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Abstract

There is a need to discover new, reliable techniques to test procedurally generated game
scenarios. One method that has potential is automated testing, which consists in using
synthetic players to play and test the newly generated scenarios. Therefore, to test this
assumption, this work models two types of synthetic players that are put in a Bomberman-
like scenario. In this case study, the players must place bombs in strategic places in
order to eliminate the opponents. One synthetic player is developed via a planning-based
approach, in which the agent searches for a sequence of actions that leads from the current
state of the game to the desired game state. The second approach is machine learning,
more precisely, combining Imitation Learning with Reinforcement Learning in order for
the synthetic player to first learn by observing human demonstrations, and then improve
its performance by maximizing its policy via the environment rewards. Results show that
the planning synthetic player manages to play and win the game consistently against
opponents developed by the machine learning approach, and can generalize well to new
unseen scenarios. It also obtained positive scores in a survey regarding its believability. All
of these attributes makes the planning synthetic player a viable tool to test procedurally
generated game scenarios. However, the planning agent struggles when facing a human
player, providing an easy-to-moderate challenge for the human. The machine learning
approach produced modest results, not being able to win the game consistently. Its modest
performance harms its believability as well. Nonetheless, a particular trained model could
be perceived as if grasping how to play the game and managed to survive long-enough
periods to explore the game space.

Keywords

Artificial Intelligence in Games, Synthetic Player, Imitation Learning, Reinforcement Learn-
ing, Planning
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Resumo

Há uma necessidade de se encontrar novos métodos confiáveis para testar cenários de jogo
gerados procedimentalmente. Um método que mostra potencial é teste automatizado, que
consiste em usar jogador sintéticos para testar novos cenários de jogo. Deste modo, para
testar esta suposição, este trabalho modela dois tipos de jogadores sintéticos que são colo-
cados num cenário semelhante ao Bomberman. Neste caso de estudo, os jogadores têm de
colocar bombas em lugares estratégicos para eliminar os adversários. Um jogador sintético é
desenvolvido através de uma abordagem baseada em planeamento, em que o agente procura
por uma sequência de ações que leva desde o estado atual do jogo até ao estado desejado.
A segunda abordagem é aprendizagem computacional, mais precisamente combinar apren-
dizagem por imitação com aprendizagem por reforço, para que primeiro, o jogador sintético
aprenda observando demonstrações humanas, e depois melhore a sua performance através
das recompensas do ambiente. Resultados mostram que o jogador sintético de planea-
mento consegue jogar e ganhar o jogo consistentemente contra oponentes desenvolvidos
pela abordagem de aprendizagem computacional, e consegue generalizar bem para novos
cenários. Também obteve resultados positivos num inquérito acerca da sua credibilidade.
Estes atributos fazem do jogador sintético de planeamento uma ferramente viável para
testar cenários de jogo gerados procedimentalmente. Contudo, o agente de planeamento
tem dificuldades quando joga contra um jogador humano, fornecendo apenas um desafio
de dificuldade fácil a moderada para o humano. A abordagem de aprendizagem computa-
cional produziu resultados modestos, não sendo capaz de vencer o jogo consistentemente.
O seu desempenho pouco satisfatório também magoa a sua credibilidade. Não obstante
esse facto, um modelo treinado aparenta ter aprendido as regras básicas do jogo e conseguiu
sobreviver períodos de tempo suficientes para explorar o espaço de jogo.

Palavras-Chave

Inteligência Artificial em Jogos, Jogador Sintético, Aprendizagem por Imitação, Apren-
dizagem por Reforço, Planeamento
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Chapter 1

Introduction

1.1 Motivation

Some academics and game developers claim that Non-Playable Character (NPC) behaviour
is already “solved” [Nareyek, 2007]. By this, they mean that the current performance of
NPCs in games has already reached highly satisfactory results, and there is not a lot more
to be done to improve the area of NPC modeling even further (at least, without allocating a
significant amount of resources to it). This claim is supported by statistical proof. Analyz-
ing the trending topics of main conferences like IEEE CIG (Computational Intelligence and
Games), AIDE (Artificial Intelligence and Interactive Digital Entertainment), and FDG
(Foundation of Digital Games), one can clearly see that NPC behavior and game-playing
agents fell in the pecking order, with areas such as Procedural Content Generation (PCG)
and player modeling becoming more popular among researchers [Yannakakis and Togelius,
2015]. Therefore, there is indeed a shift of mentality towards other areas of using AI in
games, besides NPC-related matters [Yannakakis, 2012]. Despite these areas’ rise in pop-
ularity, research about the relationship between them is sparser. For instance, exploring
the use of agents in procedural content generation is a field vastly underexplored, although
the potential of said relationship is already known [Yannakakis and Togelius, 2015].

In fact, one of the open challenges of procedural content generation is the lack of reliable
techniques to validate the generated content. This is particularly evident in the game
industry, where modern videogames are relying more and more on procedural generation
techniques to create a large amount of content, like vast game worlds. Game playtesters
are not able to test everything that is procedurally created in time, before the game is
publicly released. This situation may lead to unwanted results, e.g. launching a defective
product in the market.

Therefore, there is a need to discover new reliable techniques that improve the game
testing process. One method that shows promise is automated playtesting. It consists of
using agents (synthetic players) that can faithfully replace a human playtester. This still
underexplored approach is the subject matter of this work.

1.2 Goals and Contributions

This dissertation aims to show the potential value of using agents as instruments in playing
and testing procedural generated content. To achieve this, two types of synthetic players

1
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are developed and evaluated on game scenarios generated via PCG.
In order to successfully develop a synthetic player, three main requirements must be fulfilled
[Shih and Teng, 2020]:

• Ability to play and win the game. First and foremost, synthetic players need
to be able to play and win the game, since their main goal is to play and test game
scenarios.

• Ability to play new untested game scenarios. In order to be reliable automated
testing tools, synthetic players need to be able to play previously unseen game sce-
narios. This translates into the need for a good generalization capability - the
process of extrapolating previously obtained knowledge to a new scenario in order to
adapt to the unknown.

• Playing in a believable way, i.e. in a human-like manner. An agent used in
automated testing needs to act in a believable manner, otherwise the feedback from
the agent testing a certain game scenario may be untrustworthy. If this requirement
is not met, an agent can exploit the game to win instead of playing it as intended.

With these requirements in mind, two AI techniques were chosen to model the synthetic
players - planning and machine learning. The choice of using these two particular methods
is justified in section 3.1, weighing their pros and cons compared to other AI techniques.
Therefore, the contributions of this dissertation are:

• An implementation of a planning agent, that searches its action space to find a
sequence of actions that achieves the current goal;

• An implementation of a reinforcement learning agent, that first learns from demon-
strations of gameplays of a human player and then keeps improving its performance
due to extrinsic rewards.

• An analysis of the performance of both implementations and their potential success
in fulfilling the three requirements for modeling synthetic players listed above;

The synthetic players will act upon procedurally generated game scenarios of a turn-based
adaptation of the Bomberman video game, which will be explained in detail in section
3.2. The development of the game system and the procedural generation of game scenarios
are out of the scope of this dissertation. The game scenarios and the platform itself where
synthetic players will be tested are an output of the works of another dissertation: Modeling
and Generation of Playable Scenarios Based on Societies of Agents [Correia, 2021].

1.3 Methodologies

In the making of this project, a Design Science Research-based methodology was applied.
This process is composed of five stages. First, the Awareness of a Problem, where one
discovers and defines a particular problem and tries to understand it. In the context
of this dissertation, the problem was already identified: the potential of using agents as
automated testing and game-playing tools, and how underdeveloped this area of research
is. In addition, the problem was also formally defined, within the list of the goals of this
dissertation, in 1.2.

With the problem initially understood, the next step is to generate a solution proposal
in the Suggestion stage. After the theoretical conception of the proposal (agent represen-
tation and choice of techniques), one proceeds to the Development phase that generates
an artifact (synthetic players). In this context, the artifact is a proof of concept of the
proposed solution. Next, in order to verify if the developed prototype’s performance meets

2
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Introduction

the expectations, one proceeds to the Evaluation phase (running a simulation to collect
empirical data).

Design Science Research is an iterative process because knowledge obtained from the De-
velopment and Evaluation phases might reveal that the current suggestion is inappropriate
or even obsolete. Therefore, there is a necessity of going back to the suggestion phase, to
propose a different approach in the light of the newly obtained knowledge.

Finally, when the results of the evaluation phase are satisfactory, one may move on to the
last stage - the Conclusion, where the final results are presented and a reflection about all
the elaborated work is made. In most cases this is attained only after several iterations of
the whole process. After generating the final artifacts (models of synthetic players), this
dissertation is completed. Figure 1.1 allows the reader to better visualize the flow of the
Design Science Research process.

Figure 1.1: Design Science Research process [Vaishnavi et al., 2004]. *Circumscription
is the formal definition for the assumption that things work as expected unless stated
otherwise.

During the Development Phase, since it is the largest of all, some practices of the Scrum
software engineering methodology were applied, namely a temporal division of the develop-
ment tasks in sprints and the existence of both a product and a sprint backlog. A product
backlog is a list of all the tasks needed to be done in order for work to be fully completed.
A sprint backlog is a list of tasks chosen from the product’s backlog to be implemented
during the specified sprint.

Sprints were defined as either a half of or a full calendar month. An initial design proposal
was made and exposed in this dissertation’s intermediate defense at the end of January.
Taking into account the recommendations obtained in the defense, the entire February
was dedicated to changing and tweaking the design proposal. Therefore, the development
phase started effectively in the beginning of March.

Thus, the first sprint occurred during the entire March, and its backlog consisted of two
high-level tasks (decomposed in several minor tasks): development of a prototype (to be
used as a temporary platform) for the selected case study and implementation of the first
Artificial Intelligence (AI) approach to model synthetic players, i.e., the planning agent.

3
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While the temporary platform was completed, the planning agent implementation was not
finished in the first sprint and therefore went back to the product backlog again.

The second sprint was composed by the first half of April, until the proper platform for the
case study was finished by [Correia, 2021], and its backlog had two high-level tasks to be
completed: the development of the planning agent that was not finished in the first sprint,
and an initial evaluation of its performance. Results suggested that the implementation
needed some additions and changes, and therefore, the task regarding the development of
the agent was once again put back in the product backlog.

The third sprint encompassed the 2nd half of April, and the high-level tasks selected for
its backlog were transitioning the planning agent to the real platform and setting up the
machine learning agent to be ready for training.

Fourth sprint comprised the first half of May, and was dedicated to machine learning agent’s
training (by IL and classical Reinforcement Learning (RL)), and an initial evaluation of
its performance. Results showed that more training was required in order for the agent to
achieve relevant results.

In the fifth sprint, which occurred during the last two weeks of May, the planning agent-
related task was completed, and more machine learning training was planned. An evalu-
ation phase, comparing the performance of both agents, was done. Results showed that
not only was the machine learning agent not ready yet, but also that a few minor tweaks
to the planning agent were to be done. Since the initial sprint changes of the planning
synthetic player took less time than expected, it was also possible to implement the new
needed tweaks that had resulted from the previous Evaluation phase in the same sprint.

The last sprint was composed of the first two weeks of June, when the machine learning
agent trained once again, and then evaluation was done in the middle of the sprint. Results
were still not relevant enough, so a new training approach was devised and the agent started
to train in a self-play environment, with a curiosity module incorporated as well.

A final Evaluation phase of the performance of all the modelled synthetic players and
conclusion of the work happened in the last two weeks of June.
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1.4 Workplan

The effective work for this dissertation during the first semester is depicted in Figure 1.2.
It was mostly composed of gathering and reading research material, and then devising an
initial design proposal to address the stated problem.

Figure 1.2: Gantt Diagram of the work done in the first semester.

Weeks in Figure 1.2 are considered to start on Tuesdays, for one main reason: the weekly
meeting with the supervisor usually happens on Tuesdays, and sets the pace for the rest
of the week. Furthermore, the work officially started with attending the Foundations of
Digital Games 2020 Conference (FDG 2020), which also happened to start on a Tuesday.
Finally, the fact that the report submission deadline (January 18) was on a Monday was a
fortunate coincidence that further supported the decision of considering the beginning of
the working week on Tuesdays and the end of it on Mondays. The Article Reading tasks
are as follows:

• A1- James Ryan’s PHD Dissertation;
• A2- Player Modeling - Chap. 5 of Artificial Intelligence and Games Book [Yan-

nakakis and Togelius, 2018];
• A3- AI in Games: Methods and Subareas of Research;
• A4- A. Loyall’s PHD Dissertation;
• A5- NLP Articles;
• A6- Believable Agents Articles;
• A7- AI - A Modern Approach Book [Russell and Norvig, 2010];
• A8- AI Playing The Game - Chap.3 of Artificial Intelligence and Games Book [Yan-

nakakis and Togelius, 2018];
• A9- Growing Artificial Societies Book [Epstein, 1994];
• A10- Disease Modeling Articles;
• A11- Player Modeling Articles;
• A12- Simulation-Based Testing;
• A13- AI And Artificial Life in Video Games Book [Lecky-Thompson, 2008];
• A14- Agent-Based Modeling;

Adopting the Design Science Research methodology described previously, in the end of the
project, the effective work done during second semester is depicted in Fig 1.3.

The tasks depicted in Figure 1.3 are the following:
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Figure 1.3: Gantt Diagram of work done during the second semester. (A#1 denotes the
planning synthetic player approach; A#2 represents the machine learning approach)

• Application of Intermediate Defense’s Suggestions: Incorporating the recom-
mendations provided at the intermediate defense to the document.

• Design Proposal: Conception of the design proposal to be implemented and tested
in order to solve the identified problem.

• Temporary Prototype: Development of a temporary game scenario prototype in
order for the work to progress, while waiting for the conclusion of the actual platform.

• A#1 Development: Development of the planning approach, that was decomposed
in several subtasks (definition of actions and goals, building the agent model, imple-
menting the A* Algorithm for the planning process, and final tweaks to the agent).

• Transition to Real Platform: Any task that is performed in order to adjust the
implementation work so far to the final platform.

• A#2 Setup: Setup of the machine learning approach. This includes setting up
the basic RL loop, implementing the functions to calculate rewards and setup of the
heuristic mode of the agent to be able to provide gameplay demonstrations in order
for it to perform IL.

• A#2 Training: All the training tasks referring to the training process of the ma-
chine learning agent. This includes providing gameplay demonstrations, IL and RL
training.

• Evaluation: Refers to the experiments done in order to evaluate the performance
of the developed synthetic players.

• Conclusion: Summarizing the results of the final evaluation phase, discussing them,
and finishing the entire project.

• Dissertation Writing: Writing the document.
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1.5 Tools

The Unity game engine 1 was used for the development of the project. Unity is a cross-
platform game engine that allows the creation of both 2D and 3D worlds, and is popular
among game developers. It supports scripting in C#. Since one approach to model syn-
thetic players is machine learning, a special framework is required. Unity provides the ML-
Agents toolkit 2 3, an open-source framework that allows to train intelligent agents with
state-of-art reinforcement learning algorithms in an Unity environment. Finally, Github 4

is also used for version control and to easily merge contributions of both dissertations (this
one and the one of [Correia, 2021]).

1.6 Risks Assessment

This project was subjected to some possible risks:

• R1: The game scenarios, as the platform itself, are being developed concurrently;
This dependency can impact the timeline of the project.

Mitigation strategy: Close collaboration and information sharing to enable timeline ad-
justments. The development process was planned in cooperation and some Scrum practices
are adopted (iterations, sprints, planning and tracking meetings) to cope with unforeseen
conditions.

• R2: The game scenarios, as the platform itself, are being developed concurrently;
The inadequacy of the synthetic players being tested for the PCG game scenarios
under development could endanger the results.

Mitigation strategy: Close collaboration and information sharing to specify useful PCG
testing scenarios.

• R3: The machine learning framework that is used is a black-box type, not allowing
to twinkle with the neural network architecture; It makes it difficult to recognise
problems with the agent’s training and make adaptations.

Mitigation strategy: Dealing with the black-box nature of the framework is hard and
there is not much that can be done about it. This risk became an actual problem due to the
lack of a mitigation measure addressed to it. A combination of planning (white box) and
RL (black box) strategies was tested to minimize dependency and enable more control over
the study conditions. A series of testing cases enabled analysing ways of making progress
empirically.

1Unity Official Page: https://unity.com/
2ML-Agents Framework Official Page: https://unity.com/products/machine-learning-agents
3ML-Agents Framework Github: https://github.com/Unity-Technologies/ml-agents
4Github Offical Page: https://github.com/
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1.7 Structure Of This Document

The outline of the rest of this document is as follows.
Chapter 2 describes the state-of-the-art of using AI to model agents to play games and
to act in a believable way.
Chapter 3 unveils the implementation details of the developed synthetic players, while
Chapter 4 lists the experiments done in order to evaluate their performances.
This work ends with Chapter 5, which is a conclusion of the obtained results and states
its contributions for future research.
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Chapter 2

State-of-the-Art

In this section, an in-depth overview of how AI is used to play games is given, answering
the questions “why games for AI?”, “What type of games can AI play?” and “How can AI
play games?”. Then, the section summarizes the state-of-art of simulation-based testing.
As already said in section 1.2, one of the requirements to model synthetic players is the
believability of their behaviours. Henceforth, this section also approaches the field of
believable agents, and finishes with how player modeling can also be used to model said
agents.

2.1 AI Playing the Game

This chapter discusses the use of Artificial Intelligence in games, more specifically, to play
a game. It starts with the explanation of why the relationship between games and AI
is beneficial, then lists the type of games that AI can play and how. The section then
summarizes which roles AI can assume while playing the game.

2.1.1 Why Games For AI

The benefits of AI in games are clear: AI techniques can be used to play the game, which in
turn helps to improve the overall experience of the human player [Yannakakis and Togelius,
2018]. The subarea of procedural content generation can also be used to diminish the game
designer’s authorial burden. However, what about the inverse? What is the motivation
for bringing games to the field of Artificial Intelligence? In fact, there are several strong
reasons for such symbiosis.

Games are hard and interesting problems, even the ones that have simple rules
[Yannakakis and Togelius, 2018]. This may sound paradoxical, but indeed, most games
can be represented mathematically in just a few lines while at the same time having a
large search space, which is always a hard problem to solve. One example of such a game
is the ancient board game Go, that despite its simple rules, it has a search space of 10270

states [Russell and Norvig, 2010].

Understandability because it can easily be seen what the agent is doing and how well
it is performing[Schaul et al., 2011].
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Public awareness because most people know what games are about, so a research
breakthrough is easier to explain by extrapolating it to a game than explaining it in an
abstract manner like theorem proving[Schaul et al., 2011].

Speed is also a reason due to the possibility of speeding up the simulation of games, and
therefore being able to play a game several hundred times per second[Schaul et al., 2011].

Industrial Application The game industry can be an economically very relevant ap-
plication domain for AI, since it is the largest entertainment industry[Schaul et al., 2011].
This factor also contributes to the sheer amount of content that exists regarding games.
Since there is more content, that leads to a big diversity as well. In fact, there are a
plethora of game genres, from classic arcade games to the modern ones that present com-
plex open-world 3D environments. Therefore, this wide diversity is also an important
factor to support the use of games as AI testbeds since it provides challenges to all AI
areas. Natural language processing, machine learning, search and planning, knowledge
representation, and reasoning, among many other areas, have reached breakthroughs using
games to measure their performance.

Notable Examples

Chess One of the most famous examples is IBM’s Deep Blue [Campbell et al., 2002] chess
program that, in 1997, was able to beat the world champion at the time, Garry Kasparov,
in an exhibition match that had a lot of media buzz [Yannakakis and Togelius, 2018].
Nowadays, the best chess engine is AlphaZero [Silver et al., 2018], Google DeepMind’s
property, which beat in 2017 the best chess program at that time, Stockfish.

Checkers was also one of the first board games used for AI research, hence they are nick-
named the "drosophila of AI" by many researchers. The first attempt at solving checkers
goes back to 1959 when A.Samuel developed a program to play the game [Yannakakis
and Togelius, 2018]. Nonetheless, only in 1994, a computer program called Chinook [Yan-
nakakis and Togelius, 2018] managed to beat the world champion for the first time, using
alpha-beta search. By 2007, Chinook had totally solved the game [Yannakakis and To-
gelius, 2018].

Backgammon One game where AI achieved supremacy over human players prior to
chess and checkers, was Backgammon [Yannakakis and Togelius, 2018]. In 1992, G.Tesauro
created a program called TD-Gammon [Yannakakis and Togelius, 2018], combining rein-
forcement learning with neural networks, playing the game against itself a few million
times. The program was able to perform at the same level as top human players.

Othello was also mastered by the computer [Russell and Norvig, 2010], with the in-
troduction of Logistello [Yannakakis and Togelius, 2018]. This program beat the Othello
world champion in 1997.

Scrabble In 2006, Quackle [Yannakakis and Togelius, 2018] managed to beat the Scrab-
ble world champion.
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Go More recently, in 2017, Go was the last classic board game that was finally “cracked”
by AI. Google DeepMind presented AlphaGo [Silver et al., 2016], a program that beat
the number one ranked Go player in the world, featuring a deep reinforcement learning
approach.

Video Games AI advancements did not happen only using board games as testbeds
[Yannakakis and Togelius, 2018]. As a matter of fact, in 2014, Google DeepMind [Mnih
et al., 2013] also managed to create an algorithm that learned how to play several games
from the Atari 2600 video game console better than any human could possibly play. The
agent, which consisted in a deep Q-network, used solely the raw pixels and the game score as
input. Furthermore, the real-time strategy video games Starcraft (Blizzard Entertainment,
1998) and Starcraft II (Blizzard Entertainment, 2010) went to become famous benchmarks
among game AI researchers, with the existence of an already large number of algorithms
to play the game, or at least, parts of it. The use of Starcraft II in research was also
propelled by the announcement of two industry giants, Facebook and Google DeepMind,
that started using the videogame for research of their own [Yannakakis and Togelius, 2018].
As a matter of fact, in 2019, DeepMind’s AlphaStar agent achieved grandmaster level in
Starcraft II, performing better than 99.8% officially ranked human players [Vinyals et al.,
2019]. AlphaStar uses both supervised and reinforcement learning methods. First one is
applied so the agent can learn to imitate human players. Then, reinforcement learning is
used to improve AlphaStar’s performance even further, utilizing games where the agent
plays against itself as training data. AlphaStar’s learning experience is equivalent to 60
000 years of human experience [Zhao et al., 2020].

Natural Language Processing In the field of natural language processing, IBM created
a software, called Watson [Ferrucci et al., 2011], able to answer questions addressed in
natural language. In 2011, the program went on to win 1million dollars in the Jeopardy
TV game, being pitted against former winners of the game [Yannakakis and Togelius,
2018].

2.1.2 What Type of Games Can AI Play

AI techniques can be used to play a wide range of games, from board and card games,
to complex strategy and action combat games [Lecky-Thompson, 2008] [Yannakakis and
Togelius, 2018].

Board Games As previously illustrated, AI techniques can be used to create forms of
agency that can play board games. Due to its deterministic nature, perfect information
and narrow-scope of required skills to play, board games provided ideal environments to
test some AI techniques, therefore being the first type of games used in AI research. Board
games are mostly played recurring to tree-search algorithms. As a matter of fact, the tree-
search algorithm Minimax was invented to play chess [Yannakakis and Togelius, 2018].
Due to its large branching factor, Go couldn’t be solved with Minimax, which incentivated
the creation of the Monte Carlo tree search algorithm [Yannakakis and Togelius, 2018].

Card Games In card games, the common approaches to play the game are by rule-
based systems, Monte Carlo tree-search, reinforcement learning and evolutionary algo-
rithms [Niklaus et al., 2019]. Rule-based systems are created with human knowledge of
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the game. Such systems are mostly constituted by condition-action statements. With re-
inforcement learning methods, complex games like Poker can also be played at an expert-
human level. In [Zinkevich et al., 2009], a novel algorithm was proposed that advanced
the state-of-art at that time, regarding playing card games, called Counterfactual Regret
Minimization. Google DeepMind also developed an agent, called DeepStack [Moravčík
et al., 2017], that attained expert-human performance in Poker’s variant Texas Hold’em.

A few works also used evolutionary algorithms to play card games [Niklaus et al., 2019].
For instance, in [Mahlmann et al., 2012], an evolution algorithm is coupled with an artificial
neural network to create an agent capable of playing the card game Dominion, although
the focus of the work is on game balancing purposes. In card games with deck building as
a mechanic, one possible approach is to consider the deck as the genome and the fitness
function using simple agents to play the game, like in [Garcia-Sanchez et al., 2016].

Classic Arcade Games are also common playgrounds for AI. Some games like Infinite
Mario Bros (Nintendo, 1985) and Pac-Man (Namco, 1980) constitute some of the most
popular games used as benchmarks in AI research. The Atari games solved by DeepMind
[Mnih et al., 2013] are also inserted in this category of games.

Strategy Games are a harder type of game for an AI to play and to master. These
games are divided in two types: real-time and turn-based. While the hardest challenge in
these games is to formulate a long plan, the first type adds an additional challenge of speed
in decision-making and planning. Notable examples of strategy games are the Starcraft
franchise (Blizzard Entertainment) (real-time), Civilization franchise (Firaxis Games, 2K
Games) (turn-based) and XCOM franchise(Firaxis Games, 2K Games) (turn-based).

Simulation Games This genre includes games like The Sims franchise (Electronic Arts),
Crusader Kings franchise (Paradox Interactive), Dwarf Fortress (Bay 12 Games, 2006), and
Black & White (Electronic Arts, 2000). These games do not have an actual goal, and the
player is only playing against himself and the environment [Lecky-Thompson, 2008]. The
game test scenario proposed for this dissertation belongs to this genre.

Adventure and Exploration Games This category contains games like open-world
RPGs (Role-Playing Games). Two popular examples of such games are The Elder Scrolls
(Bethesda Softworks) franchise, and The Witcher (CD Projekt Red) saga. In these games,
there are several activities that NPCs must be prepared to perform, such as planning
actions and interacting with the player (sometimes the interaction actually corresponds to
fighting the player) [Lecky-Thompson, 2008].

Motor-Racing Games Racing games are also a common type of game where AI is used
to play the game. Despite at first looking an easy type of game for an artificial agent to play,
several concurrent tasks are required to be executed. Breaking, steering, and gear shifting
are some of the activities that the AI must be prepared to do at the same time [Lecky-
Thompson, 2008]. In this genre, there are games with varying degrees of realism: from
Mario Kart franchise (Nintendo), where the cartoonish drivers can use weapons against
the opponents, to realistic driving simulators like F1 franchise (Codemasters).
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Action Combat Games First person shooters are the games that composed the bulk
of the action combat genre. As Guy Lecky-Thompson says in his book [Lecky-Thompson,
2008], “AI in action combat games has to strike a balance between perfection and incom-
petence, which is extremely difficult to get right.” Indeed, if the AI opponent is modeled
to play optimally, boring and predictable gameplay will happen. For instance, camping
(staying positioned in the same spot waiting to catch opponents off guard) is a high-
performance strategy to adopt while playing first-person shooters, but said strategy is seen
as unsportsmanlike and boring conduct [Yannakakis and Togelius, 2018]. Examples of
first-person shooters include Half-Life (Valve Corporation, 1998) and F.E.A.R. (Monolith
Productions, 2005), which are going to be mentioned in more detail in the subsection 2.1.3.

Fighting Games Examples of fighting games include Mortal Kombat (Warner Bros.
Interactive Entertainment) and Street Fighter franchises (Capcom). In this type of game,
the action is fast-paced and there is a relatively short amount of moves to choose from
(therefore, the search space is small). A fighting AI typically is implemented as a rule-based
AI and is characterized by having discrete short term goals and a reactionary mechanism
to counter human player attacks. However, since the main focus of these games is on
fighting the AI opponent, there are plenty of opportunities for the AI to learn from the
player and adapt to his strategy [Lecky-Thompson, 2008]. Therefore, adaptive AI is one
way to achieve a better experience for the player.

2.1.3 AI Methods In Games

Ad-Hoc Methods

Finite-State Machines were the most predominant technique used in the game indus-
try, until the mid 2000’s, to deal with Non-Playable Character (NPC) behaviour [Yan-
nakakis and Togelius, 2018]. Finite-state machines are represented by graphs, in which the
nodes, formally called states, commonly represent a possible behaviour of the character,
and the edges, called transitions, denote the possible shift from a state to another. Each
state has certain actions associated, that were ad-hoc designed. In other words, when the
system enters a new state, pre-defined actions on entering the state are triggered. Then,
when leaving the state, it might trigger two different sets of actions: a set of actions of
the current state when leaving it, and the predefined set of actions on the new state when
entering it.

Finite-state machines have several advantages like being very easy to design, implement
and debug [Yannakakis and Togelius, 2018]. However, they present a serious disadvantage:
the lack of scalability. In fact, in a large and complex project like a AAA video game,
maintaining a finite-state machine might turn out unsustainable, since adding a new state
to the system implies a large number of modifications and new transitions. Therefore,
finite-state machines do not provide room for adaptability, and lead to a predictable pattern
of behaviour.

Valve’s classic first-person shooter Half-Life, released in 1998, held a big role in popular-
izing finite-state machines as the game AI main method for dealing with NPC behaviour
[Thompson, 2019a, a]. The game’s source code is publicly available. Examining it, one
can see that every character is of a type named “Monster”. This core class contains a
definition of a “state”, albeit it does not correspond to a state of a finite-state machine. In-
stead, it describes what the character is currently doing. Each subtype of class “Monster”
also contains specific tasks that each instance of that type can execute. In total, there
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are eighty unique tasks in the Half-Life’s codebase, and these tasks correspond to states
of the finite-state machine. In addition, each character has conditions, which represent
the current information that it possesses, along with sensors that allow the update of the
conditions (there are sensors of vision, sound, and smell). These conditions correspond to
the transitions of the finite-state machine.

One variant of the original finite-state machine is the hierarchical finite-state machine
[Thompson, 2019a, a]. This type of system helps to deal with a larger number of states
and transitions, since it allows the transition not only to a particular state as in normal
finite-state machines, but also to a group of several states. Therefore, it can also provide
a way to transition from one finite-state machine to another. Hierarchical finite-state
machines still have been used as recently as 2016 [Thompson, 2019a, a], in video games
like Wolfenstein: New Order (Machine Games, 2014) and the reboot of DOOM (Bethesda
Softworks, 2016).

Another variant is the fuzzy finite-state machine, and it is a way to avoid the predictable
pattern of behaviours of the normal version of the system [Lecky-Thompson, 2008]. A fuzzy
finite-state machine can transition to multiple states and, consequently, can be in several
states at the same time. There are two subcategories of fuzzy finite-state machines: fuzzy
state FSM and fuzzy transition FSM [Lecky-Thompson, 2008]. In the former, a “state”
can actually be a set of several states in which the system is, and with the possibility of
being in them at different degrees. For instance, to simulate driving a vehicle, a fuzzy
state FSM can be applied, since one can be turning, braking and shifting gears at the same
time. Each task is therefore a state, and the system can be in several states at the same
time, with varying degrees of membership. The second subcategory, the fuzzy transition
FSM, simply has assigned probabilities to each transition, with the possibility of each state
having several possible transitions. Only one transition can be followed at a time, as in
the normal finite-state machine, but that might still lead to a different behaviour when
transitioning from one state to another, since there are multiple transitions to choose from.

Behaviour Trees are directed acyclic graphs [Thompson, 2019b, b] that, similarly to
finite-state machines, model transitions between a set of behaviours. Their advantage over
finite-state machines is the modularity of the former. In fact, they can generate complex
behaviours composed of multiple simple tasks [Yannakakis and Togelius, 2018]. Like finite-
state machines, behaviour trees are easy to design, implement and debug, with the main
difference between the two methods: one being composed of states and the other made of
behaviours [Yannakakis and Togelius, 2018].

A behaviour tree starts its execution in the root node, and goes down the tree in a sequential
manner to execute behaviours, that are in the leaf nodes. Along the way, there are other
three types of nodes: selector, sequence and decorator. The first one, the selector node,
decides which child node to execute based on game world information. A selector node
can be, more specifically, a priority selector or a probability selector. In the former, child
nodes are ordered by priority and tried one after the other until one child node is executed
successfully.. In the latter, each child has a probability to be executed, ad-hoc specified by
the designer. The second type of node, the sequence node, allows the execution of several
child nodes in succession. The last one, the decorator node, provides more complexity
for a single child node. For instance, it might allow repeating several actions or even
make a selector to make the opposite decision of what it should choose given the available
information.

Behaviour trees are the cornerstone of modern game AI, being the most dominant method
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in the game industry, after its successful implementation in Halo 2 and Bioshock [Yan-
nakakis and Togelius, 2018].

Utility-Based AI consists of the agent having an internal performance measure, called
utility function, that calculates the importance of different aspects of the current game
state. The aim of the agent is to maximize its utility function [Russell and Norvig, 2010].

One example of the use of utility-based AI can be seen in the modern action RPG Horizon
Zero Dawn (Guerrilla Studios, 2017), where the player has to fight electronic creatures
that have resemblance with biological animals. In this video game, an utility function is
used to manage AI behaviour of the machines when entering combat against the player
[Beij, 2017]. More specifically, the utility function is used to assign combat roles to each
enemy machine when the player is spotted by any member of the herd. For each machine,
its utility is calculated for each available role, and the one who scores highest will get that
role assigned to it. For instance, for the “attacker” role, the closer to the player a machine
is, the greater its utility value will be for that role.

Utility-based AI has several advantages over other ad-hoc methods [Yannakakis and To-
gelius, 2018]. First, it presents a greater amount of modularity, since the utility function
depends on several variables, and this list of factors can be dynamic. Second, it has room
for improvement and change, since adding new variables to have in consideration in the
utility function is easier. Finally, the method is also reusable, since it can be extrapolated
not only from a decision to another, but even from a game to another game.

Utility-based agents are also superior to goal-based agents (approached next), in two dis-
tinct cases [Russell and Norvig, 2010]: when there are goals that conflict with each other
and when there are several goals possible to be reached, but none can be reached with
certainty. In the former case, the utility function can decide the appropriate trade-off and
choose which goal is the best given the current situation. In the latter, the utility function
allows to decide between one of the several possible goals by having in consideration the
relationship between the probability of success and the importance of objectives.

However, Utility-based AI also has some limitations. As any other ad-hoc method, the
agent will never be smarter than the game designer who specifies the utility function
[Rasmussen, 2016]. Also, it requires time for testing, to tweak the utilities in order to
ensure correct and smart behaviours [Rasmussen, 2016]. In addition to that, it is not
always easy to formulate an appropriate utility function, and to properly justify where the
numbers come from [Wooldridge, 2005].

Planning-Based Approaches

Goal-Oriented Action Planning Roughly at the same time of the rise to popularity
of behavior trees, another novelty method gained traction in the game industry, Goal-
Oriented Action Planning (GOAP)[Orkin, 2003]. This method was first implemented with
success in the video game First Encounter Assault Recon (or F.E.A.R. for short) (Monolith
Productions, 2005) [Orkin, 2006], a survival horror first-person shooter.

GOAP resembles STRIPS (short for Stanford Research Institute Problem Solver) [Fikes
and Nilsson, 1971], a planning system from academia. In STRIPS, a particular desired
game state is known as a goal. A goal can be achieved through a sequence of actions.
An action has preconditions (conditions that are required to be satisfied so the action can
take place) and effects (the changes that the action causes in the game world when done).
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Therefore, planning consists in calculating a path, preferably the most efficient, from the
current game state to the goal-state, by searching for a sequence of actions that can lead
to the desired state. Portions of the original source code of F.EA.R are available publicly
[Thompson, 2020], which allows one to observe that there are over 70 goals and 120 actions
in the codebase.

GOAP differs from STRIPS in four ways [Orkin, 2006]:

• GOAP has a cost per action, so if there are two valid plans to satisfy the same goal,
the most efficient one (the one which the sum of actions cost is lower) is chosen over
the other. GOAP uses A* algorithm to do a reverse search from the goal state to
the current state of the game world.

• Effects are specified by fixed-size arrays that represent the world-state, instead of
using the Add and Delete Lists of STRIPS (STRIPS uses lists to add and remove
knowledge about the world).

• It has procedural preconditions. In other words, checking on-demand if an action is
possible to execute.

• It has procedural effects. After the planner devises an executable plan, its actions are
“activated”, which means the planner is going to transmit to the finite-state machine
in which the character must be, in order to execute the next action of the plan.

F.EA.R. also uses a finite-state machine, but a very simple one, with only three states:
a state for the character to go to a location, a state for playing a certain animation, and
another state for interacting with an object. The in-game objects tell the character what
they can do interacting with it, therefore being called “smart objects”. This technique is
also used in The Sims (Electronic Arts, ) and SimCity (Electronic Arts) franchises, with
Will Wright, creator of those games, calling the method “smart terrain” [Lecky-Thompson,
2008]. This is used mostly for game performance, since usually there are not enough
resources for the characters to learn every possible action available in-game.

The main advantage of GOAP, over methods like finite-state machines, is that it allows
the decoupling of goals and actions [Orkin, 2006]. In fact, while in finite-state machines,
each state is intertwined with the others over transitions. Therefore, adding a new state
can be quite cumbersome. Meanwhile, in GOAP, one can just create a new action with
the respective preconditions and effects, knowing that the planner will dynamically link
the new action with any goal that is satisfied by the action effects.

Hierarchical Task Network Planning However, planners like GOAP and STRIPS
are being adopted less frequently than before, in favor of another planning method, called
Hierarchical Task Network Planning (HTN Planning) [Thompson, 2020]. HTN Planning
generates plans composed by high-level actions. These abstract actions are then decom-
posed in more low-level concrete actions. With this composition of smaller actions into a
larger higher-level one, the creation of more complex plans is possible [Beij, 2017]. HTN
Planning has been applied in modern AAA video games like Dying Light, Max Payne 3
and Horizon Zero Dawn [Thompson, 2020].

Tree Search This family of algorithms consists in building a tree where nodes represent
possible game states and edges symbolizes possible actions that the player can take to go
from one state to another. The initial node of the tree is the root, and represents the game
state from where the search procedure starts. This game state is, most of the time, the
current state of the game. There are several tree-search algorithms, each one with multiple
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variants, to be able to adapt to the particular game where it is being applied [Yannakakis
and Togelius, 2018].

Tree search algorithms can be divided in two sub-categories, classic and stochastic tree
search [Yannakakis and Togelius, 2018]. In classic tree search, algorithms feature no ran-
domness and are the ones who have been used since the beginning of research about AI in
games. However, more recently, stochastic tree-search came into the scene, with the cre-
ation of the famous Monte Carlo Tree Search (MCTS) algorithm to play the board game
Go [Yannakakis and Togelius, 2018].

Regarding classic tree search, the most used type of algorithm is best-first search. In par-
ticular, A* search and its multiple variations are the most common methods for pathfinding
in video games. As seen in the description of GOAP algorithm, used in F.E.A.R. video
game, A* can be used for planning too [Orkin, 2006]. The nodes of the graph are world
states and the edges represent the possible actions. Classic tree search performs well in
deterministic single-player games with perfect information and a low branching factor.

The same cannot be said regarding its performance in adversarial games, since there is
another player that is trying to win the game, and therefore, the actions of a player
might depend on the actions of the other. To deal with this, there is Minimax, the basic
adversarial search algorithm [Yannakakis and Togelius, 2018].

In games with hidden information, like card games, instead of Minimax, the common
method used is Monte Carlo Tree Search [Yannakakis and Togelius, 2018]. This algorithm
introduces randomness to deal with hidden states and high branching factors, in the form
of rollouts. This consists in randomly selecting actions from the current selected game
state until a terminal state is reached.

In the videogame industry, Monte Carlo tree search has seen successful implementations
in the likes of the real-time strategy Total War franchise [Thompson, 2018].

Supervised Learning

In supervised learning, the goal is to map a set of inputs, named features, to a set of
outputs, named targets, based on previous examples of pairs (feature-target). According
to the type of the output, supervised learning methods can be divided in three groups
[Yannakakis and Togelius, 2018]:

• Classification: used when output is represented by a nominal set of classes;
• Regression: used when output is defined by a numeric value or interval of values;
• Preference learning: used when output is of ordinal type, like rankings and prefer-

ences.

Common methods used for supervised learning in games include artificial neural networks,
support vector machines and decision tree learning [Yannakakis and Togelius, 2018]. The
usual way for an agent to play a game via supervised learning is to make it learn from
previous examples of human player behaviour, in which the features correspond to game
states and the targets represent the action the human player took in those game states.

Reinforcement Learning

In reinforcement learning (RL), when the agent chooses an action a that makes it transition
from the original state s to the new state s’, it receives a reward [Russell and Norvig,
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2010]. Therefore, in this machine learning method, the agent’s goal is to unveil a policy
that selects the actions that maximize the total reward obtained from said set of actions.
This configuration commonly leads to a classical problem of RL called exploration vs
exploitation [Russell and Norvig, 2010]. In fact, the agent must make a tradeoff between
exploring unknown states and exploiting the already known rewards [Russell and Norvig,
2010].

With a discrete notion of time, at a given timestep t, the interactions with the world can
be represented as a Markov Decision Process (MDP). A MDP is defined by the following
features [Russell and Norvig, 2010]:

• S : a set of possible world states;
• A: a set of possible actions;
• P(s, s’,a ): a transition model that specifies the probability of going from state s to

state s’ by executing action a;
• R(s, s’, a): a reward function that stipulates the reward received from transitioning

from state s to state s’ by opting for action a.

Two of the most important subclasses of Reinforcement Learning (RL) are Temporal-
Difference Learning and Evolutionary RL[Yannakakis and Togelius, 2018].

Temporal-Difference Learning This class of methods is model-free because it does
not require knowledge of the world beforehand. Instead, it uses estimates of previous
experience to update its values. This notion of estimating based on an existing estimate
is called bootstrapping [Yannakakis and Togelius, 2018]. TD learning also uses the notion
of backup, which consists of reverting from the future state that is being explored back to
the current state. [Yannakakis and Togelius, 2018].

Evolutionary Reinforcement Learning In this class, there are two methods: neu-
roevolution and genetic programming [Yannakakis and Togelius, 2018]. In the former, the
key idea is to use evolutionary algorithms to evolve the weights and topology of neural
networks. In the latter, evolutionary algorithms are used to evolve the nodes of a tree.

Reinforcement Learning is starting to gain traction in the game industry as seen in [Jacquier,
2019] and [Li, 2020].

Dynamic Scripting

In [Spronck et al., 2004], a hybrid method called dynamic scripting is proposed. Dynamic
scripting combines reinforcement learning with rule-based Artificial Intelligence (AI). There
is a rulebase for each type of character, that contains rules that dictate the character’s be-
havior. Each rule has an associated weight value that defines that rule’s probability to be
inserted in the controller script of a newly generated character. The weight values are up-
dated at the end of an encounter (a confrontation between the player and the AI character)
via reinforcement learning techniques. The weight update is based on the contribution of
each rule to the overall performance of the character in that particular encounter.

In order to assess the practical use of dynamic scripting in games, the method was tested
in the commercial Neverwinter Nights RPG (BioWare, 2002). Results show that dynamic
scripting is an efficient way towards adaptive AI, since it can reliably learn from previous
encounters with the player and change its tactics accordingly.
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However, one limitation of this method is the static nature of the rulebase. Despite the
associated weights evolving, the rules themselves remain the same. This leads to a finite
amount of possible combinations of rules.

2.1.4 AI Roles In Games

When playing the game, AI can portray the role of either a player or a non-player character
[Yannakakis and Togelius, 2018]. Regardless of the game role AI is occupying, it can have
one of two distinct goals within the game. Those goals are playing to win or playing
to enhance the human player experience [Yannakakis and Togelius, 2018]. Playing to
win means exactly that: the AI performs as optimally as possible to beat the game.
However, an AI that presents optimal performance to be victorious every single time might
culminate in predictable and boring strategies, undermining the human player experience
(like “camping” in first-person shooters). It is also worth noting that some games do
not even have a clearly defined “win state” like Minecraft (Mojang Studios, 20011) and
Crusader Kings franchise (Paradox Interactive). Therefore, AI can assume four distinct
roles depending on these two factors, game role and goal [Yannakakis and Togelius, 2018].

Playing to Win as a Player

An AI playing the game to win in a player role is the most common scenario in academia,
where games are used as benchmarks for the AI itself [Yannakakis and Togelius, 2018].
Reasons to use games as testbeds for AI were already listed previously, in the beginning
of this section.

Besides AI benchmarking, another reason to use AI in the player role to win the game is
when there is the need for an opponent that provides an appropriate challenge to the human
player, like in games of perfect information [Yannakakis and Togelius, 2018]. However, in
imperfect information games, allowing the AI to “cheat” is an easy way to make it more
challenging to the player. This can be done by providing information to the AI that is
otherwise unknown to the human player, for instance, by accessing the full state of the
game. For instance, in the strategy video games Civilization saga (Firaxis Games), there
is not a single AI until today that can play the game at the same level of a human player,
without cheating.

Playing to Win as a NPC

There are games, unlike the Civilization franchise stated previously, in which the human
player can’t portray a certain game role. For instance, in turn-based strategy XCOM video
games franchise (Firaxis Games), the player has to control a squad of characters that have
to defend Earth from aliens. Fighting these enemies is the main core gameplay mechanic
of the game, so it would not make sense if the player was able to control the alien side.
Therefore, in this particular scenario, there is the need of an AI that despite being in a
NPC role, its aim is to win the game. In this concrete game case, the goal of the aliens is
to defeat the player.

Sometimes, developing a NPC to win is a precursor of creating a NPC to enhance human
experience [Yannakakis and Togelius, 2018]. In fact, this situation arises when one wants
to implement “rubberband AI”, which means tweaking the performance of the AI so it will
always provide a decent challenge to the player, while exhibiting variable behaviour. This
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scenario is very common in racing games, where one wants to make sure that the AI racers
won’t ever fall too far behind nor stay too ahead of the player, because either situation
would result in a boring or frustrating gameplay. Thus, to be able to implement these
performance boundaries, the NPC has to know how to play to win the game in the first
place.

Playing to Enhance Human Player Experience as a Player

AI can also play the game in the player role not to win the game, but for human player
experience [Yannakakis and Togelius, 2018]. However, one could pose the question: if the
AI is the player, where and how does human player experience come into the picture? In
fact, this configuration is mostly used when one wants to attempt simulation-based testing
[Yannakakis and Togelius, 2018]. In this type of testing, an agent that mimics the behaviors
of a human player is required, otherwise the test feedback might be untrustworthy. For
instance, when applying simulation-based testing to the evaluation of a game’s new level,
the agent can wrongly report that the level is playable, but only with extremely fast and
inhuman reflexes. Thus, the evaluator agent must act like a human player would be able to
act in the same situation. That implies having similar reaction speeds, making the similar
mistakes that a human would (which theAI agent would not do if following an optimal
strategy), taking unnecessary risks, going for serendipity, and even imitating the innate
curiosity by exploring unknown things in the environment [Yannakakis and Togelius, 2018].

Another reason to use AI in this scenario is for game demonstration purposes [Yannakakis
and Togelius, 2018]. A lot of games have a common feature that is a demo mode, which
involves demonstrating to the player how to play the game. In the case that all the
content is known à priori, such demonstrations can be hardcoded. However, in games
with procedural generated content, or with content designed by the player itself (such as
in-game level-editors), said demonstrations have to be generated by the game [Yannakakis
and Togelius, 2018].

Playing to Enhance Human Experience as a NPC

An AI in a NPC role, with the aim of enhancing human player experience is by far the
most common scenario in the game industry. Most commercial games put a large amount
of emphasis on their NPCs, to make the game world feel more immersive to the player.
They can have a wide range of in-game roles, like cooperating with the player, providing
the player with quests, telling a story or just being in the background doing their daily
routines.

Modern videogames are highly complex in terms of graphics and game environment, with
most of the processing power being dedicated to rendering the world. Therefore, most
games cannot actually implement complex AI for every NPC inhabiting the world. So,
most of the time, what the game designer wants to achieve for the NPC is the “illusion of
intelligence”, rather than actual intelligence [Yannakakis and Togelius, 2018]. Illusion of
intelligence consists in making the player believe that the NPCs are actually smart, despite
them being controlled by simple scripts. Actually, one can even argue if most scripts used
in the game industry to control NPCs are considered AI, due to the sheer simplicity of
them [Yannakakis and Togelius, 2018].

A NPC presenting likeness to human behaviour, or not, depends on what the game de-
signer wants the NPC to represent. For instance, if the NPC is portraying a non-human
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creature, like a monster, it shouldn’t resemble human-like behaviour. In other instances,
one desired characteristic of a NPC is predictability. Indeed, stealth-based games revolve
around predictable patrol patterns that enemies take while patrolling, so the player can
devise the best approach to the situation. And in games with “boss battles” (a really
strong NPC that the player has to defeat to progress in the game), the player has to also
memorize the patterns of attacks and movements of the NPC, so he can find the precise
moment to strike on the opponent’s weak points.

AI Roles Conclusion

One of the main differences between academia and the game industry is the emphasis they
place on one of the four types of scenarios described above regarding AI roles in playing
games. In fact, in academia, using games as benchmarks for the AI itself is the norm. On
the other hand, industry focuses on using AI as a way to improve player experience, most
commonly in the form of believable NPC’s. This discrepancy of mindset only aggravates
what is known as the “gap” between academia and the game industry, regarding both
techniques used and knowledge possessed. Nowadays deep learning methods are popular
among academic researchers. However, most game development companies prefer to stick
with software engineering methods like finite-state machines and behaviour trees that,
although they increase authorial burden, are well-proven methods. The main reasons
for this industry’s resentment towards using academy methods are that machine learning
techniques reduce the control of the game designer/developer over the results, making it
hard to test and debug the game, and that these methods fall short regarding scalability
for massive scale projects, like AAA (high budget) video games.

However, this gap between academia and industry has been decreasing over time, and
there are already successful cases of game development companies incorporating machine
learning techniques in their development process. For instance, NetEase Fuxi AI Lab was
created in September 2017 with the goal of “enlighten games with AI” [Li, 2020]. They
created their own reinforcement learning framework, RLEase, and have been applying it
in games which are property of NetEase Games, like Justice Online and Fever Basketball,
to produce more challenging NPCs.

Finally, there are also common efforts to reduce the gap even more. One particular case is
Ubisoft La Forge [Jacquier, 2019], a partnership between researchers and Ubisoft, an AAA
game development company. This collaboration consists in Ubisoft granting researchers
access to their equipment and more importantly, their privata data, to propel faster ad-
vancements of AI techniques that can be used within Ubisoft games [Jacquier, 2019]. This
way, the partnership is beneficial for both parties. For Ubisoft, they get first-hand access
to AI advancements that can be incorporated in their games. For academics, one of their
main issues is mitigated, that is the lack of access to large amounts of data.

The AI implemented on this thesis’ work assumes the role of playing to enhance human
experience either as a player and as a NPC. Thus, simulation-based testing will be a focal
point of this chapter, which in turn creates the need to model believable agents. Therefore,
the next section will dwell deeper into the field of simulation-based testing, with the section
after that being about believable agents and how to model them.
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2.2 Simulation-Based Testing

In this section, previous work regarding simulation-based testing is approached. In the
end of the section, a quick detour is made to talk about a particular simulation scenario:
disease modeling.

The continuous works of Holmgard et al. demonstrate the usefulness of using agents as
playtesters of generated content [Holmgård et al., 2014, a][Holmgard et al., 2014, b][Liapis
et al., 2015] [Holmgård et al., 2016] [Holmgård et al., 2019]. Using simple turn-based rogue-
like games as testbeds, Holmgard et al. define several playstyles archetypes. For instance,
the Runner focuses on completing the level with doing as few moves as possible while the
Treasure Collector consists in collecting the maximum treasure objects possible.

First, in [Holmgård et al., 2014, a], Q-learning is used to model agents, so their decisions
can be compared to ones of human players. Despite the limitations of the used method,
authors conclude that the idea of procedural personas has potential.

In [Holmgard et al., 2014, b], seven linear perceptrons are combined with an evolvable
controller to model the agents, and these are compared to the previous Q-learning agents
modeled in [generative agents for decision making], as well as human players. The evolu-
tionary algorithm used is a truncation-based one that keeps the best half of the population
and replaces the worst half with offsprings from the remaining individuals. Authors con-
clude that the new modelled agents take the same action of human players between 60% and
88% of the time. This large variation is due to differences between game levels. Therefore,
it presents better performance than the previous Q-learning agents.

In [Liapis et al., 2015], a feasible-infeasible two-population evolutionary algorithm is used to
evolve levels of the game used as testbed. Then, the procedural personas built in previous
works are used to assess both playability and the quality of the evolved levels. This
assessment is utility-based. For playability, it takes into consideration if the generated level
has a specific amount of tile types (for instance, one entrance tile and one exit tile), if the
agent can finish the level without dying by maximizing its utility, and if all the game objects
in the level can be reachable by the agent. For level quality, the evaluation is dependent
on the type of persona testing the level. For instance, for the “Treasure Collector” persona
(its main goal is to collect as many treasures as possible), level quality is dependent on the
number of treasures in the level. However, one must also consider the meaningful decisions
of the agent. After all, in the example regarding the Treasure Collector persona, if the
evaluation of level quality is solely based on the number of treasures in the level, nothing
prevents from generating a level with a treasure in every tile between the entrance and the
exit of the level. Scenarios like that one are uninteresting, since the player does not make
any meaningful decisions throughout the level. So, a level’s risk involved in the agents
decisions is also considered in the evaluation process.

The author shows that the obtained results are an important demonstration of not only
the potential of the evolutionary algorithm used to generate levels, but, more importantly,
the reliable use of procedural personas as evaluators of the generated content.

In [Holmgård et al., 2016], the goal is to use once again the previous procedural personas,
and this time, compare the personas with clones, that are agents created to reproduce
human play traces (see subsection 2.3.4 for a definition of play traces). Two metrics are
used to compare the performance of both types of agents. One is the action agreement
ratio, that considers the actions taken at each play trace. If the agent takes the same
decision as the human, it is awarded one point. Then, the agent’s total of points is divided
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by the number of total actions it had to make in the level to compute the action agreement
ratio. The second metric is the tactical agreement ratio. It works in a similar way to the
first ratio, but it only considers interactions with game objects (killing a monster, collecting
a treasure, etc).

The authors conclude that although personas and clones perform almost equally at action
level, clones present better results when game object interactions are taken into account.

[Holmgård et al., 2019] builds upon the previous works by modeling the agents using the
MCTS method and genetic programming. Instead of the Upper Confidence Bound (UCB)
formula used to select a node in the selection phase of the algorithm, it was replaced by
genetic programming . The formula is given by a syntax tree where the nodes are binary
operations and the leafs are constants or variables, after 100 generations of evolution.
Rollout to a terminal state can last a large amount of time, so instead the authors decided
to simulate just the ten next moves randomly and then backpropagate the utility score of
the state reached with those ten moves. The utility function is obviously different for every
playstyle archetype. For instance, for a persona with the objective of finishing the game
the fastest it can, its utility function will focus on its proximity to exit and the number
of steps taken. If instead it is a persona who has the priority of collecting as many game
items as possible, it will take into account the number of game objects possible to interact
with, while a parameter like steps taken is irrelevant.

The experiments done show that the evolved MCTS agents are able to play the game faster
than the baseline MCTS agents (with UCB formula) while still being different from each
other (the initial archetypes are not lost).

The key thing to note about these works is that the personas (the “archetypes” of playstyles)
are designed à priori. Therefore, the procedural personas method is only useful if the game
designer can find initial utility functions. One solution proposed (but not implemented) in
[Holmgård et al., 2019] to overcome this limitation is to learn utility functions from actual
human players.

More recently, [Zhao et al., 2020] shows two ways of how agents can be used in playtesting
a game. The work first considers Sims Mobile (Electronic Arts) as one of its case studies.
Sims Mobile is a mobile game that simulates life and there is no specific goal to be achieved
by the player. The aim is to optimize player experience. The authors use A* algorithm as a
planning technique to develop agents able to play the game. They validate the method by
comparing it with evolution strategies, where the agent plays to optimize a utility function
that selects an action from all the available ones. The obtained results show that the
A* algorithm manages to acquire equivalent results to the evolution strategy, which is a
computationally more expensive algorithm to run than A*. In another case study, the goal
is to build an agent to play a mobile game like an expert player would, to measure expert
player progression. For that, deep reinforcement learning is used. More specifically, both
a DQN (Deep Q-Network) agent [Mnih et al., 2015], which is a combination of Q-learning
algorithm with convolutional neural networks, and a Rainbow agent [Hessel et al., 2018],
which contains several extensions to DQN, are used.

The results show that both types of agents achieve a reasonable amount of success, although
training time is still very costly and other options are required to speed up the process.
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2.3 Believable Agents

As seen in the previous section, there are three main reasons for the need of believable
agents: for simulation-based testing, for game demos, and arguably the most important
one, to enhance human player experience. Therefore, this section first describes what
believable agents are, and how can someone measure believability. Then, it follows with
the main approaches used today in believable agent modeling, listing several case studies
as examples. Finally, the section culminates with the listing of several other AI areas that
can influence believable agents research.

“Believable agent” is a term coined in the 90’s to define agents that present natural be-
haviour. It first appeared in works of J.Bates [Bates, 1994], member of the Oz project.
The interest in such agents grew exponentially with the rise of the game industry, since,
despite no formal proof, it is generally believed that human-like characters add a lot to
the entertainment value of a game. This is indeed the main motivation to create such
agents, and it is something that the game industry has been giving an egregious amount of
focus. Other reasons for the existence of said characters are, as mentioned in the previous
section, for simulation-based testing and game demos. In the former, believable agents are
required when one wants to test the simulation scenario and obtain feedback of what a
human player would probably do in that scenario.

2.3.1 Requirements

But how does one build and measure such a subjective structure? First, it is necessary to
look at the requirements of an agent that is intended to behave “human-like”.

In his P.H.D [Loyall, 1997], A.Loyall lists several key components that an agent has to
possess to resemble human-like behaviour:

• Personality, that is the set of particular details that defines the character or agent.
These details can be of behaviour, thought, or emotion.

• Emotions, that the agent has to be able to express in some way, like in its reactions
to the stimuli of the environment.

• Goals, because an agent who just purely reacts to the environment lacks depth of
character and feels less “alive”. Also, being able to execute parallel actions while
concurrently pursuing goals is another key aspect to promote convincing behaviour.

• Change, since one of the most interesting things in a narrative is to witness the
character’s growth, according to his characteristics [Campbell, 1991].

• Social Relationships and Context, by which it means the agent must be fully in-
tegrated with its world, having assimilated culture, social conventions, and having
forged connections with other agents inhabitants of the world.

• Consistency of Expression, that is all ways the agent possesses to express itself being
completely in sync with each other, just like an actor uses not only utters his lines,
but also expresses the portrayed character by voice intonation, body gestures and
facial expression.

• Reactiveness and Responsiveness, because human-like behaviour is hard to convey if
the agent does not react to the environment, like a car that is about to hit it.

• Resource-Bounded, because if one wants an agent that resembles a human, it has to
have the same capabilities and limitations. That means no inhuman reflexes and no
super-intelligence (compared to humans).

• Well Integrated. By that, one means that despite the agent being composed of
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several distinct modules, they all have to work like if they were merged together.
Not fulfilling this requirement may lead to scenarios like an agent that stops moving
just to think about what it is going to do next (i.e, the movement module stops for
the planning module to take place).

All of these requirements help to convey the illusion of life to the observer, which con-
tributes to “suspension of disbelief”. Suspension of disbelief is the simultaneous belief in
two inconsistent matters. For instance, while watching a movie or a tv show, one chooses
to believe the interactions between the characters. But at the same time,we are aware
that we are just watching the actors speaking and moving, in a film set, according to a
predetermined script. Therefore, it’s the film director’s job to make it as immersive as
possible, suppressing the second idea, of actors just doing their job, in the viewer’s mind.

A similar immersion can apply in video games. If the NPCs of a game behave “strangely”
the player’s suspension of disbelief breaks down, subsequently undermining the player’s
game experience. Henceforth, game characters’ believability is a crucial aspect of video
games, and that’s why there is a whole area of research dedicated to believable agents.

2.3.2 Assessment of Believability

At this point, it is important to make a formal distinction between character and player
believability. Character believability refers to the character itself, and to the fact that the
observer believes that the character fits with the narrative context. At the moment, believ-
ability based on the idea of realism is reserved to high-budget cinematography productions
with abundance of Computer-Generated Imagery (CGI) effects. On the other hand, player
believability takes into consideration that the observer knows that the character is not real,
being just a graphical representation, but the observer believes that the entity controlling
the character is real.

Since player believability is closely related with player experience, one can attempt to mea-
sure the former with the same tools as the latter [Togelius et al., 2012]. Player experience
can be measured in three distinct ways: via manual annotation (either self-reporting, inter-
viewing or direct observation), by tracking a player’s physiological data and body gestures
during play, and finally, through logging data. The first method is the one used in most
Turing test-based assessments, like in the 2KBot Competition [Hingston, 2009] and Mario
AI Championship [Shaker et al., 2013].

Indeed, the two last aforementioned competitions, 2KBot Competition and Mario AI
Championship, portrayed an important role towards efforts to build believable agents.
In 2KBot Competition [Hingston, 2009], organized by Phil Hingston, participants were
invited to develop agents that can play the first-person shooter Unreal Tournament 2004
(Epic Games, 2004) in a human-like manner. The main goal of the competition is to deceive
the human judges into thinking that the agent they are seeing is controlled by a human
player. It was held from 2008 to 2013. Similarly, the Mario AI Championship [Shaker
et al., 2013] [Yannakakis and Togelius, 2018], held from 2008 to 2012, encourages partic-
ipants to develop agents able to play Infinite Mario Bros, also in a human-like manner.
From these competitions, the authors conclude that agents cannot pretend to be humans
just yet. Some obvious traces of non-humanness include unnaturally fast reactions, not
stopping to think nor hesitating, and the absence of unnecessary actions (for instance,
one common trait of most players, regardless of the game being played, is to jump while
running) [Yannakakis and Togelius, 2018].
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2.3.3 Top Down Modeling Approach: Social Sciences Frameworks

The approaches to build believable agents architecture can be classified as top-down and
bottom-up [Yannakakis and Togelius, 2015]. In the former, architectures are built based
on existing frameworks from social sciences like psychology. The latter is done through
human player’s imitation.

BDI

BDI (Beliefs-Desires-Intentions) is an agent architecture for practical-reasoning agents
[Bratman et al., 1988]. A classic BDI agent presents three main components:

• Believes, that represent the knowledge of the world that the agent possesses.
• Desires, that define the motivations and goals of the agent.
• Intentions, that depict the goals that the agent is currently pursuing.

The core algorithm’s loop goes as follows: agent perceives its environment, and updates its
knowledge about the world (its Believes). Then it calculates possible goals to be achieved
according to the current configuration of the world, and how to achieve them. Finally, the
agent executes the plan. While performing the sequence of actions that compose the plan,
the agent always checks if the plan is still sound and if the next action is still possible to be
executed. Throughout the years, several works proposed modifications to BDI’s original
architecture, even going as far as incorporating an emotion mechanism in the algorithm’s
original loop [Jiang et al., 2007].

Talk of The Town and Bad News

A particular work where the main focus is to simulate a society of believable agents is
Talk of The Town [Ryan, 2018]. James Ryan’s et al work consists of a game-engine that
simulates the everyday life of a typical american town, and a game, called Bad News [Ryan
et al., 2016], where the player interacts with the characters of the town. The main focus of
the game is on knowledge propagation, since the characters of the simulation spread their
knowledge (that may be true or false) about the world to other characters [Ryan et al.,
2015].

In order to provide a rich social network right from the start of the gameplay, a simulation
that generates a century of history is made beforehand [Ryan, 2018]. Although Talk of
The Town models time as day and night timesteps at the start of gameplay, the simulation
to generate previous history implements level-of-detail modulation [Ryan, 2018]. This
technique consists in adjusting the granularity of the simulation, mostly for the system
to be more computationally efficient. Therefore, in Bad News, four days of a year are
simulated and then the results are extrapolated to a different time scale, according to the
time passed since the last simulated timestep [Ryan, 2018]. This process goes on for every
year before the actual gameplay starts.

To embed the inhabitants of the game world with personality, the author applies to the
characters one of the main psychology models, the Five-Factor Model [Mccrae and John,
1992] [Ryan, 2018], that assumes that a person is characterized by the following five factors:

• Openness to Experience, that states how creative and adventurous the person is;
• Conscientiousness, that relates with the diligence and planning skills of a person;
• Extroversion, that mostly relates with the sociability of the person;
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• Agreeableness, that describes how likeable and sympathetic the person is;
• Neuroticism, that describes emotional stability. In other words, it dictates how anx-

ious and unstable the person is.

One particular attribute that Talk of The Town’s characters possess that grants them an
extra layer of believability is memory fallibility [Ryan, 2018]. In fact, each character has
a float type attribute for its memory, that decreases over time. The lower the attribute,
more the chance of the character’s knowledge being degraded.

To represent each character’s knowledge, mental models are used [Ryan, 2018]. To be more
precise, a character formulates and updates a mental model about other characters and
locations that it encounters throughout its lifetime. Mental models can be linked with each
other: for instance, if Character A sees Character B working at Workplace X, A will update
its mental model of both B and X. In A’s model of B, one attribute is B’s occupation, that
it will link with A’s mental model of Workplace X. The inverse also happens: a mental
model of a business contains a list of employees, so when A updates its model of X, in that
list will be a reference to A’s mental model of B.

Dynemotion and Mind Module

In [Eladhari and Sellers, 2008], two models to represent believable agents are proposed.
The common denominator in both of them is the use of “mood”, which the authors define
as “the overall state or quality of feeling at a particular time” [Eladhari and Sellers, 2008].

In the first one, Dynemotion People Engine (DPE), characters have personalities, desires,
goals, and emotions. Personalities are based on the Five-Factor model, while emotions are
defined as “all cognitively apprehended aspects of physiological or qualitative psychological
states and processes” [Eladhari and Sellers, 2008]. The mood is displayed in a bidimensional
grid, in which x-axis represents “Outlook”, that represents the tendency of the character at
any given moment to feel good or bad emotions, and the y-axis represents “Affect”, which
is the intensity of the mood.

The second model described in the article is the Mind Module. In this particular model,
the character’s personality is given by a collection of traits also inspired by the Five-Factor
Model. The model itself is represented by a weighted network of nodes, that can be
of four types: mood nodes, emotion nodes, trait nodes and sentiment nodes. The mood
representation is similar to DPE’s one, since it depicts mood as a two bidimensional matrix
where the axis also represents “Outlook” and “Affect”. Finally, the model contains the
notion of emotional attachments, called sentiments. One example of a sentiment provided
in the article is that, if a character has arachnophobia, it would have the emotion Fear
associated with the object Spider. Sentiments can also be created at runtime, which the
author refers to as “emergent sentiments”.

Orphib II

In [Barreto et al., 2014], an agent architecture for a multiagent system that contains alien-
like creatures is presented. The key idea of the model is genetic personalities, i.e., inheri-
tance of personality from the agent’s parents. In the agent’s genome, its eye color is also
encoded, which combined with the world’s light at any given moment, affects the agent’s
sensors.

Results show that the population tends to increase non-linearly, as the result of a compul-
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Figure 2.1: Dynemotion Mood Representation. Image taken from [Eladhari and Sellers,
2008]

sive need for reproduction of the agents.

Believability of Non-Anthropomorphic Characters

However, all of what is described above refers to agents that aim at portraying a human-
like character. But what about an agent that intends to portray the role of any other
creature? In [Barreto et al., 2017], a creature believability scale is proposed to assess the
behaviours of zoomorphic creatures. The scale is composed of four main categories, that
are:

• Relation with the environment, that encompasses both the creature’s reactions and
actions in the environment;

• Biological/Social Plausibility, that describes the creature’s interactions with other
creatures, as well as its autonomy and reactiveness to its surroundings;

• Adaptation, that means learning behaviors;
• Expression, that includes the ways that creature uses its body to communicate, learn

and survive.

Believability Through Aspects Besides Behaviour

With everything said so far, one assumption comes into place: a character’s believability is
mainly dependent on that character’s behaviour. However, in [Camilleri et al., 2016], this
core assumption is thrown out of the way, in order to study the impact of other variables
in an agent’s believability. In the work, the study focuses on how the game environment
and other aspects of game design (such as level design) can affect the believability of a
character. The game used as testbed was a variant of Infinite Mario Bros. The feature
extraction process included both level design and gameplay features. At level design, the
four features extracted were number of gaps in the level, average width of the gaps, number
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and placement of enemies in the level. Regarding gameplay features, a total of fourteen were
extracted, and included variables like number of deaths, completion times, and number of
jumps. Then, opinions of observers were obtained through online questionnaires about four
different players playing the generated levels. Two of the players were controlled humans,
and the other two were AI agents (that were created for the Mario AI Championship
described previously, and reused in this work).

Then, with the use of RankSVM algorithm, the build of computational models that maps
the features to the questionnaire responses was attempted. The model with best prediction
results presents an accuracy of 73,31%, and is the model who takes into account both level
design and gameplay features, which indicates a relationship between game environment
and a player’s believability perceived by observers. Therefore, the initial theory of game
environment impacting an agent’s believability is validated, at least, in the platformer
genre.

2.3.4 Bottom-Up Modeling Approach: Player’s Imitation

There are two main ways to model a player’s in-game actions with the aim of imitating his
behaviour [Ortega et al., 2013]. The most common one is direct imitation, in which the
play traces of a human player are considered. Play traces are the “vestiges” or “evidences”
that a human player leaves while playing a game. For instance, in a platform game like
Infinite Mario Bros, the play traces of a player is the trail that he follows to overcome the
obstacles and complete the levels. Hence, through supervised learning methods, the play
traces are used as training sets, having the features of the game state as input, and having
the chosen action by the player in that state as output.

The indirect method of player imitation is through reinforcement learning, where the goal
is to optimize a reward function that measures human-like behaviour of an agent. The
indirect way possesses one advantage over the direct one, that is the generalization
to unknown scenarios. In fact, while training the agent using supervised learning,
the agent’s performance is based on whether it can imitate the player or not. In-game
performance per si is not taken into account. Therefore, once the agent comes upon a
scenario that is not in the training set, it will not know how to react. This leads to the
agent presenting worse performance than the behaviour it was trained to mimic.

Generative Adversarial Imitation Learning

One particular imitation learning method is Generative Adversarial Imitation Learning
(GAIL), that uses an adversarial approach in order to train the agent’s policy to act
similarly to the provided demonstrations. In this method, there is a second neural net-
work called the discriminator, whose function is to distinguish whether an action is from
a demonstration or performed by the training agent. The discriminator then acts as a
“judge”, and the agent’s job is to “fool” it, i.e. the agent must mimic the demonstrations
so perfectly that the discriminator thinks that the new observed state-action pair is from
the demonstrations and not from the training agent. Therefore, the rewards provided by
the discriminator are based on how much it believes that the observed state-action pairs
are from the provided set of demonstrations.

GAIL works best when a limited number of demonstrations is available, and can also be
used alongside with extrinsic rewards during the training process.
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Related Works

Imitating human playing styles in Super Mario Bros One particular example of
modeling a player’s behaviour through imitation can be found in [Ortega et al., 2013]. The
chosen representation of the environment was depicted with the use of two matrices, with
dimensions 4x7, where one matrix contains information about the level and the other about
the enemies nearby, at a precise moment of the game. A total of 65 environment variables
were fed as input to an artificial neural network. Both imitation approaches were used, as
well as a hand-coded rules-based agent. In total, six different controllers were implemented
and tested. Three of the methods are based on backpropagation, neuroevolution and
dynamic scripting, respectively. The hand-crafted one consists of a simple forward jumping
agent, and the two remaining methods are taken from the “Mario AI championship”, already
talked about in the previous section 2.3.2.

The authors conclude that although none trained agent managed to resemble enough
human-likeness to be able to trick the observers, agents trained to be human-like are closer
to said goal (if their performance is good enough) than agents that simply are trained to
win the game. More importantly, the authors conclude that the indirect way of player
imitation achieved decisively better results than any other method.

HRLB2 More recently, in [Cruz and Uresti, 2018], a hierarchical reinforcement learning
framework is proposed to model believable bots for the video game Street Fighter IV
(Capcom, 2009). With this framework, two open challenges in the creation of human-
like NPCs are addressed: exploration of high-dimensional state spaces, and generation of
behaviour diversity. The framework is based on MAXQ hierarchical decomposition, which
consists of decomposing a Markov Decision Process (MDP) into a set of smaller semi-
Markov Decision Processes (SMDP). A SMDP is a generalization of MDPS, including
actions that take more than one timestep to execute. Therefore, this method allows to
represent the problem as a task graph, in which the children of the root node represent
playstyles, and their descendents represent subtasks. The leaf nodes denote primitive
actions. With this representation, the problem of a high-dimensional state-action space is
tackled. For the second problem, the framework adapts an off-line reinforcement learning
that observes the player’s actions in an encounter, and in the end of it, it updates the bot’s
model accordingly.

Results show that it was possible to create a human-like bot that can play the game at
medium and advanced difficulty levels.

Deep Player Behaviour Modeling is proposed in [Pfau et al., 2020] for automated
testing, to find in-game imbalances in encounters of the massive multiplayer online role-
playing game Aion and how to fix them. The technique of deep player behaviour modeling
consists in producing a replicative agent of an individual player through the mapping of
the game states with the player’s actions, just like a typical player behaviour imitation
task. However, a feed-forward multilayer perceptron with backpropagation, that contains
four hidden layers, is used for training. The activation function used was the logistic
sigmoid. The dataset used was an agglomeration of the recording of gameplay sessions of
213 players during the course of 6 months. In Aion, several classes are available for the
player to choose. Each player in the dataset corresponds to one of those in-game classes.
To calculate imbalances between player classes, four variables were considered to obtain a
proficiency metric: the result of the match (a binary value that either represents a win or
a defeat), the duration of the match, and both the player’s and the opponent’s remaining
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health percentage.

The experiments involved putting all replicative agents against each other in a one-on-one
fight, and against a collection of 100 opponents that incrementally increased in difficulty.
The results obtained show the existence of discrepancies between classes proficiency, which
suggests imbalance between them. In conclusion, deep player behaviour modeling shows
great potential as an automated testing tool, being able to inform designers and developers
of in-game imbalances.

Other works regarding player’s behaviour imitation include [Gorman et al., 2006], and
[Togelius et al., 2007]. In [Gorman et al., 2006], human behaviour is imitated through
Bayesian methods for designing Quake (GT Interactive, 1996) bots. In[Togelius et al.,
2007], neural networks are built to replicate player’s behaviour like steering and thrust in
a 2D car racing game.

2.4 Chapter Summary

In this chapter, several topics were approached.

First, an in-depth look of how AI can be linked with games was given. More specifically,
four subtopics were explained.

The first subtopic was a general overview of how games can contribute to the AI research
field. Games bring several benefits to the area of AI, namely understandability, public
awareness, speed and relevant industrial application. Furthermore, games are hard and
interesting problems, and some of the major AI milestones were achieved using games as
case studies.

The second subtopic was about the wide range of games that AI can play. A game type
commonly used as AI benchmarks is the arcade-style. The original video game Bomberman,
which serves as inspiration for the case study of this dissertation, belongs to this category
of games. However, since the case study is actually a turn-based adaptation of the arcade
video game, it requires more strategy to be played than the original.

Next subtopic referred to the numerous AI techniques used to play games. An overview
of the most common ones was given in this chapter, stating their pros and cons. Under-
standing how these methods work is crucial, allowing us to take a well-informed pick of
techniques to apply in this dissertation’s project.

The last subtopic explained the different roles that AI can take while playing games. The
most common scenario in academia is using AI as a player to win the game, while playing
as a NPC to improve the human player experience is the most used configuration in the
game industry. The synthetic players developed for this dissertation present the role of a
player in order to enhance human experience, which is mostly achieved by replacing human
testers at evaluating new game scenarios.

The next subsection discussed simulation-based testing. Several previous works on this area
of research are highlighted, like the continuous efforts of Holmgard et al. that demonstrate
the usefulness of using agents as playtesters of generated content.

Synthetic players need to be believable, i.e, to behave like a human player would when
facing the same situation. Synthetic players that do not follow this requirement may
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provide incorrect testing feedback. The two main approaches to model believable agents
are top-down, borrowing frameworks from social sciences, and bottom-up, that consists of
player’s behavior imitation.

The chapter culminates with a brief overview of other related works using Bomberman
as a case study. Some of them can be used as guidelines for the modeling of synthetic
players, like the environment configuration and the neural network hyperparameters of
[França et al., 2019] for a machine learning agent.
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Modeling Of Synthetic Players

This chapter explains how the two approaches were selected and implemented to develop
synthetic players. The entire source code can be consulted at:

https://github.com/Drca1997/Tese/tree/Diogo

3.1 Selection of Approaches

Having the background provided by section 2.1.3 about possible AI techniques to play the
game, a well-informed decision about which methods to choose can be made.

Ad-hoc methods like finite state machines and behaviour trees were discarded right away,
due to their likelihood of producing a pattern of predictable behaviours, rendering non-
human-like synthetic player, failing the third requirement previously listed. They also
require fully hard-coded behaviour. Regarding finite-state machines, from an engineer-
ing standpoint, adding new actions and states to the game can also be cumbersome to
implement.

Utility-based AI could be a viable option, since it can handle unique situations in a graceful
manner and constantly weighs all the actions. Furthermore, utility-based systems possess
a major advantage over finite-state machines and behaviour trees, that is the allowance of
variations in behaviour. However, an utility-based approach was not ultimately chosen to
model the synthetic players. because at the beginning of the design proposal, a deeper and
more complex adaptation of the original Bomberman video game was intended to serve as
the case study. Due to the multitude of proposed innovations in that adaptation, choosing
values to qualify the overall desirability of a state or action would have been a harder task.
Therefore, this approach was not selected. Looking retrospectively at the final output of
the dissertation and the case study which the synthetic players were developed for, an
utility-based system could have been, in fact, one of the implemented approaches.

The first chosen approach was a planning one. More precisely, A* algorithm to find the
shortest path of a graph where nodes are game states and edges are possible actions for
the synthetic player to execute. Planning was chosen for its good generalization capability.
Due to the way the approach works (already described in section 2.1.3), new and unique
situations can be well-handled, given that the action space remains the same. In fact, if
there are no new available actions in the new scenario that the planning agent comes across,
a solution will be found (if there is one available) even if the goal differs from the one of
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previously seen game scenarios. Implementing new actions is also a relatively easy task to
do, because of the nature of an action’s representation, that is dictated by preconditions
and effects of the action in the game world.

One hindrance to take into account is the fact that replanning can become a computation-
ally expensive task. Also, designing goals for the agent to fulfill the requirement of playing
in a believable way may become a hard task to complete, due to the subjective nature of
said requirement. A more in-depth look of how this approach works and was implemented
is given in section 3.4.

The second chosen approach was machine learning, more specifically, RL. This method was
chosen for its interesting ability of making the agent “learn” to play the game, therefore not
having the necessity to hard-code behaviours. Machine learning also has the advantage
of being relatively easy to set up, therefore diminishing the amount of coding required.
To speed up the training process, first Imitation Learning (IL) is applied. Gameplay
demonstrations of a human player are fed to the agent, which tries to mimic the human
behaviours seen in the demos. Then, the performance of the agent is improved through
deep RL.

IL provides a good starting point, since it reduces the search space but also allows to
model the agent to behave in a “human-like” way, complying with the third requirement
previously stated. Regarding the second requirement, a good generalization capability can
also be achieved with this approach, since the training is done in procedural generated
game scenarios. This will grant a greater degree of robustness to the agent.

Cons of this approach are the complete loss of designer control as well as being nearly
impossible to edit and tune agent behaviours as desired. In addition, if the game state
representation is misinterpreted, it can have serious repercussions on the agent’s learning
process. Details of how this approach works and how the training process was done are
given in section 3.5.

3.2 Case Study

The case study that was used as a benchmark for this work is a turn-based adaptation of
the Bomberman video game. Bomberman (Hudson Soft, 1985) is an arcade video game
developed for Nintendo Entertainment System (NES), an 8-bit home video game console.
In this game, the player needs to strategically place bombs on the map to detonate both
enemies and blocks blocking the player’s path. When detonated, a bomb creates an ex-
plosion that spreads in a cross-shape manner (vertically and horizontally) to neighbouring
tiles (as long as the tile is not obstructed), occupying them with fire. If the fire reaches
a tile that contains the player, an enemy or a destructible block, that entity is destroyed.
There is a chance that a power-up appears on the tile if the destroyed game element was
a block. These power-ups, when picked up by the player, grant special abilities like bombs
with a larger explosion range. The possible actions of the player in this game are limited
to move (up, down, left, right) and to plant a bomb in the current tile where the player
stands on. The original game spurred the creation of several more versions of it, and in
most of them there is a multiplayer mode. In this mode, the goal is to be the last player
standing, by killing all the opponents.

In this adaptation, the main game rules still apply. More specifically:

• Players can place bombs on the map that will explode after a certain amount of
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timesteps.
• When detonated, bombs may kill players and destroy destructible blocks that are in

the blast radius.
• Ultimate goal is to be the last player alive.

However, since the transition to a turn-based system will be made, several modifications
must be in place to achieve this new style of play:

• First, players will not take actions at the same time, but in a predetermined order.
This order is selected at the start of every new game turn and is random. (A new
game turn starts after every player has taken an action).

• Each player may take one action on its turn. Possible actions are: Move to another
tile, place a bomb and do nothing.

• Players can only move one tile per move action.
• A bomb explodes after three timesteps have elapsed.

Finally, for the sake of simplicity, power-ups were not incorporated in the case study.

Figure 3.1: A match from the case study. Black blocks are unsurpassable. Grey blocks
are destructible blocks. Red tiles are bombs. Yellow tiles are Flames caused by a Bomb
explosion. Dark and light blue, green and orange blocks represent four different players.

A game scenario progresses as follows:

• First, the setup, where the grid is created and the agents are placed in the game world.
The types of synthetic players that will play the game scenario are picked in this
phase. This happens in the Setup.cs file, in the functionGrid SetupGrid(System.Random
prng). Deeper details of the setup procedure are out of the scope of this dissertation,
and can be found in [Correia, 2021].

• From the setup, a list of game agents is obtained. Game agents include any agent
within the game, not only synthetic players. For instance: bombs, destructible blocks,
fire (from bombs explosions) are all considered game agents, for the purposes of the
work of [Correia, 2021].

• Each timestep, each agent in the list is updated. The order in which agents are
updated is randomized each timestep.

• An agent being updated receives a grid that represents the current state of the game

35



Chapter 3

world and evokes its UpdateAgent() method, executing whatever lays inside this
function;

• In the case of the synthetic players, the UpdateAgent() method is responsible for
asking the players for a decision of which action to take, initiating their decision
making process.

• A synthetic player’s action is then executed, modifying the received grid of the game
world accordingly;

• Regarding human players, the game loop awaits for the player’s input before pro-
ceeding to the next agent to be updated;

• After every game, the agent is updated, the game visuals are also updated to reflect
the changes in the game world during the current timestep.

• This loop continues until the game is over. This may happen either if there is a
winner or if the game reaches the predefined maximum amount of turns.

3.2.1 Bomberman-Related Works

This subsection lists some previous works that also used some version of Bomberman as
case study.

Learning How to Play Bomberman with Deep Reinforcement and Imitation
Learning

In [França et al., 2019], imitation learning and deep reinforcement learning are used to teach
a bomberman agent to play the game. The authors use the Unity ML-Agents framework,
and they test four different algorithms and five state representations.
The four tested algorithms were:

• Proximal Policy Optimization (PPO) integrated with a MLP;
• PPO integrated with LSTM neural network;
• Behavioral Cloning (BC);
• BC and then training with PPO;

The five tested state representations were the following:

• Binary Flag: for each cell of the grid, there is a bit flag that represents the content
of the cell.

• Normalized Binary Flag: Similar to Binary Flag, but the observation vector
values are normalized in order to be in [0.0, 1.0] range.

• Hybrid: combination of the binary flag representation with One-Hot Vector repre-
sentation(the latter is explained in detail in 3.5.1). This hybrid approach consists of
each cell of the grid being represented by an observation vector of size equal to the
total number of game elements that can be on a cell. For instance, if only agents and
bombs are considered as game elements, the observation vector of each cell would
have size of 2, in which each element would be binary, indicating the presence or
absence of the game element associated with the respective vector index.

• ICAART: in this representation, each cell of the grid is characterized by a vector of
four elements. The first element indicates what the tile contains, the second depicts
the presence or absence of the player on that specific tile, and the third tile, similarly,
states the presence or absence of an enemy on that cell. The last element of a cell’s
observation vector is used to represent the danger of the tile, according to the number
of timesteps left in order for nearby bombs to explode.
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• ZeroOrOne: similar to Hybrid representation, but each observation is added to the
observation vector separately.

A tournament composed of 10 000 matches evaluated the performance of agents with
each of the representations listed above. Then, the best representation was selected in
order to train agents with the four types of algorithms. These agents were then pitted
against each other in another 10 000 matches tournament Results show that usingBC before
applying PPO can influence the training, and the Long-Short Term Memory (LSTM)-PPO
coupling approach produced the best agents. Regarding state representations, the hybrid
representation was the one achieving the best results.

BAIP

BAIP (Bomberman as an Artificial Intelligence Platform) [Lopes, 2016] is a language ag-
nostic Bomberman-themed platform for educational purposes. The work also includes
development of several agents for the platform, namely:

• Basic agents with simple heuristics;
• Search-based agent; more precisely an action planning agent;
• Reinforcement learning agent;

A conclusion that was drawn with the implementation of the search-based agent, is that the
best maximum plan size to achieve the best performance is 2. The reinforcement learning
agent presented modest results.

3.3 Synthetic Players General Architecture

Both types of synthetic players developed throughout this work inherit from the same ab-
stract class, SyntheticBomberman.cs. This class contains functionalities that are common
to both synthetic players. More specifically, it incorporates a method to process actions
taken by the synthetic players, updating the game world accordingly to said actions. It
also contains a method to convert the game world into a representation common for both
agents. The representation itself is a grid of integers, in which each of them represents
a possible map tile configuration. The following list presents an enumeration of every
possible tile configuration:

• Player : Tile currently occupied by the synthetic player.
• AIEnemy : Tile currently occupied by a bomberman enemy.
• Walkable: Empty tile.
• Destructible: Tile that contains a destructible block.
• Unsurpassable: Tile that contains a block that cannot be exploded.
• Bomb: Tile that contains a bomb.
• Fire: Tile that was inside the blast radius of a nearby bomb, and therefore currently

contains fire.
• PlayerNBomb: Tile that contains both the synthetic player as well as a bomb. This

configuration only happens when the player plants a bomb and if the player stays in
the tile.

• AIEnemyNBomb: Similar to PlayerNBomb, but for an enemy bomberman.
• FireNExplodable: Rare configuration that happens only in the timestep when an

destructible block is exploded by a bomb explosion. In this timestep, the tile contains
both the destructible block and fire.
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• FireNPlayer : Tile that currently contains the synthetic player and fire because of
the blast radius of a nearby bomb. If this configuration lasts until the end of a turn,
the synthetic player dies. In other words, the bomberman dies if it ends its turn on
a tile with fire.

• FireNAIEnemy : Similar to FireNPlayer, but for an enemy bomberman.
• FireNBomb: Tile that contains a bomb and fire. This configuration happens not

only after a bomb detonates, but also if another bomb is inside the blast radius of
the first bomb.

• FireNBombNPlayer : Rare configuration that happens if in a tile there is fire, a bomb,
and the synthetic player. This only happens if the synthetic player plants a bomb
on a tile inside the blast radius of another bomb.

• FireNBombNAIEnemy : Similar to FireNBombNPlayer, but instead of the synthetic
player, it is a bomberman enemy.

While this representation is the one that the planning synthetic player uses for its decision
making process, the machine learning agent does not use it as the final one, but as an inter-
mediate representation. The grid is then transformed into a representation more suitable
and efficient for the machine learning process, when the agent is collecting observations
from the environment. This representation is explained in more detail in section 3.5.1 .

Figure 3.2 1 shows the inheritances in place.

3.4 A Planning Approach to Synthetic Players

The planning agent is implemented in the PlanningSyntheticPlayer.cs file, and inherits
from the SyntheticBomberman class previously described. This agent works by finding a
sequence of actions that, from the current game state, will allow it to achieve a certain,
selected goal.

3.4.1 Actions

An action is represented symbolically, with associated preconditions and effects. The
preconditions are circumstances that need to be true, in order for the action to be possible,
to be executed in the current game state. For instance, to plant a bomb, there cannot be
any more bombs in the same tile. Effects are a grid representation (described previously
in 3.3) of the game world after the action is performed. Actions also have an associated
cost, although all of them possess the same value for the case study in use.

Every action inherits from the abstract class SymbolicAction, overriding five functions:
void Init(PlanningSyntheticPlayer agent), void Simulate(), void Revert(), bool CheckPre-
conditions(int[,] grid), and bool IsPossible(int[,] grid);

void Init(PlanningSyntheticPlayer agent) defines the Effects of the action.

void Simulate() virtually simulates the action upon the given state of the game, without
actually executing it. This is useful in the A* search, where expanding a game world node
means trying every possible action in that node.

1For a clear "waters separation": the SyntheticBomberman class inherits from a GameAgentPlayer
class that was developed by Bernardo Correia, for his work [Correia, 2021]. The constructor of the Syn-
theticBomberman class was also developed by B. Correia. The GameAgentPlayer class also inherits from
another one, GameAgent, also developed by B.Correia.
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Figure 3.2: UML Class Diagram

void Revert() simply reverts what void Simulate() did, so one can easily return to the
parent node in the A* search, after expanding its children.

bool CheckPreconditions(int[,] grid) is called during A* algorithm execution to check if an
action is possible to execute in the current game state.

bool IsPossible(int[,] grid) has the same function as bool CheckPreconditions(int[,] grid),
however it is used when the planning synthetic player is checking if the next action of the
current plan is possible to perform.
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The full set of actions that exist are:

• ActionMoveUp: moves the agent up one tile;
• ActionMoveDown: moves the agent down one tile;
• ActionMoveLeft : moves the agent left one tile;
• ActionMoveRight : moves the agent right one tile;
• ActionPlantBomb: plants a bomb on the tile where agent is currently in;
• ActionDoNothing : does nothing, skipping current turn;

3.4.2 Goals

A goal is a desired game state. Goals inherit from the same abstract class Goal, overrid-
ing four functions: bool IsPossible(), double Heuristic(WorldNode state, WorldNode goal),
bool IsObjective(WorldNode node), and int[,] GetGoalGrid(int[,] currentGrid, int index,
PlanningSyntheticPlayer agent).

bool IsPossible() checks if the goal is still possible to achieve given the current configuration
of the game world. This function is called when the planning synthetic player is checking
if the goal is still possible before executing the next action of the current plan.

double Heuristic(WorldNode state, WorldNode goal) rovides a custom heuristic function to
use in the A* algorithm.

bool IsObjective(WorldNode node) checks if the given game world node is the goal node.
This function is called during the execution of the A* algorithm.

int[,] GetGoalGrid(int[,] currentGrid, int index, PlanningSyntheticPlayer agent) builds
and returns the grid representation of the goal. This function is called by the planning
synthetic player that then passes the obtained grid to the A* algorithm as an input,
representing the start node of the search (since A* applies regressive search, as explained
in detail in section 3.4.4).

There are three existing goals in total:

• BeSafeGoal : goal of the highest priority, in which the agent checks if it is currently
in a safe tile, i.e, in a tile away from the explosion radius of every bomb currently
placed in the game world;

• AttackEnemyGoal : goal of attacking an enemy, that consists in approaching the
targeted enemy and planting a bomb near it.

• ExplodeBlockGoal : goal of the lowest priority. If the agent is already safe and it
cannot find a path to any enemy, it will decide to explode the nearest block, in hopes
of finding a passage to enemies;

3.4.3 Planning Synthetic Player’s Model

Attributes

An instance of the planning synthetic player contains the following attributes:

• private Goal[] allGoals: an array with all the goals the agent can eventually pursue
during a game session
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• private SymbolicAction [] allActions: an array with all the actions the agent can
eventually perform during a game session.

• private List<SymbolicAction> currentPlan: the current plan the agent is executing,
which is a sequence of actions.

• private Goal currentGoal : the current goal the agent is pursuing.
• private int simulatedX : X coordinate of the simulated position of the agent.
• private int simulatedY : Y coordinate of the simulated position of the agent.

The simulated position of the agent is a fictitious pair of coordinates that states where
the agent is on the grid while the planning process is being executed. These are the
coordinates that are affected by an action’s effects. With the existence of this simulated
position, twinkling with the agent’s real position during planning is avoided. Therefore,
the agent’s real position is only altered after executing the next action of the generated
plan, and the simulated position reverts back to being equal to the real position. The
simulated position is then only used in calculations again when a new plan needs to be
generated.

Constructor

The agent’s construtor presents the following parameters:

• List<int> states: a list of internal states that every game element possesses. The
planning agent does not use this, since it is intrinsic to the platform’s inner workings.

• int x : the x coordinate of the agent’s position in the grid;
• int y : the y coordinate of the agent’s position in the grid;
• IUpdate updateInterface: reference to the platform’s update interface, responsible for

the game loop update.
• Goal [] allGoals: a vector of all the possible goals the agent can pursue during a game

session;
• SymbolicAction [] allActions: a vector of all the possible actions the agent can per-

form during a game session;

Decision Making Process

When asked for a decision, the agent either returns the next action of its current plan, if
there is one, or replans and returns the first action of the new plan. The agent checks the
following conditions:

• Is there currently a plan?
• Is not there any higher-priority goal possible to pursue than the current one?
• Is the current goal still possible to achieve?

If all the answers to these conditions are affirmative, then the agent checks if the next
action of the current plan is possible and if it can be performed safely, i.e, without the risk
of the action causing the demise of the agent. If yes, then the action is executed. If not,
the agent decides to do nothing on the current turn.

If at least one of the previous conditions are not met, then the agent needs to replan. The
replanning process goes the following way:

1. The agent checks for the possible goal with highest priority
2. A* for pathfinding in order to decide the goal tile. For some goals, several tiles can
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be considered goal tiles. For instance, for the goal of attacking an enemy, any tile
adjacent to the targeted enemy can be considered a goal tile for the agent, i.e., a
tile where the agent needs to go in order to complete the goal. However, regressive
search is done when planning, which means it starts on the goal node and finds a
path to the current node. Therefore, there is the necessity of defining a specific tile,
from the several possible options, to be considered as the starting node of the search.
For sake of simplicity, pathfinding is done from the current tile to the tile where the
enemy is, in order to get the nearest adjacent tile to the enemy. The obtained tile is
then used as the starting node of A* planning search.

3. A* regressive search from goal node to current node. (explained in more detail in
section 3.4.4).

4. The agent elaborates the plan and returns its first action, if it is safe to execute. If
not, the agent decides to do nothing this turn and to initiate the newly generated
plan only on the next turn.

Figure 3.3 shows the flow of the described process.

Figure 3.3: The Planning Synthetic Player’s Decision Making Process

3.4.4 A* Search

The planning synthetic player uses the A* search algorithm to find a sequence of actions
that fulfill the current goal - a plan. The search is performed in a regressive manner,
in which the starting node of the search actually corresponds to the desired game state,
and the goal node represents the current game state. This is to restrict the number of
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expanded nodes during the search process, which leads to a more efficient implementation
of the algorithm.

Therefore, starting from the goal node, the algorithm checks for a possible action to execute
that will lead to a new state, closer to the goal node of the search, which is the current game
state. As said in 3.4.1, in order for an action to be possible to execute, all its preconditions
need to be true.

A search node represents a game state, and is an instance of the WorldNode class, which
inherits from GraphNode class. The latter represents a typical graph node used in A*
search, that contains the following relevant attributes:

• double gCost : represents the g(n) of the node, that is the cost from the starting node
until the current node;

• double hCost : represents the h(n) of the node, i.e. the estimated distance from the
current node to the goal node;

• double fCost : represents the f(n) of the node, that is calculated by the sum of g(n)
with h(n);

• GraphNode previousPathNode: reference to another node. This is used after the
execution of the algorithm, to trace back from the goal node to the start node, in
order for the algorithm to be able to return the full path of nodes;

An instance of WorldNode is just an extension of GraphNode, that, alongside the attributes
already detailed, it also contains:

• int[,] grid : a bidimensional matrix of integers that represents the game state that
the node itself denotes;

• int [] agentsPos: a vector of two integers that denotes the coordinates of the agent
in the game state represented by this node;

• SymbolicAction actionTakenToReachHere: reference to the Action taken to reach this
goal. This attribute has the same function of the previousPathNode attribute of the
GraphNode class;

The algorithm follows the typical A* execution, in which the search is done by visiting
and expanding the nodes with the lowest f(n) cost. It receives the following parameters
as inputs:

• PlanningSyntheticPlayer player : reference to the planning agent that is evoking the
A* algorithm;

• GraphNode start : the starting node of the search, that represents the goal game state
• GraphNode end : the goal node of the search, that represents the current game state;
• SymbolicAction[] possibleActions: array of all the possible actions the agent can

perform;
• Goal goal : the current goal the agent is pursuing;

First, the starting node’s h(n) and f(n) are calculated and then it is added to the list
of possible nodes to expand (in [pseudocode], called “Expandable”). Then, while there
are nodes to be expanded, the node with lowest f(n) is selected and the SimulatedX and
SimulatedY coordinate attributes of the planning agent are updated, with the virtual
agent’s coordinates on the selected node being assigned to them. For example: in the
first iteration of this process, the selected node is the start node, since it is the only
node on the expandable list. Therefore, the agent’s simulated position will be updated to
reflect its hypothetical position if the agent was in the game state corresponding to that
node. Since the start node represents the actual goal game state, the agent’s simulated
position will be its position if the agent was in the game state corresponding to the goal
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node. These simulated coordinates ensure that there is no need to alter the agent’s real
coordinates during planning, composing a very basic version of a forward model, i.e, a way
of simulating the effects of an action in the environment, resulting in a new game state,
without actually modifying the real game world.

Next, the algorithm checks if the selected node is the goal node. If it is, then the
List<SymbolicAction> GetPlan(WorldNode node) method is invoked, which traces back
from the selected node to the start node, in order to get the full path. This traceback is
possible due to the actionTakenToReachHere attribute that every node possesses. After the
traceback is done, the List<SymbolicAction> GetOppositeActions(List<SymbolicAction>
actions) method is invoked, still within GetPlan(WorldNode node). This GetOppositeAc-
tions(List<SymbolicAction> actions) method obtains the reverse actions of the full action
sequence from the trace back. This is necessary since the algorithm performs regressive
search, which translates into a sequence from the goal game state to the current game
state. So, for instance, let us consider the scenario depicted in Figure 3.4.

A planning agent (blue square) is at coordinates (8, 1), and an adjacent bomb (red square)
at (7, 1). The agent’s goal is to evade the bomb explosion, therefore it finds a path from
the nearest safe tile to its current position at (8, 01). Since the bomb explosion will reach
tiles (8, 1) and (9, 1), and there are obstructing blocks (black squares) in (8, 0), (8, 2) and
(10, 1), the nearest safe tile is (9, 2). In this situation, the A*’s regressive search will
obtain the following plan: Down-Left, since it starts from the goal node on (9, 2), to the
current game state, in which the agent is at (8, 1). Therefore, there is the need to not only
reverse the entire plan’s order, but also to get its opposite actions. So, first, the plan is
reversed, thus obtaining Left-Down. Then, in order to get the opposite action for each one
of the sequence, the attribute SymbolicAction OppositeAction of each action is used. This
attribute is defined à priori and is a reference to another action. For instance, the opposite
action of going left is going right, while the opposite move of going down is going up.
Therefore, executing List<SymbolicAction> GetOppositeActions (List<SymbolicAction>
actions) upon the sequence of actions Left-Down will render Right-Up, which is the correct
sequence in order for the agent to go from its current state at (8, 1) to (9, 2).

Figure 3.4: An Example of How Regressive Search Works

The program’s execution ends returning the full sequence of actions in order to go from
the current game state to the goal game state.

However, if the node that is selected from the expandable list is not the goal node, then it
is removed from the expandable list and added to the one of visited nodes, being expanded
in the process. The expansion is made by obtaining every possible action possible to be
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executed by the synthetic player on the game state depicted by the expanding node. Then,
for each possible action, its effects are simulated upon the node’s game state. This is done
invoking the void Simulate() method intrinsic to each action. For instance, in order to
simulate the action Move Right, the agent’s SimulatedX attribute is updated accordingly,
adding +1 to it. The previous tile depicted by the agent’s simulated coordinates is updated
as well in order to reflect the agent’s hypothetical movement away from that tile. A new
node is created following the simulation of the action’s effects. The new obtained node
is then checked to find out if it is present in the visited list or not. If it is, the action’s
effects are reverted in order to get the parent node’s grid back and the rest of the process
is ignored, passing automatically to the next action to be simulated. If the new node is
not in the visited list, its g(n) is calculated and its f(n) is updated accordingly. Its h(n)
is also calculated if it has not been yet. Next, the new node is checked to find out if it
is present in the expandable list or not. If it is, then only if the new f(n) is lower than
the current one, both f(n) and g(n) get updated. The actionTakenToReachHere attribute
is assigned with a reference of the action that was simulated. If however, the new node
is not present in the expandable list, then it is added to it, with both its f(n), g(n) and
actionTakenToReachHere attribute being updated as well. After this, the action’s effects
are reverted in order to get the parent node’s grid back, and then the next possible action
to execute is simulated as well, repeating the entire process.

Pseudocode for the algorithm is presented in the Algorithm Listing 1, to better illustrate
all of the process described above.

3.5 A Reinforcement Learning Approach to Synthetic Play-
ers

The RL approach was implemented recurring to Unity ML-Agents framework 2 3.
The core idea of this approach is to perform IL and then improve the result with classic
RL. More precisely, the first step is to provide the agent with gameplay demonstrations
of a human player in order to train an agent’s policy to mimic the behaviours seen in the
demos. After the IL process concludes, the agent’s performance is improved by doing more
training, this time using only the extrinsic reward signals from the environment.

To perform IL, two methods were used: the first is BC, the simplest form of imitation
learning, in which the goal is to train a policy that maps state-action pairs from the
provided demonstrations. The second used method is GAIL, which was explained in 2.3.4.
To perform RL, the framework provides two algorithms to choose from. The algorithms in
question are PPO4 and Soft Actor Critic (SAC)5.

PPO is the default algorithm of the framework, since it is more general and more stable
than other RL algorithms. PPO is a stochastic gradient descent algorithm and its novelty
resides in the fact that it implements a way to do a Trust Region update without having
the need to use the Kullback-Leibler penalty6. A Trust Region update is a way of making
sure that the new policy does not deviate too much from the new one, in order to avoid
learning completely off-the-book behaviours. This elimination of the need to use the KL-
divergence allows PPO to achieve the same performance of other RL algorithms despite

2ML-Agents Framework Official Page: https://unity.com/products/machine-learning-agents
3ML-Agents Framework GitHub: https://github.com/Unity-Technologies/ml-agents
4OpenAI’s Official Page about PPO: https://openai.com/blog/openai-baselines-ppo/
5SAC’s Offical Announcement Page: https://bair.berkeley.edu/blog/2018/12/14/sac/
6Kullback-Leibler Penalty: https://en.wikipedia.org/wiki/Kullback%E2%80%93Leibler_divergence
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Algorithm 1: A* For Planning
Input Planning synthetic player, Start node, End Node, All Actions, Current Goal
Expandable = Start Node; // List of Nodes possible to be expanded
Visited = empty; // List of already visited Nodes
Calculate f(Start); // f(n) = g(n) + h(n)
while there are nodes in Expandable do

Node n = Get Lowest F-Cost Node in Expandable
if Node n is Objective then

return Get Plan from Node n to Start Node;
end
Remove Node n from Expandable and Add it to Visited
Possible Actions List = Get Possible Actions to Execute in node N
foreach Action in Possible Actions do

Simulate Action
Create New Node with the Effects of Simulated Action
if New Node in Visited List then

continue
end
Calculate f(NewNode)
if New Node in Expandable List then

if new f(NewNode) lower than Old f(NewNode) then
Update f(NewNode);

end
else

Add New Node to Expandable List;
end
Revert Action to return to previous Node

end
end
return failure

being far simpler to implement.

SAC is an off-policy algorithm, which means that the experiences collected during training
are placed in a replay buffer and then they are randomly drawn from the buffer in future
model updates. This allows the agent to learn from experiences collected at any time
during the past. Despite being a sample-efficient algorithm, SAC is more computationally
expensive than PPO, and is mostly used for real-world robotic problems. Therefore, PPO
was chosen to perform RL, not only for its advantages but also because the framework
documentation recommends using this particular algorithm when coupling RL withIL.

3.5.1 Representation

As said previously, the machine learning agent does not use the grid representation de-
scribed in 3.3 as the final, but as an intermediate one. Instead, when collecting observations
from the environment, the agent translates the grid representation to a modified version
of the One-Hot Vector representation.

The One-Hot Vector representation is a vector of size equal to the total number of possible
configurations, in which each element represents a possible configuration. The entire vector
presents 0 in every index except for a single 1 on the index corresponding to the pretended
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configuration or state to be identified.

Using the One-Hot observation method for state representation would render a large
amount of observations per time step, since there would be a one-hot observation vec-
tor for each cell of the world grid. Therefore, the total number of observations would be
given by the total number of cells of the world grid multiplied by the number of possible tile
configurations plus 2 (that represents the X and Y of the agent’s position in the world).
This is a rather computationally expensive approach. Therefore, a modification is needed
to be made in order to diminish the number of observations. With the new representation,
each tile is still represented by an observation vector. However, this vector has a size equal
to the total number of types of game elements in the game. In the case study presented,
there are five types of game elements:

• Bomberman (the synthetic players and respective enemies)
• Destructible block
• Unsurpassable block
• Bomb
• Fire

Thus, each grid cell is represented by a vector of size 5, in which each element represents
the presence or absence of a particular type of game element. The indexes of the vector
correspond to the following game element types:

[Bomberman,DestructibleBlock, UnsurpassableBlock,Bomb, F ire] (3.1)

Therefore, for instance, a vector of [1, 0, 0, 0, 1] represents a cell where there is a bomberman
but also fire from a bomb explosion, which will eventually result in the death of the
bomberman on the next timestep. A vector of [0, 0, 0, 0, 0] represents an empty tile.

With this representation, the total number of observations is given by the total number
of grid cells multiplied by the total number of game elements types +2 (agent’s position).
Since the majority of the training process happened on a 11x11 grid, and as stated above,
there are 5 different types of game elements, the total number of observations is 11 x
11 x 5 + 2 (agent’s position) = 607. The One-Shot representation, for the same map
configuration, would be 11 x 11 x 15+2 = 1817. Therefore, the new devised representation
makes the total number of observations three times smaller than the One-Shot observation
representation.

3.5.2 RL Synthetic Player’s Model

The synthetic player is represented by two scripts, MLSyntheticPlayer.cs and MLAgent.cs.
The former inherits from the SyntheticBomberman class described in 3.3, while the latter
inherits from a special class Agent specific to the ML-Agents framework.

The ML Synthetic Player Script

The MLSyntheticPlayer.cs file not only deals with the typical logic of a game agent of the
platform, such as the construtor, the UpdateAgent function and the method to deal with
the death of the agent, but also manages the rewards of the agent. It also deals with the
Heuristic Mode, that is used instead of the default behaviour (training) of the synthetic
player when one wants to provide gameplay demonstrations for the posterior imitation
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learning process. The MLSyntheticPlayer script manually asks, every turn, the MLAgent
one for a decision to take.

A new instance of a machine learning synthetic player is created using the constructor
shown below, in which the parameters are:

• List<int> states: similarly to the planning agent, this list of internal states is not
actually used.

• int x : the x coordinate of the agent’s position in the grid;
• int y : the y coordinate of the agent’s position in the grid;
• IUpdate updateInterface: reference to the platform’s update interface, responsible for

the game loop update;
• MLAgent agentRef : reference to the MLAgent.cs script responsible for managing the

machine learning process;

pub l i c MLSyntheticPlayer ( L is t<int> s ta t e s , i n t x , i n t y ,
IUpdate update Inte r face , MLAgent agentRef ) :
base ( s t a t e s , x , y , upda t e In t e r f a c e )
{

. . .
}

Listed below are the two main functions of this script. void DecisionMakingProcess()
simply manages the natural reinforcement learning loop: it obtains the action to execute,
processes the effects of the chosen action in the environment and collects rewards. To
obtain the action, the int TakeAction() method is invoked, which reads the action to take
from a variable called rawAction in the MLAgent script.

p r i va t e void Decis ionMakingProcess ( Grid g ){
i n t actionTaken = TakeAction ( ) ;
ProcessAct ion (g , actionTaken ) ;
CalculateReward ( actionTaken ) ;

}

pub l i c ov e r r i d e i n t TakeAction ( ){
i f ( ! heur i s t i cMode )

MlAgentRef . RequestDec is ion ( ) ;
r e turn MlAgentRef . RawAction ;

}

The ML Agent Script

The MLAgent script is where the machine learning process actually happens.
The first important method is void CollectObservations(VectorSensor sensor), that gathers
information about the environment at every timestep and builds the representation of the
current game world.

pub l i c ov e r r i d e void Co l l e c tObse rva t i ons ( VectorSensor s enso r ){
base . Co l l e c tObse rva t i ons ( s enso r ) ;
// Add Grid to Observat ion Vector
f o r each ( i n t [ ] t i l e in Syn the t i cP l ay e rUt i l s . G r i d I t e r a t o r ( g r id ) )
{

/∗
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Co l l e c tT i l eObse rva t i on ( ) r e tu rn s a 5− s i z e d
vec to r that r ep r e s en t s the t i l e in ques t i on
∗/
i n t [ ] t i l e S t a t e = Co l l e c tT i l eObse rva t i on ( t i l e ) ;
f o r ( i n t i = 0 ; i < t i l e S t a t e . Length ; i++){

senso r . AddObservation ( t i l e S t a t e [ i ] ) ;
}

}
// Add Normalized X o f Agent to Observat ion Vector .
s en so r . AddObservation (x / g r id . GetLength ( 0 ) ) ;
// Add Normalized Y o f Agent to Observat ion Vector .
s en so r . AddObservation (y / g r id . GetLength ( 1 ) ) ; /

}

The obtained representation is the one explained in detail in section 3.5.1

The void WriteDiscreteActionMask(IDiscreteActionMask actionMask) function diminishes
the amount of possible actions that the agent can try at every timestep, providing it with
the list of impossible actions to execute in the current game state.

pub l i c ov e r r i d e
void WriteDiscreteActionMask ( IDiscreteAct ionMask actionMask ){

actionMask . WriteMask (0 , mlPlayer . GetImposs ib leAct ions ( ) ) ;
}

After collecting observations and deciding which action to take, the agent calls the void
OnActionReceived(ActionBuffers vectorAction) function, that stores the action to be taken
and invokes an C# event. This event signals the MLSyntheticPlayer script that it can
collect the action to execute in the current turn (by invoking void DecisionMakingProcess()
and consequently, int TakeAction()) from the variable RawAction in the MLAgent script.

pub l i c ov e r r i d e void OnActionReceived ( Act ionBuf f e r s vectorAct ion )
{

// s t o r e s the ac t i on to execute in rawAction
rawAction = vectorAct ion . D i s c r e t eAct i on s [ 0 ] ;
OnInputReceived ? . Invoke ( th i s , EventArgs . Empty ) ;

}

The script also contains upkeep functions like OnEpisodeBegin() and OnEpisodeEnd(),
that handle the logistics of starting a game scenario.

3.6 RL Synthetic Player’s Training Process

This section describes the entire training process performed to train synthetic players. One
training episode corresponds to a match of the case study. The match ends when there is
a winner or when the maximum number of turns is reached.

3.6.1 Rewards

During the training process, several rewards were tested. The most used ones are presented
in Table 3.4
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Event Reward
Winning the game 1.0

Dying −1.0

Killing an enemy 0.75

Iteration penalty −0.0001

Table 3.1: Main Rewards Used in The Training Process

In some training trials, there were also tested other rewards, as in [França et al., 2019],
that can be consulted in Table 3.2

Event Reward
Getting closer to the nearest enemy 0.002

Getting away from the nearest enemy −0.002

Exploding a block 0.1

On a danger tile (within the blast radius of a nearby bomb) −0.0001

Table 3.2: Other Rewards Used in The Training Process

3.6.2 Hyperparameters

The most important hyperparameters used in the training process are the following:

• Batch_size: Batch size is the number of experiences used in each iteration of the
gradient descent algorithm, and it needs to be multiple times smaller than the buffer
size.

• Buffer_size: Buffer size, in PPO algorithm, is the number of experiences to gather
before updating the policy model. Must always be multiple times larger than the
batch size.

• Learning_rate: Initial learning rate for gradient descent. The learning rate dictates
the amount that the neural network’s weights are updated during training.

• beta: β refers to the entropy regularization’s strength. The higher its value is, the
more probable it is for the agent to take random actions to explore the environment.

• epsilon: ε dictates the policy’s evolution speed during training. In other words, it
defines the acceptable interval for the divergence between the new policy update and
the old one.

• lambd : λ defines how much the agent follows his current policy or the environment
rewards when updating its value estimate.

• num_epochs: Number of epochs is the number of passes through the experience
buffer when performing gradient descent optimization.

• normalize: Whether normalization is applied to the observation vector or not.
• hidden_units: number of units per hidden layer of the neural network.
• num_layers: number of hidden layers of the neural network.
• gamma: γ is the discount factor.

A typical configuration file presents a structure like the one depicted next. This configu-
ration below can be assumed that was used in every trial, except when stated otherwise.

behav io r s :
MLBomberman :

t ra iner_type : ppo
hyperparameters :
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batch_size : 256
bu f f e r_s i z e : 10240
l ea rn ing_rate : 3 . 0 e−4
beta : 5 . 0 e−4
ep s i l o n : 0 . 2
lambd : 0 .95
num_epoch : 3
learn ing_rate_schedule : l i n e a r

network_sett ings :
normal ize : f a l s e
hidden_units : 128
num_layers : 2

reward_signals :
e x t r i n s i c :

gamma: 0 .99
s t r ength : 1 . 0

3.6.3 Machine Learning Trials

1st Series of Trials - Testing the Waters

The first machine learning training trials were done in order to “test the waters”, i.e.,
to test the correct working of the framework and also the correct integration within the
platform. Therefore, only two ML runs were executed, one dedicated to IL, another one
to RL improvement over the former.

The first trial was focused on IL, more precisely on GAIL. The agent was put in an
environment with 60% destructible blocks, and pitted against two synthetic players that
simply execute a random action every turn, and an idle one, which returns the action Do
Nothing every timestep.

The environment configuration can be seen in Tables 3.3 and 3.4.

Parameters Values
% of Destructible Blocks 60%

Opponents 2 Random and 1 Idle
Provided Demo 20 Episodes in an 60% destructible blocks environment

Table 3.3: Environment Configuration of 1st Trial of 1st Series

The configuration of hyperparameters is the one depicted in 3.6.2, with the addition of the
following lines under the reward_signals section, to activate GAIL.

g a i l :
s t r ength : 0 . 5
demo_path : Demos / [ name o f Demo ] . demo

Therefore, GAIL was used with a strength of 0.5.

The second trial had the objective of improving upon the first through classic reinforcement
learning. For this purpose, the trial presented the exact same configuration as the first
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Reward Value
Winning the game 1.0

Dying −1.0

Killing an enemy 0.75

Iteration penalty −0.0001

Getting closer to the nearest enemy 0.002

Getting away from the nearest enemy −0.002

Exploding a block 0.1

On a danger tile (within the blast radius of a nearby bomb) −0.0001

Table 3.4: Rewards Used in The First Trial of 1st Series

one, except that GAIL strength was reduced to 0.1, in order to assign less power to the
demonstrations, so the agent can learn more through the environment rewards.

The results of both trials are presented in Figure 3.5.

Figure 3.5: Results of the 1st Series of Trials

In the end of this series, despite not achieving relevant results, the main goal of the se-
ries was fulfilled: to test the ML-Agents framework and to perform some initial machine
learning runs.

2nd Series of Trials - How The Environment Configuration Affects The Learn-
ing Process

The second series of trials had the main goal of studying how the performance of the
agent would vary according to the percentage of destructible blocks in the environments.
Intermediate rewards were also eliminated, leaving only the end game rewards and a reward
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for killing an enemy.
In total, this series presents 9 trials, divided in 3 batches of 3 trials.

The first three trials consisted of imitation learning via BC plus GAIL, in three different
environment configurations: 0%, 30% and 60% of destructible blocks, respectively. Three
separate demos were recorded, consisting of 100 episodes played by a human player, one
in a 0% destructible blocks map, another in 30%, and the other in 60%. Each trial got the
demo with the corresponding percentage of destructible blocks to learn from. The agent
faced three idle opponents during training.

The rewards used in the trials are the ones of 3.5.

Reward Value
Winning the game 1.0

Dying −1.0

Table 3.5: Rewards Used in The 1st Batch of Trials of 2nd Series

The imitation learning parameters used in the trials are the ones of 3.6.

IL Parameter Value
BC Strength 1.0

GAIL Strength 0.5

Table 3.6: IL Parameters Used in The 1st Batch of Trials of 2nd Series

The introduction of BC to the configuration file is analogous to GAIL, except that is not
put under reward_signals section. Therefore, the rewards part of the configuration file
looks like the following:

reward_signals :
e x t r i n s i c :

gamma: 0 .99
s t r ength : 1 . 0

g a i l :
s t r ength : 0 . 5
demo_path : Demos / [ name o f Demo ] . demo

behav iora l_c lon ing :
s t r ength : 1 . 0
demo_path : Demos / [ name o f Demo ] ] . demo

The remaining hyperparameters were the same of 3.6.2.

Figure 3.6 shows the comparison between the three trials.

The second batch consisted of three trials was similar to the previous three, with the same
exact setup, with the exception of the reintroduction of a reward for killing an enemy, with
value 0.75. The results can be consulted in 3.7.

The last three trials consisted of improving the previous three (the second batch of trials
of this series), lowering GAIL and BC strength to 0.1 in order to train the agent’s policy
based on the environment’s extrinsic rewards. Rewards were the same ones used in the
second batch of trials.

Results of the last batch of trials can be found in Figure 3.8.
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Figure 3.6: Results of The 1st Batch of Trials of 2nd Series

Figure 3.7: Comparison between the Trials of 1st and 2nd Batch of 2nd Series

In the end of the 2nd series of trials, the goal of studying how the environment configuration
affects the learning process was achieved. It became apparent by the results that the less
percentage of destructible blocks in the environment, the better the performance of the
agent. However, the obtained results were still far from optimal.
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Figure 3.8: Results of The Last Batch of Trials of 2nd Series

3rd Series of Trials - A New Challenger Approaches: ML Agent vs Planning
Agent

The third series of trials marks the introduction of the planning synthetic player in the
training process. After the planning agent’s development was completed, it began to be
used as one of the opponents of the machine learning agent. A new demo comprising 100
matches played against the planning synthetic player and two idle ones was provided.

All of the trials of this series presented the rewards listed in Table 3.7.

Reward Value
Winning the game 1.0

Dying −1.0

Killing an enemy 0.75

Table 3.7: Rewards Used in Every Trial of 3rd Series

The first trial focused on performing imitation learning with both BC and GAIL, so the
agent can present similar behaviors from those seen in the new demo. The environment
configuration and the most relevant parameters for this first trial can be found in tables
3.8. The rest of the hyperparameters were the ones of 3.6.2.

Parameters Values
% of Destructible Blocks 0%

Opponents 1 Planning and 2 Idle
Provided Demo 100 Episodes in an 0% destructible blocks environment
BC Strength 1

GAIL Strength 0.5

Table 3.8: Environment Configuration of 1st Trial of 3rd Series

55



Chapter 3

The second trial focused on using reinforcement learning to improve the result of the trained
model of the first trial. Therefore, the environment configuration was the same, with the
exception of BC and GAIL being reduced to 0.01.

Results of these two trials can be visualized in Figure 3.9.

Figure 3.9: Results of The First Two Trials of 3rd Series

The next trial (third trial of the series) improved upon the previous reinforcement learning
trial (second trial), with the aim of training the agent in a slightly harder scenario. BC and
GAIL strength remained reduced to 0.01 so the agent could learn via extrinsic rewards.

The environment configuration was the same, with the exception of the training process
happening in a game scenario with 10% destructible blocks.

Figure 3.10 shows the comparison between: 1) the first trial executed in this series, that
consists of imitation learning in a 0% destructible blocks environment; 2) the second trial
performed in this series, which is reinforcement learning upon the first trial, still in a 0%
destructible blocks environment; 3) the third trial, which is reinforcement learning upon
the second trial, this time in a 10% destructible blocks environment.

The last two trials of the series are analogous with the first two, since they focus on first
training the agent with IL and then improving the model with RL’s chosen algorithm,
PPO.

Therefore, one trial was performed in a 20% destructible blocks environment, with the
setup configuration of table 3.9.

Parameters Values
% of Destructible Blocks 20%

Opponents 1 Planning and 2 Idle
Provided Demo 100 Episodes in an 30% destructible blocks environment
BC Strength 1

GAIL Strength 0.5

Table 3.9: Setup Configuration of The Last Two Trials of 3rd Series
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Figure 3.10: Comparison Between The First Three Trials of 3rd Series

Then, the last executed trial, which focuses on improving the previous one through RL,
presents the same environment configuration, with the exception of both BC and GAIL
strength being lowered to 0.01.

Results of these last two trials can be seen in Figure 3.11.

Figure 3.11: Comparison Between The First Three Trials of 3rd Series

One major achievement with this series of trials was the incorporation of the planning
synthetic player in the training process. However, the results obtained remained modest
and possible to be improved.
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4th Series of Trials - Changing The Neural Network Architecture and Hyper-
parameters

The fourth series had the main goal of tweaking the agent’s neural network architecture and
its hyperparameters in order to get better results A brief meeting with Professor Doctor
and Dissertation’s Judge Ernesto Costa provided some helpful recommendations to help
to guide this series of trials. In total, 12 trials were made during this series.

The rewards of Table 3.10 were the ones used in every trial of this series, except for the
10th trial.

Reward Value
Winning the game 1.0

Dying −1.0

Killing an enemy 0.75

Table 3.10: Rewards Used in Every Trial of the 4th Series, Except the 10th Trial

The first trial’s aim was to test a new configuration of the neural network, increasing the
amount of hidden layers from 2 to 4 and decreasing the number of units per hidden layer
from 128 to 64. This way, the neural network is narrower but deeper. IL was done in an
0% destructible blocks environment. The setup configuration can be seen in table 3.11.
The rest of the hyperparameters remain unchanged, being the ones of 3.6.2.

Parameters Values
% of Destructible Blocks 0%

Opponents 1 Planning and 2 Idle
Provided Demo 100 Episodes in an 0% destructible blocks environment
BC Strength 0.5

GAIL Strength 0.5

Number of Hidden Layers 4

Number of Hidden Units 64

Table 3.11: Setup Configuration of The 1st Trial of 4th Series

Then, a second trial was performed with the exact same configuration, to improve upon
the first via RL. Therefore, BC and GAIL strength was reduced to 0.01.

The results of both trials can be seen in Figure 3.12.

Then, two more trials were performed, in an analogous manner to the first two, but this
time in a 30% destructible blocks environment.

Comparison between the four trials can be seen below in Figure 3.13.

The next pair of trials focused on testing new values for the number of epochs, batch size
and buffer size hyperparameters.

The first one (fifth trial of the series in total) presented higher batch size and number of
epochs than previous experiments. Its setup is presented in table 3.12.

The next trial (sixth trial of the series) reverted the batch size and number of epochs back
to the most common values used so far, and tested an inferior buffer size as well. The
setup was similar to the previous one, with just three differences, depicted in Table 3.13.
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Figure 3.12: Results of The First Two Trials of 4th Series

Figure 3.13: Comparison Between The First Four Trials of 4th Series

Parameters Values
% of Destructible Blocks 0%

Opponents 1 Planning and 2 Idle
Provided Demo 100 Episodes in an 0% destructible blocks environment
BC Strength 0.01

GAIL Strength 0.01

Number of Hidden Layers 4

Number of Hidden Units 64

Batch Size 512

Number of Epochs 5

Table 3.12: Setup Configuration of The 5th Trial of 4th Series
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Hyperparameter Value
Batch Size 256

Number of Epochs 3

Buffer Size 2048

Table 3.13: Changes in Hyperparameters from 5th to 6h Trial of 4th Series

The comparison between these two new trials and the second trial of the series can be seen
below in Figure 3.14.

Since a buffer size of 2048 reached the same performance as one of 10240 in less time, 2048
was chosen as the default value for buffer size. So, from this point onwards, every machine
learning run presents a buffer size of 2048 unless stated otherwise.

Figure 3.14: Comparison Between The 2nd, 5th and 6th Trials of 4th Series

The previous executed trial (6th one), with buffer size 2048 was selected to be the starting
point for the next two trials. In fact, RL was applied to the last trial’s obtained brain
model, but for environments with different percentages of destructible blocks.

One of the trials happened in a 30% destructible blocks environment, and the other in a
10% scenario. The setup for these two trials is the depicted in Table 3.14.

Parameters Values
% of Destructible Blocks 30% for one trial, 10% for another

Opponents 1 Planning and 2 Idle
BC Strength 0.01

GAIL Strength 0.01

Number of Hidden Layers 4

Number of Hidden Units 64

Batch Size 256

Number of Epochs 3

Buffer Size 2048

Table 3.14: Setup Configuration of The 7th and 8th Trials of 4th Series
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Comparison between the three referred trials (6th, 7th and 8th trials) can be analyzed in
Figure 3.15.

Figure 3.15: Comparison Between The 6th, 7th and 8th Trials of 4th Series

The next trial’s main goal was to analyse the discount factor’s (γ) impact in the learning
process. Henceforth, the new trial (9th trial of the series) presented a γ of 0.85, lower than
the 0.99 value used so far. The rest of the environment’s and neural network’s configuration
remained the same as the previous trials.

The next graphic 3.16 shows the comparison between the new trial, with γ 0.85, and a
previous trial executed (the 6th one) in the exact same conditions, with γ 0.99.

Figure 3.16: Comparison Between Trials with Different γ (6th and 9th of 4th Series)

Next parameter to be tested is the value of the reward for killing an enemy. Until this
point, a value of 0.75 was used. A new trial was made to evaluate the impact of decreasing
this reward value to 0.5. Its setup is the same of previous trials, and can be consulted in
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table 3.15. The rewards table is the one of 3.16.

Parameters Values
% of Destructible Blocks 0%

Opponents 1 Planning and 2 Idle
Provided Demo 100 Episodes in an 0% destructible blocks environment
BC Strength 0.01

GAIL Strength 0.01

Number of Hidden Layers 4

Number of Hidden Units 64

Batch Size 256

Number of Epochs 3

Buffer Size 2048

Gamma 0.85

Table 3.15: Setup Configuration of The 7th and 8th Trials of 4th Series

Reward Value
Winning the game 1.0

Dying −1.0

Killing an enemy 0.5

Table 3.16: Rewards Used in The 10th Trial of 4th Series

The results of the new trial and the previous one are in Figure 3.17, to compare the different
values for the reward of killing an enemy.

Figure 3.17: Comparison Between Trials with Different Values for The Reward of Killing
an Enemy (9th and 10th of 4th Series)

The two last trials of this series were the firsts to incorporate self-play, in which the
machine learning agent faces itself during the learning process. The first was made in
a 0% destructible blocks environment, and the second one in a 30% environment. The
environment configuration can be seen in Table 3.17.

62



Modeling Of Synthetic Players

Parameters Values
% of Destructible Blocks 0% one trial, 30% the other

Opponents 1 Planning and 1 Machine Learning
(previous iterations of itself during the training process)

Provided Demo 100 Episodes in an 0% destructible blocks environment
BC Strength 0.01

GAIL Strength 0.01

Number of Hidden Layers 4

Number of Hidden Units 64

Batch Size 256

Number of Epochs 3

Buffer Size 2048

Gamma 0.85

Table 3.17: Setup Configuration of The Last Two Trials of 4th Series

With the incorporation of self-play, the following lines must be added to the configuration
file:

s e l f_p lay :
window : 10
play_against_latest_model_ratio : 0 . 5
save_steps : 50000
swap_steps : 2000
team_change : 100000

The self-play parameters are the following:

• window : Size of the window used to save past snapshots of the agent’s policy. A
value of 10 will make sure that the last 10 previous snapshots are saved. Whenever
a new policy snapshot is saved, the oldest one in the window is discarded.

• play_against_latest_model_ratio: Probability for the agent to play against an oppo-
nent with the latest saved policy snapshot or against one of the others in the window,
chosen randomly.

• save_steps: Number of trainer steps before saving a new snapshot of the agent’s
policy. Trainer steps are equal to environment steps multiplied by the number of
learning agents in the environment.

• swap_steps: Number of ghost steps before changing the policy snapshot of the op-
ponent. Ghost steps are the steps taken by the agent’s opponent, that has a fixed
policy and is not learning.

• team_change: Number of trainer steps before swaping teams: the agent becomes
the opponent, with a fixed policy, and the opponent becomes the learning agent.

These parameters were never changed in any circumstance, including in the next series of
trials, that also uses self-play. Therefore, whenever a trial is being described as incorpo-
rating self-play, one can assume that these are the values for each parameter, even in other
series of trials besides this one.

Results of both trials can be compared in Figure 3.18.

Changing the neural network architecture and hyperparameters revealed beneficial, with
Trials 2, 6 and 9 obtaining the best results so far.
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Figure 3.18: Comparison Between The Last Two Trials of 4th Series

5th Series of Trials - Make or Break: Last Trials

One last series of trials was done in order to try to optimize the results. This series
is characterized by incorporating self-play in every trial and the inclusion of a curiosity
module. All of the trials used the same demo, a set of 50 matches played by a human player
against a planning synthetic player and a machine learning agent in a 30% destructible
blocks environment. A total of 11 trials were performed in this series. Most of the the
values for the hyperparameters are adapted from [França et al., 2019].

The first two trials used BC coupled with the curiosity module and self-play in order to
make the agent learn to mimic behaviors seen in the demo.

All of the trials of this series had the rewards listed in Table 3.18.

Reward Value
Winning the game 1.0

Dying −1.0

Killing an enemy 0.75

Iteration Penalty −0.0001

Table 3.18: Rewards Used in Every Trial of 5th Series

Curiosity is added to the configuration file under the reward_signals section. There The
bottom of the configuration file now looks like the following:

reward_signals :
e x t r i n s i c :

gamma: 0 .99
s t r ength : 1 . 0

c u r i o s i t y :
s t r ength : 0 . 1

g a i l :
s t r ength : 0 .01
demo_path : Demos / [ ] name o f Demo ] . demo
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behav iora l_c lon ing :
s t r ength : 0 .01
demo_path : Demos / [ name o f Demo ] . demo

se l f_p lay :
window : 10
play_against_latest_model_ratio : 0 . 5
save_steps : 50000
swap_steps : 2000
team_change : 100000

The configuration of the two trials is listed in Table 3.19, alongside the default self-play
parameters.

Parameters Values
% of Destructible Blocks 0% one trial, 30% the other

Opponents 1 Planning and 1 Machine Learning
BC Strength 1.0

GAIL Strength 0.01

Curiosity Strength 0.1

Number of Hidden Layers 3

Number of Hidden Units 128

Batch Size 128

Gamma 0.99

Table 3.19: Setup Configuration of The First Two Trials of 5th Series

The results are presented in Figure 3.19.

Figure 3.19: Results of The First Two Trials of 5th Series

The next two trials aimed at improving the performance of the first two. Therefore, BC
strength was reduced to 0.01, while the rest of the parameters remained the same.

Comparison between the four trials can be seen in Figure 3.20.
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Figure 3.20: Comparison Between The First Four Trials of 5th Series

A new trial (fith of the series in total) was performed to improve the obtained result of
one of the last reinforcement learning trials. More precisely, the previous third trial of this
series, in which RL is performed in an environment with no destructible blocks, is used as
a baseline for the new trial. However, this new run happened in an environment with 30%
destructible blocks. The configuration is exactly the same as the one of previous trials.

Figure 3.21 shows the comparison between the new trial (in red), the trial that acted as
baseline (in orange) and the fourth trial of this series (in blue), in which RL was performed
upon the second trial that used IL in a 30% destructible blocks configuration.

Figure 3.21: Comparison Between The 3rd, 4th and 5th trials of 5th Series
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The next two trials (6th and 7th overall) are very similar to the first two trials of this
series. The only difference is that IL is performed by coupling BC and GAIL in the two
new trials. One of the trials is performed in an environment with no destructible blocks,
and the other in an scenario with 30% of that type of blocks. Therefore, the configuration
for these two new trials is the same as the one used for the first two, with the exception
that GAIL strength is increased to 0.5. Comparison between the two new trials and the
first two can be seen in Figure 3.22.

Figure 3.22: Comparison Between The First Two Trials and the 6th and 7th Trials of 5th
Series

The next two trials (8th and 9th overall) executed RL to improve the results of the previous
two trials (6th and 7th). So both BC and GAIL strength is decreased to 0.01, in order for
the agent to learn more via the environment’s rewards.

Comparison between the two new trials and the previous two can be seen in Figure 3.23.

Figure 3.23: Comparison Between The 6th, 7th, 8th and 9th Trials of 5th Series

One of the last trials of this series incorporated a memory component in the training
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process. The configuration mirrors the first trial of the series, that is depicted in Table
3.19. The memory component parameters are listed in Table 3.20.

Parameter Value
Memory Size 256

Sequence Length 32

Table 3.20: Memory Parameters of The Last Two Trials of 5th Series

The comparison between this trial with memory and a previous trial without it executed
in the same conditions (the first trial of the series) can be seen in Figure 3.24.

Figure 3.24: Comparison Between A Trial With (10th) and a Trial Without (1st) Memory
Component, of 5th Series

The last trial of the series is the application of RL on the previous memory trial (10th).
Therefore the configuration is the same as the previous trial, except that BC strength is
decreased to 0.01.

The comparison between the two trials involving the memory component can be observed
in Figure 3.25.
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Figure 3.25: Comparison Between The Two Last Trials of 5th Series, that Involve a Memory
Component

This series was not able to get better results than the ones obtained in fourth series, despite
the incorporation of a curiosity module and a strong reliance on self-play. The last two
trials, that incorporated a memory component, did not produce relevant results. This may
be due to a wrong setup of framework parameters, or lack of training time.
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Chapter 4

Experiments and Evaluation

This chapter shows the experiments done in order to validate the potential use of syn-
thetic players as players and testers of game scenarios generated via Procedural Content
Generation (PCG), and discusses the obtained results.

4.1 Selection of Machine Learning Agents

Before the final evaluation phase to measure the synthetic players compliance to the three
pre-established requirements, some pre-experiments needed to be made in order to select
the best machine agents to use.

In order to fulfill requirements #2 and #3, a synthetic player must fulfill requirement #1,
since in order to play in new scenarios and to act in a believable way, the agent must be able
to play and win the game first. Therefore, a series of small tournaments composed of 1000
games were made in order to determine which are the best machine learning agents. Each
tournament pits against each other two different machine learning agents, with a planning
synthetic player to the mix. The machine learning agent with more victories (regardless
if the planning synthetic player has more victories or not) over the other advances to a
next tournament, while the machine learning synthetic player with less victories is removed
from the experiments. With this method, eventually the two best machine learning agents
for a particular environment configuration are discovered and selected. In total, 4 machine
learning synthetic players will be selected for the final evaluation phase: the two best
that were trained in environments with no destructible blocks, and the two best that were
trained in a 30% destructible blocks environment.

The results of all tournaments can be consulted at once in Table 4.1. For brevity reasons,
the trials in the table are referred as [number of series of trials]-[number of trial]. For
instance, to address the 6th trial of 4th series, its definition is 4-6. A result cell shows a
score obtained in a tournament between the two trials. For instance, 16 - 12 means that
the corresponding trial of the first column of the table obtained a 16% of victories in 1000
matches while facing the other machhine learning agent, that obtained 12%. If a cell of
the table is blank, means that a tournament between the two respective agents did not
happen.

From all the tournaments organized, four machine learning agents proved to be better
than the remaining. First, the 6th and 9th trial of the 4th series were selected as the best
machine learning agents that were trained in an environment with no destructible blocks.
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Trials 2-5 2-7 4-2 4-6 4-7 4-9 4-11 5-3
2-5 N/A 0.9-16
2-7 N/A 1.5 - 9.8
4-2 N/A 6.4 - 8.4
4-6 N/A 5.5-15.1 8 - 7.1 6.3-12.8
4-7 16-0.9 15.1-5.5 N/A 16.8 - 4 12.2-10.1
4-9 9.8-1.5 8.4-6.4 7.1-8 4-16.8 N/A 4.8-13.8 8.3-5.7
4-11 10.8-6.3 10.1-12.2 13.8 - 4.8 N/A
5-3 5.7 - 8.3 N/A

Table 4.1: Results of Tournaments to Select The Best Machine Learning Agents. N.A:
Non-Applicable

Then, trials 7th and 11th of the 4th series were selected as the top two machine learning
agents trained in an environment configuration of 30% destructible blocks. Henceforth,
these four synthetic players will be the ones used in the final evaluation phase.

4.2 Requirement #1: Ability to Play and Win The Game

For this requirement, the experiments were done in the form of tournaments, where the
synthetic players play against each other as well as against a human player. The experi-
ments were repeated for multiple game scenario configurations of the previously described
case study, i.e, for different starting percentages of destructible blocks on the map.

4.2.1 For 0% of starting destructible blocks

This is the easiest possible configuration. With the absence of destructible blocks, the map
is always fixed, with synthetic players having a clear path for every opponent.

Tournament 1

The first tournament was composed of 10000 matches, with the players being:

• Planning synthetic player of 3.4;
• Machine Learning synthetic player obtained from 6th trial of 4th series of trials,

described in 3.6.3;
• Machine Learning synthetic player obtained from 9th trial of 4th series of trials,

described in 3.6.3;

The tournaments results are in Table 4.2.

Tournament 2

The second tournament was composed of 100 matches, with the players being the same as
the ones of tournament 1 plus the addition of a human player.

Its results can be consulted in Table 4.3.
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Player Win Percentage
Planning 50.59%

Machine Learning 17.39%
(6th Trial of 4th Series)

Machine Learning 13.94%
(9th Trial of 4th Series)

Draw 18.08%

Table 4.2: Results of Tournament 1 of Requirement #1

Player Win Percentage
Human Player 45%

Planning 21%

Machine Learning 3%
(6th Trial of 4th Series)

Machine Learning 2%
(9th Trial of 4th Series)

Draw 29%

Table 4.3: Results of Tournament 2 of Requirement #1

4.2.2 For 30% of starting destructible blocks

This configuration is harder than the previous one. Now with the presence of destructible
blocks, sometimes players have their path obstructed, and have to strategically place some
bombs to carve their way to the enemies.

Tournament 3

Tournament 3 followed the same principles of tournament 1, with 10000 matches being
played, pitting the following three modeled synthetic players against each other:

• Planning synthetic player of 3.4;
• Machine Learning synthetic player obtained from 7th trial of 4th series of trials,

described in 3.6.3;
• Machine Learning synthetic player obtained from 11th trial of 4th series of trials,

described in 3.6.3;

The tournament results are in Table 4.4.

Player Win Percentage
Planning 59.98%

Machine Learning 10.91%
(7th Trial of 4th Series)

Machine Learning 9.33%
(11th Trial of 4th Series)

Draw 19.78%

Table 4.4: Results of Tournament 3 of Requirement #1
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Tournament 4

Tournament 4 presented the same configuration of tournament 2, in which 100 matches
were played. The players are the same of tournament 3, with the addition of a human
player.

The results of the tournament can be consulted in Table 4.5

Player Win Percentage
Human Player 59%

Planning 15%

Machine Learning 5%
(7th Trial of 4th Series)

Machine Learning 2%
(11th Trial of 4th Series)

Draw 19%

Table 4.5: Results of Tournament 4 of Requirement #1

4.3 Requirement #2: Ability to Play New Untested Game
Scenarios

In order to test the compliance of the synthetic players with this requirement, a series
of tournaments were done, like the tournaments for requirement #1. However, in this
case, only map configurations with 20% and 60% of destructible blocks were tested. The
machine learning agents were never trained in such map configurations (20% and 60%),
so they experienced these game scenarios for the first time. The planning synthetic player
was also never tested in such scenarios.

4.3.1 For 20% of starting destructible blocks

This configuration resembles the 30% configuration previously tested in requirement #1,
however slightly easier.

Tournament 1

This tournament pitted the following three synthetic players against each other in a series
of 10 000 matches:

• Planning synthetic player of 3.4;
• Machine Learning synthetic player obtained from 6th trial of 4th series of trials,

described in 3.6.3;
• Machine Learning synthetic player obtained from 7th trial of 4th series of trials,

described in 3.6.3;

The tournament results can be analysed in Table 4.6.
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Player Win Percentage
Planning 60.59%

Machine Learning 9.34%
(6th Trial of 4th Series)

Machine Learning 14.91%
(7th Trial of 4th Series)

Draw 15.16%

Table 4.6: Results of Tournament 1 of Requirement #2

Tournament 2

This tournament gathered all the three players that participated in Tournament 1 plus a
human player, and 100 matches were played.

Its results are depicted in Table 4.7.

Player Win Percentage
Human Player 66%

Planning 7%

Machine Learning 3%
(6th Trial of 4th Series)

Machine Learning 4%
(7th Trial of 4th Series)

Draw 20%

Table 4.7: Results of Tournament 2 of Requirement #2

4.3.2 For 60% of starting destructible blocks

This is the hardest configuration and the one considered as the closest depiction of an
original Bomberman game scenario. There is an abundance of destructible blocks on the
map, and players often start in a place with little room to maneuver. They have to be
careful and to place bombs in the right places, in order to get more freedom of movement,
and to eventually find their way to their enemies.

Tournament 3

Like Tournament 1, the three modelled synthetic players faced each other throughout 10000
matches.

The tournament results are listed in Table 4.8.

Tournament 4

Tournament 4 is similar to Tournament 2, in which all the four players played against each
other in a series of 100 matches.

The results are in Table 4.9.
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Player Win Percentage
Planning 64.77%

Machine Learning 1.18%
(6th Trial of 4th Series)

Machine Learning 8.92%
(7th Trial of 4th Series)

Draw 25.13%

Table 4.8: Results of Tournament 3 of Requirement #2

Player Win Percentage
Human Player 62%

Planning 11%

Machine Learning 0%
(6th Trial of 4th Series)

Machine Learning 3%
(7th Trial of 4th Series)

Draw 24%

Table 4.9: Results of Tournament 4 of Requirement #2

4.4 Requirement #3: Ability to Play in a Believable Way

Playing in a believable way is a subjective concept. Like stated in 2.3.2, the most common
way to evaluate this is by doing a Turing test. However, due to time constraints, it was
infeasible to gather feedback from a statistically relevant number of people. Therefore,
another way to assert this requirement was devised. Several behavioral traits categorized
as believable were defined. A series of four videos showing gameplay from each synthetic
player and also from a human player were shown to a small number of people, who were
inquired about the presence or absence of the pre-defined behavioral traits by the players
in the videos. Nonetheless, every participant was also asked to identify in the videos which
players are human and which are not. This was mostly done in the name of curiosity since,
as already said, the total number of gathered samples is not statistically enough to execute
a real Turing test. The videos used in the survey are stored at

https://github.com/Drca1997/Tese/tree/Diogo/Tese/Assets/Survey

In the first video, the four players are:

• the planning synthetic player of section 3.4 (green player);
• the machine learning agent of the 6th trial of 4th series of trials (pink player);
• the machine learning agent of the 9th trial of 4th series of trials (blue player);
• a synthetic player that executes a random action each turn (orange player);

In the second video, the four players are the same as the ones in the previous video, with
the exception of the machine learning agent of the 9th trial of 4th series being replaced by
the agent of the 7th trial of the same series (in the 2nd video, the colors of the players are:
1) planning agent: orange; 2) machine learning agent of the 6th trial of 4th series: green;
3) machine learning agent of the 7th trial of 4th series: pink; 4)random agent: blue).

Videos 3 and 4 incorporate a human player, that replaces the random synthetic player.
Therefore, in the third video, the players are:
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• a human player (pink player);
• the planning synthetic player of section 3.4 (blue player);
• the machine learning agent of the 6th trial of 4th series of trials (orange player);
• the machine learning agent of the 9th trial of 4th series of trials (green player);

In the fourth video, the four players are the same as the ones in the previous video, with
the exception of the machine learning agent of the 9th trial of 4th series being replaced
by the agent of the 7th trial of the same series (in the 4th video, the colors of the players
are: 1) human player: green; 2) planning agent: pink; 3) machine learning agent of the 6th
trial of 4th series: blue; 4) machine learning agent of the 7th trial of 4th series: orange).

Five people were asked to watch each video. Then, they were asked to classify each player
in each video according to the following three attributes:

• Apparent Rational Competence: the apparent capacity of the agent to play the
game. This translates into an apparent notion of the game rules, and not putting
itself unnecessarily in precarious positions, like trapping itself with one of is own
bombs.

• Apparent Intentionality: the clarity of intent behind the agent’s actions. For
instance, an agent that simply roams the map aimlessly would obtain the worst
possible score in this attribute.

• Apparent Anticipatory Behaviour: ability of the agent to anticipate to certain
situations and taking advantage of them, like trapping an enemy, or avoiding a danger
zone.

Each attribute’s score follows this scale:

• 0 - No evidences of;
• 1 - Some evidences of;
• 2 - Frequent evidences of;
• 3 - Always;

Table 4.10 compiles all the obtained classifications from the inquiries. Each cell corresponds
to the number of times (out of the total number of ratings) a particular agent was graded
with a particular score in a certain attribute in the inquiries. For instance, a 1/10 means
that the player was rated with a particular score 1 out of 10 times.

Apparent Apparent Apparent
Player Rational Intentionality Anticipatory

Competence Behaviour
0 1 2 3 0 1 2 3 0 1 2 3

Human 0/10 0/10 1/10 9/10 0/10 0/10 1/10 9/10 0/10 1/10 1/10 8/10

Planning 0/20 1/20 5/20 14/20 1/20 3/20 12/20 4/20 1/20 3/20 10/20 6/10

Machine Learning 9/20 1/20 5/20 5/20 8/20 4/20 6/20 2/20 9/20 5/20 3/20 3/20
(6th trial of 4th series)

Machine Learning 6/10 3/10 1/10 0/10 8/10 1/10 0/10 1/10 6/10 4/10 0/10 0/10
(7th trial of 4th series)

Machine Learning 10/10 0/10 0/10 0/10 8/10 2/10 0/10 0/10 10/10 0/10 0/10 0/10
(9th trial of 4th series)

Random 3/10 6/10 1/10 0/10 3/10 5/10 2/10 0/10 6/10 3/10 1/10 0/10

Table 4.10: Results of Inquiries Regarding Requirement #3

In addition to the results of Table 4.10, another score was obtained, that refers to the
number of times that each player was labeled as human. However, this score must be
treated as a curiosity more than an official experiment result, since the low number of
participants invalidates the execution of a real Turing test. The results for this attribute
can be seen in Table 4.11.
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Number of Times
Player Labelled as Human

Human Player 8 out of 10
Planning 3 out of 20

Machine Learning 1 out of 20
(6th Trial of 4th Series)

Machine Learning 1 out of 10
(7th Trial of 4th Series)

Machine Learning 0 out of 10
(9th Trial of 4th Series)

Random 1 out of 10

Table 4.11: Number of Times that a Player was Labelled as Human in the Inquiries for
Requirement #3

4.5 Discussion of Results

This section explains the meaning of the experiments’ results, and provides some possible
explanations for them.

4.5.1 Machine Learning Training Results

In total, five series of machine learning training trials were done. The series that proved
to be the most fruitful was the fourth one, which was characterized by the tweaks done to
the neural network’s architecture and to its hyperparameters. All trials with the highest
cumulative rewards (the 2nd, 6th and 9th trials of the series) had two features in common
and first being the same neural network architecture: 4 hidden layers and 64 units per
layer. These values differed from all the trials that had been executed before, in which
the neural network was shallower, with only 2 hidden layers, and wider, with 128 units
per layer. The second feature that these trials had in common was that they were all
RL-based, which means that the strength of IL methods like BC and GAIL was reduced
almost to 0, in order for the agent to improve its performance via the extrinsic rewards.

Besides the aforementioned trials of the 4th series, the rest of the trials did not produce
relevant results, regardless of series. This could be due to several reasons:

• the agent’s state representation was not the most appropriate one for the training
process.

• the training runs needed more execution time.

• the difficulty of the rewards being delayed in the game. The agents only received
positive rewards if they either won the game or killed an enemy, and in both cases,
it required the agents to plant a bomb several turns prior to collecting the reward.

4.5.2 Results of Requirement #1

Regarding the first requirement, which is the ability of the synthetic player to play and
win the game, results show a clear dominance of the planning synthetic player over all the
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other agents. In tournament 1, the planning agent can win half of the 10000, whereas no
machine learning agent can reach a 20% of wins. In tournament 2, the difference between
a human player and every synthetic player is noticeable. The planning agent registers a
drastic decrease of win percentage, obtaining only 21% of them, which is a far cry from the
50% of the previous tournament, without a human player as opponent. All of the machine
learning agents, once again, perform worse than the planning synthetic player, not being
able to obtain higher than a 3% of wins.

Tournaments 3 and 4 happened within an environment with the presence of destructible
blocks, and that change reflects in the results. In tournament 3, the planning agent achieved
almost 60% of wins, which is a greater percentage than tournament 1, that happened in an
environment with no destructible blocks. This higher percentage can be explained, because
of the presence of destructible blocks, agents have limited ability to move, which makes
it easier to trap an enemy. This fact is also the same reason the human player he wins
more often and why the percentage of draws also decreases, when comparing the results of
tournament 4 with the results of tournament 2.

The main conclusion of the experiments on this requirement is that the planning synthetic
player is much more capable of playing and winning the game than any machine learning
agent used in these experiments, but cannot reach the same performance of a human player.

4.5.3 Results of Requirement #2

The experiments on testing the ability of the synthetic players to play in new, unseen
scenarios show the superiority of the planning synthetic player over all of the machine
learning agents tested, similarly to the conclusions of requirement #1.

Fact worth noticing is that the planning agent actually wins even more in new scenarios,
by obtaining more than 60% of wins in tournaments 1 and 3, compared to tournaments
of requirement #1. Reason for this is that the machine learning agents are not trained
in these new scenarios and therefore their performance is worse. This allows the planning
synthetic player to win the game more easily.

The same pattern of performances for the requirement #1 applies to requirement #2.
Despite the superiority of the planning synthetic player over the machine learning agents,
it cannot deal with the human player effectively, obtaining a very small percentage of
victories. The human player’s skill remains unchanged whether he plays in scenarios with
a new configuration of destructible blocks or not.

The machine learning agent of the 7th trial of 4th series is considerably better at playing
the game than the one of the 6th trial when in an environment with 60% destructible
blocks. Explanation to this lies in the type of environment the agents were trained in
prior. The agent of the 6th trial was trained in environments with no destructible blocks,
while the one of 7th was trained in environments with a percentage of 30 of that type of
blocks. Therefore, it may be easier for the agent of the 7th to generalize its knowledge to
a new environment configuration, since the other one is not used to dealing with that kind
of game element in the environment.

Main conclusions with these experiments are: 1) the planning synthetic player presents a
good generalization capability, being able to consistently beat the machine learning agents;
2) the planning synthetic player is not at the same level as the human player, with the
latter dominating the former; 3) a machine learning agent that was trained in environments
with the presence of destructible blocks can perform better in a new configuration than
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one that was trained in environments without such blocks.

4.5.4 Results of Requirement #3

To evaluate the credibility of the synthetic players, a research was conducted. Five people
were asked to watch videos of the agents’ gameplay. Their task was to classify the agents
according to several attributes. The obtained results reveal that the planning agent is the
most credible synthetic player, being rated 14 out of 20 (70%)times with the maximum
score in the Apparent Rational Competence attribute. Furthermore, in the Apparent In-
tentionality attribute, the planning agent was rated 2, 12 out of 20 (60%)times, and the
maximum rating of 3 on 4 occasions out of the total 20. Regarding the Anticipatory Be-
haviour attribute, the planning agent scored 2 half of the time (10 out of 20 times), and
the maximum rating of 3, 6 out of 20 times (30%). The main reasons for these high scores,
according to the survey participants, are:

• the agent has a clear notion of rules and is able to always move out of danger zones.
• it is able to plant bombs in order to destroy blocks.
• the agent’s aggressiveness, i.e., it is constantly pursuing enemies trying to kill them.

The planning agent did not rate the maximum score in Apparent Intentionality, because
according to the participants’ shared interpretation, "it tends to go away from the oppo-
nents to plant a bomb to destroy a random block". This may be caused by a possible fault
in the agent’s logic code, that makes it “think” that there is no goal of higher priority
available than to destroy the nearest block, even when there is one.

The machine learning agent of the 6th trial of the 4th series of trials was the most credible
one, but still obtained worse scores than the planning synthetic player. This particular
machine learning agent presents a broad distribution of scores. For instance, in the Ap-
parent Rational Competence attribute, it scored a 0, 9 out of 20 times, but also scored
the maximum rating of 3 on 5 of the total 20 occasions. The other attributes are also
evenly distributed in terms of score. This is due to the high inconsistency of the agent. It
can both play the game efficiently and make non-reasonable actions that result in its early
demise. This can be explained by the number of destructible blocks in the environment
throughout a match. At the beginning, with the presence of this type of game element,
that is unknown to the agent, it does not know what to do. However, if the agent manages
to survive the early phase of the game, it will start to play better, because the longer
the game takes, the less destructible blocks are left in the environment. Consequently,
by playing better, its credibility also increases. In fact, the occasions when the agent
got rated with maximum grade, in attributes like Apparent Rational Competence and Ap-
parent Anticipatory Behaviour, are the ones referring to matches where the end-game is
characterized by explosion of all blocks. This results in the environment being exactly the
same like the one in which the machine learning synthetic player was trained. This also
supports the comments of few survey participants, who state that most of the time, this
agent "roams the map, but knows how to avoid bombs", and "in some occasions can put up
a good challenge" against the planning synthetic player.

The remaining machine learning agents did not produce relevant results, since they got a
score of 0 in every attribute on the majority of occasions. This is because the early demise
of the agents in most matches, killing themselves with their own bombs.

A random synthetic player was also used in some videos, to replace the human player. This
random agent managed to score better than the machine learning agents of the 7th and
the 9th trials of 4th series in two attributes: Apparent Rational Competence and Apparent
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Intentionality. The participants stated that sometimes this agent "looks like it knows how
to avoid bombs", and can even "plant a bomb when an enemy approaches". This is however,
just the perception of the participants, since this synthetic player is random. Human brain
being tricked into finding patterns and making sense of things, even when they do not, is
the reason for this.

Finally, the human player scored the maximum at each attribute the majority of time,
revealing by comparison that only the planning synthetic player can come a little close to
such results.
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Conclusion and Future Work

5.1 Contributions

This dissertation’s main goal was to explore the possibility of using synthetic players as
tools to design, play and test procedurally generated game scenarios. With the conclusion
of this work, the following contributions were made:

• A planning synthetic player that is able to play procedurally generated game scenarios
with success. If the action space does not change from scenario to scenario, the
planning agent is able to play all of them without any modification required. Despite
not being tested, the planning agent could, in theory, also play a different game
scenario involving new actions and goals, without requiring too much developer’s
work. This could be possible due to the ease of adding new actions and goals to
the planning synthetic player’s logic and game state representation. The planning
synthetic player also achieved relevant results regarding its believability.

• A machine learning synthetic player that, despite not performing at the same level of
the planning synthetic player, it could be perceived to have grasped how to play the
game and managed to survive long-enough periods to explore the game space. Its
performance increases the more the game scenario resembles the training environment
the agent was trained on.

• An analysis and comparison between the performance of both on game scenarios in-
volving PCG. Several experiments were made in order to determine if the synthetic
players fulfill the three main requirements identified à priori. They include: a se-
ries of 100 matches against a human player in different environment configurations,
tournaments of 10000 matches between all the synthetic players, and a survey on the
actions of the agents while playing the game.

5.2 Future Work

Due to time restraints, there are a few possibilities that were not explored within this
work, but nonetheless deserve to be mentioned because they point to some future studies
to undertake.

• One of the main goals of developing synthetic players is for testing game scenarios.
Therefore, the creation of an evaluation function for game scenarios should be in-
vestigated. This function could find a way to map directly the performance of the
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synthetic player testing the game scenario with the quality of the scenario itself.
• The machine learning agent developed for this work did not produce relevant results.

One of the possible reasons for its modest performance might be that the chosen
representation was not the most suitable for the learning process. Training a new
machine learning agent with a new state representation could be beneficial.

• Due to the ease of adding new goals and actions to it, the planning synthetic player
is suitable for other case studies. A possible future direction is to take this synthetic
player’s modularity to the limit, putting it in game scenarios very different from the
one of this work and evaluate its performance.

• An utility-based synthetic player is another idea that deserves exploration. The
machine learning agent’s rewards could provide a good starting point in order to
define some proper values for the utility function of the synthetic player.

5.3 Closing Remarks

This work allowed me to deepen my knowledge about the research area I am more pas-
sionate about: AI in Games. I got more familiarized with the state-of-art AI techniques
used, not only in academia but also in the game industry.
One valuable lesson learned was the pros and cons of certain AI techniques. On one hand,
there is classic AI, with well-established methods, like planning and ad-hoc behaviours
(such as behaviour trees and finite-state machines). These methods provide a safety net
for the developers that do not want to take risks during the implementation process, since
they are easy to debug and edit, despite their increased authorial burden. On the other
hand, there is machine learning, with its easy setup, that greatly decreases the developer’s
work. However, machine learning can be a risky choice of methods because of the devel-
oper’s lack of control over the obtained results.
Another lesson learned was the necessity of adopting a work planning methodology, which
is crucial to any large project’s completion on time.
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Appendix

Appendix A

An example of an action script:

//EXTRANEOUS DETAIL OMITTED

pub l i c c l a s s ActionMoveUp : SymbolicAction
{

// I n i t i a l i z e s the a t t r i b u t e s o f the ac t i on
pub l i c ov e r r i d e void I n i t ( P lann ingSynthet i cPlayer agent )
{

Agent = agent ;
RawAction = ( i n t ) Action .MoveUp ;
E f f e c t = Synthe t i cP l aye rUt i l s . deepCopyWorld ( agent . GridArray ) ;

}

//Reverts the e f f e c t s o f the ac t i on .
// I t i s l i k e i t never happened
pub l i c ov e r r i d e void Revert ( )
{

Agent . SimulatedY −= 1 ;

}

// Simulates the ac t i on in the environment , apply ing i t s e f f e c t s
pub l i c ov e r r i d e void Simulate ( )
{

i f ( E f f e c t [ Agent . SimulatedX , Agent . SimulatedY ] ==
( in t ) T i l e . PlayerNBomb)

{
E f f e c t [ Agent . SimulatedX , Agent . SimulatedY ] =

( i n t ) T i l e .Bomb;
}
e l s e i f ( E f f e c t [ Agent . SimulatedX , Agent . SimulatedY ] ==

( in t ) T i l e . Player )
{

E f f e c t [ Agent . SimulatedX , Agent . SimulatedY ] =
( i n t ) T i l e . Walkable ;

}
i f (Agent . SimulatedY + 1 < Agent . GridArray . GetLength ( 1 ) )
{

i f ( E f f e c t [ Agent . SimulatedX , Agent . SimulatedY + 1 ] ==
( i n t ) T i l e . Walkable )

{
E f f e c t [ Agent . SimulatedX , Agent . SimulatedY + 1 ] =

( i n t ) T i l e . Player ;
Agent . SimulatedY += 1 ;

}
e l s e i f ( E f f e c t [ Agent . SimulatedX , Agent . SimulatedY + 1 ]

== ( i n t ) T i l e . F i r e )
{
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Ef f e c t [ Agent . SimulatedX , Agent . SimulatedY + 1 ] =
( i n t ) T i l e . FireNPlayer ;

Agent . SimulatedY += 1 ;
}
e l s e i f ( E f f e c t [ Agent . SimulatedX , Agent . SimulatedY + 1 ]

== ( in t ) T i l e .Bomb)
{

E f f e c t [ Agent . SimulatedX , Agent . SimulatedY + 1 ] =
( i n t ) T i l e . PlayerNBomb ;

Agent . SimulatedY += 1 ;
}

}
}

//Checks i f the ac t i on i s p o s s i b l e to be s imulated
pub l i c ov e r r i d e bool CheckPrecondit ions ( i n t [ , ] g r i d )
{

i f ( g r i d [ Agent . SimulatedX , Agent . SimulatedY ] ==
( in t ) T i l e . PlayerNBomb)

{
return f a l s e ;

}

i f (Agent . SimulatedX == Agent . p o s i t i o n . x &&
Agent . SimulatedY + 1 == Agent . p o s i t i o n . y )

{
re turn true ;

}

re turn Syn the t i cP l ay e rUt i l s . IsTi leWalkableSim ( gr id ,
Agent . SimulatedX , Agent . SimulatedY + 1 ) ;

}

//Checks i f the ac t i on i s p o s s i b l e to be executed
// in the cur r ent game s t a t e
pub l i c ov e r r i d e bool I sP o s s i b l e ( i n t [ , ] g r i d )
{

i f ( Syn the t i cP l ay e rUt i l s . I sTi l eWalkab le ( gr id ,
Agent . p o s i t i o n . x , Agent . p o s i t i o n . y + 1) )

{
i f ( ! Syn the t i cP l ay e rUt i l s . I sT i l e S a f e ( gr id ,

new in t [ 2 ] { Agent . p o s i t i o n . x , Agent . p o s i t i o n . y})
| | Syn the t i cP l aye rUt i l s . I sT i l e S a f e ( gr id ,
new in t [ 2 ] { Agent . p o s i t i o n . x , Agent . p o s i t i o n . y + 1}))

{
re turn true ;

}
}
re turn f a l s e ;

}
}

93



This page is intentionally left blank.



Appendix B

An example of a goal script:

pub l i c c l a s s BeSafeGoal : Goal
{

/∗ Returns the g r id that r ep r e s en t s the goa l game s t a t e
∗ i n t [ , ] currentGr id : g r id that r ep r e s en t s
∗ the cur rent game s t a t e
∗ i n t index : Index o f the Goal T i l e
∗ ( t i l e where the agent wants to be )
∗ Plann ingSynthet i cPlayer agent : r e f e r e n c e to the planning agent
∗/
pub l i c ov e r r i d e i n t [ , ] GetGoalGrid ( i n t [ , ] currentGrid ,

i n t index , P lann ingSynthet i cPlayer agent )
{

i n t [ , ] goalGrid =
Synthe t i cP l ay e rUt i l s . deepCopyWorld ( currentGr id ) ;

i n t [ ] g o a lT i l e =
Synthe t i cP l ay e rUt i l s . GetTileFromIndex ( index ,

currentGr id . GetLength ( 0 ) ) ;
goalGrid [ g oa lT i l e [ 0 ] , g o a lT i l e [ 1 ] ] = ( i n t ) T i l e . Player ;
i f ( goalGrid [ agent . p o s i t i o n . x , agent . p o s i t i o n . y ] ==

( i n t ) T i l e . Player )
{

goalGrid [ agent . p o s i t i o n . x , agent . p o s i t i o n . y ] =
( i n t ) T i l e . Walkable ;

}
e l s e i f ( goalGrid [ agent . p o s i t i o n . x , agent . p o s i t i o n . y ] ==

( i n t ) T i l e . PlayerNBomb)
{

goalGrid [ agent . p o s i t i o n . x , agent . p o s i t i o n . y ] =
( i n t ) T i l e .Bomb;

}
agent . SimulatedX = goa lT i l e [ 0 ] ;
agent . SimulatedY = goa lT i l e [ 1 ] ;
r e turn goalGrid ;

}

/∗Provides a Custom Heu r i s t i c to be used in A∗ .
∗This p a r t i c u l a r case i s the Manhattan Distance .
∗ WorldNode s t a t e : Current Node
∗ WorldNode goa l : Goal Node
∗/
pub l i c ov e r r i d e double Heu r i s t i c (WorldNode s tate , WorldNode goa l )
{

i n t [ ] s t a r t = new in t [ 2 ] {
s t a t e . Agent . SimulatedX , goa l . Agent . SimulatedY } ;

i n t [ ] end = new in t [ 2 ] {
goa l . Agent . p o s i t i o n . x , goa l . Agent . p o s i t i o n . y } ;

r e turn Syn the t i cP l ay e rUt i l s . CalculateManhattanDistance (
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s t a r t , end ) ;
}

/∗
∗ Checks i f a p a r t i c u l a r node i s the goa l node
∗ WorldNode node : Node to be checked
∗/

pub l i c ov e r r i d e bool I sOb j e c t i v e (WorldNode node )
{

re turn node . Agent . SimulatedX == node . Agent . p o s i t i o n . x &&
node . Agent . SimulatedY == node . Agent . p o s i t i o n . y ;

}

//Checks i f the Goal i s Po s s i b l e to Execute
pub l i c ov e r r i d e bool I sP o s s i b l e ( )
{

Re fTi l e = new in t [ 2 ] {
PlanningAgent . p o s i t i o n . x , PlanningAgent . p o s i t i o n . y } ;

i f ( ! Syn the t i cP l ay e rUt i l s . I sT i l e S a f e (
PlanningAgent . GridArray , Re fTi l e ) )

{
TargetTi l e s =
Synthe t i cP l ay e rUt i l s . dangerTi l e s (

Syn the t i cP l ay e rUt i l s . dangerMap (
PlanningAgent . GridArray ) , t rue ) ;

r e turn t rue ;
}
re turn f a l s e ;

}
}
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