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Tiago Custódio, Helena Pais, and Constança Providência
CFisUC, Department of Physics, University of Coimbra, 3004-516 Coimbra, Portugal.

The abundance of light nuclei and hyperons, that are produced in stellar environments such
as supernova or binary mergers, is calculated within a relativistic mean-field model with density
dependent couplings in low-density matter. Five light nuclei are considered, together with three
light hypernuclei. We show that the presence of hyperons shifts the dissolution of clusters to larger
densities, and increases the amount of clusters. This effect is larger the smaller the charge fraction,
and the higher the temperature. The abundance of hyperons is also affected by the cluster formation:
neutral and positively charged hyperons suffer a reduction, and the negatively charged ones an
increase. We also observe that the dissolution of the less-abundant clusters occurs at larger densities
due to smaller Pauli-blocking effects. Overall, hypernuclei set in at temperatures above 25 MeV,
and depending on the temperature and chemical composition, they may be more abundant than
α-particles, or even more abundant than other heavier clusters.

I. INTRODUCTION

Light nuclei are found in core-collapse supernova mat-
ter and in binary neutron star (NS) mergers. Their pres-
ence may impact the evolution of these systems by af-
fecting the rate at which the weak reactions take place
during the core collapse [7, 8], or the dissolution of the
remnant torus of accreted matter that is formed around
the high mass NS after a binary merger [9]. Light clusters
could also influence the dissipative processes that deter-
mine the post-merger evolution and mass ejection from
the remnant [10, 11].

These clusters have been detected in heavy ion colli-
sions in several experiments, such as ALICE at the Large
Hadron Collider (LHC), STAR at the Relativistic Heavy
Ion Collider (RHIC), or J-PARC, from the E13 collabora-
tion. Some of these states, like the deuteron, the hyper-
triton [1], the hyper-hidrogen4 [2] or the hyperhelium4
[3] are loosely bound objects with quite a large radius. It
is still not understood why these states are well described
within a thermal approach with a temperature produc-
tion of the order of 150 MeV, much larger than their
binding energy [4]. At RHIC and LHC, the baryonic
chemical potential is quite low. The formation of light
clusters at much smaller temperatures, of the order of 5
to 12 MeV, but larger densities, below 0.1 fm−3, has been
measured by the multi-detectors NIMROD at the Texas
A&M University [5] and INDRA [6] at GANIL. These
last measurements can help understand the low-density
nuclear matter equation of state (EoS) at temperatures
and densities of interest to the evolution of supernovae
and binary neutron star mergers.

Neutron stars are formed by cold catalysed β-
equilibrium matter constituted by neutrons, protons,
electrons and muons below a density ≈ 2n0− 3n0, where
n0 ≈ 0.15 fm−3 is the saturation density of symmetric
nuclear matter. At larger densities other degrees of free-
dom such as hyperons, deltas, kaon or pion condensates
or quark matter may set in [12]. During the supernova
or binary merger evolution, β-equilibrium is not necessar-
ily achieved and temperatures as high as 50 to 100 MeV

may be attained. To describe these events, it is necessary,
therefore, to consider a wide range of electron fractions,
temperatures and densities. In Refs. [13, 14], it has been
shown that the inclusion of the complete baryonic octet
decreases the free energy of matter, and the EoS based
on relativistic mean-field models, like DD2 [15] or SFHo
[16], including the complete baryonic octet, have been
built and made available in the CompOSE database [17].
In both of these studies, it was shown that, at low den-
sities, the hyperons compete with light nuclear clusters,
and the minimization of the free energy should allow for
the appearance of hyperons at very low densities, which,
however, was not implemented.

However, in the nineties, one could already find EoS
with light clusters included, like the general-purpose EoS
by Lattimer and Swesty [18], or the EoS by Shen et
al. [19], based on the single-nucleus approximation. In
both cases, light clusters were restricted to α−particles.
Improved models of the non-homogeneous matter at fi-
nite temperature containing light clusters in the frame-
work of nuclear statistical equilibrium were proposed
later [20, 21]. In these models, the introduction of an
excluded volume is necessary to dissolve the clusters at
high densities. A different approach was undertaken
in Refs. [15, 22, 23], where density effects are included
within a relativistic mean-field approach that describes
the light clusters as new particles which couple to the
mesonic fields. The model, first published in Ref. [15],
introduces the temperature-dependent cluster binding
shifts determined from a quantum statistical approach
to nuclear matter in thermodynamic equilibrium [24–27].
This model was recently improved, by taking into account
continuum correlations, and it was applied to simulations
of core-collapse supernovae [8]. In particular, the authors
analysed the effect of medium modifications on the sim-
ulations.

In Ref. [32], the possible appearance of hyperons in the
density region of the non-homogeneous matter that forms
the inner crust of a neutron star was analyzed. Temper-
atures below the melting temperature of the heavy clus-
ters that form this region were considered, i.e T . 15
MeV. It was found that only very small amounts of hy-

ar
X

iv
:2

10
6.

12
24

5v
1 

 [
nu

cl
-t

h]
  2

3 
Ju

n 
20

21



2

perons, like Λ fractions below 10−5, were present in the
background gas. The low-density EoS of stellar matter
including light clusters and heavy baryons was also stud-
ied in Ref. [33]. In addition to hyperons, the author also
considered delta-baryons, pions, and the presence of a
representative heavy cluster. It was shown that, depend-
ing on temperature and density, the composition of mat-
ter may shift from a greater abundance of light clusters
to a heavy-baryon predominance.

In the present work, we are going to simultaneously
calculate, in a consistent way, the abundance of light nu-
clei and hypernuclei, as well as hyperons, within the DD2
relativistic mean-field (RMF) model [15], taking for the
σ−meson cluster coupling the value obtained in [31]. The
introduction of light clusters is going to follow the ap-
proach first presented in Ref. [28], where the effect of the
medium on the binding energy of the clusters is consid-
ered through the introduction of a binding energy shift,
together with a universal coupling of the σ−meson to the
different light clusters, that was chosen so that the equi-
librium constants of the NIMROD experiment [5] were
reproduced. In Refs. [29, 30], the same approach was ap-
plied to the description of the INDRA data [6] including
the medium effects on the data analysis. It was veri-
fied that, in this case, the equilibrium constants could
be reproduced only if a larger σ−meson coupling was
introduced. The calibration of the σ−meson to the clus-
ters coupling was later performed for other models in
Ref. [31].

The paper is organized as follows: in Sec. II, we intro-
duce the formalism, in Sec. III the results are presented
for different scenarios: the effect of temperature, charge
fraction, and density, and the inclusion of hyperons, light
clusters and hyperclusters. Finally, in Sec. IV, some con-
clusions are drawn.

II. FORMALISM

In this section, we present the model used throughout
the paper, and we discuss how hyperons, light clusters
and light hyperclusters, which are considered as point-
like particles, are included within our approach.

Our system’s gas is constituted by unbound neutrons
(n) and protons (p), as well the following six hyperons:
Λ, Σ−, Σ0, Σ+, Ξ−, Ξ0. Together, these eight particles
form the spin-1/2 baryonic octet.

Immersed in this gas, we will also consider five purely
nucleonic light nuclei (2H, 3H, 3He, 4He, 6He) as well as
three hypernuclei: the 3

ΛH hypertrition, the 4
ΛH hyper-

hidrogen4 and the hyperhelium4 4
ΛHe. For each of these

three hypernuclei, a nucleon was replaced by a Λ hyperon.
In Table I, the spin and isospin projection quantum num-
bers can be found for each particle considered here.

In the RMF theory, the interactions between different
baryons are mediated by the exchange of virtual mesons.
Here we will consider the following four mesons: the
isoscalar-scalar σ meson field that provides the attractive

strong force; the isoscalar-vector ωµ meson field responsi-
ble for the repulsive strong force; the isoscalar-vector φµ

meson field responsible for an extra repulsion between
two hyperons, and the isovector-vector ~ρµ meson field
which accounts for the isospin dependence of the inter-
actions. The baryons are described by a Dirac spinor.

The Lagrangian density for this system reads [12, 14,
15, 28]:

L =
∑

b=baryonic
octet

Lb +
∑

i=light
nuclei

Li +
∑

j=light
hypernuclei

Lj +
∑

m=σ,ω,φ,ρ

Lm. (1)

The subscript b stands for the eight particles belonging to
the spin-1/2 baryonic octet (n, p,Λ,Σ−,Σ0,Σ+,Ξ−,Ξ0).

A. The homogeneous gas

The Lagrangian density of the gas, which includes the
spin-1/2 baryon octet, is given by

Lb = Ψ̄b [iγµ∂
µ −mb + gσbσ − gωbγµωµ (2)

−gρbγµ~Ib · ~ρµ − gφbγµφµ
]

Ψb ,

with Ψb the baryon field, and ~Ib the isospin operator.
The quantities gmb are the coupling constants of the in-
teractions between the baryons and the mesons.

We take for the vacuum proton and neutron mass an
average value, m = mn = mp = 939 MeV. For the hy-
perons, we consider the following masses: mΛ = 1115.683
MeV, mΣ− = 1197 MeV, mΣ0 = 1193 MeV, mΣ+ = 1189
MeV, mΞ− = 1321 MeV, and mΞ0 = 1315 MeV.

The coupling constants gmN of the nucleons (N = n, p)
to the σ, ω and ρ mesons are given by the RMF model
DD2 [15] with density-dependent coupling constants.
These couplings are written in the form

gmN (nB) = gmN (n0)hM (x) , x = nB/n0 , (3)

where the density nB is the baryonic density. For the
isoscalar couplings, the function hM is given by [15],

hM (x) = aM
1 + bM (x+ dM )2

1 + cM (x+ dM )2
(4)

and for the isovector couplings has the form

hM (x) = exp[−aM (x− 1)] . (5)

The values of the parameters aM , bM , cM , and dM are
given in Ref. [15].

As for the hyperons (Λ,Σ−,Σ0,Σ+,Ξ−,Ξ0), their cou-
pling constants gmb can be defined in terms of the nu-
cleon couplings as gmb = RmbgmN , for m = σ, ω, ρ
and gφb = RφbgωN . All these coupling constants of the
mesons to the different hyperons, normalized to the re-
spective meson nucleon coupling, can be found in Ta-
ble II. In the case of the φ−meson, the coupling to the ω
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TABLE I. Spin (J) and isospin projection (I3) quantum numbers for all particles considered in our system.

n p Λ Σ− Σ0 Σ+ Ξ− Ξ0 2H 3H 3He 4He 6He 3
ΛH 4

ΛH 4
ΛHe

J 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1 1/2 1/2 0 0 1/2 0 0
I3 −1/2 1/2 0 −1 0 1 −1/2 1/2 0 −1/2 1/2 0 −1 0 −1/2 1/2

meson is used instead, because the nucleons do not cou-
ple to this meson (their coupling is zero, gφN = 0). This
is the “ideal mixing” scenario [34], where the hyperon
couplings to the ω and φ mesons is fixed using the SU(6)
quark model. For the hyperon couplings to the ρ me-
son, they are the same as for the nucleons. Concerning
this coupling, what differentiates each hyperon is simply
their isospin projection. This will also be true for all the
clusters and hyperclusters considered in our model.

The coupling of the Λ hyperon to the σ meson can be
calibrated by fitting the experimental binding energy of
Λ hypernuclei as described in [14]. From Ref. [14], we
chose to use the value of the DDME2D-a model, RσΛ =
0.621. Similarly, for the Ξ coupling to the σ meson, we
use the calibrated value obtained in there, RσΞ = 0.320
[35]. Finally, according to Ref. [36], the Σ potential in

symmetric nuclear matter lies in the range U
(N)
Σ (n0) ≈

30 ± 20 MeV, so we fix U
(N)
Σ (n0) = 30 MeV, and we

obtain gσΣ = 0.474.

TABLE II. Coupling constants of the mesons to the different
hyperons, normalized to the respective meson nucleon cou-
pling, i.e. RMj = gMj/gMN , except for the φ−meson. Here
the gωN is used for normalisation.

b Rσb Rωb Rφb Rρb
Λ 0.621 2/3 −

√
2/3 1

Σ 0.474 2/3 −
√

2/3 1

Ξ 0.320 1/3 −2
√

2/3 1

B. The light clusters

Following Refs. [28, 29], the Lagrangian density for the
fermionic spin-1/2 light nuclei reads

Li = Ψ̄i [γµiD
µ
i −M

∗
i ] Ψi, i = 3H, 3He , (6)

and for the bosonic light nuclei is given according to their
spins,

Li =
1

2
(iDµ

i Ψi)
∗

(iDµiΨi) (7)

−1

2
Ψ∗
i (M

∗
i )2Ψi, i = 4He, 6He ,

Li =
1

4
(iDµ

i Ψν
i − iDν

i Ψµ
i )

∗
(iDµiΨνi − iDνiΨµi) (8)

−1

2
Ψµ∗
i (M∗

i )2Ψµi, i = 2H ,

with

iDµ
i = i∂µ − gωiωµ − gρi~Ii · ~ρµ . (9)

gωi and gρi are the couplings of cluster i to the ω and ρ
mesons, respectively. They are defined as gωi = AigωN ,
with Ai the cluster mass number, and gρi = gρN . The
effective mass of the cluster i, M∗

i , is given by

M∗
i = Aim− gσiσ − (B0

i + δBi), (10)

where gσi = xsAigσN is the σ-cluster coupling (xs being
the σ-cluster coupling fraction calibrated in [31]), B0

i is
the tabulated vacuum binding energy of light cluster i
and δBi is the binding energy shift,

which was first defined in Ref. [28] as:

δBi =
Zi
n0

(ε∗p −mn∗p) +
Ni
n0

(ε∗n −mn∗n) . (11)

The total binding energy Bi is given by

Bi = Aim
∗ −M∗

i , i = 2H, 3H, 3He, 4He, 6He . (12)

In the above expressions, Zi, Ni are the number of pro-
tons and neutrons, respectively, and m∗ = m − gσNσ is
the nucleon effective mass. The gas energy density ε∗i
and nucleonic density n∗i , are given by

ε∗i =
1

π2

∫ pFi
(gas)

0

p2ei(p)(fi+(p) + fi−(p))dp (13)

n∗i =
1

π2

∫ pFi
(gas)

0

p2(fi+(p) + fi−(p))dp, (14)

where pFi
(gas) = (3π2ni)

1/3 is the Fermi momentum of
nucleon i defined using the zero temperature relation be-
tween the density and the Fermi momentum, fi± are the
usual Fermi distribution functions for the particles and
anti-particles, and ei =

√
p2
i +m∗2 is the corresponding

single-particle energy of the nucleon i.

C. The light hyperclusters

The light hyperclusters are introduced in a similar way
as the purely nucleonic light clusters. The Lagrangian
density for the fermionic light hypercluster j = 3

ΛH is
given by:

Lj = Ψ̄j

[
γµiD

µ
j −M

∗
j

]
Ψj , j = 3

ΛH , (15)

with

iDµ
j = i∂µ − gωjωµ − gφjφµ , (16)
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whereas for the bosonic light hyperclusters, j = 4
ΛH, 4

ΛHe,
the Lagrangian density is given by

Lj =
1

2

(
iDµ

j Ψj

)∗
(iDµjΨj) (17)

−1

2
Ψ∗
j (M

∗
j )2Ψj , j = 4

ΛH, 4ΛHe ,

with

iDµ
j = i∂µ − gωjωµ − gφjφµ − gρj~Ij · ~ρµ . (18)

The coupling of the hyperclusters to the ω meson is de-
fined as

gωj = (Aj − 1)gωN + gωΛ , (19)

and the coupling to the φ meson is the same as the one
of the Λ−hyperon coupling, gφj = gφΛ (“ideal mixing”
case). The coupling to the ρ−meson is the same as the
coupling to the nucleons, gρj = gρN .

Following Eq.(10), the effective mass of the hyperclus-
ter j is given by

M∗
j = (Aj − 1)m+mΛ − gσjσ − (B0

j + δBj) (20)

with

gσj = xs((Aj − 1)gσN + gσΛ) (21)

the σ-hypercluster coupling. Let Mj be the vacuum mass
of a hypercluster j

Mj = (Aj − 1)m+mΛ −B0
j . (22)

The vacuum masses for the hypertriton, 3
ΛH, the hyper-

hidrogen4, 4
ΛH, and the hyperhelium4, 4

ΛHe, were ob-
tained from [1],[2],[3], respectively: M3

ΛH = 2990.89 MeV,
M4

ΛH = 3922.49 MeV, M4
ΛHe = 3921.70 MeV. From

Eq. (22), the vacuum binding energies can be extracted,
B0

3
ΛH

= 2.793 MeV, B0
4
ΛH

= 10.198 MeV, and B0
4
ΛHe

=

10.981 MeV.
From [37] we see that the experimental production ra-

tio between 3
ΛH and 3H (3

ΛH/3H) is 0.75±0.07. Since this
ratio must be proportional to the square of the interac-
tion ((gσ3

ΛH/gσ3H)2 ∼ 0.76), we conclude that the way we
define the σ-hypercluster couplings is in good accordance
with experimental data.

Following the same procedure for the hyperclusters,
their binding energy shift is given by

δBj=
Zj
n0

(ε∗p−mn∗p) +
Nj
n0

(ε∗n−mn∗n) +
Λj
n0

(ε∗Λ−mΛn
∗
Λ) ,

(23)
where Λj is the number of Λ hyperons present at each
hypercluster j, which, for the present hyperclusters we
consider, is always equal to 1. The energy density ε∗Λ and
the density n∗Λ are similar to Eqs. (13) and (14), respec-
tively, and the total binding energy for each hypercluster
j, Bj is given by

Bj = (Aj − 1)m∗ +m∗
Λ −M∗

j . (24)

D. The mesonic fields

The Lagrangian density for the fields have the standard
RMF expressions:

Lσ =
1

2
∂µσ∂

µσ − 1

2
m2
σσ

2 , (25)

Lω = −1

4
ΩµνΩµν +

1

2
m2
ωωµω

µ , (26)

Lφ = −1

4
PµνPµν +

1

2
m2
φφµφ

µ , (27)

Lρ = −1

4
~Rµν · ~Rµν +

1

2
m2
ρ~ρµ · ~ρµ , (28)

with Ωµν = ∂µων−∂νωµ, Pµν = ∂µφν−∂νφµ, and ~Rµν =
∂µ~ρν − ∂ν~ρµ + gρ(~ρµ × ~ρν).

We treat the binding energy shifts, δBi, as in [15]:
we replace the density dependence of these quantities by
a vector meson dependence. This is equivalent, in our
present study, to consider in the shifts δBi the neutron,
proton, and Λ densities replaced by

nn =
m2
ω

2gωN
ω0 −

gωΛ

gφΛ

m2
φ

2gωN
φ0 −

m2
ρ

gρN
ρ03 , (29)

np =
m2
ω

2gωN
ω0 −

gωΛ

gφΛ

m2
φ

2gωN
φ0 +

m2
ρ

gρN
ρ03 , (30)

nΛ =
m2
φ

gφΛ
φ0 . (31)

With the inclusion of the binding energy shift for each
cluster and hypercluster, the equations for the fields read:

m2
σσ =

∑
b

gσbn
s
b +

∑
i

gσin
s
i +

∑
j

gσjn
s
j , (32)

m2
ρρ03 = gρN

∑
b

I3bnb +
∑
i

I3ini +
∑
j

I3jnj

 (33)

−
m2
ρ

gρNn0

(
− ∂ε

∗
n

∂nn
+
m∂n∗n
∂nn

)(
ns3H+2ns6He+ns4

ΛH

)
−

m2
ρ

gρNn0

(
∂ε∗p
∂np
−
m∂n∗p
∂np

)(
ns3He+ns4

ΛHe

)
−

m2
ρ

gρNn0

(
− ∂ε

∗
n

∂nn
+
m∂n∗n
∂nn

+
∂ε∗p
∂np
−
m∂n∗p
∂np

)

×

∑
i

nsi +
∑
j

nsj

 ,
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m2
ωω0 =

∑
b

gωbnb +
∑
i

gωini +
∑
j

gωjnj (34)

− m2
ω

2gωNn0

(
∂ε∗n
∂nn
−m∂n

∗
n

∂nn

)(
ns3H+2ns6He+ns4

ΛH

)
− m2

ω

2gωNn0

(
∂ε∗p
∂np
−
m∂n∗p
∂np

)(
ns3He+ns4

ΛHe

)
− m2

ω

2gωNn0

(
∂ε∗n
∂nn
−m∂n

∗
n

∂nn
+
∂ε∗p
∂np
−
m∂n∗p
∂np

)

×

∑
i

nsi +
∑
j

nsj

 ,

m2
φφ0 =

∑
b=Λ,Σ−,0,+,

Ξ−,0

gφbnb +
∑
j

gφjnj (35)

+
gωΛm

2
φ

2gωNgφΛn0

(
∂ε∗n
∂nn
−m∂n

∗
n

∂nn

)(
ns3H+2ns6He+ns4

ΛH

)
+

gωΛm
2
φ

2gωNgφΛn0

(
∂ε∗p
∂np
−
m∂n∗p
∂np

)(
ns3He+ns4

ΛHe

)
−

m2
φ

gφΛn0

(
∂ε∗Λ
∂nΛ
−mΛ∂n

∗
Λ

∂nΛ

)(
ns3

ΛH+ns4
ΛH+ns4

ΛHe

)
+

gωΛm
2
φ

2gωNgφΛn0

(
∂ε∗n
∂nn
−m∂n

∗
n

∂nn
+
∂ε∗p
∂np
−
m∂n∗p
∂np

)

×

∑
i

nsi +
∑
j

nsj

 ,

where I3b, I3i, I3j correspond to the isospin projections
of the baryons b, light clusters i and light hyperclusters
j, respectively. The quantities nb, ni, nj correspond to
the particle’s densities, whereas nsb, n

s
i , n

s
j represent their

scalar densities.

E. Chemical Equilibrium

In our system, the charge fraction YQ is fixed and de-
fined as:

YQ =
∑
b

qbYb +
∑
i

qi
Ai
Yi +

∑
j

qj
Aj
Yj (36)

where qb, qi, qj are the electric charges of baryon b, light
cluster i and light hypercluster j, respectively. The quan-
tities Yb, Yi and Yj correspond to the mass fractions of
the different particles and are given by:

Yb =
nb
nB

, Yi = Ai
ni
nB

, Yj = Aj
nj
nB

, (37)

where nB is the total density of the system.

The chemical potential µb of baryon b can be written
as:

µb = µn − qbµe (38)

where µn, µe are the neutron and electrical charge chem-
ical potentials, respectively. Since µe = µn−µp, the hy-
peron chemical potentials can be written in terms of the
nucleons chemical potentials: µΛ =µn, µΣ− = 2µn − µp,
µΣ0 =µn, µΣ+ =µp, µΞ− =2µn−µp, µΣ0 =µn.

For a light cluster i, their chemical potential µi can
also be defined as a function of µn and µp:

µi = Niµn + Ziµp (39)

whereas for a light hypercluster j, µΛ also needs to be
taken into account:

µj = Njµn + Zjµp + ΛjµΛ. (40)

The effective chemical potential µ∗
c of any particle c =

b, i, j present in our system can be written in terms of its
chemical potential µc as:

µ∗
c = µc − gωcω0 − gφcφ0 − gρcI3cρ03 −AcΣR0 (41)

where ΣR0 is the rearrangement term present in models
with density-dependent couplings in order to guarantee
thermodynamical consistency:

ΣR0 =
∑
c

(∂gωc
∂nB

ω0nc+
∂gφc
∂nB

φ0nc+I3c
∂gρc
∂nB

ρ03nc

−∂gσc
∂nB

σ0n
s
c

)
. (42)

III. RESULTS

In the present section we discuss how the presence of
light clusters affects the abundances of heavy baryons at
low densities and temperatures T . 50 MeV, and two
different charge fractions, YQ = 0.1 and 0.3. Above the
critical temperature, Tc ≈ 15 MeV, we do not expect
the presence of heavy clusters, so, and as mentioned in
the previous Sections, we consider 5 light clusters, 2H,
3H, 3He, 4He and 6He, which were measured by INDRA
[6], and three light hypernuclei 3

ΛH, 4
ΛH, 4

ΛHe. All the
calculations shown are for the DD2 RMF model [15]. In
Ref. [31], the cluster-meson σ coupling fraction xs was
calibrated to the equilibrium constants obtained in [6] for
different RMF models. For the density-dependent DD2
RMF model, a value of xs = 0.93 ± 0.02 was obtained.
This range of values is going to be used throughout this
work.

In Fig. 1, we plot the mass fractions of light clusters
(2H, 3H, 3He, 4He and 6He) and unbound protons and
neutrons in equilibrium as a function of density for two
temperatures T = 10 MeV (top) and 30 MeV (bottom)
and two different values of the charge fraction YQ = 0.3
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FIG. 1. Mass fractions of light clusters (2H, 3H, 3He, 4He and 6He) and unbound protons and neutrons in equilibrium are
plotted versus the density for T = 10 MeV (top) and 30 MeV (bottom) with charge fraction of YQ = 0.3 (left) and 0.1 (right).
The bands take into account the uncertainty on the xs coupling fraction of the clusters to the σ-meson.
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FIG. 2. Mass fractions of light clusters (2H, 3H, 3He, 4He and 6He) and unbound protons and neutrons in equilibrium are
plotted versus the density for T = 50 MeV (colored lines) and 100 MeV (grey lines), with a charge fraction of YQ = 0.3 (left)
and 0.1 (right). The bands take into account the uncertainty on the xs coupling fraction of the clusters to the σ-meson.

(left) and 0.1 (right). The bands take into account the
uncertainty on xs, and mainly affect the fraction maxi-
mum and the dissolution density. Several comments are
in order concerning the effect of the temperature and
charge: i) at the lowest densities, it is the mass that de-

termines the most abundant light cluster, and the smaller
the mass the larger the abundance; ii) for T = 10 MeV,
the most abundant cluster at the fraction maximum is
the tritium, reflecting the isospin asymmetry. In par-
ticular, 6He becomes more abundant than 3He for the
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FIG. 3. Unbound nucleon and light cluster fractions in a
calculation with (thick lines) and without (thin lines) hyper-
ons as a function of the temperature for a charge fraction
of YQ = 0.1, and a density of nB = 0.1 fm−3. The scalar
cluster-meson coupling is fixed to xs = 0.93.

two charge fractions considered; iii) at T = 30 MeV, the
mass defines the largest abundances; iv) for T = 10 MeV,
it is interesting to observe that even though 3He is less
abundant than 3H, 4He or 6He, it dissolves at larger den-
sities. This is an effect of the binding energy shift that
depends on the density of unbound neutrons and protons
separately. The neutrons, being more abundant, have a
stronger effect, and, in particular, affect more the clusters
with a larger neutron fraction; v) for large temperatures,
here represented by T = 30 MeV, the deuteron is the
most abundant for all densities due to its smaller mass.
Moreover, at the maximum of the cluster fractions, their
mass fractions are larger than the proton fraction.

In Fig. 2, the mass fractions are again plotted against
the density, but this time for two larger temperatures,
T = 50 and 100 MeV, the last one represented by grey
lines to be well distinguished from the T = 50 MeV case.
As already discussed for T = 30 MeV, the relative abun-
dances of the light nuclei are dictated by their masses,
the deuteron being the most abundant and 6He the least.
The superposition of the distribution for both tempera-
tures shows clearly that an increase of the temperature
pushes the light-nuclei maxima to larger densities and
reduces the abundances of the heavier clusters: only the
deuteron keeps a similar fraction at the maximum. The
cluster dissolution shifts to much larger densities for the
larger temperature. A reduction of the charge fraction re-
duces the cluster fractions: for T = 100 MeV, YQ = 0.1
the fraction of 6He is always below 10−4.

In order to better understand the effect of the temper-
ature, we show in Fig. 3 the unbound nucleon and cluster
abundances as a function of the temperature for a charge
fraction YQ = 0.1 and a density nB = 0.1 fm−3. This
density value was chosen because it is where the fraction
of the clusters is close to a maximum in the range of
temperatures considered. It is seen that the abundance

of deuterons surpasses the one of protons for 25 . T . 70
MeV. It is also above T = 25 MeV that the cluster frac-
tions obtained with and without hyperons start differing,
and they start being more abundant in the presence of
hyperons.

The effect of the inclusion of light clusters on the hy-
peron fractions is clearly seen in Fig. 4: the thick lines
were obtained including clusters, while the calculation
without clusters is represented by thin lines. The main
effect of introducing clusters is a reduction of the un-
bound nucleons and of the electrically neutral or positive
hyperons, while the fraction of the negatively charged
hyperons increases. The formation of clusters is energet-
ically favored but these clusters are positively charged,
so its formation is compensated by a reduction of the
unbound nucleons, together with a reduction (increase)
of positively (negatively) charged baryons. A decrease
of the neutron fraction also induces a reduction of the
other neutral baryons. Moreover, a smaller charge frac-
tion favors the formation of negatively charged baryons,
and for YQ = 0.1, it is seen a clear competition between
Σ− and Λ for the smaller densities. At smaller densi-
ties, for a fixed temperature, the hyperon mass defines
the abundance, but for larger densities, the magnitude
and signal of the hyperon potential is reflected on the
hyperon abundances. In particular, the fraction of Ξ−s
which feels an attractive potential becomes larger than
the one of Σ− which feels a repulsive interaction.

The effect of the hyperons on the cluster abundances,
which was already seen in Fig. 3, and on the dissolution
densities is clearly seen in Fig. 5. In the left panel, we
show the total mass fraction of all the light clusters at
T = 50 MeV (notice the linear scale on the x-axis con-
trary to the log-scale used in the previous figures), and
in the right panel, the dissolution density of the clus-
ters, nd, which was defined as the density for which the
cluster fraction has dropped to 10−4 is displayed. The
charge fraction is set to YQ = 0.3 and 0.1, and the scalar
cluster-meson coupling fraction to xs = 0.93. Two dif-
ferent calculations are compared: a calculation with the
full baryonic octet (solid lines), and excluding hyperons
(dashed lines). The main effects of including hyperons
are: i) to increase the cluster fraction above the maxi-
mum of the cluster distribution, shifting the dissolution
density to larger densities, the larger the temperature the
stronger the effect; ii) the increase of the dissolution den-
sity starts to be non-negligible for T & 25− 30 MeV; iii)
the smaller the charge fraction, the stronger the effect.
For T = 50 MeV, the main effect is an increase of the dis-
solution density of the order of 10% if YQ = 0.3, and 20%
for YQ = 0.1. Since the presence of the hyperons reduces
the nucleon fraction, this is reflected on the medium ef-
fects felt by the clusters through the binding energy shift
that is smaller. Moreover, the couplings to mesons be-
come smaller since the couplings of the hyperons to the
mesons are weaker. This explains why the effect of the
hyperons on the clusters is larger for YQ = 0.1, since, as
we saw in Fig. 4, a smaller charge fraction corresponds
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FIG. 4. Unbound nucleon and hyperon fractions as a function of the density in a calculation with (thick lines) and without
(thin lines) light clusters, for a charge fraction of YQ = 0.3 (left) and 0.1 (right) and T = 50 MeV. The scalar cluster-meson
coupling fraction is set to xs = 0.93.
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FIG. 5. Total mass fraction of the light clusters as a function of the density at T = 50 MeV (left) and the dissolution density
of the clusters, nd, as a function of the temperature (right) for a calculation with (solid) and without (dashed) hyperons and a
charge fraction of YQ = 0.3 (red) and 0.1 (blue). The scalar cluster-meson coupling fraction is set to xs = 0.93.

to an overall larger hyperon fraction.

In the following figures, we are going to study the ef-
fect of considering hyperclusters in our calculations. As
mentioned in the previous sections, we take 3

ΛH , known
as hypertriton, 4

ΛH (hyperhidrogen 4), and 4
ΛHe (hyper-

helium 4).

A fraction of hypernuclei above 10−4 is only obtained
for big enough temperatures, i.e. T & 25 MeV; for lower
temperatures, the abundance of Λ hyperons is still too
small to give rise to significant hypercluster fractions.
Therefore, in the next two Figures, we consider T = 50
MeV. In Fig. 6, the light nuclei and hypernuclei mass
fractions are plotted together with the unbound proton
and neutron fractions, the Λ fraction, the total Σ frac-

tion corresponding to the sum of the Σ+,0,− fractions,
and the total Ξ fraction corresponding to the sum of the
Ξ0,− fractions, for a charge fraction of YQ = 0.3 (left) and
0.1 (right). There is a clear competition between the hy-
pernuclei and the 4He and 6He light clusters, i.e. the light
clusters with a larger mass: for YQ = 0.1, the hypernuclei
have larger abundances, but even for the larger charge
fraction, the dissolution density occurs at larger densities
for the hypernuclei. The behavior of the hyperclusters in
the medium is defined by their couplings to the mesons.
The difference in relation to the light clusters may be at-
tributed to the fact that hypernuclei are interacting more
weakly with the medium, which is clearly seen consider-
ing the hypercluster couplings defined in Eqs. (19) and
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FIG. 6. Mass fractions of the unbound protons and neutrons (red lines), Λ, Σ and Ξ (green lines), light clusters (blue lines)
and light hypernuclei (pink lines) as a function of the density for T = 50 MeV and xs = 0.93, with YQ = 0.3 (left) and 0.1
(right).
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FIG. 7. Mass fractions of the unbound protons and neutrons (red), Λ (green), Σ−,0,+ (orange) and Ξ−,0 (black), total light
clusters (blue) and light hypernuclei (pink) as a function of the density for T = 50 MeV and xs = 0.93± 0.02, with YQ = 0.3
(left) and 0.1 (right).

(21). Since the coupling of the hyperclusters to the ω-
meson is strongly correlated with the dissolution density,
a smaller ω-coupling implies larger dissolution densities.
On the other hand, a weaker coupling to the σ-meson
gives rise to smaller mass fractions, since a smaller bind-
ing occurs. Also, the binding energy shift is weaker for
the hypernuclei: this binding shift is introduced to take
into account Pauli blocking, but hypernuclei have less
nucleons and therefore experience smaller shifts.

It is also interesting to notice that the isospin pair
formed by the hyperclusters 4

ΛH and 4
ΛHe behaves in a

similar way to the analogous isospin pair formed by the
purely nucleonic clusters 3H and 3He. In fact, since the
Λ-hyperon present at the hyperclusters has isospin zero,
the interactions of these two pairs of clusters with the
medium is similar, the only difference being their masses
and binding energies, resulting in smaller fractions for
the hyperclusters.

In Fig. 7, the total light cluster fraction and the total
light hypercluster fraction are compared with the bary-
onic octet fractions for the two charge fractions, 0.3 and
0.1. We take T = 50 MeV, and we calculate the ef-
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FIG. 8. Mass fractions of the unbound protons and neutrons (red), unbound hyperons: Λ (solid green), sum of Σ+,0,− (dashed
green) and sum of Ξ−,0 (dash-dotted green), light clusters (blue), and light hypernuclei (pink) as a function of the charge
fraction for T = 10 MeV (left), T = 30 MeV (middle) and T = 50 MeV (right). The fractions were determined at nB = 0.01
fm−3(top), 0.1 fm−3 (middle) and 0.2 fm−3(bottom). The scalar cluster-meson coupling is set to xs = 0.93.

fect of the uncertainty on the xs coupling of the particle
fractions, shown by the bands. The abundances of the
hypernuclei are small compared to the light nuclei, and
even taking T = 100 MeV (not shown), there is not a big
difference whether the hypernuclei are included or not in
the calculation, only slightly affecting the abundances of
the heavier clusters and their dissolution density.

In order to understand how the charge fraction affects
the light cluster abundances, and under which conditions
the hyperclusters are more abundant, in Fig. 8, we plot
for a fixed density (0.01, 0.1 and 0.2 fm−3), and tem-
peratures 10, 30 and 50 MeV, the cluster fractions as a
function of the charge fraction. The densities chosen are

below, close and above the cluster fraction maxima. De-
pending on the temperature, the last two density values
may be above the dissolution density, taken as the den-
sity for which the cluster fraction is below 10−4. Con-
sidering the lowest density, we conclude that: i) for the
lowest temperature, the most abundant clusters are not
only determined by their mass, but also by their isospin
and binding energy, contrary to the other two temper-
atures, for which the mass essentially determines their
abundances, and only in a second order, the isospin; ii)
hyperons are only present at T = 30 and 50 MeV, and
hypernuclei appear with an abundance above 10−4 at
T = 30 MeV for nB = 0.1 fm−3 and at T = 50 MeV for
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all densities considered; iii) protons may be less abun-
dant than some light clusters, as for instance 2H and 3H,
below YQ < 0.5 for T = 10 MeV, and T = 50 MeV and
nB = 0.1 fm−3; iv) only for T = 50 MeV do hyperons be-
come more abundant than most of the light clusters (only
2H are more abundant). For T = 10 MeV and the lowest
density, only nucleons are present, clusters have already
dissolved and hyperons did not set in. For T = 30 MeV,
at nB = 0.2 fm−3, only deuterons did not dissolve and
hypernuclei are only present for 0.1 fm−3. For T = 50
MeV, hypernuclei are present in the three densities con-
sidered although only quite a few for the lowest density.
Once again, a similar behaviour is observed for the pairs
4
ΛH, 4

ΛHe and 3H, 3He. Hypernuclei seem to be most
abundant for charge fractions of the order of YQ = 0.3 in
all situations studied.

IV. CONCLUSIONS

The effect of hyperonic degrees of freedom on the
low-density EoS of hot matter, as may occur in events
connected with neutron stars, was studied within the
density-dependent DD2 RMF model. The study was per-
formed at a fixed charge fraction and considered temper-
atures until 100 MeV. The degrees of freedom included in
the calculations were nucleons, hyperons, and light nuclei
and hypernuclei. The introduction of light clusters was
done following the formalism first described in Ref. [28].
Light clusters couple to the mesonic fields and a bind-
ing energy shift is included in order to account for the
Pauli blocking. This contribution essentially influences
the dissolution density of the cluster. A similar formalism
has been presented and applied in [8, 15, 38], the differ-
ence being the model description of the coupling of light
clusters to the mesonic degrees of freedom. Moreover,
in Ref. [15], the cluster binding shifts are temperature
dependent, with the shifts determined from a quantum
statistical calculation [26].

At low temperatures, the abundances are determined
by the cluster binding energy and isospin, and for charge
fractions below 0.3, light clusters like 6He are more abun-
dant than 3He or even α-particles. However, neutron-rich
clusters dissolve at lower densities due to the stronger
binding energy shifts, which take into account Pauli

blocking effects. Larger temperatures shift the cluster
fraction maxima and dissolution densities to larger den-
sities, they decrease their abundances, except for the
deuteron, and they define the cluster abundances in
terms of their masses, with the light clusters being more
abundant.

In this work, we also showed that the presence of hy-
perons shifts the dissolution of clusters to larger densi-
ties and increases the cluster abundances for tempera-
tures T & 25 MeV. This effect is larger the smaller the
charge fraction, and the higher the temperature. The in-
crease of clusters is attributed to a weaker effect of the
Pauli-blocking implemented in the model via the bind-
ing energy shifts since the overall nucleon densities is
lower. Besides, the clusters also affect the hyperon frac-
tions: while neutral and positively charged baryons de-
crease when clusters are included, the fraction of nega-
tively charged hyperons increase. Hypernuclei set in at
temperatures above 25 MeV, and for T & 50 MeV, they
compete with α-particles and 6He. However, switching
off the hypernuclei does not influence much the other par-
ticles. It was shown that the larger abundances for the
total fraction of hyperclusters occurs for a charge fraction
close to 0.3. One expects that a reduction of unbound
nuclei and neutral or positively charged hyperons, and
an increase of light clusters, will affect the reaction rates
that determine the core-collapse supernova evolution or
the binary merger.

In our model, clusters survive up to quite large densi-
ties if the temperatures are high. This must be further
investigated and it may be necessary to include a temper-
ature dependence on the binding energy shifts. Although
one would expect that clusters would dissolve, it is also
true that light clusters survive up to temperatures as high
as 150 MeV as discussed in Ref. [4].
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[26] G. Röpke, Phys. Rev. C 92, 054001 (2015),
arXiv:1411.4593 [nucl-th].
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