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Abstract: Optical biosensors are used in numerous applications and analytical fields. Advances
in these sensor platforms offer high sensitivity, selectivity, miniaturization, and real-time analysis,
among many other advantages. Research into bioactive natural products serves both to protect
against potentially dangerous toxic compounds and to promote pharmacological innovation in drug
discovery, as these compounds have unique chemical compositions that may be characterized by
greater safety and efficacy. However, conventional methods for detecting these biomolecules have
drawbacks, as they are time-consuming and expensive. As an alternative, optical biosensors offer a
faster, simpler, and less expensive means of detecting various biomolecules of clinical interest. In this
review, an overview of recent developments in optical biosensors for the detection and monitoring of
aquatic biotoxins to prevent public health risks is first provided. In addition, the advantages and
applicability of these biosensors in the field of drug discovery, including high-throughput screening,
are discussed. The contribution of the investigated technological advances in the timely and sensitive
detection of biotoxins while deciphering the pathways to discover bioactive compounds with great
health-promoting prospects is envisaged to meet the increasing demands of healthcare systems.

Keywords: biosensors; optical detection; aquatic biotoxins; drug discovery; bioactive compounds

1. Introduction

Biotoxins are biological toxic substances produced by various organisms, namely, ani-
mals (animal toxins), plants (phytotoxins), and microorganisms (mycotoxins, cyanotoxins,
and toxins of dinoflagellates and diatoms). These chemical substances are produced in
stress, predation, and defense situations [1]. In particular, aquatic natural toxins, which in-
clude freshwater and marine sources (such as algae, coelenterates, reef fish, dinoflagellates,
and cyanobacteria), pose a serious threat to public health through exposure by inhalation
of aerosolized toxins, dermal absorption, or transmission through the food chain. Ingestion
of biotoxins leads to gastrointestinal, neurological, and cardiovascular syndromes, which
in severe cases can result in death. To prevent poisoning from aquatic biotoxins, seafood
and shellfish meat must be monitored, and the levels of toxin-producing microorganisms in
the water must be detected before marketing. In addition to human health, environmental
poisoning can also cause fatalities in fish, birds, and marine mammals [2]. For example,
microcystins produced by cyanobacteria can kill animals living in eutrophic freshwater
ecosystems or accumulate in mollusks, fish, and crayfish consumed by humans [3]. Ad-
ditionally, increase in harmful algal blooms, possibly due to rising ocean temperatures,
anthropogenic pressures, and increasing coastal eutrophication, contaminates various
water sources, especially drinking water, and causes poisoning in animals and humans [4].

Aquatic biotoxins and their analogues can be classified according to their chemical
structure, source of origin, or mechanism of toxicity (Table 1). In the first classification,
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biotoxins are usually alkaloids, polyethers, or peptides. For example, tetrodotoxin and
saxitoxin are marine alkaloids and are neurotoxins [5]. Regarding the source of the toxin,
there are, for example, microcystins from cyanobacteria [6], conotoxin from species of
the genus Conus [7], tetrodotoxin from pufferfish [8], and dinophysistoxins from species
of the genus Dinophysis [9]. The mechanism of toxicity includes the human syndromes
that biotoxins cause: diarrhetic shellfish poisoning (DSP), caused by okadaic acid, dino-
physistoxins, pectenotoxin, and yessotoxin; paralytic shellfish poisoning (PSP), caused by
saxitoxin; amnesic shellfish poisoning (ASP), caused by domoic acid; azaspiracid shellfish
poisoning (AZP), caused by azaspiracid; ciguatera fish poisoning (CFP) due to ciguatoxins;
and neurotoxic shellfish poisoning (NSP) due to brevetoxins [5,10].

Although toxins are usually considered harmful, many aquatic biotoxins hold great
pharmaceutical potential, the value of which has only been recognized in recent years with
the growing need for new drugs. Available drugs are effective in only one-third of diseases,
and pathogens have developed resistance to them. Therefore, new biologically active
compounds with improved therapeutic activities should be considered. For example, the
aquatic biotoxin produced by cone snails, conotoxin, has great therapeutic potential in the
discovery of new analgesics to treat visceral pain associated with irritable bowel syndrome
and inflammatory bowel disease because it is a selective toxin for the N-type voltage-gated
calcium channels, which are among the most important molecular modulators of visceral
pain [11].

However, most of the attention has been paid to toxins of cyanobacteria because
cultivation of cyanobacteria for drug discovery is less expensive compared with other
microorganisms. Cyanobacteria are a group of Gram-negative photoautotrophic prokary-
otes that can produce diverse secondary metabolites, including lipopeptides, amino acids,
macrolides, amides, among others. This variety of compounds leads to a wide range of
bioactivities, such as antibacterial, antifungal, antiviral, and anticarcinogenic [12]. For
example, microcystin-LR is a cyclopeptide produced by a wide variety of cyanobacte-
ria. It has been shown to target pancreatic cancer cells overexpressing the organic anion
transporting polypeptides 1B1 and 1B3, inhibiting cancer proliferation [13].

Dinoflagellates are unicellular planktonic microalgae that have also been the subject
of several studies. They produce a wide range of natural biotoxins, some of which are
common to cyanobacteria, such as saxitoxin, having unique and valuable potential for
the development of new drugs [14]. For example, saxitoxin acts as a sodium channel
blocker, preventing the influx flow of sodium ions. It has been shown to have anesthetic
properties [15], which could be used for several days to block the sciatic nerve as a pain
treatment with low cytotoxicity [16]. Brevetoxin is a biotoxin that has been previously
shown to promote neural repair after ischemic stroke in mice by enhancing dendritic
arborization, synapse density, and motor recovery [17]. Pectenotoxin-2 is another relevant
toxin produced by dinoflagellates that could be valuable as a chemotherapeutic agent, as it
leads to depolymerization of actin filaments and activates an intrinsic pathway of apoptosis
in p53-deficient tumor cells [18], while it has also been shown to be more effective against
cancer cells than against normal cells of the same tissue [19]. Gymnodimines are a type of
macrocyclic imine toxins that can act as cholinergic antagonists and have been shown to
decrease the accumulation of intracellular amyloid beta-peptide and hyperphosphorylated
forms of tau protein in cortical neurons in vitro, suggesting a potential pharmaceutical
approach in Alzheimer’s disease [20]. Other reports indicate that gymnodimines have
the potential to sensitize a neuroblastoma cell line to the apoptotic effects of okadaic acid,
another algal toxin [21].
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Table 1. Classification of common aquatic biotoxins, their toxicity, and frequently observed adverse symptoms in human
poisoning.

Biotoxin Chemical Structure Source Toxic Syndrome Toxicological Effects Ref.

Actinoporins Peptide Anemones, jellyfish - Severe pain, hypotension,
and cardiac irregularities [22,23]

Amphidinolides Polyether Dinoflagellates - Cytotoxicity [24,25]

Azaspiracid Polyether Dinoflagellates AZP Gastrointestinal and
neurological symptoms [26]

Brevetoxin Polyether Dinoflagellates NSP

Gastrointestinal and
neurological symptoms,

respiratory problems, and
muscular pain

[27]

Ciguatoxin Polyether Dinoflagellates CFP
Gastrointestinal,

neurological, and
cardiovascular symptoms

[27]

Conotoxin Peptide Cone snails -
Muscle paralysis of the

diaphragm, and alteration
of blood pressure

[7,28]

Dinophysistoxins Polyether Dinoflagellates DSP Gastrointestinal
symptoms [9]

Domoic acid Cyclic amino acid Diatoms ASP Gastrointestinal and
neurological symptoms [29]

Gambieric acid Polyether Dinoflagellates - Cytotoxicity [30,31]

Gambierol Polyether Dinoflagellates CFP
Gastrointestinal

disturbances and
neurological alterations

[32]

Goniodomin A Polyether Dinoflagellates - Hepatotoxicity [33]

Gymnocin Polyether Dinoflagellates - Cytotoxicity [14,34]

Gymnodimine Cyclic imine Dinoflagellates - Neurological symptoms [35,36]

Karlotoxin Polyether Dinoflagellates - Cytotoxicity [37,38]

Maitotoxin Polyether Dinoflagellates CFP Neurological symptoms [27]

Microcystin Peptide Cyanobacteria - Hepatotoxicity [39]

Okadaic acid Polyether Dinoflagellates DSP Gastrointestinal
symptoms [14]

Palytoxin Polyether Zoantharians and
dinoflagellates - Gastrointestinal, cardiac,

and respiratory problems [2,14,40]

Pectenotoxin Polyether Dinoflagellates DSP
Gastrointestinal
symptoms and
hepatotoxicity

[41]

Saxitoxin Alkaloid Dinoflagellates and
cyanobacteria PSP

Gastrointestinal
symptoms and respiratory

paralysis
[14]

Spirolides Cyclic imine Dinoflagellates - Neurological symptoms [35,42]

Tetrodotoxin Alkaloid

Pufferfish and other
species (e.g., starfish,
gastropods, newts,

and crabs)

- Neurological symptoms [8]

Yessotoxin Polyether Dinoflagellates DSP Gastrointestinal
symptoms [43]
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Yessotoxin is considered one of the most polar lipophilic toxins due to the presence of
two sulfate groups. This toxin elicits several effects, such as modulation of intracellular
calcium and cyclic adenosine monophosphate levels, caspase activation, fragmentation
of E-cadherin, and alteration of the cytoskeleton [14]. Considering its pharmaceutical
advantages, it has been shown to interfere with the apoptotic pathways of cancer cell lines,
inhibiting melanoma tumor growth and causing strong toxicity to a lymphocytic leukemia
cell line [44]. Yessotoxin can also cause genotoxicity and induce mitotic catastrophe,
followed by cell death, including apoptotic and necrosis-like manner, indicating great
potential to control tumor progression [45]. Another toxin isolated from dinoflagellates
with interesting properties is amphidinol, which has antifungal and hemolytic activities [46].
A potent neurotoxin found primarily in pufferfish, tetrodotoxin is a selective blocker of
voltage-gated sodium channels and has been administered intramuscularly to patients
with cancer-related pain, showing successful results with mild secondary effects when
present [47,48]. In addition, tetrodotoxin has been shown to alleviate symptoms in patients
undergoing heroin withdrawal [49].

Unfortunately, there are still many difficulties in the thorough research of aquatic
biotoxins and their use in the development of new drugs with higher efficacy, safety,
tolerability, and convenience compared with existing drugs [50]. It is estimated that it
takes about 14 years from the identification of the active compound and determination of
its functionality to its approval in the market, which becomes very expensive and time-
consuming. For this reason, it is necessary to implement new drug discovery alternatives
that are more efficient, accurate, less expensive, and faster [51].

Biosensors are characterized by high sensitivity, robustness, speed, selectivity, ease of
use, and cost-effectiveness. In particular, optical techniques have experienced significant
growth in the research community, mainly because they enable low-cost miniaturized
systems with reliable and fast responses. Therefore, optical biosensors have become an
excellent method for detecting biological systems and are promoting development in drug
discovery, clinical diagnosis, environmental monitoring, and other fields [52].

In this review, after introducing common aquatic-derived biotoxins that have been
the subject of research as hazardous compounds but also as promising drugs for medic-
inal purposes, the focus is to provide a comprehensive article on the progress in optical
biosensing for the detection of aquatic biotoxins and the technological advances that will
enable the rapid development of a new generation of drugs. First, a brief description
of the conventional analytical methods that have been used to date for the detection of
aquatic bioactive compounds is given. Then, the advantages and importance of replacing
conventional methods with optical biosensors are discussed. Their improved performance,
miniaturization, and rapid response improve the detection and monitoring of biotoxins
and also contribute to the identification of various biomolecules of clinical interest for new
drug development. Interesting examples from the literature of the successful use of optical
biosensors for these purposes are presented. Another focus is high-throughput screening
(HTS) based on optical biosensors used to screen large compound libraries, especially
label-free detection systems. It is expected that these technologies can be used to accelerate
biomedical research in the field of bioactive natural products.

2. Conventional Methods to Detect Bioactive Natural Compounds

As mentioned above, it is imperative to actively monitor and detect aquatic biotoxins
in order to avoid public health risk, contamination of various foods, and potential economic
impact, in addition to identifying novel compounds useful for the development of effective
drugs. These have the potential to fill the current gaps in pharmacological drugs with
anticancer, anti-inflammatory, antifungal, or antibacterial properties without showing
toxicity as a side effect. Conventional methods for the detection of biotoxins include
animal- and cell-based assays, chemical methods (e.g., liquid chromatography (LC), high-
performance liquid chromatography (HPLC), mass spectrometry (MS), and tandem mass
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spectrometry (MS/MS)), biochemical techniques such as immunoassays, and receptor-
based methods [53,54].

2.1. Bioassays

The mouse bioassay (MBA) has been the most common bioassay method. In the
MBA, mice are injected intraperitoneally with the sample extract to be tested for lethal-
ity. Although animal testing is still used worldwide for research purposes, the MBA has
been replaced by alternative detection methods for screening lipophilic marine biotoxins
(LMBs) and protecting public health [55]. This is due to ethical concerns, as well as high
rates of false-positive and false-negative results, low sensitivity, and reduced reproducibil-
ity [55–57]. Alternative in vitro cell-based techniques, combined with chemical methods,
have been investigated for the detection of LMBs [56]. For example, the neuro-2a assay uses
murine neuro-2a neuroblastoma cells to determine cell viability upon exposure to LMBs,
such as okadaic acid, dinophysistoxins, pectenotoxin-2, azaspiracids, and yessotoxins.
Subsequently, this qualitative screening method is complemented by chemical analysis
using LC–MS/MS as a reference method [56,58].

2.2. Chemical Assays

Separation of samples and their chemical analysis by HPLC is the most widely used
method for detecting biotoxins because it is a sensitive, reliable, easy-to-calibrate, and accu-
rate method. It also has the great advantage that it can be coupled with various detection
systems, such as fluorescence detection and MS [1]. MS measures the mass-to-charge ratio
of molecules present in the sample, allowing rapid analysis with high selectivity, a broad
spectrum of samples, and identification of analogues of a particular toxin group. Recently,
with the continuous advances in coupling LC and MS techniques, the need for toxin stan-
dards and derivatization reagents can be eliminated [1]. This is important because, for
example, there are at least 24 saxitoxin analogues and 90 yessotoxin analogues, making it
incredibly difficult to have reference materials for all of them [56]. Thus, LC–MS methods
have been successfully used to detect various lipophilic toxin classes [57,59,60]. The sample
can also be pretreated (e.g., with solid-phase extraction), which allows purification and
preconcentration of analytes retained on a sorbent cartridge [1].

2.3. Biochemical Assays

An immunoassay is a biochemical assay based on the immunological affinity between
an antibody and its antigen. The most commonly used immunoassay for the detection of
biotoxins is the enzyme-linked immunosorbent assay (ELISA), in which binding between
the biotoxin and its specific antibody is detected based on labeling with an enzyme that
converts target recognition into a color reaction upon substrate catalysis. Commonly
used labeling enzymes are horseradish peroxidase (HRP) and alkaline phosphatase. The
main advantages of ELISA are the simple mechanism, accuracy, and easy equipment
operation [1]. Examples of ELISA applications include the detection of yessotoxins in
shellfish and algal samples [61], gonyautoxin (a PSP toxin) [62,63], and azaspiracid [64]
from shellfish.

In the last decade, new designs of ELISA assays have appeared. For example, Zhang
et al. (2012) developed a capillary electrophoresis-based immunoassay with electrochem-
ical detection for saxitoxins in shellfish samples. After a competitive immunoreaction,
capillary electrophoresis enabled the separation of the HRP-labeled antibody–antigen
complex from the unbound labeled antigen, and then the HRP reaction was followed
electrochemically [65]. Kim et al. (2015) prepared a lab-on-a-chip for the detection of
saxitoxin using a competitive immunoassay. The biotoxin was captured by functional-
ized magnetic particles in a sample chamber where the sample and reactants were added.
Subsequently, the solid-phase magnetic particles containing the bound toxins were magnet-
ically conducted through the liquid-stationary phase into the detection chamber containing
the HRP substrate [66]. Pelin et al. (2018) were able to conjugate cell-based assays with
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immunoenzymatic detection for the quantification of palytoxin. The biotoxin binds with
high affinity to several cell lines and could then be detected by the addition of a specific
antibody [67].

Despite advantages in simplicity, sensitivity, and selectivity, immunoassays are still
associated with high laboratory and antibody preparation costs, antibody instability, and
the possibility of false-positive or false-negative results [68].

3. Optical Biosensors for Detecting Aquatic Biotoxins

Although the traditional analytical methods described so far have a good detection
success rate, there is a need for alternative methods that are cheaper, more sensitive, and
faster and can be used as a screening tool to evaluate multiple samples in a reasonable
amount of time. Biosensors are an alternative to these classical methods as they can detect
a wide range of biotoxins in a sensitive and selective manner and can be used as portable
and rapid techniques without the need for qualified personnel [69]. A biosensor is an
analytical device consisting of a biorecognition element in conjunction with the transducer
responsible for converting the recognition reaction into a measurable signal [70] (Figure 1).
In this way, biosensors can be classified according to the bioreceptor element and the
transducer type. In the first case, they can be classified as immunosensors, aptasensors,
enzymatic sensors, nucleic acid sensors, and cell-based sensors [70]. Biosensors can also be
categorized by physicochemical signal transduction, with electrochemical, optical, thermal,
and piezoelectric sensors being the most common [71].
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Figure 1. Schematic representation of a biosensor.

Although optical and electrochemical biosensors have the highest sensitivity and
selectivity compared with the other methods mentioned, only the optical methods are
considered in this work. Optical transducers involve a change in absorption, emission,
transmission, scattering, reflection, or refraction of light that is proportional to the concen-
tration of the target analyte. In addition, the optical change can be monitored with a label
(e.g., a chromophore or fluorophore) or without a label, in which case they are referred to
as label-free biosensors [72]. Optical biosensors have experienced a considerable growth
for medical diagnosis, food quality control, and environmental monitoring, primarily
because they can be designed as low-cost miniaturized systems with reliable and rapid
responses [73]. There are many optical approaches, including colorimetric, photonic, fluo-
rescent, surface-enhanced Raman spectroscopy (SERS), surface plasmon resonance (SPR),
interferometers, and microresonators. The most appealing examples of the application of
these optical methods for the detection of biotoxins are presented below and summarized
in Table 2.
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Table 2. Summary of common optical biosensors applied to detect biotoxins. In cases where more than one biotoxin was
studied in the cited article, LOD is linked by symbols to the respective biotoxin.

Optical Technique Biotoxin Biosensor’s Properties LOD Ref.

Colorimetric

Brevetoxin
GOx/AuNPs/TMB oxidation 0.1 ng kg−1 [74]

GOx/AuNPs/TMB oxidation 0.076 ng kg−1 [75]

Microcystins

Disassembly of AuNPs aggregation 0.05 nmol L−1 [76]

AuNPs aggregation 0.37 nmol L−1 [77]

Reaction of Cu2+ and
bis(cyclohexanone)oxaldihydrazone 0.05 nmol L−1 [78]

Protein phosphatase 1 inhibition 0.01 ng mL−1 [79]

Okadaic acid
Protein phosphatase 2A inhibition 0.29 ng mL−1 [80]

Direct competitive ELAA 0.01 ng mL−1 [81]

Saxitoxin AuNP aggregation 10 fmol L−1 [82]

Yessotoxin Phosphodiesterase inhibition 0.8 µmol L−1 [83]

Fluorescent

Ciguatoxins Sandwich ELISA 1 pg mL−1 [84]

Cyclic imines Competitive assay 10.2 nmol L−1 [85]

Domoic acid Competitive immunoassay - [86]

Maitotoxin Fluorescence quenching of CQDs through FRET
between CQDs and AuNPs 0.3 pmol L−1 [87]

Microcystins

Competitive assay 10 pmol L−1 [88]

Competitive immunoassay 0.4 ng mL−1 [89]

Fluorescence quenching of graphene oxide (GO)
by FRET between GO and AuNPs to detect

microcystin-LR * and microcystin-RR §

* 0.5 ng mL−1

§ 0.3 ng mL−1 [90]

Integrated optical waveguide-based fluorescent
immunosensor 0.21 ng mL−1 [91]

Saxitoxin Conformational change of aptamer structure 7.5 ng mL−1 [92]

Tetrodotoxin

Competitive immunoassay 2.5 ng mL−1 [93]

Lateral flow device, based on fluorescence
quenching/turn-on signal 0.2 ng mL−1 [94]

Conformational change of aptamer structure 0.074 nmol L−1 [95]

SERS

Dinophysistoxins In situ SERS analysis using AgNPs - [96]

Domoic acid AgNPs as SERS substrate 0.025 mmol L−1 [97]

Microcystin-LR SERS immunosensor 0.014 ng mL−1 [98]

Okadaic acid In situ SERS analysis using AgNPs - [96]

Saxitoxin

AgNPs as SERS substrate 3 nmol L−1 [99]

AgNPs as SERS substrate 170 nmol L−1 [97]

SERS combined with LTRS 2 nmol L−1 [100]

Dynamic SERS with Cys-AuNPs as substrate 0.1 µmol L−1 [101]

Tetrodotoxin
AgNP arrays as SERS substrate 0.9 ng mL−1 [102]

SERS with immunomagnetic concentration 10 ng mL−1 [103]

Yessotoxin In situ SERS analysis using AgNPs - [96]
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Table 2. Cont.

Optical Technique Biotoxin Biosensor’s Properties LOD Ref.

SPR

Analysis multiplex

SPR inhibition assay for saxitoxins and
gonyautoxins in shellfish - [104]

SPR immunosensor for saxitoxin *, neosaxitoxin §,
domoic acid }, and okadaic acid †

* 1.0 ng mL−1

§ 1.1 ng mL−1

} 1.0 ng mL−1

† 1.7 ng mL−1

[105]

SPR immunosensor for saxitoxin *, okadaic acid §,
and domoic acid }

* 0.82 ng mL−1

§ 0.36 ng mL−1

} 1.66 ng mL−1
[106]

Domoic acid

Competition-based SPR assay 10 nmol L−1 [107]

Inhibition-based SPR assay 0.1 ng mL−1 [108]

In situ underwater SPR system 0.1 ng mL−1 [109]

Microcystin-LR SPR competitive inhibition assay 73 pg mL−1 [110]

Okadaic acid
SPR immunosensor for shellfish extracts 126 ng g−1 [111]

SPR immunosensor combined with
magnetic particles 2.6 ng mL−1 [112]

Palytoxin

SPR method based on Na+, K+-ATPase affinity 3.73 pg [113]

SPR immunosensor for seafood matrices, 10%
grouper * and 10% clam §

* 2.8 ng mL−1

§ 1.4 ng mL−1 [114]

Tetrodotoxin

SPR inhibition immunoassay for complex
matrices, 10% pufferfish liver extract *, 10%
pufferfish muscle extract §, and 10% human

urine }

* 1 ng mL−1

§ 6 ng mL−1

} 17 ng mL−1
[115]

SPR inhibition immunoassay for complex
matrices, 10% pufferfish extract * and 10% skim

milk §

* 6.13 ng mL−1

§ 5.02 ng mL−1 [116]

SPR immunosensor for pufferfish extract 2 ng mL−1 [117]

Yessotoxin SPR method based on phosphodiesterase
enzymes

- [118]

Interferometric

Dinophysistoxin Aptamer-based BLI 614 pmol L−1 [119]

Domoic acid BLI with immobilized domoic acid and
competitive immunoassay - [120]

Microcystin-LR MIP-based interferometer - [121]

Okadaic acid Bimodal waveguide immunosensor 0.2 ng mL−1 [122]

Palytoxin BLI with immobilized palytoxin and HRP-labeled
aptamer competitive assay 0.04 pg mL−1 [123]

Saxitoxin BLI with immobilized saxitoxin and
aptamer-based competitive assay 0.5 ng mL−1 [124]

RM Yessotoxin RM based on phosphodiesterases - [125,126]
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3.1. Colorimetric Biosensors

Colorimetric strategies for the detection of aquatic biotoxins mainly resort to metal
nanoparticles and the change in their aggregation state in the presence of the bioanalyte,
as well as the inhibition or activation of an enzyme in the presence of the target, both of
which result in a color change. For example, microcystin-LR was successfully detected
using specific aptamers as linkers for gold nanoparticle (AuNP) dimers. When the biotoxin
was present, the aptamer changed its structure to bind the target, disassembling the dimer.
As a result, there was a color shift from blue to red [76]. Li et al. (2016) also detected
microcystin-LR, reaching a limit of detection (LOD) of 0.37 nmol L−1. In this work, the
aptamer binds the AuNPs and protects them from aggregation. Since the aptamer binds
the target microcystin-LR with high affinity upon sample loading, there is a displacement
of the aptamer, causing the AuNPs to aggregate, resulting in a color change from red to
blue [77]. A similar principle using AuNPs and a specific aptamer that reacts with saxitoxin
allowed its detection, with a LOD of 10 fmol L−1, through aggregation of AuNPs and shift
in color to blue [82].

Recently, Tang et al. (2019) achieved a lower LOD of 0.05 nmol L−1 for microcystin-LR
using a different strategy: antibody-functionalized silica-coated magnetic nanoparticles
(Fe3O4@SiO2) and aptamer-functionalized polydopamine nanospheres decorated with
copper nanoparticles (PDA/CuNPs) were developed. Here, in the presence of microcystin-
LR in the samples, both nanoparticles were bound in sandwich-like composites and could
be magnetically separated. Subsequently, the copper was converted to Cu2+, which reacted
with bis(cyclohexanone)oxaldihydrazone, producing color and allowing a quantitative
detection of the toxin [78] (Figure 2).
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When colorimetric detection is triggered by an enzymatic reaction, the tests may rely
on the inhibition of protein phosphatases or phosphodiesterases [79,80,83]. For example,
Hayat et al. (2012) used the inhibition of phosphatase 2A in the presence of okadaic acid,
which hindered the hydrolysis of p-nitrophenyl phosphate and prevented the formation
of the yellow p-nitrophenol [80]. Other colorimetric immunoassays used glucose oxidase
(GOx), AuNPs, and blue staining of oxidized 3,3′,5,5′-tetramethylbenzidine (TMB) [74,75].
Lai et al. (2016) presented a technique based on an enzyme-triggered Fenton reaction. In
this work, a competitive immunoassay was performed using nanogold labeled with GOx
and an antibody for brevetoxin B. When the target brevetoxin B was present, it competed
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with the immobilized brevetoxin B on magnetic beads for the labeled antibody. After
magnetic separation, the carried enzyme oxidized the glucose, forming hydrogen peroxide,
which later oxidized iron (II) to iron (III), also forming the radical hydroxyl; and finally, the
resulting iron (III) and the radical oxidized TMB, forming a blue product. The absorbance
decreased with an increasing concentration of sampled brevetoxin B [75]. In another study,
okadaic acid was detected based on a direct competitive enzyme-linked aptamer assay
(ELAA). The aptamer was first immobilized on a microplate and hybridized with the
complementary sequence labelled with catalase. In the absence of okadaic acid, catalase
consumes hydrogen peroxide. As the concentration of hydrogen peroxide decreases, the
red solution of gold trichloric acid turns blue due to aggregated nanoparticles. However,
in the presence of okadaic acid, the complementary sequence is replaced, resulting in a
high concentration of hydrogen peroxide and a nonaggregated red solution of AuNPs [81].

3.2. Fluorescent Biosensors

Fluorescence strategies have been highly studied in the field of biotoxin monitoring.
Many examples include the use of indirect detection by competitive assays [85,86,88,89,93],
quenching of the fluorescent signal [87,90,127], sandwich assays [84], and aptamer bind-
ing [92]. Fluorescent biosensors have been developed not only for single detection but also
for multiplex detection. For example, Bickman et al. (2018) designed a multiplex sensor spe-
cific for microcystin and cylindrospermopsin cyanotoxins [89]. Liu et al. (2017) were able
to detect up to 32 contaminants in lake waters simultaneously, including microcystin-LR.
The sensor was based on an integrated multichannel waveguide-based fluorescent sensor
functionalized for different contaminants using an indirect competitive immunoassay [91].

The competitive assays were combined with fluorescence quenching/turn-on signal
in a study to selectively and sensitively detect tetrodotoxin. For this purpose, the research
team used competitive lateral flow immunochromatographic strips (C-LFICSs). The test
line contained quantum dot nanobeads (QDNBs) conjugated to the protein BSA, as well
as tetrodotoxin–BSA. The QDs were chosen because they have the advantage of higher
signal brightness and stability compared with commercial organic fluorophores. Then, gold
nanoflowers labeled with an antibody against tetrodotoxin and the sample were added to
the C-LFICS so that they could move through the strip by capillarity. If the sample under
analysis did not contain tetrodotoxin, the nanoflowers would bind to the tetrodotoxin on
the test line, resulting in fluorescence quenching. In the positive case, the nanoflowers
recognized the tetrodotoxin on the sample and did not bind to the tetrodotoxin on the
test line, causing the fluorescence to remain on [94]. Gholami et al. (2020) based their
sensor on fluorescence resonance energy transfer (FRET) between energy donors, carbon
QDs (CQDs), and acceptors (AuNPs) for the detection of maitotoxin with low detection
limit [87].

Lan et al. (2019) chose a different strategy and used a specific nucleic acid aptamer for
tetrodotoxin that switches its conformational structure from a single-strand random coil to
a compact neck ring structure in the presence of the biotoxin. Therefore, insertion of the
fluorophore between the random coil leads to changes in the fluorescence signal due to
conformational changes of the aptamer that depend on the concentration of tetrodotoxin.
Using this method, a LOD of 0.074 nmol L−1 was determined [95] (Figure 3).
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3.3. Surface-Enhanced Raman Scattering (SERS) Biosensors

SERS is a technique for enhancing Raman scattering of analyte molecules adsorbed
on or in close proximity to SERS-active surfaces (i.e., rough or nanostructured metal
surfaces, often classically gold, silver, or copper). This method offers high specificity
and sensitivity and has been used to detect various toxins, such as saxitoxin [97,99,100],
tetrodotoxin [102,103], domoic acid [97], okadaic acid, dinophysistoxins, yessotoxin [96],
and microcystin-LR [98].

Saxitoxin shows a weak affinity for AuNPs or silver nanoparticles (AgNPs). There-
fore, a surface modification on the SERS substrate was used, as is the case of cysteine-
modified AuNPs (Cys-AuNPs). This modification, in coordination with a new method
called dynamic SERS, in which self-assembly of nanoparticles is induced by solvent evapo-
ration, increased the available 3D trapping wells for the biotoxin, resulting in a LOD of
0.1 µmol L−1 [101]. However, it showed lower sensitivity compared with the first reported
SERS method for saxitoxin detection, developed by Pearman et al. (2008), who used a
colloidal hydrosol of AgNPs as SERS substrate [99]. The sensitivity increased by combin-
ing SERS with laser optical tweezers Raman spectroscopy (LTRS) and reached a LOD of
2 nmol L−1. These results arise from the fact that laser optical tweezers are more efficient in
capturing numerous AgNPs adsorbed on the saxitoxin molecule, thus enriching the Raman
signal [100].

Another interesting study is that of Li et al. (2019), who constructed a biosensor that is
more sensitive and has a wider detection range than conventional ELISA kits for the detec-
tion of microcystin-LR in aquatic environments. In this work, the authors designed particles
with a core of plasmonic gold nanostars with Raman reporter molecules (4-nitrothiophenol)
embedded between the core and a protective silica shell. The shell improves the stability



Sensors 2021, 21, 5784 12 of 22

and reproducibility of the sensor, and the SERS tags have immobilized antibodies against
microcystin-LR for specificity [98] (Figure 4).
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3.4. Surface Plasmon Resonance (SPR) Biosensors

The SPR optical signal results from the oscillation of conduction band electrons at
the dielectric–metal interface induced by incident light. Binding of analytes on or near
the metal surface leads to differences in the refractive index in the immediate vicinity
of the metal surface and enables label-free, real-time detection of intermolecular interac-
tions [107,108]. Gold is the metal that is commonly used in SPR. This optical method has
been widely explored for the detection of biotoxins in water and food samples: domoic
acid [107–109], okadaic acid [111,112], palytoxin [113,114], tetrodotoxin [115–117], yesso-
toxin [118], microcystins [110], and multiple toxins simultaneously [104–106,128]. When
SPR is used for small molecules of low molecular weight, such as toxins, it is generally
associated with amplification steps [129], competition-based assays (where the analyte
in solution prevents antibody binding to the analytes immobilized on the surface), or
displacement-based assays (where antibodies bound to the immobilized analytes on the
SPR surface are displaced by the analyte in solution) [107]. However, Yakes et al. (2014)
demonstrated the first direct SPR immunosensor for biotoxin detection, tetrodotoxin in
a pufferfish matrix as a proof of concept. The antitetrodotoxin was immobilized on the
sensor chip, and the analyte was directly injected into the SPR sensor surface, achieving a
LOD of 2 ng mL−1 in the pufferfish matrix [117].

There are several approaches to the design of this type of biosensors. For example,
Garibo et al. (2014) used magnetic particles functionalized with an antibody against okadaic
acid as immobilization supports and carriers of the biotoxin for competitive assay on the
SPR immunosensor [112]. Moreover, Stevens et al. (2007) developed a portable six-channel
SPR biosensor for the measurement of domoic acid in phosphate-buffered saline and
clam extract solutions, reaching a LOD of 10 nmol L−1 [107]. Nevertheless, multiplex
analysis is of great importance because samples are usually complex and do not contain
only one biotoxin. Microfluidic devices allow not only compartmentalization of the sensor
to immobilize the target and reversal of the association event to reuse the biosensor, but
also multiplex analysis. For example, Campbell et al. (2011) constructed a biosensor with
four flow cells, each with four SPR sensing spots, which allowed simultaneous readout
of 16 different interactions at the SPR surface. The biosensor also had a liquid handling
system for sample injection and regeneration of the sensor for further measurements [105].
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3.5. Interferometric Biosensors

Interferometry is an optical technique that measures the interference pattern of light
produced by two light beams, the sensor where the bioconjugation event occurs and
the reference beams. Many interferometric configurations have been used for highly
sensitive real-time detection of small molecules [130]. Chocarro-Ruiz et al. (2017) created
an immunosensor chip based on bimodal waveguide interferometry. The sensor was
functionalized with an antibody against okadaic acid and showed a LOD of 0.2 µg L−1 [122].
An interesting approach based on a Fabry–Pérot interferometer was developed by Queirós
et al. (2011), who grew a sol–gel molecularly imprinted polymer (MIP) into the tip of the
optical fiber by dip-coating, creating a selective membrane for microcystin-LR. The MIP
showed a low thermal effect, good for field applications, and excellent selectivity against
other coexisting species in the sample [121]. In biolayer interferometry (BLI), the tip of the
fiber is coated with a layer of immobilized biomolecules, and the interference pattern of
white light reflected from the biolayer and an internal reference surface is analyzed. Any
change in the molecules bound to the tip, resulting from analyte recognition, causes a shift
in the interference pattern. The wavelength shift is directly related to the distance between
the two reflecting surfaces (i.e., it correlates with changes in the thickness of the biolayer
resulting from analyte detection) [120]. This technique has been successfully used for the
detection of domoic acid [120], palytoxin [123], saxitoxin [124], and dinophysistoxin-1 [119],
with low LODs. In the case of palytoxin detection, the signal was amplified by HRP-labeled
aptamers specific for palytoxin immobilized on the biosensor surface. HRP aptamers
were used as biorecognition receptors to bind competitively with immobilized palytoxin.
When the palytoxin/HRP aptamer complex was introduced into a 3,3′-diaminobenzidine
solution, a polymeric product precipitated directly in the tip and caused a strong change in
the shift of light [123] (Figure 5).
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3.6. Resonant Mirror (RM) Biosensors

An RM biosensor is a waveguide-based sensor that uses the evanescent field pro-
duced at the sensing surface to follow specific interactions between molecules through
changes in the refractive index at the sensing surface. These biosensors enable real-time
quantitative measurements [131,132]. To our knowledge, there are only two studies using
MR to detect aquatic biotoxins. In summary, the authors investigated the affinity between
yessotoxin and various phosphodiesterases, a known target of this toxin, which ensures
the specificity of the biosensor. The RM biosensor had aminosilane surfaces to immobilize
phosphodiesterases, and increasing concentrations of the biotoxin were added, resulting in
a proportional increase in sensor response [125]. This sensor approach also allowed the
investigation of the specificity of different phosphodiesterase families for yessotoxin [126].
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4. Optical High-Throughput Screening (HTS) Assays for Drug Discovery

Interest in naturally occurring compounds from aquatic organisms with potent phar-
macological activity has long led to research efforts. Indeed, isolated compounds from
extracts of marine organisms have shown interesting biological activities beyond their
known toxicological effects [133,134]. There are many relevant examples of such bioactive
natural compounds with antibacterial, anti-inflammatory, antimalarial, and anticancer
activities [135,136]. HTS assays are key processes in drug discovery and consist of auto-
mated screening of large compound libraries and identification of biologically relevant
compounds. Testing a large number of natural or synthetic chemical compounds for a spe-
cific biological target is the starting point of a drug design and development pipeline. The
advantages of HTS technology are mainly in reducing the cost of drug development and
increasing the speed, simplicity, and process efficiency [137]. HTS assays are divided into
biochemical assays or cell-based assays. The first group usually relies on enzyme activity
or receptor–ligand binding tests, which allow for obtaining highly reproducible minia-
turized assays. However, tissue-specific responses may differ from those in biochemical
assays because the activity of a small molecule may be different in a cellular context [138].
Therefore, drug screening is evolving into in vitro cell-based assays that are more suitable
in the process of validation of new drugs in the preclinical phase. It offers the possibility to
study the toxicity of a given drug for both targeted cell populations and nontargeted cells,
allowing the selection of potential drugs without harmful side effects [139].

In the techniques used to study biomolecular interactions and the binding of a ligand
to its receptor, the labeling steps required in most methods (e.g., fluorescence labeling and
radiolabeling) led to some drawbacks involving additional time and cost. In addition,
the labels may interfere with the site of molecular interaction, leading to false-negative
results, or bind to the background, leading to false-positive results [140]. In this context,
there is a growing awareness of novel label-free optical techniques that provide improved
data on interaction specificity, kinetics, and affinity in real time. Moreover, their value
already extends beyond low-throughput analysis of binding affinity and kinetics, as newly
developed optical biosensor arrays for multiplexed detection offer a greater degree of
flexibility in experimental design [140]. Optical biosensors have accompanied the shift in
drug discovery from a target-directed approach to a systems biology-centered approach
by potentiating the development of cell-based biosensors [141]. Among the label-free
screening systems, SPR, RM, interferometry, Raman spectroscopy, and photonic crystal
(PC)-based biosensors are some of the best-developed methods for HTS applications with
the goal of accelerating the drug discovery process [140–144].

Among the various mentioned label-free methods, PCs show a great potential for in-
corporation into HTS [145]. Biosensor platforms using PCs present many advantages, such
as high sensitivity, flexibility in structural design, cost-effective fabrication with a variety of
materials, short testing time, and ability to detect a wide range of analytes [146,147]. PCs
are one-, two-, or three-dimensional periodic arrays composed of materials with different
refractive indexes. The structural color observed in PCs is explained by the photonic band
gap (PBG), where certain wavelengths of light do not propagate through the PC and are
reflected. When the PBG is in the visible light range, the PC exhibits unique, vibrant
colors. These nanostructures occur in nature (e.g., the bright gold and silver colors of
jewel scarabs [148] and the blue color of the wings of Morpho butterflies) [149]. Bioin-
spired nanostructured materials exhibiting photonic properties and structural colors have
been fabricated for various purposes by controlling composition, additives, and arrange-
ment, among others [150]. Proving its usefulness in HTS, the ability of PCs to identify
modulators of protein–protein interactions [151], to discover inhibitors of protein–DNA
interactions [152] (Figure 6), and to measure antibody–antibody binding [153] has been
demonstrated. Another interesting example of the use of PCs for HTS screening is in
cell-based assays. A label-free detection system based on PCs incorporated into a 96-well
microplate enabled the quantification of the proliferation of cancer cells and cell apoptosis
induced by exposure to a cytotoxic compound [154]. The applications are vast because
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a variety of cell-based assays can be performed in response to chemical and biological
stimuli, while cells are quantitatively monitored in their culture environment over time
without the use of dyes or stains [145].
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Figure 6. (A) Example of an HTS based on photonic crystals for the study of protein–DNA interactions, where the peak
wavelength value (PWV) is measured, in particular for different concentrations of (B) toxin–antitoxin chromosomal module
of Escherichia coli (MazEF) and of (C) apoptosis-inducing factor (AIF). (Reproduced with permission [152], Copyright 2008,
American Society of Chemistry).

5. Conclusions and Future Perspectives

The increasing demand for new detection methods for bioactive natural products,
including biotoxins to protect human health, makes optical biosensors an excellent alterna-
tive for the detection of these biomolecules compared with conventional methods, such as
ELISA, MBA, LC, and MS. Optical biochemical or cell-based assays overcome ethical con-
cerns and irreproducibility associated with animal testing. In addition, optical biosensors
exhibit high sensitivity and rapid responses, have lower cost, and are easy to use, often by
untrained personnel. The focus of this review was mainly on biosensors for the detection
of aquatic biotoxins, as there are great expectations for new, simpler, miniaturized, and
improved methods for the real-time detection of various chemicals in water and aquatic
organisms. As for other applications, optical biosensors have been successfully used to
detect biotoxins even in complex matrices and have shown high sensitivity and selectiv-
ity. In addition, new optical detection designs are very promising for HTS of bioactive
compounds, as they offer the distinct advantage of being less time-consuming and are
cost-effective methods. Label-free optical biosensor arrays will certainly accelerate new
areas of drug discovery, as expected, especially regarding the use of HTS for the discovery
of aquatic bioactive compounds, and help decipher their pharmaceutical potential.
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