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Abstract

At Cabo Mondego (western central Portugal), the Upper Jurassic marine to 

coastal succession contains several stratigraphic levels preserving dinosaur footprints 

on the surface bedding plane, as well as convolute bedding and soft sediment injection 

structures interpreted as dinoturbation structures. At least nineteen new three-

dimensional structures observed in cross-sections are interpreted as produced by 

dinosaur trampling. The identification of three-dimensional structures of dinosaur 

footprints provides an important complement to the information obtained from 

footprints preserved on single bedding surfaces, such as the substrate consistency, 

potential trackmaker identification, and the possibility to enhance the distinction of 

sauropods and tridactyl dinosaurs, and paleoenvironmental interpretations. In the 

lower part of the Arenitos da Boa Viagem Formation, eight levels of probable 

lowermost Kimmeridgian age (ca. 157–156 Ma), displaying the above-mentioned 

deformational structures, were analyzed in detail. They support interpretations 



concerning the relationship between the footprints and the substrate consistency at the 

time of their formation. Three distinct cohesiveness patterns, defined by the 

penetration of the feet from the paleosurface, are the result of different degrees of 

substrate cohesiveness. Identifying the trackmakers of levels belonging to the middle 

Oxfordian–lower Kimmeridgian has important implications for Late Jurassic 

ecosystem reconstructions, as the footprints observed in Cabo Mondego indicate a 

change in the morphotypes throughout the Upper Jurassic succession.

Keywords: Dinoturbation; dinosaur footprints; Cabo Mondego; Upper Jurassic; 

Lusitanian Basin

1. Introduction

Many dinosaur footprints are features transmitted to the sedimentary bed and 

do not represent ‘true’ depositional surface footprints, which are produced only at the 

contact between the foot and an exposed sedimentary surface (e.g., Milàn and 

Bromley, 2006). A true track is produced on the surface that was in direct contact 

with the foot (Leonardi, 1987), just after the passage of the trackmaker. It can also be 

observed as a cross-section cast produced due to the sink of track maker’s foot within 

the sediment. They are distinct from transmitted footprints, which are the 

deformations in the lower sedimentary levels induced by the step pressure on the 

surface (Thulborn, 2012). An undertrack is a transmitted print, or ghost print, formed 

in (bio-) laminated and plastic substrate when the foot does not penetrate the sediment 

but compresses it in a way that creates a miniature stratigraphic sequence or stack of 

transmitted prints (Thulborn, 1990; Lockley, 1991; Marty, 2008). The substrate 

properties and the animal’s behavior allow a wide range of track morphologies. The 

main types of footprint preservation can be in this way evaluated as the relationship 

between the substrate and lower surface of the autopodia. Footprints can also occur as 

pillar-like or barrel-like morphologies (Difley and Ekdale, 2002) made by a 

trackmaker sinking the foot deeply into soft mud (Gatesy, 2003) or high water-content 

sand. In a track cross-section, track penetration depth is the maximum depth 

(measured from the tracked surface) where undertracks or deformation of the 

sediment are still discernable (Marty, 2008).

The preservational aspects of footprints can be related to the substrate 

cohesiveness, plasticity, grain size, texture and water content (Lockley et al., 1989). 



The footprints can present well-defined morphologies or without a clear 

morphological identity with the trackmaker. Those with impressions of claws, nails 

and soft tissue such as the sole and phalangeal pads are considered to be produced in 

mud sediments with high plasticity and low water content. In subaqueous 

environments, there is a decrease in the morphological details of the footprints losing 

aspects such as nails, claws, pads and sole marks (Lockley and Conrad, 1989; 

Carvalho and Leonardi, 2021). Then, the geotechnical substrate properties and the 

animal’s behavior allow for a wide range of track morphologies to be produced (e.g., 

Manning, 2011; Falkingham et al., 2018). From observations of recent environments, 

Laporte and Behrensmeyer (1980) found that there is a narrow range of sediment 

textures and moisture content, which will allow preservation of the footprints in the 

geological record. Footprints are best preserved in a relatively narrow zone of deltas, 

estuaries/lagunes, lakes, fluvial plains and tidal flats where moist, vegetation-free 

sands and silts are buried (protected) after trampling.

Footprints may present a low preservation potential, since surface impressions 

in soft sediments are readily partially destroyed or eroded just before the succeeding 

bed is deposited. After short periods of subaerial exposure or an absence of strong 

hydrodynamic action, footprints may be preserved (Tucker and Burchette, 1977). 

After the footprint formation, there is a fast degradation of the exposed footprints and 

the low preservation potential is related to many destructive processes that include 

early bioturbation, weathering, erosion, deformation and reworking during the 

successive later depositional events (e.g., Nadon, 2001; Marty et al., 2009). The 

degree to which the track morphology matches that of the foot (Belvedere and Farlow, 

2016; Gatesy and Falkingham, 2017; Marchetti et al., 2019, 2020) generally has a 

direct relationship with the substrate consistency at the time of its genesis.

Little difference is observed between the deformation produced on and in the 

ground by the weight and movement of an animal’s autopodium and the deformation 

produced by environmental processes (e.g., Nadon, 2001; Abrahams et al., 2020, in 

press; Carvalho and Leonardi, 2021). Footprints represent sedimentary distortions that 

potentially provide anatomical, functional, and behavioral insights into trackmaker 

biology, affecting sediments continuously from the surface to its maximum 

penetration depth. They only record the final sediment conformation at the end of its 

developmental sequence (Falkingham and Gatesy, 2014; Gatesy and Falkingham, 

2017).



Dinoturbation, defined as the dinosaur trampling that extensively affected 

Mesozoic substrates or soils (Lockley, 1991), footprints in the substrate surface or as 

cross-sections, is a well-documented feature in Mesozoic deposits (e.g., Lockley, 

1991; Avanzini et al., 1997; Gatesy et al., 1999; Milàn et al., 2004; Carvalho et al., 

2013; Abrahams et al., 2020, in press,; Christofoletti et al., 2021). Sometimes 

dinoturbation structures preserved in cross-section are misinterpreted as non-biogenic 

features, e.g., load structures produced by sedimentary processes (Powell, 2010; 

Carvalho et al., 2021). However, unlike non-biogenic structures, footprints present 

more regular, uniform or aligned undulations with less relief. Furthermore, the bases 

of the footprint casts are frequently flat or rounded (convex down), with coarsely 

crinkled and irregular surfaces, and often bear polygonal pressure imprints. Other 

criteria to distinguish true footprints from non-biogenic structures are vertical to 

subvertical striae that often appear on the margins (outside surfaces) of some track 

structures (Difley and Ekdale, 2002). Otherwise, dinosaur footprints include: dish-

shaped structures (which resulted from repeated trampling); deformed track casts 

grading into undulating, globular, or highly irregular sandstone forms; deformed ball 

structures, which may graduate into dish-like, lunate, or trough structures with 

laminated fill.

In the Lusitanian Basin (Portugal, western Iberian Peninsula; Fig. 1), Middle 

and Upper Jurassic sedimentary successions preserve a great number of ichnosites, 

which include dinosaur footprints and dinoturbation structures, e.g., Pedreira do 

Avelino and Pedreira da Ribeira do Cavalo, in Zambujal (Sesimbra); Praia do Cavalo 

and Pedra da Mua, in Cabo Espichel; Pedreira do Vale de Meios and Pedreira do 

Galinha, in Serra de Aires e Candeeiros; Praia de Amoreira-Porto Novo, Alcobaça, 

Sobral, and Freixial; Pedras Negras (Caldas da Rainha) and São Martinho do Porto 

(Alcobaça) (e.g., Antunes, 1976; Figueiredo, 2002, 2004; Santos, 2003, 2008; Santos 

et al., 2008; Mateus and Milàn, 2010; D’Orazi Porchetti et al., 2016; Razzolini et al., 

2016; Santos et al., 2016; Castanera et al., 2017, 2019, 2020a, 2020b; Belvedere et al., 

2019). At Cabo Mondego, a cape which mainly consists of resistant Jurassic rocks 

and is located immediately north of the Figueira da Foz town (western central 

Portugal; Fig. 1), the base of the Upper Jurassic (locally represented by the Complexo 

Carbonoso lithostratigraphic unit; middle Oxfordian; Fig. 2) also includes dinosaur 

footprints and dinoturbation structures (e.g., Gomes, 1915–1916; Nopcsa, 1923; 



Lapparent et al., 1951; Lessertisseur, 1955; Lapparent and Zybszewski, 1957; Santos, 

2008).

At Cabo Mondego (Figueira da Foz), four tracksites are here considered: Pedra 

da Nau (Fig. 2, PN), Laje do Costado (Fig. 2, LC), Calcários Hidráulicos (Fig. 2, CH) 

and Arenitos da Boa Viagem (Fig. 2, ABV). The previous descriptions on these 

tracksites (Gomes, 1915–1916; Nopcsa, 1923; Lapparent et al., 1951; Lessertisseur, 

1955; Lapparent and Zybszewski, 1957; Lockley et al., 1996, 1998; Antunes, 1999; 

Santos, 2008, 2017; Santos and Neto de Carvalho, 2016) recognized over 67 

footprints attributed to theropods in Oxfordian strata of Pedra da Nau and Laje do 

Costado tracksites. In the coastal cliffs of this cape, at the base of the Complexo 

Carbonoso, a limestone surface with striking fossil footprints was discovered in 1884 

at Pedra da Nau tracksite (Fig. 2, PN), but the study was only published later (Gomes, 

1915–1916). All the exposed footprints were excavated and stored at Museu 

Mineralógico e Geológico da Escola Politécnica (nowadays the Museu Nacional de 

História Natural e da Ciência), in Lisbon. These tracks were recognized as large 

theropod tetradactyl footprints attributed to megalosaur dinosaurs. Since then, the 

studies that analyzed these footprints (Nopcsa, 1923; Lapparent et al., 1951; 

Lessertisseur, 1955; Lapparent and Zybszewski, 1957; Lockley et al., 1996, 1998; 

Antunes, 1999; Santos, 2008, 2017; Santos and Neto de Carvalho, 2016) presented a 

review of the ichnotaxonomy and recognized as valid names the ichnospecies 

Eutynichnium lusitanicum (first described by Nopcsa, 1923) and the ichnogenus 

Megalosauripus isp., both related to megalosaur theropods. Belvedere et al. (2019), in 

the revision of Late Jurassic large theropod footprints from North of Africa and 

Europe, considered that there are great similarities between Megalosauripus 

transjuranicus and Eutynichnium lusitanicum, supporting the attribution of the two 

taxa to the same ichnofamily (Eubrontidae).

By 1951, about 50 footprints attributed to Theropoda were found in three 

successive beds of Oxfordian dark marly limestones, at a tracksite called Laje do 

Costado (Fig. 2, LC) (Lapparent and Zbyszewski, 1957), located ~50 m 

stratigrafically above the Pedra da Nau ichnosite (Fig. 2, PN). Most of the footprints 

were excavated and moved to the Museum of Geologic Survey (presently the Museu 

Geológico) in Lisbon.

Santos (2003, 2008) summarized eight stratigraphic levels with theropod 

footprints in the unit locally called as Complexo Carbonoso (middle Oxfordian; Fig. 



2). The oldest level is the one described by Gomes (1915–1916) at the cliff, at the 

Pedra da Nau tracksite (Fig. 2, PN), stratigraphically located near the base of 

Complexo Carbonoso. Another level with a well-known theropod footprint, also 

located at Pedra da Nau tracksite, was described by Santos (2003, 2008). The 

following successive three beds with referred footprints were the ones previously 

described at the Laje do Costado tracksite (Fig. 2, LC) by Lapparent and Zbyszewski 

(1957). The other three levels with footprints, referred to by Santos (2008), also 

belong to the Complexo Carbonoso, but the precise stratigraphic position was not 

indicated.

In the present study we analyze the Arenitos da Boa Viagem tracksite, which 

comprises eight distinct track-bearing strata with true footprints on the trampled 

surface, including at least nineteen three-dimensional structures observed in cross-

sections, and transmitted relief of dinosaur footprints. The cohesiveness patterns of 

the substrate is also evaluated based on these footprints.

2. Geological setting

During the Late Jurassic, Europe was an assemblage of numerous islands of 

various sizes, separated by shallow epicontinental seas in the Tethys realm, with many 

isolated areas of continental, coastal plain and shelf deposition (Yilmaz et al., 1996). 

There are a great number of Middle and Late Jurassic footprints from the surrounding 

margins of Tethys Ocean. Theropod and sauropod footprints are found in carbonate 

successions of tidal-flat deposits of carbonate platforms, such as those from Great 

Britain (e.g., Romano and Whyte, 2003; Powell, 2010), France (e.g., Mazin et al., 

2017), Germany (e.g., Diedrich, 2011), Poland (e.g., Gierlinski et al., 2009), Italy 

(e.g., Avanzini et al., 1997), Switzerland (e.g., Marty et al., 2007, 2018; Marty, 2008; 

Razzolini et al., 2017; Castanera et al., 2018), Croatia (e.g., Solt et al., 2020), 

Moroccan High-Atlas (e.g., Belvedere, 2008; Belvedere et al., 2010), Spain (e.g., 

García-Ramos et al., 2006; Canudo et al., 2009; Piñuela Suárez, 2015; Campos-Soto 

et al., 2017; Rauhut et al., 2018) and in many localities of Portugal (e.g., Lapparent et 

al., 1951; Lapparent and Zbyszewski, 1957; Lockley et al., 1994, 1996, 2000a, 2000b; 

Henriques et al., 1998; Mateus and Milàn, 2008, 2010; Santos et al., 2009; Rocha et 

al., 2014; Henriques and Pena dos Reis, 2015; Razzolini et al., 2016; Santos, 2016).

The Kimmeridgian–lowermost Berriasian clastic succession of the Arenitos da 

Boa Viagem Formation, preserved at Cabo Mondego, was deposited in a fluvial-



dominated delta environment (Manuppella et al., 1976; Pena dos Reis et al., 1996, 

2000). In the early Kimmeridgian delta plain, dinosaur footprints were mainly 

produced and preserved within interdistributary bay, floodplain and crevasse splay 

environments. Areas with low hydrodynamics and wet sedimentary surfaces allowed 

the preservation of dinoturbation events. This context is observed in other tracksites, 

such as the ones in Brazil (Sousa Basin), Spain (Ibero-Armorican domain), Morocco 

(High Atlas) and western USA, described by Carvalho (1995, 2000a, 2020b, 2004), 

Leonardi (1989, 1994), Lockley and Conrad (1989), Carvalho and Leonardi (1992), 

Belvedere et al. (2010), Carvalho et al. (2013), and Pérez-Lorente (2017). Therefore, a 

very similar paleoenvironmental context of the dinosaur footprints in Arenitos da Boa 

Viagem Formation is found in Villar del Arzobispo Formation (Kimmeridgian–

Tithonian, Spain). This lithostratigraphic unit is a succession with many depositional 

environments (carbonate platform, tidal and shallow marine carbonate platform), 

indicating an inner carbonate platform, which episodically underwent subaerial 

exposure and siliciclastic inputs. This environment evolved upward into a siliciclastic 

coastal and alluvial plain affected by periodic floods, where abundant, diverse, and 

well preserved (mainly as infillings or natural casts) dinosaur footprints are found 

(Campos-Soto et al., 2017).

The studied Upper Jurassic sedimentary succession at Cabo Mondego belongs 

to the Lusitanian Basin, located on the Western Portuguese Margin and extending 

onshore from Aveiro to Sines (Fig. 1). The sedimentary infill ranges from the Upper 

Triassic to Holocene, recording rifting, passive margin and compressive tectonic-

sedimentary stages; the successive tectonic phases are recorded by sedimentary 

discordances, that separate allostratigrapic units (Wilson et al., 1989; Cunha, 1992; 

Azerêdo et al., 2003; Pena dos Reis and Henriques, 2018). The Mesozoic 

allostratigraphic units are: UBS (unconformity-bounded sequence) 1 (Upper Triassic 

to middle Calovian; UBS2 (middle Oxfordian to lower Berriasian); UBS3 (upper 

Berriasian to lower Aptian); UBS4 (upper Aptian to lower Campanian); UBS5 

(middle Campanian to Maastrichtian).

The basin underwent a major rifting phase during the late Oxfordian to earliest 

Kimmeridgian, with fault and fault-related diapiric activity creating several sub-basins 

(depocenters). These included the Bombarral–Alcobaça, Arruda, and Turcifal sub-

basins (e.g., Pena dos Reis et al., 1996, 2000; Leinfelder and Wilson, 1998; Alves et 

al., 2003). This tectonic activity is reflected in the sedimentary infill by faults 



displacing the Lower and Middle Jurassic and by diapiric structures affecting the 

Lower Jurassic marly and evaporitic Dagorda Formation.

In the UBS2 of the central sector of the Lusitanian Basin, several 

lithostratigraphic units were defined (see synthesis by Mateus et al., 2017): Cabaços 

Formation – up to 400 m thick (micritic limestones, with organic matter), Montejunto 

Formation – up to 1200 m thick (mainly bioclastic limestones; marine environments), 

Alcobaça Formation – up to 200 m thick (alternation of marls and limestones; 

shallow-marine to brackish environments) and Lourinhã Formation – up to 400 m 

thick (siliciclastic deposits; deltaic, fluvial and alluvial fan environments).

The Lourinhã and Alcobaça formations contain the most vertebrate remains in 

the Lusitanian Basin (Lapparent and Zbyszewski, 1957; Dantas, 1990; Mateus, 1998; 

Antunes and Mateus, 2000; Crespo, 2001; Mateus et al., 2006; Ortega et al., 2006, 

2009; Figueiredo, 2008, 2014; Escaso et al., 2014; Mocho et al., 2014, 2016a, 2016b, 

2017a, 2017b, 2017c, 2017d, 2019; Pérez-García, 2015), including dinosaurs 

(theropods, sauropods, stegosaurs, ankylosaurs and ornithopods), pterosaurs, 

crocodilians, mammals, turtles, basal diapsids and amphibians, with fauna and flora 

assemblages being somewhat similar to those of the Morrison Formation in North 

America, but with coastal influence and some European-related faunal input (Crespo, 

2001; Mateus et al., 2006; Escaso et al., 2007; Malafaia et al., 2010). The occurrence 

of the genera Allosaurus and Stegosaurus in Late Jurassic of Portugal (Dantas et al., 

1999; Escaso et al., 2007) represents a relevant example of this similar faunal 

assemblage between the Lusitanian Basin and the Morrison Formation (Mateus, 2006; 

Mateus et al., 2006, 2017; Escaso et al., 2007; Ortega et al., 2009).

The studied coastal area at Cabo Mondego was located at the NNE margin of 

the basin during the Late Jurassic, and the successive lithostratigraphic units that 

comprise the allostratigraphic unit UBS2 document more marginal facies (described 

below from the base to the top; e.g., Wilson, 1979; Bernardes, 1992; Pena dos Reis et 

al., 1996, 2000; Fig. 2):

– The Vale Verde Formation (middle Oxfordian) overlays, by disconformity, 

the Callovian upper levels of the marine Brenha Formation. It is ~150 m thick and 

includes two local units: (i) the Complexo Carbonoso (Carbonaceous Complex) unit 

(~75 m), which can be differentiated in a lower division of predominant lignites and 

sandstones (12 m; coastal siliciclastics), a middle division of limestones (~30 m; 

lagoon), and an upper division of sandstones, limestones and siltites (~35 m; 



distributary channels, bays and marshes); and (ii) the Calcários Hidráulicos (Cement 

Limestones) unit, which comprises ~30 m of marginal brackish-freshwater algal 

marsh limestones followed by ~60 m of evaporitic lagoon limestones.

– The Pholodomya protei Formation is ~100 m thick and mainly comprises 

biomicritic limestones rich in bivalves (Ostrea pulligera Gold, Mytilus beirensis 

Sharpe, Pinna sp., Perna sp. and Pholodomya protei); it records a shallow marine 

environment of late Oxfordian age.

– The Arenitos da Boa Viagem Formation (Boa Viagem Sandstones 

Formation) is ~600 m thick and of Kimmeridgian to early Berriasian age (a lateral 

equivalent of the Alcobaça and Lourinhã formations). This fluvial-prevailed deltaic 

succession is dominated by sandstone units that usually show fining upward 

sequences, in which coarse- and medium-grained cross-bedded sandstones are 

replaced by red fine to very fine sandstones and siltstones, the latter sometimes 

culminating in the development of caliche horizons (fossil carbonate soils) (Wilson, 

1979; Bernardes, 1992). A large number of marine shales, marl and sandstone 

horizons occur in the succession, recording marine incursions.

The studied dinosaur dinoturbation are located in stratigraphic levels included 

in the Complexo Carbonoso (e.g., Gomes, 1915–1916; Lapparent and Zbyszewski, 

1957; Santos, 2003, 2008; Rocha et al., 2014). The new structures referred in the 

present work occur at the lower division of the Calcários Hidráulicos (CH tracksite; 

subunit d; freshwater lakes to brackish environments – carbonate restricted lagoon) 

and at the lower part of the Arenitos da Boa Viagem Formation (ABV tracksite; 

shallow marine, brackish and freshwater environments of a siliciclastic fluvial-

dominated deltaic succession) (Fig. 2). The present analysis will focus on eight 

siliciclastic levels, at the lower part of the Arenitos da Boa Viagem Formation and 

examine the paleoenvironmental context where the fossil footprints occur.

3. Results

In the Upper Jurassic deposits of the Cabo Mondego, many dinosaur footprints 

preserved as superficial impressions and cross-section structures are found. The older 

ones are preserved in middle Oxfordian brackish levels of the Complexo Carbonoso 

unit, on the palaeosurfaces of cyclic succession of limestones and marls or in 

sandstones. These footprints are tetradactyl preserved as isolated tracks or short 

trackways, attributed to megalosaurids (Nopcsa, 1923; Lapparent et al., 1951; 



Lessertisseur, 1955; Lapparent and Zybszewski, 1957; Lockley et al., 1996, 1998; 

Santos and Neto de Carvalho, 2016). Based on them, Nopcsa (1923) designated the 

ichnogenus Eutynichnium that presents many similarities with Megalosauripus. 

Although being tetradactyl it is properly defined as a different ichnotaxon (Belvedere 

et al., 2019). There are also some surfaces in which these footprints are associated 

with large rounded deformations presenting extrusion rims, interpreted as sauropod 

footprints. The lower portion of the Calcários Hidráulicos (Fig. 2), mainly consisting 

of freshwater limestones, also preserves footprints on the bedding surface and as 

cross-section structures (Fig. 3) in at least four distinct levels. They are here 

interpreted as large tetradactyl footprints of slender large Theropoda (Fig. 2).

In this study we analyzed in detail eight distinct track-bearing strata of fine to 

coarse-grained sandstones, with some thin levels of mudstones, siltstones and shelly 

sandstones, recognized at the lower part of the Arenitos da Boa Viagem Formation 

(Fig. 2), at Cabo Mondego. The tracks are preserved as true footprints on the trampled 

surface, cross-section casts and transmitted relief of the dinosaur footprints.

The footprints from the ABV level 1, are five three-dimensional casts 

observed in cross-section and they are distributed within the same bedding interval, 

deforming up to 35 cm from the bedding surface (Fig. 4). The casts were preserved in 

a 40 cm layer of laminated mudstones, siltstones and fine sandstones and the molds 

are infilled with fine-grained sandstone from the upper sediment level. The cross-

sections range from 15 cm to 20 cm width and 25 cm to 35 cm depth, presenting a V-

shaped geometry, with sediment crenulations on the lateral borders. These are vertical 

and near the upper margins there are straight platforms. Two footprints can be 

observed on the bedding surface related to these cross-sections. They are tridactyl, 

mesaxonic, with pointed digits indicating large functionally three-toed theropod. The 

posterior margins are broken. They range from 15 cm to 23 cm width (Fig. 4D) and 

10 cm to 15 cm length. In one of these footprints (Fig. 4), it is possible to observe in a 

cross-section (Fig. 4A, B) the internal deformational features (Fig. 4C) and the 

footprint surface (Fig. 4D); in the direction of the lower bedding plane there is the 

narrowing of the deformation, developing a tubular structure with ~30 cm in length, 8 

cm wide and 15 cm deep. The lower extremity of this tube progressively narrows to a 

pointed extremity, similarly to the feature produced by digit III drag during the 

theropod foot movement (Gatesy et al., 1999; Carvalho et al., 2021). There are also 



fine crenulations surrounding the footprints margins and digits as fluidization 

structures (Fig. 4C).

The footprints from the ABV level 2 (Fig. 5) are two cross-sections and at 

least nine casts on the surface of a fallen sandstone block. The cross-section footprints 

present slight concave bottom and steep borders. They are 25 cm to 45 cm width and 

20 cm to 30 cm depth filled with successive fine-laminated laminae; the upper edges 

of these depressions are high and probably correspond to displacement rims (Fig. 5A). 

Nine tridactyl footprint casts, one large and eight smaller footprints are preserved on 

the surface of the fallen block (Fig. 5B, E). The tracks have pointed digits without 

digital or plant pads and generally digit III is the longest one. The largest track is 

mesaxonic, has a 45 cm width and 50 cm length, preserves three digits and has a 

rounded posterior margin. The smaller footprints are mesaxonic, range from 12 cm to 

20 cm width and 15 cm to 25 cm length (Fig. 5C, E). All of them are preserved as 

convex hyporeliefs and are filled with fine reddish sandstones from the upper strata. 

Also preserved on the block is a rounded mound, 35 cm and 25 cm axes, showing 

fluidization structures and irregular interior division (Fig. 5D).

The tracks in the ABV level 3 are preserved as natural casts beneath ceiling 

overhangs and as a cast on a fallen sandstone block (Fig. 6). In the ceiling overhangs 

it is possible to recognize three complete footprints (~9 cm width and ~12 cm length) 

and two partial ones (only individual digits are preserved, ~10 cm length). These 

footprints are tridactyl, mesaxonic and present sharp borders. A peculiar aspect is the 

geometry presented by the complete footprints, denoting tapering limits of the digits’ 

edges, which lends a pyramidal aspect to the digits (Fig. 6A). The isolated digit 

impressions are long tubular structures (~10 cm length), folded in the middle (Fig. 

6B). On the surface of a fallen block (Fig. 6C) there is a tridactyl footprint with 

pointed digits. It is mesaxonic, 23 cm width and 26 cm length, without digital or plant 

pads. Digit III is the longest one (13 cm length) and digits II and IV are ~5 cm length. 

The footprints are filled with coarse sandstones.

The dinoturbation in the ABV level 4 are two depressions observed in cross-

section, in a 1 m interval of fine to coarse sandstones, interspersed with mudstones, 

lumachelle and shelly sandstones (Fig. 7). They are two footprints in the lower 

portion of level 4 in mudstones; they are large concave deformations (Fig. 7A), 

ranging from 50–60 cm in width and 30–45 cm in depth, filled with coarse and shelly 

sandstones. There are steep borders and the upper edges of these depressions are 



slightly high and probably correspond to displacement rims. The sandstone laminae 

sometimes are deformed, showing an irregular geometry inside the footprints, with a 

prominent pointed central V-shaped deformation, which probably corresponds to digit 

III and shows the maximum penetration depth; it is also curved, and lamination 

follows the path of the digit (Fig. 7B). This curved and pointed projection in the 

direction of the lower portion of the track is similar in some aspects to the sagittal 

section of a simulated track presented by Falkingham et al. (2020). These aspects are 

typical of penetrative footprints.

On the surface of the fine sandstone of the ABV level 5 (Fig. 8A) there are at 

least six isolated large footprint impressions, with or without fluidization structures. 

They are tridactyl and mesaxonic, ranging from 35–40 cm in width and 35–40 cm in 

length. The digits are pointed and digit III is the biggest one. Their posterior borders 

are concave. The footprints without any kind of fluidization show a massive 

sandstone fill, that presents a slight, distinct grain size from the surrounding matrix, 

highlighting it in the surface of level 5 (Fig. 8B). There are also footprints filled with 

fluidized sandstones; these deformations are restricted to the interior of the footprints. 

The footprints are filled with the same sandstone of the surrounding surface, and 

fluidization follows the contour of the digits and posterior border of footprints (Fig. 

8C).

The surface of the ABV level 6 presents three isolated digit impressions (Fig. 

8D) and two shallow footprints casts. The digit impressions are molds of curved 

pointed digits, larger in the lower portion and very narrow in the distal extremity. 

They range from 10 cm to 12 cm in length. There are also two shallow casts of 

tridactyl, mesaxonic footprints, filled with coarse sandstones. They have a width of ~8 

cm and a length of ~12 cm. The digit impressions and footprints are randomly 

distributed on the surface of level 6 and they are probably related to theropods.

The track-bearing ABV level 7 is highly deformed. Four footprints are 

observed in cross-section in reddish sandstones as large contorted bulges of 

sandstones that penetrate at least 35 cm from the strata surface. These concave 

features present a larger upper portion (40–50 cm width) that progressively becomes 

narrower in the lower surface. They are V-shaped or slightly concave, filled with the 

same coarser sandstone from the upper strata. There are also some pointed tubular 

structures that reach 30 cm in length, projecting from the lower portion of these 

rounded deformed bulges; they probably correspond to the mold of a big-sized digit 



III (Fig. 9A). These features are very similar to the sagittal section of tridactyl 

footprints simulated by Falkingham et al. (2020). There are highly complex structures 

beneath the original surface, with folds and faults of interbedded laminations 

following the paths of the toes. The sagittal section shows highly complex structures 

beneath the original surface, which are characteristic of penetrative footprints.

The lower portion of the ABV level 8, a coarse sandstone bed, shows a large 

amount of dinoturbation structures that reworked the strata completely. There are six 

curved conical projections ranging from 10 cm to 20 cm in length that can be grouped 

as structures of different sizes. The larger superior border and the narrow lower 

portion result to an acute V-shaped morphology. They are filled with the same coarse 

sandstone of the surrounding matrix and do not present a regular pattern of 

distribution (Fig. 9B). Another kind of structure from this level is some long ridges 

and grooves of various widths that can reach 50 cm in length (Fig. 9C). In both cases, 

no preferential direction was observed on the lower surface. There are also some 

concave deformations, which reach 40 cm in width and 15 cm in depth, filled with a 

succession of distinct laminae that follow a concave pattern. They can be 

superimposed and produce deformation in the lower structures.

4. Discussion

4.1. The dinoturbation and substrate consistency

Fossil footprints are volumetric structures, which extend beneath the surface. 

Footprint morphology, which can range from similar to the trackmaker’s feet to 

indistinguishable impressions, is determined by biological factors (including the 

trackmaker’s locomotion) and substrate properties. Deep footprints rarely look like 

the trackmaker’s feet and the foot motion heavily disturbs the subsurface sediments 

(Sarjeant and Leonardi, 1987; Avanzini, 1998; Gatesy et al., 1999; Gatesy, 2003; 

Manning, 2004, 2008, 2011; Milàn, 2006; Milàn and Bromley, 2006; Falkingham et 

al., 2011; Avanzini et al., 2012; Falkingham and Gatesy, 2014; Falkingham et al., 

2014, 2016; Citton et al., 2015; Lockley and Xing, 2015; Gatesy and Falkingham, 

2017). During the trackmaker movement and load, all particles of the substrate are 

physically displaced. Sedimentological analyses underline the influence of the 

substrate on the final track morphology and length (e.g., Lockley, 1991; Milàn et al., 

2004; Milàn and Bromley, 2006; Thulborn, 2012; Razzolini et al., 2014; Razzolini, 

2016). Substrate consistency and cohesion (a function of moisture content) are the 



most important factors controlling track formation, morphology and preservation 

(e.g., Marty et al., 2006).

During the formation of a footprint, the energy (related to the trackmaker’s 

weight) is transmitted downwards and outwards through the substrate generating 

indirect structures (also known as transmitted or ghost prints) which, unlike true 

tracks, do not preserve the direct contact between the trackmaker’s feet and substrate. 

If observed in cross-section, they are the underlying deformations below the original 

contact surface of the animals. Indirect structures have a close relationship with 

sediment properties during or after track formation, and they are the most common 

record of fossil footprints (Gatesy, 2003; Gatesy and Falkingham, 2017; Carvalho and 

Leonardi, 2021). Most dinosaur footprints recognized in the eight levels of Arenitos 

da Boa Viagem Formation are indirect structures.

The dynamic interaction between the trackmaker and the substrate enables a 

wide variety of preservational states and morphologies (García-Ramos et al., 2009). 

This can be observed in the experiments performed by Milàn (2006) in Emu 

(Dromaius novaehollandiae) track morphology. These experiments show that the 

main cause of variation is substrate consistency. The deformations observed in the 

Arenitos da Boa Viagem Formation are not liquefaction distortions resulted from 

environmental processes. They are the result of the interaction between an animal 

autopodium and a substrate that was disrupted, deformed, resulting in dinoturbation 

structures.

Reworking of sedimentary substrates by terrestrial vertebrates is important in 

disturbing the primary grain fabric and sedimentary structures, and there is a narrow 

range of sediment textures and moisture content that will allow the preservation of 

footprints in the geological record (Laporte and Behrensmeyer, 1980; Sanz et al., 

2016). Generally, only the outline of the footprint is preserved, produced by the 

stirring of the substrate at the contact zone with the autopodium (Lockley, 1991; 

Lockley and Meyer, 2000), and, as stressed by Marty et al. (2018), foot morphology 

responds to sedimentological substrate aspects, more flattening against firm substrates 

and less against soft ones. The preservation potential of footprints depends both on 

taphonomic processes and weathering after exhumation (Laporte and Behrensmeyer, 

1980; Falkingham and Gatesy, 2014; Gatesy and Falkingham, 2017).

In the studied ABV levels 3, 5 and 6 of the Arenitos da Boa Viagem 

Formation, footprints are observed on the palaeosurfaces as true footprints (ABV 



level 5) and natural casts (ABV levels 3 and 6). The true footprints are shallow 

impressions, and the natural casts filled with coarse-grained sandstones exhibit few 

morphological details. In both cases, it is possible to observe deformation structures 

on the surrounding matrix (Figs. 6C, 8C), although the casts generally present a more 

defined outline of the digits and rear portion of the track.

The identification of true footprints on vertical sections was performed by 

Cariou et al. (2014) by determining the most deformed surface and by track infilling 

analysis. Similar features were already described in Jurassic deposits by Romano and 

Whyte (2003, 2012), Powel (2010), Piñuela (2012), and Cretaceous deposits in China, 

USA, Brazil and Portugal as presented by Difley and Ekdale (2002), Xing et al. 

(2015), Carvalho et al. (2021), and Figueiredo et al. (2021). The morphology of true 

track cross-sections is generally induced by distinct degrees of the substrate 

deformation. In ABV level 1 of Arenitos da Boa Viagem Formation, they are usually 

15 cm from the palaeosurface, reaching up 35 cm. The track margins and digits are 

surrounded by fine crenulations showing the fluidization of the sediments (Fig. 4D). 

In ABV level 2, the cross-section preservation is slight concave deformations 

reaching 45 cm long and 30 cm deep (Fig. 5A). There are also large concave 

deformations (Fig. 7), ranging from 50–60 cm wide and 30–45 cm deep in ABV level 

4. The margins of the concave deformations of ABV level 2 and ABV level 4 are 

limited by higher convex edges, probably extrusion rims. In ABV levels 7 and 8 (Fig. 

9), it is possible to observe large contorted bulges of sandstones, indicating a high 

degree of substrate deformation. In all these cross-section footprints, there are pointed 

tubular projections on their lower portions, interpreted as digit casts.

Although the footprint morphology is generally unclear, there are typical 

aspects of theropod tracks such as the pronounced V-shaped impression of digit III. 

To distinguish the trackmakers, we used the analysis by Milàn et al. (2004), which 

observed sequential slices through theropod footprints, producing a schematic section 

through theropod cross-section footprints. We have then analyzed the structures 

described by Milàn et al. (2006) on the material of Lavini di Marco (Hettangian, 

Rovereto, Italy). Other analyses, such as the observational data on experimental 

ichnology (Falkingham et al., 2020) and sectioned views of fossil footprints 

(Avanzini, 1998), allow us to explain the dynamics of particle movement and the 

internal geometry in deep footprints. The sagittal and transverse cross-sections show 



deformed laminations where the foot has passed, with complex structures beneath the 

original surface.

The degree of substrate deformation can reveal some aspects concerning the 

plasticity and water content of the sediment reworked by the trackmaker’s movement 

(Milàn, 2006; Graversen et al., 2007). The abundance of vertebrate bioturbation 

depends upon rates of trampling, burial, and varies from single, isolated footprints to 

bioturbated sedimentary layers (Lockley, 1986; Romano and Whyte, 2003). The depth 

of the depression depends both on the animal’s weight and the plasticity of the 

sediment, and the deformation can reach one meter with the transmitted effect (e.g., 

Milàn, 2003, 2006; Falkingham et al., 2010; Carvalho et al., 2021). The superficial 

shallow footprints preserved as concave epirelief (or its molds as convex hyporelief) 

on the ABV levels 3, 5 and 6 are generally produced on sandy substrates that show a 

low possibility of deformation, whereas deeper footprints, that reach 45 cm in depth 

when observed in cross-section, are related to soft substrates (Marty et al., 2006). 

However, in all levels there are shreds of evidence of fluidization structures, 

indicative of the high water content in the pores of the unconsolidated sands.

Dinoturbation can disturb a single bed or successively alternate beds, and there 

is a wide variety of track patterns according to the deformation, especially when 

observed as cross-section footprints. The penetration of the foot in the substrate can 

be an indication of the substrate’s original consistency. Marty et al. (2010) observed 

in the Iouaridène Formation (Late Jurassic, Morocco) that the low penetration of 

footprints (15 cm), even for the largest dinosaurs, was an indicator of a cohesive 

sediment. In ABV level 1 of Arenitos da Boa Viagem Formation, the penetration 

ranges from 15–35 cm from the paleosurface, thus it can be considered, compared 

with the Iouaridène footprints and with the other levels of Arenitos da Boa Viagem 

Formation, the most cohesive substrate in this succession. In ABV level 2, the cross-

sections are 30 cm deep, and in ABV level 4, 30–45 cm deep. These two levels 

demonstrate a different degree of substrate cohesiveness, enabling greater penetration 

of the feet in the substrate. There is another distinctive aspect on ABV levels 2 and 4; 

the upper borders of the concave deformations show higher convex edges, probably 

extrusion rims, a sign of higher substrate plasticity. The large contorted sandstone 

bulges in ABV levels 7 and 8 indicate a higher degree of substrate deformation. The 

distinct aspects of the deformational structures could be related to the observation on 

sagittal (ABV level 7) or transverse (ABV level 8) sections of the footprints.



When the footprints are observed as cross-section casts in the substrate, they 

are designated as three-dimensional dinoturbation structures. They record the three-

dimensional foot cast and the locomotion pattern of the trackmakers, providing an 

important complement to the information obtained from footprints preserved on 

single-bedding surfaces (Xing et al., 2015). Another term is “4D footprints”, defined 

by Cobos et al. (2016) for the Villar del Arzobispo Formation (Late Jurassic, Spain), 

as footprints that are preserved as natural casts revealing the trajectory of the 

tracksmaker’s foot within the sediment and can reveal how the dinosaur moved 

(Campos-Soto et al., 2017). The track casts of level 8 of Arenitos da Boa Viagem 

Formation could also be considered as an example of “4D footprints”. The regular 

ridge and groove casts (Fig. 9C) are probably drag marks, observed on a transverse 

section, produced by the digits during the penetration of the foot on the substrate.

The substrate consistencies at the different levels are linked to the footprint 

preservation aspects. In the ABV levels 1 and 5, some tracks show the borders and 

digits associated with fluidization features, indicating a high water content in the 

sediments and liquefaction events after the load of the feet on the tracking surface. In 

ABV levels 2 and 4, the cross-sections are large concave deformations, limited by 

extrusion rims, showing a more cohesive sediment with high plasticity. The footprints 

in ABV level 3 are casts with well-defined borders, representing a very cohesive 

substrate. A similar interpretation can be considered to ABV level 6 where isolated 

digit impressions are found. The large contorted bulges of sandstones found in ABV 

levels 7 and 8, point toward a high water content and plasticity in the substrate, 

allowing the disturbance in high depth.

4.2. Paleoenvironmental context of the dinoturbation

Dinosaur footprints are common in fluvial settings (e.g., Sciscio et al., 2016; 

Díaz-Martínez et al., 2018), shallow lacustrine facies (e.g., Xing et al., 2015), fluvial-

dominated delta depositional systems (e.g., Niedzwiedzki and Pieńkowski, 2004), 

shallow marine platforms which underwent episodic subaerial exposure (e.g., Kvale et 

al., 2001), and in tidal flats (e.g., Carvalho and Pedrão, 1998; Figueiredo et al., 2021).

According to Laporte and Behrensmeyer (1980), the amount of time between 

footprint formation and burial affects their preservation potential. Therefore, in part, 

the sedimentation processes determine whether a footprint will be preserved or not. 

Other factors, such as microbial mats, also play a crucial role during and after track 



formation. The presence of biolaminites and microbial mats leads to early 

lithification, rapid covering by sediment and overgrowth by microbial mats, favoring 

the preservation of footprints (Chafetz and Buczynski, 1992; Noffke et al., 2001; 

Dupraz et al., 2004; Marty et al., 2009). During periods of drought, footprints quickly 

consolidate, thus resisting to trampling or erosion (Carvalho et al., 2013). The 

surfaces of levels 3, 5 and 6, in which there are tracks preserved as shallow 

impressions or natural casts of these impressions, could be under this environmental 

scenario. Exposed sand bars of the fluvial channels allowed for footprint preservation 

due to the more cohesive surface on the contact zone of the foot. Therefore, the 

underlying sediments are relatively water-satured, leading to the partial fluidization of 

these footprints. This preservational condition is also observed in fluvial deposits 

from the Lower Cretaceous of Sousa Basin (Brazil; Leonardi, 1994; Carvalho, 2000a, 

2000b, 2004) and Cameros Basin (Spain; Pérez-Lorente, 2015).

4.3. The trackmakers from the Upper Jurassic of Cabo Mondego

The identification of the trackmakers of Arenitos da Boa Viagem Formation 

has important palaeoecological implications for the Upper Jurassic dinosaur 

community and Late Jurassic ecosystem reconstructions. If the footprints are seen in 

cross-section, as in the case described herein, it is very difficult to classify them and 

to identify the trackmaker. In the theropod footprints, it is possible to observe the 

vertical to oblique walls of the footprint. In the middle point, there is generally a 

pointed, triangular sharp section that deepens down to the bottom layer. It is 

interpreted as the impression of digit III, deeper than the others. Digit III sustains the 

weight of the trackmaker, allowing for greater evidence of the toe print as found in 

ABV levels 4 and 7 (Figs. 7B, 9A). Another possibility is that it (in section) 

represents a scratch mark made by the claw of digit III throughout the footprint, as 

observed in Lower Cretaceous footprints in Brazil (Carvalho et al., 2021; Leonardi 

and Carvalho, 2021). When they are observed on the surface of the bedding plane, 

such as the footprints of ABV levels 3 and 5, they are tridactyl, mesaxonic and show 

pointed digits indicating the presence of claws (Figs. 6C, 8C).

Other aspects of theropod footprints observed in cross-sections and track-

bearing paleosurfaces (Figs. 4, 7) are pointed projections, in distinct penetration 

depths, that could correspond to the transverse view (normal to the orientation of the 

toes) of the footprints. A similar aspect is observed in the experimental data of 



Falkingham et al. (2020). The laminations that are drawn downwards produce tightly 

nested V-shapes, and there are other, more deformed levels, as particles are pushed 

aside by the rising foot. Another possibility is a prominent pointed central 

deformation (Fig. 7B), which probably corresponds to digit III of large or robust 

theropod footprints in a low cohesive substrate.

It is very difficult to pinpoint the identity of the theropod trackmaker based on 

footprints (Rauhut et al., 2018). Theropod footprints are generally attributed to large 

theropods with “megalosaurian affinity”, although the giant theropod trackmakers 

known from the Late Jurassic of the Iberian Peninsula probably include members of 

the ceratosaurid, allosaurid, and megalosaurid dinosaurs (Holtz et al., 2004; Tykoski 

and Rowe, 2004; Carrano et al., 2012; Marty et al., 2018; Rauhut et al., 2018). Some 

osteological remains from the Late Jurassic of Lusitanian Basin are also attributed to 

these groups (Mateus, 1998; Mateus et al., 1998; Pérez-Moreno et al., 1999; Mateus 

and Antunes, 2000; Mateus et al., 2006; Malafaia et al., 2010, 2015, 2016, 2017a, 

2017b, 2019; Mateus and Milàn, 2010; Hendrickx and Mateus, 2014).

A simple division of the theropod footprints into two ichno-groups is based on 

their sizes (Cobos et al., 2014). Ichno-group 1 is composed of slender, large theropod 

footprints of Allosauridae theropods (such as Bueckeburgichnus, Hispanosauropus, 

Megalosauripus), while ichno-group 2 is made up of robust morphotypes, produced 

by giant Megalosauridae theropods (e.g., Eutynichnium, Iberosauripus, Jurabrontes). 

Rauhut et al. (2018) considered that the slender large footprints might have been made 

by a wide variety of basal tetanurans; in addition to allosaurids, there were also 

metriocanthosaurids, afrovenatorine megalosaurids and exceptionally large 

ceratosaurs. Also, Razzolini et al. (2017), Marty et al. (2018), and Belvedere et al. 

(2019) made some revisions of Megalosauripus footprints. The division of theropod 

footprints can be based on the foot length (FL) following Belvedere et al. (2019): 

large and gracile (30 < FL< 50 cm); and giant and robust (FL > 50 cm). Another 

possibility is the classification based on ichnotaxonomy (ichnogenus and 

ichnospecies) as proposed by Castanera et al. (2020a, 2020b).

The footprints observed at Cabo Mondego indicate a change in the 

morphotypes of Cobos et al. (2014) throughout the Upper Jurassic succession. There 

is a dominance of ichno-group 1 in the Arenitos da Boa Viagem Formation, with 

slender large theropod footprints, and few that may be attributed to ichno-group 2, 

composed of robust morphotypes. The same occurs at the levels found in the lower 



division of the Calcários Hidráulicos. This contrasts with the older succession at the 

Complexo Carbonoso unit, where palaeosurfaces of limestones and marls present a 

clear dominance of footprints of the ichno-group 2, more robust footprints attributed 

to megalosaurids (Nopsca, 1923; Lapparent et al., 1951; Lessertisseur, 1955; 

Lapparent and Zybszewski, 1957; Lockley et al., 1996, 1998).

Two interpretations can be proposed concerning this ichnofauna change in the 

Upper Jurassic succession of Cabo Mondego. The first possibility is environmental 

control in the distribution of dinosaur track makers. The Complexo Carbonoso is 

interpreted as deposited with brackish to freshwater carbonate and siliciclastic coastal 

environments, and the footprints were produced in the exposed sedimentary beds. 

Here, in the preferred environments for megalosaurids, possibly in search of suitable 

food (Razzolini et al., 2016), robust footprints interpreted as megalosaurid 

trackmakers prevail. In the lower division of Calcários Hidráulicos (footprints 

produced in exposed freshwater limestones) and in the lower part of the Arenitos da 

Boa Viagem Formation (footprints produced in exposed sand bars and crevasses of a 

deltaic plain), theropod footprints are slender and less robust, probably related to 

allosaurid morphotypes. However, it is also possible to consider that this represents a 

faunistic succession through time. The robust footprints end at the top of the 

Complexo Carbonoso unit and the next unit (lower division of the Calcários 

Hidráulicos), both of middle Oxfordian age, only contains footprints of slender large 

Theropoda. The studied sandstone levels of the lower part of the Arenitos da Boa 

Viagem Formation (lowermost Kimeridgian), deposited in a deltaic setting, also only 

contains footprints of slender large Theropoda. In addition to representing a new 

ecological space, they are also in a later time span (early Kimmeridgian) in the 

succession of Cabo Mondego. So the morphotype changes could be related to new 

environmental scenarios in a distinct time, with new trackmakers. Such changes over 

the Jurassic–Cretaceous are also observed in other dinosaur footprints, like the 

sauropod footprints of the Cameros Basin, in Spain (Moratalla, 2009; Moratalla and 

Hernán, 2010).

In the Lusitanian Basin, large theropods such as Megalosaurus, 

Lourinhanosaurus, Allosaurus, Torvosaurus, Lusovenator, for the Late Jurassic, and 

Megalosaurus and Baryonyx for the Lower Cretaceous (Lapparent and Zbyszewski, 

1957; Dantas et al., 1999; Antunes and Mateus, 2003; Ortega et al., 2006; Buffetaut, 

2007; Figueiredo, 2008, 2014; Mateus et al., 2011; Hendrickx and Mateus, 2014; 



Figueiredo et al., 2015; Belvedere et al., 2019; Malafaia et al., 2019, 2020; Castanera 

et al., 2020a, 2020b) have been identified. The analysis of the Cabo Mondego 

footprints is relevant as good evidence of a distinct theropod fauna throughout the 

Late Jurassic in the Lusitanian Basin (Fig. 10). This evaluation could enable a better 

understanding of the faunal exchange corridors between further south (Iberian Massif 

– Massif Central and North Africa, Morocco) and further north (Rhenish Massif – 

London-Brabant Massif), as proposed by many authors (e.g., Meyer, 1993; Marty et 

al., 2018; Rauhut et al., 2018). The footprints in Cabo Mondego play an important 

role in the assessment of such faunal exchanges during sea level lowstands, and the 

paleoenvironmental control on the distribution of distinct trackmakers in lagoon and 

deltaic settings throughout the Late Jurassic.

5. Conclusions

In the Lusitanian Basin, there are a great number of Middle and Upper Jurassic 

sedimentary successions with dinosaur footprints and dinoturbation structures. This 

study analyzes the stratigraphic distribution of dinoturbation structures from the 

Upper Jurassic of Cabo Mondego (western central Portugal). These structures are 

good evidence of the diverse theropod fauna in the Lusitanian Basin throughout the 

Late Jurassic.

Besides paleobiological insights into trackmakers, footprints also provide 

information about the substrate stepped on by the dinosaurs. The affected substrate 

trampled from the surface to its whole deformable thickness enables the interpretation 

of the substrate consistency when the track was formed. In the lower part of the 

Arenitos da Boa Viagem Formation, the studied dinosaur footprints are distributed 

over eight levels, generally in siltstones and fine- to medium-grained sandstones. 

They are preserved as true footprints on the sedimentary bedding surface, natural cast 

infillings, or as cross-section casts. There are also transmitted prints, originated by the 

load induced after stepping on the surface. Dinoturbation may disturb a single bed or 

successively alternate beds, and there is a wide variety of track patterns due to the 

deformation, especially when observed as cross-section footprints.

Penetration of the foot in the substrate can be an indication of the substrate’s 

original consistency. Three distinct cohesiveness patterns have been observed, defined 

by the penetration of the foot from the paleosurface. The most cohesive substrate 

considered to Arenitos da Boa Viagem succession, was when penetration reaches up 



to 15 cm from the palaeosurface. The cross-sections that are 30–45 cm deep 

demonstrate a different degree of substrate cohesiveness, which allowed for greater 

penetration of the foot in the substrate. In this case, there is another distinctive aspect: 

the upper borders of the concave deformations present higher convex edges. These are 

probably extrusion rims, a sign of greater substrate plasticity. The large contorted 

sandstone bulges indicate a higher degree of substrate deformation.

Identifying the trackmakers of the Cabo Mondego Upper Jurassic has 

important implications for ecosystem reconstructions. The footprints indicate a 

change in the morphotypes throughout the Upper Jurassic succession. There is a clear 

dominance of robust morphotypes in the Complexo Carbonoso (middle Oxfordian), 

while in the younger, lower division of Calcários Hidráulicos (middle Oxfordian) and 

in the lower part of Arenitos da Boa Viagem Formation (lowermost Kimmeridgian), 

almost only slender large theropod footprints are present.
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Figures captions

Fig. 1. Geological map, showing the location of the Cabo Mondego with 

dinoturbation in the Upper Jurassic Arenitos da Boa Viagem Formation (Lusitanian 

Basin, Portugal). Adapted from the Geological Map of Portugal, 1:500,000 (Oliveira 

et al., 1992).

Fig. 2. Synthetic stratigraphic column of the Upper Jurassic strata preserved at Cabo 

Mondego (adapted from Bernardes, 1992), showing the distribution of dinoturbation 

levels.



Fig. 3. Deformation structure related to the footprints found in the Calcários 

Hidráulicos lower division, mainly consisting of freshwater limestones. A digit cross-

section can be seen in the lower portion of a bed, pointing downward. The V-shaped 

deformation is considered related to digit III, which sustains the weight of the 

trackmaker, allowing a greater evidence of the III digit print. The arrow points to the 

lower extremity of the V-shaped feature.

Fig. 4. ABV level 1 of the Arenitos da Boa Viagem Formation preserves three-

dimensional casts in cross-section. They are distributed within the same bedding 

interval, deforming up to 35 cm from the bedding surface. (A) A tridactyl footprint in 

the bedding-plane (indicated by an arrow) and in cross-section; the dashed line 

follows the contour of the footprint in the upper bedding plane. (B) A tubular 

structure (indicated by an arrow) connected to the lower portion of the footprint cross-

section. (C) A cross-section footprint presenting a pronounced V-shaped geometry, 

interpreted as produced by a theropod. (D) A detail of the footprint illustrated in (C) 

in which a digit is surrounded by fine crenulations (indicated by an arrow); this was 

interpreted as the fluidization of the sediments related to the load induced by the foot. 

Scale bar is 10 cm.

Fig. 5. Fine reddish sandstones with footprints from ABV level 2 of Arenitos da Boa 

Viagem Formation. (A) The dashed line is the level with footprints and the arrow 

indicates one footprint in cross-section. (B) A fallen block found directly beneath the 

track-bearing level 2 where natural casts are found. (C) Rounded mound showing 

fluidization and irregular interior division. (D) A small tridactyl, mesaxonic footprint 

(indicated by an arrow) on the bedding surface with crenulations filled with fine 

sandstone. (E) Distribution map of tridactyl footprints and also a rounded fluidized 

mound on the surface of an isolated block from the level 2 (illustrated in (B)) of the 

Arenitos da Boa Viagem Formation.

Fig. 6. ABV level 3 of the Arenitos da Boa Viagem Formation. (A) Track surface in a 

lower sandstone-bedding plane (observed from the bottom); the footprints are molds 

filled with coarse sandstone and present sharpened edges. (B) Isolated finger with a 

tubular shape and more rounded extremity. (C) A cast of a tridactyl, mesaxonic 



footprint filled with coarse-grained sandstone; deformation of the surrounding matrix 

around digit III; scale bar in cm.

Fig. 7. Cross-section footprints observed in ABV level 4 of the Arenitos da Boa 

Viagem Formation showing the high deformation of the substrate. (A) A cross-section 

dinoturbation as a large concave deformed bulge of sandstone; the dashed line is the 

lower limits of the deformation. (B) A cross-section footprint presenting an inclined 

V-shaped structure (indicated by an arrow) that is interpreted as the impression of 

digit III.

Fig. 8. Surface of ABV level 5 of the Arenitos da Boa Viagem Formation (A) 

presenting theropod footprints filled with massive (B) and fluidized sandstones. (C) 

Isolated theropod track with fluidization structures. (D) The surface of ABV level 6 of 

the Arenitos da Boa Viagem Formation preserves isolated digit impressions filled 

with a coarse sandstone; arrows indicate the digit impressions on this level.

Fig. 9. (A) Deformations of ABV level 7 of the Arenitos da Boa Viagem Formation, 

in which it is possible to observe large contorted bulges of sandstones; the arrow 

indicates a pointed tubular projection, probably related to a digit mold. (B) 

Dinoturbation of ABV level 8 of the Arenitos da Boa Viagem Formation in which 

superimposed conical projections (indicated by arrows) in the lower surface of ABV 

level 8, are interpreted as three-dimensional digit molds. (C) The highly reworked 

ABV level 8 of Arenitos da Boa Viagem Formation shows ridge and groove 

impressions (indicated by an arrow), interpreted as drag marks produced by the foot 

movement.

Fig. 10. Palaeoenvironmental reconstruction of Cabo Mondego area, with 

dinoturbation in the early Kimmeridgian siliciclastic levels of the Arenitos da Boa 

Viagem Formation (art by Pepi).

Abstract

At Cabo Mondego (western central Portugal), the Upper Jurassic marine to 

coastal succession contains several stratigraphic levels preserving dinosaur footprints 



on the surface bedding plane, as well as convolute bedding and soft sediment injection 

structures interpreted as dinoturbation structures. At least nineteen new three-

dimensional structures observed in cross-sections are interpreted as produced by 

dinosaur trampling. The identification of three-dimensional structures of dinosaur 

footprints provides an important complement to the information obtained from 

footprints preserved on single bedding surfaces, such as the substrate consistency, 

potential trackmaker identification, and the possibility to enhance the distinction of 

sauropods and tridactyl dinosaurs, and paleoenvironmental interpretations. In the 

lower part of the Arenitos da Boa Viagem Formation, eight levels of probable 

lowermost Kimmeridgian age (c. 157-156 mya), displaying the above-mentioned 

deformational structures, were analyzed in detail. They support interpretations 

concerning the relationship between the footprints and the substrate consistency at the 

time of their formation. Three distinct cohesiveness patterns, defined by the 

penetration of the feet from the paleosurface, are the result of different degrees of 

substrate cohesiveness. Identifying the trackmakers of levels belonging to the middle 

Oxfordian-lower Kimmeridgian has important implications for Late Jurassic 

ecosystem reconstructions, as the footprints observed in Cabo Mondego indicate a 

change in the morphotypes throughout the Upper Jurassic succession. 




















