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Abstract

Automation is one of the most fast developing fields of robotics. With the ever grow
ing interest in automating processes, both for efficiency or safety, the ability to provide
robots with autonomous navigation capabilities is of paramount significance. The first
approaches to enable autonomous robot navigation involved magnetic strips on the
floor, with the robot following a preestablished path. However, problems arise whenever
it is necessary to change the trajectory of interest or if the magnetic tape is damaged.
With the development of depth sensors, namely LIDARs (Light Detection and Ranging)
and depth cameras, a new way of tackling this challenge has emerged: SLAM (Simul
taneous Localisation and Mapping). The SLAM problem is far from trivial in the way that
it implies two seemingly paradoxical questions (”How to build a map without knowing
the robot’s location?” and ”How to locate the robot without a map?”).

Throughout this work, some SLAM methods (HectorSLAM, Gmapping and RTAB
Map) are implemented and evaluated using ROS (Robot Operating System). An Intel
RealSense D435i depth camera is used as the main sensor and various practical tests
are made using an AGV (Automated Guided Vehicle) developed by Active Space Tech
nologies. Tests consist in recording depth and IMU (Inertial Measurement Unit) data from
the depth camera with the AGV serving as a mobile platform, exploring our test loca
tion. Measurements are then available for offline analysis through ROS bag files. These
files allow multiple runnings of the same test and direct assessment of the different al
gorithms by comparing the resultant maps. Furthermore, pathfinding is implemented,
which allows for full robot autonomy.

In order to optimise mapping techniques, some object detection algorithms are ad
ded to the system to deal with various obstacles that can appear in the robot’s sight and
degrade the quality of the results, e.g., moving people. Through the use of object de
tection algorithms, people are detected and removed from the depth image. Then, the
resulting maps with and without the application of this depth image filter are compared.
Object detection algorithms are also used to add another layer to navigation, yielding the
ability to stop and resume the velocity commands provided by the pathfinding algorithm
through the interpretation of traffic lights.

This work is done as part of the AMRUVC project developed by Active Space Tech
nologies. This is a project that seeks to expand the AGV offering of the company by
developing a fully autonomous AGV with disinfection capabilities. The project is mo
tivated by the ongoing pandemic and the final product can be used in any medical or
industrial setting that requires decontamination from the SARSCoV2 or other biological
agents.

Keywords: SLAM, AGV, AMR, ROS, Depth Camera, Navigation, Pathfinding, Object
Detection
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Resumo

A automação é um dos campos de desenvolvimento mais rápido da robótica. Com
o crescente interesse na automação de processos, tanto para eficiência como para
segurança, fornecer aos robôs a capacidade de navegação autónoma é de suprema
importância. As primeiras abordagens para possibilitar navegação autónoma de robôs
envolveram a colocação de bandas magnéticas no chão, traçando uma trajetória pré
definida. No entanto, surgem problemas sempre que é necessário alterar a trajetória
de interesse ou quando a banda magnética se danifica. Com o desenvolvimento de
sensores de profundidade como os LIDARs (Light Detection and Ranging) e câmaras
de profundidade (depth cameras), surgiu uma nova maneira de lidar com este de
safio: o SLAM (Simultaneous Localisation and Mapping  Localização e Mapeamento
Simultâneos). O SLAM é um desafio que está longe de ser trivial pois implica duas
questões aparentemente paradoxais (”Como construir um mapa sem saber a localiza
ção do robô?” e ”Como localizar um robô sem ter acesso a um mapa?”).

Ao longo deste trabalho, alguns métodos SLAM (HectorSLAM, Gmapping e RTAB
Map) são implementados e avaliados usando ROS (Robot Operating System). Uma
câmara de profundidade Intel RealSense D435i é usada como o sensor principal e
vários testes práticos são feitos usando um AGV (Automated Guided Vehicle) desen
volvido pela Active Space Technologies. Estes testes consistem em gravar dados de
profundidade e dados provenientes de uma IMU (Inertial Measurement Unit  disposit
ivo de medição de inércia) contida na câmara com o AGV servindo de plataforma móvel
para explorar o local de testes. As medições ficam disponíveis para análise offline at
ravés de ficheiros ROS bag. Estes ficheiros permitem várias execuções domesmo teste
e avaliação direta dos diferentes algoritmos através da comparação dos mapas result
antes. Para além disso, um algoritmo de pathfinding é também implementado, o que
permite total autonomia do robô.

Com o intuito de otimizar técnicas de mapeamento, alguns algoritmos de deteção
de objetos são adicionados ao sistema para lidar com um tipo de obstáculos que pode
aparecer à frente do robô e diminuir a qualidade dos resultados: movimentação de
pessoas. Através do uso da deteção de objetos, as pessoas são detetadas e removidas
da imagem de profundidade. Em seguida, comparamse os mapas resultantes, com e
sem a aplicação deste filtro da imagem de profundidade. Algoritmos de deteção de
objetos são também utilizados para adicionar outra camada à navegação, adicionando
a capacidade de parar e retomar a publicação de comandos de velocidade fornecidos
pelo algoritmo de pathfinding através da interpretação de semáforos.

Este trabalho é feito no âmbito do projeto AMRUVC desenvolvido pela Active Space
Technologies. Este projeto visa expandir a oferta de AGVs da empresa através do
desenvolvimento de um AGV totalmente autónomo com capacidades de desinfeção. O
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projeto é motivado pela pandemia atual e o produto final poderá ser usado em qualquer
ambiente médico ou industrial que requeira descontaminação do SARSCoV2 ou out
ros agentes biológicos.

Palavraschave: SLAM, AGV, AMR, ROS, Câmara de Profundidade, Navegação, Pathfind
ing, Deteção de Objetos.
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Chapter I

Introduction

How to find our way through the world? How to navigate to a certain place whilst
knowing how to come back efficiently? What route should we take? These are questions
the human race has always thought about since the beginning of existence. Be it in hunter
gatherer times when humans had to find a place to take shelter, the best hunting spots or
the most fertile grounds for agriculture, or nowadays, whenever we want to plan a trip to
a new country, navigate through traffic to the supermarket or just having a leisurely walk
through the park.

Nowadays, navigation is not just a problem for us humans but it is also a developing
field in robotics. With the increasing interest in automating processes and their efficiency
comes the need to attribute this ability to robots. Robots may have the most variable
forms and applications, they can be terrestrial AMRs (AutonomousMobile Robot) or AGVs
(Autonomous Guided Vehicles), aquatic USVs (Unmanned Surface Vehicles), or even
flying UAVs (Unmanned Aerial Vehicles). Applications are endless, for every process that
involves a human controlling a vehicle and navigating through a certain area there is
an opportunity for automation. Examples include the operation of a forklift, driving a car,
oceanography and military and patrol operations in land, sea and air.

The way mankind has performed navigation has evolved during the many centuries
of our existence, beginning with the position of the Sun during the day and the position of
the stars at night, evolving to compasses and the more advanced methods we use today
like GPS and RADAR navigation. Some of these methods and a large number of different
sensors are available for robots, but in this dissertation we will focus on the use of depth
cameras with an IMU (Inertial Measurement Unit) module.

For many years, the most popular method for robot navigation purposes was navig
ation by means of magnetic strips placed on the floor tracing the path the robot should
follow. But this method becomes cumbersome whenever we want to change the robot
trajectory for any reason or if the magnetic tape is somehow damaged.

Another solution to the navigation problem is the use of lasers and installation of fixed,
strategically placed reflective targets as reference points, but this also requires preinstall
ation of these targets and it reduces the AGV’s movement to a particular path.

The natural evolution to this previous approach is to develop a system that guides the
robot through vision without any previously placed landmarks, in a process called natural
navigation. To perform natural navigation we can use different types of sensors, the main
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ones in terms of vision being depth cameras and LIDAR sensors, but, additional sensors
like IMUs and/or odometry provided by wheel encoders are usually required.

Using the data provided by the depth camera and IMU we can build a map of our
surroundings and locate ourselves on that map, in a process called SLAM (Simultaneous
Localisation and Mapping). For this, three different algorithms, HectorSLAM, Gmapping
and RTABMap, are implemented and optimised to a realworld dataset recorded in the
premises of Active Space Technologies. An additional algorithm is used to perform path
planning and navigation. Furthermore, some object recognition algorithms are added to
the system to try and improve our results and also to implement control of the robot nav
igation through traffic lights.

Some tasks of this work have been fulfilled as part of the NavCam contest, an open
competition organised by Active Space Technologies to develop SLAM technology. This
contest was open to a national scale and various teams from different portuguese univer
sities (Lisbon, Porto, Braga,...) have participated. This work, part of a broad approach to
address SLAM technologies, was awarded the first place in the competition which con
sisted in a monetary award. The public award ceremony took place June 10th, 2021 in
the Physics Department of University of Coimbra with presence of the teams, professors,
students and the organisers.

This section serves as an introduction to this thesis and its chapters and defines how
they will be organised, highlighting this work’s goals and explaining the context and mo
tivation for this project.

1.1 Context and Motivation

There is an evergrowing interest and need to automate tasks performed by humans
with the assistance from robots. This trend strives for efficiency with the aim of doing
things safer and faster, by removing the limits of the human being from the equation.

The ongoing pandemic has shown proof that this is a subject which should be invested
in. When the Covid19 epidemic started, many people had to be put at risk of infection to
do their jobs, particularly healthcare workers. There should be a way of disinfecting work
areas without subjecting people to direct contact with viruses. This is true for Covid19 or
any other situation where these professionals are subjected to risk of infection to provide
medical care to a person or to do scientific research.

This is where Active Space Technologies’ project ”AMRUVC1” comes in. This project
consists in developing an AGV equipped with a UV light for disinfection of possibly infected

1AMR stands for Autonomous Mobile Robot and UVC for UltraViolet radiation in the Cband
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areas. This product has hospitals as its main potential clients but can be sold to any
interested organisations. For this purpose it is important that the AGV has the capability
to navigate on its own and unaided throughout the whole area of interest, so that is why
implementing natural navigation is so important. Moreover, the AGV will not only have this
application in mind but can also be used in any industrial or commercial setting that relies
on specific tasks such as logistics. The AGVs are easily adapted to these contexts and
have been sold with similar intentions before, although with magnetic navigation. Thus, by
developing a natural navigation system that is applicable to existing AGVs developed by
Active Space Technologies, the company can diversify and extend their product offering
for industrial automation.

1.2 Objectives

The main objective of this dissertation is to develop a natural navigation solution for
AGVs and AMRs, allowing the robot to localise itself and navigate unaided in an unknown
environment. The system shall build a map of its environment, localise itself on the map
and define the optimum trajectory to any destination. This work will take advantage of the
sensors provided by the Intel RealSense D435i depth camera module (depth camera and
IMU).

Additionally, extra features will be developed through the usage of object detection
algorithms in order to add an extra layer to the navigation. This includes responding to
traffic lights and improvement of the maps, removing some possible spurious landmarks.
An example of these false landmarks comes from people walking across the camera’s
field of view.

This project emerged as a response to the SARSCoV2 pandemic to help with the
fight against the spread of the virus by building an autonomous disinfection robot and
also as a diversification of the autonomous AGV offering already provided by Active Space
Technologies.

1.3 Outline of the Dissertation

Chapter II (State of the Art) olá

This chapter discusses and compares the operation of available methods to perform
SLAM. The main focus is on the three algorithms available in ROS (Robot Operating Sys
tem) used in this thesis: HectorSLAM, Gmapping and RTABMap, and on some of the
more more fundamental tools used to implement these algorithms.
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Chapter III (Implementation) ola, tudo bem?

The third chapter describes the hardware, the first MATLABbased approach for SLAM
and the ROSbased implementation of the various algorithms used across this work. The
SLAM algorithms and their key parameters are described as well as the implementation of
object detection techniques and their integration with SLAM. The description of the various
tests performed during the development of this work is also included in this chapter.

Chapter IV (Experimental Results) sim, e ctg?

In Chapter IV, the most important results are presented and analysed. Mapping and
pathfinding results are split into two main sections. The mapping results are further di
vided between static and dynamic environments. For both types of environments, some
resulting maps and trajectories are presented for the SLAM algorithms discussed. In the
dynamic environments section, the addition of object detection techniques for people re
moval from the camera data is also discussed. In the pathfinding part we present the
results of trajectory planning and the integration of a traffic light interpretation algorithm to
control the AGV’s navigation.

Chapter V (Conclusions and Future Work) tambem

In the final chapter the conclusions are presented. There is also a summary concerning
the algorithms that offer best performance for SLAM implementation. Pathfinding optim
isation and the addition of object detection algorithms is also evaluated. Some suggestions
for future work are also underlined in this chapter.
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Chapter II

State of the Art

SLAM, as the name clearly defines, is the process of building a map while simul
taneously knowing the robot’s position on that map. It is obvious why this problem is so
difficult because it has the characteristics of a ”chickenandegg” problem. How to build a
map when we do not know where we are, and how to localise a robot if we do not have
a map are the two seemingly paradoxical questions that are the foundation to the SLAM
problem.

There are a few main ways of performing SLAM and a large amount of different
sensors. To this project, specific hardware has been made available: the Intel RealSense
D435i depth camera. But there are other popular sensors for SLAM like LIDARs and track
ing cameras.

2.1 Sensors

There is a wide variety of different sensors suitable to implement SLAM, the most
powerful ones being 3D cameras and LIDARs. Many of these systems include other
sensors that can be used to increase the accuracy of the SLAM algorithm.

Vision sensors are normally separated into twomain groups: passive and active. Pass
ive sensors are defined by a methodology that consists in getting depth information from
images obtained through conventional cameras. Active sensors, on the other hand, are
defined by radiation emitting modules which calculate depth by emitting and reabsorbing
radiation. The aforementioned LIDARs are active sensors, conversely, depth and tracking
cameras are examples of passive sensors [5, 6].

LIDARs work in the same way as RADARs and SONARs, but, instead of using radar
waves or sound, laser pulses are emitted. These laser pulses are backscattered by the
surrounding space and then detected by the LIDAR receiver. The time elapsed between
every emission and absorption (Time of Flight) [5] is measured. This allows us to measure
the distance to a target via a simple formula using the speed of light.

Depth cameras are split into three categories: Natural Light, Projected IR (Infrared) and
Coded Light [5].

In the first group, the module comprises two RGB cameras, separated by a known dis
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tance. Depth is calculated by matching common features in both images and performing
geometric calculations.

Projected IR cameras are similar to the previous group but they have an additional
infrared module, which projects a texture in the scene in order to help finding common
features in both images.

In Coded IR cameras, instead of having two separate colour cameras, we substitute
one of those cameras by an IR projector. In this type of sensor we can derive depth us
ing the angle of projection of the infrared radiation and the position of the infrared dots
projected in the image.

Tracking cameras do not give us depth information but are extremely precise on meas
uring the movement of the camera and identifying its position in the threedimensional
space. These modules use two fisheye cameras and an IMU for this purpose. In order to
use this device to perform SLAM, it might be needed to use another type of visual sensor,
like the ones discussed previously, as the main tool. Because of this, tracking cameras
are mainly used to improve the system and not as a standalone SLAM device [6].

Every one of the three previous types of modules has or may have an IMU installed.
IMUs can be composed by accelerometers, gyroscopes and/or magnetometers and they
are used to measure the orientation of a system. Accelerometers measure linear acceler
ations and gyroscopes measure angular velocities. The fusion of these sensors provides
us the relative orientation of the device. If an IMU includes a magnetometer we can obtain
the global orientation of the robot, relative to North.

Other interesting sensors that can be used in SLAM are: GPS, for outdoor applic
ations, ultrasonic sensors, for shortrange measurements, and odometry provided by
wheelencoders. Using odometry sensors is useful for relative localisation but the recon
struction of trajectory using these measurements quickly diverges.

2.2 Algorithms

In this section, we will discuss the fundamental algorithms commonly used in SLAM
and some implementations of these algorithms available in ROS2 (Robot Operating Sys
tem).

2ROS is a robotics framework used throughout this work. Further details about ROS are discussed in
Chapter III, Section 3.3.1.
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2.2.1 Fundamental Algorithms

Over the years, many different methods have been developed to solve the SLAM
problem. The first method was the Kalman Filter Slam (KF) that dates backmany decades.
In the Kalman Filter SLAM family there is also the Extended Kalman Filter SLAM (EKF)
and the Unscented Kalman Filter SLAM (UKF). The last two algorithms can be applied in
environments where the classic KF SLAM fails. Beyond these, Particle Filter SLAM and
GraphBased SLAM approaches are also very important.

Kalman Filter, Extended Kalman Filter and Unscented Kalman Filterbased SLAM:
Every single piece of data has associated noise and this extends to the algorithms. So,
we may need to apply certain methods to model these uncertainties in order to filter the
data and obtain better results. The most popular algorithm to perform this is the Kalman
Filter.

The Kalman Filter: The KF was one of the first ideas to solve the SLAM problem. This
filter takes previous poses3 of the robot and tries to predict the next pose using the dy
namic control given to the robot and the observation provided by a visual sensor [7]. To
do this, it takes advantage of two models: the motion model and the observation model.
The motion model takes previous positions into account and predicts subsequent poses
using the dynamic control. The observation model corrects the prediction by comparing
expected observations and the actual observation obtained at every single step, after the
requested movement has taken place. As implied, these two models are implemented
sequentially, making up the prediction and correction steps.

The Extended Kalman Filter: As the name states, is an extension to the classic Kalman
Filter, meaning that it elongates its prediction and correction capabilities to nonlinear
systems, where the Kalman Filter fails. The EKF linearises nonlinear functions using
Taylor Series Expansions.

The Unscented Kalman Filter: The UKF, described by Julier et al. [8], is another way
of applying the Kalman Filter in nonlinear systems, but, instead of using a Taylor series
expansion like the EKF for linearisation, it uses the unscented transform. More details on
the unscented transform can be consulted in [8]. The UKF has similar results to the EKF
in linear systems, but it is better in nonlinear environments. Even though the UKF has
advantages, it is generally slower than the EKF.

3In this context, pose is defined as the robot’s position and heading.
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The family of KFbased SLAM algorithms usually describes the world using landmarks.
These landmarks represent real world objects, either static, like corners of a room or
furniture, or mobile, like people and animals. The location of these landmarks is described
in matrices that are updated in every single step.

A consequence of this is that these methods become computationally expensive as
the number of landmarks increases, so it might be useful to use other methods after a
certain point. One alternative is the Particle Filter discussed next.

Particle Filter Based SLAM: In Particle Filter based SLAM [9, 10], the map is represen
ted by Occupancy Grids. Occupancy Grids are a way of mapping a space by dividing it
into a large number of cells, each cell holding the probability of being occupied [1]. Oc
cupancy Grids can be graphically represented by an array of equal squares (or cells) in
grayscale where darker tones mean higher probability and viceversa.

Figure 2.2.1: Example of an Occupancy Grid Map [1].
.

The Particle Filter’s defining characteristic is the random generation of particles over
the whole possible space, each particle representing a pose hypothesis for the robot. The
way this algorithm is composed is detailed in the following steps:

1. Random sample of particles, with random poses;
2. Translation and/or rotation of every particle according to the command;
3. Calculation of particle weights;
4. Resampling according to their weights;

The first step consists of randomly sampling a given number of particles over the
considered area.

Step two is defined by applying whatever the robot command is at the current time,
be it a translation or a rotation or a combination of the two, to every sampled particle from
step one.
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The weights are then calculated for every particle. The more similar the particle’s ob
servation represents the robot’s real observation, the higher its weight will be. For in
stance, when the robot is in front of a corner of a room, particles that more closely re
semble that feature are given higher weights than particles that are observing a flat wall.

After the previous step, lower probability particles are eliminated and the others sur
vive. The Particle Filter then resamples the same number of particles as in the first step
but, instead of sampling uniformly across the space, the algorithm will place a higher num
ber of particles in zones that contained particles with heavier weights. And it is back to
step two. This process is repeated until the most accurate set of particles is found, this
set will expectantly define an approximation to the true robot’s pose.

This algorithm, much like the EKF, can deal with nonlinear systems but is computa
tionally less expensive [11]. The nature of particle resampling in a ”survival of the fittest”
philosophy allows this method to have a multimodal belief about the robot’s pose [11],
meaning it can have multiple simultaneous beliefs for the pose of the robot within the
particle set, which can reduced model instability.

Every particle holds an hypothesis for the robot’s current pose and trajectory. Once
the most accurate particle is found, the map is then built using the observations coupled
to each instant of the trajectory.

Graphbased SLAM: Graph SLAM [12] uses a different method of defining the robot’s
poses and trajectory. As the name suggests, the dynamics of the robot is defined by a
graph. The graph is made of nodes and edges (or links, represented by lines connecting
the nodes). The nodes represent various recorded poses at different times and the edges
are the constraints between the nodes.
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Figure 2.2.2: Posegraph, the circles represent the nodes of the graph, connected by
edges (or links) [2].

The constraints can have many different forms, and can result from different types of
data and sensors. We can have constraints resulting from the visual sensors (like cam
eras or LIDAR), from the IMU or from any other type of sensor that binds a previous state
of the robot to the next. These constraints give information between consecutive mo
ments in time by defining the difference in the pose of the robot between those moments.
IMU related constraints are easily understandable but, in the case of visual information,
scanmatching algorithms [13] are used in order to register (align) pointclouds4 or laser
scans provided by the sensor. The spatial and angular difference between successive
pointclouds or laser scans determines the movement of the robot. By setting enough con
straints between the succeeding poses we can build the full trajectory and a map of the
environment, considering that every pointcloud or laser scan is attached to a node of the
graph.

Another important feature of graphbased SLAM is the ability to carry out delayed
trajectory and map optimisation based on loopclosures. This is an attribute that allows
us to have future corrections to our map and trajectory of the robot by reobserving a part
of the robot’s surroundings. When the system loops back to a previously explored part of
the room, it sets a new constraint between our current pose and a preceding node of the
graph. This may result in a correction to a number of previous nodes, considering the fact

4set of points defined by threedimensional Cartesian coordinates that composes an object or shape.
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that every node is connected by constraints to one or several other nodes. Thus, by closing
the loop, we can correct possible sources of noise, for instance, odometry drift or errors in
pointcloud/laser scan registration. This procedure can correct errors in the trajectory and
in the map through the alignment of different sightings of the same features.

Figure 2.2.3: Map before (a) and after (b) a loopclosure/pose graph optimisation process
has occurred [2].

2.2.2 Implementations available in ROS

As discussed, there are many different types of algorithms to perform SLAM. The next
step is to find a way to computationally implement these algorithms.

One popular way to do this is to use ROS, which is an opensource platform that
contains many tools for robotics projects, including state of the art implementations like
the ones discussed here.

2.2.2.1 HectorSLAM

The first ROS algorithm to be presented is the HectorSLAM [3]. HectorSLAM is an
implementation that builds maps using 2D Occupancy Grids without the need of external
odometry. This method, though, is not able to perform delayed map/trajectory optimisa
tion. Figure 2.2.4 a system overview of HectorSLAM:
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Figure 2.2.4: Overview of the mapping and navigation systems used in HectorSLAM [3].

As shown in Figure 2.2.4, HectorSLAM is composed by two subsystems that work
together to provide its results. We have a navigation subsystem that takes input from
the nonvisual sensors in the robot and performs sensor fusion. Additionally, there is the
SLAM subsystem that takes laser scans and performs scanmatching.

The navigation filter within the navigation subsystem takes the data from the IMU and
other sensors (GPS, compass, altimeter,...) and estimates the 3D state of the system
in the six degrees of freedom (DOF). On the other hand, scanmatching calculates the
robot’s pose in the 2D ground plane.

Scan matching in HectorSLAM works by aligning laser scans with the existing map by
optimising the alignment of the beamendpoints with themap learnt so far [3]. This implicitly
means the scans are aligned between them. The nature of the optimisation method used
in HectorSLAM means that it might get stuck in local minima5, possibly yielding false
results but practical results show that this is improbable

To mitigate the local minima problem, HectorSLAM uses multiple maps with varied
resolutions at all times. All maps are updated at every single step, starting with the lower
resolution maps and ending in a finely defined map. In the transition between maps, the

5When a laser scan gets aligned in a local minimum, it means that it gets aligned in a plausible location
which is not the true intended alignment for the scan (for instance, aligning a corner of a room in a laser scan
with a different corner of the room in another laser scan).
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pose estimate calculated for the previous map is used as the starting estimate for the
next.

The six DOF estimate for the robot’s pose is performed by an EKF. This is required
because the algorithm is not linear as it estimates angles such as roll, pitch and yaw.
In the case of the position and velocity estimates, the system integrates the measured
accelerations provided by the IMU. The estimates provided by the EKF and the integration
of the velocities are used as start estimates for scanmatching to improve the results.

2.2.2.2 Gmapping

Gmapping is a SLAM approach based on RaoBlackwellised particle filters developed
by Grisetti et al. [4]. RaoBlackwellisation is a technique which allows us to factorise the
joint posterior distribution of the mapm and the trajectory x1:t = x1, ..., xt given laser scan
observations z1:t = z1, ..., zt and the odometry measurements u1:t−1 = u1, ..., ut−1 in the
following way:

p(x1:t,m|z1:t, u1:t−1) = p(m|x1:t, z1:t) · p(x1:t|z1:t, u1:t−1) (1)

Using this factorisation, we can estimate the trajectory of our robot before building
the map given that trajectory. More information on RaoBlackwellisation can be found in
Murphy et al. [14]. Themap is usually computed through a process of ”mapping with known
poses” and the trajectory is evaluated through a particle filter that uses a probabilistic
odometry motion model as the proposal distribution and that resamples at every single
step. Only using the odometry as a proposal distribution is proved to not get the best
results and resampling whenever we get a new observation is computationally inefficient.

In order to limit the computational effort and improve the quality of the results in com
parison to the classical Particle Filter, Gmapping uses an improved proposal distribu
tion and applies an adaptive resampling technique. The improved proposal distribution
of Gmapping not only considers the odometry information but also the current observa
tion, using a scanmatcher to determine the meaningful area where particles should be
sampled. For example, in an open space, the probability distribution of the particles should
have a very different shape than in a open corridor that, in turn, should have a different
shape than the distribution in a dead end corridor. Whenever the scanmatching process
fails, the algorithm reverts to using odometry information only, until it can restart using both
types of data. Given this, odometry information is mandatory in order to use Gmapping. A
comparison between using the improved proposal distribution in different scenarios and
the odometry based variant is pictured in Figure 2.2.5.
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Figure 2.2.5: Difference in particle distributions on different environments using the im
proved proposal distribution [4].

In Figure 2.2.5(a) the particles are transversely well defined but less so longitudinally.
This is due to the open nature of the corridor. In Figure 2.2.5(b), a dead end corridor,
the particles are much more focused. In Figure 2.2.5(c) the particles are very scattered
because they are in an open space. In this case, only the odometry motion model is being
used.

The second improvement Gmapping introduces to other Particle Filter approaches is
the adaptive resampling method developed by Grisetti et al. [4]. Resampling is an ex
tremely important step because it removes particles with low weights, which poorly de
scribe the environment, allowing for the generation of new particles. This is key because
the algorithm works with a finite number of particles at all times. However, some un
intended consequences can appear if we resample at every single step. One of these
phenomena is called particle impoverishment or particle depletion where the resampling
step removes good particles from our particle set. In order to mitigate this effect, Grisetti
et al. [4] developed an adaptive resampling method using a measure of how disperse the
particle weights are. This measure is called the effective sample size (Neff ). Resampling
is performed when the value of Neff drops below the value of N/2, which represents
half of the number of particles used. The authors found that this reduces the number of
resampling operations and the number of good particles dropped.

2.2.2.3 RTABMap

RTABMap is a pose graph based SLAM implementation developed by Labbé and
Michaud [15]. This algorithm requires odometry as an input and it is able to output both
2D and 3D maps. It also offers the capability to perform RGBD image based odometry, i.
e., calculate odometry based on the colour and depth data provided by the sensor. This
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is useful for applications with no other form of external odometry.

As a graphbased SLAM algorithm, RTABMap has the ability to perform pose graph
optimisation. The optimisation is based on detected loop closures and it is a very powerful
tool to correct any drift introduced on the map and trajectory calculated by the system.

RTABMap also provides us with the ability to perform localisation in previous drawn
maps as a separate feature.

2.2.2.4 Algorithm Comparison

Table 2.2.1 compares some defining characteristics between the previously mentioned
algorithms.

Algorithm
Type of
Algorithm

Needs External
Odometry?

Performs Map/Trajectory
Optimization/Correction?

Map
Output

HectorSLAM
EKF/

Scanmatching
No No 2D Occupancy Grid

Gmapping
Particle
Filter

Yes
Yes, by choosing

the most optimal particles
2D Occupancy Grid

RTABMap
Graphbased

SLAM
Yes

Yes, by performing
loop closure

2D Occupancy Grid/
3D Pointcloud Map

Table 2.2.1: Comparison between the discussed SLAM implementations available in
ROS.

2.2.3 Pathfinding

MarderEppstein et al. [16] developed an opensource navigation solution for mobile
robots. This is available in ROS as the Navigation Stack, as described in Section 3.3.2.5.
This implementation uses sensor, map and odometry data and a navigation goal set by
the user and outputs velocity commands so as to control the robot.

In order to navigate, this system builds a threedimensional voxel grid to describe the
world around the robot. Much like occupancy grids, the voxel grid is divided into a number
of different cells, each one with the possibility to have one of three states: free, occupied
or unknown. On a 64bit machine, MarderEppstein et al. [16], state that this voxel grid
can have 4.1 cm vertical and 2.5 cm horizontal resolutions [16]. It is important to have
a threedimensional voxel grid because we need to not only take into account objects
that sit on the floor but every object that may impact the robot’s travel, considering robot
height.

The navigation algorithm can be started with a previously constructed map, provided
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by any SLAM algorithm, or without any initialisation. If an a priori map is not provided,
the navigation system purely uses the current observations provided by the sensors and
the robot’s pose provided by wheel odometry and by possible sensor fusion with IMU.
In this scenario, the algorithm will estimate a path towards the navigation goal according
to all previously seen obstacles. This path is progressively adjusted according to new
observations. If a map is provided, the system calculates an initial guess for the required
trajectory using such map. As with the previous case, the trajectory is then recalculated
if/when new obstacles are detected.

The position and size of the obstacles is collected on a cost map, which is a 2D map
that is basically a flattened version of the voxel grid. In this map, each cell is attributed a
cost, which is high if the cells are occupied and it decreases exponentially according to a
user defined inflation6 as the distance to the obstacles increases. High cost means that
no part of the robot must be in contact with the corresponding cell, zero cost represents
free path. The cost map is initialised with the previously built map, if provided.

In order to achieve obstacle avoidance the system needs to have the robot footprint
defined, meaning its size and geometry as seen from above. The robot’s footprint is
defined by the user.

With the purpose of planning trajectories, the Navigation Stack has two planners at its
disposal: the global planner and the local planner. The global planner is used to draw the
full trajectory from the robot to the navigation goal, considering the robot’s position and
the obstacle data in the cost map. As a consequence of the underlying algorithm of the
global planner and to keep the system efficient, the global planner assumes the robot is
circular and does not consider the kinematics and dynamics of the robot. Because of that,
the path may contain bends that are too sharp to be taken by the robot or might try to lead
the robot too close to certain obstacles, which would cause a collision. This means that
the robot might not be able to follow the proposed path. The local planner, on the other
hand, takes the kinematics and dynamics of the robot into account, as well as the position
of obstacles from the cost maps. The local planner’s function is to make the robot follow
the global planner’s proposed path in a feasible way while avoiding collisions. The local
planner’s output is velocity commands.

6Inflation is a value that sets how much clearance relative to the obstacles is desired for the robot’s path.
If, for example, an inflation value of 20 cm is set, the navigation algorithm will trace trajectories which avoid
obstacles by this distance.
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Chapter III

Implementation

3.1 Hardware Description

We start the implementation chapter by describing the experimental apparatus. The
main tool used in this work is the Intel RealSense D435i stereoscopic depth camera, pic
tured in Figure 3.1.1. Being a stereoscopic camera, the Intel RealSense D435i is equipped
with two RGB cameras separated by a known distance and an IR blaster. The IR blaster
helps matching common features between the left and the right cameras. It also contains
an IMU, which is very helpful for sensor fusion. The D435i is easily connected to any
computer through USB.

Figure 3.1.1: Intel RealSense D435i.

Table 3.1.1 compiles some distance measurements from the camera compared with
the real values from a tape measure.
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Illuminated Room Dark Room
Real Distance

(m)
Mean Distance
Measured (m)

Standard
Deviation (m)

Mean Distance
Measured (m)

Standard
Deviation (m)

0.5 0.5063 0.0007 0.5073 0.0004
2.5 2.6716 0.0174 2.6501 0.0405
5 5.3962 0.2211 5.2875 0.1613
7 7.3585 0.5594 7.4708 0.5503
9 10.9986 0.3732 10.9210 0.9759

Table 3.1.1: Depth measurements from the camera. Every measurement corresponds to
the depth at the centre of the depth image.

As can be seen in Table 3.1.1, the depth measurements tend to deviate from the truth
for larger distances. Other conclusion that can be obtained is that the measurements in an
illuminated room are better than in the dark. Both results were expected considering that
camera measurements are extremely dependent on the use of colour images. In contrast,
in a LIDAR sensor, it is expected that the measurements in the dark are much closer to
those in daylight (or with good illumination). Another important camera characteristic has
been found, which relates to how the depth measurements vary across the depth image.
Figure 3.1.2 shows a pointcloud of a flat wall and we can see that results are very fuzzy,
with variable values of depth across the image. This fuzziness affects map quality.

18



(a) Colour image.

(b) Perspective view of the pointcloud. (c) Side view of the pointcloud.

Figure 3.1.2: Colour image and pointclouds of a flat wall.

Throughout the development of this work it has been necessary to conduct several
tests in order to assess the robustness of the results from the SLAM algorithms. These
tests imply having a way to move the camera in a realistic fashion considering the ob
jective of this work. Therefore, an ActiveTwo AGV previously developed by Active Space
Technologies is used. Figure 3.1.3 presents the AGV used in this work.
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Figure 3.1.3: Active Space developed ActiveTwo AGV.

This AGV uses a localisation algorithm provided by a separate company (Navitec),
which specialises in the development of natural navigation algorithms. The robot itself
is equipped with two LIDAR scanners that, in conjunction with the system from Navitec,
allow the AGV to navigate autonomously.

The full apparatus involved taping the Intel RealSense D435i depth camera to the
front of the ActiveTwo with a computer right behind it for data collection. The camera was
placed 70 centimetres in front of the centre of the robot and aligned with the AGV. Figure
3.1.4 is a picture of the prototype in testing conditions.
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Figure 3.1.4: AGV in test conditions.

This setup allows us to input trajectories into the Navitec localisation system and re
cord data using the camera for offline analysis. These data are then processed by the
SLAM methods developed throughout this thesis. More details on these tests will be dis
cussed in Section 3.4.

3.2 First Attempts

At the start of this work, the chosen approach was to use MATLAB. MATLAB has
very thorough and extensive documentation regarding many topics of computer science,
and SLAM is no exception. During this time, some of the concepts regarding SLAM are
studied and put into practice. This is done using the Intel RealSense MATLAB wrapper
as well as associated functions. Some rudimentary SLAM systems are developed using
scanmatching and IMU information but these do not show great results.

The first mapping algorithm is based on the full 3D world. The input for this algorithm is
pointclouds and IMU information. The first step is to align successive pointclouds through
a process called Pointcloud Registration. MATLAB offers some pointcloud registration
functions in its Computer Vision Toolbox7 that use some of the most popular algorithms
like ICP (pcregistericp function) and NDT (pcregisterndt function). IMU information is also
used in order to approximate the initial transform between pointclouds. At each step there

7https://www.mathworks.com/help/vision/
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is a calculation to see which of the pointcloud registration algorithms produces the best
result; then, the best transform is chosen. Finally, the two pointclouds are merged accord
ing to how the transform dictated.

The data are provided by rosbag files and this process is repeated until the rosbag file
ends. The map is built incrementally, with every pointcloud hopefully being aligned and
merged correctly with the other pointclouds.

Some additional changes are made to the algorithm in order to improve results. The
first change is to not consider every single recorded pointcloud but to define an interval
between processed pointclouds. This is a common practice in many SLAMmethods, redu
cing computer allocated resources while still improving map definition. The other change
is to segment out the area of the pointclouds that is not interesting for the registration (e.g.,
floor and ceiling). To do this, a part of the upper and lower volumes of the pointclouds is
extracted according to a predefined percentage. In a final try, the pointclouds are flattened
into two dimensions and a similar process was applied to try to build 2D maps. Unfortu
nately, these approaches did not give very good results. The algorithm was able to build
short maps in very controlled conditions but eventually would fail.

At a certain point it became clear that continuing going down this path would be un
productive and achieving an acceptable level of robustness in the time available for the
development of this work would be tough. Thus, it was decided that a new approach would
be necessary for SLAM implementation, and ROS emerges as a robust option.

3.3 ROSbased Implementation

This section describes the stage of this work after abandoning MATLAB and discov
ering ROS. A brief description of ROS is presented along with the description of imple
mentation details for the various algorithms used and their key parameters.

3.3.1 Brief description of ROS

As already mentioned, ROS [17] stands for Robot Operating System and is a popular
robotics framework, which includes numerous stateoftheart algorithms for a wide variety
of robotic applications.

ROS allows for the execution of various pieces of software that can be written in C++
or Python through ROS nodes. These nodes can communicate with each other, allowing
for the operation of a robot. Nodes are organised in ROS packages, that can contain one
or multiple nodes. Packages, in turn, can be organised in Stacks.
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Communication between nodes is done through messages that can contain any type
of information for the operation of the robot like sensor readings, images, pointclouds, etc.
The nodes publish these messages in ROS topics, which in turn can be subscribed by
other nodes. This enables the communication between different scripts located in different
nodes.

ROS uses some convention coordinate frames to define robot navigation. These are
the base_link, odom and map frames [18]. The base_link frame is attached to the robot
andmoves with it, usually acting as the centre of mass of a robot. Some robot components
position can be defined in relation to the base_link frame, like the position of a camera.
The position of the robot in the odom frame is derived from odometry measurements.
Within the odom frame, the pose of the robot is continuous but can drift over time. In the
map frame, the pose of the robot is not continuous, meaning that the pose may jump over
time as it is being corrected by SLAM algorithms. However, the pose of the robot in the
map frame should have a low amount of drift.

This work relies on ROS Noetic on Ubuntu 20.04.

3.3.2 Implementation of SLAM algorithms

Enabling the execution of SLAM algorithms available in ROS is a matter of download
ing the required package, with the desired nodes, and defining the required inputs and
outputs in a launch file. The inner workings of each node may be treated as a black box,
as long as the required communication between each node is properly defined.

Some aspects of SLAM related nodes are common to every implementation, for in
stance, the definition of the world, odometry and base_link frames. However, each node
is different and, for every node, a specific set of input topics must be defined accord
ing to its needs. Additionally, it is common for every node to have a number of different
parameters to fine tune in order to improve the results.

The requirements and parameters for each node are defined in the corresponding
package’s dedicated page on the ROS website.

3.3.2.1 HectorSLAM

HectorSLAM8 uses laser scans to perform SLAM so, beyond the gmapping package,
an extra package that converts the camera’s pointclouds to laser scans is also needed.
This package is simply called pointcloud_to_laserscan9.

8http://wiki.ros.org/hector_slam
9http://wiki.ros.org/pointcloud_to_laserscan
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The pointcloud_to_laserscan_node has a number of different parameters to be fine
tuned and its job is to convert a pointcloud to a laser scan by slicing a volume of the
pointcloud and flattening it along its height, simulating the output from a laser sensor by
returning a two dimensional set of points. The thickness of the pointcloud volume used
is defined by the user by setting the min_height, max_height, range_min and range_max
parameters. In the range parameters, it is necessary to take into account the minimum
and maximum range of the camera.

HectorSLAM’s hector_mapping node subscribes to the scan topic provided by the
previous package and returns an occupancy grid map in the map topic. It also requires
the definition of a transform between the frame attached to the laser scans and the
base_frame with the difference in position between these two frames. This is provided by
the static_transform_publisher node from the tf2_ros10 package. To improve the map, it
is possible to fine tune the map_update_distance_thresh and map_update_angle_thresh
parameters, which set linear and angular thresholds for the map to be updated, in metres
and radians, respectively.

Figure 3.3.1 displays a flowchart with themost important topics, nodes and parameters
for our HectorSlam implementation. The hexagon represents the depth camera, boxes
represent the ROS nodes, links and ellipses represent ROS topics. A similar figure code
is used for the flow charts corresponding to the other implementations.

Figure 3.3.1: Flow chart for our HectorSLAM implementation.

3.3.2.2 IMU fused RGBD Odometry

The next implementations of SLAM require external odometry so it is important to
find a robust way of providing odometry with the capabilities provided by the camera.

10http://wiki.ros.org/tf2_ros
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An interesting way to generate odometry from a depth camera is to use the successive
RGBD images provided by the camera. This is called RGBD Odometry.

For this purpose, the RTABMap11 package offers the rgbd_odometry12 node that can
perform just that. This node subscribes to the depth and colour image topics and the
RGB camera info topic from the camera and outputs odometry messages containing the
robot’s position and orientation. While using this node, it is recommended to set the depth
image topic as the D435i provided aligned_depth_to_color topic or else the localisation
of features in the colour image will be different from the colour image. This is due to the
different fields of view of the two images. It is also necessary to describe the position of
the camera_link frame in comparison to the base_link frame. This is done through a static
transform publisher node from the tf2_ros package. The AGV has a length of 150 cm so,
in the tests run as a part of this work, the camera was located around 70 cm in front of
the robot’s centre and centred along the robot’s width. This is the transform defined in the
node.

This method provides reliable results by itself but, knowing that the D435i is equipped
with an IMU, there is the possibility to perform sensor fusion in order to further improve
the accuracy of the generated odometry. The work developed by Moore and Stouch [19]
is available as the robot_localization13 ROS package. This package offers sensor fusion
nodes for robot state estimation based on the Extended Kalman Filter and the Unscented
Kalman Filter. It has the ability to fuse data from an unlimited number of sensors of many
different types. In this work, the UKF localisation node was chosen.

For this implementation, it is needed to fuse the RGBD Odometry with the IMU data,
which is easily supported by the robot_localization package. Thus, all that is needed to do
is to provide the map, odom and base_link frames and set the input topics as the output
topic names from the RGBD odometry and the camera’s IMU data. The example launch
file provided in the package has templates for the configurations of every type of sensory
data it might be needed to fuse so the process is straightforward.

Another important aspect available in the robot_localization package is the ability to
flatten the data into two dimensions using the two_d_mode parameter, which can elimin
ate some unwanted drift in height caused by the RGBD odometry uncertainty. All tests
were made in horizontal environments so any movement in the z direction is undesirable.

11http://wiki.ros.org/rtabmap
12http://wiki.ros.org/rtabmap_ros#rgbd_odometry
13http://wiki.ros.org/robot_localization
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3.3.2.3 Gmapping

Similarly to HectorSLAM, Gmapping14 also takes laser scans as input, so the same
package (pointcloud_to_laserscan) is used to convert the pointcloud data from the depth
camera.

Within the slam_gmapping node from the Gmapping package, the main parameters to
improve the quality of the maps are the maxUrange parameter, the iterations parameter
and the linearupdate, angularupdate and temporalupdate parameters. The maxUrange
parameter defines the maximum usable range of the scans, the iterations parameter sets
the number of iterations of the scanmatcher. The linearupdate, angularupdate and tem
poralupdate parameters define how often should the map update according to linear or
angular movements or if a certain period of time has elapsed from the last processed
scan. Each of these parameters must be fine tuned according to the nature of the robot’s
surrounding and respective expected trajectory. For example, if the trajectory contains a
large number of rotations, lowering the angularupdate value is key.

As mentioned, Gmapping uses the previously described RGBD odometry fused with
IMU as its odometry source and publishes an occupancy grid map in the map topic, akin
to HectorSLAM.

Figure 3.3.2 shows a flowchart for our Gmapping implementation.

Figure 3.3.2: Flow chart for our Gmapping implementation.

14http://wiki.ros.org/gmapping
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3.3.2.4 RTABMap

The setting up of RTABMap is very similar to the algorithms already discussed and
a large part of the procedure is already made by implementing the all important IMU
fused RGBD odometry. To add this odometry to RTABMap it is a matter of defining the
odom_topic as the output topic from the robot_localization package.

The additional required topics are the camera’s image related topics: rgb_topic to en
able loopclosure pose graph optimisation, the depth_topic and the camera info topics.

RTABMAP outputs the map in the grid_map topic and the trajectory in the mapPath
topic.

Figure 3.3.3 shows a flowchart for our Gmapping implementation.

Figure 3.3.3: Flow chart for our RTABMap implementation.

3.3.2.5 Navigation Stack

Once the system has the capability to map an environment and localise itself, the
next step for autonomous navigation is to implement pathfinding and trajectory planning.
For this, the Navigation Stack15 has been implemented. The Navigation Stack contains
multiple important packages to enable navigation which are implemented simultaneously,
such as move_base and amcl. However, for simplicity, the set of all packages will be
described as the Navigation Stack in this work.

The Navigation Stack requires three sets of parameters in order to work: the costmap
parameters as well as local and global planner parameters. In the local planner para

15http://wiki.ros.org/navigation
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meters is where the dynamic characteristics of the robot are fed to the algorithm. These
parameters set minimum and maximum velocities and accelerations in both linear and
angular movements. It is also defined whether the robot is holonomic and both position
and heading tolerances for the navigation goal to be achieved. The local planner para
meters are crucial so that the algorithm knows how to follow the global planner’s path
according to the way the real robot moves. For the global planner parameters, the default
configuration has been used.

The costmap parameters define parametrisation for two different maps: the global
costmap, used to make a global plan towards the goal, and the smaller local costmap for
local trajectory planning according to possible new obstacles.

Some parameters are common for both maps, such as the map topic, which should
be the same as the map output topic from the SLAM algorithm that is being used (Hec
torSLAM, Gmapping or RTABMap). Other common parameters are the definition of the
sensors that are used to detect obstacles. For each one of these, it is necessary to set the
type of sensor data (laser scan or pointcloud), the corresponding ROS topic, the frame
where the data is attached and whether the data is used for the addition of obstacles
and/or for eliminating obstacles from the map. It is possible to have some sensors adding
obstacles, some sensors removing obstacles or sensors that do both addition and re
moval.

There are some parameters that appear in the configurations of both maps but must
have different values. These include map size and origin. The global costmap’s size must
accommodate the robot’s full expected trajectory, so it is normally a large map. On the
other hand, the local map is smaller, with dimensions within the range of the camera’s
data in order to describe the local surroundings. It is important to set the local map’s
origin as half its dimension along both axis and the rolling_window parameter as true so
that the robot remains in the centre of the local costmap, as desired.

Other parameters that differ between local and global costmaps are the update and
publish frequencies. For the global costmap these values do not need to be very high so
they are kept low, with the map being updated at 5 Hz, saving computational effort. In the
local costmap’s case the opposite applies, because it is important that the map is updated
and published at a high rate to account for possible moving obstacles. The local costmap
update frequency is set at 30 Hz. A similar approach is applied to the transform tolerance
parameter, which sets a maximum delay for an incoming transform to be valid.

In order to use the Navigation Stack, we can use ROS’ own visualisation tool (Rviz16) to
publish a 2D Navigation Goal topic in the map frame. Once the robot destination is set, the

16http://wiki.ros.org/rviz
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Navigation Stack will estimate and publish the global trajectory towards the navigation goal
and velocity commands dictated by the local planner guiding the robot along the planned
path. The navigation algorithm can also be paused when a red traffic light is detected
through the publishing of the move_base/cancel topic via a python script (more details
about object detection in Section 3.3.3). This python script (”realsensetalker.py”), which
also performs object detection, subscribes to the move_base/goal topic and saves it in a
variable. When a green traffic light is detected, the navigation is resumed by publishing
the saved goal in the move_base/goal topic.

Figure 3.3.4 displays a flowchart for our Navigation Stack Implementation, contain
ing the most important packages, topics and the integration with the ”realsensetalker.py”
python script (represented by a parallelogram).

Figure 3.3.4: Flow chart for our Navigation Stack implementation with traffic light obedi
ence.

3.3.3 Object Detection

Since the D435i depth camera is equippedwith a colour sensor, there is the opportunity
to add object detection algorithms to this work. Object detection is implemented with the
objective of adding extra functionalities to the system, like the ability to stop and restart
navigation in accordance to a traffic light, and improving the resulting maps by eliminating
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people from the camera’s data. People represent the most common moving obstacle for
most robots in most applications so, by removing the false landmarks imposed in the map
by passing humans, it is possible to improve scanmatching and the resulting map will
be composed of more relevant features. The rationale behind this strategy is that lack of
information (’hole’) would be better than presence of false landmarks that can mislead the
system in subsequent visits. When the robot revisits the ”hole” and the person is not there
anymore the map is completed with the right information about the room.

Two implementations of object detection have been evaluated in this work. The first
was the TensorFlowObject Detection API17 (Application Programming Interface). The Ob
ject Detection API is compatible with many different pretrained object detection models,
each with different performance characteristics and types of output. Some models priorit
ise the accuracy in the detection and others have an emphasis on detection speed. Some
models output bounding boxes around the detected object, others output masks with the
object’s shape. The more accurate models tend to be slower and the faster models have
a higher probability in returning false positive results.

The chosen model would have to be balanced in terms of performance, since it is
important to run in real time but detection of false positives has to be minimal. Considering
this, the SSD MobilenetV1 model trained over the COCO dataset was used. This model
is able to detect 90 classes of objects, including people and traffic lights, as required.

The TensorFlow Object Detection API detects objects frame by frame, in a loop, re
turning a list of the detected classes, respective scores and pixel locations of the corners
of the bounding box corresponding to each detection. The scores are a percentage metric
which determines how certain the model is about the detection.

However, for this application, the detection of 90 different object types is not really
necessary so the detections corresponding to undesired classes were removed from the
output. Furthermore, a minimum score value of 50% was set to further reduce the detec
tion of false positives.

Once the detections are available, the respective bounding box dimensions are used
to extract a subimage of the object, then, the centre of the object (centroid) is calculated
and published as a ROS topic. A topic is published for people centres and another for
traffic light centres. These topics were useful for the NavCam contest but are not used in
this work, so they will not be discussed further.

For traffic lights, extra processing is carried out in the subimages in order to detect
which light is turned on. A range of HSV (Hue, Saturation, Value) values is defined for
the three colours and a mask for each colour is applied to the image. The mask with the

17https://github.com/tensorflow/models/tree/master/research/object_detection
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higher number of true values (corresponding to the number of pixels of a colour from the
respective mask’s range) determines whether the traffic light is green, yellow or red. For
this application it has been important to deviate from the RGB standard into HSV because
while red and green are primary colours in RGB, yellow is not. Thus, in order to set value
ranges for yellow, it is necessary to choose values that mix the two primary colours, which
represent the other important traffic light conditions. This may induce fails in detecting
the right colour. Hence, by using HSV, which represents colours by Hue, Saturation and
Value, not by mixing primary colours, the system is less prone to error. When the colour
is detected, a ROS topic is published with the colour of the traffic light.

After using the last model, it became clear that for the purpose of removing people
from the depth image it might be easier and more computationally efficient the use of an
object detection algorithm that returned masks highlighting the whole detection instead of
bounding boxes. Some alternative models that output masks were tested with the Object
Detection API but it was not possible to get a high enough frame rate. Because of this,
moving away from the Object Detection API became mandatory.

A new implementation by the name of Yolact18, developed by Bolya et al. [20], was
found and implemented. Yolact is a real time object detection algorithm that outputsmasks.
Another bonus point for Yolact is that it has a dedicated ROS wrapper [21] that facilitates
communication with the rest of the ROS environment by subscribing to and publishing
ROS topics. The chosen model to use with Yolact was Resnet50FPN, which is the avail
able model that provides the highest frame rate without a large penalty in the quality of
the detections.

Further modifications were made to the Yolact algorithm in order to only consider the
detection of people and to black out the background of the detection. The isolated detec
tions are published in the /yolact_ros/visualization/ ROS topic. An additional Python script
(”yolact.py”) subscribes to the detections and the aligned_depth_to_color topic from the
camera. Then, a mask is obtained from the image and it passes through an image eroding
process to amplify the person’s shape so as to make sure the whole body is deleted from
the depth image. Finally, a logical ”and” operation is performed between the mask and the
depth image resulting in a filtered depth image without the detected people. In our tests,
up to four people are detected and removed, as it is shown in Section 4.1.2, Figure 4.1.8,
but the maximum number of people that Yolact can detect in a frame was not measured.
The filtered depth image is published in a ROS topic to be used as input for the SLAM
algorithms.

This filtered depth image can be directly inputted into RTABMap but the camera_info
18https://github.com/dbolya/yolact
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topic to be used in RTABMap cannot be the topic provided directly by the camera. This is
due to the fact that RTABMap needs the depth image topic and the corresponding cam
era info topic to be synchronised. To get around this problem, the ”yolact.py” script also
subscribes to the /camera/aligned_depth_to_color/camera_info topic and republishes it at
the same time as the filtered depth image, in the /filtered_camera_info topic. For Gmap
ping, which takes laser scans as input, extra processing must be applied to the filtered
depth image. The filtered depth image is passed through the point_cloud_xyz node from
the depth_image_proc package, which converts the depth image into a pointcloud. Hav
ing a pointcloud, the rest of the process is equal to the already described Gmapping setup
(Section 3.3.2.3). In this implementation, the filtered depth images are also fed into the
RGBD odometry when this filter is applied.

Figure 3.3.5 displays a flowchart with the most important topics for our implementation
of Yolact in order to filter the depth images.

Figure 3.3.5: Flow chart for the implementation of Yolact.

3.4 Tests Description

During the development of this work, three distinctive types of tests have been carried
out: depth tests, SLAM tests and object detection tests.

First, it is important to evaluate the precision of the camera’s depth measurements
and how it behaved according to different types of obstacles. The depth tests involve
measuring the depth returned from the camera’s measurement and comparing it with a
tapemeasure. The measurement from the camera is obtained through a MATLAB code
that returns a user defined number of depth measurements at a defined pixel location. At
the end of the data collection, the script returns the average and the standard deviation of
all values. The depth is measured in the centre pixel of the depth image and the results

32



are presented in Table 3.1.1.

The original plan had been to do this previous test both for opaque and for transparent
and translucent objects, but it was immediately discovered that the camera cannot meas
ure distances to transparent objects, namely windows. When a window is in front of the
camera, the measured depth corresponds to objects behind the window, as if the window
did not exist at all. This can be easily seen in Figure 3.4.1.

(a) Depth Image

(b) Colour Image

Figure 3.4.1: Depth and colour images from the D435i depth camera in front of a window.

The window in Figure 3.4.1 is completely invisible in the depth image. The depth meas
ured for the centre of the image is of 7 metres which corresponds to the wall beyond the
window, on the opposite side of the camera.

33



As the SLAM algorithms are implemented it becomes necessary to assess the level
of accuracy of each algorithm, whether it is to fine tune the algorithm’s parameters or to
compare it to others.

The SLAM tests are performed with the previously shown prototype (Figure 3.1.4)
and consist in programming a trajectory into the Navitec’s localisation algorithm while
recording data using the depth camera. The depth camera’s data are recorded in the ROS
Bag format, which is a type of file that records ROS topics and that can be played back
in real time. These files are really useful in the way that they allow for virtual simulations
that are indistinguishable to a reallife running of the robot and permit easy repeatability
of the tests.

The next step is to find a test location. According to the results of the depth test, it is
clear that the test would ideally have to be run in a not too large, well illuminated room,
preferentially devoid of any transparent or translucent barriers like windows. The dimen
sions of the room should be big enough so that the robot can follow a significantly large
trajectory but, in order to operate the camera in a high degree of accuracy, there should
be obstacles closer than 10 m from the camera at all times. The terrain must be smooth
enough not to induce a very high amount of drift into the IMU measurements. Another
important point to some algorithms, specifically RTABMap, is the ability to perform loop
closure so the room’s size should also allow the robot to perform a loop.

Considering these facts, it was concluded that the Active Space Technologies’ base
ment is a good candidate to perform the tests. This is effectively a 17 m x 13 m usable
area that meets most previous requirements. The only characteristic that might cause
problems is the room’s size versus the accuracy of the depth measurements. To mitig
ate this, white plastic buckets are added along the robot’s trajectory in order to create
additional landmarks. The basement has three extra adjacent rooms: a meeting room, a
canteen and a laboratory, which are also used during testing.

Now that the test environment is set, the only thing missing is the test trajectories
for the robot. The first tests are simple, with the robot driving around an oval trajectory
alongside the walls of the rectangular basement. In the second phase, some tests are
run with the robot performing an eightshape trajectory around two of the basement’s
support pillars. In the final test, all previous tests are combined into a longer, more complex
trajectory. This is done in order to test the robustness of the algorithms in a higher level
and execute a more complex type of loopclosure. In this test, the robot drives around the
oval lap of the basement, then entering the meeting room heading towards the canteen
and through the laboratory before rejoining the oval trajectory from the opposite side of
the basement. After this, the robot follows the rest of the oval up to the starting point,
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where it performed an eightshape trajectory again, similar to the second test. In this
trajectory there are four possible loopclosures: one at the end of the oval lap, another
when it rejoins the oval after exiting the laboratory and, finally, two more at the starting
point, before and after the eightshape trajectory.

The first tests are recorded without the presence of moving objects or people but,
later, with the introduction of object detection algorithms, some tests are performed with
stationary and moving people. People are introduced in the robot’s view only when the
AGV rejoins the oval lap after exiting the lab. This is done so that an accurate map of the
full space could be built before testing the system’s behaviour in the presence of people.
In Figure 3.4.2, some photographs of the final test are presented.

(a) Basement

(b) Canteen

Figure 3.4.2: Pictures of ongoing SLAM tests.

35



When object detection algorithms are added, some dedicated tests are also per
formed. In these tests, the maximum distance that a person could be detected was meas
ured. This is done by simply running the script and checking if the algorithm detects a
person at various distances, as shown in Figure 3.4.3(a). It is also discovered that the
algorithm does not need the full image of a person’s body in order to detect them, Figure
3.4.3(b) shows a person being detected only through the image of their hand.
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(a) Long distance detection of a person.

(b) Detection of a person through a part of the body.

Figure 3.4.3: Object Detection API tests.

For the detection of traffic lights, a traffic light image on a mobile phone was shown
to the camera and it was tested if the navigation system stopped and restarted its goal
according to the traffic light’s colour.
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For the integration of the object detection algorithms with SLAM, additional SLAM tests
have been made for the same trajectories but with static and moving people appearing in
sight of the robot at random places, as already mentioned.
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Chapter IV

Experimental Results

4.1 Mapping

A crucial part of a SLAM system is the ability to build good maps of the robot’s envir
onment, so the resulting maps from each algorithm in static and dynamic environments
are provided in this section, as well as the computed resulting trajectories. The results
of adding object detection methods to SLAM algorithms are presented in the dynamic
environments section.

In order to make the comparison between the maps and the real world, a map made
by a Velodyne high precision laser scanner is provided (Figure 4.1.1) as well as some
panoramic photographs of the four rooms (Figure 4.1.2). The Velodyne map was done in
the scope of another project in Active Space Technologies. The robot did not explore the
area to the left of the red dashed line in Figure 4.1.1 so the maps in our results correspond
to the area to the righthand side of the line. During testing, white plastic buckets have
been spread across the basement in order to increase the number of features, however,
this is not pictured in Figure 4.1.2(a) but can be seen in Figure 3.4.2(a).

Figure 4.1.1: Map built using a high precision Velodyne Puck VLP1614 laser scanner.
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(a) Basement

(b) Meeting Room

(c) Canteen

(d) Lab

Figure 4.1.2: Pictures of the four rooms of the test site.
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4.1.1 Static Environments

4.1.1.1 HectorSLAM

HectorSLAM does not use odometry or perform loop closure map/trajectory optim
isation and this was found to be a defining factor in the quality of results. Nevertheless,
due to the good quality of HectorSLAM’s scanmatcher, it is common that good results
are still able to be obtained with a wide variety of laser scanners available in the market.
However, the majority of the laser scanners commonly used in SLAM applications have
a 360º horizontal field of view and this is not the case with the Intel RealSense D435i,
with a mere 87º of horizontal field of view. If a 360º scanner had been used, the amount
of features in every frame would be much higher. This would not only provide a larger
number of reference points available to match the pointclouds but it would also protect
against possible occlusion of some features.

As a result, maps tend to quickly diverge with our setup, and, without the ability to per
form loop closure optimisation, the divergence is never corrected and the results get pro
gressively worse. Figure 4.1.3 presents an attempt to map our test site up to the canteen.

Figure 4.1.3: Static environment map from HectorSLAM.
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The grey area represents unexplored space, whereas the dark points represent occu
pied space and obstacles, and white areas are free space, as described in Figure 2.2.1.

It is clear that the algorithm diverged, mainly during rotations, leading to poor mapping.
The algorithm diverged even though the angular speed is kept low in every test since it
has been found that if the cornering speed is too high, the probability of failure increases.
This is valid for HectorSLAM and the two subsequent algorithms.

4.1.1.2 Gmapping

Gmapping with IMU fused RGBD odometry generally provides good results. Nonethe
less, due to Gmapping’s probabilistic behaviour, it may occasionally diverge, resulting in
some inaccuracies in the maps. This derives from the Particle Filter every so often choos
ing particles that wrongly describe the robot surroundings.

Figure 4.1.4 shows a fairly accurate map of the test site, albeit with some divergence
in the lower wall and in the path that goes along the meeting room, canteen and lab.

Figure 4.1.4: Static environment map from Gmapping.
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The obstacles in the centre of themap are originated from the white plastic buckets that
are displaced along the basement in order to increase the number of features and from
the basement’s support pillars. There are some islands of unexplored space in the centre
of the map which result from the camera never being pointed towards those directions.

An example of the Gmapping implementation from this work can be seen in a dedic
ated video [22]. Figure 4.1.5 shows some examples of typical Gmapping failures (indicated
by blue arrows) due to its probabilistic behaviour.

(a) Misalignment in the upper basement wall. (b) Misalignment in the upper and lower basement walls.

Figure 4.1.5: Typical Gmapping failures.

4.1.1.3 RTABMap

RTABMap has been revealed as the most reliable and precise algorithm to use with
this work’s setup. The maps are accurate and there is not a very high variability between
different runnings of the same test. Most divergences that happen during the map building
process are corrected by loop closure optimisation. Figure 4.1.6 illustrates an example
of a loop closure pose graph optimisation in RTABMap, we can see that the map had
diverged, with the left ”wall” being shorter that in reality. When the loop closure happened,
the map was corrected and the room got noticeably squarer. An alignment of the trajectory
(green line) is also noticeable.
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(a) Map before optimisation.

(b) Map after optimisation.

Figure 4.1.6: Example of a loop closure pose graph optimisation in RTABMap.

The only drawback in RTABMap is a larger wall thickness, which results from the
wavy depth measurement, as shown in figure 3.1.2.

In addition to the maps, RTABMap also provides us with the ability to export the full
a posteriori trajectory, which can be compared with the trajectory from the Navitec local
isation system. The map and trajectories are presented in Figure 4.1.7.
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(a) Resultant Map from RTABMap.

(b) Trajectory from the Navitec localisation system 19. (c) Trajectory from RTABMap.

Figure 4.1.7: Static environment results from RTABMap.

From Figure 4.1.7 it is concluded that the map is very good as well as the trajectory,
albeit showing some minimal drift. The high fidelity in mapping the test site along with low
linear and angular drift and very high reliability makes RTABMap the most robust of the
algorithms investigated.

A video showing how RTABMap is being implemented can be found here [23]. The
video description contains timestamps for some loop closure map optimisation events,
including the one pictured in Figure 4.1.6.

19The Navitec localisation system did not record the last part of the trajectory but the path finished in a
similar manner to Figure 4.1.11(e) at around the (0.5,0) coordinates.
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4.1.1.4 Comparison between Depth Camera and LIDAR

This work has been carried out in coordination with a similar project that uses the
Intel RealSense L515 LIDAR scanner instead of the D435i camera. In some cases, tests
have combined both technologies, which allows for a straightforward comparison between
depth cameras and LIDARs.

In general, the depth camera measurements are less accurate and present some sig
nificant variation across the depth image as shown in Figure 3.1.2. This means objects
in the map assembled with the camera are fuzzier and features like walls may have their
thickness inflated (Figure 4.1.7a) and flatness reduced. This does not happen with the
LIDAR measurements because they tend to be significantly more accurate, meaning the
measured distances are closer to the true distance to objects, error does not increase
much with distance and accuracy extends across the whole image, with the LIDAR not
producing the wavy wall effect. The more accurate measurements from the LIDAR yield
a lower failure rate and divergence of the algorithms as well. The LIDAR’s measurements
in the dark are very similar to the measurements in an illuminated room, which is not the
case with the depth camera.

That being said, the Intel RealSense L515 LIDAR also presented some shortcomings.
For example, the LIDAR does not work well with direct sunlight, which is not a problem
for the camera. The Intel RealSense L515 LIDAR also presents an unidentified source of
noise at certain spots in our test room. This noise appears as false detections, resulting
in false obstacles being added to the map. This situation introduces uncertainty to map
ping and navigation, degrading the reliability of the process, e.g., avoiding nonexistent
obstacles. Various tests have been made in order to try to identify the source of this prob
lem but, ultimately, the reason was not found. Detailed information can be found in the
other work [24].

Considering these facts, we conclude that generally, the LIDAR will return better res
ults due to its higher accuracy in measurements, however, if the scene is well illumin
ated by sunlight or if the noise from the unidentified source is detected in large amounts,
the camera will be the better choice. The LIDAR would also be the sensor of choice for
mapping in the dark. Nevertheless, the camera also returns good SLAM results in most
environments.

4.1.2 Dynamic Environments

Results in Section 4.1.1 highlight the performance of algorithms without any type of
moving objects or people in the room. However, dynamic environments are crucial for
a robust implementation. Hence, the tests presented in this section are related to the
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performance of SLAM in dynamic environments and the impact of object detection in the
final results. Only Gmapping and RTABMap are used since HectorSLAM fails in static
environments.

Figure 4.1.8 shows the effect of applying the Yolact object detection algorithm for
people removal from the depth image. All the four present people are detected and re
moved (the black colour represents no depth information). A part of the bucket stack on
the right is also removed due to the bucket being close to a person and wrongly classified
as such. After processing, the filtered depth image is published at around 17 FPS in the
computer used in this work.

(a) Colour image. (b) Original depth image.

(c) People removed from depth image.

Figure 4.1.8: Removal of people from depth image using Yolact.
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For each algorithm, mapping attempts are carried out with andwithout removing people
through the object detection algorithm. This is performed for the full lap of our test site and
also for the eightshaped trajectory (the only part of the trajectory that includes moving
people). The next sections present those results.

4.1.2.1 Gmapping

It has been confirmed that the presence of moving people in the room increases the
probability of map inaccuracy or total failure. However, Gmapping is able to still draw a
good representation of the basement with the presence of moving features and without
adding them to the final map. Filtering the pointclouds shows no appreciable difference
in those results, meaning that Gmapping is robust enough for dynamic environments by
itself. Discrepancies amongmaps are more related to Gmapping’s probabilistic behaviour.
Figure 4.1.9 presents maps built with and without filtering for the full lap and Figure 4.1.10
shows the results for the eightshaped trajectory.

(a) No filtering applied. (b) People removed from pointcloud.

Figure 4.1.9: Gmapping dynamic environment results for the full lap.
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(a) No filtering applied. (b) People removed from pointcloud.

Figure 4.1.10: Gmapping dynamic environment results for the eightshaped trajectory.

4.1.2.2 RTABMap

For RTABMap, the presence of people not only represents spurious features but can
prevent some loop closures. This is due to the possibility of people appearing in front
of the robot at certain locations and then not appear (or appear in a different position)
in subsequent revisits. This often implies poor reliability of measurements, with the tests
having diverged slightly in some attempts to build the map. Still, it has been concluded
that RTABMap is also robust enough to handle dynamic environments and filtering the
depth image does not provide much difference. There is a particular time that the object
detection algorithm fails and a false feature is added to the map but it is fully removed
when the AGV revisits that location. Figure 4.1.11 shows the results for the full lap and
Figure 4.1.12 presents the results for the eightshaped trajectory.
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(a) Map with no filtering applied. (b) Map with people removed from depth image.

(c) Trajectory with no filtering applied. (d) Trajectory with people removed from depth image.

(e) Trajectory from the Navitec localisation system.

Figure 4.1.11: RTABMap dynamic environment results for the full lap.

One of the differences that can be seen in these results is that when people are re
moved, the trajectory is a bit smoother in the canteen area, correcting a sudden turn that
is present in Figure 4.1.11(c), around coordinates (17,8). Also, the intersection of paths in
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the middle of the eightshaped trajectory is more similar to the real trajectory. That being
said, the maps are very similar in both cases.

(a) Map with no filtering applied (b) Map with people removed from depth image.

Figure 4.1.12: RTABMap dynamic environment results for the eightshaped trajectory.

For the isolated eightshaped trajectory results in Figure 4.1.12 it is also evident that
the maps are very similar whether people are removed from the depth image or not.

4.2 Pathfinding

This section presents the pathfinding results and the integration of the TensorFlow
Object Detection API to stop and resume the navigation of the robot.

The pathfinding algorithm from the ROS Navigation Stack works as expected both in
previously built maps and during the map building process. It generates a global path
towards the navigation goal and outputs velocity commands to make the robot follow that
path. The trajectory is recalculated according to updates to the map and whenever the
robot sees an object that blocks the global navigation plan.

Figure 4.2.1 shows the path being calculated for RTABMap in two different conditions.
In Figure 4.2.1(a) the path is drawn without knowledge of a part of the map, so the tra
jectory (in blue) is a straight line to the goal (represented by a red arrow). This path would
be impossible because there is an obstacle between the robot and the destination (the
shelves on the left of the map  see Figure 4.1.2(a)). When the remaining map is built by
RTABMap, the trajectory is adjusted correctly, as we can see in Figure 4.2.1(b). In this
occasion, the calculated path takes the robot around the shelves. A video related to this
subject is presented in link [25].

Note that the robot did not follow the suggested trajectory in Figure 4.2.1(a) in the
recorded data, which justifies the map not being as expected if that was the case. That is
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because we do not have the pathfinding system communicating with the robot’s control
system. However, in a fully integrated situation, the robot would follow that straight line
until it found obstacles that prevented its trajectory, then, the recalculation of the path
would take place in a similar fashion.

Figures 4.2.1 and 4.2.2 show two maps overlapping each other; the larger map built
by RTABMap below the smaller local costmap in black and white, centred in the robot.
The green rectangle is the robot footprint.
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(a) Straight line trajectory.

(b) Corrected trajectory.

Figure 4.2.1: Trajectory calculation and update according to the map.

Figure 4.2.2 presents the recalculation of the trajectory according to the position of
an unmapped obstacle appearing in sight of the robot. This obstacle is generated by a
person, since the algorithm that removes people from the depth image was intentionally
neglected in order to generate obstacles, and can be seen in the upper left part of the
local costmap (indicated by a blue arrow). The trajectory is deviated downwards so that
the robot does not crash into the obstacle. A video is also available showing this feature,
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in link [26].

(a) Initial trajectory. (b) Corrected trajectory after obstacle detection.

Figure 4.2.2: Corrected trajectory according to a new obstacle.

The maps in Figures 4.2.1 and 4.2.2 are made using RTABMap, but the Navigation
Stack also works with Gmapping, with the results being the same. This algorithm would
also work with HectorSLAM if good map results could be attainable with our setup.

The final topic related to pathfinding is traffic light obedience. A SLAM test running
a traffic light in a television screen has been employed. The television is placed in the
robot’s sight at a fixed location in the basement. However, a full SLAM validation has
not been possible, but the light colour detection is nevertheless attained. This limitation
arises from the fact that the object detection model SSD MobilenetV1 model trained over
the COCO dataset also detects television sets. Thus, the output from the detection is the
television and the traffic light image on the TV screen is seldom detected. Note that the
model is not changed from its original form in order to stop detecting irrelevant objects,
the irrelevant detections are simply ignored. The only way that this test could be run is if
a real traffic light was at our disposal, which it was not. However, testing with a traffic light
image on a mobile phone screen has shown that the colours are detected correctly and
the appropriate topics to cancel and resume navigation are published.

Figure 4.2.3 shows the algorithm stopping the navigation through the detection of a
red light. Figure 4.2.3(a) shows the colour image presented to the algorithm and Figure
4.2.3(b) shows the result of the colour identification. Figure 4.2.3(c) is the console out
put of subscribing to the move_base/cancel topic, which stops the publishing of velocity
commands. We can see that this topic is published when the red traffic light is detected.
Figure 4.2.3(d) is the output of subscribing to the cmd_vel topic, which corresponds to
the velocity commands. It is shown that this topic returns values equal to zero when the
move_base/cancel topic is published, i.e., the navigation is stopped.
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(a) Colour Image.

(b) Output from the object detection algorithm.

(c) move_base/cancel topic being published. (d) cmd_vel topic values turning to
zero.

Figure 4.2.3: Red traffic light effect on navigation.

Figure 4.2.4 shows the successful detection of a yellow traffic light. The console out
puts for the ROS topics are not shown because a yellow traffic light has no effect on
navigation.
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(a) Colour image.

(b) Output from the object detection algorithm.

Figure 4.2.4: Yellow traffic light detection.

Figure 4.2.5 presents the successful detection of the green light and the restart to the
navigation, since the cmd_vel topic has nonzero values.

(a) Colour image.

(b) Output from the object detection algorithm.

(c) cmd_vel topic values.

Figure 4.2.5: Green traffic light effect on navigation.
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Chapter V

Conclusion and Future Work

This work has been focused on the development of natural navigation methods for
AGVs and AMRs with the use of the Intel RealSense D435i depth camera. This implies
performing SLAM and allowing the robot to find the best path to a destination consider
ing the robot’s surroundings. Successful attempts to map a space have been carried out
with Gmapping and RTABMap using RGBD odometry. Pathfinding and traffic light obed
ience has also been implemented. Additionally, some attempts to improve the mapping
results have been tested through the removal of people from the depth image using object
detection algorithms.

It has been found that HectorSLAM is not a good choice for narrow field of view depth
cameras like the Intel RealSense D435i since the amount of features in each frame is
usually not enough for mapping, leading to system failure. This would not be the case in
a 360º laser scanner, for instance. Furthermore, it has been determined that the ability to
have some kind of delayedmap/trajectory correction is very important, which HectorSLAM
does not have. The other two SLAM algorithms tested have this capability and showmuch
better results. In the case of Gmapping, this feature is provided by the particle filter, by
keeping a number of particles that describe various possibilities for the state of the system.
For RTABMap, this feature is done through pose graph optimisation in loop closures,
which is very powerful.

All in all, RTABMap is the algorithm that provides the most accurate results in a more
reliable way both in static and dynamic environments. Additionally, RTABMap also con
tains a very good implementation for performing RGBD odometry, which we conclude
that is a good way to generate an odometry source with a depth camera.

In dynamic environments, the Yolact object detection implementation is added to the
system, in order to remove people from the camera’s data to improve results. In the tests
made as a part of this work, it was found that both Gmapping and RTABMap are robust
against this type of moving obstacles and removing people from the data does not make
much difference in the maps. That being said, the detection of people in the robot’s sur
roundings is very important for the final iteration of the AMRUVC project. For instance,
to implement a solution that turns off the UV light used for disinfection when a person is
detected so that the UVC radiation does not cause accidental injuries to anyone. Another
feature that can be added through object detection is the ability for the robot to follow a
person, for an AGV with industrial purposes.
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Finally, for pathfinding, the results are very good, with the system having robust path
planning capabilities in a variety of environments, either static or dynamic, with and without
a previous map. The trajectories take the known map into account as well as current
sensor data in order to plan feasible and collisionfree navigation for the robot. The pathfind
ing system is also compatible with all SLAM algorithms tested. Furthermore, an object
detection algorithm was added through the TensorFlow Object Detection API in order to
detect traffic lights and respective colour, and the navigation is successfully stopped and
resumed accordingly. We consider that this algorithm is ready for further iterations of the
project with the integration with the AGV’s control system.
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