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ABSTRACT

The mortality and incidence of cancer rates around the world are increasing every year,
resulting in a push for new screening and diagnostic technologies. One screening technique
is medical imaging, such as X-ray mammography. This method collects images that are
later analysed and evaluated by a radiologist. Nevertheless, this analysis depended on
the protocols and expertise of the radiologist and is subject to high variance. To improve
the diagnostic results, and reduce the variability associated with it, one can resort to
computational methods, such as Radiomics. Radiomics is the process that transforms
medical images into radiomic features, which can afterwards be used to train Machine
Learning (ML) algorithms to perform tasks automatically. However, the increase of the
problems complexity, makes traditional Machine Learning ineffective when dealing with
complex tasks such as cancer diagnostic. Therefore, to overcome this problem we can
resort to Deep Learning (DL) algorithms, which allow the extraction and learning of a
large amount of features automatically. DL models can be constructed from scratch or
reusing models trained on other problems. Both the methods have some problems when
dealing with small datasets, such as medical imaging datasets, which can lead to poor
performance or overfitting. Taking this into account, there is a necessity to resort to
new approaches to construct lightweight DL models. One novel and promising approach
is to use DENSER, a rencently defined algorithm that combines Machine Learning and
Evolutionary Computation approaches, to automatically design Deep Learning models
and select the best one based on a quality metric.

In this work, we explore the application of DENSER in a digital screening mammog-
raphy dataset. Two experiments were performed using different levels of information. In
one we used cropped images of 90x90 pixels and in the other we used cropped images with
more surrounding information (250x250 pixels). Each experiment includes three studies,
in which the networks were evolved through 150 or 300 generations, with or without data
augmentation. After, and considering the best networks evolved by DENSER, an atten-
tion heat map was implemented to get an interpretation of how the model worked. Finally,
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Abstract

we conducted a study using an ensemble of the 4, 3, or 2 fittest networks.
Our results show that the implementation that uses 300 generations and data augmen-

tation obtained the lightest networks and the best results, with a test accuracy of 73.81%
in the first experiment (90x90 images) and 71.96% in the second (250x250 images). Fur-
thermore, the assembling of the 4 fittest networks resulted in increased accuracy and a
decrease in the number of misclassification cases. For the case of the 90x90 images, we got
an increase of 2.38% in the test accuracy value and 9 fewer misclassification cases, whilst
for the 250x250 images the values were 2.64% and 10 fewer misclassified.

Our results outperform the state of the art obtaining an increase of 2.62% in accuracy,
using less training time, fewer epochs, and not requiring domain or expert knowledge. Fi-
nally, the effectiveness of DENSER in handling small datasets is a remarkable outcome.

Keywords
DENSER; Breast Cancer; Machine Learning
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RESUMO

A mortalidade e incidência do cancro em todo o mundo vem a aumentar todos os anos,
resultando num incentivo para o desenvolvimento de novas tecnologias de rastreio e diag-
nóstico. Uma técnica de rastreio é a imagiologia médica, como por exemplo a mamografia
de raio-X. Esta técnica recolhe imagens que são posteriormente analisadas e avaliadas por
um radiologista. No entanto, esta análise depende dos protocolos e da perícia do radiolo-
gista, estando sujeita a uma grande variação. Para melhorar os resultados de diagnóstico,
e reduzir a variabilidade, pode-se recorrer a métodos computacionais, como por exemplo a
Radiómica. A Radiómica é o processo que transforma as imagens médicas em característi-
cas radiómicas, que podem depois ser utilizadas para treinar algoritmos de Aprendizagem
Computacional (AC) para executar tarefas automaticamente. Contudo, o aumento da
complexidade dos problemas, torna o AC tradicional ineficaz quando se lida com tare-
fas complexas como o diagnóstico do cancro. Portanto, para ultrapassar este problema,
podemos recorrer a algoritmos de Aprendizagem Profunda (AP), que permite a extração
e aprendizagem automática de uma grande quantidade de caracterisiticas. Os modelos
AP podem ser construídos de raiz ou através da reutilização de modelos treinados para
outros problemas. Ambos os métodos têm alguns problemas ao lidarem com pequenos
conjuntos de dados, como por exemplo os dados de imagens médicas, o que pode originar
um desempenho inferior ou sobreajustamento. Tendo isto em conta, há necessidade de
recorrer a novas abordagens para construir modelos leves de AP. Uma abordagem ino-
vadora e possível é utilizar o DENSER, que combina abordagens de AC e Computação
Evolucionária, para projetar automaticamente modelos de AP e selecionar o melhor com
base numa métrica de qualidade.

Neste documento, exploramos a aplicação do DENSER num conjunto de dados de
mamografia digital de rastreio. Duas experiências foram realizadas utilizando diferentes
níveis de informação. Numa utilizámos imagens recortadas de 90x90 pixels e na outra
utilizámos imagens recortadas com mais informação envolvente (250x250 pixels). Cada
experiência inclui três estudos, nos quais as redes foram desenvolvidas ao longo de 150
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ou 300 gerações, com ou sem aumento de dados. Depois, e considerando as melhores
redes desenvolvidas pelo DENSER, foi implementado um mapa de calor de atenção para
obter uma interpretação de como o modelo funcionava. Finalmente, realizámos um estudo
utilizando a junção das 4, 3, ou 2 redes mais adequadas.

Os nossos resultados mostraram que a implementação de 300 gerações e aumento de
dados obteve as redes mais leves e os melhores resultados, com uma precisão de teste de
73.81% na primeira experiência (90x90 imagens) e 71.96% na segunda (250x250 imagens).
Além disso, a junção das 4 redes mais adequadas resultou numa maior precisão e numa
diminuição do número de casos mal classificados. Para o caso das imagens 90x90, obtive-
mos um aumento de 2.38% no valor da precisão de teste e menos 9 casos mal classificados,
enquanto que para as imagens 250x250 os valores foram 2.64% e menos 10 casos mal
classificados.

Os nossos resultados superam os mencionados na literatura obtendo um aumento de
2.62% na precisão, utilizando menos tempo de treino, menos épocas, e não requerendo
domínio ou conhecimento especializado. Finalmente, a eficácia do DENSER no trata-
mento de pequenos conjuntos de dados é um resultado notável.

Palavras-Chave
DENSER; Cancro da Mama; Aprendizagem Computacional
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CHAPTER 1

INTRODUCTION

Cancer mortality and incidence are growing worldwide, being one of the leading causes
of death across the globe. According to GLOBOCAN 2020 [1], worldwide in 2020, there
were 19.3 million new cancer cases that resulted in 10 million cancer deaths. According to
the same source, female breast cancer was the most diagnosed (11,7%), and the deadliest
was lung cancer (18%), followed by colorectal (9,4%). The trend is that these numbers
will grow globally in the coming years. As such, it is necessary to invest in methods and
techniques for early, rapid, and accurate cancer diagnostic.

X-ray mammography is a medical imaging modality that is non-invasive ant it has been
used for screening breast [2]. Following image acquisition analysis and evaluation by breast
radiologists is performed. A major problem is the fact that diagnostic assessement heavily
depends on the radiologists’ expertise and therefore it is often the case where double
reading is performed to avoid medical errors. However, there is currently a mismatch
regarding the number of available board certified breast radiologists and the diagnostic
demands which promotes the idea, of introducing virtual AI based readers or assistants
in the screening process. It is here that the combination of the Radiomics, which is the
transformation of the clinical images into radiomic features, and the Machine Learning
(ML) algorithms, which resort to these features to train computational models to perform
tasks automatically, emerges [3].

Radiomic features can be attained through hand-crafted methods (hand-craft fea-
tures), i.e., based on predefined mathematical transformations, or through Deep Learning
(DL) algorithms (deep features), a subfield of ML. These features are subsequently used
to train an ML algorithm that will make predictions based on this information. How-
ever, the increase of the problems complexity makes the use of traditional ML models
ineffective when dealing with highly complex tasks, such as in medicine [4] and in com-
puter vision [5]. To overcome this problem, we can resort to DL algorithms since they
allow the extraction and learning of large sets of data representations automatically using
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Artificial Neural Networks (ANN). When dealing with image datasets the most common
DL architecture used is based on Convolutional Neural Networks (CNN). The DL models
can be constructed from the scratch or using Transfer Learning [6]. The first one enables
the networks to be completely adjusted to the problem, but vulnerable to the presence of
overfitting and class imbalance. One way to tackle this problem is to resort to Transfer
Learning using a Pre-trained Network on a large image dataset, and afterward, tune it to
a medical dataset [6]. However, transfer learning can have some issues, namely concerned
with the dissimilarity between the domain of application. Usually, networks are trained
on datasets such as ImageNet that have nothing in common with the medical domain.
As such, when transferring networks to the medical domain, the models will have poor
performance if not adjusted [7]. Another problem is the fact that most of the networks
are large and complex, and the medical datasets are small which can result in overfitting.
Therefore, there is the need to make changes in the network, which most of the time are
difficult or impossible to do. Taking all of this into account, there is an interest to resort to
new approaches to construct lightweight DL models. One novel and possible approach is to
use Evolutionary Algorithms, which are based on Darwinian natural selection principles,
to automate the design of the DL models [8]. The combination of computational meth-
ods based on Evolutionary principles and Machine Learning is an active field of research
collectively known as Evolutionary Machine Learning (EML).

In recent years, several proposals have emerged to automate the design of DL models,
with DENSER [9] being one remarkable example. This evolutionary approach allows for
the automatic design and parameterisation of Deep Neural Networks (DNN) and chooses
the best network for each case.

The main objective of this work is to use DENSER to automate the design and
parameterisation of the DNN, to deal with small medical imaging datasets, such as breast
cancer datasets. The evolved networks will transform the medical images into features,
then to build and train artificial neural networks. All the process is made without resorting
to the domain or expert knowledge, i.e., fully automated.

This work is conducted within the context of the BINDER 1, which aims at improv-
ing the state of the art in Radiomics analysis of breast cancer, using existing and novel
Machine Learning (ML) and Deep Learning (DL) methods. This project results from the
collaboration of a multidisciplinary team of researchers from the University of Coimbra,
Champalimaud Foundation, NOVA University of Lisbon, and University of Lisbon.

1https://www.cisuc.uc.pt/en/projects/binder-improving-bio-inspired-deep-learning-for-radiomics
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1.1 Motivation

To build a Deep Learning model to a certain problem, practitioners and researchers
can either develop and design the models from scratch, reuse models that have been suc-
cessful in solving similar problems, or do a combination of both. However, when dealing
with problems where the datasets are not very large, such as the medical domain, reusing
models from other domains is problematic since they tend to be rather large and com-
plex, which can lead to overfitting when dealing with small datasets. To overcome this
obstacle, one needs to develop models from scratch, which can be a hard and laborious
task. As such, one can resort to methods that are able of designing full DL models such
as DENSER. DENSER relies on Evolutionary Computation to automate the design and
parameterisation of the ML models and it has shown a remarkable performance on several
computer vision problems (One dataset studied was the CIFAR-10, which is composed of
60000 images [9]). However, its effectiveness has never been measured on problems from
the medical domain, where the datasets are small (in this study the dataset used was
composed of 1696 images [10]).

Using an automatic approach has also its advantages since we can tailor the models
to a problem at hand and we might even see novel models emerge from the automatic
design process.

Finally, applying this approach can result in an important contribution to society as a
whole, since we might discover models that can help improve the screening and detection
of cancer.

1.2 Contributions

The contributions of this work are summarised below:

1. The application of DENSER to medical imaging datasets, i.e., using EML to auto-
mate the design and parameterisation of ML algorithms to deal with small medical
imaging datasets. This is the first application of DENSER in such domain.

2. DENSER allowed us to acquired novel topologies achieving better performances
with no domain knowledge. Comparing the results of our work with those from
the literature [11], we obtained an improvement of 0.77% to 2.62% on unseen data.
Additionally, the models require less training time and fewer number of epochs.

3. We developed attention heatmaps to understand if the model is "looking" in the right
region of the input image to help understand the results. Moreover, this approach
demonstrates that the inclusion of the surrounding information allows the networks
to dismiss the images’ black background, which does not happen when we focus more
on the region of the lesion.
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1.3 Structure

Chapter 2 of this document, Background, provides the knowledge bases to under-
stand the work made in this study. It focuses on the topics of Machine Learning, Evolu-
tionary Computation, DENSER and Radiomics.

Chapter 3, Radiomics and DENSER, describe the implementation of Radiomics
in DENSER. It includes an explanation and description of the dataset used, the gram-
mar, the experimental parameters, and the two image pre-processing works investigated.
Furthermore, it contains an explanation of the model interpretability used.

Chapter 4 presents the Experimental Results of the two experiments made in this
work and their comparison with the literature results. Each investigation contains three
studies, which differ in the number of generations and the application or not of data aug-
mentation approaches. Furthermore, it includes the results of the model interpretability
of the best network obtain in each experiment and a study of the ensembling of the 2, 3,
and 4 fittest networks.

Chapter 5, and the last one, presents the Conclusion of the work as a whole and
looks through the possibilities for Future Work based on this work.
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CHAPTER 2

BACKGROUND

This chapter provides the knowledge foundation to understand the experiments per-
formed in this work. Therefore, it begins with an introduction to Machine Learning, which
will be more focused on the Convolution Neural Networks, a Deep Learning architecture.
Afterward, the Evolutionary Computation field will be introduced, more specifically Evo-
lutionary Machine Learning and our approach, Deep Evolutionary Network Structured
Representation. Finally, the state-of-art of the Radiomics field will be introduced.

2.1 Machine Learning

Machine Learning (ML) is a field of Artificial Intelligence (AI) that aims to create
computational models to perform tasks automatically using complex large amounts of
data. From these models, statistical structures are founded and rules will be created
to automate the desired task [12, 13]. This process is time-consuming since it requires
multiple trials in order to achieve the best set of features to train the model. This means
that different tasks required different features to be extracted to train the model, making
it a challenging problem [9].

ML can be divided into unsupervised or supervised learning. Both are fundamentally
distinguished by the way the data is labelled.

In unsupervised learning the samples in the dataset are unlabelled. Hence, in this
learning, the feature vectors extracted from the dataset are taken as an input, and they
are transformed into other vectors using for example the Principal Component Analysis
(PCA), or into a value by implementing Clustering, for example. Thus the algorithm
learns the format of the dataset and the relation between the features [13, 14].

The dataset in supervised learning is labelled, i.e., we know beforehand what the
target’s model is. The label can belong to a set of classes or it can be a real number or a
more complex structure, such as a vector, a matrix, a tree, or a graph [13, 14].
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Most supervised learning algorithms use the training data to create a model where
its parameters are learned. In this type of learning, a feature vector extracted from the
dataset is the input’s model. After learning, we get a prediction of the feature vector label.
Therefore, the supervised learning’ data come in pairs (input, output) [13].

The different classes are separated by decision boundaries. These boundaries can be
linear or non-linear. If we want to use arbitrary non-linear boundary decisions, normally
the kernel is used [13].

Two popular supervised learning algorithms are:

• Support Vector Machine (Support Vector Machine (SVM)) [14];

• Neural Networks (Neural Networks (NN)) - Composed of layers made of neurons,
which are connected using weights [14].

Supervised learning is composed of classification or regression models.
Classification models are constructed based on labelled examples and based on a

classification learning algorithm. After training the classification model, an unlabelled
example is applied as input. Afterward, the model outputs a label or a value, such as a
probability. Ultimately, the example is classified into one of the predefined labels of a set
of classes. When the number of classes is two we are facing a binary classification problem
[13].

Regression models, which are based on supervised learning, make use of regression
learning algorithms. After training the model, and considering an unlabelled example
given as input, a real-valued label is provided [13].

2.1.1 Deep Learning

As mentioned previously, in ML, experience and many hours of trial and error work are
required in order to select and engineer the best features for a given model. To overcome
this issue one can be use Deep Learning DL). DL is a subfield of ML that allows the
extraction and learning of large sets of data representations automatically using Artificial
Neural Networks (ANN). ANNs are composed of layers: an input layer, hidden layers, and
an output layer. When the ANNs are composed of several non-output layers, i.e., hidden-
layers, they are considered Deep Neural Networks (DNN). The layers are made up of units,
called neurons, which are connected to the units of the following layer. These connections
between neurons have associated weights that represent the strength of the connection.
The first layer receives the input, which is divided into small batches, and the next layers
(hidden layers) will apply transformations to generate more abstract representations. The
output layer produces a prediction. An example of a network is displayed in Figure 2.1
[12, 13, 9].
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2. Background

Figure 2.1: Example of a network with two-dimensional input, two layers with four units
and one output layer with one unit [13].

Based on Figure 2.1 a 3-layer neural network, fNN , can be represent like this [13]:

fNN = f3(f2(f1(x))) (2.1)

The function f3 and f2 are represent as following [13, 12]:

fL(i) = gi(Wiz + bi) (2.2)

where i is the layer index, gi is the activation function, Wi is a matrix of weights, z is the
value of the neuron of the previous layer, and bi a vector.

Finding the most accurate, efficient, and generalizable architecture, for a given task,
in an acceptable time is a challenging task.

Based on [12], the construction of a training model consists of the following steps:

1. Definition of the training data: input and target multidimensional arrays, i.e., input
and target tensors;

(a) It is necessary to convert the integer lists into tensors lists;

2. Construction of the network;

(a) Characterization of the activation function;

i. This function allows the measurement of the importance of the weights in
a specific neuron;

ii. The most common activation function used in the hidden layers is the
RELU activation function [13];

RELU(z) =
{

0 , if z < 0
z , otherwise

(2.3)
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3. Configuration of the process hyper parameter selection, such as loss function, opti-
mizer, and metrics to evaluate the model (example: accuracy);

(a) The loss or cost function provides the metric to assess the performance during
the training, which represents a measure of success or failure of the model. This
value is achieved through forwarding propagation and comparing the output
predictions with the ground truth labels. The chosen function will depend on
the type of problem. One example of a loss function for multiclass classification
is cross-entropy [15]. This function plays an important role, considering it
guides the whole learning process;

(b) The optimizer defines how the model will adjust its parameter, i.e., weights,
taking into account the loss function;

i. Gradient Descent is commonly used to obtain the minimum of the loss
function, L [13]. It uses a backpropagation algorithm that enables us to
know how much the function is sensitive to a change in the learnable pa-
rameters, w, such as weights and bias. The parameters are updated in the
negative direction of the gradient, taking into account the learning rate, α,
[15]. The update is formulated as follows [15]:

w := w − α ∗ ∂L

∂w
(2.4)

ii. It is required to choose a learning rate optimization algorithm.

To assess the quality of the model, there are three evaluation protocols: Hold-out,
K-fold cross-validation and K-fold validation [12]. Focusing only on the Hold-out method,
this method is implemented when a large amount of data is available. The data is held
out into train, validation, and test set. The network is trained with the training set,
and the evaluation of its generalisation ability during the training is performed using the
validation set where the hyperparameters are tunned. The performance of the final model
is acquired in the test set [15].

Our model can underfit or overfit and both situations need to be avoided. Overfitting
occurs if the model performs better on the training set rather than on the validation set.
If it performs poorly on training and validation, the model is underfitting. Overfitting
can be recognized through monitorization of the loss and the accuracy of the training
and validation sets. Some methods such as obtaining more training data, regularization
with dropout, weight decay, batch normalization and data augmentation can be applied
to mitigate overfitting [15].

Convolution Neural Networks

Deep Learning includes different architectures with Convolution Neural Networks
(CNN) being one of them. This architecture is commonly used in computer vision and
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image processing [13, 16].
Images are composed of a set of pixels with information and they are considered input
of high dimensions [13]. This information must be converted into input tensors to be
provided to the network. To do that the following instructions can be performed [12]:

1. Read the image;

2. Decode the image format in grids of pixels (RGB);

3. Convert into floating-point tensors, normally, 3D (height, width, depth);

4. Adjust the pixels values (0-255) into 0-1 interval;

After this, we get the input tensors and one or more convolutions will be applied to
the inputs. Convolution is a linear operation used for feature extraction and it resorts
to the dot-product between parts of the input, called patches, and a filter, Wiz. In each
input patch, a kind of pattern will be detected and learned. The filter, called kernel, is
a small array of numbers (typically 3x3 or 5x5) obtained by a linear transformation, and
it is automatically learned through the training process. The convolution operation is
also defined by the stride, the distance between two successive kernel positions. After the
convolution, a 1D vector is obtained. This transformation is applied to all the patches,
then we assemble all 1D vectors obtained and reach 3D output feature maps [12, 13, 6,
15].
The Figure 2.2 details this process [12].

Figure 2.2: The convolution process [12].
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Another way to downsample the feature map is by applying pooling (such as max or
average pooling) that is similar to the convolution. The difference is in the filter, which in
max pooling is obtained via a hardcoded max tensor operation that will output the max
value of each patch, and in the average pooling is through average operations [12].

A basic structure of a CNN network consist of blocks of several convolution and a
pooling layers, followed by fully connected layers [12, 15, 17]:

• Convolution layer;

• MaxPooling layers;

• Flatten layer - convert the tensor to a 1D tensor ;

• Fully Connect (FC) layer or dense layers - The neuron of one layer is connected to
all the neurons of the next layer;

The most used CNN models in computer vision are AlexNet, VGG, GoogleNet and
ResNet, which are composed of more than 20 million parameters [18, 15].

CNN has some properties, such as, if the pattern that was learned in a certain place,
appears again, that pattern will be recognized. Another property is the ability to increase
pattern recognition by increasing the number of convolution layers [12].

The CNN architecture can be divided into three categories: Standard architectures,
Self-designed architectures, and Multiple CNNs. The architecture in our approach will be
designed based on the specification of the problem. So, the architecture is self-designed
[6].

Despite the fact that DL models extract and train the data automatically, the best
model is obtained iteratively by trial-and-error. Accordingly, a big parameterization stage
is needed which can be optimized by resorting to Evolutionary Computation (EC) methods
[9].

2.2 Evolutionary Computation

Evolutionary Computation (EC) is an area of AI that research and develops nature-
inspired algorithms [19]. Evolutionary Algorithms (EA) are computational models loosely
based on Darwinian natural selection principles to find solutions to a problem. The im-
plementation of these algorithms makes getting solutions faster and more flexible [8, 20].

When working with EA it is imperative to define a set of parameters: representa-
tion, fitness function, population, parent selection mechanism, variations operators, and
survivor selection mechanism.

In natural selection, the individuals that fit the environmental condition more effec-
tively are the ones that are favoured, i.e., the survival of the fittest. To evaluate the
fitness in EAs a fitness function is used. The value obtained by the function for a certain
individual will correspond to its quality [8, 20].
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EA uses a population of solutions that later can exchange attributes among themselves.
These solutions are referred to as phenotypes that are encoded into the corresponding
genotype. A genotype represents each individual within the EA, and a multiset of geno-
types represents a population. Due to mutations and recombination of genes (crossover)
in reproduction, variations can occur in the genotype. The individual selection based
on the behavioural and physical features that will affect the individual response to the
environment occurs in the phenotype [20].

One of the pillars of evolutionary progress is competition-based selection that increases
the quality of a population. The other one is related to the phenotypic random variations
generated by genotypic variations. Both variation operators, crossover and mutation are
applied stochastically. Crossover is a process that is applied with a higher probabilistic,
combining the information of two or more solutions (parents) to create a new individual.
The mutation is a variation that occurs on one individual and creates a new one by applying
some randomized changes in the representation. The selection of the parents is based on
the fitness value. The heuristic choice of the parents prevents premature convergence
and loss of population diversity. Lastly, it is necessary to select the individuals that will
create the next generation. The replacement mechanism can be based on two methods,
fitness-based and age-based [20].
A candidate solution can be represented in four ways, depending on the method used [20];

• Fixed-length bit string representation – Genetic Algorithms (GA);

• Real-valued vectors – Evolution Strategies (ES);

• Finite state machines – Evolutionary Programming (EP);

• Trees and graphs with variable sizes – Genetic Programming (GP);

In this work, we will focus on GP.

2.2.1 Genetic Programming

This method uses instruction sets as attributes (for example a specific programming
language) and it allows the automatic evolution of programs. This type of EA can be
applied to machine learning and it is used to explore models with the maximum fit. The
individuals are represented as trees and the fitness is the parameter to be maximized [8,
20].
Program trees are made up of nodes that are connected to other nodes (see Figure 2.3).
If a node does not have a connection, it is called a leaf node or terminal (T). If it has is
called a function (F) [8].
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Figure 2.3: Structure of a program tree, where the blue nodes represent a function and
the green nodes represent a terminal [8].

(a) Tree-based mutation.

(b) Tree-based recombination.

Figure 2.4: Example of the variations operators application: mutation and crossover.
The operations act in the nodes designated by a circle in the parent trees [20].

Concerning initialization, the most common method to initialize a population is the
ramped half-and-half method, where a maximum initial depth of the tree is chosen, Dmax.
Afterward, each individual is created from the two sets, F and T, employing the full
method or the grow method, that are detailed in [20].
In GP, only one of the variation operators, crossover or mutation, is used at each repro-
ductive step, and it is chosen stochastically. The tree-based mutation randomly selects
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a node of the tree and replaces the subtree for a randomly generated tree (see Figure
2.4a). The tree-based recombination uses a binary operator to create children’s trees from
parents’ trees by swapping subtrees between the parents (see Figure 2.4b) [20].

The most common selection method used in GP is tournament selection, where an
arbitrary number of individuals is chosen to compete in small tournaments, and the fittest
is selected to be a parent [8, 21].
The fitness in pattern recognition or object classification can be measured by the accu-
racy, although there are many ways to measure the fitness depending on the goals of the
problem [21].
Some parameters in GP must be specified, such as population size, the performance prob-
ability of the genetic operations, the maximum programs size, and other details of the
run. Other important parameters are the termination criteria that includes the maximum
number of generations, the maximum time allowed to run the CPU, the maximum num-
ber of fitness evaluation, the periods where there is no improvement in the fitness and the
threshold when there is decreased population diversity [20, 21].

2.3 Evolutionary Machine Learning

Evolutionary Machine Learning (EML) aims to use EC techniques to overcome some
of the most common challenges in Machine Learning algorithms. These challenges include
finding the optimal learning parameters and hyperparameters, and the structure which
maximizes the prediction accuracy [14].

2.3.1 Neuroevolution

The EC can be used to automatically optimize ANN, and this set of methods is called
NeuroEvolution (NE). Evolution can have different targets depending on the problem to
be solved. Evolutionary algorithms can optimize the synaptic weights [22], search the
activation’s function and weights (EvoNN) [23], develop learning rules [24], and search for
the network topology [25].

In their work, Soltanian et al. [26] used grammatical evolution to generate the
network’s architecture resorting to the backpropagation algorithm to train the network.
Therefore, by implementing this method, expert knowledge is not necessary.

Turner et al. [27] studied the importance of evolving weight and/or the ANN’s topol-
ogy using NE. Using the topology evolution by itself is better than using weight evolution.
However, the authors obtained more effective NE using both evolutions simultaneously. A
method that applied both evolutions is NeuroEvolution of Augmenting Topologies (NEAT)
[28].

Notwithstanding, optimizing weights and the topology is very hard when dealing
with hundreds or thousands of weights and complex topologies. For this, we call upon
evolutionary deep learning, where topology and learning hyperparameters are optimized
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resorting to EC [19].

2.3.2 Evolutionary Deep Learning

A hot topic in EML is Evolutionary Deep Learning (EDL) that focuses on EC ap-
proaches to boost the performance of deep learning algorithms [19].
The proper configuration of DNN, which includes architecture and hyperparameters, will
affect its performance and success. These structures are composed of hundreds of param-
eters and require more computational resources. Hence, to make configuration easier an
Automatic Machine Learning (AutoML) system for deep learning was developed [29, 9].

The most recent researches have been focused on implementing EDL to discover ar-
chitectures for specific tasks because there is not a guideline to choose the right one and
it is a time-consuming task [29].

The automatization of the DNN’s configurations can provide innovative, well-programmed,
and small architectures, without the need for expert domain [29]. In addition, DNNs can
achieve better performance, if they resort to hardware, such as Graphics Processing Units
(GPU) [19].

Optimization of the hyperparameters can be made by grid search [29, 30], random
search [30], and Bayesian optimization [30]. The search for the best architecture can be
carried out by Reinforcing Learning (RL) [30] or EA [29, 30]. However, compared to RL,
optimization using EAs enables dealing with larger search space [29, 31].

Alejandro et al. [32] propose EvoDeep, a new evolutionary algorithm to evolve the
architecture and the parameters of a DNN.

Sun et al. [33] developed an optimizing method for deep learning architecture search
resorting to evolution, called CoDeepNEAT. The optimization is implemented in the topol-
ogy, components, and parameters of the DNN, and this method is applied to object recog-
nition and language modelling.

EDL algorithms are divided into neural network-based (NN-EDL) and GP-based (GP-
EDL) algorithms. The first one uses evolutionary algorithms to solve the most common
problems of machine learning previously mentioned. The second one uses GP to achieve
deep learning without neural networks [19, 34].

2.3.3 Evolutionary Convolutional Neural Networks

After applying EC to DL, these techniques are also starting to be applied to deep
CNN for image classification [34].

Real et al. [35] evolved a large-scale evolution of image classifiers employing evolution-
ary algorithms to search automatically for the network. Later, Real et al. [31] developed
AmoebaNet-A, which is also an image classifier but with a regularized evolution where an
age property was introduced to benefit the younger genotypes.

Sun et al. [36] used genetic algorithms to evolve architectures, and the initial values
for the connection weigh for a deep CNN. They represent the different blocks of the CNN
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through variable-length gene encoding and propose a novel fitness evaluation method.
The method allows speeding up the heuristic search with fewer computational resources.
The mechanism outperforms state-of-the-art algorithms in terms of classification error.
More recently, Sun et al. [37] propose an automatic CNN architecture research method
by implementing genetic algorithms to do image classification tasks. This approach does
not require domain knowledge, and it provides a promising architecture. Furthermore, the
method outperforms the existing ones on classification accuracy, parameter numbers, and
consumed computational resources.

2.4 Deep Evolutionary Network Structured Representation

During ANN construction, there are many decisions to take into consideration due to
the fact that the models are very complex. The need to define the topology, structure,
optimization parameters and the need for previous knowledge and domain expertise make
these decisions hard to make as well as a time-consuming task. Therefore, there is the
need to automate the design of these networks [38].

Deep Evolutionary Network Structured Representation (DENSER) is an evolution-
ary approach that allows us to evolve the structure and parameters of the DNNs. This
novel approach combines the basics of Genetic Algorithms (GA) with Dynamic Structured
Grammatical Evolution (DSGE) [38]. The code for DENSER is available at https:

//github.com/fillassuncao/fast-denser3.
Assunção et al. [9] tested the DENSER’s capability in the classification task using

object recognition. Therefore, this approach was applied to the automatic generation of
CNNs. This approach was initially evaluated using the CIFAR-10 dataset. To test the
CNN’s robustness, generalization and scalability, obtained with CIFAR-10, other bench-
marks were applied, more specifically, MNIST, Fashion-MNIST, SVHN, and CIFAR-100
datasets [9].

The results show that DENSER, trained on the CIFAR-10 dataset, outperforms pre-
vious evolutionary methods in the generations of CNNs using less prior knowledge and
obtaining novel topologies that were never designed by a human being. The best per-
forming CNN, obtained during the evolution, was composed of many dense layers which
was a remarkable outcome. The results obtained by applying benchmarks enable us to
conclude that the CNNs design by DENSER during evolution are robust, generalizable,
and scalable [9, 38].

To overcome the challenge of automating the design of these networks, Assunção et
al. [9] resort to evolutionary algorithms. These algorithms were implemented in the layers
and network’s structures. In the layer’s type and parameters, the authors use DSGE,
where the evolution acts on grammatical derivations. In the network’s structures, the
authors applied GA where the positions in the GA represent a layer and encode a list of
genes [38]. So, there are two independent levels to represent the candidate solution: The
GA level and the DSGE level [9].
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The GA level is related to the macro structure of the DNNs and depicts the array
of evolutionary units that produce the network. This requires a valid structure of the
genotype (layers, learning, and/or data augmentation methods). An example of a GA
structure for the evolution of CNNs is [(features, 1, 10), (classification, 1, 2), (soft-
max, 1, 1), (learning, 1, 1)], composed by 4 modules, and where, feature, classification,
softmax, and learning are the non-terminal symbols for the expansion into the DSGE level
genotype. With this structure, we can have a candidate solution with 1 to 10 convolu-
tions or pooling layers (features), 1 or 2 fully-connected layers (classification), 1 softmax
layer (output), and a learning rule (algorithm and its parameters). This level facilitates
the application of the genetic operators to evolve the candidate solution by allowing the
encapsulation of the genetic information [9].

The DSGE level is implemented at the micro structures where the parameters for each
GA evolutionary unit and its accurate length of parameters are defined. These parameters
are defined in a Backus-naur form (BNF) grammar and are expressed as ranges or a closed
set of possibilities. The use of this type of grammar allows the DENSER to be a general
approach because it enables easy adaptation to different network types, layers, and tasks.
This grammar also facilitated the use of domain specific knowledge straightforward. This
grammar-based approach allows us to make these changes without having to make changes
in the implementation details. An example of a grammar for the encoding of CNN is
represented in Figure 2.5 and its interpretation is in Appendix A.1 [9].

Figure 2.5: Grammar example for CNN encoding [9]. The grammar interpretation is in
the Appendix A.1.
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These two types of genotypes and the decoding of each position into the GA level in
the corresponding DSGE level are represented in Figure 2.6. In Fig.2.7 we can see the
mapping phenotype for the DSGE genotype of Figure 2.6 [9].

Figure 2.6: Example of the genotype of a candidate solution that encodes a CNN for
both levels. The GA level is randomly built by the GA structure, [(features, 1, 10),
(classification, 1, 2), (softmax, 1, 1), (learning, 1, 1)]. Subsequently, using the grammar
in Figure 2.5 the DSGE level for the feature non-terminal is obtained [9].

Figure 2.7: The corresponding phenotype of the genotype in Figure 2.6 [9].

To enable the evolution of the candidate’s solutions, the authors rely on the probabilis-
tic implementation of mutation and crossover operators. We have two crossover operators.
The first one occurred in the GA level and, it changes layers within a specific layer mod-
ule, i. e., a module is selected by tournament and is applied a one-point crossover in both
parents’ modules. On the DSGE level, the crossover operator swaps entire modules be-
tween individuals based on a binary representation. Figure 2.8 represents an application
example of this operator in both levels. The mutation is also applied to both levels. At the
GA level, the mutation occurs at the macro level, manipulating the structure, by adding,
replicating, and removing a unit. In the DSGE level, the mutation happens at the micro
level, changing the layer’s parameters. These mutations include grammatical mutation,
connection mutation, integer mutation, and float mutation [DENSER.DENSER1, 39].
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Figure 2.8: Example of both crossover operators. In GA level a cut-point in one of the
modules of the parents is applied, originating two offspring by swapping. In DSGE level a
bit-mask crossover, 1001, is applied where which position is associated with a module in
the offspring [9].

The dataset used during the evolution is divided into three parts: train, validation,
and test. This allows for getting unbiased results. The training dataset enables to tune the
weights of the networks, and the validation dataset evaluates the performance during the
evolution of the networks and based on the validation loss the early stopping can be trigger.
The test dataset is used, after the evolutionary process, to evaluate the performance of the
best models obtained during evolution in order to check the generalization of the networks
[38].

In respect to the defined GA structure, the initial population is randomly generated,
and for each layer, the parameters are set stochastically. However, the initial number
of layers is limited by a low upper bound, such as the following outer level structure:
"features":[5,10,15], "classification":[1]. So, the initial networks can have 5, 10, or 15 feature
layers and 1 classification layer [9, 39].

During the evolution, the operators and parameters are applied to each candidate
solution. To train the networks and obtain the best ones, based on the accuracy, Assunção
et al. [9] resort to a backpropagation algorithm and a learning rate. After the evolution,
and to get the robustness of the best networks, the authors re-trained the networks for
several epochs using the training and validation set. In this training a variate learning
rate and also the backpropagation algorithm was used. To improve the accuracy of the
best networks data augmentation, like Padding, Random crop, and Horizontal flipping,
were applied to the test data. After getting the two fittest networks they can both be
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assembled increasing the accuracy of the approach [38, 9].
There are four steps to evaluate a candidate solution. After obtaining the genotype it

is necessary to map it into its corresponding phenotype (1) and convert it into a trainable
model (2). Afterward, the model is trained (3) and an evaluation is conducted on the
model to determine the fitness of the model (4) [9]. To do this, Assunção et al. [9] resort
to Keras 1, that runs in Tensorflow 2, and that is an API 3 with GPU support for ANNs.

This approach makes it possible to create CNN without using previous knowledge. It
uses novel topologies that were impossible to be thought of by a human being. Moreover,
this approach uses limited computational resources and a low number of training epochs
during evolution [38].

2.5 Radiomics

Medical imaging can provide valuable information about a given disease. Diagnostic
imaging is a non-invasive technique used to extract information about a disease, such as
cancer. It can provide a comprehensive macroscopic picture of the tumour’s phenotype
and its environment. This technique can provide some characteristics, such as the shape,
growth, texture and heterogeneity, constituting an alternative to a biopsy [6, 40].

The diagnostic evaluation of clinical images is based on radiologists’ expertise, con-
sumes a lot of time, and depends on the institutions’ protocol. These limitations produce
a low reproducibility in the results and errors. Hence, radiomics emerge to fill in these
gaps [3].

Radiomics is a non-invasive method applied to oncological images, that extract ra-
diomic features from medical images. Therefore, a large amount of high-dimensional data
is extracted from the clinical images, radiomic features, and they are combined with com-
putational methods, such as ML algorithms, with the aim to develop models to predict
clinical outcomes. The main objective of Radiomics is to obtain data with high fidelity
and high throughput to provide the patient with valuable diagnostic, prognostic and pre-
dictive information [6, 3, 41, 42, 43, 44]. This process relies, firstly, on algorithms based on
predefined mathematical transformations that obtain hand-crafted features. In this case,
it is necessary to define a Region of Interest (ROI) predefined by an operator, normally a
radiologist. However, nowadays, we can resort to deep learning, and extract automatically
the features, deep features, taking into account, or not, the ROI [6, 40, 44].
In Radiomics, we can include biological or medical data to support evidence-based clinical
decision-making [6, 41, 42].

Several imaging modalities can be used to extract the radiomics’ features, the most
common being Computed Tomography (CT), Positron Emission Tomography (PET) scans,
and Magnetic Resonance Imaging (MRI). CT is used in the diagnosis of many diseases

1The most used deep learning framework.
2Complete open source platform for machine learning.
3Application Programming Interface
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and can provide measures, like tissue density. PET can provide measures about metabolic
activity and body function. MRI is a method that depends on many factors, such as the
gradient, pulse sequence, and magnetic field strength [6, 40].

Radiomics has been successfully applied to cancer diagnosis, tumour detection and
classification; survival, malignancy and recurrence predictions; and cancer staging [6].

2.5.1 Hand-Crafted Features

When dealing with hand-crafted features the radiomics workflow can be divided into
distinct steps, such as pre-processing (image acquisition and reconstruction), segmenta-
tion, feature extraction, feature reduction, and statistical analysis. [6, 40, 3, 41].

Pre-processing

The data quality depends on the acquisition protocols which vary according to each
institution’s policies. Given this, it is necessary to pre-process the data to reduce noise
and artifacts by applying smoothing and enhancement techniques [6, 40].

Segmentation

This is a critical step of the radiomics’ process where the ROI is identified. This
method should be as automatic as possible, time-efficient, and provide accurate and repro-
ducible boundaries. The conventional segmentation techniques lie within three categories:
intensity-based, model-based, and machine learning methods. The deep learning methods
can also be used to do segmentation using deep networks. These methods include different
variations of the U-Net, “LungNet” architecture, DenseNet, and hybrid dilated convolu-
tions. To evaluate segmentation we can resort to three factors: accuracy, reproducibility,
and consistency [6, 3, 42, 43].

Feature extraction

Different types of features can be extracted from the data. These features can be cat-
egorized into first order (intensity-based and shape-based features), second-order (texture-
based features), and higher-order (wavelet and Fourier features). The first-order features
are used to described pixel values without considering their spatial relationship. Second-
order features can provide a spatial correlation between pixels of an image [6, 3].

Features reduction

After feature extraction, it is necessary to exclude redundant features to improve the
quality of the data (reproducibility, informativeness, and relevancy), reduce their dimen-
sionality, and avoid overfitting. In Radiomics, feature reduction techniques can be divided
into two categories, supervised and unsupervised. Supervised methods include filtering,
wrapper, and embedded methods, and take into account the discriminative ability of the
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features. Unsupervised methods, such as PCA and Independent Component Analysis, are
applied to reduce the redundancy of the features. In the embedded methods the feature
selection and classification are performed simultaneously [6, 3].

Statistical analysis

The extracted features are then used in statistical analysis to reach a specific task like
those mentioned earlier. The most common analysis methods are clustering (Hierarchical
and partitional), classification (SVM, NN and k-nearest neighbour) and survival analysis,
also called time-related analysis (Kaplan-Meier Survival Curve, Cox Proportional Hazards
Model, and Log-Rank Test ) [6, 3].

2.5.2 Deep Features

Deep learning models allows the extraction and selection of robust deep features to
identify complex patterns automatically. The features can be analyzed in the deep network
or go through a different analyzer, such as SVM. Different deep architectures can be used,
such as CNN or Auto-Encoders [6, 44].

Some advantages of using DL models in Radiomics are: no need for prior knowledge;
automatic feature extraction; and can resort or not to the segmentation of the ROI [6].

The studies concerning DL models have several aspects to take into account [6]:

1. Input Hierarchy
There are three types of input images: Slice-level, volume level, and patient level.
At slice-level, the image slices are analyzed and classified independently. At volume-
level, all the slices associated with a volume are used as input. At patient-level is
used as input all the volumes associated with a patient [6].

2. Pre-trained and Raw Models

• Training from scratch, enables the networks to be completely adjusted to
the problem. However, due to the limitation of medical datasets this approach
can lead to overfitting and class imbalance (unequal number of positive and
negative classes). Some strategies can be applied to fight these issues [6]:

– Data augmentation – new data is formed based on the existing data, us-
ing random transformations to create more samples [12]. This method was
employed in [16] and [45] to augment the training data and prevent overfit-
ting in mammography images applying CNN. The methods implemented
were cropping, translation, rotation, flipping, and scaling;

– Multitask training – Simultaneous classification tasks are performed to
decrease the number of free parameters [6];

– Loss function modification – The function is modified to give more
emphasis to the minority class.
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• Transfer Learning via a Pre-trained Network, can also solve the prob-
lems of class imbalance and inadequate training data. The network is trained
using a large image dataset, that transfers the information to the network.
Afterward, the trained network is tunned by re-training the network using a
medical dataset [6]. Transfer Learning is used in many studies applied to breast
cancer, because of the large number of data needed to train a CNN from scratch
and the small amount of breast cancer data [17]. However, negative transfer can
happened because both the dataset tasks are too dissimilar, resulting in a reduc-
tion in the performance [7]. Another problem is because most of the networks
used are large and complex, leading to overfitting. Therefore, some changes
have to be performed to the network that can be very difficult to implement
or even impossible. Some classical CNN architectures such as AlexNet [46],
VGG19 [47] and GoogleNet [17], were used to distinguish between benign and
malignant breast lesions. Alkhaleefah et al. [17] trained a CNN network from
scratch using spine images dataset. Subsequently, the authors used this CNN
model and the other two models, AlexNet and GoogleNet, to train on breast
cancer data by fine-tuning to classify a breast lesion as benign or malign. The
authors concluded that Transfer Learning between two similar CNNs in the
domain structure is more effective than those with different domains. Zhang et
al. [48] concluded that the InceptionV3 model provides a better classification
of breast lesions than the CNN models VGG16, ResNet50, and VGG19.

3. Deep Learning Network Architectures
The deep features can be extracted by discriminative and/or generative deep learning
networks. In the second option, the learned weights of the generative model are used
as initial weights on a discriminative model [6].

• Discriminative models make class distinguishable and reduce the prediction
error. In Radiomics the most popular discriminative architectures are CNN
and Recurrent Neural Networks (RNN) [6]. The CNN architecture was already
explained in section 2.1.1 and RNN architecture is explained in [6].
Arevalo et al. [49] used DL to extract radiomic features for the first time in
mammography for breast cancer, applying CNN with two convolutional layers,
two pooling layers, and one fully connected layer. The authors concluded that
the use of a CNN, made from scratch, followed by a SVM model, outperforms
the hand-crafted radiomics method and a pre-trained CNN model. Zhou et al.
[50] also applied a CNN structure, made from scratch, to classify malignant
and benign breast tumours. In [47], [46], [17] and [49] CNNs models were used
to extract and select the features and, in the end, it was used a SVM classifier
model to classify the feature vector extracted from the CNN.
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• Generative models originate new samples from the distribution data based
on the features learned. Some of the generative models used in Radiomics are
Auto-Encoder, Deep Belief networks, and Deep Boltzmann machines [6].

Deep Learning models act as a black box. Therefore, it is important to increase the
explainability of these models. Some of the techniques used are [6]:

1. Visualization of the features that the network is looking for. “Feature visualization”
can be made by features maps;

2. Generating a heat-map where the image regions responsible for the output can be
seen. This sensitivity analysis, in CNN, can be made using backpropagation where
each input pixel is associated with weight;

3. Projection of the high-dimensional feature space to a bi-dimensional plane.

2.5.3 Hybrid Solution

The hybrid solutions can be acquired in two ways:

1. Combination of Radiomics [6]:

(a) Extraction from different imaging modalities [51];

(b) With other data sources: Clinical characteristics (eg. age and gender), blood
bio-markers (eg. cholesterol level), prognostic markers(eg. tumour stage and
size), and gene expression [6].

2. Fusion of hand-crafted and deep features:
The fusion of both methods will allow benefiting from both domains’ advantages and
both types of features, improving the performance [6]. Huynh et al. [46] ensemble
pre-trained CNN features and analytical extracted features, that were trained with
the SVM classifier, and obtained a better Area Under the Curve (AUC) for the
assembled model than the separated models. Antropova et al. [47] also concluded
that the fusion between classifier outputs from the pooled CNN features and the
handcrafted features outperforms both methods in separate.
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CHAPTER 3

RADIOMICS AND DENSER

This chapter details the dataset used and the respective division into train and test
to evolve the networks. Furthermore, the experimental setup is presented, and it can be
summarised in 3 steps: Pre-Processing, Evolutionary Search and Testing. Two imaging
pre-processing studies are presented, which originate the two different image datasets that
will be studied later. In the Evolutionary Search we describe the grammar and experi-
mental parameters. Finally, and in order to understand where the models are "looking"
in the input image to reach a decision, the model interpretability method implemented is
explained.

3.1 Dataset

In our work, we decided to use a dataset containing digital mammography, since
Digital Mammography is one of the most popular medical imaging screening techniques
to identify breast cancer. Additionally, this dataset is publicly available which will allow
us to compare our results with those from the literature.

The dataset used was the Curated Breast Imaging Subset of the DDSM (CBIS-
DDSM), from the Digital Database for Screening Mammography (DDSM) with 1,566
actual participants. This dataset can be found in Cancer Imaging Archive 1 and it is
described in [10]. The CBIS-DDSM dataset was selected due to its quality and size since
it is a well-curated public dataset provided for the mammography community with 2620
scanned film mammography studies. The dataset is divided into calcification (753 im-
ages) and mass (891 images) cases, and it includes malignant, benign, and benign without
call-back cases (meaning that no additional films or biopsies were done to confirm). Each
image in the dataset is in the Digital Imaging and Communications in Medicine (DICOM)
format derived from several different scanners at different institutions. Additionally, each

1https://wiki.cancerimagingarchive.net/display/Public/CBIS-DDSM
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image is accompanied by a CSV file with additional information. The dataset has im-
ages obtained in the Craniocaudal (CC) and Mediolateral Oblique (MLO) views which
are common for mammography screenings. The images are split into full mammography
images, binary mask images delineating the ROI for each abnormality, and cropped images
with the abnormalities [10]. Figure 3.1 shows an example of each type of image. In what
concerns the information present in the CSVs it is as follows [10]:

• Patient ID: the first 7 characters of images in the case file

• Density category

• Breast: Left or Right

• View: CC or Mediolateral Oblique (MLO)

• Number of abnormalities in the image (This is necessary since there are some cases
containing multiple abnormalities)

• Mass shape (when applicable)

• Mass margin (when applicable)

• Calcification type (when applicable)

• Calcification distribution (when applicable)

• BI-RADS assessment

• Pathology: Benign, Benign without call-back, or Malignant

• Subtlety rating: Radiologists’ rating of difficulty in viewing the abnormality in the
image

• Path to image files

In our experiments, we only use the mass cases cropped images, which were treated
in a slice-level. The use of the cropped images speeds up the training since it catches
the information about the masses. Our goal is to classify the lesion into benign and
malignant. The benign without call back cases were considered as benign cases, so the
study is a binary classification problem [10].

Through the Pathology information contained in the CSV file it is possible to obtain
the target information, crucial to build the models. The target information was obtained
by matching the information incorporated in the image’s name, and the ‘Patient ID’,
‘Breast’, ‘View’ and ‘Number of abnormality’ informations in the CSV file. Subsequently,
the information was converted into a binary classification, namely 1 to malignant and 0
to benign.
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The dataset was split into 20% for testing and 80% for training ensuring that they
were balanced. Since each abnormality can be in the CC or/and MLO view, in the end,
the dataset is composed of 1318 images for training (681 benign and 637 malignant) and
378 images for testing (231 benign and 147 malignant) as shown in Figure 3.2a histogram.
Figure 3.2b exhibits the images’ distribution of the cases by views. Therefore, the MLO
view is composed of 711 images to train (370 benign and 341 malignant cases) and 201
images for testing (121 benign and 80 malignant). The CC view has 607 images to train
(311 benign and 296 malignant) and 177 images for testing (110 benign and 67 malignant).

(a) Full mammography
image

(b) Binary mask
delineating the ROI of the

abnormality

(c) Cropped image of the
ROI section

Figure 3.1: Types of images provided by the CBIS-DDSM dataset. Images of CC view
of the Patient ’00001’ left breast.

(a) (b)

Figure 3.2: Histograms of the images’ distribution for the malignant and benign cases
in the train and test sets (a) and the same distribution but for each view (CC and MLO)
(b).
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3.2 Experimental Setup

DENSER’s goal is to evolve CNNs that give the best performance in the classification
of benign and malignant mass cancer lesions.
Taking into consideration the DENSER’s explanation presented in Section 2.4, and to
better understand the process behind our approach, the scheme depicted in Figure 3.3
was constructed.

Figure 3.3: Summary scheme of our approach. It consists of 3 steps: Pre-Processing,
Evolutionary Search and Testing.

The first step corresponds to acquiring the dataset, pre-process it and divided it into
train (80%) and test(20%).

In step 2 we start by splitting the train dataset again into 70% for training, i.e., to
tune the weights of the networks, 15% for validation, i.e., to evaluate the performance
during the evolution of the networks. The remaining 15% of the data was used for testing
the evolved networks. After splitting the dataset, the evolutionary search will be applied
to find the best networks. This search is conducted by DENSER, with the grammar and
evolution parameters described below.

Finally, in Step 3, we use the test set obtain in step 1 and the best networks of step 2
to assess the quality of the results. In this stage, we evaluate the generalisation ability of
the models. The evaluation of the network will be set up using the following metrics [13]:

• Confusion Matrix - Table that presents how successful the model is in predicting the
cases for each class. The benign class corresponds to the negative class (N) and the
malignant class is the positive one (P). Therefore, each class can have false (F) and
true(T) predictions;
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Predicted Classes

Tr
ue

C
la

ss
es Benign Malignant

Benign True Negative (TN) False Positive (FP)
Malignant False Negative (FN) True Positive (TP)

Table 3.1: Confusion matrix

• Accuracy - The ratio between the number of correct predictions and the number of
all the predictions;

Accuracy = TP + TN

TP + TN + FP + FN
(3.1)

• Precision - The ratio between the TP cases and the overall positive predictions;

Precision = TP

TP + FP
(3.2)

• Recall - The ratio between the TP cases and the overall positive cases in the test
set;

Recall = TP

TP + FN
(3.3)

• Receiver Operating characteristic (ROC) Curve - Presents a summary graph of the
classification performance, taking into account the True Positive Rate (TPR) and
False Positive Rate (FPR) values;

TPR = TP

TP + FN
and FPR = FP

FP + TN
(3.4)

• F1-score - The F1-score value is the harmonic mean between the precision and recall;

F1 = 2 × precision × recall

precision + recall
(3.5)

3.2.1 Image Pre-Processing

Before using the dataset images, we need to pre-process them. To do this, we used a
set of Python libraries namely, such as Pydicom 2, SimpleITK 3, Python Imaging Library
(PIL) 4 and Numpy 5.

The first issue we had to deal with was related to the fact that in the dataset the
cropped images have different sizes. The height range was between 1099 to 126 pixels, and
the width range was between 1089 to 95 pixels. To tackle this we employed, up or down

2https://pydicom.github.io/
3https://simpleitk.org/
4https://pillow.readthedocs.io/en/stable/
5https://numpy.org/
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sampling. We acknowledge that upsampling will set unreal information in the images and
downsampling will give very narrow images with loss of information, so both methods can
impact the learning of the networks. Nevertheless, in medical imaging the introduction of
synthetic information, by applying upsampling, has a more negative impact on the final
results. Another aspect to take into account is the adoption of the original colour code,
which in this case is the grayscale. The images are 16-bit grayscale with an intensity
window of [0, 65535], making the image information very complex. To deal with this, the
images were downsampled to 8-bit grayscale images.

Lastly, we decided to measure the impact of two imaging pre-processing methods:
the use of the grayscale images employing downsampling (90x90 grayscale images) and
grayscale images with more information about the surroundings implementing downsam-
pling (250x250 grayscale images).

90x90 Grayscale Images

The images were resized to 90X90 pixels focusing on the lesion region. An image
example is shown in Figure 3.4.

The pixel values were normalized to the range of [0, 1] and converted into a matrix
format. In the end, the images will have 90 columns and lines, and since the images are
grayscale they will have just one colour channel.

Figure 3.4: Cropped images of CC view of Patient ’00001’ left breast with 90x90 pixels.

250x250 Grayscale Images with more surrounding information

When using medical imaging the information surrounding the region of the lesion,
such as the margins, forms, and structures are essential for the mammography diagnosis.
Therefore, a new batch of cropped images was created where this information was included.
The new cropped grayscale images were created based on the binary mask images and on
the cropped images limiting box dimensions. The middle point coordinates of the lesion
was obtained through the binary mask images, and the maximum bounding box width
and height was defined considering all the cropped images. After getting the maximum
values, 100 pixels were added to each measure, in order to get more information about the
surrounding structure. However, some times these measures surpass the margins of the
images. In these cases, the number of pixels that go beyond the margin was added to the
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opposite side. Given that the original size was computationally expensive, and the images
were resized to 250X250 pixels, which is approximately 25% of the original images’ size.
The colour of each image’s pixel was normalized to the range [0, 1] and converted into a
matrix format. In this case, the images will have 250 columns and lines, and since the
images are grayscale they have just one channel. This process is explained in the scheme
depicted in Figure 3.5. An example of the obtained image is showed in Figure 3.6.

Figure 3.5: Scheme of the implemented pre-process work to acquire the new cropped
images with more surrounding information.

Figure 3.6: New cropped images of CC view of Patient ’00001’ left breast with
250X250 pixels.

3.2.2 Grammar

The grammar is a central component in DENSER as it allows the definition of the
building blocks of our models, i.e., the layers, the learning algorithms and its hyper-
parameters. The grammar used for the evolution of learning and topology is depicted in
Grammar 3.1. The grammar structure and hyper-parameters are explained in Annex A.1
[9].
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1<features> ::= <convolution> | <convolution> | <pooling> | <pooling> | <

dropout> | <batch−norm>

2<convolution> ::= layer : conv [num−f i l t e r s , int ,1 ,32 ,256] [ f i l t e r −shape , int

,1 ,2 ,5] [ stride , int ,1 ,1 ,3] <padding> <activation−function> <bias>

3<batch−norm> ::= layer : batch−norm

4<pooling> ::= <pool−type> [ kernel−size , int ,1 ,2 ,5] [ stride , int ,1 ,1 ,3] <

padding>

5<pool−type> ::= layer : pool−avg | layer : pool−max

6<padding> ::= padding :same | padding : valid

7<dropout> ::= layer : dropout [ rate , float ,1 ,0 ,0 .7 ]

8<class i f icat ion> ::= <fully−connected> | <dropout>

9<fully−connected> ::= layer : fc <activation−function> [num−units , int

,1 ,128 ,2048] <bias>

10<activation−function> ::= act : l inear | act : relu | act : sigmoid

11<bias> ::= bias :True | bias : False

12<softmax> ::= layer : fc act : softmax num−units :2 bias :True

13<learning> ::= <gradient−descent> <early−stop> [ batch_size , int ,1 ,50 ,500]

epochs:10000 | <rmsprop> <early−stop> [ batch_size , int ,1 ,50 ,500] epochs:10000 |

<adam> <early−stop> [ batch_size , int ,1 ,50 ,500] epochs:10000

14<gradient−descent> ::= learning : gradient−descent [ lr , f loat ,1 ,0.0001 ,0.1] [

momentum, float ,1 ,0.68 ,0.99] [ decay , float ,1 ,0.000001 ,0.001] <nesterov>

15<nesterov> ::= nesterov :True | nesterov : False

16<adam> ::= learning :adam [ lr , f loat ,1 ,0.0001 ,0.1] [ beta1 , float ,1 ,0 .5 ,1 ] [

beta2 , float ,1 ,0 .5 ,1 ] [ decay , float ,1 ,0.000001 ,0.001]

17<amsgrad> ::= amsgrad:True | amsgrad: False

18<rmsprop> ::= learning : rmsprop [ lr , f loat ,1 ,0.0001 ,0.1] [ rho , float ,1 ,0 .5 ,1 ]

[ decay , float ,1 ,0.000001 ,0.001]

19<early−stop> ::= [ early_stop , int ,1 ,5 ,20]

Grammar 3.1: Grammar used for the evolution of the learning and topology. The
grammar structure and hyper-parameters are explained in Annex A.1 [9].
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3.2.3 Experimental Parameters

The evolutionary parameters are divided into 4 categories [9]:

1. Evolutionary Engine - related to Evolutionary Algorithm used by DENSER;

2. Dataset - partitioning of the dataset;

3. Training - associated with the backpropagation algorithm;

4. Data Augmentation - processes to generate more data;

The evolutionary parameters explanation is in Annex A.2 and the employed values
for each study is in Table 3.2. In our approach, the learning parameters, e.g., batch size
and learning rate, are not fixed and they change through evolution.

To construct the networks, the outer level structure used for the hidden layers was
[["features", 1, 10], ["classification", 1, 10]], i.e., we can have between 1 to 10 layers of feature
extraction and 1 to 10 layers of classification. These layers are defined in Grammar 3.1
in the 1 and 8 lines, respectively. The initialisation is of the form "features":[5,10,15],
"classification":[1], i.e., the initial network are composed by 5, 10 or 15 feature extraction
layers and 1 classification layer. The output layer was always a softmax layer.
Since the classes are balanced, the balanced accuracy was used as a fitness metric and
due to the stochastic nature of the DENSER framework, we executed each experiment 4
times. Each evolutionary process took approximately 1 to 2 weeks to terminate, using a
GPU NVIDIA 1080 Ti.
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3. Radiomics and DENSER

3.2.4 Model Interpretability

One problem associated with deep learning models is interpretability since they are
"black boxes". However, it is important to understand how the models reach a decision,
i.e., where the model is "looking" in the input images. One way to achieve this goal is to
use saliency maps, which plots the gradient of the predictions of the model taking into
account the input. Implementing this visualization tool allows knowing how much a pixel
contributes to class prediction [52].

This was implemented resorting to the visualize_saliency in the Keras Visualization
Toolkit (Keras-vis)6. In Figure 3.7 we show a schematic explanation of this approach. The
visualize_saliency function has 4 inputs: Images (Seed Input) and Pathology information
(Filter Indices) of the test set, the model to obtain the prediction and to get the information
of the last layer (layer_idx). Afterward, the attention heatmap is acquired taking into
account these 4 parameters, and 2 processes are administered to improve the visualization:
Gaussian filter with a standard deviation (sigma) of 5 and a ’jet’ Colour map with a
blending value (alpha) of 0.7.

Figure 3.7: Schematic explanation of "visualize_saliency" implementation. It required 4
inputs: images (Seed Input) and Pathology information (Filter Indices) of the test set, the
prediction made by the model and the last layer of the model. The output is an attention
heatmap. Afterwards 2 processes are administered to improve the visualization: Gaussian
filter with a standard deviation (sigma) of 5 and a ’jet’ Colour map with a blending value
(alpha) of 0.7.

6https://raghakot.github.io/keras-vis/vis.visualization/#visualize_saliency
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CHAPTER 4

EXPERIMENTAL RESULTS

This chapter presents the experimental results of the two experiments conducted using
the 90x90 and the 250x250 grayscale images. Each experiment contains three analysis, in
which we investigate the impact of the number of generations and the application or not of
data augmentation approaches. We also present the results of the model interpretability
for the best networks, and a study where we build an ensemble of the 2, 3, and 4 fittest
networks. Finally, we compare the results of our approach with the ones presented in the
literature for the same dataset.

4.1 90x90 Grayscale Images

4.1.1 Evolution Analysis for 300 generations with no Data Augmenta-
tion

The first study conducted with the 90x90 images dataset was evolved over 300 gener-
ations.
The evolution of the validation accuracy over generations for each run is displayed in
Figure 4.1a. The maximum accuracy values for run 0, 1, 2 and 3 were 70.86%, 76.26%,
73.38% and 68.70% as the Table 4.1 shows. The minimum value of all runs was 51.80% in
generation 0 of run_2, and the maximum accuracy value was 76.26% in generation 205 of
run_1.
Figure 4.1b exhibits the mean accuracy of all runs. Looking at the results it is possible to
see that the models are evolving, i.e., their quality is improving, through the generations,
especially until generation 192. The models in the first generation start with a mean min-
imum accuracy value of 54.14% and reach the maximum of 68.70% in generation 192.
The ups and downs present in both graphs are due to the re-evaluation of the networks.
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4. Experimental Results

(a) Graphic of the accuracy value of the
validation set in each generation for each
run during the evolution of the networks.

(b) Graphic of the mean accuracy values of
all runs in graphic 4.1a.

Figure 4.1: Evolution of the runs over 300 generations taking as input 90x90 cropped
images.

After the evolutionary search, we collect the best network evolved by DENSER in
each run and measure its generalisation ability by applying it to the test set. The results
of test accuracy are displayed in Table 4.1. Looking at the Table, one can see that two
networks achieved a test accuracy value of 69.58%, (run_0 and run_2 networks). Even
though the number of runs is small, it is possible to see that the performance exhibited by
the networks in the validation set resembles the one in the test set (with the exception of
the network from run_1). These result show that DENSER is able to evolve models that
can capture the patterns that allow them to work beyond the training data.

Best Networks found in: Validation Accuracy (%) Test Accuracy (%)
run_0 70.86 69.58
run_1 76.26 68.25
run_2 73.38 69.58
run_3 68.70 59.52

Table 4.1: Accuracy results for the best networks found by DENSER for each run in the
300 generations study using the 90x90 cropped images test set.
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4. Experimental Results

In figure B.1 of Annex B.1.1 we show the topology of the best network found in the
run_1. This network is composed of thirteen hidden-layers, one input and output layer,
and 2319176 parameters. It has four convolution layers with filter sizes of 40, 253 and
114, kernel sizes of 5x5 and 4x4, stride sizes of 1x1 and 3x3, and sigmoid and linear as
activation functions. The network has three max-pooling layers with 3x3 and 5x5 pool
sizes, and 1x1 and 3x3 stride sizes. It is also composed of two batch normalization layers
with a momentum of 0.99, three dropout layers with a rate of 0.36 and 0.0, and a dense
layer with softmax as an activation function.

In general, the topology of the network does not differ from a typical CNN network.
However, it has three dropouts in a row. The use of these three dropouts in a row is
may be due to the fact that the dataset is small which can more easily lead to overfitting.
Therefore, having three Dropouts can help to deal with this problem. Another curious
aspect is the implementation of a rate of 0.0 in two of the dropout layers, which means
that there is no dropout, i.e., there is no regularization. One possible explanation, and
taking into account that we are dealing with an evolutionary process and these two layers
do not have an impact on the network’s performance but increase the its size, is that the
network presents bloating. Bloat is defined by an increase of the network size without an
increase in fitness. The appearance of the bloat is might be due to the fact that the small
networks are much more susceptible to a decrease in quality when a mutation occurs.
As such, by increasing the size of the individual with information that does not have an
impact on fitness, the networks are protecting themselves against the effects of a possible
bad mutation [53].

To better understand the classifications made by the best network, we use the con-
fusion matrix of Table 4.2, the ROC curve in Figure 4.2 and the classification report in
Table 4.3, which include the precision, recall and F1-score for each class.

Predicted Classes

Tr
ue

C
la

ss
es Benign Malignant

Benign 171 60
Malignant 60 87

Table 4.2: Confusion matrix of the best evolve network in the 300 generations study
using the 90x90 cropped images test set.
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Benign (%) Malignant (%)
Precision 74 59
Recall 74 59
F1-score 74 59

Table 4.3: Classification report apply-
ing the 90x90 cropped images test set in
the best network found by DENSER in
the 300 generations study. The classifi-
cation report presents the values of pre-
cision, recall and F1-score for each class.

Figure 4.2: ROC curve of the best network
acquired by DENSER in the 300 generations
study applying the 90x90 cropped images test
set.

In the ROC curve the TPR and FPR values are 0.59 and 0.26. Both values are poor,
showing low sensitivity and specificity of the model towards malignant cases. Thus, the
model does not reliably predict the malignant cases.

The precision values of 74% and 59% for the benign and malignant classes allow us
to conclude that the predictions made by the model for the benign class are more reliable
than the predictions made for the malignant class. The recall values for the benign and
malignant classes, 74% and 59%, respectively, confirm that the model detects the benign
cases better than the malignant ones. These results indicate that, 26% of the benign
and 41% of the malignant cases were misclassified. However, and taking into account the
nature of our problem, this is unfavourable, because the priority is to increase the detection
of malignant cases, i.e., decrease the number of FN cases. Therefore, one approach that
can be implemented to tackle this problem is data augmentation, since it will introduce
new training samples in order to increase the generality of the model.

4.1.2 Evolution Analysis for 150 generations with Data Augmentation

One way to prevent overfitting, as mentioned in Section 2.5.2, is by implementing
data augmentation. Data augmentation will allow the model to use more data during the
evolutionary process. Two spatial augmentation operations were implemented 1:

• Zoom range: 2 - Randomly zooms the image, adding pixels around the image or
interpolating pixels values. The percentage of the zoom in this case is 0% to 300%,
since the range is define as [lower, upper] = [1-zoom_range, 1+zoom_range] → [0,3].

• Rotation range: 90◦ - The image’s pixels are randomly rotated 90◦ degrees clockwise.
Some pixels will move outside the image, resulting in images with pixels with no data
which are filled in by the nearest pixel values.

1https://keras.io/api/preprocessing/image/
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Since we increase the size of the training dataset, we started by evaluating the per-
formance with a reduce number of generations, 150, as showed in Figure 4.3. Figure 4.3a
displays the maximum validation accuracy for each generation for each run. A brief pe-
rusal of the image show that the minimum validation accuracy value is 51.80% in run_1
generation 5, and the maximum value is 80.22% in run_3 generation 66. Figure 4.3b
presents the mean accuracy of all runs over the generations, and the networks evolution
is evident since the accuracy value is increasing along the generations. The minimum and
maximum mean accuracy values are 56.65% and 75.27%.

(a) Graphic of the accuracy value of the
validation set in each generation for each
run during the evolution of the networks.

(b) Graphic of the mean accuracy values of
all runs in graphic. 4.3a.

Figure 4.3: Evolution of the runs over 150 generations taking as input 90x90 cropped
images with data augmentation.

The best networks of each run are the networks with the higher validation accuracy
values. These networks were collected and used in the test set, containing a total of 378
new images. The test accuracy values for this study are displayed in Table 4.4, and it is
noticeable a loss in the performance. Both run_1 and run_2 present the best test accuracy
value of 71.16%. The network with the best validation accuracy value, the run_3 network,
presents a test accuracy value of 68.52%, which is 2.64% below the best test accuracy value.

Best Networks found in: Validation Accuracy (%) Test Accuracy (%)
run_0 77.70 67.72
run_1 78.80 71.16
run_2 75.18 71.16
run_3 80.22 68.52

Table 4.4: Accuracy results for the best networks found by DENSER for each run in the
150 generations with data augmentation study using the 90x90 cropped images test set.
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Figure B.2 in Annex B.1.2 shows the best network topology evolved in this experiment.
The network has twelve hidden-layers, one input and output layer (softmax layer) and
2907498 parameters. Two of the hidden layers are convolution layers, with filter sizes of
139 and 41, and a relu function as the activation function. The kernel sizes were 4x4 and
6x6, and the stride size was 2x2. The network also had one max-pooling layer with a pool
size of 4x4 and a stride size of 3x3, one average-pooling layer with a pool size of 2x2 and
a stride size of 3x3, two batch normalization layers with a momentum of 0.99, three fully
connected layers with sigmoid and relu activation functions and three dropout layers with
rates of 0.0, 0.5 and 0.27.

Looking at the topology of the network it is possible to see that it does not have a
typical CNN structure, since it has one batch normalization layer immediately after the
input layer, three dropout layers in a row and a higher number of dense layers.

The application of a batch normalization at the beginning of the network is not a
typical approach in the CNN since it will re-scale the input, modifying the initial infor-
mation [13]. However, it is also commonly used to help overcome overfitting and speed up
learning, as mentioned in Section 2.1.1. So, since this topology is the best network it can
be seen as a standalone contribution and additional experiments are required.

The higher number of dense layers can also be observed in [9], where Assunção et al.
trained DENSER with the CIFAR-10 dataset.

The best network was evaluated on the confusion matrix (Table 4.5), the ROC curve
(Figure 4.4), and the precision, recall and F1-score values for each class (Table 4.6).

Predicted Classes

Tr
ue

C
la

ss
es Benign Malignant

Benign 161 70
Malignant 49 98

Table 4.5: Confusion matrix of the best network acquired by DENSER in the 150
generations applying data augmentation study with 90x90 cropped images test set.
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Benign (%) Malignant (%)
Precision 77 58
Recall 70 67
F1-score 73 62

Table 4.6: Classification report apply-
ing the 90x90 images test set in the best
evolved network in the 150 generations
applying data augmentation study. The
classification report portrays the values
of precision, recall and F1-score for each
class.

Figure 4.4: ROC curve of the best net-
work acquired by DENSER in the 150 gen-
erations applying data augmentation study
with 90x90 cropped images test set.

Looking at the results of ROC curve, we obtained TPR and the FPR values of 0.67
and 0.30, respectively.

Through the precision value achieved, it can be concluded that 77% and 58% of the
predictions for the benign and malignant cases were true. Showing that the model has an
a higher reliability level for benign cases than for malignant ones. The recall values for
the benign class was 70% and for the malignant was 67%, which is in accordance with
the higher effort made by the model in the prediction of the benign class rather than the
malignant. Hence, and taking into account the 321 benign cases, 70 were classified as
malignant. For the 147 malignant cases, 49 were classified as benign.

Comparing this study with the previous one without data augmentation, it can be
concluded that the introduction of this approach reduces, in general, the number of FN
cases, since the model has 11 fewer misclassified cases and a higher TPR value. However,
the FP and the FPR increased. In medical imaging, both the FN and FP cases must be
avoided as much as possible. Nevertheless, having a malign lesion classified as benign can
cause a worse after-effect. Hence, and taking into account the problem we are working
with, the reduction of FN is preferable making this model the best choice when compared
to the previous one. The test accuracy was also slightly superior to the previous study.
Therefore, a study for a larger number of generations will be performed.
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4.1.3 Evolution Analysis for 300 generations with Data Augmentation

In this experiment we increased the number of generations from 150 to 300, as shown
in Figure 4.5. As expected, increasing the number of generations resulted in networks that
obtain a better performance. In Figure 4.5b it can be observed the networks evolution
through the generations. The maximum mean accuracy value was 77.25% in generation
198 and from generation 160 to 300 it is visible that the accuracy values increase, even
though at a slower rate.

(a) Graphic of the accuracy value of the
validation set in each generation for each
run during the evolution of the networks.

(b) Graphic of the mean accuracy values of
all runs in graphic. 4.5a.

Figure 4.5: Evolution of the runs over 300 generations taking as input 90x90 cropped
images with data augmentation.

Table 4.7 presents the validation and test accuracy values for the best network of
each run. The test accuracy values were acquired using the test set, which is composed
of 378 new images. The network of run_3 has the highest validation and test accuracy
values. However, comparing the validation and test accuracy values is noticeable a slight
degradation in the performance.

Best Networks found in: Validation Accuracy (%) Test Accuracy (%)
run_0 79.50 71.96
run_1 79.50 73.28
run_2 79.50 74.07
run_3 79.85 73.81

Table 4.7: Accuracy results for the best networks found by DENSER for each run in the
300 generations with data augmentation study using the 90x90 cropped images test set.
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The best network topology is displayed in Figure B.3 in Annex B.1.3. The network
has thirteen hidden layers, one input layer, one output layer (Dense layer) and 2808147
parameters. The network has five convolution layers with filter sizes of 202, 118 and
103, kernel sizes of 6x6, 4x4 and 3x3, stride sizes of 2x2 and 1x1, and linear and relu
as activation functions. The network is also composed of two batch normalization layers
with a 0.99 momentum, one max-pooling layer with a pool and stride size of 3x3, one
dropout layer with a rate of 0.40 and four dense layers with linear, sigmoid, and softmax
as activation functions.

Comparing to previous studies, this network has practically the same number of layers.
However, it has a lower number of parameters than the one obtained in Section 4.1.2. This
reveals that evolving for a larger number of generations might result in smaller but accurate
networks.

To further evaluate the best network, the ROC curve was collected , which is depicted
in Figure 4.6; the confusion matrix values exhibit in Table 4.8; and the precision, recall
and F1-score values of each class, are displayed in Table 4.9.

Predicted Classes

Tr
ue

C
la

ss
es Benign Malignant

Benign 189 42
Malignant 57 90

Table 4.8: Confusion matrix of the best evolved network in the 300 generations
applying data augmentation study with 90x90 cropped images test set.

Benign (%) Malignant (%)
Precision 77 68
Recall 82 61
F1-score 79 65

Table 4.9: Classification report apply-
ing the 90x90 cropped images test set in
the best network found by DENSER in
the 300 generations applying data aug-
mentation study . The classification re-
port portrays the values of precision, re-
call and F1-score for each class.

Figure 4.6: ROC curve of the best net-
work acquired by DENSER in the 300 gen-
erations applying data augmentation study
with 90x90 cropped images test set.
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Looking at Figure 4.6, its possible to see that the TPR and FPR values are 0.61 and
0.18. Hence, applying a large number of generations originates a reduction in the FPR
value. Confirmed by the confusion matrix in Table 4.8 which shows a reduced number of
false positives.

This network acquired the best precision and recall values for the benign class of 77%
and 82%, respectively, and the best precision value for the malignant class of 68%. The
recall value for the malignant class was lower, comparing to the value of the previous
experiment in Section 4.1.2. Furthermore, this network achieved more reliable results,
and it got better prediction ability for both the classes, comparing to the two previous
studies.

Moreover, and since this was the best network obtained, an additional validation
mechanism was implemented to better understand which pixels the model is "looking" for
to make a particular prediction, resorting to saliency maps.

Annex C reports the saliency maps of 50 images of the test set taking into consideration
the best network of this study. Figure 4.7 presents two different images, one without the
black background and the other with it, to detect the impact of the black background
in the predictions. Since the images of this dataset are essentially based in the lesion
region, it is expected that almost all of the image is used to generate the predictions, as
the saliency of image a) confirms. The b) image, which has the black background, reveals
that the model is not dismissing the background which might be an indication that our
model still needs more training to avoid this element.

Figure 4.7: Saliency maps of two distinct images (a and b): CC view of patients ’00099’
and ’00116’ right breast. The first image is the cropped image and the second image is the
saliency map resorting to the best network acquired by DENSER in the 300 generations
applying data augmentation study.
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4.1.4 Ensembling of the Best Networks

Deep learning models are nonlinear and can have high variance. One way to reduce
the variance is by training a set of models and combine the predictions of those models,
i.e., implementing an ensemble to improve the predictions by using majority voting [54].

We implemented an ensemble taking into consideration the 4 fittest networks evolved.
The set of networks include the best network of Section 4.1.2 (Network A), the run_3
(Network B), run_2 (Network C) and run_1 (Network D) networks of Section 4.1.3.
Three types of ensembles were implemented, as Table 4.10 shows, namely the ensembling
of the 4, 3 and 2 fittest networks. The ensembling of the 4 fittest networks achieved the
best results, with a test accuracy value of 76.19%.
The ensemble of the 4 fittest networks was validated by the confusion matrix, the ROC
curve and the classification report (precision, recall and F1-score values for each class) of
Table 4.11, Table 4.12 and Figure 4.8 display, respectively.

Network
Single Network

Accuracy Validation (%)
Ensemble Network Accuracy Test (%)

A 80.22

76.19
75.92

73.54
B 79.85
C 79.50

-
D 79.50 -

Table 4.10: Test accuracy considering the ensembling of the 4, 3 and 2 fittest networks of
Section 4.1. These networks are: the best network of Section 4.1.2 (Network A), the best
network (Network B), run_2 (Network C) and run_1 (Network C) networks of Section
4.1.3.

Predicted Classes

Tr
ue

C
la

ss
es Benign Malignant

Benign 193 38
Malignant 52 95

Table 4.11: Confusion matrix of the ensembling of the 4 fittest networks of Section 4.1
using the 90x90 new cropped images test set.
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Benign (%) Malignant (%)
Precision 79 71
Recall 84 65
F1-score 81 68

Table 4.12: Classification report apply-
ing the 90x90 new cropped images test
set in the ensembling of the 4 fittest net-
works of Section 4.1. The classification
report presents the precision, recall and
F1-score values for each class.

Figure 4.8: ROC curve of the ensembling of
the 4 fittest networks of Section 4.1.3 using
the 90x90 new cropped images test set.

The TPR was 0.65 and FPR was 0.16 which results in the lowest FPR value for this
experiment. The number of FN cases is also closer to the best value obtained in Section
4.1.2.
The precision and recall values for the benign class and the precision value for the malig-
nant class were also the best values obtained until now. In conclusion, using an ensemble
increases the performance, improves the predicting power and decreases the misclassifica-
tion cases.

4.2 250x250 Grayscale Images with more surrounding in-
formation

4.2.1 Evolution Analysis for 150 generations

In the first set of experiments with 250x250 grayscale images we evolved networks
for 150 generations. The evolution analysis can be observed in Figure 4.9a where the
validation accuracy for each generation and run is plotted. Looking at the results it is
possible to see that run_1 achieves the lowest value of 51.44% in generation 16 and run_0
achieves the maximum value of 69.78% obtained in generation 142. Figure 4.9b shows
the mean accuracy of all runs of Figure 4.9a for each generation. In this Figure, it can
be observed that there is an increase in performance up to generation 55 and after that,
the accuracy values stabilize between 60.52% and 64.21%. The minimum and maximum
values obtained were 53.69% and 64.21%, respectively.
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(a) Graphic of the accuracy value of the
validation set in each generation for each
run during the evolution of the networks.

(b) Graphic of the mean accuracy values of
all runs in graphic 4.9a.

Figure 4.9: Evolution of the runs over 150 generations taking as input 250x250 new
cropped images.

After the evolutionary process finishes, the best network found in each run was applied
to the test set. The test accuracy values obtained are in Table 4.13. These results show that
run_0 and run_1 present a higher discrepancy between the validation and test accuracy
values. On the contrary run_3 network obtains the closest values, in spite of having the
smallest validation accuracy.

Best Networks found in: Validation Accuracy (%) Test Accuracy (%)
run_0 69.78 57.14
run_1 67.98 55.03
run_2 67.98 60.32
run_3 64.03 62.96

Table 4.13: Accuracy results for the best networks found by DENSER for each run in
the 150 generations study using the 250x250 new cropped images test set.

The best network topology found is described in Figure B.4 in Annex B.2.1. The net-
work is composed of seventeen hidden-layers, one input and output layer, and 49211716
number of parameters. The filter size of the convolution layers were 44, 160 and 158,
and the activation functions used were relu and sigmoid. The strides in these layers were
1x1, 2x2 and 3x3, and the kernel sizes were 2x2, 3x3 and 4x4. The pooling layers used
were three maximum pooling layers, with a stride of 1x1 and 2x2, and a pool size of 3x3
and 4x4. The batch normalization layer had a momentum of 0.99, the two dropout layers
had rates of 0.5 and 0.0, and the eight dense layer activation functions were linear, relu,
softmax and sigmoid.
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In general, this network has a normal CNN structure. However, the fact that it has
eight dense layers, six of which are in a row, is unusual. This already occurred in Section
4.1.2 and in [9]. Another situation that already occurred in Section 4.1.1 was a Dropout
Layer that has a rate of 0.0.

Figure 4.10 displays the ROC curve, Table 4.14 shows the confusion matrix and Table
4.15 shows the classification report where the values of precision, recall and F1-score for
each class were acquired considering the test dataset and the best network acquired.

Predicted Classes

Tr
ue

C
la

ss
es Benign Malignant

Benign 134 97
Malignant 65 82

Table 4.14: Confusion matrix of the best evolved network in the 150 generations study
using the 250x250 new cropped images test set.

Benign (%) Malignant (%)
Precision 67 46
Recall 58 56
F1-score 62 50

Table 4.15: Classification report ap-
plying the 250x250 new cropped images
test set in the best network found by
DENSER in the 150 generations study.
The classification report presents the
values of precision, recall and F1-score
for each class.

Figure 4.10: ROC curve of the best network
acquired by DENSER in the 150 generations
study applying the 250x250 new cropped im-
ages test set.

In the ROC curve shown in Figure 4.10 the FPR is 0.42 and the TPR is 0.56, which
correspond to very poor rates.

The classification report reveals that only 67% of the predictions made for the benign
and 46% for the malignant classes were true. These percentages are explained by the
fact that 97 out of 231 of the benign cases were classified as malignant and 82 out of
147 malignant cases were classified as benign. These values are low, especially for the
malignant cases. The recall values were very similar for both classes. In the 231 benign
cases, 58% were classified as such. In the 147 malignant cases, 56% were classified as
malignant. These results show that the model is detecting the benign cases marginally
better than the malignant ones. This result is worrying taking into consideration our
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problem since our concern is to accurately detect the highest number of malignant cases.

In light of these results and considering both the problems of the network’s structure
and the poor prediction of malignant cases, we decided to repeat this experiment for a
larger number of generations.

4.2.2 Evolution Analysis for a large number of generations (300 gener-
ations)

In this study, we increased the number of generations to 300. The results for the
evolutionary process are displayed in Figure 4.11. As observed in Figure 4.11a, run_1
attains a minimum value of validation accuracy of 51.43% in generation 16 and run_0
attains the maximum validation accuracy value in generation 267. In Figure 4.11b, the
minimum mean validation accuracy value was 53.68% in generation 0 and the maximum
was 66.28% in generation 266. The Figure also shows that between generation 0 and 266,
the networks are evolving, since the accuracy value increases up until that point. However,
after generation 266 a sudden drop is observed, mainly due to the run_3 performance.
Comparing these values with the results of Section 4.2.1 is noticeable a slight increase in
the mean maximum value. Therefore, and as expected, training for a larger number of
generations increases the network’s performance.

(a) Graphic of the accuracy value of the
validation set in each generation for each
run during the evolution of the networks.

(b) Graphic of the mean accuracy values of
all runs in graphic 4.11a.

Figure 4.11: Evolution of the runs over 300 generations taking as input 250x250 new
cropped images.
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In the end of the evolutionary search the best networks were evaluated in the test set.
The values of the test accuracy obtained are shown in Table 4.16. Comparing the values of
the validation and test accuracy of runs 1, 2 and 3, it is noticeable a discrepancy between
these values, i.e., there is a loss of the performance. On the contrary, the run_0 network
presents a difference of 3.59% between the validation and test accuracy values, and it is
the network with the higher values, with a test accuracy value of 67.99%.

Best Networks found in: Validation Accuracy (%) Test Accuracy (%)
run_0 71.58 67.99
run_1 68.34 57.14
run_2 68.34 55.29
run_3 66.19 58.20

Table 4.16: Accuracy results for the best networks found by DENSER for each run in
the 300 generations study using the 250x250 new cropped images test set.

The best network topology is represented in Figure B.5 in Annex B.2.2 which is
composed of eighteen hidden-layers, one fully connected layer as output and 11553067
parameters. The convolution layers’ filter sizes are 227, 240 and 235, and the activation
functions were relu and sigmoid. The convolution layers’ kernel sizes were 6x6, 7x7 and
5x5, and the stride sizes were 3x3, 2x2 and 3x3, respectively. The maxpooling layers’
pool sizes were 5x5, 3x3 and 4x4, and the stride sizes were 1x1, 3x3 and 3x3. The batch
normalization layers have a momentum of 0.99, the dropout layers have a rate of 0.3865
and the dense layers’ activation functions were linear, sigmoid and softmax.

Comparing to the previous study, training for a larger number of generations produce
networks with approximately the same number of layers, but with a much lower number
of parameters.

The network’s topology is expected for a CNN, except for the large number of batch
normalization and dense layers. Since the number of instances to train the networks is
small, a higher number of batch normalization layers is used to prevent overfitting. The
higher number of dense layers can also be observable in [9] and already happened in
Sections 4.1.2 and 4.2.1.
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The network’s performance was also evaluated by the confusion matrix in Table 4.17,
by the values of the classification report ( precision, recall and F1-score values for each
class) showed in Table 4.18 and the ROC curve, displayed in Figure 4.12.

Predicted Classes

Tr
ue

C
la

ss
es Benign Malignant

Benign 155 76
Malignant 45 102

Table 4.17: Confusion matrix of the best network acquired by DENSER in the 300
generations study using the 250x250 new cropped images test set.

Benign (%) Malignant (%)
Precision 78 57
Recall 67 69
F1-score 72 63

Table 4.18: Classification report
applying the 250x250 new cropped
images test set in the best network
found by DENSER in the 300 gen-
erations study. The classification
report presents the precision, recall
and F1-score values for each class.

Figure 4.12: ROC curve of the best network
acquired by DENSER in the 300 generations
study applying the 250x250 new cropped im-
ages test set.

The ROC curve, in Figure 4.12, has a TPR of 0.69 and a FPR of 0.33. The TPR and
FPR value are better than the ones obtained in the study of Section 4.2.1.

Looking at the network report, it can be seen that 78% and 57% of the benign and
malignant predictions, respectively, were correct. Therefore, the model predictions con-
tinue to be higher in benign cases than the malignant ones. The recall values for both
the classes are very close because the proportion of the cases for each class that was mis-
classified was approximately the same. For the 231 benign cases, 76 were classified as
malignant, which corresponds to 67% of the cases being correctly classified. For the 147
malignant cases, 69% of the cases were classified correctly. In general, training for a larger
number of generations produced better results since the accuracy, F1-score and TPR val-
ues increased, and the FPR, FN, FP values decreased when compared to the values of
Section 4.2.1. However, the accuracy value is still low, considering that for a total of 378
cases, 32% were misclassified.
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4.2.3 Evolution Analysis for 300 generations with Data Augmentation

As mentioned previously one way to prevent overfitting is by applying data augmen-
tation. Consequently, in order to get new, bigger and plausible data, two spatial aug-
mentation operations were employed (The operations explanation was made in Section
4.1.3):

• Zoom_range : 2

• Rotation_range : 90

For this experiment, the evolutionary search ran for 300 generations since we already
observed that a higher number of generations produces better results. The Figure 4.13
present the evolution of the validation accuracy through the generations. Table 4.19
contains the maximum validation accuracy values for each run of Figure 4.13a, which
were 65.47%, 74.46%, 77.34% and 73.74% for run 0, 1, 2 and 3, respectively. In Figure
4.13b shows that evolution is occurring throughout the generations, since the minimum
mean accuracy value was 53.51% and the maximum value was 70.32%.

(a) Graphic of the accuracy value of the
validation set in each generation for each
run during the evolution of the networks.

(b) Graphic of the mean accuracy values of
all runs in graphic 4.13a.

Figure 4.13: Evolution of the runs over 300 generations taking as input the 250x250 new
cropped images with data augmentation.

At the end of the evolutionary process, the best network of each run was collected.
The networks were applied to the test set to gauge their generalization ability. The test
accuracy by each network is shown in Table 4.19. The best accuracy value in the validation
and test was obtained by the run_2 network (Network A), which has a difference between
the accuracy values of 6.97%, which is acceptable.
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Best Networks found in: Validation Accuracy (%) Test Accuracy (%)
run_0 65.47 58.73
run_1 74.46 62.43
run_2 77.34 70.37
run_3 73.74 68.78

Table 4.19: Accuracy results for the best networks found for each run in the 300 gener-
ation applying data augmentation study using the 250x250 new cropped images test set.

The topology of the best network (Network A) has one input layer, fifteen hidden-
layers, one output layer, which is a fully-connected layer, and 5645647 parameters. This
topology is displayed in Figure B.6 in Annex B.2.3. The convolution layers have filter
sizes of 79, 176 and 142, with a kernel size of 5x5, stride sizes of 1x1, 2x2 and 3x3 and
the activation functions were linear and relu. The pooling layers were max-pooling and
average-pooling with pool sizes of 5x5 and 2x2, and stride sizes of 2x2 and 3x3. The batch
normalization has a momentum of 0.99, a dropout rate of 0.5 and four fully-connected
layers with linear, sigmoid and softmax as activation functions.

The network presents a number of parameters and layers lower than the ones in Section
4.2.2. These results confirm the effectiveness of using data augmentation techniques, since
we obtained networks with better performance and with approximately half of the number
of parameters.

In general, the topology obtained is an expected topology for a CNN.

To further evaluate the performance of the best network, we compute the ROC curve
(Figure 4.14), the confusion matrix (Table 4.20) and the classification report, which is
composed of the precision, recall and F1-score values for each class (Table 4.21).

Predicted Classes

Tr
ue

C
la

ss
es Benign Malignant

Benign 170 61
Malignant 51 96

Table 4.20: Confusion matrix of the best network acquired by DENSER (Network A)
in the 300 generations applying data augmentation study using the 250x250 new cropped

images test set.
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Benign (%) Malignant (%)
Precision 77 61
Recall 74 65
F1-score 75 63

Table 4.21: Classification report ap-
plying the 250x250 new cropped im-
ages test set in the best network found
by DENSER (Network A) in the 300
generations applying data augmentation
study. The classification report presents
the precision, recall and F1-score values
for each class.

Figure 4.14: ROC curve of the best net-
work acquired by DENSER (Network A) in
the 300 generations applying data augmen-
tation study using the 250x250 new cropped
images test set.

This study obtained the best precision value for the malignant class and the best recall
value for the benign class, of 61% and 74%, respectively. The values for the benign class
precision and the recall of the malignant class were very close to the best ones reached
until now, in the experiments described in Section 4.2.2. This was expected since the
number of false positives was smaller, and the number of false negatives was nearby to the
best one obtained until now (Section 4.2.2). However, taking into account the precision
and recall values is possible to conclude that the model predicts better the benign cases,
as already happened in the previous studies.

Another interesting aspect of this experiment, is that during the evolution, another
good network was founded in run_2 (Network B). This network presents the closest values
between the validation and test accuracy and the best test accuracy value.
This network was found in generation 229 in run_2, and it obtained the following accuracy
values:

• Validation Accuracy value: 75.89%

• Test Accuracy value: 71.96%

The topology of this network is displayed in Figure B.7 in Annex B.2.3, and it is
composed of one input layer, fourteen hidden-layers, one fully-connected layer and 4682245
parameters. Five of the hidden-layers were convolution layers with filter sizes of 79, 176,
203, 176 and 142, with kernel sizes of 7x7, 5x5 and 6x6, and stride sizes of 1x1, 3x3 and 2x2.
The activation functions of these layers were linear and relu. The two max-pooling layers
have pool sizes of 5x5 and 2x2, and a stride of 2x2. The batch normalization layers have
a momentum of 0.99, the two dropout layers have rates of 0.5 and 0.3126, and the three
fully-connected layers have as activation functions the sigmoid and softmax functions.

56



4. Experimental Results

Notably, the network structure is a typical CNN structure and is very similar to the
previous network. The differences are that this network has one more convolution and
dropout layer, there is one less batch normalization and dense layer, and it does not have
an average-pooling layer. The presence of two dropouts in a row already occurred in
Section 4.1.1, and it helps in the regularization of the network’s parameters.

The network was the best network found until now, since it has the fewer number of
layers and parameters.

However, this network exhibits unusual behaviour that goes against what is described
in existing literature because the number of neurons in the fully-connected layers is in-
creasing with depth. Normally, the number of neurons decreases with depth. This can be
a new approach since this network presents the best performance.

The network’s performance was assessed through the ROC curve, in Figure 4.15, and
the precision, recall and F1-score of each class, displayed in Table 4.23. Table 4.22 exhibits
the confusion matrix.

Predicted Classes

Tr
ue

C
la

ss
es Benign Malignant

Benign 169 62
Malignant 44 103

Table 4.22: Confusion matrix of the network with the best performance (Network B)
acquired by DENSER in the 300 generations applying data augmentation study using

the 250x250 new cropped images test set.

Benign (%) Malignant (%)
Precision 79 62
Recall 73 70
F1-score 76 66

Table 4.23: Classification report ap-
plying the 250x250 new cropped images
test set in the network with the best
performance (Network B) acquired by
DENSER in the 300 generations apply-
ing data augmentation study. The clas-
sification report presents the precision,
recall and F1-score values for each class.

Figure 4.15: ROC curve of the network
with the best performance (Network B) ac-
quired by DENSER in the 300 generations
applying data augmentation study using the
250x250 new cropped images test set.

In the ROC curve the TPR and FPR values were 0.70 and 0.27. The TPR was the
best one achieved until now.
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The classification report values were the best ones acquired for both the classes, com-
paring to previous studies, with the exception of the recall value for the benign cases which
was 1% inferior to the best value. Notwithstanding, this network presents the smallest
number of FN of 44, and the FP value is very near to the best one of 61.

Compared to the previous networks, this network has the smallest number of lay-
ers and parameters. Hence, the data augmentation process is an approach to keep into
consideration since it improved the network training.

In addition to the previous assessments, it is important to test the model interpretabil-
ity, by resorting to saliency maps.

Annex C reports the saliency maps of 50 images of the test set taking into account
the two best networks of this study, Network A and B. In Figure 4.16 are shown only
two images, one without black background and the other with a black background. It
can be seen that both the models ignore the black background, focusing more on the
breast region, as intended. This did not occur in the saliency maps of Section 4.1.3,
which demonstrates that incorporating the surrounding information creates more effective
models. The saliency map obtained with Network A is more scattered comparing to the
saliency map of Network B for both images. In general, and as expected, considering
the 50 images, Network B present more precise saliency maps comparing to Network A
saliency maps.

Figure 4.16: Saliency maps of two distinct images (a and b): CC view of patients
’00147’ and ’00124’ right breast. The first image is the cropped image, the second image
is the saliency map resorting to the best network (Network A) acquired by DENSER and
the third image is the saliency map resorting to the network with the best performance
(Network B) acquired by DENSER.

4.2.4 Ensembling of the Best Networks

As already explained in Section 4.1.4 the creation of an ensemble of the best networks
might help reduce the variance of the models and improve the predictions.
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The ensembling was implemented considering the 4 fittest networks using majority voting.
Table 4.24 shows the test accuracy values considering the ensembling of the 4, 3 and 2
fittest networks. The ensembling of the 4 fittest networks gives the best test accuracy of
74.60%. These results reflect the efficiency of this approach in attaining better predictions
since the test accuracy increased by 3 values respectively to the best obtained value of
72.00%.

Network
Single Network

Accuracy Validation (%)
Ensemble Network Accuracy Test (%)

A 77.34

74.60
71.43

73.54
B 75.89
C 74.46

-
D 73.74 -

Table 4.24: Test accuracy considering the ensembling of the 4, 3 and 2 fittest networks of
the Section 4.2. This networks are: the best network (Network A), the network with the
best performance (Network B), the run_1 network (Network C) and the run_3 network
(Network D) of the Section 4.2.3.

To further evaluate the ensemble of the 4 fittest networks we computed the confusion
matrix, the ROC curve and the classification report (precision, recall and F1-score values
for each class) as Table 4.25, Table 4.26 and Figure 4.17 display.

Predicted Classes

Tr
ue

C
la

ss
es Benign Malignant

Benign 187 44
Malignant 52 95

Table 4.25: Confusion matrix of the ensembling of the 4 fittest networks of Section 4.2
using the 250x250 new cropped images test set.
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Benign (%) Malignant (%)
Precision 78 68
Recall 81 65
F1-score 80 66

Table 4.26: Classification report apply-
ing the 250x250 new cropped images test
set in the ensembling of the 4 fittest net-
works of Section 4.2. The classification
report presents the precision, recall and
F1-score values for each class.

Figure 4.17: ROC curve of the ensembling
of the 4 fittest networks of Section 4.2 using
the 250x250 new cropped images test set.

The FPR and TPR values were 0.19 and 0.65. The FPR was the smaller value reached
in this experiment. This is due to the fact that the FP value was the lower value acquired
until now, out of 44. However, the FN value is 7 values higher than the best value achieved.
The precision value for the malignant class and the recall value for the benign class were
the best attained until now. The precision value for the benign class was very close to the
best value. In general, and considering the values of the F1-score, the predictions for the
malignant class maintain its performance, but the predictions for the benign ones increase.
Hence, the model is detecting benign cases better than malignant cases.

4.3 DENSER vs An Ad Hoc Random Initialization Deep
Neural Network Architecture

DENSER results were compared with another approach, an Ad Hoc random initial-
ization CNN architecture [11], which used the same dataset.

The authors explore a total of 260 model architectures and used a hold-out protocol
to evaluate the models. The evaluation was made by measuring the performance of the
models in the validation set based on two separate criteria: (A) highest AUC (Model A)
and (B) best F2 score (Model B). The model selection was based also on the reduced
number of false negatives cases while maintaining an adequate accuracy value.

The dataset was split into 1158 images to train, 160 images for validation and 378
images for testing. Data augmentation was employed, namely, random rotations, rescaling
and shear deformations.

In the end, both the criteria, achieved approximately the same model architecture: 3
convolutional layers with 64 kernels, sizes of 7×7, 5×5, and 3×3, respectively, and relu
as the activation function; the dropout rate on each convolution was 0.25; 3 max-pooling
layers with sizes 4×4, 3×3, and 2×2 (and same stride) were employed. The difference
was in the input size and in the neuronal architecture. In the model obtained with the A
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criteria (Model A) the images had 238x238 pixels and the fully connected layers had 50 to
10 neurons. In the model obtained with the B criteria (Model B) the images had 286x286
pixels and the fully connected layers had 50 to 20 neurons.

To train the models the authors resorted to 4000 training epochs, taking approximately
78 hours to train on a 40-CPU dedicated HP Blade system. Model A acquired an AUC
of 0.785 and Model B an AUC of 0.774. Model A was the one with the highest AUC and
it gets an accuracy of 71.19% on the test set.

Table 4.27 presents the parameters and results of Model A [11], of the best network
from Section 4.1 (Network B) and the best network from Section 4.2 (Network C). Net-
works B and C have a higher number of instances to validate the network, getting a
smaller number to train. The images size for Model A and Network C is relatively the
same, and the images for Network B are approximately 70% smaller than Model A images
size. Model A and Network B images are more focused on the lesion region, and Network
C images have included more surrounding information. The three models implemented
data augmentation. Even though Network B and C have used a restricted set of trans-
formations. The number of hidden-layers is 12, 13 and 13, for Model A, Network C and
Network B, respectively, Model A does not resort to Batch-Normalizations layers, which
negatively impacts the training time. Network B and C disadvantage is the substantial
number of neurons in the last layers. The biggest advantage of these networks is the lower
training time and the number of training epochs, due to the fact that this study it was used
a 1-GPU instead of 40-CPU. Both the Networks acquired by DENSER achieved better
test accuracy values. Network C attained a smaller value because the inputs contain more
information, therefore require more training. Therefore, the input of Model A and Net-
work B only differs on the size, where the Network B images are 70% smaller (which is an
advantage), and the test accuracy value of Network B is 2.62% higher, this demonstrates
the efficacy of DENSER to provide better networks.

61



4. Experimental Results

A
n

A
d

H
oc

R
an

do
m

In
iti

al
iz

at
io

n
D

N
N

A
rc

hi
te

ct
ur

e
(M

od
el

A
)

Se
ct

io
n

4.
1.

3
(N

et
w

or
k

B
)

Se
ct

io
n

4.
2.

3
(N

et
w

or
k

C
)

D
at

a
D

iv
isi

on
(im

ag
es

)

Tr
ai

n
Se

t
11

58
66

0
Va

lid
at

io
n

Se
t

16
0

65
8

Te
st

Se
t

37
8

37
8

Im
ag

es
Si

ze
(p

ix
el

s)
23

8x
23

8
90

x9
0

25
0x

25
0

D
at

a
A

ug
m

en
ta

tio
n

R
ot

at
io

n
90

º
R

es
ca

lin
g

-
Sh

ea
r

D
ef

or
m

at
io

n
-

Fl
ip

-
H

or
iz

on
ta

l

M
od

el
A

rc
hi

te
ct

ur
e

C
on

v(
3)

,M
ax

Po
ol

(3
),

D
ro

po
ut

(3
),

D
en

se
(1

to
3)

C
on

v(
5)

,M
ax

Po
ol

(1
),

B
at

ch
N

or
m

(2
),

D
ro

po
ut

(1
),

D
en

se
(4

)

C
on

v(
5)

,M
ax

Po
ol

(2
),

B
at

ch
N

or
m

(2
),

D
ro

po
ut

(2
),

D
en

se
(2

)
Fu

lly
C

on
ne

ct
ed

La
ye

r
N

eu
ro

ns
50

to
10

14
13

to
34

5
82

5
to

12
75

Tr
ai

ni
ng

Ep
oc

hs
40

00
53

7
31

3
Tr

ai
ni

ng
T

im
e

(H
ou

rs
)

78
.0

0
0.

83
1.

16
C

PU
40

-C
PU

(H
P

B
la

de
sy

st
em

)
1

G
PU

N
V

ID
IA

10
80

T
i

Te
st

A
cc

ur
ac

y
Va

lu
e

71
.1

9%
73

.8
1%

71
.9

6%

T
ab

le
4.

27
:

R
es

ul
ts

an
d

pa
ra

m
et

er
s

co
m

pa
ris

on
be

tw
ee

n
th

e
lit

er
at

ur
e

m
od

el
,a

n
A

d
H

oc
ra

nd
om

in
iti

al
iz

at
io

n
C

N
N

ar
ch

ite
ct

ur
e

[1
1]

,a
nd

th
e

be
st

ne
tw

or
k

ac
qu

ire
d

w
ith

D
EN

SE
R

in
Se

ct
io

n
4.

1
(N

et
w

or
k

B
),

an
d

th
e

be
st

pe
rf

or
m

an
ce

ne
tw

or
k

ac
qu

ire
d

by
D

EN
SE

R
in

Se
ct

io
n

4.
2

(N
et

w
or

k
C

)

62



CHAPTER 5

CONCLUSIONS

The growing incidence and mortality worldwide demand for an investment and de-
velopment on early, fast, and rigorous diagnostic methods and techniques. Some of these
techniques rely on medical imaging to do the screening, such as X-ray mammography.
After the collection of the images, they are analysed and evaluated by a human specialist,
e.g., a radiologist. However, this process is highly dependent on expert knowledge and is
subject to a high variance, which might result in the wrong diagnostic. To mitigate these
problems, one can resort to computational methods. Hence, emerges the combination of
Radiomics and Machine Learning (ML). This combination raises other challenges, related
to the increase of problems complexity, making traditional Machine Learning ineffective
when dealing with complex tasks such as cancer diagnostic. To overcome this challenge,
we can resort to Deep Learning (DL) methods to automatically extract and learn from
large amount of data features. Nevertheless, the methods used nowadays to construct DL
models have some problems when dealing with small datasets, such as medical imaging
datasets, which can lead to poor performance or overfitting. Taking this into account,
it is necessary to search and develop new approaches to construct effective DL models.
Therefore, one novel possibility is resort to methods that automatically design DL models
such as DENSER, which combines Machine Learning and Evolutionary Computation.

In this work, we evaluate the capabilities of DENSER to build DL models to help
in breast cancer diagnostic. In concrete, two different experiments were performed, one
with the original cropped images, 90x90 grayscale images, in Section 4.1 and other with
cropped images with more surrounding information, 250x250 grayscale images, in Section
4.2. For each experiment, we study the impact that the number of generations has on the
quality of the model, as well as the impact of data augmentation techniques. Furthermore,
the interpretability of the best network and the ensemble of the 2, 3 and 4 fittest networks
in each experiment were studied.

In Section 4.1 the images focus more on the region of the lesion and have inferior
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dimensions than the images of Section 4.2, resulting in images with less information to be
processed by the networks. The best network evolved by DENSER for this experiment
was obtained when using 300 generations and data augmentation, attaining validation and
test accuracy values of 79.82% and 73.81%, respectively. The best network was composed
of approximately 2 million parameters and 13 hidden-layers. Concerning its performance,
it presents a FPR value of 0.18, the lowest number of FP cases, the best precision and
recall values for the benign class and the best precision value for the malignant class.
However, the acquired saliency maps are very unclear, since practically all of the image
is used, including the black background to generate the predictions, which indicates that
the model continues to be influenced by components beyond the lesion area. Concerning,
the ensembling of the 4 fittest networks produces better results than the best network
acquired, attaining a test accuracy value of 76.19% and a FPR value of 0.16.

In the second experiment, the images had more information (pixels) and in some cases,
the lesion was not centred. The best network obtained in the study was evolved over 300
generations and with data augmentation techniques. This network presents validation
and test accuracy values of 75.89% and 71.96%, and it has the smallest number of layers
and parameters (approximately 4 million parameters). Furthermore, it presents the best
test accuracy value, the smaller number of FN, the higher TPR and the higher F1-score
values. The results of the saliency maps reflect the good performance of this network
since the results were more precise and less scattered. Additionally, these maps show
that the inclusion of surrounding information allows the networks to dismiss the images’
black background and focus on the important parts. This emphasises the importance of
including the surrounding information in this type of problem. The ensembling of the 4
fittest networks of this Section generates the best prediction value, with a test accuracy
value of 75.00% and the lowest FPR.

Finally, the results obtained by our models outperform the existing ones in the lit-
erature for the same dataset. The best accuracy test value we obtained was 73.81% and
the best reported in the literature was 71.19% [11]. Additionally, our models need less
training time, fewer epochs, and no domain knowledge.

In summary, our results show that training for a larger number of generations and
implementing data augmentation provide effective and lightweight networks. Additionally,
some of the topologies obtained are novel and exhibit characteristics different from those
designed by humans, which is remarkable. The saliency maps confirm that the introduction
of the surrounding information enhances the network’s performance helping to focus more
accurately on the lesion region. The ensemble of the 4 fittest networks improves the
predictions, as pretending. Moreover, an important outcome was the efficacy of DENSER
when manipulating small datasets, originating lightweight networks with around 2 to 4
million parameters.
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5.1 Future Work

Notwithstanding the obtained results, there is still space for improvement. In the
future, and taking into account the results obtained, it is necessary to do more tests and
experiments.

Firstly, the use of a more recente dataset with better quality images and information,
since the dataset used was acquired using old technology. This dataset was chosen due
to the fact it was the public breast dataset with more images. Furthermore, the use of
a more recent dataset acquired by novel technologies might help achieve better results.
Afterwards, in our studies, we resort to 8-bit images. However, medical images are 16-bit
images. Therefore, the use of the original 16-bit images with more information is a pro-
cedure to be implemented. Another improvement is increasing the number of generations
and runs to evolve the networks for a longer time to see if we get more accurate results.

Another study that has to be performed, is to split the view of the images and train
it separately, and analyze the influence of each image view in the training process. These
views catch different plans of the breast, which presents different lesion information. This
can impair the training of the networks when combining both types of views since the
information is set differently.

The introduction of clinical data can also produce better results, such as age, sex and
historical medical information might help in the achievement of better results.
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ANNEX A

GRAMMAR AND EVOLUTION
PARAMETERS

The networks’ evolution depends on the grammar and the evolutionary parameters.
Therefore, the comprehension and interpretation of these parameters and their relation
are critical to understanding DENSER [9].

A.1 Grammar Parameters

The grammar is based on Backus-Naur Form (BNF). Grammar 3.1 is an example of
grammar. The initialization symbols of this grammar are called non-terminal symbols,
such as feature and classification. These symbols contain the hyper-parameters of each of
the evolutionary units, which can be integer, float or closed values. The float and integer
values, such as stride, are encoded taking into account a 5-tuple: variable name, variable
type, number of values to generate, minimum and maximum values. An example of a
closed value is the padding [9].
The evolutionary units can encode layers or learning algorithms. The layers start by
layer:layer_type and learning start with learning:learning_algorithm. In Tables A.1 and
A.2 is display the hypothesis for the layer and learning algorithms.
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A. Grammar and Evolution Parameters

Layer type
Float or integer

hyper-parameters
Non-terminal Closed values

Convolution
Number of filters,

Filter shape and Stride

Padding Same or Valid

Activation function
Linear, Relu
or Sigmoid

Bias True or False

Pooling Kernel size and Stride
Pool type

Average or Max
Pooling

Padding Same or Valid
Batch-normalization - - -

Dropout Rate - -

Fully-connected Number of units
Activation function

Linear, Relu or
Sigmoid

Bias True or False
Softmax Number of units, Bias:True, Activation function: softmax

Table A.1: Hyper-parameters required by each layer type

The layers types and its hyper-parameters:

• Convolution - Apply convolution to the input;

– Number of filters - filters applied to the input resulting into a feature map;

– Filter shape - Define the filter dimension;

– Stride - The amount that the filter shifts;

– Padding - Allows that the input and output dimensions stay the same. "Valid"
padding is not applied, and "Same" padding is applied;

– Activation Function - function implemented to the filters to obtained the feature
map. In this case, the function can be linear, relu or sigmoid;

– Bias - Used to adjust the layer’s output;

• Pooling - Used to reduce the size of the spatial dimensions when increasing the
number of channels;

– Kernel size - size of the filter to be applied;

– Stride

– Pool type - Defines the way that the dimensions are reduced, taking into account
the maximum value of each patch of the feature map or its average.

– Padding

• Dropout - Drops the input units to 0 with a certain rate, randomly;
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A. Grammar and Evolution Parameters

• Fully-connected - layer where all the inputs of the previous layer are connected to
all the activation units of the next layer;

– Number of units

– Activation Function

– Bias

• Softmax - Normalizes the input into a probabilistic distribution;

– Number of units

– Bias

– Activation function

Learning Algorithm Float or integer hyper-parameters Non-terminal Closed values

Gradient Descent
Learning rate (lr), momentum,

Learning decay, Batch size
and number of epochs

Nesterov True or False

Early stop -

Adam
Learning rate (lr), Learning decay,

beta1, beta2, Batch size
and number of epochs

Early stop -

RMSProp
Learning rate (lr), Learning decay,

rho, Batch size and number
Early stop -

Table A.2: Hyper-parameters required by each learning algorithm

The learning algorithms and its hyper-parameters:

• Gradient Descent - Optimization algorithm used to update the parameters of the
model;

– Learning rate - controls the update speed;

– momentum - It is a variant of the gradient descent, which speeds up the training;

– Learning decay

– Batch size - Number of samples which will be propagated through the network;

– Number of epochs - controls the number of complete transitions through the
training set;

– Nesterov

– Early stop - method used to stop training when the model’s performance stop
improving (hold out method);

• Adam - Optimization algorithm

– Learning rate
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– Learning decay

– beta1 and beta2 - parameters to control the decay rate;

– Batch size

– Number of epochs

– Early stop

• RMSprop - Optimization algorithm

– Learning rate

– Learning decay

– rho - parameter to control the decay rate;

– Batch size

– Number of epochs

– Early stop

A.2 Evolution Parameters

The experimental parameters are divided into four categories, as explained in sec-
tion 3.2.3. The evolutionary parameters are related to the evolutionary algorithms. The
parameters and its respective explanation, are in table A.3.

Evolutionary Engine Explanation
Number of runs Number of studies made in parallel

Number of generations Number of generations of the best network evolve
Population size Number of evolve individuals
Add layer rate Likelihood of randmoly adding a layer*

Reuse layer rate Likelihood of reusing a layer*
Remove layer rate Likelihood of randmoly removing a layer*

Add connection rate Likelihood of randmoly adding a connection*
Remove connection rate likelihood of randmoly removing a connection*

DSGE-level rate Rate of changing the DSGE genotype*

Table A.3: Evolutionary parameters used to evolve the networks (*Mutation rates).
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ANNEX B

NETWORK TOPOLOGY

B.1 Grayscale Studies (90x90 Images)
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B. Network Topology

B.1.1 Evolution Analysis for 300 generations

Figure B.1: Topology of the fittest CNN evolved by DENSER in the 300 generations
study with 90x90 cropped images.
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B. Network Topology

B.1.2 Evolution Analysis for 150 generations with Data Augmentation

Figure B.2: Topology of the fittest CNN evolved by DENSER in the 150 generations
applying data augmentation study with 90x90 cropped images.
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B. Network Topology

B.1.3 Evolution Analysis for 300 generations with Data Augmentation

Figure B.3: Topology of the fittest CNN evolved by DENSER in the 300 generations
applying data augmentation study with 90x90 cropped images.

xl



B. Network Topology

B.2 Grayscale Images with more surrounding information
Studies (250x250 Images)

B.2.1 Evolution Analysis for 150 generations

Figure B.4: Topology of the fittest CNN evolved by DENSER in the 150 generations
study with 250x250 new cropped images.
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B. Network Topology

B.2.2 Evolution Analysis for a larger number of generations (300 gen-
erations)

Figure B.5: Topology of the fittest CNN evolved by DENSER in the 300 generations
study with 250x250 new cropped images.
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B. Network Topology

B.2.3 Evolution Analysis for 300 generations with Data Augmentation

Figure B.6: Topology of the fittest CNN evolved by DENSER in the 300 generations
applying data augmentation study using the 250x250 new cropped.
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B. Network Topology

Figure B.7: Topology of the CNN with the best performance evolved by DENSER in
the 300 generations applying data augmentation study using the 250x250 new cropped
images.
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ANNEX C

SALIENCY MAPS

Saliency maps are a visualization tool to facilitate model interpretability. A more
accurate description of the process is given in Section 3.2.4.
This approach was tested in 50 images of Sections 4.1 and 4.2 test set. In the first one, only
the best network acquired was investigated and in the other, the best performance network
(Network A) and the best network acquired by DENSER (Network B) were investigated.
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C. Saliency Maps

C.1 Section 4.1 Saliency Maps

Figure C.1: 50 cropped images of the test set for the 90x90 dataset
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C. Saliency Maps

Figure C.2: Saliency maps of 50 images of the test set resorting to the best network
acquired and chosen by DENSER in Section 4.1.

xlvii



C. Saliency Maps

C.2 Section 4.2 Saliency Maps

Figure C.3: 50 cropped images of the test set for the 250x250 dataset.
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C. Saliency Maps

Figure C.4: Saliency maps of 50 images of the test set resorting to the network with the
best performance (Network A) in Section 4.2.

xlix



C. Saliency Maps

Figure C.5: Saliency maps of 50 images of the test set resorting to the best network
acquired and chosen by DENSER in Section 4.2.
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