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I. INTRODUCTION

Nucleon electromagnetic form factors [1] (FFs) are Lo-
rentz scalar functions of the squared four-momentum
transfer of the photon, q2, that parametrize those de-
grees of freedom of the nucleon electromagnetic current,
which are not constrained by Lorentz and gauge invari-
ance.
They represent a unique source of information about the
internal structure of nucleons. In particular, in the non-
relativistic limit (low q2), FFs can be interpreted as the
Fourier transforms of the electric charge and magnetic
momentum spatial distributions of the nucleon.
From the point of view of quantum field theory, being
related to the electromagnetic current and hence only to
the Born amplitude (one-photon exchange), FFs embody
the resummation of all high order processes with two nuc-
leons and one photon as external particles.
Such high-order processes represent the connection with
quantum chromodynamics (QCD) of FFs, that indeed
could be described in terms of hadronic loops, involving
virtual mesons and baryons. Due to the large number
of hadron “species” to be accounted for and also to the
unknown couplings among them, a direct calculations of
FFs in the framework of QCD, especially in the low-q2

regime, is a very hard task.
Nevertheless, interesting results have been obtained by
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lattice calculations [2] and effective model approaches,
such as: chiral perturbation theory [3], chiral soliton
models [4], large-Nc approximation [5] and holographic
QCD [6]. However, in the majority of these cases, the
obtained FF descriptions are restricted to the only space-
like (SL) region.
In general, two kinds of FFs could be identified:

• SL FFs (SLFFs), related to the elastic scattering
process e−N → e−N (N and e− stand for nucleon
and electron respectively), which occurs with q2 <
0 (see, for instance, Refs. [7] and [8]);

• time-like (TL) FFs (TLFFs), related to the annihil-
ation processes e+e− ↔ NN , where q2 > (2MN )2,
MN is the nucleon mass (for a review see Ref. [9]
and references therein).

The scattering and annihilation processes are related by
crossing symmetry, which, considering only the Born ap-
proximation, see Fig. 1, implies that SLFFs and TLFFs
represent values, for negative and positive q2 respectively,
of a unique function of q2, simply named FF.
As a consequence, in order to understand the meaning
of FFs, especially in the TL region, where the interpret-
ation in terms of Fourier transforms of spatial distribu-
tions fails, we must adopt descriptions or parametriza-
tions defined in the whole kinematic region. Moreover,
new FF data, coming from different experiments1, should

1 BESIII [10] at BEPCII in Beijing, China; SND [11] and
CMD3 [12] at VEPP-2M in Novosibirsk, Russia; PANDA at
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help in shedding light especially in the more puzzling TL
region.

N(p)

N(p′)
γ(q)

e−(k)

e−(k′)

✲✛Annihilation

✻

❄

S
ca
tt
er
in
g

s

Figure 1. Feynman diagram in Born approximation for
e+e− ↔ NN and eN → eN . The solid disc at the nucleon
vertex symbolizes FFs.

Various techniques and procedures have been proposed
to develop such a SL-TL unified description of nucleon
FFs. Many of them make use of dispersion relations,
see for example Refs. [14–16], others suggest new models
(for instance, in Ref. [17], a semi-phenomenological mi-
croscopic model is proposed), and some others use ana-
lytic continuation methods to extend, to all values of q2,
parameterizations usually defined only in the SL or TL
region [18].
We will expound here a procedure, originally formulated
in Ref. [19], that allows to make the analytic continuation
to the whole q2 complex plane of a parametrization of
FFs, initially conceived for a particular reference frame.
More in detail, nucleon FFs are computed in the Breit
frame as Fourier transforms of the time and space com-
ponents of the electromagnetic current. This particular
representation is defined only in the SL region, i.e., the
Fourier integrals, which depend on q2, converge only for
SL four-momenta. However, if such a representation can
be analytically solved, that is, the Fourier transforms are
obtained as analytic functions of q2, instead of discrete
numeric values at each four-momentum transfer, then the
FF parameterizations should be valid in all non-singular
points of the q2 complex plane.
In particular, the nucleon electromagnetic current has
been computed in the framework of the Skyrme model
[20, 21], by solving numerically a set of non linear dif-
ferential equations. The most relevant aspect of the pro-
cedure outlined here, consists in assigning to these nu-
merical solutions opportune analytic expressions, so that
their Fourier transforms embody the properties required
for FFs by analyticity and unitarity.
The structure of the article is the following: in the second
section we briefly introduce FFs in SL and TL regions and
describe their analytic properties. In the third section we
review the Skyrme model and calculate SLFFs. In the
fourth section we illustrate the method of analytic con-
tinuation and the obtained results. In closing, we discuss

FAIR in Darmstadt, Germany [13].

the main issues of these results, also in comparison with
all available FF data.

A. Space-like form factors

In the scattering channel, Fig. 1 vertical direction, the
Feynman amplitude of the nucleon vertex, N → γ∗N , is
parametrized as [22]

〈N ′(p′)|Jµ(0)|N(p)〉 = ū(p′)
(
F̃N1 (q2)γµ

+ i
σµνqν
2MN

F̃N2 (q2)

)
u(p) , (1)

where the four-momenta follow the labelling of Fig. 1 and
F̃N1 (q2) and F̃N2 (q2) are the so-called Dirac and Pauli
FFs (the “tilde” indicates their SL definition). They are
Lorentz scalar functions and, as a consequence of the her-
miticity of the current operator Jµ and the time reversal
symmetry, are real for q2 ≤ 0. At q2 = 0 the Dirac FF
is normalized to the nucleon charge QN , in units of the
positron charge, while the Pauli FF is normalized to the
anomalous magnetic moment κN , in units of the Bohr
magneton µB ,

F̃N1 (0) = QN , F̃N2 (0) = κN . (2)

In the special frame, called Breit frame, where there is
no energy exchange, hence: p = (E,−~q/2), p′ = (E, ~q/2)
and q = (0, ~q), the time and space components of the
current expectation value, Eq. (1), reduce to

〈N ′(p′)|J0(0)|N(p)〉= F̃N1 (q2) +
q2

4M2
N

F̃N2 (q2) ,

〈N ′(p′)| ~J(0)|N(p)〉= ū(p′)~γ u(p)
(
F̃N1 (q2)+F̃N2 (q2)

)
.

(3)

These combinations of the Dirac and Pauli FFs, repres-
enting the Fourier transforms of charge and magnetiza-
tion spatial distributions of the nucleon, define the elec-
tric and magnetic Sachs FFs [23]

G̃NE (q2) = F̃N1 (q2) +
q2

4M2
N

F̃N2 (q2) ,

(4)

G̃NM (q2) = F̃N1 (q2) + F̃N2 (q2) ,

that, following Eq. (2), are normalized at q2 = 0 as

G̃NE (0) = QN , G̃NM (0) = QN + κN ≡ µN ,
where µN is the total magnetic moment of the nucleon.
Isoscalar (isospin I = 0) and isovector (isospin I = 1)
components are obtained by the following combinations
of proton and neutron FFs

F̃S1,2 =
F̃ p1,2 + F̃n1,2

2
, F̃V1,2 =

F̃ p1,2 − F̃n1,2
2

,

G̃SE,M =
G̃pE,M + G̃nE,M

2
, G̃VE,M =

G̃pE,M − G̃nE,M
2

.

(5)
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B. Time-like form factors

In case of annihilation, Fig. 1 horizontal direction, fol-
lowing the notation of Eq. (1), the amplitude for the
nucleon-antinucleon production, γ∗ → NN , is

〈N(p)N̄(p′)|Jµ(0)|0〉 = ū(p)
(
F̄N1 (q2)γµ

+i
σµνqν
2MN

F̄N2 (q2)

)
v(p′) ,

where F̄N1 (q2) and F̄N2 (q2) are the Dirac and Pauli FFs
in the TL region, as indicated by the over-bar. Even
in this case, the hermiticity of Jµ and the time reversal
symmetry would imply real TLFFs. However this would
be true only if the TL photon had not enough virtual
mass, q2, to produce physical particles as intermediate
states. Otherwise, when the values of q2 exceed the mass
squared of the lightest allowed intermediate state, the
amplitude, and hence the TLFFs, become complex. The
rising of a finite imaginary part is a consequence of unit-
arity and can be formally demonstrated by considering
the optical theorem.
Since the lightest hadronic physical (on-shell particles)
state, allowed by quantum number conservation, is the
two-pion one, the imaginary part of the amplitude is dif-
ferent from zero starting from the so-called theoretical
threshold q2

theo = (2Mπ)2, where Mπ is the pion mass. In
light of this non-vanishing imaginary part, the hermiti-
city of the current operator and the time reversal sym-
metry enforce, for the FFs, instead of reality, the Schwarz
reflection principle and hence a discontinuity across the
half line (q2

theo,∞). Such a portion of the TL region is
then excluded from the analyticity domain or, in other
words, it represents a branch cut.
From the experimental point of view, the extraction of
TLFF data involves additional difficulties with respect
to SLFFs. First of all, TLFFs are complex so, to have
a complete determination, moduli and phases, or ima-
ginary and real parts, should be measured. However,
even by using polarization observables [24], only relative
phases between electric and magnetic Sachs FFs are ac-
cessible.
Moreover, since TL data are extracted from the cross sec-
tion of the annihilation processes e+e− ↔ NN , TLFFs
can be measured only for q2 values above the so-called
physical threshold q2

phys = (2MN )2. It follow that the TL

interval [0, (2MN )2], where TLFFs are still well defined
and receive also the most important contributions from
hadronic intermediate states, is not experimentally ac-
cessible and for that reason it is called “unphysical re-
gion”.
As already stated [25], taking advantage from crossing re-
lations, SLFFs and TLFFs are interpreted as limit values,
over the negative and positive real axis, respectively, of
unique functions, FN1,2(q2), defined in the whole q2 com-

plex plane with the discontinuity cut
(
q2
theo,∞

)
, due to

unitarity (optical theorem). In more detail





F̃Ni (q2) = lim
ε→0

FNi (q2±iε) q2 < 0 (SL)

F̄Ni (q2) = lim
ε→0

FNi (q2±iε) 0 ≤ q2 ≤ q2
theo (TL)

F̄Ni (q2) = lim
ε→0

FNi (q2+iε) q2 > q2
theo (TL)

,

with i = 1, 2 and the limits in the SL region and in the
portion of TL region up to the theoretical threshold can
be taken indifferently from above or below the real axis,
because there is no discontinuity there. On the other
hand the limit values of FFs around the cut, in the TL
region, depend on which edges of the cut is considered.
In particular, as a consequence of the Schwarz reflection
principle, the FF values in the upper and lower edges are
complex conjugates, i.e., as ε→ 0+,

F1,2(q2 + iε) = F ∗1,2(q2 − iε) , q2 ≥ q2
theo .

We omitted tilde and over-bar because such a relation
does hold in both SL and TL regions.

C. Analytic properties of form factors

Analyticity and unitarity, as well as perturbative QCD
(pQCD), determine important model-independent fea-
tures of FFs (some of which have already been touched
upon in the previous section). Any reliable model of FFs
must be able to reproduce such fundamental features,
that concern the analytic structure of FFs as functions
of the complex four-momentum square and their asymp-
totic behavior, i.e., the power law that rules their van-
ishing as |q2| → ∞.
Below we list, without proof, the main properties of FFs
that will be addressed and discussed in the next sections.

• Form factors are function of q2, analytic in the
whole complex plane except for the branch cut
(q2

theo,∞). Physical FFs are defined as the values of
such functions for real q2. Moreover, from the ex-
perimental point of view, FFs are measurable only
for q2 < 0 (SL region), and q2 ≥ q2

phys (a subset

of TL region). The TL interval (0, q2
phys), being ex-

perimentally forbidden for FFs, is called unphysical
region.

• At high momentum transfer we can invoke the
pQCD or the quark counting rule [26] to infer
the FF asymptotic behavior. In particular, in the
scattering channel in order to maintain the nuc-
leon entirety, the four-momentum transferred by
the virtual photon must be shared among the three
valence quarks via gluon-exchanges. The minimal
number of gluons to be exchanged is two and hence
the FFs must contain terms with, at least, two
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gluon propagators that entail the power law beha-
vior

GNE,M (q2) ∼
(

1

q2

)2

, q2 → −∞ ,

where the limit is in the SL region. However, such a
power law can be extended also to the TL region by
considering the Phragmén-Lindelöf theorem [27],
that applies to FFs because of their analyticity and
boundedness.

• A very powerful consequence of analytic properties
of FFs is the possibility of using a particular ana-
lytic continuation tool based on the Cauchy the-
orem [28], i.e., the dispersion relations for the ima-
ginary part

F (q2) =
1

π

∫ ∞

q2theo

Im
[
F (q′2)

]

q′2 − q2 − iε dq
′2 , (6)

valid for q2 6∈ (q2
theo,∞) and where the symbol F

stands for a generic FF. The threshold value to be
used as lower limit of the dispersion relation integ-
ral depends on the isospin of the considered FF. In
case of isovector components, intermediate states
with only even numbers of pions are allowed, hence,
as already seen, the threshold is q2

theo = (2Mπ)2,
while for isoscalar components q′2theo = (3Mπ)2.
Obviously using the lower threshold q2

theo is always
correct, since the imaginary parts of the isoscalar
FFs are null for q2 ≤ q′2theo.

• Another interesting issue, that emerges by consid-
ering the definition of GNE and GNM , and assuming
analyticity for the Dirac and Pauli FFs, is the iden-
tity GNE (4M2

N ) = GNM (4M2
N ). On the other hand,

the electric and magnetic FFs could be different at
the physical threshold only if FN1 and FN2 were sin-
gular there2 [19]. Such an identity implies that, at
the threshold q2

phys, the nucleon vertex is described
by a unique FF, i.e., there is only one degree of
freedom and the cross section, loosing its depend-
ence on the scattering angle, becomes isotropic. In
other words, even though angular momentum con-
servation allows S and D waves for the NN system
produced by one virtual photon (Born approxima-
tion), at the production threshold the D-wave con-
tribution must vanish, so that only the isotropic
S-wave survives.
In principle, the identity GNE (4M2

N ) = GNM (4M2
N )

can be verified experimentally by measuring, for in-
stance, the ratio GNE /G

N
M at the physical threshold.

2 Interesting discussions about the threshold value of EMFFs are
developed in Ref. [29].

However, in a symmetric e+e− collider, the possib-
ility to reach or even get very close to the threshold
is prevented by physical limitations. Indeed, in case
of the annihilation process e+e− → pp, the pro-
ton and the antiproton are produced almost at rest
in the laboratory frame and hence they have no
enough momentum to reach the detector.
In the last twenty years, the so-called “initial
state radiation technique”, developed at the flavor
factories, allowed to avoid this limitation, so that
values of the ratio GNE /G

N
M [30] have been meas-

ured very close to the physical threshold. These
data, together with older measurements performed
in the crossed channel pp → e+e− [31], agree
with threshold-isotropy requirement GpE(4M2

N ) =
GpM (4M2

N ), but do not exclude possible, small D-
wave contributions.

II. THE NUCLEON MODEL

We use the Skyrme model [21] as test bed for our ana-
lytic continuation procedure. In the framework of such
a model, which is described in detail in the next sec-
tion, the charge and magnetization spatial distributions
of nucleons are obtained with no further phenomenolo-
gical or experimental constraint.
It represents a typical example of those models that, by
providing an exclusively SL description of FFs, are par-
ticularly suitable to be treated with our “analyticization”
procedure.

A. The Skyrme model

The Skyrme model was introduced by Tony Skyrme in
1960 as a model for strong interactions [21]. The basic
and innovative idea was that fermions could emerge as
particular, stationary and quantized solutions of a non-
linear field theory with only boson fields. Stationary solu-
tions of this kind are usually called solitons, the quantized
ones, associated to the Skyrme Lagrangian, are instead
called skyrmions.
The interest in this model increased when ’t Hooft and
Witten proposed the 1/Nc expansion of QCD [32, 33]
and Witten showed that the Skyrme model led to a Lag-
rangian which was equivalent to that of the 1/Nc expan-
sion.
The first application of this model is due to Adkins,
Nappi and Witten [34, 35], who computed some static
quantities for nucleons by obtaining a quite acceptable
(∼ 30%) agreement with the measured values. Such an
agreement strengthened the conviction to being on the
right track to achieve an effective approximation of QCD
at low energy.
In order to build up a representation of nucleon SLFFs,
we will follow the work of Braaten, Tse and Willcox [20],
that, in 1986, for the first time, used the Skyrme model
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to compute nucleon FFs.

B. Skyrme Lagrangian

The Skyrme Lagrangian, which is based on the Lag-
rangian of the so-called non-linear σ-model [36], has an
SU(2)L × SU(2)R chiral symmetry which is spontan-
eously broken to SU(2). Assuming that the isoscalar
and isovector fields σ and ~π, as a consequence of the
symmetry breaking, are linked by the relation

σ2 + ~π2 = F 2
π ,

where Fπ = 108 MeV [35] is the weak pion decay con-
stant, see Tab. I, the Skyrme Lagrangian can be written
in terms of the only SU(2) field

U(~r) =
1

Fπ

(
σ(~r) + i ~τ · ~π(x)

)
≡ exp

(
i ~τ · ~F (~r)

)
, (7)

where: ~τ is the vector of Pauli matrices and the function
~F (~r) is the “axis-angle” representation of the chiral field
U(~r).

Quantity (units) This work Experimental

Fπ (MeV) (fixed) 108 ∼ 186

Mπ (MeV) (fixed) 138 ∼ 138

g (fixed) 4.84 -

M (MeV) 937 ∼ 938

〈r2
p〉1/2E (fm) 0.88 0.8775(51)

〈r2
n〉E (fm2) −0.31 −0.1161(22)

〈r2
p〉1/2M (fm) 0.79 0.777(16)

〈r2
n〉1/2M (fm) 0.82 0.862(9)

µp (µB) 1.97 2.792847356(23)

µn (µB) −1.24 −1.9130427(5)

µp/µn −1.59 −1.459898075(5)

Table I. Parameters and static quantities obtained in the
framework of the Skyrme model compared with their exper-
imental values [37]. Our results, being obtained in the same
conditions, reproduce quite well those of Ref. [35]. The ∼1‰
difference in the nucleon mass is probably due to a slightly
different normalization range for the chiral angle F (r). We
used 0 ≤ r ≤ 8 fm, while, in Ref. [35], there is no indication
on that. The symbol µB stands for the Bohr magneton.

The complete Skyrme Lagrangian density, that will be
used in the following, reads

LSkyrme =
F 2
π

16
Tr
(
DµUD

µU†
)

+
1

32g2
Tr
([
DµUU

†, DνUU
†]2)

+LWZ +
F 2
πM

2
π

8
Tr
(
U + U† − 2

)
, (8)

where Dµ is the covariant derivative, which includes the
electromagnetic interaction. Besides the usual kinetic
term, the second contribution, which is quadratic in the
field derivative and represents a repulsive short-range po-
tential with a coupling g, has been introduced ad hoc by
Skyrme in order to have stationary solutions. The con-
tribution LWZ, called Wess-Zumino term [38], which ac-
counts for the QCD anomalies, is written as a non-gauge
invariant coupling between the photon and a conserved
topological current Bµ [39], i.e.,

LWZ = −e
2
AµB

µ ,

with: Bµ =
1

24π2
εµνλσTr(U†∂νU∂λU

†∂σU) .

The topological charge associated to Bµ corresponds to
the baryon number B, hence the baryons are identified
as those solutions with B = 1. Finally, the last contri-
bution of Eq. (8) is a mass term, which explicitly breaks
the chiral symmetry and it is treated perturbatively.
We consider the particular class of solutions obtained

by specializing the axis-angle function, ~F (~r) of Eq. (7),

according to the so-called hedgehog ansatz: ~F (~r) =
F (r)~r/|~r| ≡ F (r) r̂. In this way, the space of the sur-
viving SU(2) symmetry, which is the isospin, takes the
radial configuration of the r-space. In other words, in a
given position ~r, the isospin vector has the same direc-
tion and orientation of the position vector ~r. The intens-

ity of the axis-angle function ~F (~r), indicated with the
symbol F (r), is called chiral angle. Stable solutions, the
skyrmions, are stationary minima of the energy, obtained
by solving the Euler-Lagrange equation, which is a non-
linear differential equation for the chiral angle F (r), see,
e.g., the differential equation obtained from Eq. (8) of
Ref. [35].
The further step, that is the skyrmion quantization, con-
sists in quantizing collective modes, translations and ro-
tations, in the isospin space. This can be done by using,
in the Lagrangian density LSkyrme, instead of the field
U(~r) of Eq. (7), its time-dependent version

U(~r, t) = A(t)U
(
~r − ~X(t)

)
A†(t) ,

where A(t) is a uniform SU(2) matrix and ~X(t) is
the skyrmion center-of-mass position vector. As a con-
sequence of rotational and translational invariance, the
resulting Lagrangian depends only on the derivatives of

A(t) and ~X(t), and it reads

LSkyrme =

∫
d3~rLSkyrme

= −M +
M ~̇X

2
+ Λ Tr

(
Ȧ†Ȧ

)
, (9)

where M and Λ are mass and moment of inertia of the
skyrmion.
Owing the hedgehog ansatz, the rotational operator is re-
lated, not only to isospin, but also to spin. The skyrmion
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can be interpreted as a nucleon by requiring the rota-
tional operator to have a semi-integer eigenvalue, so that,
spin and isospin are both quantized to 1/2 [40]. The
Hamiltonian for the quantized skyrmion, in terms of its

three-momentum and spin operators ~P and ~S, is

HSkyrme = M +
1

2M
~P 2 +

1

2Λ
~S2 . (10)

Since, ~P , S3 and I3 (third components of the spin and
isospin) are mutually commuting operators (they also
commute with the Hamiltonian), the system described by
the Hamiltonian of Eq. (10) is manifestly non-relativistic
and has the eigenstate |~p, s3, t3〉, where ~p, s3 and t3 are
the corresponding eigenvalues. Moreover, as already no-
ticed, there is also the conserved topological charge B.
Thus the nucleon is identified as the eigenstate ofHSkyrme

with: s3 = t3 = 1/2 and B = 1.
The skyrmion mass M , appearing in Eqs. (9) and (10),
represents the minimum of the energy, obtained by solv-
ing the Euler-Lagrange equation of the Skyrme Lag-
rangian, Eq. (8), to find the solitonic solution, i.e., the
chiral angle F (r). Parameters and static quantities ob-
tained in this work are reported in Tab. I.

C. Electromagnetic form factors in Skyrme model

Nucleons FFs were firstly obtained in the framework
of Skyrme model, by Braaten, Tse and Willcox [20]. The
starting point consisted in deducing the most general ex-
pression for the electromagnetic current, at a given order
in some expansion parameter, that fulfilled all symmet-
ries and constraints of the model. Due to the equivalence,
discussed in Sec. II A, of the Skyrme and an SU(Nc)-
QCD Lagrangian, in the large-Nc limit, the natural ex-
pansion parameter turns out to be 1/Nc. For instance,
the Skyrme Hamiltonian of Eq. (10), being both M and
Λ of order Nc, contains terms up to the first order in the
1/Nc expansion.
The expression of the electromagnetic current, at the
leading 1/Nc order, is written in terms of position, mo-
mentum, spin and isospin operators, and also two model-

dependent four-vector functions of ~X2 (eight scalar func-
tions), to be furthermore specified by imposing symmet-
ries (hedgehog ansatz included) and physical constraints

(e.g.: B = 1). Only two, b( ~X2) and t( ~X2), out of the
eight scalar functions, survive the characterization pro-
cedure, hence, using relations and definitions of Eqs. (3)
and (4) in the Breit frame, nucleon SLFFs can be ob-
tained as the Fourier transforms (e.g., apart from con-
stant normalization factors, see Eqs (2.5-2.8) of Ref. [14])

GSE(Q2)=
1

2

∫
d3rj0(Qr)b(r) , (11a)

GVE(Q2)=
1

3Λ

∫
d3rj0(Qr)r2t(r) , (11b)

GSM (Q2)=
M

2ΛQ

∫
d3rj1(Qr)rb(r) , (11c)

GVM (Q2)=
2M

3Q

∫
d3rj1(Qr)rt(r) , (11d)

where ji(x) is the i-th spherical Bessel function and

Q2 = −q2, with
√
Q2 ≡ Q > 0 in the SL region. From

now on we will consider a unique FF definition in SL
and TL regions and hence we will use the same symbols,
omitting tilde and over-bar.
In the Skyrme model the functions b(r) and t(r), also
called baryon and moment-of-inertia densities, respect-
ively, are defined only in terms of chiral angle F (r). Their
expressions, obtained by comparing the electromagnetic
current, as extracted from the Lagrangian of Eq. (8), with
the general “educated” parametrization discussed so far,
are

b(r) = −F
′(r)

2π2

sin2 [F (r)]

r2
,

t(r) =
F 2
π

4

sin2 [F (r)]

r2

+
1

g2

sin2 [F (r)]

r2

(
[F ′(r)]

2
+

sin2 [F (r)]

r2

)
.

(12)

Apart from constant normalization factors, b(r) and t(r)
coincide with the functions B0(r) and B1(r) fo Eqs. (2.9)
and (2.10) of Ref. [14]. The chiral angle F (r) is obtained
as solution of the Euler-Lagrange equation, a non-linear
differential equation of second order, which follows from
the functional minimization of the skyrmion mass-energy
computed with the Lagrangian density LSkyrme of Eq. (8)
and the representation of the chiral field U(~r) given in
Eq. (7).
Since the function F (r) and hence b(r) and t(r),
are known only numerically, the Fourier transforms of
Eq. (11) allow to compute nucleon FFs only in their
convergence domain, which corresponds to the SL re-
gion, i.e., Q2 > 0 and Q > 0. Indeed, negative values

of Q2 would imply pure imaginary
√
Q2, so that the

Bessel spherical functions become exponentially diver-
gent as r →∞.
It follows that there is no possibility to perform analytic
continuations of the SLFFs in the TL region, if b(r) and
t(r) are known only numerically. In Sec. III we will de-
velop a procedure to overcome this limitation.
The order in the 1/Nc expansion of the FF expressions
given in Eq. (11) can be easily inferred by the presence of
factors M and Λ at numerator or denominator. In partic-
ular, the isoscalar electric and magnetic FFs, Eqs. (11a)
and (11c) are of order zero, the isovector electric FF,
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Eq. (11b) is of order one, while the isovector magnetic
FF, Eq. (11d), is of order minus one, i.e. O(Nc). Such a
heterogeneity should prevent the possibility to combine
these expressions, following Eq. (5), to obtain proton and
neutron FFs, as actually has been done in Sec. III C, in
order to compare our results with the available data. The
fair agreement, which has been obtained, could be an in-
dication that the non-leading contributions to the nuc-
leon FFs, in the 1/Nc expansion, are sub-dominant as if
there were additional suppression factors.

D. Relativistic corrections

To extend the results obtained for the SLFFs to high
Q2, relativistic corrections have to be included. However,
the procedure to obtain relativistic skyrmions is still de-
bated and different methods are present in literature. To
include relativistic corrections in our FF parameteriza-
tions we will follow Ref. [41]. In particular, in the SL
region, relativistic FF expressions are obtained from the
non-relativistic ones as

GN,rel
E (Q2) = GNE


 Q2

1 + Q2

4M2
N


 ,

GN,rel
M (Q2) =

1

1 + Q2

4M2
N

GNM


 Q2

1 + Q2

4M2
N


 ,

(13)

while, in the TL region [19], using q2 = −Q2,

GN,rel
E (q2)=





GNE (q2) q2 ≤ 4M2
N

GNE

[
4M2

N

(
4M2

N

q2
−2

)]
q2 > 4M2

N

(14)

GN,rel
M (q2)=





GNM (q2) q2 ≤ 4M2
N

4M2
N

q2
GNM

[
4M2

N

(
4M2

N

q2
−2

)]
q2 > 4M2

N

where the relativistic forms are labelled by the super-
script “rel”.
It is important to stress the fact that, unless one considers
fine tuned, non-relativistic FF expressions, with zeros of
particular orders at particular finite values of Q2, such
corrections are incompatible with pQCD predictions con-
cerning the asymptotic behavior.
Moreover, since the asymptotic SL and TL limits for a

given FF are different, for instance GN,rel
E (Q2) tends to

the non relativistic value GNE (4M2
N ) as Q2 → ∞ and to

GNE (8M2
N ) as Q2 → −∞, these corrections do not even

verify the Phragmén-Lindelöf theorem.
The effect of relativistic corrections is shown in Fig. 2, in

case of SL electric and magnetic proton FFs. Their in-
clusion improves the agreement with data at higher Q2,
even though, at very high momenta, as expected, the
agreement worsens.

10
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1

10
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G
p E
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2
)

10
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-1

1

10
-2
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-1

1 10

−q2 (GeV2)

G
p M
(q

2
)/
µ
p

Figure 2. The electric FF (upper panel) and magnetic (lower
panel) proton FF normalized to the proton magnetic moment
in the SL region. Red and violet curves represent the results
with and without relativistic corrections, respectively, while
the empty circles are the world data sets [7]. The systematic
error due to the technique of multipoint Padé approximation
is negligible.

III. ANALYTIC CONTINUATION AND
RESULTS

Once the profiles b(r) and t(r) are known, FFs are com-
puted as their Fourier transforms. However, since only
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numerical expressions of b(r) and t(r) can be obtained,
the applicability of the representations given in Eqs. (11a-
11d) is limited to their domain of convergence, i.e., the
SL region. Indeed, TL transferred momenta would im-
ply divergent real exponentials in the Fourier integrals.
The only way to overcome such a limitation and hence
to obtain FF values also in the TL region, consists in
performing an analytic continuation of the original rep-
resentation. The simplest procedure is represented by
a direct, analytical computation of the integral, which
would return, for the FFs, well defined expressions, de-
pending on the variable Q2, that are manifestly analytic.
In this case the direct approach is prevented by the lack
of analytic forms for the profiles b(r) and t(r). Neverthe-
less, the fact that they are well known in a wide range
of r, allows us to define simple analytic functions that
approximate them with an accuracy that, in principle,
could be indefinitely improved by increasing the number
of free parameters to be settled. Moreover, the structure
of such fit functions is inferred by the knowledge of the
profiles in the two limits: r → 0 and r → ∞. To ex-
pound the analytic continuation procedure that we have
developed, we consider in detail the case of the electric
isoscalar FF GSE(Q2). Its integral representation, given
in Eq. (11a), can be also written as

GSE(Q2) =
π

iQ

∫ ∞

0

(
eiQr − e−iQr

)
rb(r)dr , (15)

it contains only the profile b(r).
The behaviors in the limits r → 0 and r → ∞ are well
known because the corresponding differential equations
can be analytically solved and we get

b(r) ∼
r→0

h0 + h2r
2 , b(r) ∼

r→∞
h∞ e−3Mπr

1

r5
, (16)

where h0, h2 and h∞ are free parameters. The asymp-
totic falloff of b(r), as r →∞, follows from its definition
of Eq. (12), as a consequence of the asymptotic behavior
of the chiral phase F (r), of its sinus, as well as its first
derivative, i.e.,

F (r) ∝
r→∞

e−Mπr

r
⇒





sin [F (r)] ∝
r→∞

e−Mπr

r

F ′(r) ∝
r→∞

−Mπ
e−Mπr

r

,(17)

as can be found, for instance, in Ref. [35]. The exponen-
tial, which guarantees the fast vanishing of the profile,
plays a crucial role in characterizing the analytic struc-
ture of the FF, so that the fit function has been defined
as

bfit(r) =
Pn(r)

Pm(r)
e−3Mπr =

∑n
i=0 air

i

∑m
j=0 bjr

j
e−3Mπr , (18)

where Pn(r) and Pm(r) are polynomials of degrees n and
m respectively (m,n ∈ N), with real coefficients {ak}nk=0
and {bj}mj=0, with: an 6= 0, bm 6= 0 and b0 6= 0.

The conditions given in Eq. (16) imply: (a1 − a0b1/b0 −
3Mπa0) = 0 and m − n = 5, respectively. The ra-
tional part of bfit(r) is a meromorphic function with a
finite number M ≤ m of distinct poles in the r com-
plex plane, hence it can be written as the Mittag-Leffler
expansion [42]

Pn(r)

Pm(r)
=

M∑

j=1



−1∑

k=−µj
C

(j)
k (r − zj)k


 ,

where {zj}Mj=1 ⊂ C and {µj}Mj=1 ⊂ N represent the sets
of poles and of the corresponding multiplicities, while

C
(j)
k is the k-th coefficient of the Laurent series about

the j-th pole zj . If the polynomial Pm(z) has only order-
one zeros, which, moreover, do not coincide with those
of Pn(z), then the function bfit(r) has only simple poles,
i.e., µj = 1 for all j = 1, 2, . . . ,M , and M = m. In this
case the Mittag-Leffler expansion reduces to

Pn(r)

Pm(r)
=

m∑

j=1

Rzj
r − zj

, (19)

where the coefficient Rzj is the residue of the j-th pole

Rzj = C
(j)
−1 = Res

[
Pn(r)

Pm(r)
, zj

]
=

n∑

i=0

aiz
i
j

m∑

k=1

k bkz
k−1
j

, (20)

with j = 1, 2, . . . ,m. We have an additional condition
on the parameters zj : they can not be positive real num-
bers, because b(r) has no poles for r > 0.
The fit function bfit(r), per se, has apparently no physical
content, because its parameters are not directly connec-
ted to physical properties of the system under considera-
tion. Nevertheless, as will be discussed in the following,
the poles zj play a crucial role, indeed they define the
analytic structure of FFs in the q2 complex plane.
The orders m and n of the polynomials and hence the
number of free parameters that define bfit(r), have been
chosen by following a criterion which combines the higher
accuracy in the description with the smaller redundancy
of parameters (a given parameter is defined redundant
when its inclusion does not improve the accuracy of the
fit). The only constraint on the orders m and n of
the polynomials is about their difference, that must be:
m− n = 5.
A satisfactory fit has been obtained with n = 6 and
m = 11. The resulting electric isoscalar FF is

GSE(Q2) =

8∑

j=1

πR̃zj
iQ

[∫ ∞

0

e(iQ−3Mπ)r

r − zj
dr

−
∫ ∞

0

e(−iQ−3Mπ)r

r − zj
dr

]
, (21)

where, having only poles of order one,

R̃zj = Res

[
rPn(r)

Pm(r)
, r = zj

]
= zjRzj . (22)
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All integrals appearing in Eq. (21) belong to the same
class

H(αβ) ≡
∫ ∞

0

e−αr

r + β
dr , with:





Re(α) > 0

β 6∈ (−∞, 0]
. (23)

The conditions on the parameters α and β ensure the
convergence of the integral that, as can be easily seen by
making the substitution w = α r, depends only on the
product αβ. In particular, the integrals of Eq. (21) can
be obtained with: α = 3Mπ ± iQ and β = −zj . These
assignments, having no poles on the positive real axis and
being Q > 3Mπ, automatically fulfill the convergence
conditions.
In the αβ domain defined in Eq. (23), the function H(αβ)
has also the following representation (see App. B)

H(αβ) = eαβE1(αβ)

= eαβ

[
−γ−ln(αβ)+

∞∑

k=1

(−1)k+1(αβ)k

kk!

]
, (24)

where E1(z) is the exponential integral function or ”Ex-
pIntegral” and γ is the Euler-Mascheroni constant [43].
Finally, using Eqs. (23) and (24), the representation of
Eq. (15) can be integrated to obtain

GSE(Q)=
π

iQ

8∑

j=1

R̃zj

{
e(iQ−3Mπ)zjE1 [(iQ− 3Mπ)zj ]

− e(−iQ−3Mπ)zjE1 [(−iQ− 3Mπ)zj ]
}
. (25)

Since the function E1(z) is analytic in the whole z com-
plex plane with a cut along the negative real axis3, it is
now possible to extend the parametrization for GSE to the
TL region, by making the substitution Q → iq (q > 0),
so that

GSE(iq)=−π
q

8∑

j=1

R̃zj

{
e(−q−3Mπ)zjE1 [(−q − 3Mπ)zj ]

− e(q−3Mπ)zjE1 [(q − 3Mπ)zj ]
}
. (26)

A. The branch cut in the q2 complex plane

The properties of the representation obtained for GSE
and, in particular, the presence of branch cuts, as well
as their location in the q2 complex plane, depend on the
analytic structure of the ExpIntegral functions. Follow-
ing the derivation given in App. C, we obtain for GSE , in

3 This is a typical logarithmic branch cut as can be seen in the
representation of E1(z) given in Eq. (24).

the SL region, the expression

GSE(Q)=
2π

Q

l∑

j=1

R̃rj Im {H [(iQ− 3Mπ)rj ]} (27)

+
2π

Q

h∑

j=1

Im
{
R̃cjH [(iQ− 3Mπ)cj ]

−R̃cjH [(iQ− 3Mπ)∗cj ]
}

+
4π2

Q

h∑

j=1

θ(xj)

×Re

[
θ

(
Q− 3Mπ

yj
xj

)
θ(yj)R̃cje

(iQ−3Mπ)cj

+ θ

(
Q+ 3Mπ

yj
xj

)
θ(−yj)R̃cje(−iQ−3Mπ)cj

]
,

where rj and cj are real and complex poles, xj and yj , in
the arguments of the Heaviside theta functions, repres-
ent real and imaginary parts of cj , while R̃rj and R̃cj are
the residues. For a detailed description see App. C. The
parametrization of Eq. (27) is explicitly real in the SL re-
gion, i.e., for Q > 0. In the TL region the GSE expression
becomes

GSE(iq)=−2π

q

h∑

j=1

Re
{
R̃cjH [(−q − 3Mπ)cj ] (28)

−R̃cjH [(q − 3Mπ)cj ]
}

−π
q

l∑

j=1

R̃rj

{
H [(−q − 3Mπ)rj ]

−H [(q − 3Mπ)rj ]
}

+
2iπ2

q

h∑

j=1

θ(q − 3Mπ)θ(−xj)

×
[
R̃cje

(q−3Mπ)cjθ(yj)+R̃∗cje
(q−3Mπ)c∗j θ(−yj)

]
.

While the first term is real, the second and the third
could have non vanishing imaginary parts. In particu-
lar, the second term contains H functions, that embed a
logarithmic structure and hence, for negative arguments,
have non-zero imaginary parts. Having only negative real
poles, rj < 0, and q > 0, the argument (−q−3Mπ)rj is al-
ways positive, whereas (q−3Mπ)rj can be negative when
q > 3Mπ, following exactly the theoretical requirement
(see Sec. I C). A further imaginary contribution, given by
the last term, is due to non real poles with negative real
part. Finally, the TL imaginary part of GSE , which is non
vanishing only if there are poles with negative real parts,
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is given by

Im[GSE(iq)]=
2π2

q
θ(q − 3Mπ)

×





h∑

j=1

θ(−xj)Re
[
R̃cje

(q−3Mπ)cj
]

−1

2

l∑

j=1

R̃rje
(q−3Mπ)rj



 . (29)

In summary.

• The profile b(r) is obtained as numerical solution
of a differential equation.

• Such a solution is fitted with bfit(r), a product of
a rational function and an exponential, that ful-
fills the requirements for r → 0 and r → ∞ and
moreover it has only simple poles not belonging to
the positive real axis.

• The rational part of bfit(r), being a meromorphic
function, can be written as a Mittag-Leffler sum
and hence its Fourier transform, which is the FF
GSE(Q), is a sum of Fourier transforms of simple
poles, zj , multiplied by an exponential, i.e., ExpIn-
tegral functions with arguments: (±iQ− 3Mπ)zj .

• The analyticity domain of GSE(Q), especially when
there is at least one pole with negative real part,
is exactly that expected for FFs on the basis of
first principles, i.e., the q2 complex plane with the
branch cut

(
(3Mπ)2,∞

)
. Nevertheless, only log-

arithmic and not square-root branch cuts can be
generated. See Sec. III E for a detailed treatment.

The isovector FFs are obtained with the same procedure
described in detail for GSE , i.e., by fitting the profile func-
tion t(r) with a ratio of polynomials and an exponential
deduced from the solution of the asymptotic differential
equations. However, in this case, to account for the two
and four-pion coupling, two exponential contributions are
considered

t(r) =
Pn′(r)

Pm′(r)
e−2Mπr +

Pn′′(r)

Pm′′(r)
e−4Mπr , (30)

with m′ − n′ = 4 and m′′ − n′′ = 6, as a consequence
of the asymptotic behavior of the chiral angle F (r),
see Eqs. (12) and (17). Following the line of reasoning
used to study GSE , this expression leads to two differ-
ent branch cuts, that generate from the two thresholds:

q2
theo = (2Mπ)2 and q′′2theo = (4Mπ)2.

Rigorous tests of analyticity for the parameterizations in
connection with the radial profiles of the Skyrme model
are presented in App. D.

B. Asymptotic behavior

As already discussed, the asymptotic behavior of the
FFs obtained with this procedure is completely determ-
ined by the relativistic corrections of Eqs. (13) and (14).
Nevertheless, it is interesting to study the high-Q beha-
vior of the non-relativistic (uncorrected) FF expressions.
Such a behavior can be derived from the asymptotic ex-
pansion of the ExpIntegral function [44]

E1(z) =
e−z

z

n−1∑

k=0

(−1)k
k!

zk
+O

[
(n− 1)!|z|−n

]
, (31)

with z →∞. The rigorous treatment is given in App. E,
where the SL and TL asymptotic behaviors are obtained
for general profile functions, but not taking into account
the branch cut corrections discussed in Sec. III A. How-
ever, as we will see in detail in the case of GSE , such
corrections do not spoil the power law behavior driven
by the expansion of Eq. (31). Using Eq. (E.22), the SL
isoscalar FF in the high-Q regime can be written as the
series of increasing powers of Q−1

GSE(Q) ∼
Q→∞

∞∑

k=0

g
(k)
SL(Q) , (32)

with: g
(0)
SL(Q) ∼ Q−2 and g

(k)
SL(Q) ∼ (Q−2)2 Int[(k+1)/2],

for k ≥ 1. In particular, when Q → ∞, the first four
terms behave as

g
(0)
SL(Q) ∼ − 2π

Q2

m∑

j=1

Re

(
R̃j
zj

)
;

g
(1)
SL(Q) ∼ 12πMπ

Q4

m∑

j=1

Re

(
R̃j
z2
j

)
;

g
(2)
SL(Q) ∼ 4π

Q4

m∑

j=1

Re

(
R̃j
z3
j

)
;

g
(3)
SL(Q) ∼ 144πMπ

Q6

m∑

j=1

Re

(
R̃j
z4
j

)
.

(33)

Each of them depends on the corresponding derivative
(the k-th derivative for the k-th term) of the rational
function r bfit(r)e

3Mπr evaluated in the origin, i.e.,

dk

drk
(
r bfit(r)e

3Mπr
)∣∣∣∣
r=0

=
dk

drk
rPn(r)

Pm(r)

∣∣∣∣
r=0

=
dk

drk

m∑

j=1

R̃j
r − zj

∣∣∣∣∣∣
r=0

= −k!

m∑

j=1

R̃j

zk+1
j

,

with k = 0, 1, . . .. Since the function r bfit(r)e
3Mπr van-

ishes in the origin, having no poles there, the first con-
tribution (k = 0) in Eq. (33) is also vanishing and hence

g
(1)
SL(Q) and g

(2)
SL(Q), that are of the same order in Q,
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i.e. Q−4, become the leading terms. The TL expres-
sion for GSE(iq), given in Eq. (28), apart from the factor
q−1, has two kinds of contributions: the first depends on
the functions H(z), while the second, which accounts for
the branch cut corrections, has an exponential behavior.
More in detail, there are two exponentials that, being
complex conjugates, have the same modulus and hence
the same asymptotic behavior. Their moduli scale like
∼ e−q xj when q → ∞, where xj is the real part of the
j-th pole. However, such contributions are weighted by
three Heaviside theta functions, one of which ensures the
strict positivity of xj , hence all the exponentials are van-
ishing as q →∞ and the asymptotic behavior is domin-
ated by the only terms which contain the H(z) functions.
In light of that, the asymptotic behavior of GSE(iq) can
be described in terms of the series

GSE(iq) ∼
q→∞

∞∑

k=0

g
(k)
TL(q) ,

similar to that of Eq. (32), where the functions g
(k)
TL(q) are

defined by the TL expansion of Eq. (E.24), and are re-

lated to the corresponding SL terms as g
(k)
TL(q) = g

(k)
SL(iq).

In other words, the TL asymptotic behavior follows the
same power law as in the SL region. The leading contri-
butions, in both regions, are determined by the behavior
of the profile function in the origin r = 0.
However, while for the electric isoscalar FF the obtained
behavior agrees with the perturbative QCD prediction,
i.e., GSE(Q) ∼

Q→∞
Q−4 and GSE(iq) ∼

q→∞
q−4, for all the

other three FFs, see Eqs. (E.25) and (E.28), we achieved
the faster vanishing behaviors

GVE(Q), GSM (Q), GVM (Q) ∼
Q→∞

Q−6 ,

(34)

GVE(iq), GSM (iq), GVM (iq) ∼
q→∞

q−6 .

The only possibility to recover the expected power laws
should be that to consider a profile function having in
the origin a zero of a lower order. For instance, in case of
GVM , the profile function is f(r) = r3t(r), see Eq. (11d),
and, as r → 0, f(r) ∝ rl, with l = 3, because the density
t(r) is finite and non vanishing in the origin. This power,
l = 3, determines (see Eq. (E.26) and (E.27)) the asymp-
totic behavior as given in Eq. (34). On the other hand,
the perturbative QCD expectation, i.e., the power laws
Q−4 and q−4, in SL region and TL region respectively,
would be obtained only with l = 2, which means that
t(r) should have a simple pole in the origin.

C. Results

To have a direct comparison with data, results are
primarily given for the electric and magnetic Sachs FFs of
proton and neutron, GpE,M and GnE,M , even though the

primary outcomes of this procedure, see Eqs. (11), are

their isospin components GSE,M and GVE,M . These two
sets of FFs are related by the linear combinations given
in Eq. (5). Moreover, SLFFs and TLFFs will be given
as functions of Q2 and q2 respectively, with the simple

convention GS,VE,M (±q2) ≡ GS,VE,M (∓Q2).
All FFs have been obtained by means of the procedure
outlined in Secs. III, II D and in App. A, such a procedure
does embody a certain degree of uncertainty mainly due
to the multipoint Padé approximation technique. The
consequent systematic error has been accounted for by
using two different sets of interpolation points. It is in-
teresting to notice that this systematic error is percept-
ible only for TL results. In fact, the two curves that are
obtained for each FF, corresponding to the two sets of
interpolation points, are superimposed and hence indis-
tinguishable in the SL region, while they form a band
with a finite width in the TL region.
Moreover, all the SLFFs, but for GnE which is vanishing
at Q2 = 0, are normalized to the so-called dipole FF

GD(Q2) =

(
1 +

Q2

M2
D

)−2

, (35)

with M2
D = 0.71 GeV2. Such a FF, with only one free

parameter, the dipole mass MD, describes quite well the
SL data on GpE(Q2), GpM (Q2)/µp and GnM (Q2)/µn, as
can be seen in Fig. 3 and in the lower panel of Fig. 5,
where indeed the data (empty circles) spread out around
the unity.

1. Space-like region

Figures 3-5 show predictions (red and violet curves)
and data (empty circles) for the SL electric and magnetic
FFs of proton and neutron. In particular, red and violet
curves represent the predictions including and not includ-
ing the relativistic correction described in Eq. (13). In
the case of the proton, Fig. 3, the relativistic-uncorrected
predictions, also thanks to the constrained unitary nor-
malization at Q2 = 0, describe quite well data up to
Q2 ' 0.4 GeV2. Above this limit the predictions start
to decrease faster than the dipole. Such a behavior is
expected in case of the magnetic FF, in fact, as shown in
Eq. (34), the power law that rules its high-Q2 vanishing
is Q−6. On the other hand, the electric FF, due to the
contribution of GSE , see Eq. (E.25), should tend to zero
as Q−4, i.e., at the same rate as the dipole.
The obtained faster vanishing behavior is due to the
presence of a zero for GpE(Q2), at Q2

0 ' 2.3 GeV2, see
the violet curve in the upper panel of Fig. 4, so that
GpE(Q2)→ 0− (from below), as O

(
Q−4

)
, when Q2 →∞.

The agreement with data is improved by including the
relativistic corrections, red curve in Fig. 3. In partic-
ular in case of GpE , left panel of Fig. 3, the prediction
follows the trend of the data, i.e., the dipole behavior,
up to Q2 ' 1 GeV2 and then it drops down. This is a
consequence of the Q2-dilation nature of the relativistic
correction, that moves the zero for GpE(Q2) from Q2

0 to
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Figure 3. The electric (upper panel) and magnetic (lower
panel) proton FFs in the SL region, normalized to the dipole
FF and GpM also to the magnetic moment, are compared with
the world data sets, empty circles, from Ref. [7]. The red and
violet curves represent the predictions for the FFs obtained
including and not including relativistic corrections as given in
Eq. (13). The data sets are the same of Fig. 2, however, due
to the different scales, logarithmic and linear, and to the di-
pole normalization, the errors appears larger. The systematic
error due to the technique of multipoint Padé approximation
is negligible.

Q2
0,rel = 4M2

N/(4M
2
N/Q

2
0 − 1) ' 7.7 GeV2, see the red

curve in the lower panel of Fig. 4, and hence the quick
descent is shifted at higher Q2.
As already discussed in Sec. II D, the asymptotic beha-
vior of the electric FF is drastically modified by the re-

lativistic corrections, in fact, Gp,rel
E (Q2) tends to the finite
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Figure 4. The electric (upper panel) proton FF and the
ratio electric to magnetic (lower panel) proton FF in the
SL region. The ratio is compared with the data, empty
circles, obtained by means of polarization observables [7]. The
red and violet curves represent the predictions that include
and do not include relativistic corrections, respectively. The
red dash-dotted line in the upper panel indicates the value
Q2 = (2MN )2.

value GpE(4M2
N ), i.e.,

Gp,rel
E (Q2) −→

Q2→∞
GpE(4M2

N ) ' 0.012 .

The fact that such a value is very close to zero, see the
vertical line in the upper panel of Fig. 4, and that the
uncorrected electric FF scales as the dipole makes the
corrected FF closer to the data.
Also the prediction for the magnetic proton FF, lower
panel of Fig. 3, improves its agreement with data up to



13

Q2 ' 4 GeV2, when the relativistic corrections are con-
sidered. In this case, at high Q2, the prediction gets
larger than data, see also the lower panel of Fig. 2, and
its steep rising, from Q2 ' 5 GeV2, is a consequence of
the normalization to the dipole. Moreover, asymptotic-

ally Gp,rel
M goes like Q−2, so that the ratio to the dipole

grows like Q2. Contrary to the case of GpE , no zeros are
found for GpM .
The lower panel of Fig. 4 shows the ratio between elec-
tric and magnetic proton FFs normalized to the proton
magnetic moment, the red and violet curves are the pre-
dictions with and without relativistic corrections, while
the empty circles represent the data extracted from po-
larization transfer observables in e-p scattering [7]. Such
experimental values show an unexpected linear decreas-
ing trend, whose extrapolation would give a zero at
Q2 ' 10 GeV2, which is close to the obtained value
Q2

0,rel ' 7.7 GeV2.
Electric and magnetic FFs of neutron are shown in Fig. 5
in comparison with the data. The two predictions, also in
this case, refer to the relativistically corrected (red curve)
and uncorrected (violet curve) results. Apart from the
low-Q2 region, where the normalization forces the pre-
dictions to follow the experimental points, the agreement
with data appears worse with respect to what has been
found for the proton. The inclusion of relativistic cor-
rections does not improve the accordance with data, in
particular, the agreement is even worsened in case of GnE ,
left panel of Fig. 5. Finally, no zeros are found for GnE
and GnM .
Concerning the asymptotic behavior of neutron SLFFs,
the same conclusions driven for the proton can be con-
sidered. In particular, as Q2 →∞, the uncorrected pre-
dictions for GnE and GnM scale as Q−4 and Q−6, respect-
ively, while the corrected behaviors are





Gn,rel
E (Q2) −→

Q2→∞
GnE(4M2

N ) ' 0.009

Gn,rel
M (Q2) −→

Q2→∞
4M2

N

Q2
GnM (4M2

N )
.

2. Time-like region

Results and data in the TL region will be described as
functions of the positive, squared four-momentum trans-
fer q2 = −Q2 > 0. As extensively discussed in Sec. I B,
starting from the theoretical threshold q2

theo = (2Mπ)2,
FFs develop non-vanishing imaginary parts due to the
coupling of the virtual photon, which now has enough vir-
tual mass, with hadronic intermediate states. It follows
that, in this kinematical region, the nucleon structure is
described by four real functions, i.e., real and imaginary
parts of the electric and magnetic FFs.

Figures 6 and 7 show real and imaginary parts of TLFFs
for proton and neutron respectively, including (red band)
and not including (violet band) the relativistic correc-
tions, as given in Eq. (14). Such corrections become ef-
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Figure 5. The electric (upper panel) and magnetic (lower
panel) neutron FFs in the SL region compared with the
world data set, empty circles, from Ref. [7]. The red and
violet curves represent the predictions for the FFs obtained
including and not including relativistic corrections as given in
Eq. (13).

fective only above the physical threshold q2 = (2MN )2.
For all these quantities there are no available data and
moreover, even in case of an ideal experiment able to
exploit also polarization observables in annihilation pro-
cesses, only relative phases between GNE and GNM would
be accessible, besides their moduli. In Fig. 8 the relativ-
istically corrected, TL (solid band) and SL (dash-dot red
curve) moduli of the four nucleon FFs are represented
as functions of |q2|. Apart from the very first portion
of the unphysical region, 0 ≤ q2 ≤ 1 GeV2, where the
opening of the logarithmic branch cuts manifests itself
in bumpy behaviors, TLFFs are smooth decreasing func-
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Figure 6. Panels a and b: real and imaginary part of the
proton electric FF. Panel c and d: real and imaginary part of
the proton magnetic FF normalized to the magnetic moment
µp. The red dash-dotted line indicates the physical threshold
q2phys = (2MN )2. The bands, red and violet include and not
include relativistic corrections respectively, are given by the
combination of the curves obtained by considering two differ-
ent discretization procedures (see text).
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Figure 7. Panels a and b: real and imaginary part of the
neutron electric FF. Panel c and d: real and imaginary part of
the neutron magnetic FF normalized to the magnetic moment
µn. The red dash-dotted line indicates the physical threshold
q2phys = (2MN )2. Color scheme of Fig. 6.

tions of q2. Moreover, as it is shown in Fig. 8, TLFFs
are systematically larger than their SL counterparts at

|Q2| = |q2|. Such a discrepancy contrasts with the
Phragmén-Lindelöf theorem (see Sec. I C), stating that
SL and TL limits of a given FF should correspond. How-
ever, on the one hand, as already discussed, relativistic
corrections entail important modifications of the asymp-
totic behavior, and on the other hand, it seems plausible
to consider as center of mass of the SL-TL symmetry not
simply Q2 = 0 but rather a TL value, say q2

CM, lying
inside the unphysical region. In light of this we should
expected GNE,M (Q2) ' |GNE,M (q2 + 2q2

CM)| (with the ar-

gument Q2 we mean SLFF at |Q2| = |q2|) and using,
for instance, q2

CM = 1 GeV2, the SL-TL discrepancy can
be reduced. Electric and magnetic FFs of proton and
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Figure 8. Panels a and b: moduli of TL (green and blue
bands) and SL (dashed red curve) electric and normalized
magnetic FFs of the proton. Panels c and d: moduli of TL
(green and blue bands) and SL (dashed red curve) electric
and normalized magnetic FFs of the neutron. The symbol |q2|
stands for positive (TL) and negative (SL) q2. The red dash-
dotted line indicates the physical threshold q2phys = (2MN )2.
Only relativistically corrected values have been considered.

neutron are obtained using the combinations, given in
Eq. (5), of the isospin components, which are the Fourier
transforms, see Eq. (11), of the two profiles b(r) and t(r),
defined in terms of the same chiral angle F (r) through
the non-linear differential Eq. (12). It follows that, FFs
are all non-trivially interconnected. Moreover, as given in
Eq. (4), GNE and GNM are also linearly related to the Dirac
and Pauli FFs, in such a way that, assuming no singular-
ity at the physical threshold q2

phys = (2MN )2 for FN1 and

FN2 , the electric and magnetic FFs of each nucleon must
coincide at such a q2 value. As explained in Sec. I C, the
identity GNE (4M2

N ) = GNM (4M2
N ) implies (it is a sufficient

condition for) isotropy at the production threshold, i.e.,
the differential cross section for e+e− → NN in the e+e−
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center of mass frame,

dσNN
d cos θ

=
πα2

2q2

√
1− 4M2

N

q2

{
[
1 + cos2(θ)

] ∣∣GNM (q2)
∣∣2

+
4M2

N

q2
sin2(θ)

∣∣GNE (q2)
∣∣2
}
, (36)

loses its dependence on the scattering angle θ as q2 →
(q2

phys)
+. This also means that, even though parity con-

servation allows S and D-wave for the NN system, at
the production threshold only the S-wave can contrib-
ute. So that, by reversing the argument, the violation of
the identity4 GNE (4M2

N ) = GNM (4M2
N ) would imply an-

isotropy, i.e., the presence of a D-wave contribution also
at threshold or, equivalently, the presence of singularit-
ies in the Born amplitude. Figure 9 shows a comparison
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Figure 9. Panels a and b: real and imaginary part of electric
(green band) and magnetic (blue band) FFs of the proton.
Panels c and d: real and imaginary part of electric (green
band) and magnetic (blue band) FFs of the neutron. The
red dash-dotted line indicates the physical threshold q2phys =

(2MN )2.

between real and imaginary parts of electric and mag-
netic FFs for proton and neutron, in the region of q2

across the physical threshold q2
phys (vertical line). In or-

der to verify the equality GNE (4M2
N ) = GNM (4M2

N ), the
two pairs of real parts, as well as the two of pairs of
imaginary parts, would coincide at the threshold. Since

4 Being TLFFs complex functions of q2, the equality GNE (4M2
N ) =

GNM (4M2
N ) is equivalent to two independent identities for the real

and the imaginary parts.

no one of these identities is verified, there is no coincid-
ence between electric and magnetic FFs at the production
threshold (see next section for a detailed discussion).
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Figure 10. Moduli of the electric (blue band) and magnetic
(green band) FFs of the proton (upper panel) and neutron
(lower panel). The red dash-dotted line indicates the physical
threshold q2 = (2MN )2.

It is interesting to notice that the differences among real
and imaginary parts at the threshold are partially com-
pensated when moduli are taken into account, as shown
in Fig. 10. Nevertheless, there is isotropy-violation at
the threshold q2 = q2

phys as it is shown in Fig. 11, where,
in the upper panels, are reported moduli of the S-wave
and D-wave, proton and neutron FFs which are defined
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in terms of Sachs FFs as

GNS (q2) =
2
√
q2/(4M2

N )GNM (q2) +GNE (q2)

3
,

GND(q2) =

√
q2/(4M2

N )GNM (q2)−GNE (q2)

3
.
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Figure 11. Panel a: moduli of the S-wave (yellow band) and
D-wave (grey band) proton FFs. Panel b: moduli of the S-
wave (yellow band) and D-wave (grey band) neutron FFs.
Panel c: moduli of the ratios of D-wave and S-wave FFs of pro-
ton (violet band) and neutron (orange band). The red dash-
dotted line indicates the physical threshold q2phys = (2MN )2.

The lower panel of Fig. 11 shows the relative contribu-
tion, in modulus, of the D-wave with respect to the S-
wave FF. It turns out that, in case of the neutron (orange
band), the isotropy-violation is stronger, indeed the D-
wave is close to the S-wave contribution, in the region
around the threshold q2

phys = 4M2
N , in particular:

|GnD(4M2
N )|/|GnS(4M2

N )| ' 0.9 .

In the proton case, instead, as shown by the violet band
on the lower panel of Fig. 11, is the S-wave that gives the
main contribution, at the threshold:

|GpD(4M2
N )|/|GpS(4M2

N )| ' 0.4 .

Finally to have a comparison with data in the TL region,
we consider the so called effective FF, GNeff(q2), corres-
ponding to the useful working hypothesis of a unique
TLFF, that is: |GNE (q2)| = |GNM (q2)| ≡ GNeff(q2). Its ex-
pression in terms of the Sachs FFs follows by writing the
e+e− → NN total cross section, obtained from Eq. (36),

as

σNN =σPL ·
[
GNeff(q2)

]2
(37)

=
4πα2

3q2

√
1− 4M2

N

q2

[
∣∣GNM (q2)

∣∣2+ 2M2
N

q2

∣∣GNE (q2)
∣∣2
]
,

where σPL represents the cross section in case of point-
like fermions in the final state, which is obtained by put-
ting GNE = GNM ≡ 1 in the last expression of Eq. (37). It
follows that the effective FF is

GNeff(q2)=

√
σNN
σPL

=

√
q2
∣∣GNM (q2)

∣∣2 + 2M2
N

∣∣GNE (q2)
∣∣2

q2 + 2M2
N

. (38)

Figure 12 shows the results for the proton (upper panel)
and the neutron (lower panel) effective FFs together with
all the available data. In case of the proton the predic-
tions, in particular the relativistic-uncorrected one, de-
scribe quite well the data in the high momentum trans-
fer region, from q2 ' 7 GeV2 on, while they fail in re-
producing the experimental Gpeff at lower q2, close to
the physical threshold. Concerning the neutron effective
FF, lower panel of Fig. 12, the predicted behavior does
not agree with the available data that, however, cover
only the near-threshold region. Finally, Fig. 13 shows
the modulus of the ratio electric to magnetic proton FF
in comparison with the data. The isotropy-violation is
manifest, having at the threshold a non-unitary value.
The agreement with data, that favor a constant behavior
at high q2, is quite poor, because, both results, corrected
and uncorrected, have an increasing behavior, almost lin-
ear in q2. This is a consequence of the different high-q2

behaviors predicted forGpE(q2) andGpM (q2), both, in case

of uncorrected results, where it is found GpE(q2) ∝
(
q2
)−2

and GpM (q2) ∝
(
q2
)−3

, see Eqs. (E.25) and (E.28), and
in case of the relativistic predictions, given in Eqs. (14),

where GpE(q2) ∝ [constant] and GpM (q2) ∝
(
q2
)−1

.
It is just such a failure in predicting the perturbative
QCD power-law, see Sec. II D, that precludes the pos-
sibility of drawing any conclusion about the asymptotic
regions.

D. Isotropy at the physical threshold

Following the treatment given in Sec. I C, isotropy
at the production threshold manifests itself through the
identity

GNE (4M2
N ) = GNM (4M2

N ) , (39)

for proton, N = p, and neutron, N = n. Moreover,
being the Sachs FFs (independent) linear combinations
of the isospin components, i.e., Gp,nE,M (q2) = GSE,M (q2)±
GVE,M (q2), the identity of Eq. (39) is equivalent to

GS,VE (4M2
N ) = GS,VM (4M2

N ) . (40)
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Figure 12. Upper panel: effective FF of the proton. Lower
panel: effective neutron FF. Red and violet bands repres-
ent the relativistically corrected and the uncorrected values,
respectively. The red dash-dotted line indicates the physical
threshold q2phys = (2MN )2 and the empty points are the world
data sets form Ref. [8] and references therein.

As already discussed in Sec. II C, the combination of
such isospin components, that represent our primary out-
comes, to obtain proton and neutron Sachs FFs, has to
be performed with some care due to the different orders
in 1/Nc expansion in which they are computed. In par-
ticular, from the definitions of Eq. (11) and having that
both, the mass M and the moment of inertia Λ areO[Nc],
we get

GSE = O
[
N0
c

]
, GSM = O

[
N0
c

]
,

GVE = O
[
N−1
c

]
, GVM = O [Nc] .
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Figure 13. Modulus of the ratio electric to magnetic pro-
ton FF, red and violet bands represent predictions with and
without relativistic corrections. Two incompatible sets of
data are shown: the circles are from the BaBar Collabora-
tion [45] and the squares from the Lear Collaboration [46].
The red dash-dotted line indicates the physical threshold
q2phys = (2MN )2.

It follows that the more reliable test bed, as necessary
condition for the isotropy hypothesis, is the isoscalar
identity of Eq. (40). In other words, the violation of such
an identity would imply anisotropy. Figure 14 shows real
and imaginary parts of the four isospin components of
the electric and magnetic FFs in the TL region, across
the physical threshold. In every instance, and hence also
for the isoscalar FFs, figs. 14a and 14b, the identity is
violated, i.e., the curves do not cross each other at the
threshold, which is indicated by the vertical red line.
Let us consider in more detail the constraints imposed
by the isoscalar equation. The TL expression of GSM (q2)
is obtained by following the procedure, described in C,
that has been used to compute the expression of GSE(q2)
given in Eq. (C.11). In particular, considering the same
symbols, it reads

GSM (q2)=−πM
Λq3

m∑

j=1

Re
{
R̃zjH [(−q − 3Mπ)zj ] (zj+1)

+ R̃zjH [(q − 3Mπ)zj ] (zj − 1)
}

+
2iπ2M

Λq3

h∑

j=1

θ(q − 3Mπ)θ(−xj)

×
[
R̃cje

(q−3Mπ)cjθ(yj)(cj + 1)

−R̃∗cje(q−3Mπ)c∗j θ(−yj)(c∗j − 1)
]
.



18

-0.2

-0.1

0

0.1

0.2

5 10 15 20

q2 (GeV2)

R
e[
G

S E
(q

2
)]
,
R
e[
G

S M
(q

2
)]

a

-0.2

-0.1

0

0.1

0.2

5 10 15 20

q2 (GeV2)

Im
[G

S E
(q

2
)]
,
Im

[G
S M
(q

2
)]

b

-0.5

-0.25

0

0.25

0.5

5 10 15 20

q2 (GeV2)

R
e[
G

V E
(q

2
)]
,
R
e[
G

V M
(q

2
)]

c

-0.5

-0.25

0

0.25

0.5

5 10 15 20

q2 (GeV2)

Im
[G

V E
(q

2
)]
,
Im

[G
V M
(q

2
)]

d

.

Figure 14. Panels a and b: real and imaginary part of
the isoscalar electric (blue band) and magnetic (green band)
FFs. Panels c and d: real and imaginary part of the isov-
ector magnetic (blue band) and magnetic (green band) FFs.
The red dash-dotted line indicates the physical threshold
q2phys = (2MN )2.

At the physical threshold, q = 2MN , the isoscalar mag-
netic FF is

GSM (4M2
N )=− π

8M2
NΛ

×
m∑

j=1

Re
{
R̃zjH [(−2MN− 3Mπ)zj ](1+zj)

−R̃zjH [(2MN − 3Mπ)zj ] (1− zj)
}

+
iπ2

4M2
NΛ

h∑

j=1

θ(−xj)

×
[
R̃cje

(2MN−3Mπ)cjθ(yj)(1 + cj)

+R̃∗cje
(2MN−3Mπ)c∗j θ(−yj)(1− c∗j )

]
,

while the electric one, from Eq. (C.11),

GSE(4M2
N )=− π

2MN

h∑

j=1

Re
{
R̃zjH [(−2MN − 3Mπ)zj ]

−R̃zjH [(2MN − 3Mπ)zj ]
}

+
iπ2

MN

h∑

j=1

θ(−xj)
[
R̃cje

(2MN−3Mπ)cjθ(yj)

+R̃∗cje
(2MN−3Mπ)c∗j θ(−yj)

]
.

It follows that the isotropy condition of Eq. (40) becomes

m∑

j=1

Re
{
R̃zjH [(−2MN − 3Mπ)zj ] (1+zj+4MNΛ)

−R̃zjH [(2MN − 3Mπ)zj ] (1− zj + 4MNΛ)
}

=

2iπ

h∑

j=1

θ(−xj)
[
R̃cje

(2MN−3Mπ)cjθ(yj)(1+cj+4MNΛ)

+R̃∗cje
(2MN−3Mπ)c∗j θ(−yj)(1−c∗j+4MNΛ)

]
. (41)

It can be interpreted as an implicit relation among poles
(they appear in the argument of the H(z) functions,
defined in B) and the corresponding residues of the func-
tion bfit(r), that parametrizes the profile function b(r),
see Eq. (18).
It is a quite hard task to obtain the identity of Eq. (41)
from the beginning, i.e., as a condition which is auto-
matically fulfilled by any parametrization. In fact, the
possibility of using the definition of Eq. (12) to relate dir-
ectly the positions of the b(r) poles to the properties of
the chiral angle F (r), is prevented by the fact that such a
relation holds only for real and positive values of r, while
the poles zj , j = 1, . . . ,m, lie in the r complex plane
outside the positive real axis. In other words, by solving
numerically the Euler-Lagrange equation of the Skyrme
model, no information about the complex structure of
the chiral angle F (r) can be accessed for r 6∈ (0,∞).
Following the definition given in Eq. (12), simple poles
of b(r) can be related to branch points of the chiral angle
F (r). By considering Eqs. (18) and (19), and assuming
the coincidence between fit function and b(r), we have

b(r) = bfit(r)=−F
′(r)

2π2

sin2 [F (r)]

r2

=e−3Mπr
m∑

k=1

Rk
r − zk

.

Such a differential equation for F (r) can be integrated
and, by using the condition

∑m
k=1Rk = 0, it is

∫ F (r)

F (0)=π

sin2
(
F̃
)
dF̃ =−2π2

m∑

k=1

Rk

∫ r

0

r′2e−3Mπr
′

r′ − zk
dr′

2F (r)− sin [2F (r)]=−8π2
m∑

k=1

Rkzk

{
1− e−3Mπr

3Mπ

+ zke
−3Mπzk

[
Ei
(
3Mπ(zk − r)

)

− Ei (3Mπzk)
]}

, (42)
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where Ei(z) is the multi-valued exponential integral func-
tion5, that has branch points in z = 0 and z = ∞.
As a consequence, the function in the right-hand-side
of Eq. (42), besides the one at infinity, has m branch
points in each r = zk, with k = 1, 2, . . . ,m. A similar
complex structure is expected for the chiral angle F (r),
even though no explicit solution can be obtained due to
the implicit nature of the left-hand-side expression. Fig-
ure 16 shows the analyticity domain of F (r) in the case
where the branch cut of Ei(z) is placed over the posit-
ive real axis. The cuts are obtained by adding to the
negative real axis (negative because r appears in the ar-
gument of Ei(z) with a minus sign) the points of the set
{zk}mk=1, that in the figure are organized in pairs of com-
plex conjugates {cj , c∗j}hj=1 and real values {rj}lj=1, with
m = l + 2h, as in C.
It is interesting to notice that, not only the behavior at
the physical threshold, but the entire structure of TLFFs
is intimately connected with the analytic extension of the
chiral phase F (r) outside the positive real axis, which
represents its natural domain. Moreover such an exten-
sion drastically changes the character of this function,
because, by acquiring a non-vanishing imaginary part, it
looses its “phase” nature.

E. The logarithmic nature of branch cuts in the q2

complex plane

Despite the power of the procedure to reproduce spon-
taneously the expected analyticity domain and in partic-
ular, the presence of branch cuts along the positive real
axis of the q2 complex plane, the character of these dis-
continuities does not fulfill the theoretical requirements.

Indeed, as already pointed out, only logarithmic
branch cuts can be generated, while the opening of
the n-pion intermediate state would manifest themselves
as square-root discontinuities, originating at the corres-
ponding production thresholds, q2 = (nMπ)

2
, while log-

arithmic branch cuts are expected only in the unphysical
Riemann sheets.

On the other hands, however, the logarithmic branch
cuts have infinite order, i.e., they generate an infinite
tower of unphysical Riemann sheets extending upward
and downward. It follows that any of them does have an
effect on the first and physical Riemann sheet.

Moreover, being the logarithmic ones the only kind of
branch cuts that can be reproduced by our model, they
can be interpreted as effective cuts, which account for all
the discontinuities due to the opening of all the interme-
diate channels as described by the optical theorem.

5 The exponential integral function is defined as [43]

Ei(z) = −
∫ ∞
−z

e−t

t
dt ,

the integration is in principal value for real and positive z.
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Figure 15. The imaginary parts of the electric, upper panel,
and magnetic, lower panel, proton (violet band) and neutron
(orange band) FFs. The red dash-dotted lines indicates, from
the left to the right: the theoretical thresholds q2th = (2Mπ)2,
q′2th = (3Mπ)2, q′′2th = (4Mπ)2 and the physical one q2phys =

(2MN )2.

Figure 15 shows the imaginary parts of the electric and
magnetic FFs of the proton and the neutron, over the
whole unphysical region, in particular at 0 ≤ q2 ≤ 4
GeV2. There are three theoretical thresholds correspond-
ing to the opening of two, three and four pion interme-
diate states. In particular those at q2

th = (2Mπ)2 and
q′′2th = (4Mπ)2 are related to the isovector amplitude, see
Eq. (30), while q′2th = (3Mπ)2 to the isoscalar one. These
amplitudes account for the, respectively for the isospin-
one and isospin-zero contributions.

Such contributions, especially the vector meson reson-
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ances lying in the unphysical region, that in other mod-
els are included in the FFs by hand, described by Breit-
Wigner formulae, see, e.g., Ref. [18, 47–49] and references
therein, can not be reproduced by our model. Indeed, as
a basic version of the Skyrme model, does not entail vec-
tor meson fields. Nevertheless, their mean effect is actu-
ally accounted for by a kind of duality phenomenon [50],
as proven by the fair agreement with data of the com-
puted FFs in both SL and TL regions. In particular,
the magnitude of these contributions is related to the
discontinuity of the imaginary parts at the theoretical
thresholds, see Fig. 15, which, by their turn, depend on
the chiral phase F (r), namely on its poles. This can be
clearly seen by looking the expression of the imaginary
part of GSE given in Eq. (29).

IV. CONCLUSIONS

A procedure to compute nucleon TLFFs, starting from
integral representations of their SL counterparts, has
been defined. Such a procedure consists in modeling the
numerical solutions obtained for the nucleon electromag-
netic currents in the framework of a generic model of nuc-
leons, explicit calculations have been done in the case of
the Skyrme model, with functions, whose Fourier trans-
forms, not only, are well defined, but they also embody
the theoretical features required for the FFs by first prin-
ciples, i.e., analyticity and unitarity.
The general form, for the functions of the radius r, that
describe the numerical solutions, is conceived to have
automatically the expected behaviors in the origin, r = 0,
and in the limit r →∞.
The results for the nucleon FFs are analytic functions
of Q2 or equivalently q2, which are real in the whole SL
region and in the small portion of the TL region below
the theoretical threshold q2

th = (2Mπ)2, while are com-
plex elsewhere. Moreover, they also have the branch cut
discontinuity

(
(2Mπ)2,∞

)
, in the q2 complex plane, as

expected by assuming analyticity and unitarity.
Once the analytic expressions for all nucleon FFs in the
whole q2 complex plane are known, any quantity can be
predicted without any further assumption or restriction.
Indeed, the free parameters of the fitting functions can
be fixed at any desired degree of precision, since the nu-
merical solutions can be known with an arbitrarily high
accuracy.
It is important to stress that TLFFs are purely relativ-
istic quantities, they can be defined only in the frame-
work of the Quantum Electro-Dynamics (QED) and de-
scribe the vertex γNN , where a virtual photon produces
a nucleon-antinucleon pair. In light of that, the only
definition of an analytic continuation in TL q2 represents
by itself the first relativistic extension of the starting FF
expressions given in Eq. (11). In spite of that, since such
original FF expressions have been obtained for static nuc-
leons, i.e., nucleons in their rest frame, a procedure has to
be defined to extend FFs even at relativistic momenta. In

Re(r)

Im(r)

c1

c∗1

c2

c∗2

c3

c∗3

· · ·

· · ·

ch

c∗h

r1r2· · ·rl

Figure 16. The analyticity domain of the chiral angle F (r).
The blue and red disks indicate, respectively, real and non-
real branch points and the shaded bands the corresponding
branch cuts, that have been chosen with constant imaginary
parts, i.e., parallel to the real axis. Each branch point for F (r)
corresponds to a simple pole for the profile function b(r), as
a consequence of the definition given in Eq. (12).

the SL region we have adopted the approach described in
Ref. [41] and the resulting, relativistically corrected FFs
are shown in Eq. (13). For TLFFs a modified methodo-
logy [19] has to be used to account for the behavior in the
unphysical region, where FFs remain unchanged, and at
the production threshold q2 = q2

phys, see Eq. (14). Even
though such a procedure does not reproduce the asymp-
totic behaviors expected from perturbative QCD, as it
is also discussed in Ref. [41], the relativistic corrections,
in the case of the Skyrme model, improve the agreement
with the dipole FF.
The predictions, obtained in such a particular case, i.e.,
by considering the Skyrme model, have been compared
with all the available data in SL and TL region. The fair
agreement that is obtained, in most of the cases, in not
negligible q2 intervals, appears as a quite encouraging
achievement, since these results are based on a micro-
scopic model which contains only pion fields and has no
free parameters.
Particular attention has been paid to the TL physical-
threshold behavior, to verify if the non-trivial relation-
ship, that exists between the predictions for the electric
and magnetic FFs, reproduces the identity GNE (4M2

N ) =
GNM (4M2

N ), expected in case of isotropy and non-singular
Dirac and Pauli FFs. We observed that the complex
equality is not fulfilled, i.e., the two independent equa-
tions for the real and imaginary parts are not verified.
By considering the moduli, their differences are partially
compensated, nevertheless the isotropy violation at the
production threshold remains an important effect.
In the TL region, especially nearby the threshold, the
obtained values of the effective proton and neutron FFs
are too small with respect to the data, while, at high
q2, especially the relativistic-uncorrected ones, appear in
better agreement with data. However, as already stated
in Sec. II A, the Skyrme model represents an effective ap-
proximation of QCD at low energy so that, pushing its
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predictability at high-q2 goes beyond the aim of model.
Moreover, even the failure of relativistic corrections is ex-
pected, because it is well known that such corrections do
not reproduce the perturbative QCD power law of FFs,
which describes quite well the data.
Since the present model contains only pions, the most
natural improvement would be the inclusion of vector
mesons ρ and ω as gauge bosons of a hidden sym-
metry [51]. This will entail additional degrees of freedom,
i.e., further profile functions in terms of which paramet-
rize the nucleon electromagnetic currents and hence the
FFs.
Finally, this procedure appears quite suitable to be ap-
plied to any other effective model of low-energy QCD,
which allows to compute nucleon electromagnetic cur-
rents and then SLFFs as their Fourier transforms.

APPENDICES

A. Multipoint Padé approximants

The Padé rational approximation technique [52]
provides a powerful mathematical tool to define analytic
expressions for the densities b(r) and t(r), that are known
only numerically in terms of the chiral angle F (r) accord-
ing to Eq. (12).
The Padé approximation is usually exploited to describe
a function, analytic in a neighborhood of the origin, by
means of a ratio of polynomials of arbitrary degrees. The
polynomials are completely determined by requiring that
the Taylor series in the origin of the difference between
the function and the ratio of polynomials has to start
from the highest power possible, once the degrees of the
polynomials have been fixed. More in detail, given a func-
tion f(z), analytic in the origin, and having the Taylor
series

f(z) =

∞∑

k=0

fk z
k , |z| < ρ ,

where ρ is a finite convergence radius, we define the ra-
tional function

Up(z)

Dq(z)
=

∑p
i=0 uiz

i

∑q
j=0 djz

j
,

with (p, q) ∈ N2 and updq 6= 0, so that

Up(z)

Dq(z)
=

p+q∑

k=0

fk z
k +O

(
zp+q+1

)
. (A.1)

The rational function Up(z)/Dq(z) defined through the
relation of Eq. (A.1) is called Padé approximant (PA) to
f(z) of orders (p, q). It has (p + q + 1) free paramet-
ers because, without loss of generality, it has been set
Dq(0) = d0 = 1, i.e., the value of PA in the origin is u0.
The only numerical knowledge of profile functions b(r)

and t(r), and hence the impossibility to obtain their de-
rivatives, prevents the possibility of using the standard
PA procedure, so that, to obtain analytic parameteriz-
ations, it has been exploited a more general technique,
called multipoint Padé approximation [52]. It allows to
determine the ratio of polynomials that interpolates val-
ues and derivatives of a given function at a finite number
of points {zk}Nk=1, with N ∈ N. It essentially consists in
finding a PA fulfilling the condition of Eq. (A.1) simul-
taneously at all the points of the set {zk}Nk=1.
Given a function f(z), analytic in an open and connec-
ted set D, so that {zk}Nk=1 ⊂ D, a multipoint Padé ap-
proximant of f(z), with respect to the set of points of
{zk}Nk=1, is the ratio of polynomials, Un(z)/Dm(z) of de-
grees (n,m) ∈ N2, whose (n+m+ 1) coefficients are de-
termined by requiring that, at each point zk, both Taylor
series of Un(z)/Dm(z) and f(z) must coincide up to the
order µk − 1 ≥ 0, with the condition

N∑

k=1

µk = n+m+ 1 .

It follows that, ∀ k ∈ {1, 2, . . . , N},

Un(z)

Dm(z)
=

µk−1∑

j=0

fk,j (z − zk)j +O [(z − zk)µk ] , (A.2)

where fk,j represents j-th coefficient of the f(z) Taylor
series, centered at zk, i.e.,

f(z) =

∞∑

j=0

fk,j (z − zk)j ,

{
∀ z : |z − zk| < ρk

∀ k ∈ {1, 2, . . . , N}
,

where zk ∈ D and, being D an open set, the convergence
radius ρk is not vanishing, i.e., ρk > 0.
The simple case n = 1, which consists in interpolating
the function f(z) and its derivatives at a single point,
reproduces the standard PA procedure.
We will consider the special case with µk = 1, ∀ k ∈
{1, 2, . . . , N}, the so-called Cauchy-Jacobi problem [52],
in which no derivatives are needed. The solution to
the Cauchy-Jacobi problem, in terms of determinants,
reads [52]

Un(z)

Dm(z)
=

det




g2m g2m−1 . . . gm
g2m−1 g2m−2 . . . gm−1

...
...

...
gm+1 gm . . . g1

tm(z) tm−1(z) . . . t0(z)




det




g2m g2m−1 . . . gm
g2m−1 g2m−2 . . . gm−1

...
...

...
gm+1 gm . . . g1

zm zm−1 . . . 1




, (A.3)

where the constant gk and the polynomial tk(z), of degree
N−1, depend on the coefficients fj0 = f(zj), i.e., the val-
ues of the function f(z) at each zj , with j ∈ {1, 2, . . . , N},
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and their expressions are




gk =

N∑

i=1

zk−1
i fi0

N∏

j=1

j 6=i

1

zi−zj
,

tk(z) =

N∑

i=1

zki fi0

N∏

j=1

j 6=i

z−zj
zi−zj

,

k ∈ {1, 2, . . . , 2m} .

1. Convergence of multipoint Padé approximants

Following Ref. [52], we define the sequence
{
z

(N)
k

}N+1

k=1
,

so that the interpolation points are zk → z
(N−1)
k , with

k ∈ {1, 2, . . . , N}. We define the point set E (in our
case E is the positive real axis, E = (0,∞)), so that its
complement KE in C, is connected, includes the point at
infinity and does not contain the points of the sequence{
z

(N)
k

}N+1

k=1
, as well as its limit value. Consider the se-

quence of functions
{
GN (z) =

1

n

N+1∑

k=1

ln
∣∣∣z − z(N)

k

∣∣∣
}∞

N=1

,

and let G(z) be the function to which the sequence con-
verges, i.e.,

lim
N→∞

GN (z) =G(z) .

The Saff’s theorem [52] states that: if the convergence is
uniform in each bounded and closed subset of KE , the
function G(z) defines the regions of convergence of the
multipoint PA as it follows: for a given σ > 0, we denote
with Eσ the interior of the curve Γσ = {z : G(z) =
ln(σ)}, so that it represents the boundary Γσ = ∂Eσ.
For any function f(z), meromorphic in Eσ, having a total
pole multiplicity m ∈ N, it holds

lim
N→∞

∥∥∥∥f −
Un
Dm

∥∥∥∥ = 0 , ∀ z ∈ Eε,with: ε < σ ,

where the ratio of polynomials UM (z)/DN (z) is the mul-
tipoint PA defined in Eq. (A.3), with matching points{
z

(n+m)
k

}n+m+1

k=1
.

In our case the function has a well known asymptotic
behavior, i.e.,

f(z) = O(z−h) , z →∞ ,

with h ∈ N, this implies that the degrees of polynomials
are connected by the relation

m = n+ h .

So that, by augmenting M , the degrees of both polyno-
mials and hence the number of poles increase linearly.
The convergence condition becomes

lim
n→∞

∥∥∥∥f −
Un
Dn+h

∥∥∥∥ = 0 , (A.4)

where the limit is computed on n after the substitution
N = 2n+ h+ 1 with constant h.

2. Stability of multipoint Padé approximants

Padé approximants have been used to approximate the
three functions

T0(r) = e3Mπrb(r) ,

T1(r) = e2Mπrt1(r) , (A.5)

T2(r) = e4Mπrt2(r) ,

where

t1(r) =
F 2
π

4

sin2 [F (r)]

r2

t2(r) =
1

g2

sin2 [F (r)]

r2

(
[F ′(r)]

2
+

sin2 [F (r)]

r2

)
,

are the two components of the density t(r), i.e., t(r) =
t1(r)+t2(r). The profiles b(r) and t(r), whose definitions
in terms of the chiral angle F (r) are given in Eq. (12),
are known only numerically. Since, as already mentioned
in Sec. A, these functions have well known power-law
asymptotic behaviors, in order to determine the corres-
ponding PAs it needs, first of all, a criterion to establish
the sequence of interpolation points and then the order of
the polynomial at the numerator, n in Eq. (A.4). The or-
der of the polynomial at the denominator is consequently
determined by the known power-law asymptotic beha-
vior. For the three functions of Eq. (A.5) we have

h0 = 5 , h1 = 4 , h2 = 6 .

The goodness of the approximation is measured by the
norm of the difference the normalized function and the
PA, i.e.,

∆nj ≡
∥∥∥∥∥
Tj
‖Tj‖

− Unj/Dnj+hj∥∥Unj/Dnj+hj

∥∥

∥∥∥∥∥

=



∫ rmax

0

∣∣∣∣∣
Tj(r)

‖Tj‖
− Unj (r)/Dnj+hj (r)∥∥Unj/Dnj+hj

∥∥

∣∣∣∣∣

2

dr




1/2

,

with j = 0, 1, 2 and where rmax = 8 fm is the upper limit
that has been used in the numerical procedure to solve
the differential equation that gives the chiral angle F (r),
and hence it represents the maximum value of r up to
which the numerical solution can be considered reliable.
The definition of the norm, ‖·‖, that corresponds to that
of the vector space of square Lebesgue integrable func-
tions in the interval (0, rmax), i.e., L2(0, rmax), is given in
the expression of ∆nj of the above equation.
By studying the evolution of ∆nj as a function of nj ∈ N,
j = 0, 1, 2, and the texture of zeros and poles of the PA
of the functions given in Eq. (A.5), the best values for
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the three parameter n0, n1 and n2 have been determined
as

n̄0 = 6 , n̄1 = 7 , n̄2 = 5 .

The corresponding norms ∆nj , normalized to the interval
width in order to have adimensional quantities, are

∆n̄0

rmax
=2.51 · 10−13 ,

∆n̄1

rmax
=1.25 · 10−9 ,

∆n̄2

rmax
=3.24 · 10−10 .

Their smallness and stability for polynomial degrees nj ≥
n̄j , j = 0, 1, 2, demonstrate the goodness of the PA.
The key features of the procedure, which follows that
outlined in Ref. [53], are listed below, where the index
j = 0, 1, 2 is used to label the three cases corresponding
to the three functions of Eq. (A.5).

• The coefficients of the PA Unj (r)/Dnj+hj (r) are
adimensional quantities, i.e., it is understood that
the coefficient of the power rn, n ∈ N, is divided by
rn0 , with r0 = 1 fm.

• The PA Unj (r)/Dnj+hj (r), j = 0, 1, 2, has nj zeros
and nj + hj poles that can be either single real
numbers or pairs of complex conjugate.

• The set of points
{
r

(j)
k

}Nj
k=1

⊂ (0, rmax) needed

to solve the Cauchy-Jacobi problem and find the
Nj = 2nj + hj + 1 coefficients of the j-th PA, as in
Eq. (A.3) with n = nj and m = nj + hj , has been
optimized by minimizing the norm ∆nj . In order
to introduce a systematical error we used two dif-
ferent sets of interpolation points, as mentioned in
Sec. III C.

• The j-th PA can effectively mimic the Tj(r) func-
tion of Eq. (A.5) by generating analytic defects, i.e.,
the poles. Such poles can be classified as transient
and physical. The first ones form a set of unstable
artificial poles, their positions undergo large vari-
ations when the polynomial degree increases. The
physical ones, instead, are those effective poles that
multipoint PAs develop in the r complex plane,
away from the positive real axis (0,∞), to repro-
duce the behavior of the true function in the phys-
ical domain, which is indeed the positive r real axis.
The divergence of PAs in the neighborhood of poles
does not represent a lack of the procedure because
the true function is not defined there. The large
values of PAs close to the physical poles, which lie
far away from the positive real axis, result in only
small corrections in the physical domain.

• The phenomenon of the insurgence of transient
poles from a certain value of the polynomial de-
gree ñj for the j-th PA can be used to select the

best value of the degree itself. Indeed, such a value
determines to the number of physical poles n̄j +hj ,
i.e., the minimum number of poles that the j-th PA
needs in order to reproduce the Tj(r) function in
the physical region.

• The transient nature of a pole is proven by the fact
that it always appears together with a correspond-
ing zero, so that they cancel out by leaving the PA
unchanged.

B. The integral representation of E1(z)

The function H(αβ) is defined through the integral
representation

H(αβ) ≡
∫ ∞

0

e−αr

r + β
dr ,

that, with α, β ∈ C, converges if Re(α) > 0 and β 6∈
(0,∞). Such an integral representation and hence the
function H(αβ) depend on α and β only through their
product, indeed, by putting w = α(r + β) and z = αβ,
we have

H(z) = ez
∫ ∞

z

e−w

w
dw ≡ ezE1(z) ,

where E1(z) is the exponential integral (ExpIntegral)
function [43]. A series representation of E1(z) can be
obtained by integrating the well known expansion in the
origin of its first derivative, i.e.,

dE1

dz
= −e

−z

z
= −1

z

∞∑

k=0

(−z)k
k!

= −1

z
−
∞∑

k=1

(−z)k−1

k!
.

Indeed, since the series converges uniformly, it can be
integrated term by term as

E1(z) = C − ln(z)−
∞∑

k=1

(−z)k
kk!

,

where C is the integration constant whose value is ob-
tained by considering the limit z → 0, as

C= lim
z→0

[
E1(z) + ln(z) +

∞∑

k=1

(−z)k
kk!

]

= lim
z→0

[∫ ∞

z

e−w

w
dw + ln(z)

]
= −γ ,

γ is the Euler-Mascheroni constant [43]. In light of these
results, the function H(z) has the representation

H(z)=ez

[
−γ − ln(z)−

∞∑

k=1

(−z)k
kk!

]

=ez

[
−γ − ln(z) +

∞∑

k=1

(−1)k+1(z)k

kk!

]
.
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It possesses the same properties of E1(z), i.e., it is ana-
lytic in the z complex plane with the cut (−∞, 0), for
| arg(z)| < π. It is real for z ∈ (0,∞), which is the in-
terception of its analyticity domain and the real axis, so
that it fulfills the Schwarz reflection principle

H(z∗) = H∗(z) , ∀ z 6∈ (−∞, 0) .

C. The branch cut in the q2 complex plane

To study how the logarithmic cut of E1(z), in the vari-
able z, evolves in the variable Q, see Eq. (25), we consider
the following cases

z± = (±iQ− 3Mπ)zj , with: zj = xj + i yj ,

where xj and yj are the real and the imaginary part of the
pole zj . The variable Q “feels” the cut when z± crosses
the negative real axis, i.e., when Im(z±) changes sign and
Re(z±) < 0. The value Q0 at which the imaginary part
of z± vanishes and the corresponding real part, are given
by

Q0 = ±3Mπyj
xj

,

Re(z0
±) = z0

± = −
3Mπ(x2

j + y2
j )

xj
= −3Mπ|zj |2

xj
,
(C.6)

where z0
± ∈ R stands for the value of z± corresponding

to Q = Q0.
From Eq. (C.6) follows that: Re(z0

±) < 0 when xj > 0
hence, having Q > 0 by definition, there must be yj >
0 or yj < 0 depending on ±iQ. Moreover, if yj > 0
(yj < 0) the crossing is from above (below) the cut and
so it requires the imaginary part to be increased by −2π
(+2π), having E1(z) a − log(z) term, see Eq. (24).
Finally, all these considerations can be summarized in
the compact expression

ESL (z±) = E1 (z±)± 2πi θ

(
Q∓3Mπ

yj
xj

)
θ(xj) θ(±yj) ,

(C.7)

where the Heaviside θ functions select the above con-
ditions and the symbol ESL stands for an ExpIntegral
corrected in case of SL momenta, i.e., Q ∈ (0,∞).
A similar study can be done also in the TL region. How-
ever, as already discussed, in such a region FF values, at
a given q2 above the threshold ((3Mπ)2 and (2Mπ)2 for
isoscalar and isovector FFs respectively), are obtained as
the limits

G(q2) = lim
ε→0+

G(q2 + i ε) , q2 ≥ (3− I)2M2
π ,

where the symbol G stands for one the four nucleon Sachs
FFs and I = 0, 1 is the isospin. It follows that a generic
value of q > (3−I)Mπ, is understood as q+ iη, with η →
0+. To obtain TLFFs from the expression of Eq. (25), we

have to make the substitution Q→ i(q + iη), and hence
the arguments of the ExpIntegral functions become

(±iQ− 3Mπ)zj→(∓q − 3Mπ ∓ iη)zj

= (∓q − 3Mπ)xj±ηyj
−i [(3Mπ±q)yj±ηxj ] .

The imaginary part, being q and η positive, vanishes only
in the case of “lower sign”, at

q = q0 ≡ 3Mπ − η
xj
yj
. (C.8)

Since in case of GSE , q > 3Mπ, the ratio xj/yj must be
negative, the pole zj lies either in the second or in the
fourth quarter of the z complex plane. The corresponding
real part is

Re[(q0 − 3Mπ + iη)zj ]=(q0 − 3Mπ)xj − ηyj

=−η |zj |
2

yj
.

A correction has to be considered only if such a real part
is negative, i.e., yj > 0 and, since xj and yj have opposite
sign, the only possibility for a pole to generate a correc-
tion in the TL region is that it must lie in the second
quarter. When q → q+

0 , of Eq. (C.8), the imaginary part

Im[(q − 3Mπ + iη)zj ]=−(3Mπ − q)yj + ηxj

'(q − 3Mπ)yj

vanishes as limq→3M+
π

(q − 3Mπ)yj = 0+ because yj > 0.
So, following the previous argument, the imaginary part
of the ExpIntegral will be increased by −2π, hence we
can define

ETL [(q − 3Mπ)zj ]=E1 [(q − 3Mπ)zj ] (C.9)

−2πiθ(q − 3Mπ)θ(−xj)θ(yj) .

These corrections are crucial because, as we will see in
more detail, they generate the desired complex structure
for the FFs.
Having real polynomials with only simple zeros, the poles
of bfit(r), {zj}mj=1, can come either as single real neg-

ative values {rj}lj=1, or in pairs of complex conjugates

{cj , c∗j}hj=1, and hence {zj}mj=1 = {rj}lj=1 ∪ {cj , c∗j}hj=1,
with: l + 2h = m. Moreover, from the definitions given
in Eqs. (20) and (22), the residues have the same prop-
erties of the corresponding poles, i.e.,

R̃rj ∈ R , j = 1, 2 . . . , l ,

R̃cj = R̃∗c∗j j = 1, 2, . . . , h .
(C.10)

In light of this, using the function H(αβ) of Eq. (24), in
particular its property: H(z∗) = H∗(z) (Schwarz reflec-
tion principle) and including the branch cut corrections
of Eq. (C.7), the expression of GSE(Q) in the SL region,
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given in Eq. (25), can be simplified as

GSE(Q)=
2π

Q

l∑

j=1

R̃rj Im {H [(iQ− 3Mπ)rj ]}

+
2π

Q

h∑

j=1

Im
{
R̃cjH [(iQ− 3Mπ)cj ]

−R̃cjH [(iQ− 3Mπ)∗cj ]
}

+
4π2

Q

h∑

j=1

θ(xj)

×Re

[
θ

(
Q− 3Mπ

yj
xj

)
θ(yj)R̃cje

(iQ−3Mπ)cj

+ θ

(
Q+ 3Mπ

yj
xj

)
θ(−yj)R̃cje(−iQ−3Mπ)cj

]
.

The TL expression of Eq. (25), accounting for the cor-
rections of Eq. (C.9), becomes

GSE(iq)=−2π

q

h∑

j=1

Re
{
R̃cjH [(−q − 3Mπ)cj ] (C.11)

−R̃cjH [(q − 3Mπ)cj ]
}

−π
q

l∑

j=1

R̃rj

{
H [(−q − 3Mπ)rj ]

−H [(q − 3Mπ)rj ]
}

+
2iπ2

q

h∑

j=1

θ(q − 3Mπ)θ(−xj)

×
[
R̃cje

(q−3Mπ)cjθ(yj)+R̃∗cje
(q−3Mπ)c∗j θ(−yj)

]
.

While the SL GSE(Q) is real, GSE(iq), containing com-
pleteH functions (not only their real or imaginary parts),
could have a non-zero imaginary part.

D. Analyticity checks on the imaginary parts

Analyticity represents one of the load-bearing axes of
the procedure to such an extent that it has been con-
ceived in such a way that, by definition, all FF para-
meterizations are analytic functions of the squared four-
momentum transfer q2. Such a property of the paramet-
erizations has been implemented as an inescapable fea-
ture by requiring the validity of the integral representa-
tion of Eq. (6), i.e., the so-called, dispersion relations for
the imaginary part. In particular, in the case of the FF
GSE , that we treated extensively, it is self-evident that
its SL values given in Eq. (24) can be obtained as the
dispersion-relation integral of the TL imaginary part of
Eq. (28).
Nevertheless, consistency checks can be performed in or-
der to have further confirmations that any algebraic ma-
nipulation of the parameterizations, that have to carry

out to obtain the FFs, does not spoil analyticity. Par-
ticularly interesting are those consistency checks which
involve the imaginary parts, because they play a pivotal
role in the analytic continuation procedure based on dis-
persion relations.
The first two relationships, which allow to verify ana-
lyticity in connection with the structure of the Skyrme
model, can be derived by the representations of FFs as
Fourier transforms of the baryon and moment-of-inertia
radial densities b(r) and t(r) given in Eqs. (11), are

GSM (Q2)=−2MN

Λ

dGSE(Q2)

dQ2
,

GVE(Q2)=
1

MNΛ

(
3

2
+Q2 d

dQ2

)
GVM (Q2) .

These identities, that, even though have been obtained
for SL momenta, i.e., at q2 = −Q2 < 0, once the rep-
resentation is computed, can be extended at all values of
q2, must hold also for the imaginary parts. In particular,
in the time-like region, q2 > q2

theo, the imaginary parts
of the isoscalar and isovector electric and magnetic form
factors should verify the following relations

Im
(
GSM (q2)

)
=

2MN

Λ

dIm
(
GSE(q2)

)

dq2
,

Im
(
GVE(q2)

)
=

1

MNΛ

(
3

2
+ q2 d

dq2

)
Im
(
GVM (Q2)

)
.

(D.12)

Figure 17 shows as black empty squares the left-hand-
sides and as red disks the right-hand-sides of the first
identity of Eq. (D.12) in the upper panel, of the second
identity in the lower panel, respectively. Besides, the tiny
discrepancies for lower-q2 points, due to the limits of the
numerical computation of the derivatives, the almost per-
fect squares-disks superposition does prove the identities
of Eq. (D.12), and hence the complete implementation of
analyticity in the Skyrme model.
The second check does represent an even more severe
test of analyticity. Indeed, it consists in computing the
electric-charge and magnetization spatial densities dir-
ectly from the imaginary parts of the electric and mag-
netic FFs, i.e., from quantities that are defined in the
TL region. This is really interesting because it is only by
assuming analyticity that spatial densities can be com-
puted starting from quantities defined in the TL region
where their interpretation as Fourier transforms of such
spatial densities is no more valid.
The expressions for the spatial electric charge and mag-
netization densities follows from their definitions

ρE(r) =
1

2π2

∫ ∞

0

GE(−Q2)j0(Qr)Q2dQ ,

ρM (r) =
1

2π2

∫ ∞

0

GM (−Q2)j1(Qr)
Q

r
Q2dQ ,

(D.13)

in terms of Fourier transforms of the electric and mag-
netic FFs, that, in view of a variable substitution, have
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Figure 17. Upper panel: the empty squares represent the
imaginary part of the magnetic isoscalar FF, the red disks the
expression, proportional to the imaginary part of the electric
isoscalar FF at the second member of the first identity of
Eq. (D.12). Lower panel: the empty squares represent the
imaginary part of the electric isovector FF, the red disks the
expression at the second member of the second identity of
Eq. (D.12).

been rigorously defined as functions of q2 = −Q2.
By considering the explicit form of the Bessel functions
we have

ρE(r)=
1

2π2

∫ ∞

0

GE(−Q2)j0(Qr)Q2dQ =
1

2π2r
SE(r) ,

ρM (r)=
1

2π2

∫ ∞

0

GM (−Q2)j1(Qr)
Q

r
Q2dQ

=
1

2π2r3

(
SM (r) + rCM (r)

)
,
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Figure 18. Upper panel: moduli of the electric charge spatial
densities of the proton, in red, and neutron in blue. Lower
panel: moduli of the magnetization spatial densities of the
proton, in red, and neutron in blue.

where we have defined the two master integrals

SE,M (r)=

∫ ∞

0

GE,M (−Q2) sin(Qr)QdQ ,

CE,M (r)=−
∫ ∞

0

GE,M (−Q2) cos(Qr)Q2dQ (D.14)

=−dSE,M
dr

.

By exploiting analyticity realized through the dispersion
relations, such quantities can be also expressed in terms
of integrals of the TL imaginary parts.
In particular, we use the dispersion relations for the ima-
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ginary part of Eq. (6), that give

GE,M (t) =
1

π

∫ ∞

q2theo

Im (GE,M (s))

s− t ds ,

that, with t = −Q2 < 0, becomes

GE,M (−Q2) =
1

π

∫ ∞

4m2
π

Im (GE,M (s))

s+Q2
ds .

By using these expressions of the SL FFs in the first
integral of Eq. (D.14), performing the integration in dQ
and making the substitution s = µ2, we obtain

SE,M (r)=
1

π

∫ ∞

0

dQ

∫ ∞

4m2
π

ds
Im (GE,M (s))

s+Q2
sin(Qr)Q

=
1

2

∫ ∞

4m2
π

Im (GE,M (s)) e−
√
srds

=

∫ ∞

2mπ

Im
(
GE,M

(
µ2
))
e−µrµdµ .

Finally, we exploit the second expression of Eq. (D.14),
to obtain the master integrals CE,M (r) as the opposite
of the first derivative of SE,M (r), i.e.,

CE,M (r)=−dSE,M (r)

dr
=

∫ ∞

2mπ

Im
(
GE,M

(
µ2
))
e−µrµ2dµ .

In the light of these results, the spatial densities of
Eq. (D.13) become

ρE(r)=
1

2π2r

∫ ∞

2mπ

Im
(
GE

(
µ2
))
e−µrµdµ ,

(D.15)

ρM (r)=
1

2π2r3

∫ ∞

2mπ

Im
(
GM

(
µ2
))

(1 + rµ) e−µrµdµ .

Since the FF parameterizations that have been used do
respect analyticity and hence the dispersion relation for
the imaginary part, indeed, it is self-evident that, for in-
stance, the SL values of GSE given in Eq. (25) can be
obtained as the dispersion-relation integral of the TL
imaginary part of Eq. (29), and, moreover, the FFs are
obtained as Fourier transforms of spatial densities, the
relations of Eq. (D.15) are automatically fulfilled.
Nevertheless, for completeness, in Fig. 18 we report the
moduli of the spatial charge and magnetization densities,
upper and lower panel, for proton and neutron, red and
blue curves, obtained by numerical and approximate in-
tegration because it is truncated at µmax = 4.5815 GeV '
23.2563 fm−1.
However, in this case, the master proof of the expressions
of Eq. (D.15) is their analytic derivation, because the
numerical check suffers from the previously highlighted
approximations.

E. The asymptotic behavior

The integral representations (Fourier transforms) of
FFs given in Eqs. (11) can be classified into two species

depending on the order of the spherical Bessel function,
i.e.,

g0(Q) =

∫ ∞

0

f(r)j0(Qr)dr , (E.16)

g1(Q) =

∫ ∞

0

f(r)j1(Qr)dr , (E.17)

with

j0(x) =
sin(x)

x
, j1(Q) =

sin(x)

x2
− cos(x)

x
= −dj0(x)

dx
,

and f(r) represents the profile function, which is regular
in the origin and vanishes exponentially as r → ∞, in
particular

f(r) ∝
r→0

rl , f(r) ∝
r→∞

e−µr

rh
, (E.18)

with l, h ∈ N and µ > 0. The behavior in r = 0 is crucial
because it determines the asymptotic trend, as Q → ∞,
of the functions g1,0(Q). The profile f(r), which is known
only numerically, is parametrized as

f(r) =
Am(r)

Bn(r)
e−µr ,

where Am(r) and Bn(r) are the real polynomials

Am(r) =

m∑

k=l

akr
k , Bn(r) =

n∑

k=0

bkr
k ,

with n −m = h, and al 6= 0, am 6= 0, b0 = 1, bn 6= 0, in
order to follow the behaviors given in Eq. (E.18).
Assuming the zeros {zk}nk=1 of Bn(r) to be all simple,
with Re(zk) < 0 and also Am(zk) 6= 0, ∀ k ∈ {1, 2, . . . , n},
the polynomial part of f(r) can be written in terms of
the Mittag-Leffler representation

f(r) = e−µr
n∑

k=1

Rk
r − zk

, Rk = Res

[
Am(r)

Bn(r)
, r = zk

]
,

where Rk is the residue of the simple pole zk. The two
polynomials have n + m − l + 1 real degrees of free-
dom, while the Mittag-Leffler representation has 2n >
n+m− l+ 1 free parameters, namely the complex zeros
zk and residues Rk, with k = 1, 2, . . . , n. Indeed, hav-
ing Bn(r) real coefficients, both, zeros and correspond-
ing residues of the ratio, can be either real or pairs of
complex conjugate, hence the real degrees of freedom are
only 2n. Summing up the Mittag-Leffler series we get

n∑

k=1

Rk
r − zk

=

∑n−1
j=0 αjr

j

Bn(r)
,

where the coefficients αj contain zeros and residues. To
have, at numerator, a polynomial of m < n degree with
a zero of order l in the origin we should impose

αj = 0

∀ j ∈ {0, 1, . . . , l − 1︸ ︷︷ ︸
l values

,m+ 1,m+ 2, . . . , n− 1︸ ︷︷ ︸
n−m−1 values

} ,



28

these are l + n −m − 1 constraints. It follows that the
number of degrees of freedom reduces to 2n − (l + n −
m− 1) = n+m− l+ 1, which coincides with that of the
ratio of polynomials. In particular, the zero of order l in
r = 0, first condition of Eq. (E.18), implies

f(0) =

n∑

k=1

Rk
−zk

= 0 =⇒ C1 ≡
n∑

k=1

Rk
zk

= 0 ,

f ′(0) =

n∑

k=1

Rk

(
− 1

z2
k

− µ

−zk

)
=0 =⇒ C2 ≡

n∑

k=1

Rk
z2
k

= 0 ,

f ′′(0) =

N∑

k=1

Rk

(
− 2

z3
k

+
2µ

z2
k

− µ2

zk

)
= 0

=⇒ C3 ≡
n∑

k=1

Rk
z3
k

= 0 ,

so that, at the j-th iteration

f (j−1)(0) = 0 =⇒ Cj ≡
n∑

k=1

Rk

zjk
= 0 . (E.19)

In general, the Cj constants are real, being sum of real
and/or pairs of complex conjugate numbers.
The integral representation of Eq. (E.17) can be put in a
form similar to that of Eq. (E.16) as

g1(Q)=

∫ ∞

0

f(r)j1(Qr)dr

=−j0(Qr)

Q
f(r)

∣∣∣∣
∞

0

+
1

Q

∫ ∞

0

j0(Qr)f ′(r)dr

=
1

Q

∫ ∞

0

j0(Qr)f ′(r)dr . (E.20)

Assuming l ≥ 1, we define g(r) = f(r)/r, with

g(r) ∝
r→0

rl−1=l′ , g(r) ∝
r→0

e−µr

rh+1=h′
.

and the Mittag-Leffler representation

g(r) = e−µr
n+1=n′∑

k=1

Dk

r − zk
,

hence the derivative

f ′(r)=rg′(r) + g(r)

=e−µr
n′∑

k=1

DK

(
− r

(r − zk)2
− µr − 1

r − zk

)
.(E.21)

1. The function g0(Q)

The analytic expression of g0(Q) can be obtained by
integrating the representation of Eq. (E.16). In particular

we have

g0(Q)=
1

Q

∫ ∞

0

sin(Qr)e−µr

r

N∑

k=1

Rk
r − zk

dr

=
1

Q

N∑

k=1

Rk
zk

[∫ ∞

0

sin(Qr)e−µr

r − zk
dr

−
∫ ∞

0

sin(Qr)e−µr

r
dr

]
,

where the first integral can be computed in terms of the
ExpIntegral function, while the second, which does not
depend on zk, is equal to the arctangent of Q/µ. Hence
we have

g0(Q)=
1

Q

n∑

k=1

Rk
zk

[
e−(µ−iQ)zkE1[−(µ− iQ)zk]

2i

− e
−(µ+iQ)zkE1[−(µ+iQ)zk]

2i
−arctan

(
Q

µ

)]
.

The last term vanishes with l ≥ 1, i.e. if f(0) = 0. In gen-
eral, the profiles that appear in the integrals of Eqs. (11)
are bounded in the origin and hence, thanks to the factor
r2 of the differential d3~r, the function f(r) has always a
zero in r = 0 of order l ≥ 2. It follows that the expression
of g0(r) becomes

g0(Q)=
1

Q

n∑

k=1

Rk
zk

[
e−(µ−iQ)zkE1[−(µ− iQ)zk]

2i

− e−(µ+iQ)zkE1[−(µ+ iQ)zk]

2i

]
.

The asymptotic behavior of the ExpIntegral function can
be derived from the expansion [44]

E1(z) =
e−z

z

N∑

j=0

(−1)k
j!

zj
+O

(
N !|z|−N−1

)
, z →∞ .

We consider g0(Q) in the limit Q→∞

g0(Q)=
1

2iQ

n∑

k=1

Rk
zk

∞∑

j=0

(−1)jj!

[
1

[−(µ− iQ)zk]j+1

− 1

[−(µ+ iQ)zk]j+1

]

=
1

2iQ

∞∑

j=0

j!

n∑

k=1

Rk

zj+2
k︸ ︷︷ ︸

Cj+2

[
1

(µ+ iQ)j+1

− 1

(µ− iQ)j+1

]

=
1

Q

∞∑

j=l−1

j!Cj+2

Im
[
(µ− iQ)j+1

]

(µ2 +Q2)
j+1

,



29

where the last sum starts from j = l − 1 because the
coefficients Cj , defined in Eq. (E.19), are vanishing for
j ≤ l. The imaginary part can be written in powers of Q
so that

g0(Q)=

∞∑

j=l−1

j!Cj+2

(µ2 +Q2)j+1

×
Int[j/2]∑

s=0

(
2s+1
j+1

)
(−1)s+1Q2sµj−2s . (E.22)

The highest power of Q in the numerator coincides with
the maximum even number less or equal to j. Hence, for
two even-odd consecutive values of j, the highest power
of Q at numerator remains the same, while that at de-
nominator increases linearly with j. This means that the
terms at higher orders in j are higher order infinitesimals
as Q→∞. In particular, the j-th term behaves as

O
[
Q2Int(j/2)−2(j+1)

]
=





O
[
Q−4

]
j = 1

O
[
Q−4

]
j = 2

O
[
Q−6

]
j = 3

. . . . . .

, (E.23)

the dominant asymptotic behavior is given by first two
terms, with j = 1 and j = 2.
In the TL region, i.e. Q = iq, with q > 0, the expression
of Eq. (E.22) becomes

g0(iq)=−
∞∑

j=l−1

j!Cj+2

(µ2−q2)
j+1

Int[j/2]∑

s=0

(
2s+1
j+1

)
q2sµj−2s ,

(E.24)

hence the asymptotic behavior follows the same power
law of Eq. (E.23).
More in detail, once the order l (see Eq. (E.18)) of the
zero, that the profile function posses in r = 0, is known,
also the asymptotic behavior in both, SL and TL regions,
is obtained as

l odd: g0(Q) −→
Q→∞

(l − 1)!Cl+1

(µ2 +Q2)l
(−1)(l+1)/2Ql−1

∼ (l − 1)!Cl+1(−1)(l+1)/2

Ql+1
,

l even: g0(Q) −→
Q→∞

l!(−1)l/2

(µ2 +Q2)l+1

[
Ql(µCl+1 − Cl+2)+

µ3Cl+1Q
l−2
]

∼ l!(−1)l/2(µCl+1 − Cl+2)

Ql+2
,

l odd: g0(iq)−→
q→∞
− (l − 1)!Cl+1

(µ2 − q2)l
ql−1

∼ (l − 1)!Cl+1

ql+1
,

l even: g0(iq)−→
q→∞
− l!

(µ2 − q2)l+1

[
−ql(µCl+1 − Cl+2)

+µ3Cl+1q
l−2
]

∼ − l!(µCl+1 − Cl+2)

ql+2
.

The electric, isoscalar and isovector, FFs, Eq. (11), are
obtained through integral representations of type (E.16)
with l = 2 and l = 4 respectively, and hence

GSE(z) ∼
z→∞

z−4 , GVE(z) ∼
z→∞

z−6 , (E.25)

where, the SL and TL limits are considered with z = Q
and z = iq, respectively.

2. The function g1(Q)

The asymptotic behavior of g1(Q) can be achieved by
the integral representation of Eq. (E.20) and the expres-
sion of the f(r) derivative given in Eq. (E.21) as

g1(Q)=
1

Q2

n′∑

k=1

Dk

∫ ∞

0

sin(Qr)e−µr
(
− 1

(r − zk)2

+
1/zk − µ
r − zk

− 1

zkr

)
dr

=
1

Q2

N ′∑

k=1

Dk

{
(µ− iQ)e−(µ−iQ)zkE1[−(µ− iQ)zk]

2i

− (µ+ iQ)e−(µ+iQ)zkE1[−(µ+ iQ)zk]

2i

+(1/zk − µ)
e−(µ−iQ)zkE1[−(µ− iQ)zk]

2i

−(1/zk − µ)
e−(µ+iQ)zkE1[−(µ+ iQ)zk]

2i

−arctan(Q/µ)

zk

}
.

The terms proportional to µ cancel and that proportional
to the arctangent, assuming l ≥ 1, is vanishing and, using
z = −(µ− iQ), we have

g1(Q)=

N ′∑

k=1

Dk

{
− ezzkE1(zzk) + ez

∗zkE1(z∗zk)

2Q

+
ezzkE1(zzk)− ez∗zkE1(z∗zk)

2iQ2zk

}
.
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By taking advantage from the asymptotic series of the
ExpIntegral function, the first term can be written as

−e
zzkE1(zzk) + ez

∗zkE1(z∗zk)

2Q

' − 1

2Q

∞∑

s=0

(−1)ss!

[
1

(zzk)s+1
+

1

(z∗zk)s+1

]

'
∞∑

s=0

s!

zs+1
k |z|2s+2

Int[(s+1)/2]∑

t=0

(
2t
s+1

)
(−1)tQ2t−1µs+1−2t ,

while for the second term we have

ezzkE1(zzk)− ez∗zkE1(z∗zk)

2iQ2zk

' −
∞∑

s=0

s!

zs+2
k |z|2s+2

Int[s/2]∑

t=0

(
2t+1
s+1

)
(−1)tQ2t−1µs−2t .

The complete expression is then

g1(Q)'
∞∑

s=l−1

s!C ′s+1

(µ2 +Q2)s+1

×
Int[(s+1)/2]∑

t=0

(
2t

s+ 1

)
(−1)tQ2t−1µs+1−2t

−
∞∑

s=l−2

s!C ′s+2

(µ2 +Q2)s+1

×
Int[s/2]∑

t=0

(
2t+ 1
s+ 1

)
(−1)tQ2t−1µs−2t ,

where the constants C ′t are defined as those of Eq. (E.19),

but for the residues Dk, i.e. C ′t =
∑n′

k=1Dk/z
t
k and the

lower limits of indexes s account for the behavior of f(r)

at r = 0. The TL asymptotic behavior can be obtained
from the previous expression, by setting Q = iq, with
q →∞, i.e.

g1(iq)'−i
∞∑

s=l−1

s!C ′s+1

(µ2 − q2)s+1

×
Int[(s+1)/2]∑

t=0

(
2t

s+ 1

)
q2t−1µs+1−2t

+i

∞∑

s=l−2

s!C ′s+2

(µ2−q2)s+1

Int[s/2]∑

t=0

(
2t+1
s+1

)
q2t−1µs−2t .

The leading terms are

l even: g1(Q) ∼
Q→∞

l(l − 1)!C ′l(−1)l/2

Ql+1

(E.26)

l odd: g1(Q) ∼
Q→∞

(−1)(l+1)/2(l − 1)!(l + 1− δ1,l)
Ql+2

×
(
C ′l+1 − µC ′l

)

l even: g1(iq) ∼
q→∞

−i l(l − 1)!C ′l
ql+1

(E.27)

l odd: g1(iq) ∼
q→∞

−i
(l − 1)!(l+1−δ1,l)

(
C ′l+1−µC ′l

)

ql+2

The magnetic, isoscalar and isovector, FFs, Eq. (11), are
obtained through integral representations of type (E.17)
with an additional factor Q−1, or (iq)−1, and l = 3 in
both cases, it follows that

GSM (z) ∼
z→∞

z−6 , GVM (z) ∼
z→∞

z−6 , (E.28)

where, as in the g0 case, SL and TL limits are considered
by setting z = Q and z = iq, respectively.
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