inception-v3

This network was proposed in the paper “Rethinking the Inception Architecture

for Computer Vision” [73], and it has been extensively used in medical applications

through transfer learning [75].

When designing the first version of the Inception network, some principles

guided the researchers:

1. highly performant deep neural networks need to be large in both depth -

number of layers - and width - number of units at each layer;

2. similarly to the biological human visual cortex, which identifies patterns at

different scales and aggregates them to enlarge further the perception of objects,

CNNs benefit from extracting features at varying scales as well, and;

3. consideration of the Hebbian Principle — neurons that fire together, wire

together.

However, these propositions led to two considerable shortcomings: large net-

works are prone to overfitting due to the significant number of parameters and having

multiple kernels of varying sizes increases the requirements in computing power.

All versions of Inception architectures are organised in Inception modules stacked

on top of each other to overcome the above obstacles. Each module consists of pool-

ing layers and convolutional filters of different sizes with ReLU as the activation

function. The output of each operation is concatenated and sent to the next Incep-

tion module.

The Inception modules of an Inception-v3 network are built with the following

individual components:

i. 1 x 1 convolutions

A 1 x 1 convolution maps an input pixel with all its respective channels to

one output pixel. Each filter has the dimension of 1 x 1 x n, where n is the

number of filters.

By introducing a 1 x 1 convolution, computational cost can be drastically

reduced and hence the network's depth and width can be increased without

any performance penalisation. Although a 1 x 1 kernel does not learn spatial

patterns within the image, it learns patterns across the channels (in-depth),
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(a) Inception module 1. (b) Inception module 2.

(c) Inception module 3. (d) Inception module 4.

Figure 4.10: Inception modules of Inception-v3.

enabling the network to learn more [76].

ii. 3 x 3 and 5 x 5 convolutions

The 3 x 3 and 5 x 5 convolutions learn spatial patterns at different scales

within each channel.

To utilise the computation even more efficiently, the Inception-v3 was added

with the factorised convolutions explained below:

(a) Factorisation of 5 x 5 convolutions into two 3 x 3 convolutions

Convolutions with larger spatial filters, such as 5 x 5 or 7 x 7, tend to be

computationally expensive. For this reason, some of the 5 x 5 convolu-

tions in GoogleNet were replaced with two layers of 3 x 3 convolutions in

Inception-v3, reducing the number of parameters by 28%.

(b) Factorisation in asymmetric convolutions

The 3 x 3 convolutions of the last Inception modules were divided into

asymmetric convolutions of 1 x 3 followed by 3 x 1 convolutions. These
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two operations have the same receptive field as a 3 x 3 convolution but

are computationally more effective.

The researchers found that this factorisation does not work well on early

layers. Consequently, the asymmetric convolutions 1 x 7 followed by 7 x

1 and 1 x 3 followed by 3 x 1 were applied only on the last three Inception

modules of the network.

iii. Maximum and average pooling layers

As pooling operations have been essential for the success of convolutional net-

works, the researchers considered that a parallel pooling path in each Inception

module would have an additional beneficial impact.

iv. Concatenation layer

In the concatenation layer, all the feature maps from the convolution layers

are combined into one object to create a single output of the Inception module

increasing the network representational power.

Finally, batch normalisation and the ReLU activation function are applied after

every convolutional layer. Moreover, the Inception-v3 also includes a label-smoothing

regularisation mechanism to increase the ability of the model to adapt by preventing

it from becoming too confident about its predictions [73].

Figure 4.11: Schematic diagram of Inception-v3.
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4.7 Explainability

Deep learning methods have been very effective for a myriad of medical diag-

nostic tasks, even outperforming human experts on some of those [77]. However,

despite attaining impressive results, the underlying black-box nature of these algo-

rithms has restricted their deployment in clinics. It arises from the fact that even

understanding the underlying statistical principles and knowing the weights of the

neurons of such models, they lack the ability to represent the knowledge for a given

task explicitly .

To gain the trust of physicians, regulators and patients, a medical diagnosis

model needs to be transparent, understandable by itself, and explainable. It should

clarify the whole logic behind each decision while maintaining a high level of per-

formance.

Explainability is very important to build safe, ethical, and trust-able deep learn-

ing models, and it is a key enabler for its deployment in medicine. To begin with,

medical professionals can be provided with the reasoning for the model decision and

thereby build trust among end-users and help recognise questionable choices to im-

prove the model further [77]. Secondly, deep learning practitioners can analyse the

model features, such as the pixels of an image that contribute to the output decision

and potentially make corrections to the model's deficiencies.

4.7.1 Visual explanations in Convolutional Neural Networks

To explain how the classification decisions are made, a backpropagation-based

attribution method can be applied to the CNNs. These algorithms are powerful tools

to determine which area(s) of the input image contribute to the output prediction.

The Gradient-weighted Class Activation Mapping (Grad-CAM) is a backprop-

agation technique developed by Selvaraju et al. (2017) [78]. This approach is a gen-

eralisation of Class Activation Mapping (CAM) introduced by Zhou et al. (2016)

[79]. While CAM is only applicable to a particular kind of CNNs, the ones that

do not contain fully-connected layers, Grad-CAM is relevant to a broader range of

CNN families since it does not require any modification to the network architecture.

Grad-CAM works as follows: firstly, the gradient of the output class prediction

yc (before the sigmoid) concerning the feature map activations Ak of the last convo-

lutional layer is computed. Using the score yc before the sigmoid layer is important

to ensure the gradients are correctly computed. An activation function would mod-
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ify the algorithm's outcome. Commonly, it is the last convolutional layer because

the later layers in a CNN capture high-level patterns and CNNs naturally retain

spatial information lost in fully-connected layers. Consequently, the last convolu-

tional layer is expected to have the best compromise between high-level semantics

and detailed class-specific spatial information.

gradient =
∂yc

∂Ak
(computed via backpropagation) (4.15)

Then, this gradient is spatially pooled using global average pooling over the

width and height dimensions (indexed by i and j respectively) to obtain the weights

αck. These weights capture the importance of each feature map for the class predic-

tion.

αck =
1

Z

∑
i

∑
j︸ ︷︷ ︸

global average pooling

partial derivatives via backpropagation︷ ︸︸ ︷
∂yc

∂Aikj
(4.16)

The Grad-CAM heatmap is a weighted sum of feature map activations, Ak, with

weights αck. Positive pixel values in the heatmap mean they positively influence the

class of interest, while negative pixels are likely to contribute to other categories in

the image.

Finally, the heatmap is passed through a rectified linear activation unit (ReLU)

to filter out the negative weights, allowing the visualisation of the image regions

that led to the class decision.

LcGrad−CAM = ReLU

linear combination︷ ︸︸ ︷
(
∑
k

αckA
k) (4.17)

4.7.2 Feature Importance in Neural Networks

There are several methods whose aim is to assess the contribution of each input

feature for the output prediction. In this section, two methods will be described:

the connection weights algorithm and the perturbation method.

The connection weights algorithm, proposed by Olden et al. (2004) [80], aims to

quantify the importance of each input variable in the prediction process of a shallow
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NN with one hidden layer. This method considers the magnitude and direction of

each weight. The greater the weight's magnitude, the higher the contribution of the

input feature to the prediction process.

For each input feature, the algorithm calculates the sum of the product of the

connection weights between the input neurons and the hidden neurons with the

weights between the hidden neuron and the output neuron.

Features with positive input-hidden and positive hidden-output weights, or neg-

ative input-hidden and negative hidden-output weights have a positive contribution.

In contrast, positive input-hidden and negative hidden-output and negative input-

hidden and positive hidden-output weights have a negative effect.

Thus, the multiplication of the two connection weights directions indicates the

contribution of the input feature on the output prediction. The higher the sum, the

more significant the contribution of the corresponding input feature.

The mathematical expression is denoted below.

RI =
h∑

H=1

(wI−H · wH−O), (4.18)

where RI is the relative importance of the input feature I, h is the total number

of neurons in the hidden layer, wI−H is the weight of the connection between the

input neuron I and the hidden neuron H, and wH−O is the weight of the connection

between the hidden neuron H and the output neuron O.

Differently, the perturbation method analyses the impact on the output of

changing each input variable [77]. This is implemented by modifying the values

of one input feature at a time while retaining all other features' original values.

The difference between the original and the current performance on the test set is

noted down.

The input features affecting the performance the most are considered the most

important ones. In the end, input variables are ordered by importance according to

the achieved performance.

While in the connection weights method the estimates are obtained by training

the NN only once, in the perturbation method the model needs to compute a forward

pass for every modified feature, which is computationally more expensive. On the

other hand, the perturbation method can be applied in a wide range of deep learning
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models, such as FFNNs with many hidden layers and CNNs, whereas the connection

weights algorithm can only be used in shallow NNs.
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Dataset

5.1 Animals

The dataset comprises OCT volume data of 57 triple transgenic mice model of

Alzheimer's disease (3×Tg-AD) and 57 wild-type mice (healthy controls), of both

eyes, at ages of one, two, three, and four-months-old. The triple transgenic mice

express three human genes associated with familial AD: Swedish Amyloid Precursor

Protein (APPswe), Presenilin 1 (PSEN1), and Microtubule-Associated Protein Tau

(MAPT).

The dataset is intentionally balanced to mitigate the effects caused by any

imbalanced and avoid the need for additional measures to tackle it.

All mice were kept at the vivarium of the Coimbra Institute for Clinical and

Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, and were

on a 12-h light/dark cycle with free access to food and water. Each animal was

followed closely throughout the study.

Mice models of disease have been widely used in biomedical research, as they are

small and easily maintained, conserving almost 99% of the human genome and phys-

iologically resembling humans [81]. Because of their similarity to humans, mice are

good models to address senescence, despite their short lifespan - about 24 months.

As illustrated in figure 5.1, one to four months of mice's age is equivalent to 20

years in humans, the period when cerebral changes precede AD symptoms, according

to the literature [9]. Thus, the time points one, two, three, and four months of age

were chosen, as they cover the onset period of the disease to its detection by current

state-of-the-art diagnostic tools.
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Figure 5.1: Correspondence between the ages of humans and mice - for mice
ages between 3 and 30 months. Image from “Diminished KCC2 confounds synapse
specificity of LTP during senescence” [82].

5.2 Data Preprocessing

The retinas were imaged with a Micron IV OCT System (Phoenix Technology

Group, Pleasanton, CA, USA). From each eye, at each time point, OCT data was

segmented to compute six different images corresponding to the following layers/layer-

aggregates: two coupled layers – RNFL-GCL complex -, four anatomical layers –

IPL, INL, OPL, and ONL -, and the TR, which encompasses all anatomical layers.

RNFL and GCL are coupled as it is still not possible to segment them apart.

Some eye scans were excluded from the dataset due to poor image quality,

yielding 4 698 fundus images (six images per eye scan). The dataset is composed of:

Table 5.1: Number of eye scans (OCT volumes) per group, eye and time-point.
Legend: OD is right eye, and OS is left eye.

One month Two months Three months Four months

OD OS OD OS OD OS OD OS

WT 55 52 50 47 49 43 39 37

3×Tg-AD 49 50 52 54 53 53 49 51

Total 104 102 102 101 102 96 88 88

45



5. Dataset

The ocular fundus images were generated from the 3D OCT data by computing

the average of the A-scan values comprised within the boundaries of each layer/layer-

aggregate of interest. This method is known as Mean Value Fundus (MVF) [83].

The preprocessing step in neural networks is utterly important to achieve faster

convergence and the most accurate results. In this thesis, the preprocessing phase

consisted of the following steps:

1. Contrast normalisation - the Contrast-Limited Adaptive Histogram Equali-

sation (CLAHE) algorithm was used to attenuate any potential differences

between mice groups. CLAHE computes several histograms corresponding

to different image regions, and, based on their analysis, intensity values are

adjusted to create a uniform grayscale distribution [84];

2. Intensity normalisation - a Gaussian low-pass filter was applied to the images

resulting from the previous step. A low-pass filter is used to attenuate the

high-frequency components while preserving the low-frequency ones, therefore

allowing to spot image intensity variations at the scale of interest. This filter

needs two values for its implementation: a sigma and a kernel size. The sigma

controls the variance around the mean. In other words, a filter with a small

sigma has a steeper peak, and filter weights decrease sharply from the central

value. With a large sigma value, a broader effect is spotted. Considering the

image size (512 x 512 pixels) and the modulation effects present in some im-

ages, the sigma value was set to 25 and the filter size set to 121x121 (to allow

the Gaussian to attain values close to zero at the limits of the filter). Finally,

intensity normalisation is achieved by the division between each CLAHE im-

age and its low-pass filtered version. This process renders normalised images

across eyes, timepoints and mice groups, ensuring the model receives ocular

fundus images less prone to contain biased information, which could mislead

the model.

Each step of the image enhancement process is illustrated in figure 5.2.

After the above correction process, images may still contain different ranges

of pixel intensity values between images. However, it is highly desired that images

have the same statistical distribution as the shear average and standard deviation

may be due to acquisition conditions and not on actual differences. Therefore,

a technique to standardise these images was implemented. This method involves

rescaling the image data to zero mean and unitary variance (Z-scoring) followed by
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a multiplication and an addition to achieve a mean intensity value of 128 and a

variance of eight. While the mean intensity was simply defined as the mean value

of the range of intensities (8-bit images), the variance value was chosen by probing

the dataset to keep the pixels’ intensity within the range 0-255. These images were

saved in a non-compressed image file format.

All preprocessing was implemented in MATLAB Release 2021a (The Math-

Works, Inc., Natick, Massachusetts, United States).

(a) Original Image. (b) CLAHE image.

(c) Low-pass filtered CLAHE image. (d) Fully-normalised image.

Figure 5.2: Illustration of image enhancement process. Mouse ID:
D D953 T01 OS INL
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Results and Discussion

The ocular fundus images dataset was partitioned into training, validation, and

test sets. Each subset has the same ratio of transgenic and wild-type mice, and

the split was done randomly. Moreover, the division was made by mice, thereby

ensuring that data from one mouse is not present in different subsets.

Eleven mice were picked from each class to set the test set, corresponding to

20% (157 eye scans) of the total data. These were kept across all CNNs and FFNN

models. The remaining 80% (626 eye scans) of the data were used for hyperparame-

ters optimisation and model training, with 20% (125 eye scans) of these constituting

the validation set.

The dataset includes the time points one, two, three, and four months of age.

These four time points were joined together so that the deep learning models do

not depend excessively on a particular time point. Instead, they should attend to

the global characteristics of AD progression. Getting transverse discriminators to

time points is important because, in contrast to the mice data used in this study,

in which we know the duration of AD, in humans, we cannot assuredly know when

changes related to AD have started.

All deep learning models used in this study were built in Python 3.7.9 using the

Keras [85] framework with TensorFlow [86] as the back-end. The experiments were

run on a 3.30GHz i7-5820K computer with an NVIDIA GeForce RTX 2080 SUPER

graphics card.

6.1 Deep Learning Models to Detect Changes in

the Retina

This study aims to identify changes in retinal images of animal models of AD

using a deep learning approach. Therefore, the first goal was to assess the ability
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of CNN models to distinguish between wild-type and transgenic mice using ocular

fundus images from a particular layer or layer-aggregate (RNFL-GCL, IPL, INL,

OPL, ONL, and TR).

Each CNN learns from images belonging to only one layer/layer-aggregate, re-

sulting in six distinct CNN models. Their evaluation provides two important obser-

vations: whether retinal changes exist between both groups and whether the CNNs

manage to classify correctly based on those changes.

The six CNNs were trained using transfer learning. Considering its performance

and computational resources, Inception-v3 [73] was the chosen pre-trained CNN for

the task at hand. Nevertheless, few adjustments to both the Inception-v3 architec-

ture and training methodology were made to leverage the knowledge gained by the

original model on the ImageNet dataset and integrate it with the knowledge learned

from the ocular fundus dataset:

1. The classification layer was replaced by a global average pooling layer followed

by a fully-connected layer with a sigmoid activation function;

2. The Inception-v3 models were trained in two separate phases. Firstly, only

the weights of the classification layer were updated, while the weights of the

remaining layers were kept unchanged. Afterwards, the models were fine-tuned

by allowing the retraining of the 15 last layers. This decision was made by

looking at the Inception-v3 architecture. As it consists of Inception modules

of varying filter sizes, the reasonable option was retraining entire modules.

Furthermore, although the ocular fundus dataset size is considerably large, it

does not contain millions of examples. Thus, to avoid overfitting, the CNN

was fine-tuned from the last Inception module onwards.

Fine-tuning the models was applied after the classification layer had been

trained. Otherwise, the unfrozen layer weights would randomly initialise. Con-

sequently, the error signal propagating through the network would be too large,

disrupting the patterns previously learned by the layers being fine-tuned [87].

Although CNNs have many hyperparameters possible to optimise, only three

were tuned: the learning rate, batch size, and number of epochs. The optimisation

approach consisted of grid-search with five-fold cross-validation. As the dataset is

nearly balanced, accuracy was the metric used for evaluation. The range of possible

values was chosen based on papers whose aim was to classify retinal images using

deep learning [88–90], a very close area of application to the one herein presented,

although based on substantial different images.
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Table 6.1 compiles the list of values tested for each hyperparameter.

Table 6.1: List of values used in the CNNs optimisation.

Hyperparameters Grid-search Values

Learning Rate {0.01, 0.001, 0.0001}

Batch Size {8, 16, 32, 64}

Number of Epochs {20, 30, 40, 50}

Regarding the optimisation algorithm, RMSProp was chosen because it was

the one used by the Inception-v3 authors to train their network on the ImageNet

dataset [73].

Also, binary cross-entropy was the selected loss function since one deals with a

binary classification problem, and the CNNs' outputs are prediction values between

0 and 1.

Table 6.2 summarises the selected set of hyperparameters for each CNN, along

with the mean accuracy of the models on the validation set.

Table 6.2: Selected hyperparameters and mean validation performance of each
CNN model.

Layer
Learning

Rate
Epochs Batch Size Optimiser

Loss

Function

Mean Accuracy on

the Validation Set (%)

RNFL-GCL 0.0001 30 8

RMSProp
Binary

Cross-Entropy

92.0 ±1.9

IPL 0.01 40 32 90.7 ±2.7

INL 0.001 30 32 88.2 ±1.5

OPL 0.001 20 32 87.5 ±2.8

ONL 0.001 40 16 85.1 ±1.7

Total Retina 0.01 50 32 87.7 ±4.5

The CNNs were then trained using the chosen hyperparameters. Four addi-

tional methods were combined during the learning process: reducing learning rate,

early stopping, model checkpoint, and data augmentation. When the evaluation

metric had stopped improving after six iterations, the learning rate was reduced

by half. Additionally, early stopping was applied to cease training if there was no
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improvement over ten epochs. Furthermore, model checkpoints saved the model

giving the best performance on the validation set, independently of the finishing

epoch. Finally, the number of training examples was increased by adding the fol-

lowing random transformations: rotation by a multiple of 90 degrees (90º, 180º,

or 270º) and a random vertical or horizontal flip. These transformations made the

models' learning process independent of the images' orientation and invariant to

the symmetry between right and left eyes.

Additionally, these were tested on the hold-out test set to evaluate the models'
performance on unseen data. The obtained results are shown in Table 6.3.

Table 6.3: Performance metrics obtained on the test set for the final models of
each layer.

Test Set

Layer Accuracy (%) Sensitivity (%) Specificity (%) F1-Score (%)

RNFL-GCL 89.2 97.6 80.0 90.4

IPL 81.5 96.3 65.3 84.5

INL 86.0 81.7 90.7 85.9

OPL 79.0 74.4 84.0 78.7

ONL 84.7 84.1 85.3 85.2

Total Retina 86.6 86.6 86.7 87.1

All six CNNs performed well on the test set, with accuracies between 79.0%

and 89.2%. These findings thus suggest that each particular layer/layer-aggregate

has indeed helpful information to distinguish wild-type from transgenic mice.

The CNNs that achieved higher accuracy were those trained using the RNFL-

GCL and TR layer-aggregates, whose accuracies were, respectively, 89.2% and 86.6%.

These results came without any surprise as both aggregate two or more layers.

Additionally, the classifications per eye and time points were analysed. This

allowed determining whether there was a pattern for incorrect classifications on the

test set. For example, CNNs being able to classify correctly some time points but

performing poorly in other ones.

The results showed that, overall, the distribution of incorrect classifications
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between right- and left-eyes were quite balanced for the RNFL-GCL model (41.2%

and 58.8%, respectively), IPL model (51.7% and 48.3%), INL model (50% and 50%),

OPL model (51.5% and 48.5%), and total retina model (42.9% and 57.1%).

Only the ONL model suggested a substantial difference in accuracy between

eyes, with 70.8% of the wrong predictions belonging to the left eye and only 29.2%

to the right eye.

Regarding the classification between time points, the distribution of incorrect

predictions for each CNN was reasonably balanced between time points. For the

RNFL-GCL model, the distribution of incorrect classifications were 11.8%, 29.4%,

17.6%, and 41.2% for one, two, three, and four-month-old, respectively. For the

IPL model, these were 17.3%, 20.7%, 31.0%, and 31.0%. Regarding the INL model,

the distribution was 31.8%, 13.6%, 36.4%, and 18.2%. Concerning the OPL model,

they were 27.3%, 30.3%, 21.2%, and 21.2%. For the ONL model, the percentages

were 29.2%, 29.2%, 12.5%, and 29.2%. Finally, the TR model had the following

distribution: 28.6%, 38.1%, 14.3%, and 19.0%. Thus, any of the models strove to

correctly classify at a specific time point, which is explained by the fact that the

six CNNs were trained using images from all time points simultaneously, thereby

learning global characteristics independent of a particular time point.

6.1.1 Visual Explanations from Deep Networks

After ascertaining that it was possible to differentiate both mice's groups and

demonstrating that all CNNs could attain good performance in the classification

task, this study intended to assess which regions in the ocular fundus images con-

veyed relevant information; if the decisive characteristics are located in a specific

structure, such as the vascular network, or diffusely spread throughout the image.

This was achieved by generating heatmaps based on the trained models with

heatmaps computed by the Grad-CAM algorithm.

The heatmaps had the size of the convolutional layer picked (the layer mixed10

of size 8x8) and were resized to the input image size for ease of matching with the

input image.

Figure 6.1 shows an example of an ocular fundus image and the respective

heatmap. Blueish regions correspond to lower importance areas, while the orange-

red areas correspond to those with higher significance to the CNN.
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(a) Original Image. (b) Heatmap superimposed to the input
image.

Figure 6.1: Illustration of fundus image and overlaid heatmap. Mouse ID:
D D957 T02 OD INL

For each layer/layer-aggregate and each class, the Grad-CAM method was ap-

plied to locate the areas in the images that have the largest impact on prediction and

compute an average heatmap for each pair {true class, predicted class}. Therefore,

four average heatmaps were produced for each of the six layers: {true transgenic,

predicted transgenic}, {true transgenic, predicted wild type}, {true wild-type, pre-

dicted transgenic}, {true wild-type, predicted wild type}.

Figures 6.2 to 6.7 display the average heatmaps obtained for RNFL-GCL, IPL,

INL, OPL, ONL, and TR, respectively.

53



6. Results and Discussion

(a) True: Transgenic; Pred: Transgenic. (b) True: Transgenic; Pred: Wild-type.

(c) True: Wild-type; Pred: Transgenic. (d) True: Wild-type; Pred: Wild-type.

Figure 6.2: Average heatmaps for the different outcomes for the RNFL-GCL layer-
aggregate.

The analysis of the average heatmaps shows that, for the RNFL-GCL model,

the areas with the highest impact in the class decision are located on the right

side and top of both ‘Transgenic’ and ‘Wild-type’ heatmaps, (i.e., average heatmaps

corresponding to images classified as transgenic and wild-type, respectively), being

the maximum found on the rightmost area.

The main difference found is that the ‘Transgenic’ heatmaps have a more exten-

sive relevant area than the ‘Wild-type’ heatmaps, comprising a vertical band located
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on the left side and a few in the centre.

(a) True: Transgenic; Pred: Transgenic. (b) True: Transgenic; Pred: Wild-type.

(c) True: Wild-type; Pred: Transgenic. (d) True: Wild-type; Pred: Wild-type.

Figure 6.3: Average heatmaps for the different outcomes for the IPL.

For the IPL model, the ‘Transgenic’ and ‘Wild-type’ have similar heatmaps.

Both cover a vertical band on the left (this having the maximum importance), a

relatively small area located on the upper right corner, and a big relevant area going

from the bottom to the upper centre of the images.

Although the similarity between heatmaps, ‘Wild-type’ images have a slightly

smaller area that impacts the network’s output than ‘Transgenic’ heatmaps.
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(a) True: Transgenic; Pred: Transgenic. (b) True: Transgenic; Pred: Wild-type.

(c) True: Wild-type; Pred: Transgenic. (d) True: Wild-type; Pred: Wild-type.

Figure 6.4: Average heatmaps for the different outcomes for the INL.

The INL ‘Wild-type’ heatmaps are shown as addressing two vertical approxi-

mately symmetrical bands at both sides of the heatmaps. The areas with the highest

impact are located at the bottom corners.

The ‘Transgenic’ heatmaps focus on almost the entire image, except the upper

centre. The maximum is located on the right-side band from the bottom to the

centre.
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(a) True: Transgenic; Pred: Transgenic. (b) True: Transgenic; Pred: Wild-type.

(c) True: Wild-type; Pred: Transgenic. (d) True: Wild-type; Pred: Wild-type.

Figure 6.5: Average heatmaps for the different outcomes for the OPL.

For the OPL model, the ‘Transgenic’ heatmaps cover mainly two horizontal

bands on the top and bottom of the images, leaving only an area on the upper

centre that has no relevance. However, if the actual class is transgenic, the areas

with higher impact are located at the top and left bottom corner. On the other

hand, if the actual class is wild-type, the most relevant area is placed at the right

bottom corner.

Regarding the ‘Wild-type’ heatmaps, the area with the highest impact is a

horizontal band at the top, and, to some extent, the left-centre is also relevant for

57



6. Results and Discussion

class prediction.

(a) True: Transgenic; Pred: Transgenic. (b) True: Transgenic; Pred: Wild-type.

(c) True: Wild-type; Pred: Transgenic. (d) True: Wild-type; Pred: Wild-type.

Figure 6.6: Average heatmaps for the different outcomes for the ONL.

The ONL ‘Transgenic’ heatmaps cover nearly the whole image, having the left

side higher impact.

The ‘Wild-type’ heatmaps also consider the left-side as being the relevant area.
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(a) True: Transgenic; Pred: Transgenic. (b) True: Transgenic; Pred: Wild-type.

(c) True: Wild-type; Pred: Transgenic. (d) True: Wild-type; Pred: Wild-type.

Figure 6.7: Average heatmaps for the different outcomes for the TR layer-
aggregate.

For the TR model, the four average heatmaps are pretty similar to each other.

They assign importance to a horizontal band placed on the top, vertical bands on

the rightmost and leftmost sides, and a band on the bottom centre of the images.

The maximum is located around the upper left corner.

Overall, the analysis of all layers/layer-aggregates heatmaps indicates that the

images classified as transgenic have a more extensive area that is essential to assign
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the classification than those classified as wild-type. Moreover, it was also found

that the helpful characteristics are not located in the same places for all retinal

layers/layer-aggregates.

6.1.2 Dependence between Eyes

The third goal of this thesis was to check whether the fundus images charac-

teristics that allow distinguishing wild-type from transgenic mice are the same for

the right and left eyes. In other words, it is intended to assess whether both eyes

convey the same information or not.

The objective was met by building six CNNs, one for each layer/layer-aggregate.

Their architecture was the one used in Section 6.1, including the hyperparameters.

During training, the networks learned from right-eye images and the performance

was evaluated on images from the left eye.

Table 6.4 discloses the performance results for each layer on the test set.

Table 6.4: Performance metrics obtained on the test set for the model training on
data from the right eye and evaluated on the left eye data.

Test Set

Layer Accuracy (%) Sensitivity (%) Specificity (%) F1-Score (%)

RNFL-GCL 81.9 92.3 69.8 84.6

IPL 53.7 100.0 0.0 69.9

INL 80.9 97.1 62.0 84.5

OPL 77.5 96.2 55.9 82.1

ONL 71.1 96.2 41.9 78.1

Total Retina 53.7 100.0 0.0 69.9

From these results, it is possible to observe that the CNNs for the IPL and

TR images performed very poorly, both getting an accuracy of 53.7%. These values

indicate that the right eye is quite different from the left eye. As a result, the right-

eye characteristics learned by the CNNs were not helpful to classify left-eye fundus

images. Indeed, these two CNNs classified all test set images as belonging to the

class transgenic, resulting in a sensitivity of 100% and specificity of 0%.
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The accuracies of the RNFL-GCL, INL, OPL, and ONL models are moderately

better in comparison to the IPL and TR models, ranging from 71.1% to 81.9%.

However, the sensitivity values are much higher than the specificity values, revealing

that most test images were also classified as transgenic mice.

Therefore, these findings indicate that the right and left eyes characteristics

differ, and these differences are not due to the symmetry between eyes since ran-

dom flips were added to the training set; instead, these may be intrinsic to the

development of the eye.

6.2 Combining Convolutional Neural Networks'

Predictions

As previously explained, for each mouse, at each time point, six fundus images

corresponding to six layers/layer-aggregates (RNFL-GCL, IPL, INL, OPL, ONL,

and TR) are computed. The CNNs produce an output between 0 and 1 to each of

these images. Then, if the output value is higher than 0.5, the image is assigned to

the class transgenic; otherwise, it is classified as wild-type. As a result, each mouse's
retina, at each time point, has six prediction values assigned to, corresponding to

each layer/layer-aggregate as in table 6.5.

Table 6.5: CNNs' output values for each mouse of the dataset.

Mouse ID Class RNFL-GCL IPL INL OPL ONL TR

E038 T01 OD 0 0.164 0.030 0.001 0.028 0.025 0.011

E038 T02 OD 0 0.039 0.021 0.001 0.001 0.072 0.060

E038 T02 OS 0 0.064 0.002 0.002 0.021 0.003 0.007

... ... ... ... ... ... ... ...

E289 T01 OD 1 0.726 0.995 0.995 0.954 0.967 0.821

E289 T01 OS 1 0.989 0.999 0.873 0.987 0.835 0.803

E289 T02 OD 1 0.965 0.993 0.954 0.982 0.027 0.791

Thus, an additional objective of this study is to assess whether combining the

prediction values from the six layers/layer-aggregates would improve the classifica-

tion performance and find which layers contributed the most.

This classification task is simple, not requiring a complex deep learning model
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with many hidden layers to solve it. Therefore, the classification problem was solved

using an FFNN with a single input, hidden, and output layers.

A second hidden layer was added during preliminary tests to analyse whether

it would improve further the model performance. However, as the performance on

the validation set did not improve, a NN with a single hidden layer was set.

The network architecture consisted of six input neurons - one for each layer -,

a single hidden layer followed by a ReLU activation function; and lastly, an output

layer with one neuron, followed by a sigmoid activation function. The final clas-

sification of each mouse's retina is of the wild-type if the output is below 0.5 and

transgenic otherwise.

The learning rate, batch size, number of epochs, and number of neurons in the

hidden layer were optimised using a grid-search with five-fold cross-validation. Table

6.6 summarises the set of values tested for each hyperparameter.

Table 6.6: List of values used in the FFNN optimisation.

Hyperparameters Grid-search Values

Learning Rate {0.1, 0.01, 0.001, 0.0001}

Batch Size {8, 16, 32, 64}

Number of Epochs {10, 20, 30, 40, 50}

Hidden Neurons {1,2,3,..., 20}

The chosen loss function was binary cross-entropy since this is a binary clas-

sification problem. Furthermore, Adam was the selected optimiser due to usually

achieving good performances on this kind of tasks.

Table 6.7 compiles the selected hyperparameters and the mean accuracy achieved

on the validation set.

Table 6.7: Selected hyperparameters and mean validation performance of the
FFNN.

Learning

Rate
Epochs

Batch

Size

Number of

Hidden Neurons
Optimiser

Loss

Function

Mean Accuracy on

the Validation Set (%)

0.001 50 64 5 Adam
Binary

Cross-Entropy
97.0 ±1.2
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During the learning process of the FFNN, two regularisation methods were com-

bined: early stopping and model checkpoint. After 10 epochs with no improvements

on the validation accuracy, the training was ceased. The saved model was the one

achieving the best performance on the validation set.

Finally, the performance of the NN was evaluated on unseen data - the hold-out

test set. Results can be found in table 6.8.

Table 6.8: Performance metrics obtained on the test set for the final models of
each layer.

Test Set

Accuracy (%) Sensitivity (%) Specificity (%) F1-Score (%)

85.4 97.6 72.0 87.4

Upon comparing the performances achieved on the six CNNs that learned from

images of a particular layer and the FFNN, the results show that combining the six

prediction values does not improve further the classification performance and that

the RNFL-GCL alone provides better performance in all metrics.

It was expected that performance values would be higher for the FFNN classifier

since it comprises information from the six CNNs. However, whereas the highest

performing CNN (the RNFL-GCL model) achieved a test accuracy of 89.2%, the

FFNN only attained an accuracy of 85.4%. The accuracy obtained was similar to

the mean accuracy of the CNNs (85.4% and 84.5%, respectively). Also, there is a

notable difference between the mean accuracy obtained on the validation set (97.0

± 1.2 %) and the test accuracy (85.4%).

A different approach to classify the mice's retinas was also tried. It consisted of a

majority-vote classifier that aggregated the predictions of all CNNs and predicted the

class with the most votes. Interestingly, this voting classifier achieved an accuracy of

89.2%, higher than the test accuracy obtained with the FFNN (85.4%). Moreover,

its accuracy equals the one attained in the highest performing CNN (the RNFL-GCL

model).

For this voting classifier, all retinal layers/layer-aggregates have equal impor-

tance. However, the following part of the approach assessed which layers contributed

the most to the classification task. This was accomplished with the FFNN model

that determined the optimal combination of the CNNs' predictions and identified

the most important layers/layer-aggregates.
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6.2.1 Retinal Layers/Layer-Aggregates Importance

The last objective of the present work was to discover which layers/layer-

aggregates contributed the most to the classification. For this purpose, two different

methods were used: the connection weights algorithm and the perturbation method

(for details, see section 4.7.2).

Here, the perturbation method consisted of setting one of the six layer/layer-

aggregate values to 0.5 while retaining all other layers' original values. The amount

0.5 is equidistant between groups, thereby being an ambivalent input. The modified

layers/layer-aggregates producing worse accuracy (in comparison to the performance

obtained in the original test set) were considered the most contributing to the clas-

sification task.

Table 6.9: Comparison between connection weights and perturbation methods
results.

(a) Connection Weights Algorithm.

Layer Importance

INL 1.874

OPL 1.086

IPL 0.661

TR 0.316

ONL 0.297

RNFL GCL -0.042

(b) Perturbation Algorithm.

Modified Layer Accuracy (%) ∇ Accuracy (%)

INL 52.2 -33.1

OPL 77.1 -8.3

TR 83.4 -1.9

ONL 84.7 -0.6

IPL 85.4 0.0

RNFL GCL 85.4 0.0

Both algorithms indicate that the INL is the most contributing layer/layer-

aggregate in the classification task. Indeed, in the connection weights method, the

INL has an importance value of 1.874, 0.788 higher than the most important layer

after the INL. Regarding the perturbation algorithm, when the INL feature values

were changed to 0.5, the obtained accuracy was 52.2%, corresponding to a difference

of -33.1% compared to the accuracy attained in the original test set (85.4%). This

result suggests that the INL is so important that the FFNN model cannot make

predictions accurately, assigning the class nearly randomly.

The OPL is the second most contributing layer according to both algorithms.

For the connection weights method, it has an importance of 1.086. Moreover, it

achieved an accuracy of 77.1% in the perturbation method, affecting the test accu-
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racy by -8.3%. However, the model still obtained a reasonable accuracy.

The other layers/layer-aggregates got different orders of importance between

algorithms. The connection weights assigned the following ranking: IPL (0.661),

TR (0.316), ONL (0.297), RNFL-GCL (-0.042). Hence, the IPL, TR, and ONL had

small positive importance, whereas the RNFL-GCL slightly negatively impacted the

classification task.

The perturbation method considered that the TR and the ONL barely affected

the final accuracy, with -1.9% and -0.6% differences, respectively. Thus, these two

layers had minor importance. Finally, the IPL and the RNFL-GCL obtained the

same accuracy as the original test set, implying that these had a residual contribution

to the prediction task.
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Conclusion

The main goal of this study was to develop a deep learning approach to identify

the characteristic changes in ocular fundus images of the triple-transgenic mouse

model of AD. This way, valuable insights about ongoing changes in the early stages

of disease were obtained for each retinal layer/layer-aggregate.

This study began with implementing a preprocessing phase. This step was

essential to normalise images across eyes, time points, and mice groups. Hence,

potential differences between images caused by the acquisition conditions were at-

tenuated.

In the following stage, six CNNs were created to discriminate wild-type from

transgenic fundus images using only a particular layer/layer-aggregate (RNFL-GCL,

IPL, INL, OPL, ONL, TR). All six CNNs performed well on unseen data, attaining

accuracies between 79.0% and 89.2%. This allowed confirming previous findings

claiming that each layer/layer-aggregate presented sufficient information to distin-

guish between wild-type and transgenic mice.

Furthermore, heatmaps were computed to indicate which image areas contained

relevant information for the classification task. These findings suggested that the

valuable characteristics in transgenic images were present in a broader area within

the image compared to the wild-type images. Moreover, the relevant areas were

different between layers, i.e., they were not placed in the same regions for all retinal

layers/layer-aggregates.

Six additional CNNs were developed. They learned from right-eye images and

were evaluated on images from the left eye. In this experiment, the models performed

poorly, revealing that the right eye was different from the left eye; the characteristics

learned by the models to classify the right-eye images were not helpful to classify

the left-eye ones.
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A further step in this study was to build a FFNN to assess whether joining the

predictions of all six CNNs would improve the classification performance. Results

showed that this was not verified - combining the six predictions led to an accuracy

of 85.4% which is similar to the mean accuracy of the CNNs (84.5%).

Finally, although the FFNN did not outperform the CNNs, two algorithms

were applied to discover which layers/layer-aggregates contributed the most to this

classification task - the connection weights algorithm and the perturbation method.

The results demonstrated that the INL and OPL were the most contributing layers,

obtaining an importance of 1.874 and 1.086, respectively, in the connection weights

algorithm, and an accuracy of 52.2% and 77.1% in the perturbation method.

Regarding the other layers, their order of importance differed between algo-

rithms. The connection weights assigned the following ranking: IPL (0.661), TR

(0.316), ONL (0.297), RNFL-GCL (-0.042). Hence, the IPL, TR, and ONL had

small positive importance, whereas the RNFL-GCL slightly negatively impacted

the classification task.

The perturbation method considered that the TR and the ONL had minor

importance, scarcely affecting the final accuracy (with -1.9% and -0.6% differences

to the original test set accuracy). Moreover, the IPL and RNFL-GCL had a residual

contribution to the prediction task. When the layer's original values were set to 0.5,

the accuracy was the same as that obtained on the original test set.

In what concerns future work, to further advance this field of research, it is

essential to keep focusing on data collection to increase the amount and diversity of

samples gathered. This is crucial to improve the deep learning models generalisation

ability on unseen data.

Furthermore, additional efforts should be made to include a broader range of

hyperparameters in the grid-search and try different pre-trained CNNs to ascertain

whether the performance would improve.

Finally, the CNNs trained on the mice dataset could be used to classify human

ocular fundus images. This would be valuable to discover if the characteristics

identified by the CNNs would prove helpful to diagnose patients in the early stages

of AD.
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