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Abstract 

 

Our ability to recognize an object amongst many exemplars is one of our most important 

features, and one that putatively distinguishes humans from non-human animals and potentially 

from (current) computational and artificial intelligence models. We can recognize objects 

consistently regardless of when we see them suggesting that we have stable representations 

across time and different contexts. Importantly, little is known about how humans can replicate 

within-category object representations across time. Here, we investigate neural stability of 

within-category object representations by computing the similarity between representational 

geometries of activity patterns for 80 images of tools obtained on different fMRI scanning days. 

We show that within-category representational stability is observable in regions that span lateral 

and ventral temporal cortex, inferior and superior parietal cortex, and premotor cortex – regions 

typically associated with tool processing and visuospatial processing. We then focus on what 

kinds of representations best explain the representational geometries within these regions. We 

test the similarity of these geometries with those coming from the different layers of a 

convolutional neural network, and those coming from perceived and veridical visual similarity 

models. We find that regions supporting within-category representational stability show 

stronger relationship with higher-level visual/semantic features, suggesting that neural 

replicability is derived from perceived and higher-level visual information. Within category 

representational stability may thus originate from long-range cross talk between category-

specific regions (and in this case strongly within ventral and lateral temporal cortex), over more 

abstract, rather than veridical/lower-level, visual (sensorial) representations, and perhaps in the 

service of object-centered representations. 
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Introduction 

Object recognition is a computational hard problem that humans solve, seemingly 

effortlessly, every day, and that requires stable representations at different levels of 

generalization (e.g., Baylis & Driver, 2001; Booth & Rolls, 1998; DiCarlo & Cox, 2007; Grill-

Spector et al., 1999; Konen & Kastner, 2008; Pourtois, Schwartz, Spiridon, Martuzzi, & 

Vuilleumier, 2009; Rollenhagen & Olson, 2000). We can certainly recognize a hammer as a 

manmade object, as a graspable object, or as a tool (i.e., at the superordinate/category level), as 

well as a hammer (i.e., basic/type level) or even as my hammer (versus my neighbor’s hammer; 

i.e., the subordinate/exemplar level), and we do so consistently across time. This 

representational stability provides the cognitive system with sufficiently detailed information 

for adequate and consistent discriminability of and disambiguation between different objects, 

irrespective of the current context. Importantly, different levels of categorization (e.g., 

superordinate versus basic level) will need different grains of information to be replicable at 

different times in order to accurately categorize and recognize a stimulus – for instance, the 

degree of informational specificity required to categorize an object as my hammer may be 

orders of magnitude higher than that necessary for categorizing a hammer as a tool. Here we 

focus on how stable are object-specific within-category neural representations across time by 

looking at how similar neural patterns for a set of individual tools are in two functional magnetic 

resonance imaging (fMRI) sessions separated by at least a week. 

Object identification and object categorization are perfect examples of processes that 

need different levels of generalization. In object categorization, when particular criteria at the 

superordinate level are satisfied objects are recognized as members of a single category (e.g., 

criteria: inanimate, graspable, manmade; categorization output: tool) (Serre, Oliva, & Poggio, 

2007; Warrington & McCarthy, 1987). In object identification, however, objects are recognized 

specifically when considering a set of object-specific features at the basic level (e.g., criteria: 

inanimate, graspable, manmade; features: it cuts, it has a blade, it has a handle, it is serrated, it 

is used in the kitchen; identification output: knife) (Gerlach & Marques, 2014; Riesenhuber & 

Poggio, 2002; Tyler & Moss, 2001). Although these are equally important and demanding 

processes, we go about our world mostly by identifying objects rather categorizing them. 

Surprisingly, the majority of the studies hitherto have focused on object representations across 

a fixed set of categories in lieu of exploring within-category representations (Charest, Kievit, 

Schmitz, Deca, & Kriegeskorte, 2014; Cichy, Khosla, Pantazis, Torralba, & Oliva, 2016; 

Kriegeskorte, Mur, & Bandettini, 2008; Kriegeskorte, Mur, Ruff, et al., 2008; Mur et al., 2013). 

In spite of variance in structural dimensions within a category, object representations have been 

explored (Cree & McRae, 2003; Marques, Raposo, & Almeida, 2013). For instance, Charest 

and colleagues (Charest et al., 2014) showed that representational geometry for objects from 

different categories (e.g., bodies, faces, places, objects) remained consistent in early visual 
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cortex and inferior temporal cortex across different scanning days.  

One unaddressed question then is how stable are within-category object-specific neural 

representations. When identifying an object, we need to gather fine-grain, perhaps multimodal 

and conceptual information in order to choose the target object type amongst other candidate 

object types and reach an identification decision (e.g., choose a hammer from a set of possible 

objects such as an axe, a knife, a screwdriver, etc.). In fact, it is perhaps possible that visual 

information, although extremely informative for some object categorization decisions (e.g., 

Almeida et al., 2014; Cree & McRae, 2003; Marques et al., 2013; Sakuraba, Sakai, Yamanaka, 

Yokosawa, & Hirayama, 2012), is not sufficient for object type identification, and that high-

level sensory (visual) and non-sensory information is needed for (within-category) object 

identification. Moreover, it is also probable that certain aspects of conceptual representation – 

aspects that are constitutive of the concept – may be stable across different instantiations, and 

may be grounded by other object-related information that are triggered by context and the 

situational aspects at play at the specific time the concept is instantiated (e.g., when KNIFE is 

presented in the context of us wanting to spread some butter, cut a juicy piece of meat, or 

sharpen a wooden stick for toasting marshmallows different instantiations may be achieved) 

(e.g., Mahon & Caramazza, 2008). Thus, looking at conceptual stability (through the lens of 

representational stability) across different instantiations of an object (e.g., the same object being 

recognized at different times, under different contexts and situational pressures) may give us 

leverage over the complex questions of object representation.   

In the current study, we examine what factors contribute to neural stability of within-

category object-specific representations using fMRI and Representational Similarity Analysis 

(RSA) (e.g.,Kriegeskorte, Mur, Ruff, et al., 2008; Lee, Mahon, & Almeida, 2019). Specifically, 

we focus on how replicable are tool representations across the brain by inspecting how similar 

multivariate response patterns are for 80 individual tool items across two independent fMRI 

scanning sessions separate by at least a week. We will then focus on whether regions that show 

high within-category representational stability are better explained by different levels of visual 

features (i.e., lower to higher visual features) by comparing neural similarity within these 

regions with object-specific similarity at different layers of a convolutional neural network 

(CNN; Krizhevsky, Sutskever, & Hinton, 2012). Finally, we will test whether neural similarity 

in these regions is dictated by perceived or veridical (i.e., pixel-to-pixel) visual similarity 

between the tools used. We predict that regions within temporal and parietal and premotor 

associative cortex, typically involved in high-level processing of tools (e.g., Almeida, Fintzi, & 

Mahon, 2013; Chao, Haxby, & Martin, 1999; Chao & Martin, 2000; Garcea, Kristensen, 

Almeida, & Mahon, 2016; Kristensen, Garcea, Mahon, & Almeida, 2016; Lee et al., 2019; 

Mahon, Kumar, & Almeida, 2013; Mahon et al., 2007; Noppeney, Price, Penny, & Friston, 

2006) will show high within-category (tool) object-specific representational stability across 
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fMRI sessions, as some of these regions represent amodal and stable properties of objects. 

Moreover, we predict that the representational geometries in these regions are better explained 

by later layers of the CNN and by perceived similarity between the tools, suggesting that within-

category replicability is dependent on higher-level abstract visual and conceptual 

representations. 
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Results 

 

Neural responses to tools were measured using whole brain fMRI in two different 

sessions acquired in different days. All participants completed 5 runs per session. Each 

participant was presented with 80 tool images, with different exemplars presented for odd and 

even runs. We extracted activity patterns from the neural responses in predefined regions-of-

interest (ROIs). We used the human Brainnetome Atlas composed of 246 ROIs within the two 

hemispheres to obtain more-fine grained brain regions, and used RSA to compute session-

specific representational similarity matrices (RDMs) and then extracted the representational 

structure of tool representations.   

 

Figure 1. Overview of experimental procedures and data processing pipeline. The experiment was 

composed of three different representations: (i) neural activity, (ii) hierarchical visual feature, and (iii) 

perceptual information. A) Twenty participants performed an object recognition task. Neural activity 

patterns for 80 tools were obtained from each brain region and neural RDMs were calculated based on 

the dissimilarity of all pairs of activity patterns; B) We used a convolutional neural network (CNN) to 

extract visual features of objects in low-, middle-, and high-level layers. CNN RDMs were calculated by 

the correlation distance between visual features; C) Sixty participants participated in an object-similarity 

judgment task in order to obtain perceptual representations Each participant’s sorting scores (i.e., the 

value is 1 if two presented tools are in the same pile, and zero if they are not) were averaged across 

participants to define perceived object similarity. All RDMs were compared each other by calculating 

the correlation between RDMs. 

 

Neural stability of within-category object-specific representations 

To test how replicable tool representations are across the brain, we averaged neural 

RDMs across subjects (N=20) for each cortical region and session. The group-averaged RDMs 

were compared between the sessions using Pearson correlation. Figure 2 presents cortical brain 

regions showing high within-category representational stability (Bonferroni corrected at p < 

0,05). All statistical inferences of neural stability in these regions are summarized in Table 1. 

Importantly, regions (out of the 246 ROIs used) that show high stability between the two 
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sessions include regions within the fusiform gyrus on the left, lateral temporal cortex bilaterally, 

angular gyrus and superior parietal lobule on the right and ventral premotor bilaterally – all 

regions typically involved in the processing of tools (left fusiform gyrus: Chao et al. (1999), 

Lee et al. (2019), Mahon et al. (2007); lateral temporal cortex: Almeida et al. (2013), Chao et 

al. (1999), Mahon et al. (2007); right superior parietal: Almeida et al. (2013), Garcea et al. 

(2016), Kristensen et al. (2016), Mahon et al. (2013); ventral premotor cortex: Binkofski and 

Buccino (2006)), and action and spatial processing (right angular gyrus: Farrer et al. (2008)). 

Moreover, early visual cortical (EVC) regions also show high stability.  

 

Figure 2. Distribution of brain regions with high neural stability of within-category object 
representations. Brain regions within temporal, frontal, visual, and parietal associative cortex show high 
neural stability across fMRI sessions. Significant brain nodes are displayed (Bonferroni-corrected p < 
0.05). 

 

Table 1. Brain regions showing high within-category representational stability (the top 5% threshold of 

correlation coefficients, total 12 regions remained). L: left, R: right. 

Lobe ROIs 

Anatomical and modified 
Cytoarchitectonic 

descriptions from 

Brainnetome Atlas 

Representational 

stability  

(Pearson r) 

MNI 

(X,Y,Z) 

Occipital Lobe 
Early visual 

cortex 

L.OPC (occipital polar 

cortex) 
0.5857 −18, −99, 2 

Temporal lobe 
Fusiform  

gyrus  

L.A37lv (lateroventral area 

37) 
0.5651 

−42, −51, 
−17 
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Frontal lobe 
Ventral 

premotor cortex 
R.A6cvl (caudal 
ventrolateral area 6) 

0.5553 51, 7, 30 

Occipital Lobe 
Early visual 

cortex 
R.OPC  0.5531 22, −97, 4 

Temporal lobe 
Posterior middle 

temporal gyrus 
R.V5/MT+  0.5368 48, −70, −1 

Temporal lobe 
Posterior middle 

temporal gyrus 
L.V5/MT+ (area V5/MT+) 0.5309 −46, −74, 3 

Occipital Lobe 
Early visual 

cortex 

R.mOccG (middle occipital 

gyrus) 
0.5226 34, −86, 11 

Parietal lobe 
Superior parietal 

lobule  

R.A7ip (intraparietal area 7, 

hIP3) 
0.4983 31, −54, 53 

Parietal lobe Angular gyrus 
R.A39c (caudal area 39, 

PGp) 
0.4977 45, −71, 20 

Frontal lobe 
Dorsal premotor 

cortex 
R.IFJ  0.4863 42, 11, 39 

Parietal lobe Angular gyrus  
R.A39rd (rostrodorsal area 

39, Hip3) 
0.4759 39, −65, 44 

Frontal lobe 
Dorsal premotor 

cortex 

L.IFJ (inferior frontal 

junction) 
0.4609 −42, 13, 36 

 

Different involvement of visual features in within-category high stability representational 

areas 

We have shown which brain areas present high neural stability of within-category (tool) 

representations. We then asked what types of (visual) features subserve representations within 

regions that show within-category high representational stability. To do so, we tested the 

similarity between neural RDMs within each high-stability area and the RDMs derived from 

the different CNN layers (layers 1 through 8). As shown in Figure 3, all areas but the early 

visual cortical ones are show similarity with the representations in the higher-level layers (CNN 

layers 6 to 8), whereas visual features within the mid-level layers (CNN layers 3 and 4) showed 

greater similarity with representations in EVC. All statistical inferences of the similarity 

between neural and CNN RDMs in within-category high representational areas (Bonferroni-

corrected p < 0.05) are summarized in Table 2. 
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Figure 3. Distributions of hierarchical visual features in within-category high representational 
stability areas. The most significant layer is displayed using the color-coded pie chart. The size of the 
slice relates to the strength of correlation (Bonferroni-corrected p < 0.05). 

 

Involvement of Perceived and Veridical visual similarity in within-category high 

representational stability areas 

We further tested whether neural similarity in these regions is driven by perceived or veridical 

(pixelwise) visual similarity between the target tools. Importantly, and as can be seen in Figure 

4, in EVC representational similarity was dependent on pixelwise veridical, rather than 

perceived, visual similarity between the presented tools, whereas in the remaining high-stability 

regions perceived visual similarity was predominant. All statistical inferences of the 

involvement of perceived and veridical visual similarity in within-category high 

representational stability areas (Bonferroni-corrected p < 0.05) are summarized in Table 2. 
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Figure 4. Distributions of perceived and veridical visual features in high within-category 
representational areas. The most significant feature is displayed using the color-coded pie chart. The 
size of the slice relates to the strength of correlation (Bonferroni-corrected p < 0.05). 
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Discussion 

We set out to investigate stability in within-category object-specific representations using 

neural, computational, and behavioral models. This is a central issue for system’s neuroscience 

(Kriegeskorte, Mur, & Bandettini, 2008) as it enables our understanding of how we go about 

our world recognizing and identifying objects. We first showed that within-category tool 

representations are stable across different timepoints. This stability is focused on regions 

typically involved in the processing of tools, such as ventral and lateral temporal cortex, 

superior parietal cortex, and ventral and dorsal premotor regions (Almeida et al., 2013; Chao et 

al., 1999; Chao & Martin, 2000), in regions dedicated to semantic processing of concrete 

objects and visuospatial and attentional processing of objects such as the right angular gyrus 

and right parietal cortex (Chen, Weidner, Vossel, Weiss, & Fink, 2012; Peelle, Troiani, & 

Grossman, 2009; Sabsevitz, Medler, Seidenberg, & Binder, 2005; Seghier, 2013), and the EVC. 

Importantly, this stability seems to be stronger in ventral stream regions – regions that are 

typical of tool processing such as the medial fusiform gyrus and the posterior middle temporal 

gyrus. Importantly, the representations within these areas seem to be dictated by abstract visual 

representations, as demonstrated by the fact that RDMs from these areas correlate with RDMs 

from later layers of a CNN and with RDMs extracted from perceived visual similarity measures 

rather than veridical visual similarity. This was true of all high stability regions except EVC, 

where representations seemed to be dictated by veridical visual similarity and earlier layers of 

the CNN. 

Our data are, in part, in line with the reports on cross-category representation stability that 

show that regions within the inferior temporal cortex subserve representational stability 

(Charest et al., 2014). These regions have, in fact, been implicated in computing invariant 

representations (Andrews & Ewbank, 2004; Baylis & Driver, 2001; Booth & Rolls, 1998; 

Rollenhagen & Olson, 2000). Our data, however, expands these findings, by suggesting that 

within-category stability is implemented, in part, within category-specific networks. 

Importantly, it has been shown that information flows in a long range fashion between nodes 

in a category-specific network, constraining and enriching local representations (Lee et al., 

2019; Ruttorf, Kristensen, Schad, & Almeida, 2019). It may crucially be these global/distal 

influences on local representations that happen within category-specific networks (Lee et al., 

2019; Ruttorf et al., 2019) that are at the basis of the kind of representational stability 

demonstrated here, and the kind of stability that allows for object individuation.  

Moreover, our data also demonstrates that visuospatial processing of objects (e.g., in the 

right Angular gyrus and right superior parietal cortex; e.g., Chen et al. (2012), Peelle et al. 

(2009), Sabsevitz et al. (2005), Seghier (2013)) may be of special importance in conceptual 

representation and stability. Interestingly, it has been shown that patients with right parietal and 

fronto-parietal lesions leading to neglect can present with object-centered and allocentric 
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neglect syndromes (Chechlacz, Rotshtein & Humphreys (2012), Driver, Baylis, Goodrich, and 

Rafal (1994), Tipper and Behrmann (1996)) suggesting perhaps that the right angular gyrus 

contributes to 3D, viewer-independent representations of objects (for the importance of 3D 

viewer-independent representations on the perception of a particular class of objects – that of 

faces – see Almeida et al. (2020)). 

Importantly, we also demonstrate that regions showing high representational stability hold 

representations that are dependent on information that is relatively detached from veridical and 

lower-level visual information. In fact, later layers of CNN, coding for more complex and 

abstract visual features, had been shown to be related with regions typically perceived as 

dedicated to more conceptual object processing (Cichy et al., 2016; Horikawa & Kamitani, 

2017a; Khaligh-Razavi & Kriegeskorte, 2014). These results are consistent with previous 

findings showing that perceptual information is represented within temporal cortex (Mur et al., 

2013; Peelen & Caramazza, 2012), whereas pixelwise information is represented in primary 

visual cortex (Bracci, Daniels, & Op de Beeck, 2017; Peelen & Caramazza, 2012). Note that 

CNN later layers and behavioral models on perceived similarity measure different things, but 

are, at least partially, both indexing higher-level representations specially when compared to 

earlier layers and models based on veridical similarity. Thus, our data suggests then that 

representational stability, as a central aspect of object individuation, requires a level of 

abstractness from sensorial information.  

It is important to note that in this study we have tested only a particular category – that of 

tools – and thus did not extend our study to within-category stability for items belonging to 

other categories. Nevertheless, we predict that the regions showing stability for items from a 

particular category will include some of the nodes that are recruited for the processing of the 

target category, and specifically those that code for high-level abstract visual (or other 

sensorial) information. For instance, it putatively follows from these data that our ability to 

recognize our friends’ faces or bodies at different times (and perspectives) will be, in part, 

dependent on areas such as the fusiform face area or the fusiform body area. This may be 

important to explore what types of information they represent and when they represent it.  

Moreover, we only tested one particular (high-level) task – that of discriminating between 

a tool and a chimera. Whether the locus of representational stability is dependent on the task at 

hand is yet to be determined. In fact, it may well be that while the constitutive aspects of a 

concept (Mahon & Caramazza, 2008) are impervious to the task at hand, other kinds of 

information may be called upon (and show representational stability) under different tasks. 

Nevertheless, we set out to explore representational stability of object representations in 

general, and as such a high-level, object related task was perhaps the most suited for this task.  

Recently, the use of CNNs as a proxy to object recognition has been challenged, as CNNs 

may not process visual stimuli in the same way as humans do. Particularly, it has been shown 
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that CNNs are more sensitive to noise, especially when dealing with outliers of unrecognizable 

images (Zhang, Liu, & Suen, 2020), and rely more on more local information (e.g., object 

texture) than global information (e.g., object shape; Baker, Lu, Erlikhman, and Kellman (2018), 

Geirhos et al. (2018)). This could perhaps be problematic as we try to compare the outputs of 

different layers (including lower-level layers that may be less similar to human visual 

processing than previously thought) against neuronal processing. Nevertheless, we show a 

consistency between these computational models and behavioral models, suggesting that these 

limitation in CNNs, albeit extremely important, may not be enough to prevent our conclusions 

here. 

In sum, our study shows that representations are stable across time, and that within-category 

stability, potentially as a proxy of object individuation, is dependent nodes involved in the 

processing of the particular category of the presented object – in the case of tools, as tested 

here, regions within ventral temporal cortex. Moreover, the representations in high stability 

regions are dependent not on veridical visual or lower level visual (sensorial) information, but 

rather on high-level abstract visual properties – that is, the stability of object representations is 

achieved and consolidated through abstraction of visual (sensorial) information. 
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Materials and methods  

The conditions of our ethics approval do not permit public archiving of anonymized 

study data. Readers seeking access to the data should contact the corresponding author 

through email. Full access to the data will be granted on request without conditions. Stimuli 

and code are available at https://osf.io/yx7rn/. No part of the study procedures and analysis 

was pre-registered prior to the research being conducted. We report how we determined our 

sample size, all data exclusions (if any), all inclusion/exclusion criteria, whether 

inclusion/exclusion criteria were established prior to data analysis, all manipulations, and all 

measures in the study. 

Participants 

Twenty healthy subjects (6 males and 14 females, ages from 19 to 43 years, mean = 

22.1, SD = 5.4) participated in this study following previous studies (e.g., Almeida et al, 2013). 

All subjects were right-handed with normal or corrected-to-normal vision, and had no histories 

of neurological and psychiatric disorders. Sample size was determined given previous studies 

from the authors and from the extant literature. This study was approved by the ethical 

committee of the Faculty of Psychology and Educational Sciences, University of Coimbra, and 

written informed consent was obtained from all subjects. 

 

Experimental design 

All participants completed two fMRI sessions (plus another not analyzed herein) each 

separated by about a week (mean = 7.1 ± 0.6 days). During the fMRI sessions, participants 

performed an object recognition task composed of gray-scaled images of 80 tools (see 

Supplementary Figure S1for a list of the objects used) and 16 chimeras. In the object perception 

task, all stimuli were presented to participants using Psychtoolbox-3 (http://psychtoolbox.org). 

Participants were asked to discriminate whether each image is a tool or a chimera by pressing 

a button to ensure that they were focusing on the task. Each image was presented for 2s, 

separated by 4 seconds of fixation. Each participant completed 5 experimental runs per session. 

Across runs (odd and even) different exemplars of tools were used for each basic-level item. 

All stimuli were 400 × 400 pixels in size (~10° of visual angle; see Supplementary Figure S2 

for examples of tools and chimeras used) and presented on a gray background using an Avotec 

projector (Stuart, FL, USA) under 60 Hz refresh rate.  

 

Data acquisition and image processing  

All MRI data were obtained from a Siemens 3.0T Tim Trio scanner (Berlin, Germany) 

with a 12-channel head coil at the Portuguese Brain Imaging Network. High-resolution 

structural T1-weighted data were obtained using a MPRAGE (magnetization prepared rapid 

gradient echo) sequence using the following parameters: MPRAGE (magnetization prepared 
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rapid gradient echo) sequence, a 256 × 256 acquisition matrix, a 230 mm field-of-view, a voxel 

size of 0.9 × 0.9 × 0.9 mm3, a repetition time (TR) of 1900 ms, and an echo time (TE) of 2.32 

ms. Functional magnetic resonance imaging (fMRI) data were acquired axially using T2*-

weighted single-shot echo-planar imaging (EPI) sequence using the following parameters: a 96 

× 96 acquisition matrix, a 220 mm field-of-view, 40 (interleaved) slices, a voxel size of 2.3 × 

2.3 × 2.3 mm3, a 2000 ms TR, a 22 ms TE, a flip angle of 90° and a gap of 0.7 mm.  

 Preprocessing of fMRI data was conducted using statistical parametric mapping 

(SPM12, http://www.fil.ion.ucl.ac.uk/spm/) (Friston et al., 1995). All functional data 

underwent standard preprocessing steps, including slice timing correction, head motion 

correction by realigning all consecutive volumes to the first image of each session, and co-

registration of T1-weighted image to the first functional data using the linear registration 

algorithm. Co-registered T1-image was used to spatially normalize functional data into MNI 

template space using nonlinear transformation in SPM12. The functional data were interpolated 

to 2.0 × 2.0 × 2.0 mm3 voxels. No spatial smoothing was conducted to avoid spill-over effects 

between voxels (Haxby et al., 2001; Haynes & Rees, 2006; Todd, Nystrom, & Cohen, 2013). 

 

Regions of Interest (ROI) 

For ROI-specific object representations, we parcellated the cerebral brain based on the 

human Brainnetome Atlas (http://atlas.brainnetome.org) (Fan et al., 2016). We defined 246 

cerebral nodes in the individual structural space. To do this, we co-registered T1-weighted 

image to EPI using a linear registration algorithm between T1-weighted image and the fist EPI 

image in the first session on each day. The human Brainnetome Atlas in the MNI template 

space was transformed in to the individual T1-weighted image by applying the inverse 

nonlinear transformation using the DARTEL toolbox in SPM12 (Ashburner, 2007). The label 

map in the individual T1 space was spatially normalized to functional EPI space into MNI 

template space using non-linear transformation in SPM 12. 

 

Representational similarity analysis  

Representational similarity analysis (RSA, Kriegeskorte, Mur, Ruff, et al., 2008) was 

carried out using a condition-rich event-related fMRI experiment (Kriegeskorte, Mur, & 

Bandettini, 2008), where each of the 80 tools is treated as an experimental condition. We 

concatenated five continuous runs within each session and conducted a general linear model 

(GLM) analysis of fMRI data. The GLM (  was modeled by the weighted sum of 

a set of regressors for each of the 80 tools and the estimate of coefficient ( ) that reflects voxel 

weights for brain activity for each tool. We converted the  estimates to t-values. The t-values 

were used to make neural activity patterns for 246 cortical regions. In each ROI, we calculated 

dissimilarity between a pair of neural patterns for each of the 80 tools using correlation distance 
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(i.e., 1–Pearson’s r). Representational dissimilarity matrices (RDMs) were based on the 

dissimilarity of all pairs of neural patterns for 80 tools. To construct a general representational 

geometry for tool representations across participants, we averaged the RDMs of all participants 

per session. The group-average RDM was separately organized for each region and scanning 

day.    

 

Convolutional neural network  

It has been shown that hierarchical visual features of images used in fMRI experiments 

can be derived from a pre-trained convolutional neural network (CNN) (Horikawa & Kamitani, 

2017a, 2017b). To carry out feature extraction from each image of the 80 tools, we utilized the 

MatConvNet toolbox (http://www.vlfeat.org/matconvnet/) (Vedaldi & Lenc, 2015). 

Specifically we extracted image features from each tool using AlexNet (Krizhevsky et al., 

2012) pretrained on over a million images in ImageNet as the CNN model. The pre-trained 

CNN model, which can classify images into 1000 object categories, consisted of the five 

convolutional layers (CNN1–5) and the three fully connected layers for object classification. 

Each convolutional layer underwent typical CNN building, including linear filtering, non-linear 

transformation, max-pooling, and normalization. Fully connected layers (CNN6-7) were 

thresholded with a ratified linear unit (ReLU) and the last fully connected layer (CNN8) was 

fed with a softmax function. We obtained a vector of those units’ outputs for each image and 

calculated the dissimilarity of all pairs of vectors for the 80 tools using correlation distance (i.e., 

1−Pearson’s �). 

 

Human object similarity judgement  

Sixty healthy, right-handed participants (19 males and 41 females, ages from 19 to 32 

years, mean = 21.2, SD = 2.7) conducted an object-similarity judgment task composed of 80 

tool words. Participants were asked to divide all stimuli into piles. When two tools are in the 

same pile similarity between a pair of tools is assigned to 1, and when they are not similarity is 

assigned to 0. Then we calculated the dissimilarity matrix by summing the assigned values per 

participant in each cell and subtracting the sum to the total number of participants.  

 

Actual visual similarity analysis  

For actual visual similarity analysis, we computed dissimilarity between the tool 

images using MATLAB 2-D correlation coefficient. Individual-specific tool images were 

compared, pixel by pixel, across sessions. Then, we constructed dissimilarity matrices for two 

fMRI sessions by applying correlation distance (i.e., 1−Pearson’s �) and averaged them account 

for more robust pixelwise similarity.   
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Statistical comparison of representational geometries   

We conducted permutations tests to generate a null distribution of correlation 

coefficients. For example, when two RDMs (e.g., neural RDM, CNN8 RDM) were given, the 

actual correlation was computed using Pearson correlation. And then, the stimulus labels of 

only one RDM were randomized (another RDM is fixed) and the correlation coefficient was 

calculated between the fixed RDM and the relabeled RDM. This step was repeated 10,000 

times. If the actual correlation was within the top 5% of the null distributions of correlations 

with considering Bonferroni-corrected p < 0.05 for 246 regions, the null hypothesis that all 

stimuli had consistent patterns was rejected. 
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Table 2. Similarity of neural RDMs in high within-category representational areas with CNN, perceived and veridical RDMs.  

ROIs 
Anatomical and modified 

Cytoarchitectonic descriptions 
from Brainnetome Atlas 

CNN1 CNN2 CNN3 CNN4 CNN5 CNN6 CNN7 CNN8 Perceived Veridical 

Early visual cortex  L.OPC (occipital polar cortex) -0.3361 -0.1043 0.1670 0.0631 -0.0325 -0.0374 -0.1556 -0.1576 0.0238 0.4558 

 R.OPC  -0.2515 -0.0686 0.1784 0.0828 -0.0156 -0.0111 -0.1283 -0.1508 0.0054 0.4506 

 R.mOccG (middle occipital gyrus) -0.1952 -0.0194 0.0855 0.0367 -0.0304 0.1311 0.0523 0.0510 0.0374 0.0974 

Posterior middle 
temporal gyrus 

L.V5/MT+ (area V5/MT+) -0.0249 0.1404 0.1019 0.1086 0.1009 0.3155 0.3025 0.2815 0.0712 -0.1236 

 R.V5/MT+  -0.0058 0.1354 0.0770 0.0712 0.0664 0.2892 0.2807 0.2776 0.0560 -0.1761 

Fusiform gyrus L.A37lv (lateroventral area 37) 0.0928 0.1937 0.0808 0.1063 0.1232 0.2732 0.2880 0.2847 0.0790 -0.1908 

Superior parietal lobule R.A7ip (intraparietal area 7, hIP3) 0.1342 0.2140 0.0569 0.1015 0.1316 0.2296 0.2532 0.2409 0.0752 -0.2843 

Inferior parietal lobule R.A39c (caudal area 39, PGp) 0.0538 0.0955 0.0199 0.0426 0.0347 0.1828 0.1702 0.1564 0.0547 -0.2004 

 R.A39rd  0.2002 0.2636 0.0775 0.1332 0.1722 0.2730 0.2925 0.2661 0.0739 -0.2840 

Ventral premotor cortex R.A6cvl (caudal ventrolateral area 6) 0.1702 0.2313 0.0615 0.1022 0.1264 0.2192 0.2467 0.2369 0.0734 -0.2404 

Dorsal premotor cortex L.IFJ (inferior frontal junction) 0.1160 0.1945 0.0594 0.0998 0.1249 0.2089 0.2299 0.2077 0.0727 -0.1875 

 R.IFJ 0.1014 0.2049 0.0622 0.0944 0.1188 0.2023 0.2258 0.2281 0.0759 -0.2293 

 
 
 

 


