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Abstract 

The pelvis is consistently regarded as the most sexually dimorphic region of the human skeleton, 
and methods for sex estimation with the pelvic bones are usually very accurate. In this 
investigation, population-specific osteometric models for the assessment of sex with the pelvis 
were designed using a dataset provided by J.A. Serra (1938) that included 256 individuals (131 
females and 125 males) from the Coimbra Identified Skeletal Collection and 38 metric variables. 
The models for sex estimation were operationalized through an online application and decision 
support system, CADOES. Different classification algorithms generated high accuracy models, 
ranging from 85% to 92%, with only three variables; and from 85.33% to 97.33%, with all 38 
variables. CADOES conveys a probabilistic prediction of skeletal sex, as well as a suite of 
attributes with educational applicability in the fields of human skeletal anatomy and statistics. This 
study upholds the value of the pelvis for the estimation of skeletal sex and provides models for 
that can be applied with high accuracy and low bias. 
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Introduction 

Sex diagnosis is a fundamental step for establishing the biological profile, and thus is of critical 
importance in the forensic task of identifying human skeletal remains [1]. In forensic anthropology 
and bioarcheology, most methods for sex estimation rely on statistical models generated through 
osteometric data collected from identified populations [2]. Among all the regions of the human 
skeleton, the pelvis has for long been consensually regarded as the most sexual dimorphic [3–5] 
and, as such, it is the most appropriate for the creation of such predictive models. Pelvic sexual 
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dimorphism is strongly connected with the opposing selective pressures of bipedalism and 
parturition. Adaptative dissimilarities between sexes in the pelvis are likewise an outcome of 
sexual selection [6,7]. Furthermore, pelvic anatomy is contingent to developmental plasticity (as 
a consequence of ecological, climate and nutritional factors) and neutral demographic processes 
[6,8,9]. 

Sexual dimorphism in the pelvic region has been studied and documented for long [10–15] but, 
before the influential work by Phenice (1969), the methods for the estimation of sex based on 
pelvic morphology were scarce and subjective. Phenice’s [5] technique involves the visual 
evaluation of three pelvic elements, namely the ischiopubic ramus, the subpubic concavity, and 
the ventral arc. The method is straightforward and precise, with published accuracy rates ranging 
from 83% to 96% [16–19]. Notwithstanding, accuracy rates are observer-dependent [17]. Other 
morphoscopic methods include, e.g., those by Brůžek [20] and Klales et al. [21]. Metric data from 
the pelvis has also been commonly used for sex assessment [2,22–28]. Comparably to the 
studies addressing pelvic morphology in the estimation of sex, metric studies also yield 
exceedingly high accuracy rates [29–32].  

The manuscript A Pelve nos Portugueses: Morfologia da Pelve no Homem [4] is a classic 
anthropological description of the pelvic complex in a late 19th – early 20th centuries sample of 
Portuguese skeletal remains [33,34]. Unfortunately, A Pelve nos Portugueses is merely 
descriptive in a statistical sense, as it was typical for contemporary anthropometry works. Instead, 
our purpose is to use the raw data provided in the manuscript to create new approaches for sex 
estimation based on morphometric features of the pelvic bone complex. As such, the web 
application and decision support system CADOES [35] is presented. The acronym stands for 
Classificação Automatizada de Dados Osteométricos para Estimar o Sexo, or sex estimation 
through automated classification of osteometric data. CADOES is available at 
http://osteomics.com/CADOES and features a sex estimation framework that allows greater 
flexibility to the user enabling the selection of metric variables, as well as the statistical learning 
algorithms and cross-validation parameters, thus empowering users to iterate through available 
variables and statistical parameters until achieving a suitable model for any given samples or 
individuals. 

 

Materials and Methods 

The original paper by Serra [4] provided a dataset (Appendix, pp. 143 – 172, available at 
https://impactum.uc.pt/pt-pt/artigo/pelve_nos_portugueses_morfologia_da_pelve_no_homem; 
also obtainable at http://osteomics.com/CADOES/Dados-Serra-1938.zip) comprising a total of 
256 individuals (131 females and 125 males) and 40 variables. All individuals were Portuguese 
nationals from the Coimbra Identified Skeletal Collection [CISC, 34]. The first two variables 
encompass ID and Sex, while the remaining 38 are osteometric variables, more precisely 32 
Euclidean distances between anatomic landmarks and six angles of the pelvis (Table 1; Figure 
1). The original measurements followed the operational definitions by Frassetto [36] and Martin 
[37]. Some data cleaning procedures had to be performed in order to prepare the dataset for a 
suitable statistical analysis [38]. 

Probably due to transcription errors, there were some repeated ID’s in the original publication, 
with three ID’s appearing twice in the original spreadsheet (individuals 76, 233 and 235). Since 
the original ID’s from the incorrectly marked individuals could not be determined, an ‘A’ was added 
to the label of the second individual appearing by row order. So, to correct these inaccuracies, 
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these individuals were labeled as 76A, 233A and 235A. Another necessary data cleaning step 
involved the variable Altura Máxima da Bacia (maximum pelvic height). It appears as a sole 
variable from page 143 to 157, but from page 158 until the end it is divided into two variables, by 
left and right side: Altura Máxima da Bacia (esquerda) and Altura Máxima da Bacia (direita). An 
option for the most parsimonious solution was made, and the arithmetic mean from the left and 
right measurements was calculated in order to keep only one variable that represents the 
maximum pelvic height. All individuals (ID’s 11, 33, 34, 40 and 108) containing missing values 
were removed. A reduction of less than 2% of the original dataset row-wise avoids adding error 
to the training set associated with the estimation of missing values. Thus, for generating models 
for sex estimation, a final dataset containing a total of 251 individuals was used (130 females and 
121 males).  

All data analyses were performed with R, and a web app was developed with the Shiny package 
for R [39,40]. Different modelling techniques can be applied to the same binary classification task, 
but error rates vary in distinct datasets, particularly those composed by real data. As such, users 
can select and test the results for the following classification models: k-Nearest neighbors, naive 
Bayes, partial least squares, linear discriminant analysis, flexible discriminant analysis, 
generalized additive model using splines, boosted logistic regression, penalized logistic 
regression, decision trees, random forests, stochastic gradient boosting and a simple 
classification neural network. The K-nearest neighbor is an instance-based learning classifier that 
stores the training data set and classifies new uncategorized records by comparing them to similar 
records in the training set. Naive Bayes algorithms are probabilistic classifiers grounded on 
Bayesian statistics featuring conditional independence assumptions. Partial least squares (for 
classification) is a supervised dimension reduction technique that was originally developed for 
regression problems. Linear discriminant analysis recognizes a linear combination of predictor 
variables that optimally splits mutually exclusive groups, and then creates a discriminant function 
that typifies the differences between groups and classifies new individuals with unspecified group 
membership. Flexible discriminant analysis is a nonparametric extension of the former method. 
Boosted logistic regression is an ensemble method that sequentially uses a generalized additive 
model and then applies the cost function of logistic regression. Penalized logistic regression 
enforces a penalty to the size of the L2 norm of the coefficients, decreasing the coefficients of 
less contributory variables towards zero. Decision trees are classification methods in the form of 
IF-THEN logical rules. Random forests are, fundamentally, an ensemble of multiple decision 
trees. Generalized additive models using splines are flexible methods used to identify and 
characterize nonlinear regression effects. Gradient boosting builds additive regression models by 
serially fitting a parameterized function to pseudo-residuals by least squares at each iteration and 
including randomization in the process. Finally, neural networks are adaptative models that imitate 
the nonlinear learning occurring in the neuronal networks found in animal brains [41–45]. These 
twelve machine learning algorithms were implemented using the caret package for R [46]. 
CADOES depends on caret to perform all calculations. While all algorithms available operate with 
different tuning parameters (automatically optimized during cross-validation), that information is 
indicated for each classification model in the app at Sex estimation > Predict > Model Information 
& Accuracy, after selecting and running a model (Figure 2). Hence, the web app allows end-users 
to perform different kinds of data exploration and analyses. CADOES requires at least two 
variables to generate a sex estimation model. The proficiency of the models was evaluated 
through the overall accuracy (a measure of total agreement between the real and the estimated 
sex) with corresponding 95% confidence intervals, Cohen's Kappa (an evaluation of the 
performance of a specified classifier as related to chance only), sensitivity (the ratio of females 
correctly classified), and specificity (the ratio of males properly classified), and the area under the 
curve (AUC) [42]. 
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Results  

Descriptive statistics, including group means, standard deviations, medians, and minimum and 
maximum values, are summarized in Table 2.  

CADOES can generate a virtually endless number of models; as such, in order to present results 
concisely many of the parameters were fixed, as follow: data was split into training and testing 
samples containing respectively 70 and 30% of all individuals, and, as a preprocessing step, all 
variables were centered and scaled. The repeated k-fold cross-validation parameters were also 
kept fixed, as folds = 10 and repeats = 10. The use of a robust cross-validation strategy can 
mitigate overfitting. In order to enhance results reproducibility, the seed was set at 19920804 (first 
author’s birth date) for pseudorandom number generators during cross-validation and model 
fitting. Results for all classification methods currently available in CADOES are presented. For 
each classification algorithm, two types of models were created, containing either three or all 
variables of our dataset. AMB (maximum pelvic height) + LB (bispiniatic width) + ASP (subpubic 
angle) were selected for the three-variable models, since these are highly dimorphic. All results 
presented are from confusion matrices of trained prediction scores against the testing dataset. 
Despite only using three measurements, six of the twelve models obtained overall accuracies 
superior to 90% on the holdout (testing) dataset. Among these, the best models were the partial 
least squares, LDA, and neural networks (Table 3). Parenthetically, if three more variables were 
added, for example PFIe + AAId + LAE, while keeping all the parameters just mentioned, the 
same neural network architecture would present an overall accuracy of 94.67% under the robust 
cross-validation scheme aforementioned. 

When using all the 38 variables, overall accuracies ranged from 85.33 to 97.33%. In this case, 
the best models were a partial least squares model (AUC = 97.04%), a logistic regression with a 
quadratic penalization (AUC = 96.90%), and again a neural network (AUC = 96.73%). These three 
models had an overall accuracy of 97.33%, a sensitivity of 94.87%, a specificity of 100% and a 
kappa of 94.67%. Despite having the best results (Table 4), users might avoid using such models, 
since similar performance metrics can be obtained by just measuring three to six variables, as 
shown above. The expert ought to consider the time it takes to record measurements before 
starting its own protocol. 

 

Discussion 

The assessment of sex represents a key research task in the forensic and bioarcheological 
examination of unknown human skeletal remains [1]. Sex estimation methods have focused in 
different bones [3,47,48] but the pelvis prevails as the most sexually dimorphic skeletal region 
[3,5,8]. As such, the conception of new methods or the enhancement of preexisting techniques 
for sex estimation with the pelvis is justified.  

CADOES stems from the recommendation of population specific standards for sex estimation and 
makes available novel features for the investigation of sexual dimorphism in the pelvic 
morphological complex, including (1) exploratory analyses of the original dataset through density 
plots, boxplots, scatterplots and correlation matrices; (2) the generation of virtually unlimited 
classification models based on the variables of the dataset selected by the user/expert, plus the 
implemented machine learning algorithms and their validation parameters; (3) the use of robust 
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methods of cross-validation and partitioned testing in order to access accuracy (with 95% 
confidence intervals), no information rate, kappa, specificity and sensitivity, positive and negative 
predictive values, prevalence, detection rate, detection prevalence, balanced accuracy, area 
under the curve, precision, recall, F-1 value, and variable importance of the generated models; 
and (4) the prediction of sex with pelvic bones using the models generated and data inputted by 
the users. The web implementation of CADOES (http://osteomics.com/CADOES/) generates 
models for sex estimation based on different classical and machine-learning classifiers, as 
selected by the user, and offers a probabilistic determination of sex according to the Daubert 
guidelines [47]. 

Coinciding with other hip-based techniques for the assessment of sex in skeletal remains, 
CADOES exhibits high accuracy rates and low bias. A model using only three variables (maximum 
pelvic height, bispiniatic width and subpubic angle) achieves an accuracy of 92% under cross-
validation, with a six-variable model attaining an overall accuracy of 95%, comparable to the 
results obtained with other pelvic methods in different populations [22,24,27,49–52]. Although 
morphoscopic methods are the most readily applied, metric techniques are acknowledged as less 
observer-dependent and more reliable [22,50,53], and depict the overall pattern of variability 
within dissimilar populations [2]. 

In agreement with previous studies, pelvic height [e.g. 22,54,55] and the subpubic angle [e.g. 
14,50,56,57] appear as some of the most dimorphic variables in the models enacted by CADOES. 
Pelvic height is larger in males and suggests that size enacts an essential role in the dimorphic 
condition of the pelvic region. The broadest subpubic angles observed in female individuals are 
probably related with obstetrics [58], as obstetric problems, such as labor duration and risk of 
obstetric intervention due to poor progression, are inversely associated with the breadth of the 
subpubic angle [59]. Ilium blade length, bispiniatic width and the iliac fossa depth are also among 
the pelvic variables showing more sexual dimorphism. Ilium blade length, although defined 
differently from the iliac length or direct iliac length, shows the same pattern of sexual dimorphism, 
with males showing a longer ilium [e.g. 13,60,61]. Sexual dimorphism in ilium length starts at 15–
16 years of age and is mainly a function of differences in size [60]. Bispiniatic width (also known 
as midpelvic breadth) is larger in female individuals. Similar results were observed by Torimitsu 
et al. [57] in a sample of contemporary Japanese. In fact, dimensions that are larger in females 
are usually related with the pelvic inlet [61,62]. Bispiniatic width, being an obstetric dimension, 
has rarely been measured in skeletal remains; notwithstanding, it is particularly dimorphic and 
easy to measure [57]. Finally, the iliac fossa depth is greater in males. The iliac fossa is the large 
concave surface on the ventral surface of the ilium, and it is the origin site for the iliacus muscle 
[63]. If variable selection is possible, e.g., in the case of a well-preserved pelvis, these five most 
dimorphic variables should be used to estimate sex with CADOES. 

There are some limitations to CADOES. First, many measurements chosen by Serra [4] require 
the complete set of pelvic bones, including the sacrum, in order to be measured, and these 
measurements are not easy to perform. Unfortunately, this is an aspect of the original dataset 
that cannot be bypassed. To mitigate such problem, pelvis fragments and single bone 
measurements can be used for sex estimation, since the model generator can produce estimates 
with as few as two variables. In fact, univariable models are to be avoided as they usually are less 
accurate and more biased [22,50,64,65] and the number of variables required to yield the most 
accurate models generally range from two to eleven variables [54]. Another limitation is that metric 
methods are apparently population specific and tend to perform better within populations of similar 
height or general body proportions, since size in itself correlates more to these features than to 
sexual dimorphism [55,66,67]. Hence, methods to estimate sex from a skeletal remains ought to 
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use fitting regional data [68]. However, additional research has suggested that population-specific 
methods may not be essential for pelvic data [29,69]. 

Several of the CADOES advantages stem from its - at first glance - limitations. The web app is 
intended to bring not just a functional sex estimation tool that provides quality metrics, but also a 
didactic implement. In a classroom context, it can work as an interactive and stimulating tool for 
students, simplifying the study of classic anthropometrics and pelvic anatomy while giving some 
insight into modern statistical thinking, data visualization and processing as well as predictive 
modelling under the machine learning paradigm. CADOES expands the set of available web 
applications designed to simplify forensic and bioarcheological procedures, such as age at death 
and sex estimation [64,70–73].  

 

Conclusions 

CADOES upgrades the descriptive nature of J.A. Serra [4] work and generates user-tailored 
models for the estimation of sex that can be used with high accuracy and low bias in Portuguese 
populations. It can be used in fragmented pelvic bones and conveys a probabilistic estimate of 
sex. Additionally, the web app provides a set of features with pedagogic relevance in the fields of 
human pelvic anatomy and statistics. CADOES must endure further verification in skeletal 
remains of different geographical origins to evaluate its generalization to independent datasets 
and to validate its reliability in both forensic and bioarcheological contexts. 
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Figures captions: 

 

Figure 1 – A selection of metric variables that can be measured and used for sex estimation with 

CADOES. For a complete list see Table 1. For visual description of landmarks see help tabs in 

the web app (http://osteomics.com/CADOES/). 

 

 
 

Figure 2 – CADOES (http://osteomics.com/CADOES/) allows for the generation of different 

models for sex estimation with metric features of the pelvis. 
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Table 1: Variables available on CADOES that users can measure in order to create or test models, and to estimate sex of skeletal 
individuals. 

Euclidean distances 

Codename Portuguese 
(original) 

English Definition 

CE Conjugata externa External conjugate Diameter between the superior point of the pubic symphysis and 
the top of the spinous process of the 5th lumbar vertebra 

CA Conjugata 
anatómica 

Anatomical 
conjugate 

Distance between the sacral promontory and the anterosuperior 
margin of the pubic symphysis 

CO Conjugata obstétrica Obstetric conjugate Diameter from the sacral promontory to the posterosuperior point 
of the pubic symphysis 

CD Conjugata diagonalis Diagonal conjugate Diameter from the sacral promontory to the posteroinferior point 
of the pubic symphysis 

DIK Diâmetro inter-
koilons 

Inter-koilons 
diameter 

Distance between the koilons (i.e., the deepest points) of the pubic 
symphysis (posterior symphysis koilon) and the anterior face of 
the sacrum (sacral koilon) 

DSSB Diâmetro sagital da 
saída da bacia 

Inferior sacropubic 
diameter 

Diameter from the sacral apex to the inferior point of the pubic 
symphysis 

DVPS Diâmetro 
venterpubes-sacral 

External sagittal 
diameter 

Distance from the most anterior point on the symphyseal surface 
to the median sacral crest (sacral spine) 

LMP Largura máxima da 
pelve 

Maximum pelvic 
width 

Maximum distance between the lateral margins of the iliac crests 

LBAS Largura bispinilíaca 
antero-superior 

Macrospina width Distance between the anterior superior iliac spines (left and right) 

LBAI Largura bispinilíaca 
antero-inferior 

Microspina width Distance between the anterior inferior iliac spines (left and right) 

LBPS Largura bispinilíaca 
postero-superior 

Cryptospina width Distance between the posterior superior iliac spines (left and right) 

LBPI Largura bispinilíaca 
postero-inferior 

Metauricular width Distance between the apex of the posterior inferior iliac spines (left 
and right) 

LB Largura 
bispinisquiática 

Ischiatic spine width Distance between the ischiatic spines (left and right) 

DIEn Diâmetro inter-
endoischions 

Inter-endoischions 
diameter 

Distance between the endoischions; the endoischion is the point 
on the medial margin of the ischial tuberosity where it meets the 
sacrotuberous ligament 

DIEk Diâmetro inter-
ektoischions 

Inter-ektoischions 
diameter 

Distance between the ektoischions; the ektoischion is the point on 
the lateral margin of the ischial tuberosity most distant to the 
sagittal/median plan of the pelvis. 

DIKt Diâmetro inter-
kotilions 

Inter-kotylions 
diameter 

Distance between the kotylions; the kotylion is the mid-point in the 
acetabulum where the ilium, ischium and pubis bones converge. 

DIKI Diâmetro inter-
koilons da incisura 

Inter-koilon diameter Minimum distance between the acetabular fossae. Measured by 
locating the deepest point (koilon) in the acetabulum. 

DIP Diâmetro inter-
proobturatores 

Inter-obturator 
diameter 

Distance between the most superior points in the obturator 
foramen (proobturatum) 
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EIe Espessura ilíaca 
(esquerda) 

Iliac thickness (left) Distance between the left posterior superior iliac spine 
(cryptospina) and the superior point of the pubic symphysis 
(propubes) 

EId Espessura ilíaca 
(direita) 

Iliac thickness (right) Distance between the right posterior superior iliac spine 
(cryptospina) and the superior point of the pubic symphysis 
(propubes) 

LME Largura máxima do 
estreito 

Transverse diameter Greatest mediolateral distance between the right and left arcuate 
lines 

LAE Largura anterior do 
estreito 

Inter-pecten 
diameter 

Inter-pecten distance, pecten is defined as the point where the 
arcuate line meets with the iliopubic eminence 

DO1E Diâmetro oblíquo I 
do estreito 

Diagonal inlet I Distance between the right ilio-auricular point (proauricula) and 
the point where the iliopectinal eminence meets the arcuate line 
on the left (pecten). 

DO2E Diâmetro oblíquo II 
do estreito 

Diagonal inlet II Distance between the left ilio-auricular point (proauricula) and the 
point where the iliopectinal eminence meets the arcuate line on 
the right (pecten). 

AAIe Altura da asa ilíaca 
(esquerda) 

Iliac blade height 
(left) 

Distance from the mid-point of the arcuate line (arcuale) to the 
most elevated point of the iliac (epicrista) on the left iliac 

AAId Altura da asa ilíaca 
(direita) 

Iliac blade height 
(right) 

Distance from the mid-point of the arcuate line (arcuale) to the 
most elevated point of the iliac (epicrista) on the right iliac 

PFIe Profundidade da 
fossa ilíaca 
(esquerda) 

Iliac fossa depth 
(left) 

Distance from the most elevated point of the iliac (epicrista) to the 
point in the arcuate line between the arcuale (arcuate line 
midpoint) and the proauricula (point where the arcuate line meets 
the sacrum) 

PFId Profundidade da 
fossa ilíaca (direita) 

Iliac fossa depth 
(right) 

LS Largura da saída Outlet diameter Greatest distance of the points located between the infero-
posterior obturator foramen and the ischial spine, measured in the 
medial side of the hip bone. 

AMB Altura máxima da 
bacia 

Os coxa height Distance from the most inferior point in the ischial tuberosity 
(ischion) to the most superior point in the iliac (epicrista). 

ALPB Altura lateral da 
pequena bacia 

Lateral height of the 
lesser pelvis 

Distance from the most inferior point in the ischial tuberosity 
(ischion) to the ilio-auricular point (proauricula) 

AAPB Altura anterior da 
pequena bacia 

Anterior height of the 
lesser pelvis 

Distance from the most inferior point in the ischial tuberosity 
(ischion) to the point (pecten) where the iliopectinal eminence 
meets the iliopectinal line 

Angles  

Codename Portuguese 
(original) 

English Definition 

ASP Ângulo sub-púbico Subpubic angle Angular distance between the lines tangent to the inferior edge of 
the ischiopubic rami; vertex on the most inferior point where the 
pubic symphyses meet (metapubes). 

AIPe Ângulo de inclinação 
da pelve (esquerda) 

Pelvic angle (left) Avoid using this measurement. 

AIPd Ângulo de inclinação 
da pelve (direita) 

Pelvic angle (right) Avoid using this measurement. 

ADA Ângulo de 
divergência das 
asas 

Iliac blades 
divergence angle 

Angular distances between the left and right lines formed by the 
most lateral point of the iliac crest (exocrista) to the mid-point of 
the arcuate line (arcuale) 
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ASaP Ângulo sacro-pélvico Sacropelvic angle Angle from the tangent of the ventral facet of the 1st sacral vertebra 
to the line defined by the anatomical conjugate. 
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Table 2: Descriptive statistics, including mean, standard deviation (SD), median, and minimum and maximum values, for pelvic 
measurements in both sexes; Coimbra Identified Skeletal Collection (CISC). All measurements in millimeters.  

 Females Males 

Measurement Mean SD Median Min Max Mean SD Median Min Max 

CE 177.4 12.6 178.0 146 217 176.4 10.2 176.0 148.0 201.0 

CA 112.6 10.0 113.0 87 139 105.6 9.6 105.0 83.0 136.0 

CO 107.7 9.7 108.0 84 130 99.6 10.0 99.0 73.0 134.0 

CD 122.9 9.8 122.5 100 145 117.9 10.3 117.0 92.0 150.0 

DIK 127.9 9.3 128.0 103 150 121.1 7.6 121.0 101.5 145.0 

DSSB 116.1 9.0 116.0 90 137 109.1 8.2 110.0 84.0 129.0 

DVPS 162.5 11.7 162.5 133 195 159.9 9.4 160.0 140.0 189.0 

LMP 262.5 17.3 261.5 220 306 261.8 13.4 261.0 232.0 299.0 

LBAS 226.2 17.3 225.0 185 267 226.0 14.2 224.0 184.0 260.0 

LBAI 186.6 12.0 187.5 137 213 186.8 12.2 188.0 130.0 220.0 

LBPS 73.2 9.3 72.5 52 101 67.9 7.0 68.0 50.0 85.0 

LBPI 88.2 6.42 88.0 72 109 87.5 5.2 87.0 75.0 102.0 

LB 103.8 9.4 103.0 83 129 89.2 7.0 88.0 74.0 108.0 

DIEn 122.9 12.2 122.0 102 159 110.4 10.6 110.0 85.0 134.0 

DIEk 148.2 11.8 147.0 122 180 139.7 10.2 139.0 115.0 168.0 

DIKt 138.7 10.2 139.5 113 164 136.0 10.2 137.0 107.0 161.0 

DIKI 114.6 8.0 114.0 96 135 109.4 6.4 109.0 96.0 127.0 

DIP 56.0 7.1 55.5 41 73 50.1 5.8 50.0 38.0 63.5 

EIe 161.8 11.0 162.0 134 196 159.9 8.5 160.0 138.0 184.0 

EId 163.6 11.5 163.0 135 199 161.3 8.2 161.0 136.0 182.0 

LME 130.3 8.4 130.0 114 155 123.2 6.0 123.0 110.0 138.0 

LAE 124.4 8.4 125.0 100 145 116.0 7.0 116.0 92.0 134.0 

DO1E 124.6 7.4 124.0 108 145 118.3 6.0 118.0 106.0 131.0 

DO2E 122.8 7.3 123.0 104 143 117.7 5.7 118.0 106.0 133.0 

AAIe 99.8 6.1 100.0 80 114 106.2 6.1 106.0 92.0 119.0 

AAId 98.6 6.0 99.0 78 113 104.9 5.6 104.0 92.0 118.0 

PFIe 4.8 2.4 5.0 0 11 8.3 2.4 8.0 3.5 14.5 

PFId 4.9 2.3 5.0 0 12 8.2 2.3 8.0 3.0 14.5 

LS 111.6 9.3 112.0 88 134 99.5 7.3 99.0 86.0 116.0 

AMB 190.7 9.5 191.0 167 211 206.5 9.9 207.0 181.0 229.0 

ALPB 116.7 6.5 116.0 102 132 122.6 7.7 121.5 107.0 140.0 

AAPB 110.9 7.8 111.0 88 129 115.1 5.8 115.0 101.0 128.0 

ASP 79.3 8.6 80.0 52 97 66.5 8.7 67.0 43.0 90.0 

AIPe 6.5 5.3 6.0 -8 25 6.2 5.9 6.0 -10.0 20.0 

AIPd 5.1 5.3 5.0 -8 21 5.4 5.7 4.0 -8.0 19.0 

ADA 98.9 10.1 100.0 77 126 98.6 9.3 98.0 78.0 123.0 

ASaP 98.4 12.3 98.0 70 127 100. 14.3 101.0 67.0 138.0 

ASaL 218.5 7.9 218.0 189 240 215.5 13.9 217.0 119.0 236.0 
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Table 3: The same three variables (AMB + LB + ASP) were selected in all models for sex estimation. Model accuracy for the training 
and testing (containing 30% of the data) samples. All other goodness-of-fit metrics were obtained from the testing set. All models 
generated using 19920804 as seed; 10 repeats of 10-fold cross-validation on a 70% data partition for training.  

Model Accuracy (Training) Accuracy (Testing) 95%CI.lower 95%CI.upper Kappa Sensitivity Specificity AUC 

kernelpls 0.9230 0.9200 0.8340 0.9701 0.8408 0.8462 1 0.9609 

knn 0.9207 0.9067 0.8171 0.9616 0.8144 0.8205 1 0.5427 

nb 0.9203 0.8667 0.7684 0.9342 0.7352 0.7692 0.9722 0.9467 

lda 0.9218 0.9200 0.8340 0.9701 0.8408 0.8462 1 0.9610 

fda 0.9060 0.8533 0.7527 0.9244 0.7084 0.7692 0.9444 0.9573 

gamSpline 0.9275 0.9067 0.8171 0.9616 0.8140 0.8462 0.9722 0.9611 

LogitBoost 0.8842 0.8533 0.7527 0.9244 0.7090 0.7436 0.9722 0.8971 

plr 0.9207 0.9067 0.8171 0.9616 0.8144 0.8462 0.9722 0.9562 

CART 0.8180 0.8533 0.7071 0.9244 0.7071 0.8205 0.8889 0.7803 

rf 0.8784 0.8667 0.7684 0.9342 0.7357 0.7436 1 0.8055 

gbm 0.9039 0.8667 0.7684 0.9342 0.7352 0.7692 0.9722 0.9507 

nnet 0.9219 0.9200 0.8340 0.9701 0.8408 0.8462 1 0.9554 

Partial Least Squares = kernelpls, k-Nearest Neighbors = knn, Naive Bayes = nb, Linear Discriminant Analysis = lda, Flexible 

Discriminant Analysis = fda, Generalized Additive Model using Splines = gamSpline, Boosted Logistic Regression = LogitBoost, 

Penalized Logistic Regression = plr, Decision Tree = CART, Random Forest = rf, Stochastic Gradient Boosting = gbm, Neural Network 

= nnet. 
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Table 4: Goodness-of-fit of the models when all 38 variables were used to estimate sex. Model accuracy for the training and testing 

(containing 30% of the data) samples. The other metrics were obtained from the testing set. All models generated using 19920804 as 

seed; 10 repeats of 10-fold cross-validation on a 70% data partition for training. 

Model Accuracy (Training) Accuracy (Testing) 95%CI.lower 95%CI.upper Kappa Sensitivity Specificity AUC 

kernelpls 0.9618 0.9733 0.9070 0.9968 0.9467 0.9487 1 0.9704 

knn 0.9368 0.9600 0.8875 0.9917 0.9201 0.9231 1 0.7199 

nb 0.9170 0.9200 0.8340 0.9701 0.8408 0.8462 1 0.9106 

lda 0.9386 0.9467 0.8690 0.9853 0.8932 0.9487 0.9444 0.9642 

fda 0.9128 0.9467 0.8690 0.9853 0.8932 0.9487 0.9444 0.9634 

gamSpline 0.8989 0.9467 0.8690 0.9853 0.8932 0.9487 0.9444 0.2214 

LogitBoost 0.8947 0.9067 0.8171 0.9616 0.8136 0.8718 0.9444 0.9017 

plr 0.9108 0.9733 0.9070 0.9968 0.9467 0.9487 1 0.9690 

CART 0.8019 0.8533 0.7527 0.9244 0.7071 0.8205 0.8889 0.7803 

rf 0.9300 0.9600 0.8875 0.9917 0.9201 0.9231 1 0.9662 

gbm 0.9131 0.9600 0.8875 0.9917 0.9200 0.9487 0.9722 0.9618 

nnet 0.9630 0.9733 0.9070 0.9968 0.9467 0.9487 1 0.9673 

Partial Least Squares = kernelpls, k-Nearest Neighbors = knn, Naive Bayes = nb, Linear Discriminant Analysis = lda, Flexible 

Discriminant Analysis = fda, Generalized Additive Model using Splines = gamSpline, Boosted Logistic Regression = LogitBoost, 

Penalized Logistic Regression = plr, Decision Tree = CART, Random Forest = rf, Stochastic Gradient Boosting = gbm, Neural Network 

= nnet. 
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